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Management Summary 
Crowding is a phenomenon that occurs more frequently within the facilities of the acute care 

domain. Crowding causes patient waiting times to increase and overall satisfaction levels to 

decrease. Additionally, medical employees experience stress caused by the increased workload. 

Although crowding is perceived by patients and medical employees, there is no clear definition or 

measure for crowding. Similarly, there are also no clear indicators of crowding, which means that 

facilities cannot prepare for this. In this research, we focus on the day to day crowding in three acute 

care facilities in the region of Oost-Achterhoek. These are; 

- The ambulance service in north and east Gelderland, Witte Kruis NOG. 

- The ED of the hospital in Winterswijk, Streekziekenhuis Koningin Beatrix (SKB). 

- The GP-post of Oost-Achterhoek, which is part of the general practitioners' care of eastern 

Achterhoek (HZOA). 

For these partners, we want to quantify crowding, find potential predictors of crowding, and create a 

machine learning model that can predict crowding. We aim to answer the following research 

question in this report: 

What machine learning model can be used as an adequate early warning system for 

overcrowding and what is its performance in the acute care domain in the region of Oost-

Achterhoek? 

We started the research by getting familiar with the processes and the degree of overcrowding at the 

different ED, GP-post, and ambulance services. Right at this point, we were also hit by the Covid-19 

pandemic, which resulted in the withdrawal of the ambulance services from the project. Additionally, 

we had to use old datasets for the ED and GP-post as we were no longer able to retrieve new data 

from them. The dataset of the ED contained data from 2012-2018 of 85048 patients. The dataset of 

the GP-post contained data from 2013-2017 of 149725 patients. 

We proceeded by doing literature research on measures and predictors for crowding in the acute 

care domain. The literature described various measures commonly used for crowding in the acute 

care domain but unfortunately, not all of these were appliable to our situation. Mainly caused by the 

fact that we could not retrieve any new data from the partners. We decided to use total daily visitors 

as a measure of crowding since these were determinable with the old datasets. The idea is then to 

predict this measure one-day-ahead, allowing planners to adjust schedules of employees if crowding 

is expected and predicted within reasonable boundaries. The predictors of crowding that we 

investigated were chosen based on findings in the literature and opinions of experts in the field. We 

used the following predictors: 

- Visitors of the day before in the acute care domain 

- Date related data (day of the week, the month of the year, etc) 

- German and Dutch Holidays 

- Pollen data (allergenic and non-allergenic) 

- Events data (music festivals, sports events, etc) 

- Weather data (temperature, amount of rainfall, etc) 

After we had defined our measure for crowding and potential predictors of crowding we had to find 

the best machine learning algorithm applicable to our situation. Literature research was conducted 

to find related research that tried to forecast daily patients within the acute care domain. Based on 

that research we did additional literature research on machine learning algorithms to find a method 
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that best fits our situation. We decided to use random forest regression to predict the daily visitors at 

the GP-post and the ED. Factors that contributed to this decision were the following: 

- The understandability of the method for people unfamiliar with machine learning 

- The accuracy and ability of built-in validation using out-of-bag data. 

- The ability to quite easily tune the models for better performance 

- The variable importance can easily be derived to find relevant predictors. 

- The ability to deal with categorical and numerical values without transformations. 

The available data was analyzed and put together into datasets specifically for the ED and GP-post. 

The total number of features in the datasets is 105 and we reduced these to 47, we refer to these 

sets as the full dataset and the reduced dataset respectively. The deleted features were in the pollen 

and weather datasets. For the pollen set, we selected only those that were allergenic to people as we 

expect the remainder not to affect the health of people. For the weather set, we selected the 

features that were expected to affect people’s health or their decision-making of visiting the acute 

care domain and we deleted features that were closely related to another. 

We then ran an optimization on four variations of the datasets with two different validation 

techniques (the bootstrap method and cross-validation) to find the best models. The performance of 

the models was determined with the MAE, RMSE, and MAPE. Additionally, the models validated by 

bootstrap also have an out-of-bag score, which is related to the RMSE. The four variations that we 

tested were; full dataset with no events, a full dataset with events, a reduced dataset with no events, 

and a reduced dataset with events. This was done because the period over which we had event data 

was very small. We found that the addition of events did not have an improvement in the 

performance of the models for both the GP-post and ED. We also found that the models made with 

the reduced datasets most of the time performed slightly better than the models created with the 

full datasets. The best model found for the GP-post and the ED are summarized in Tables 1-2 for both 

of the validation methods.  

