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Abstract— Loop-closure detection and the disambiguation of
similar locations are difficult problems for simultaneous localisa-
tion and mapping (SLAM) algorithms. Wi-Fi is able to provide
unique identifiers for locations, i.e. perceivable MAC-addresses.
In this paper we investigate the possibility of exploiting received
signal strength (RSS) in an existing visual graph-based SLAM
algorithm, namely Real Time Apperance Based-Mapping (RTAB-
Map). We formulate a range-only constraint and generate these
constraints from perceivable Wi-Fi access-points (APs) during the
SLAM process. We make the translation from RSS to distance
by fitting a signal propagation model to measurement data.
Finally, we evaluate performance by computing the absolute
trajectory error (ATE) and relative pose error (RPE). These
errors are computed by comparing with a measured ground-
truth. We find that, in a controlled synthetic environment, the
range-only constraints have great correctional capabilities for
noisy odometry as well as great loop-closure potential. In the
real-world experiments we observe limited performance due to
the limitations of the used signal propagation model. In this
case our addition to RTAB-map is beneficial in some of the
tested robot configurations. However, the synthetic experiments
show that performance increases significantly when better range
measurements are available, in real-world from i.e. utra-wide-
band sensors.

Index Terms—SLAM, Robotics, Graph-based SLAM, Con-
straint types, RTABMAP, g2o, Wi-Fi

I. INTRODUCTION

Many out of the box implementations exist for accurate
SLAM in robotics. Implementations have become quite good
at accurate loop-closure detection and the disambiguation of
similar locations. We want to test a possible, very cheap
addition to the pool of available sensors, namely Wi-Fi RSS.
Wi-Fi RSS is a measurement that can be conducted on
almost any device with access to the internet over a wireless
connection. Signal strength, as any electromagnetic signal,
generally falls off as distance from the source increases. Thus,
information regarding the relative location can be extracted
from this measurement. In order for RSS to be incorporated
in a graph based SLAM back-end two things are required:
a signal propagation model describing the relation between
distance and RSS, and a range-only constraint for integration
in the graph-based back-end. In this research we define such a
constraint and fit a signal propagation model to incorporate
these constraints in an existing visual graph-based SLAM
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algorithm (RTAB-Map). We test this alteration to RTAB-Map
in both the areas of loop-closure assistance and odometry
fault correction. As Wi-Fi RSS is not the most accurate
of measurements, we are expecting a possible increase in
robustness rather than in maximum achievable accuracy. The
methodology of our research is based around this expectation.
We conduct experiments using a synthetic dataset and deploy
the proposed approach on a robot platform in a real-world
setting.

In this paper we start by placing our research in context of
existing research in section II. We provide research questions
and some background information in III and IV respectively.
We continue by introducing our methodology in section V.
This methodology requires certain experiments to be con-
ducted, these are discussed in section VI. Finally, we present
our results, section VII, and conclusions in section VIII.

II. RELATED RESEARCH

As mentioned, many out of the box solutions for certain
sensor setups and many approaches to the SLAM problem
exist. Some of the latest additions to this ever growing
list of implementations and libraries move towards deep-
learning and graph-less approaches. ElasticFusion [1], for
example, gives dense representation of surroundings without
the necessity of a pose-graph by using a deformation graph
generated from sub-sampling surfels. Furthermore, the authors
augmented their approach with light source estimation [2]
using diffuse colour surface reconstruction, ray-tracing and
hough-like voting. Light source estimation could be useful for
more accurately describing a lighting invariant virtual scene.
Similar to this source estimation technique, acoustic SLAM
(from [3]) locates audio sources with a particle filter given an
estimated direction of arrival. The ray tracing voting of the
last paper and particle filtering in a certain direction have a
very similar result. Coming back to virtual mapping of light,
when localisation is assumed fixed NerF [4] is an application
for photo-realistic mapping. The authors achieve very high
levels of accuracy when synthesising new views. However,
this accuracy and photo-realism comes at the cost of training
a neural network. This unfortunately means that it is, as of
yet, not viable for SLAM purposes.



A. Graph-based SLAM and loop-closure detection

However, still many very robust and considered industry
standard implementations rely on the use of graphs in contrast
with the more experimental techniques described above. When
adding constraints to this graph SLAM systems are generally
divided in two sections: Local SLAM and Loop-closure.

Local SLAM is for generating odometry and thus for finding
pose transforms between consecutive poses using the sensors
available on the robot. This can be accomplished by for exam-
ple measuring wheel odometry, using Iterative Closest Point
(ICP) of pointclouds, bundle-adjustment or extracting depth
information from cameras. Local SLAM is not as active a
research environment as doing accurate loop-closure detection
as this is considered more important. This because loop-
closure detection limits the amount of accumulated drift that
slowly builds up from the local mapping error by correcting
the trajectory on a global scale. A naive method for loop-
closure detection is comparing every measurement to all other
measurements. Similarity between one measurement and an-
other may indicate that a loop has been closed and the robot is
revisiting a position he has been before. However, this method
has roughly complexity O(n2) with the number of vertices in
a graph. More specialised approaches include clustering of
key frames, some different approaches are described below.
Matching local frames and small maps limits the amount of in-
dividual matches that have to be conducted, [5]. Furthermore,
keyframes/measurements can also be clustered based of the
amount and type of visual words from a camera. A cheap bag-
of-words similarity check can be performed before expensive
scan matching is attempted [6] [7]. This approach ensures that
keyframes that are very different in features are not attempted
at matching and/or bundle-adjustment. As matching is, in
most cases, an expensive operation one wants to minimise
the matching attempts in order to keep an algorithm fast.

One can also cluster key-frames based of other sensors, e.g.
Wi-Fi signals strength. In [8] key frames are clustered based
on Wi-Fi signals and in [9] cosine similarities of Wi-Fi fin-
gerprints are measured and thresholding is applied. Clustering
is conducted by both, where this addition functions as extra
layer for selection of visual keyframes. We notice, like many
others, that also some information regarding position, e.g. a
distance from the source, can be extracted from Wi-Fi data
and other range-only sensors. When only localising, [10] use
graph-based SLAM with known landmark locations for Wi-
Fi SLAM. This is similar to [11], in which Kalman-filtering
is applied to localisation with the inclusion of landmark
identification from Wi-Fi sensing.

B. Range-only sensing

Extensive research on localisation using ultrawide band
beacons has been conducted [12] [13] [14]. In these consec-
utive papers the authors define a smooth trajectory constraint
(which is valid assumption for UAVs) and known ultra wide
band (UWB) beacon locations with 2-way time of flight
RSS for localising in with graph-based SLAM back-end.
Furthermore, attempts to conduct SLAM based on Wi-Fi

received signal strength indicator alone have been conducted
[15]. Local continuity of received signal strength is assumed
and constraints are added based on the weighted mean of
the surrounding measurements. Also [16] [17] [18] attempt
localisation with Wi-Fi RSS. All of these approaches base of
the same signal propagation model which we use in this paper
as well (see equation 11). These methods extend this model
with knowledge based on the environment to compensate for
multicasting and line-of-sight based issues. This is information
we do (a priori) not have as we are trying to conduct SLAM,
not just localisation on a known map.

C. Wi-Fi integration

We see an opportunity in combining Wi-Fi clustering of
keyframes and localisation information from range-only sens-
ing, i.e. the fusion of the aforementioned research from [15]
and [8]. Range-only constraints can be generated based of
perceivable APs and RSS, this may move locations with
similar Wi-Fi fingerprints closer together. These distance con-
straints can be found by characterising the Wi-Fi sensor with
measurements, similar to [11]. Because some SLAM systems,
e.g. RTAB-map, allow for limiting key frame selection in
euclidean and graph distance, moving locations with similar
Wi-Fi surroundings can be advantageous. Furthermore, RTAB-
map is able to optimise with the G2O graph optimiser [19]
which does not include a range-only constraint but does allow
for custom constraints. All of previous alterations may have
the same implications on loop-closure and proximity detection
as the implementation from [8] without the computational
overhead of linking each frame to a Wi-Fi fingerprint.

D. Accuracy and ground-truth

The aforementioned SLAM methods can be evaluated by
comparing the output map with a ground-truth map. The
comparison is rather trivial using ICP [1]. Due to the “driving
around”-nature of SLAM experiments it may be hard to
measure a ground-truth map as the robot goes around multiple
corners and through corridors. It should be noted that simu-
lation experiments do not suffer from this problem. In [20] a
method is described how a ground-truth can be obtained using
scan matching by hand and Monte-Carlo localisation: this
may produce a very accurate trajectory and map. Furthermore,
when the sensors that are required to produce a highly accurate
map are not available on the robot platform, the trajectory can
be based of external sensors. For example, motion capture
may be used [21]. The comparison method often used for
trajectories is the absolute trajectory error. Another proposed
metric is the relative pose estimate error as described and used
in [21], [22] and [23]. The authors argue that the relative pose
error is a more accurate measurement for performance than
the absolute trajectory error. This because small deviations
in trajectory may cause sub-map misalignment, this in turn
causes a very big increase to the total measured absolute
trajectory error. A very large error can be observed with a
small misalignment as the cause. This is why both errors
should be considered when evaluating SLAM performance.
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III. RESEARCH QUESTIONS

As discussed in section I and II, we are interested in
integrating Wi-Fi in an existing SLAM framework. In order
to narrow the scope and create a clear approach, next follow
some concrete research questions:

1) What is the state of the art for SLAM and what sensor
layouts do these techniques generally use?

2) What spatial information can be extracted from the RSS
of Wi-Fi signals and how can this be exploited in a
graph-based SLAM back-end?

a) What is the relation between Wi-Fi RSS and dis-
tance from the source?

b) How does adding Wi-Fi-related constraints to a
graph change the computational load or accuracy
for a given graph SLAM system?

c) What levels of accuracy can be achieved in es-
timating the positions of the robot using RSS
sensing and the proposed SLAM integration of
those signals?

3) How do the accuracy of localisation of synthetic and
real world environment change with respect to the
initialisation methods of the graph optimisation process?

4) How should a ground-truth be defined for a indoor
SLAM system with Wi-Fi sensing capabilities?

IV. BACKGROUND

To provide context for the Method (section V) a short
introduction to graph SLAM is provided below.

A. Graph-based SLAM

This section is based of the work in [24].
Consider a position in a map to be a vertex in a 2D/3D-

graph, each edge in this graph describes the required transla-
tion and/or rotation from one vertex to another. The difference
between the current position of the connected nodes, and the
required transformation as described by an edge can be formu-
lated as an error. Furthermore, these edges have an information
matrix associated to them which functions as a weight for the
respective error functions. Static objects that are observed by
sensors can also be added to the graph with an edge describing
the observation from the current robot position. After the
construction of the graph, optimisation of the poses is required.
This to minimize the sum of weighted errors as generated by
the constraints. This optimisation problem can be described as
a maximum likelihood problem in matrix F:

x∗ = arg min
x

(F (x)) (1)

Where x∗ are the positions of the nodes that minimize the
localisation error and F is the negative log likelyhood of all
observations (i.e. constraints):

F (x) =
∑
〈i,j〉∈C

eTijΩijeij (2)

Here eij is the error function described by the edge from node
i to node j and Ω is the information matrix. This error function

describes the difference between the expected observation, i.e.
our current estimate, and the actual measurement. Generally
not all nodes are connected, thus for most combinations of
i and j, Ω is zero. This results in F being a sparse matrix.
Minimizing F is achieved by a first order Taylor expansion,
differentiation and solving for zero. We start by expanding:

F (x̌ + ∆x) = cij + 2bT∆x + bT∆xTHij∆x (3)

where H is known as the Hessian matrix. the Hessian matrix
is constructed using the Jacobian and information matrix Ω of
the constraints:

Hij = JT
ijΩijJij (4)

Equation 3 can be minimised by solving the linear system:

H∆x∗ = −b (5)

The solution to this equation is incrementally added to the
initial guess in order to minimize F . As mentioned in [24]
Gauss-Newton and Levenberg-Marquardt solvers are particu-
larly well equipped to handle these problems. This process
is known as multivariate function minimization. What should
be noted is that for graph-optimisation the Jacobian and cost-
function (or error) are required for each constraint, such as a
range-only constraint (see section V for the definition of these
properties).