Table 1 Best Models out of all scenarios found by the Bootstrap method. The first entry is the best GP-post model and the 
second entry is the best ED model. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time (s) 

MAE RMSE MAPE OOB 
Score 

GP Reduced (No Event) 1000 20 3 0.9 4.69 8.32 11.44 12.49 0.96 

ED Reduced (No Event) 1000 5 5 0.8 2.05 5.02 6.29 15.94 0.13 

Table 2 Best models out of all scenarios found by the cross-validation method. The first entry is the best GP-post model and 
the second entry is the best ED model. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time (s) 

MAE RMSE MAPE 

GP Reduced (No Event) 1000 29 5 4.12 8.39 11.51 12.57 

ED Full (No Event) 1000 22 2 5.12 5.01 6.29 15.86 

The models for the GP-post were mostly explained by time-related features. With one in particular, 

which is whether the day is on the weekend or not. Then of less importance are features such as the 

day of the week, whether it is a holiday or not, the number of GP-post visitors of the previous day, 

and some weather-related features. The models for the ED were mostly explained by the weather-

related-features, albeit not so much, as the OOB score indicates. 

In its current state, the one-day-ahead forecasts produced by the best models that we found will not 

be an adequate early warning system for overcrowding, since the degree of uncertainty is too large. 
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The range of the predictions still varies too much to be used for employee schedules. The models 

were also compared with some simplistic baseline predictions (the value of one day before, an 

average of the last 3 days, the value of one week before, and the average over the days from 1, 2, 

and 3 weeks ago). We found that the models for the GP-post were significantly better than the 

baseline predictions, but the ED only managed to perform slightly better. Further research and 

improvements, as well as newer data, are required to improve the performance of the models. 
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1 Introduction 
This chapter will function as an introduction to the company where the research will be conducted, 

the problem description, and the research design. First, a short introduction will be given about the 

company in section 1.1. We then proceed with the motivation behind this research and the problem 

description in section 1.2. In section 1.3 we will look at the research design that is proposed to solve 

the core problem. The research methodology that will be used during this research is explained in 

section 1.4. The scope of the research will be defined in section 1.5. The deliverables of this research 

project will be presented in section 1.6. Lastly, the thesis outline will be presented in section 1.7 

1.1 Acute Zorg Euregio 
Acute Zorg Euregio (AZE) is one of the eleven acute care networks in the Netherlands. The network of 

AZE consists of acute care facilities located in Twente, Oost-Achterhoek, and the German border, see 

Figure 1.  

 

Figure 1 The region in The Netherlands and Germany that work together with Acute Zorg Euregio.1 

The whole network has a coordinating function concerning optimizing acute care in their region. The 

importance of the patient is always paramount. AZE has a coordinating, stimulating, and facilitating 

role in the acute care chain to be able to carry outs its (legal) duties in coordination with their chain 

partners. Consultation with chain partners is conducted at different levels; with the directors of the 

acute care facilities, with the managers of the acute care facilities, and with professionals in the 

varying expert groups. This is all part of the so-called: ‘Regionaal Overleg Acute Zorgketen (ROAZ)’ 

which translates to regional consultation acute care chain. The activities of AZE are divided into the 

following subjects: 

Acute care chain: Varying healthcare institutions and professionals work together when acute care is 

required for a patient. AZE ensures that within the network the spread and availability of acute care 

 
1 Illustration retrieved from https://www.acutezorgeuregio.nl/over-ons/ 
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remain guaranteed. Expert groups have been created around emergency indications and focus areas 

to ensure and improve the quality of the provided care. This research will focus on this branch of 

their work field in collaboration with a hospital, general practitioner post, and an ambulance service. 

Trauma care chain: Trauma care involves the whole acute care chain. All chain partners within the 

network aim to optimize the care of the trauma patient. This includes; general practitioners, general 

practitioner posts (GP-post), regional ambulance facilities, emergency departments (ED), 

departments in hospitals, and mobile medical teams. They make agreements about cooperation and 

monitor the quality of the care in different ways. 