B. RTAB-Map

As mentioned, the chosen framework in which we integrate
the range-only constraint is RTAB-Map in 2D mode. RTAB-
Map was chosen for its modularity and flexibility regarding
sensor layouts. To enable the proposed integration we describe
some specifics regarding the back-end of RTAB-map. RTAB-
Map generates “Signatures” as poses in the aforementioned
graph. These signatures also include all measurement data
from all sensors used to construct that pose, i.e. all measure-
ments conducted between the construction of the previous and
the current pose. Signatures are connected via “Link” objects,
which describe the constraint (e.g. translation and/or rotation)
between two signatures. Observed landmarks are handled as
measurements and are later converted to nodes in the graph
at the back-end of RTAB-Map. The type of constraint by
which the landmarks are connected depends on the covari-
ance of the observations. A very large rotational covariance
(i.e. Cov>= 9999.0) causes a constraint with just an XY-
translation. If the covariance is smaller (i.e. Cov< 9999.0) a
full SE2 transform is used.

V. METHOD

We integrate range-only constraints from Wi-Fi RSS into
RTAB-map. We evaluate the output of RTAB-map with this
new integration and compare it to a baseline.
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A. The Wi-Fi Integration

RTAB-map is able to use several different back-ends for
graph optimisation, one of which is G2O. No native 1D-
constraint exists within any of the back-ends that are supported
by RTAB-map. This constraint type is required due to the
nature of the measurement, the RSS. The merit of G2O is that
the user can create a new constraint type. Therefor G2O was
the back-end of choice. We create a new 1D-constraint that is
able to convey the spatial distance in a 2D-environment. G2O
allows for the Jacobian, for optimisation, to be determined
either numerically or analytically. For speed purposes, we did
this analytically. We begin by defining our error as follows:

e = r − r0 (6)

where r0 is the required euclidean distance and r is the current
distance estimate from the graph:

r =
√

∆x2 + ∆y2 (7)

The Jacobian is now formed by:

∂e

∂x1
=

−∆x√
∆x2 + ∆y2

∂e

∂y1
=

−∆y√
∆x2 + ∆y2

∂e

∂θ1
=0

∂e

∂x2
=

∆x√
∆x2 + ∆y2

∂e

∂y2
=

∆y√
∆x2 + ∆y2

(8)

With this Range-Only constraint RTAB-map is now better
equipped to handle Wi-Fi measurements. To enable RTAB-
map to generate these constraints an alteration in the back-
end is required. As mentioned in the previous section (IV-B)
the type of constraint depends on the covariance of the
measurement. We use the same technique to detect a single
dimensional measurement (i.e. range-only) by setting a y-
covariance larger than 9999.0. However, this covariance ma-
trix and the distance measurement must be generated from
the RSS measurement. For this a kernel function is needed
which is described in section V-C. Contact the author for the
implementation.

B. Initialisation of Wi-Fi landmarks

A single range-only constraint does not provide a single
location where a node should be initialised before graph-
optimisation occurs. Also, when multiple constraints are added
this may still be ambiguous. We will refer to this as the
disambiguation problem from now on. During the early stages
of this research, different initialisation methods have been
tested for accuracy and computational load. An example, the
results, and further description of this problem can be found in
appendix E. To summarise this appendix, the most successful

initialisation that was tested is taking the weighted mean of
the connected poses, as follows:

(xinit, yinit) = R

n∑
i=0

1

r2
i

trans(pi) (9)

Here trans(pi) is the translational component of the connected
pose pi and ri is the range measurement of the constraint. ‘R’
is the total squared range for normalisation:

R =

n∑
i=0

r2
i (10)

This way the translational part of each of the connected poses
is weighted by 1/r2

i .

C. Kernel function

To determine the relation between RSS from Wi-Fi sensing
and distance, as discussed in section II, we use the following
signal propagation model:

P (r) =P (r0)− 10α log
r

r0
(11)

P (r) =P (r0)− 10α log r − log r0 (12)
P (r) =C − 10α log r (13)

C − P (r)

10α
= log r (14)

r =10
C−P (r)

10α (15)

with:

C = P (r0)− log r0 (16)

Here P (r) is the measured power, or RSS at a distance r. C is
a reference constant determined by a reference measurement
and α is the path-loss coefficient. Both C and α are empirically
determined.

(a) Simulated trajectory 1: the
robot stays near the simulated
APs for testing the trajectory
correctional power.

(b) Simulated trajectory 2: the
robot temporarily is out of
range of the APs for testing the
loop-closure potential.

Fig. 1: The ground-truth trajectories that are used for the
synthetic data experiments. Simulated APs visualised in red.
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VI. EXPERIMENTS

A. Synthetic experiments

To test the range-only constraints in a controlled environ-
ment, we conduct synthetic data experiments. We simulate
a robot trajectory (random walk) and add drift to a virtual
odometry source. This drift consistently turns the perceived
robot orientation slightly counterclockwise relative to the
actual position of the robot. Furthermore, we generate ten
simulated Wi-Fi APs randomly near the origin. The exact
specification of the trajectory and data generation can be found
in appendix B. Range-only constraints are generated as if from
the actual position of the robot, thus possibly correcting the
noise added to the odometry.

In the first simulated trajectory (trajectory 1) the robot
traverses an area within the vicinity of the simulated APs.
Thus, range-only measurements are available over the entire
trajectory. This in order to test the correctional power of the
range-only measurements. In the second trajectory (trajectory
2) the robot temporarily leaves the range of the simulated APs.
The robot is allowed to accumulate drift from the noise added
to the odometry as no AP is perceived within this part of
the trajectory. This second test is conducted to find whether
loop-closure would become easier due to our addition. Both
trajectories can be seen in respectively figures 1a and 1b.