Crisis management & OTO: Certain regulations and procedures are important during crises. AZE is 

involved in preparing chain partners for certain disasters and crises. The procedure during large 

incidents is also called; scaled-up care. During this crisis, certain activities, such as triage, treatment, 

and allocation will be prioritized for wounded people. AZE also provides education, training, and 

practice opportunities (in Dutch (OTO): opleiden, trainen en oefenen) to prepare for certain events. 

Knowledge center: One of the legal duties of AZE and its network is to share knowledge about acute 

care. One of the activities is the provision of training within the acute care domain. These are 

developed and implemented in collaboration with the partners. Research related to acute care and 

scaled-up care is also set up and carried out. Research projects are carried out in collaboration with 

chain partners, other acute care networks, Saxion university of applied Sciences, and the University 

of Twente. This thesis is one example of many pieces of research that have been (or will be) 

conducted at AZE to contribute to a more developed acute care network. 

Cross-border acute care: AZE is the only network in the Netherlands that provides cross-border 

cooperation. They work with acute care facilities in the region of the German border. Both countries 

share information and patients and try to improve the care within their network just as the other 

networks in the Netherlands try to accomplish. 

1.2 Problem Context 
In this section, we will have a closer look at the problem in this research. The motivation behind the 

research will be given, the problem description will be provided and the core problems that will be 

addressed within this research will be listed. 

1.2.1 Research motivation 
Overcrowding is a phenomenon that occurs frequently in the acute care domain. More than a third 

of the EDs in the Netherlands experience overcrowding more than once a week (van Loghum, 2013). 

On top of that more than two-thirds of the managers of EDs experience overcrowding in their 

department multiple times per week (van der Linden C. , et al., 2014). Studies also reveal that 

overcrowding of the ED is associated with lower quality of care for the patient, in case of severe pain 

and normal situations (Hwang, et al., 2008) (Pines & Hollander, 2008). Acute care providers in the 

Netherlands (Oost-Achterhoek) are experiencing the same issues and want to gain insights into the 

causes of overcrowding and possibilities to predict this overcrowding. Preliminary research has been 

conducted by Arief Ibrahim, a former master's student (Business Information Technology) at the 

University of Twente. He created a forecasting model for the patient demand at the ED and the GP-

post of Winterswijk using time series analysis with little machine learning applications. The model 

that he created had quite large errors and it requires further research to improve the model or 

propose another model to be useful for practical situations. 
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1.2.2 Problem description 
An assignment has been created in collaboration with three partners of AZE in the eastern region of 

Achterhoek, which is located in the province of Gelderland in the Netherlands. The three 

collaborating partners are (From now on will be referred to as acute care domain):  

- The ambulance service in north and east Gelderland, which is provided by Witte Kruis NOG. 

- The ED of the hospital in Winterswijk, Streekziekenhuis Koningin Beatrix (SKB). 

- The GP-post of Oost-Achterhoek, which is part of the general practitioners' care of eastern 

Achterhoek (HZOA). 

These partners have indicated that they experience overcrowding within their work field regularly. 

The problem with overcrowding for these partners is that they do not have a quantifiable measure 

for overcrowding. There is still ambiguity in the definition of overcrowding. For example, it does not 

necessarily mean that a large number of patients causes the feeling of overcrowding. It occurs that 

the same number of patients are treated on two different days, but one day was experienced as 

extremely busy while the other was pretty calm. Things like the complexity of the required care and 

available resources also play an important role in the perception of overcrowding. Therefore, the 

partners want to know how overcrowding best can be measured and predicted such that appropriate 

actions can be taken beforehand. 

1.2.3 Core problem 
The main problem that exists is that there is overcrowding in the acute care domain. The effect of 

this overcrowding is that patients have increased waiting times. Their overall satisfaction decreases 

and they might suffer severe complications due to the long waiting. On top of that, the medical 

employees experience psychological as well as physical pressure during their shifts, as they are not 

able to keep up with the workload.  

This perception of crowding for patients and medical employees is caused by the mismatch between 

the demand for acute care and the available capacity. It could be that there are insufficient available 

employees to see the patients or that there are no available rooms or resources at a given time. This 

mismatch can have two reasons; the demand for care is a lot higher than usual and is thus not 

expected or the overall number of employees/resources is insufficient. Both issues are a topic on its 

own, but in this research, we will only focus on the first one. The number of personnel and resources 

is assumed to be sufficient if the demand is known in advance. 

The demand for acute care can fluctuate for several reasons. For example, it is expected that peak 

demand will occur more often during the day than at night. There is a dependency on time. It could 

also be the case that sudden peaks are caused by external factors such as; flu season, pollen allergies, 

or big events. Alternatively, it could also be caused by a lack of smooth transition within the facilities 

themselves. If patients for some reason spend a lot of time at the facilities, then over time the total 

number of patients will stack up. The sudden peak in demand could of course also just be random 

and have no particular reason at all. In this research, we will address the problem of patient demand, 

which is unknown. We want to find a method that can aid the facilities to get an indication of how 

many patients they can expect on a day. 
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1.3 Research Design 
This section will give an overview of the research design that will aid in solving the core problem. In 

the first section 1.3.1, the objective of the research will be explained. The research question including 

its sub-questions will be defined and explained in 1.3.2.  

1.3.1 Research objective 
The objective of this research is to develop a method that grants insight into the unknown patient 

demand. The idea is to use predictors to train and validate a machine learning model that is capable 

of predicting crowding for the facilities in the acute care domain. The time window is set at one day 

in advance. This allows the facilities to have enough time to still adjust schedules if necessary. The 

models could be used to function as an introductory step towards an early warning system for 

crowding of the acute care facilities. Since the facilities in the acute care domain operate separately 

from each other with different tasks and patients, the goal is to create separate models for the 

partners. 

1.3.2 Research questions 
The main research question that will help to solve the core problems and aids in reaching the 

research objective is the following: 

What machine learning model can be used as an adequate early warning system for 

overcrowding and what is its performance in the acute care domain in the region of Oost-

Achterhoek? 

Answering this question will provide us with a tool that encompasses the core problem and helps in 

predicting the overcrowding within the acute care domain. To answer the main research question we 

will have to answer several sub-questions. These questions are divided into several components and 

will be explained shortly below: 

1. What is the current situation within the acute care domain concerning processes and 

overcrowding? 

a) How does the acute care system work in the Netherlands? 

b) What are the processes/tasks for the ED, GP-post, and ambulance service? 

The first question will address the current situation of the acute care system in the Netherlands and 

the processes and tasks that the contributing facilities have to fulfill. This is done to get an 

understanding of the facilities and the differences between them. 

2. What are good measures to define overcrowding within the acute care domain? 

a) What does the literature say about measures for overcrowding in the acute care 

domain? 

b) Which measures are available and should be used to monitor the overcrowding for the 

facilities in the acute care domain? 

The second question is to acquire knowledge about the measures that are used in similar studies. 

The facilities currently have no clear definition of overcrowding and we hope to find information 

from other studies. Secondly, we decide which measures will be used for the facilities in this research 

depending on the findings in the literature and the available data. 

3. What are the relevant predictors for overcrowding within the acute care domain? 

a) What does the literature say about predictors for overcrowding in the acute care 

domain? 
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b) Which predictors are available and how should they be used for the prediction of 

overcrowding for the facilities in the acute care domain? 

The third question is about gaining insights into possible predictors that influence the overcrowding 

measures, defined in the previous question. The predictors are not limited to the internal data of the 

facilities. External sources will also be reviewed as potential predictors for overcrowding in the acute 

care domain. 

4. What machine learning models are relevant for this research and how can they be 

evaluated? 

a) What research has been done related to our research? 

b) What machine learning models are there in literature that are commonly used for these 

kinds of problems? 

c) Which machine learning model(s) is most suitable for this research? 

d) What metrics can be used to evaluate the performance of the machine learning 

model(s)? 

The fourth question will aid in selecting suitable machine learning models. The first step is to acquire 

useful information from researches that have already been done. Secondly, we explain the possible 

machine learning models and identify the pros and cons. Based on these findings we choose a model 

for our problem. Lastly, we also have to determine how we will measure the performance of the 

models.  