At first, we generate the range-only measurements that are
100% accurate and we limit the range of these measurements
to twenty meters. This experiment is conducted to expose any
weaknesses or strengths of our implementation. Furthermore,
a covariance of one meter was given to these measurements
such that they would have a large influence on the graph
optimisation process.

To conduct a more realistic synthetic experiment we add
Gaussian noise to the range-only measurements. The amount
of noise is similar to the kernel function shown in figure 8,
i.e. a standard deviation of 2.3 meters. Furthermore, the range-
only measurements are generated roughly every 2.5 seconds,
similar to the real-world experiment.

B. Real-World experiments

To establish the influence of the proposed integration in the
real-world we compare multiple robot configurations with and
without the Wi-Fi measurements. Below we list the available
options of deployable sensors on our platform:
• Odometry sources:

– Wheel Odometry
– PointCloud/ICP Odometry
– RGBD Camera

• Available extra options:
– Visual loop-closure from RGBD Camera
– Proximity matching from Velodyne/Ouster converted

to Laser-Scan
– Wi-Fi sensing

All these combinations result in a total of 24 possible exper-
iments per dataset. It might not make sense to have RTAB-
Map use the camera for estimating odometry, but not have it

Fig. 2: Rendering of the robot the experiments are conducted
on. Camera and Lidar can be seen on top. Safety bumpers
mounted lower on the robot.

use this for loop-closure detection. However, if our alteration
to RTAB-map proves accurate enough, where loop-closure
detection is not used, the argument that loop-closure detection
is obsolete may be considered. Not requiring loop-closure
detection may speed up and simplify the SLAM process
significantly. The complete list of these 24 configurations is
available in appendix A.

We collect three datasets, similar in nature to the synthetic
data experiments. The first two traverse the area within range
of the used Wi-Fi APs, with different traversal speeds. We
vary the traversal speed because we suspect that this may
influence the accuracy of the achievable kernel function. We
collect a third dataset where the robot leaves the range of the
APs. Again, like in the synthetic data experiments, we test the
trajectory correctional capabilities and potential for assisting
in loop-closure respectively. The entire process is conducted
in 2D, therefore the Wi-Fi APs that are logged are in roughly
the same plane as traversal as the robot, e.g. on the same floor.

1) Ground-truth: to find a ground-truth for real-world ex-
periments a configuration has to be found which has minimal
drift in an environment similar to our testing environment. This
ground-truth configuration is required for evaluation of other
configurations and for generating the Wi-Fi kernel function.
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The configuration that we used and suspected to be optimal
for our robot is listed in table I.

Algorithm Sensor Used

Odometry Generation ALOAM Ouster OS0 or Velodyne VLP-16
Loop-Closure Detection RTAB-Map Realsense
Proximity Detection RTAB-Map Laser Scan from Lidar

TABLE I: The Ground-Truth configuration for the robot. Note
that proximity detection is conducted with laser-scans. Laser-
scans are generated by converting the pointclouds generated
by the Lidar scanner.

ALOAM is a highly accurate iterative closest point algorithm
that is able to generate odometry. It was qualitatively deter-
mined to be significantly more accurate than the ICP-odometry
source mentioned in section VI. We have used the ALOAM
implementation that was developed in [25].

This configuration is compared to the external measure-
ments from a tracking camera. This tracking camera has an
accuracy of 1cm. This way it can be determined whether the
accuracy of the ground-truth configuration is sufficient for
our purposes. In our case this external measurement is only
available over a very small space in which the trajectory can
be evaluated. Because of this limitation we are required to
make the following assumption: if the accumulated drift, as
measured externally, between the beginning and the end of
the trajectory is small, the error in between is also small. This
is, in our opinion, true as the accuracy of the current pose
estimate depends on all previous poses. We want to extend the
argument further with the following: if the accumulated drift
is consistently small, all trajectories produced by this setup,
regardless of the presence of an external measurement device,
are accurate. This accurate trajectory is considered the ground-
truth configuration for the real-world measurements.

2) The Wi-Fi kernel function: measurements are collected
by the aforementioned ground-truth configuration where the
location of the Wi-Fi access points is known. The distance
to these access points, as measured from the ground-truth
trajectory, is plotted as a function of the measured RSS.
Only 2.4 GHz signals can be detected by our robot setup,
thus no distinction between 5 GHz and 2.4 GHz signals is
necessary. This method does rely on the accuracy of the
ground-truth setup. However, as RSS measurements are very
noisy and quantised, roughly 3.5 dBm gaps, we argue that
the error induced due to these properties is higher than the
error induced due to the localisation of our ground-truth setup.
Furthermore, two observations during experimentation caused
change in our experimentation. There RSS measurements are
capped at 100% when close to the AP. This results in the
indistinguishability of the first 7.5 meters. For this reason,
measurements with a 100% signal strength are not used. We
also observed that the kernel functions differ significantly per
AP and do not generalise well. For this reason each AP was
given its own kernel function. This experiment is conducted at

two different traversal speeds as we suspect this may influence
the accuracy of the measurement.