5. What is the performance of the proposed machine learning model(s) in the acute care 

domain? 

a) What steps have to be taken to create the model(s)? 

b) How do we obtain the best model(s)? 

c) What are the relevant features of this model(s)? 

d) What is the performance of this model(s)? 

Lastly, the fifth question will address the final model that we create. The first step is to review which 

steps have to be taken to model the problem in this way. This includes but is not limited to; the 

software that will be used, the data preparation that is required to model the situation, and the 

validation method that should be used. Ultimately, we want to find the best models, list the relevant 

features, and determine the performance of the best models. 

1.4 Methodology 
Over the years various methods have been developed to deploy certain types of research. A 

commonly used methodology for machine learning projects is the Cross-Industry Standard Process 

for Data Mining (CRISP-DM) (Shearer, 2000). This methodology was introduced in 1996 by Daimler 

Chrysler, SPSS, and NCR. The structure of this methodology is shown in Figure 2. This methodology 

guides the researcher from start to end of the project by completing different phases. Although the 

phases seem to occur iteratively, the whole system is a continuous flow of information and things are 

adapted as soon new information is known. How the different phases will be used during this 

research will be explained shortly below the Figures on the next page. 
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Figure 2 Phases within a project following CRISP-DM.2 

 

1.4.1 Business understanding 
This phase focuses on understanding the project objectives and requirements from a business 

perspective. This includes a thorough understanding of the underlying problems and how the current 

system works. The goal is then to translate this understanding into a data mining problem definition 

and a plan designed to achieve the objectives. This chapter functions as the first part of that phase, 

while the second chapter will give more information about the current situation in the acute care 

domain. 

1.4.2 Data understanding and Preparation 
In this phase, we get familiar with the data and make adjustments to use them for the modeling part. 

The data selection will mainly be dictated by literature research and expert opinions. A global 

description and exploration of the datasets will follow, in which we try to find anomalies or missing 

data as well as get a basic understanding of the data. We then make a selection of the data that we 

want to use and make sure that everything is constructed and formatted in the correct datasets 

suiTable to use for modeling. This phase will be reported in chapter 4 of this thesis. 

1.4.3 Modelling 
This phase focuses on the modeling of the data and includes the selection of the method based on 

literature review and available data. The tools to assess the performance of the model and how to 

validate the models will be explained. In combination with the prior information, we will develop a 

method to obtain the best models for our situation. This phase will be addressed in chapter 5 of this 

thesis. 

1.4.4 Evaluation 
In this phase, we will evaluate the results obtained in the previous phase and make sure that the 

main findings are correctly documented and presented, such that appropriate conclusions can be 

 
2 Illustration retrieved from: https://dzone.com/articles/machine-learning-in-a-box-week-2-project-methodolo-
1 

https://dzone.com/articles/machine-learning-in-a-box-week-2-project-methodolo-1
https://dzone.com/articles/machine-learning-in-a-box-week-2-project-methodolo-1
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written. We will also compare our results with the research found during the literature review and 

discuss the differences. This will be addressed in chapter 6 of this thesis, 

1.4.5 Deployment 
The last step includes the documentation of the conclusions, limitations, and recommendations 

based on the findings during our evaluation. The whole process is of course documented in this 

thesis and will also be orally presented in a final presentation. The tools that have been developed 

will be accompanied by a user guide for future use. 

1.5 Scope 
This section will give the boundaries of this research thesis. Since the execution of the master thesis 

is limited to half a study year (30 EC), it’s important to define certain limits to the research.  

- Due to the COVID-19 virus pandemic, the acute care facilities work according to a crisis 

protocol. This means that they are not able to collect and distribute new data for the 

research. The result is that we only have old previously collected data for the ED and GP-post 

and unfortunately no data for the ambulance services. As a consequence, the ambulance 

service will only be included in the description of the acute care network in the Netherlands 

(Chapter 2). 

- The models are limited to the acute care facilities in Oost-Achterhoek, involved with this 

research. These are the ED of SKB, the GP-post of Winterswijk.  

- The models will try to predict the overcrowding and function as one of the beginning steps of 

an early warning system. We will not address the further allocation of personnel/resources 

to this demand (capacity planning). 

1.6 Deliverables 
At the end of the research assignment, the following will be delivered: 

- A software application that can be used to create a prediction of the overcrowding in the 

acute care domain. This application can be one of the early steps of an early warning system 

in the acute care domain for crowding. In a later stadium, the goal would be that the 

application could be used by the planners of the ED and the GP-post to match resources to 

the predicted demand by creating suitable rosters for personnel. 

- An instruction manual for the application, written such that workers unfamiliar with 

programming or data analysis can use it. 

- A thesis (and presentation) that contains the decisions on model selection, creation, 

optimization, and performance. As well as providing recommendations for further research. 

1.7 Outline of the Thesis 
In Chapter 2 we will introduce the acute care system in The Netherlands and describe the processes 

of the facilities related to this research. In Chapter 3 we review the literature regarding the measures 

& predictors for overcrowding in the acute care domain, the related research that has been 

conducted, and the potential machine learning models. In Chapter 4 we will introduce the datasets 

and explain how we create the final datasets for the modeling part. In Chapter 5 we will discuss the 

method to obtain our best models to predict the crowding. The results of our best models will be 

presented in Chapter 6. Lastly, we will give the conclusions and recommendations in Chapter 7. 
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2 Acute Care System 
In this chapter, we will give an overview of the acute care system in the Netherlands. For the relevant 

partners that are involved in this research, we will also explain their daily processes and look at some 

degrees of crowding over the years based on the aggregated numbers in the Netherlands. The goal of 

this chapter is to get an overall idea of the facilities involved in acute care, the different tasks that 

they deploy, and some numbers related to crowding in recent years. 

2.1 Acute care system: The Netherlands 
Acute care in the Netherlands consists of a network of several entities that co-operate to deliver the 

care that patients require. As the name says, this network aids the patient that requires acute care, 

which is care that should be treated as soon as possible. Among a few others, we can separate four 

entities that are involved with acute care. These are the GP / GP-post, the ambulance service, 

hospitals, and the nursing home (Kremers, Nanayakkara, Levi, Bell, & Haak, 2019). The system is built 

such that GPs take care of patients with urgent primary care and EDs provide care for patients who 

urgently need specialized care. Nursing homes are for patients who do not require specialized care 

but still require admission. These nursing homes may prevent unnecessary ED visits, especially in 

elderly patients (Kremers, Nanayakkara, Levi, Bell, & Haak, 2019). A general illustration of the 

network in The Netherlands (although not necessarily completely relevant for our situation) is 

presented in Figure 3.  

 

 

Figure 3 A global overview of the acute care system in the Netherlands.3 

We will not focus on all the entities named in the above picture. In this research, we will focus on the 

GP-post, the ambulance service, and the ED. The general practitioner, the different departments in 

the hospital, and the nursing home are out of the scope. For each of the relevant entities, we will 

give an explanation of their function and processes in the following sections. 

 
3 Illustration retrieved from: Strengths and weaknesses of the acute care systems in the United Kingdom and 
the Netherlands: What can we learn from each other? (Kremers, Nanayakkara, Levi, Bell, & Haak, 2019) 
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2.2 The GP-post 
The GP-post functions as a gatekeeper in the Netherlands. Patients should first contact their usual GP 

if that’s possible. Once the patients' usual GPs are closed for the day (due to closing times) a group of 

GPs will take over located in a central post. GP-posts operate on; the evening (17:00 - 24:00), night 

(0:00 – 8:00), weekends, and on national holidays. This system ensures a 24/7 availability for the 

patient that requires immediate attention. The GP-post is intended for non-life-threatening acute 

care. They are not meant for care that can be dealt with the next day. People with mild complications 

should wait for the next opportunity to contact their usual GP. In some hospitals, the GP-post and 

the ED work in close collaboration with each other. Self-referrals to the ED can then be seen by a GP, 

which lowers the volume at the ED, but increases it at the GP-post. 

Patients are supposed to call the GP-post, where a triage-assistant will indicate the urgency of the 

required care. This is done according to the Nederlandse Triage Standaard (NTS), which is a method 

to divide the required care into six distinct groups (U0-U5). U0 is care that requires immediate 

actions and U5 has the least priority, see Table 3 for a description of the urgencies and Figure 4 for 

the distribution of urgencies from the years 2012-2018 at the GP-posts in the Netherlands. We can 

see that the consults with more urgent patients are increasing over the years. 