C. Evaluation

We evaluate by comparing the output trajectory of the
different configurations of the SLAM algorithm to the ground-
truth. For this comparison, aliasing is required which can be
conducted in time. This is possible because the robot is at
one and only one position at any point in time. RTAB-Map
includes timestamps in the generated poses. These timestamps
are equal to the timestamp of the last data-point received for
constructing that pose and thus to the timestamp of when
this pose was constructed. As this timestamp may deviate
from the timestamps in the ground-truth, linear interpolation
is used. The ground-truth trajectory is interpolated such that
all poses coincide with the poses of the estimated trajectory
that we want to evaluate. This way the error due to aliasing
is minimised. Once we have aliased the graphs we compute
the following metrics for evaluation: the Absolute Trajectory
Error (ATE) and the Relative Pose Error (RPE). These error
metrics are shown below as described in [21]:

ATE(Fi:n) :=
( 1

n

n∑
i=1

||trans(Fi)||2
) 1

2

(17)

Here ”trans” specifies it is the translational part of F, where
F is defined as:

Fi := Q−1
i SPi (18)

Here, S is the Horn transform [26], i.e. the rigid-body trans-
formation from the estimated trajectory P1:n onto the ground
truth trajectory Q1:n The ATE can be described as the standard
deviation of the entire trajectory relative to the ground truth.
The RPE is defined as:

RPE(E1:n,∆) :=
( 1

m

m∑
i=1

||trans(Ei)||2
) 1

2

(19)

Where Ei is defined as:

Ei :=
(
Q−1

i Qi+∆

)−1(
P−1

i Pi+∆

)
(20)

Here again Pi:n is estimated trajectory and Q1:n is the ground
truth trajectory. The RPE can be normalised over all possible
time intervals ∆ as follows:

RPEnorm(E1:n) :=
1

n

n∑
∆=1

RPE(E1:n,∆) (21)

The RPE can be described as the standard deviation of the
movement of the robot relative to the ground truth trajectory.

VII. RESULTS AND DISCUSSION

A. Synthetic experiments

1) Correction potential: for trajectory 1, the trajectory
where the robot stays within range of the APs, the 100%
accurate limited-range measurements contribute a lot to the
performance of the SLAM system. Almost all of the noise that
was added to the odometry can be recovered by the range-
only measurements, see figure 3a. However, some non-zero
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(a) ATE and RPE for the near 100% accurate measurements. The
range-only measurements (dashed lines) correct the error from the
noisy odometry significantly.

(b) ATE and RPE for the realistic measurements. The added Wi-
Fi measurements are able to compensate for the added noise less
effective than in the perfect measurement setup.

Fig. 3: ATE and RPE as function of time. During this trajectory
the robot stays within the range of the simulated APs. The
number displays the level of noise and the dashed lines
(with “w” in the name) display the range-only integrated
versions of RTAB-map. The bump early on is related to the
disambiguation problem. The sudden increase in error later (at
around 110) is related to the effect from figure 5.

(a) ATE and RPE for the near 100% accurate limited range measure-
ments. With the exception of a very small bump at roughly t = 25,
the addition of range-only constraints always improve performance.

(b) ATE and RPE for the realistic simulated measurements. The
results, other than a slight increase in error overall, are similar to
figure 4a.

Fig. 4: ATE and RPE as function of time. In this trajectory
the robot temporarily leaves the range of the APs. The number
displays the level of noise and the dashed lines (with “w” in
the name) display the range-only integrated versions of RTAB-
map.
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error was still observed early on in the process; at around
t = 25s and at t >= 110s. The bump at t = 25s can
be related to the disambiguation problem as explained in
section V and appendix E. At this time the robot is near
one of the APs and has collected little information of that
AP orthogonal to the current direction of travel. This causes
the disambiguation problem to be solved incorrectly by the
graph-optimiser and the measured error increases. This error is
recovered almost instantly as soon as more spatial information
is available, i.e. measurements orthogonal to this trajectory. At
around t = 110s we again see the error increase, this time
more permanently. We relate this to the tension in the graph
that is built up by the consistent drift of the odometry and
the attempted correction of the range-only measurements. We
observed the trajectory doing a counterclockwise loop (see
figure 5), even though the full simulated trajectory is only
right turns (as can be seen in figure 1a). This releases tension
in the graph and decreases the error for the graph optimisation
process. However, this same effect causes the ATE and RPE
to increase.

In the more realistic case (figure 3b) we also observe the
early disambiguation problem as well as the tension release.
However, as the range-only measurements are noisy, the max-
imum achievable performance is decreased. This can be seen
as the minimum achievable error is higher compared to the
100% accurate measurements (figure 3a).

2) Loop-closure potential: for the second trajectory we see
some interesting behaviour (see figures 4a and 4b). During
the first part of the trajectory the APs are localised and the
trajectory is continuously corrected similar to figures 3a and
3b. Next, during the traversal of the square, when the APs
are out of range, the robot is allowed to accumulate error. As
soon as the robot re-enters the range of the APs, the measured
error decreases as the trajectory is pulled to the correct position
and the accumulated error is partly recovered. However, the
trajectory may return to the APs under an angle causing the
APs to be localised on the wrong side of the returning robot.
This results in an increased measured error. After which,
when more information about the relative location of the
APs becomes available to the returning trajectory, the AP
is localised correctly again. The total trajectory is corrected
and the error drops significantly. This is precisely what we
see for most of the range-only integrated configurations. This
misalignment did not occur as much for the lower levels of
noise (configs 0-3). Furthermore, the accumulated drift for
configuration 5 was too large for the range-only measurements
to recover completely. A visual comparison of the final trajec-
tories (config 3) can be seen in figure 6.

B. Real-world experiments

1) Ground-truth setup: we compare the output of the
ground-truth setup of the robot to the output of the base station
(see figure 7). The length of the total trajectory is 57.4 meters,
as calculated by the robot. In this time the total accumulated
drift (as measured compared with the base station) is given

by the RPE-1 error. This error is the non-normalised RPE as
described, eq. 19 with ∆ = 1.

ATE RPE-N RPE-1
0.046 0.193 0.118

TABLE II: The errors when the ground-truth setup is compared
to the base-station.

The total accumulated drift is only 11 cm over almost 60
meters and thus sufficiently accurate for our purposes (table
II). Any other configuration that is used deviates at least 1m
from this ground-truth and is thus less accurate. Due to the
small size of the area covered by the base station there are only
six poses at the beginning of the trajectory and seven poses
when returning. As this is not a full trajectory comparison, the
ATE or normalised RPE have no real significant meaning but
are given for completion sake. Furthermore, unfortunately due
to time restrictions, no more measurements were conducted
which can confirm that this setup produces a low drift consis-
tently. However, a qualitative analysis was also conducted. The
comparison between the output of the SLAM program and the
building plans can be seen in figure 19 in appendix D. This
figure shows a very good correspondence, so the error can be
assumed to always be within 1 m across the whole trajectory.

2) Kernel function: in table III and table IV we report the
estimated parameters of the kernel function for the APs. The
kernel function for AP1 for the slow traversal is displayed
in figure 8, notice that the x-axis is reversed. These counter-
intuitive axes are chosen for the reason that they describe the
function we are looking for, i.e. distance as a function of
RSS rather than the other way around. The standard deviation
in these plots was calculated per signal strength level as the
receiver produces quantised data. The least square error for
the an unbiased estimator was used:

σ =

√∑N
i=0 |Di − fit(RSSi)|2

N − 1
(22)

Access Point C α σ̄
AP0 1.99 4.77 2.90
AP1 15.16 6.19 3.85
AP2 29.73 7.13 4.81
AP4 34.59 6.92 4.67

TABLE III: C, α and the mean standard deviation of the
measurements for the four APs within the area of traversal as
determined by the fit from measurement data and the ground-
truth configuration whilst travelling fast.

Access Point C α σ̄
AP0 -7.31 4.16 4.06
AP1 19.80 6.36 4.04
AP2 9.40 5.40 4.37
AP4 31.26 6.56 6.62

TABLE IV: C, α and the mean standard deviation of the
measurements for the four APs within the area of traversal as
determined by the fit from measurement data and the ground-
truth configuration whilst travelling slow.
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Furthermore, when comparing the estimated distance from
RSS measurements with the actual distance, we observe a shift
in time (not visualised). In the case the robot travelled towards
the AP, the estimated distance from the kernel function would
often be slightly long and vice versa. Synthetic data experi-
ments show that Gaussian noise may not hurt the performance
as much, however as will become clear later, consistent noise
may be detrimental to the achievable performance. This offset
was observed to decrease slightly when traversal was slower.
However, as can be seen from the mean standard deviation (see
table III and table IV) the models did not become significantly
more accurate due to the noisiness of the measurements.

The measured standard deviations for the Wi-Fi sensor
when we use this signal propagation model are high compared
to the other available sensors. The model does not describe
any multipathing, interference or loss due to obstacles in
the line-of-sight to the AP. For all of these effects to be
compensated information is required that we a priori do not
posses. However, estimates may be refined after localisation
with this information as collected from the SLAM process.
This was however out of the scope of this research.

3) Experimental results Wi-Fi integration: We see some-
what similar results in the real-world experiments compared to
the synthetic data experiments. In figure 9 the configurations
are listed that benefit from our integration. Figures 10 and
11 are shown for visual context. These figures show the
ground-truth trajectory, the configuration without our integra-
tion and with our integration. Note that only wheel-odometry
is noisy/faulty enough to benefit from the noisy range-only
measurements. For the configurations where the Wi-Fi imple-
mentation was not beneficial either the performance dropped
mildly or very extremely (see figure 13). These increases are
respectively caused by mild disturbances from noisy range-
only measurements and wrong solutions to the disambiguation
problem, causing extreme deformations in the graph. We
suspect that the consistency of the errors made in estimating
the distance to the APs was the main contributor, as this issue
is rarely observed in the synthetic environment.

When we look at the errors over time, there are some
effects that should be addressed. Erratic behaviour, instantly
increasing and decreasing the error values, was sometimes
observed, see figure 14. This occurs when with the current
information not one clear solution exists to the disambigua-
tion problem. A possible solution to this problem would be
that APs are only integrated into the graph until sufficient
information is collected orthogonal from the general direction
of travel. Finally, in the third trajectory evaluation (figure 14)
in all Wi-Fi integrated configurations a drop can be seen at
around t = 700s. This drop is related to the first detection of
an earlier seen, and localised, AP. Due to this the robot is able
to correct some of the accumulated drift. The second drop, at
around t = 880s, is related to a visual loop-closure detection.

Fig. 5: Due to the constant correction of the noisy odometry
by the range-only constraints tension is built up in the graph.
This tension is released resulting in the red marked left turn.
This turn decreases the error for the graph optimisation but
causes a sudden increase in ATE and RPE.

Fig. 6: Synthetic data experiment: Comparison of the Ground-
Truth and the final trajectory with and without the 100%
accurate range-only constraints. The range-only constraints
were able to compensate a large portion of the added noise.
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Fig. 7: The ground-truth setup compared to the base-station.
The full trajectory is shown with a detailed overlay of the area
covered by the base-station.

Fig. 8: The kernel function for AP0 measured from the slow
trajectory that remains within the range of the APs.

Fig. 9: ATE and RPE for the configurations that benefit from
our implementation. The graph is divided in three parts, each
part for one data-set (specified in the legend). Note that only
wheel odometry is noisy/faulty enough to noticeably benefit
from the implementation.

Fig. 10: Comparison to the ground-truth for wheel odome-
try with proximity matching enabled. The accumulated drift
causes a noticeable gap between the start- and end-point of
the trajectory. In the Wi-Fi enabled configuration this gap is
not present and the estimated trajectory is generally closer to
the ground-truth.
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Fig. 11: Comparison of ground-truth to a wheel odometry con-
figuration. The Wi-Fi integration results in a return to the start
whereas the baseline wheel odometry makes a mistake and
curves right when backtracking towards the starting location.

Fig. 12: ATE and RPE over time for the fast traversal of a
trajectory not leaving the range of the Wi-Fi APs. The wheel
odometry source makes a mistake not turning around to return
in the opposite direction. This mistake is reflected as the high
increase in errors at around t = 200.

Fig. 13: ATE and RPE over time for the slow traversal of a
trajectory not leaving the range of Wi-Fi APs. An incorrectly
solved disambiguation of one of the detected APs, at t = 450s,
causes a steep increase in error for the ICP-odometry which
is never recovered. A similar thing occurs at t = 570s for
the other configurations, however this error is recovered at
t = 700.