Table 3 NTS urgency levels translated from Dutch4. 

Code Colour Title In words In time 

U0 Red Resuscitation Failing vital function Immediately 

U1 Orange Life-threatening Instable vital function As soon as possible 

U2 Yellow Urgent A threat to a vital function Within an hour 

U3 Green Fairly urgent A real risk of damage Within a couple of hours 

U4 Blue Not urgent Negligible damage Within a day 

U5 White Advice No chance of damage Next day 

 

 
Figure 4 The distribution of urgencies (onbekend = unknown) for consults, visits, phone consults, and the combined total for 
the years 2012-2018.5  

There are certain field regulations for the GP-post concerning urgencies. In case of emergency, they 

should answer the telephone within 30 seconds in 98% of the cases. Another rule states that 90% of 

the citizens living within the catchment area of the GP-post should be able to reach this post within 

 
4 Table translated and retrieved from: https://de-nts.nl/nts/basisprincipes-nts/ 
5 Illustration retrieved from: Ineen Benchmark Huisartsenpost 2018 https://ineen.nl/wp-
content/uploads/2020/02/InEen-Benchmarkbulletin-Huisartsenposten-2018.pdf 
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30 minutes by car. In case of urgency U0 or U1, the GP should arrive at the patient within 20 minutes 

in 90% of the cases and 30 minutes in 98% of the cases. In case of urgency U2 they need to arrive 

within 60 minutes in 90% of the cases and within 120 minutes in 98% of the cases (Nederlandse 

Zorgautoriteit, 2019). 

Once the urgency is determined either a phone consult, a consult, or a visit follows. During a phone 

consult the instructions will be given through the phone to the patient. In the case of a normal 

consult, the patient comes to the GP-post where they will be consulted by a GP. Sometimes the 

patient is not able to visit the GP-post and the GP will visit the patient at their home. It is also 

possible that the GP-post will advise the patient to see the ED or that they will call an ambulance for 

the patient.  

The total amount of consults in the Netherlands for 2009 – 2018 are illustrated in Table 4. It shows a 

decrease from 2009-2013 but from 2013-2018 it seems to increase again. The main increase is the 

number of phone consults which were only 94 in 2013 and 105 in 2018. The consults and visitations 

remain somewhat stable with small fluctuations. 

Table 4 Number of consults at the HAP per 1000 citizens in The Netherlands.6 

# Consults 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

Phone 110 101 102 99 94 91 94 97 99 105 

Consults 124 120 123 121 121 123 128 131 126 126 

Visits 26 25 24 24 24 23 23 22 21 21 

Total 260 245 249 244 239 237 245 251 246 251 

 

In recent years the average time for a phone call (before consult) and consult time have also 

increased slightly. The phone time has increased to 5 minutes and 56 seconds (5:40 and 5:50 in 2016 

and 2017). The average consult time has increased to 14 minutes and 22 seconds (13:49 in 2017). 

This in combination with an increasing number of total consults, means that the total workload has 

increased for the GP-posts in The Netherlands (Ineen, 2019). 

2.3 The emergency medical service 
The emergency medical service is for patients that require immediate care at an incident and 

transportation (not necessarily both). The ambulance care in the Netherlands is regionally divided 

into 25 emergency medical services called RAV (in Dutch: regionale ambulancevoorziening). The 

global process at the RAV for an incident is illustrated on the next page in Figure 5. The citizens of the 

Netherlands can contact the national dispatch center through the alarm number ‘112’, from there 

they will be connected to the local dispatch center. Once a call is made a nurse operator will conduct 

triage to determine the urgency of the situation. This occurs according to the NTS, see Table 3 in the 

previous section. The triage is then translated to the urgency for the ambulance which is divided into 

three categories (A1, A2, and B), see Figure 6 for the distribution of the urgencies for the years 2014-

2017 in the Netherlands. Medical professionals can also request an ambulance for a patient if they 

deem this necessary.  

- A1 urgency requires an ambulance as fast as possible; a life-threatening situation or 

permanent disability for the patient can occur. The ambulance uses optical and sound signals 

on its way to the patient. The response time has to be under 15 minutes for 95% of the cases 

in the region (Volksgezondheidenzorg, 2020). 