Fig. 14: ATE and RPE over time for the third trajec-
tory, i.e. temporarily leaving the range of the APs. For the
“wheel loop wifi” and the “wheel wifi” configurations we
clearly see the sudden decrease in error when the first AP
is detected after accumulating drift (t = 500s). For the
“wheel prox wifi” configuration the disambiguation problem
causes the error to fluctuate significantly.
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VIII. CONCLUSION

As presented, the addition of range-only constraints can be
very effective at providing extra information for a SLAM pro-
cess. This information can be used to accurately correct noisy
odometry. However, the disambiguation problem persists, even
though the initial poses for the APs are optimised to minimise
the occurrence of wrong optimisation. This problem arises
especially when too little information orthogonal to the general
direction of travel is collected. In this case multiple solutions
may exist to the graph optimisation, which hurts performance a
lot. When the range-only constraints are sufficiently accurate
and enough orthogonal information is collected, the disam-
biguation problem was often solved quickly, as seen in our
synthetic environment.

In the real-world experiments we observed that limited
spatial information can be collected from RSS. This was
due to the signal propagation model and the measurement
setup that we used. Several effects, such as multipathing, line-
of-sight and especially the temporal offset of measurements
were not compensated for in this setup. This limited the
achievable accuracy of the SLAM process for the real-world
experiments. Regardless, in real-world experiments the less
accurate robot configurations still benefit significantly from
the RSS measurements. Specifically when wheel-odometry is
used. The synthetic experiments show that, with accurate range
measurements, very high levels of noise and fault correction
can be achieved. Ultra-wide band or other time of flight
sensing may be feasible candidates for this in the real-world.
Our approach enables the use of such sensors in RTAB-map,
with very little extra work required.
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APPENDIX A
CONFIGURATIONS

All robot configurations that are used for real-world exper-
iments are listed below.

Odom Camera Laser Wi-Fi
wheel 0 0 0
wheel 0 1 0
wheel 1 0 0
wheel 1 1 0
Camera 0 0 0
Camera 1 0 0
Camera 0 1 0
Camera 1 1 0
Laser 0 0 0
Laser 0 1 0
Laser 1 0 0
Laser 1 1 0
wheel 0 0 1
wheel 0 1 1
wheel 1 0 1
wheel 1 1 1
Camera 0 0 1
Camera 1 0 1
Camera 0 1 1
Camera 1 1 1
Laser 0 0 1
Laser 0 1 1
Laser 1 0 1
Laser 1 1 1

APPENDIX B
SYNTHETIC DATA GENERATION SPECIFICS

Startup: Ten Wi-Fi access-points are generated in the vicin-
ity of the origin of the robot, namely (x = 0, y = 0, θ = 0).
Movement: Odometry is generated as a random walk with 10
hz messages. The y-translation is zero as robots do not drive
sideways. The x translation is 0.1 meters (per message) with
a uniformly distributed random addition of 0 to 0.1 meters.
The yaw of the robot is uniform distribution between -5.85
and 4.05 degrees per message. Thus there is a slight bias to
the right. This odometry is saved as ground-truth.
Noise addition: Noise is added to the relative translation
and rotation per timestep, which is saved and accumulated
over time. The noise is normally distributed with respective
covariances 0.02 and 0.007 (radians) multiplied by the noise
level. The noise level is specified per configuration and is
displayed in the name of that configuration (see VII-B). A
comparison of these trajectories can be seen in figure 15.
Wi-Fi measurements: range-only measurements are gener-
ated from the ground-truth, i.e. position of the robot and
the access-points. The covariance set for these measurements
is 1m. For the more realistic setup noise is added to these
measurements with similar covariance as found in the kernel
function VII-B, i.e. 2.3m.

Fig. 15: The first 32 seconds of trajectory compared. In
this configuration the robot stay’s within the vicinity of the
simulated access points. The number of the configuration
indicate the level of noise as specified in B

Fig. 16: Ground-truth trajectory compared to the trajectory
with level 1 till level 5 noise for the trajectory leaving the
vicinity of the simulated access points.
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APPENDIX C
KERNEL FUNCTIONS VISUALISED

(a) AP 0 with C = 1.99 and α = 4.77.

(b) AP 1 with C = 15.16 and α = 6.19.

(c) AP 2 with C = 29.73 and α = 7.13.

(d) AP 3 with C = 34.59 and α = 6.92.

Fig. 17: Kernel function for the 4 used APs. Blue area
is binned-covariance from the fit. This kernel function was
generated traveling ”fast” in the vicinity of the APs. This
kernel function was also used for dataset where the vicinity
of the APs was left.

(a) AP 0 with C = -7.31 and α = 4.16.

(b) AP 1 with C = 19.80 and α = 6.36.

(c) AP 2 with C = 9.40 and α = 5.40.

(d) AP 3 with C = 31.26 and α = 6.56.

Fig. 18: Kernel function for the 4 used APs. Blue area
is binned-covariance from the fit. This kernel fucntion was
generated traveling ”slow” in the vicinity of the access-points
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APPENDIX D
BUILDING PLAN COMPARISON

A qualitative analysis of the ground-truth setup is shown in the figure listed below. Here the building plans of the building
are compared to the output of the SLAM algorithm. One can see that they clearly align. The length of the entire trajectory is
roughly 266 meters.

Fig. 19: The output of the ground-truth configuration of the robot in Enschede overlaid with the building plans of the same
building. The largest difference can be seen on the inner side of the left side of the building. The two pictures have been
matched by eye.
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APPENDIX E
INITIALISATION FOR RANGE-ONLY CONNECTED NODES

A. Problem Description

For the range-only measurement, as defined in this thesis, a
problem exists of multi-modality: multiple solutions may exist
for a given graph. This is illustrated in figure 20. This space is
expensive to calculate and is not a viable method for real-time
localisation and mapping. Due to this fact an initial estimate
should be given to the graph optimiser based on the rest of
the graph. Three different methods were tested:

1) Initialise the landmark at the mean of all the poses at
which the AP with a specific MAC-adress was detected.
(m pose)

2) Initialise the landmark at the normalised weighted mean
of all the poses at which the AP with a specific MAC-
adress was detected. (w pose)

3) Initialise every single constraint with a random rotation
and its own separate landmark which has a relative zero
transform to each landmark with the same MAC-adress
(aliasing-relation). This solution might be computational
expensive and may not converge to a single solution.
(rand ori)

B. Methodology

To determine the best initialisation the graph, in figure
21, was constructed. All measurements that are provided are
perfect and have no noise. The poses from which the access
point was measured are considered fixed. Every possible
subsection of poses, minimum size 2, was optimised after
each different optimisation method. Optimisation was deemed
correct when the landmark was between 1.9 and 2.1 on both
axes after optimisation.

C. Results

The results (see table V-VIII) list the performance of the
different configurations as specified above. When failed, the

(a) The squared error space
for the position of the ac-
cess points measurement which
should be localised on the right
of this trajectory. A local min-
imum can be seen on the left

(b) The probability space of the
same trajectory and range only
measurements. In this space
the solution is less ambiguous
but also less smooth.

Fig. 20: A small piece of simulated trajectory with an access
point at (60, 50).

amount that diverge and converge is also specified. In turn,
the amount of measurements that were straight lines of those
converging or diverging measurements is also specified. These
amounts are specified because divergence can cause the entire
graph to crash and no optimisation would be available, so
convergence is the preferred behaviour in the case of bad
optimisation. Furthermore, the straight lines still have a multi-
modal solution space and are because of that more prone to
crashing.

D. Conclusion

The weighted mean pose as initial estimate performs consis-
tently the better over all solvers compared to the other initial
estimates. With over 94% of graphs converging to the correct
solution we conclude that using the mean weighted method
is the most robust way of accurately optimising graphs with
range-only constraints. Furthermore, only a very small portion
of the simulations diverge (less than 4‰) for the Levenberg-
Marquardt version of the different solvers. Also, both the
“m pose” and “w pose” implementations are comparatively
(roughly one third) faster than the “random orientation” im-
plementation.

Fig. 21: The goal graph for the different initialisation methods.
Different poses on the x- and y-axis with a simulated AP at
(2,2).

16



mean pose succes fail conv lines div lines
gn pcg 90,89% 9,11% 71,54% 7,50% 28,46% 74,53%
lm pcg 90,89% 9,11% 93,02% 34,63% 6,98% 0,00%
gn var 90,93% 9,07% 63,88% 8,44% 36,12% 74,63%
lm var 90,89% 9,11% 93,02% 34,63% 6,98% 0,00%
gn var cholmod 90,91% 9,09% 63,66% 8,46% 36,34% 74,07%
lm var cholmod 90,89% 9,11% 93,02% 34,63% 6,98% 0,00%
gn var eigen 90,91% 9,09% 63,66% 8,46% 36,34% 74,07%
lm var eigen 90,89% 9,11% 93,02% 34,63% 6,98% 0,00%

TABLE V: Performance of the mean pose initialisation method for different linear solvers.

mean weighted succes fail conv lines div lines
gn pcg 94,82% 5,18% 49,76% 4,74% 50,24% 85,45%
lm pcg 94,90% 5,10% 93,05% 61,86% 6,95% 0,00%
gn var 94,84% 5,16% 33,41% 4,26% 66,59% 83,27%
lm var 94,90% 5,10% 93,05% 61,86% 6,95% 0,00%
gn var cholmod 94,84% 5,16% 32,94% 4,32% 67,06% 82,69%
lm var cholmod 94,90% 5,10% 93,05% 61,86% 6,95% 0,00%
gn var eigen 94,84% 5,16% 32,94% 4,32% 67,06% 82,69%
lm var eigen 94,90% 5,10% 93,05% 61,86% 6,95% 0,00%

TABLE VI: Performance of the mean weighted initialisation method for different linear solvers.

random ori succes fail conv lines div lines
gn pcg 80,64%±0,16% 19,36%±0,16% 08,72%±2,59% 01,31%±0,96% 91,28%±2,59% 11,93%±2,06%
lm pcg 80,36%±0,18% 19,64%±0,18% 08,85%±3,07% 01,08%±0,80% 91,15%±3,07% 12,48%±2,42%
gn var 80,36%±0,33% 19,64%±0,33% 08,41%±0,47% 00,58%±0,92% 91,59%±0,47% 08,39%±0,52%
lm var 79,81%±0,37% 20,19%±0,37% 07,53%±0,51% 00,16%±0,37% 92,47%±0,51% 08,86%±1,37%
gn var cholmod 80,36%±0,33% 19,64%±0,33% 08,41%±0,47% 00,58%±0,92% 91,59%±0,47% 08,39%±0,52%
lm var cholmod 79,81%±0,37% 20,19%±0,37% 07,53%±0,51% 00,16%±0,37% 92,47%±0,51% 08,86%±1,37%
gn var eigen 80,36%±0,33% 19,64%±0,33% 08,41%±0,47% 00,58%±0,92% 91,59%±0,47% 08,39%±0,52%
lm var eigen 79,81%±0,37% 20,19%±0,37% 07,53%±0,51% 00,16%±0,37% 92,47%±0,51% 08,86%±1,37%

TABLE VII: Performance of the random orientation initialisation method for different linear solvers.

method mean pose mean weighted random ori
gn pcg 11,3us±0,61us 11,3us±0,69us 16,7us±0,90us
lm pcg 11,2us±0,67us 11,2us±0,69us 16,8us±1,36us
gn var 11,4us±0,98us 11,5us±1,29us 16,8us±1,45us
lm var 11,4us±1,00us 11,3us±1,07us 17,0us±1,53us
gn var cholmod 11,4us±0,91us 11,3us±0,93us 16,8us±1,16us
lm var cholmod 11,4us±0,91us 11,4us±1,04us 17,1us±1,63us
gn var eigen 11,3us±0,75us 11,2us±0,71us 16,7us±0,74us
lm var eigen 10,9us±0,83us 10,9us±0,71us 16,1us±1,03us
avg 11,3us 11,3us 16,8us

TABLE VIII: Timing results of the graph optimisation for the different initialisation methods and linear solvers.
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