 
6 Table retrieved from: Benchmark Huisartsenpost 2018 https://ineen.nl/wp-content/uploads/2020/02/InEen-
Benchmarkbulletin-Huisartsenposten-2018.pdf 
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- A2 urgency requires an ambulance as fast as possible as well, there is no life-threatening 

situation but a fast response is desired. Usually, the ambulance won’t use optical or sound 

signals on its way to the patient. The response time has to be under 30 minutes in 95% of the 

cases in the region (Volksgezondheidenzorg, 2020). 

 

- B urgency is for the planned ambulance care. Some regions in the Netherlands further divide 

this to give more clarity. There is no defined response time for this type of urgency 

(Volksgezondheidenzorg, 2020). 

 

 

Figure 5 The ambulance service process as it usually takes place at an incident. (EHGV stands for first-aid no transport).7  

 
Figure 6 The distribution of A1, A2, and B urgencies for the years 2014-2017 in The Netherlands.7 

 
7 Illustration retrieved from: Monitor acutezorg 2018 https://puc.overheid.nl/nza/doc/PUC_260889_22/1/ 
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Figure 6 shows an increase in the total amount of urgent (A1 + A2) ambulance uses in recent years. 

However, the average response time does not seem to increase and the exceedance of the A1 norm 

remains constant (Nederlandse Zorgautoriteit, 2019). Exceedance of the A1 and A2 norm could be 

caused by various reasons (Volksgezondheidenzorg, 2020);  

- insufficient distribution of ambulances  

- not enough ambulances available 

- force majeure like; weather, closed roads, and untraceable addresses. 

- Processes of the dispatch center and ambulance services require time. 

When the urgency and location are known, the information will be sent to the local dispatch center. 

Here an ambulance and personnel will receive a signal to dispatch, for which they will prepare. The 

time it takes to leave the base since the signal was given for dispatch is called the chute time.  

The ambulance then takes an amount of time to drive to the patient. The total time between the first 

call and the arrival of the patient is called the response time. It is also possible that whilst the 

ambulance is traveling to the patient that the centralist decides to cancel the trip because it is no 

longer necessary. This incident is denoted as an interrupted trip. 

Once the ambulance arrives at the incident there are a few possible options; there is no patient, the 

patient requires treatment but no transport or the patient requires transport to a hospital. In case 

the patient is for whatever reason no longer present, the call will be classified as a loss and the 

ambulance returns to the base. If the patient only receives treatment but is not transported then it is 

referred to as an EHGV (Dutch: Eerste hulp geen Vervoer), which translates to first aid no transfer 

and then returns to the base. When the patient also requires transportation then the call is referred 

to as declarable. The treatment time of the patient is the difference between the arrival time and the 

departure time of the ambulance from the incident. Figure 7 shows the different scenarios for A1 

and A2 trips in the Netherlands. It shows that most patients are transferred to the ED (or related) or 

receive first aid and do not require transportation. 

 
Figure 7 The number of the labeled trips (x1000) for an ambulance, in order: Interrupted trip, loss, EHGV, interclinical or 
transfer, and ED or related in The Netherlands8.  

The time between leaving the location of the patient and arriving at the destination is called the 

transportation time. Lastly, the ambulance needs to prepare for new usage. This means that it has to 

 
8 Illustration retrieved from: Monitor acutezorg 2018 https://puc.overheid.nl/nza/doc/PUC_260889_22/1/ 
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return to its base and have to be cleaned and prepared for a new trip. The time between arriving at 

the destination and being ready for deployment again is called the release time. 

2.4 The emergency department 
The emergency department provides specialized acute care to patients that GPs or ambulances 

cannot provide. A patient is normally referred by a GP/GP-post, an ambulance, or another hospital. 

However, some patients decide to show up at the ED without any referral, the so-called self-referrals. 

The patient is always advised to first contact a GP and if necessary they can direct them further to 

the ED. In most cases, the GP or GP-post can offer the care that they require and an ED visit is 

unnecessary. The result is that EDs often waste useful resources on these types of patients. Another 

reason is that it is financially better for the patients. The costs that are associated with an ED visit are 

covered by healthcare insurance, but they would still have to pay their deductible part. In recent 

years there is luckily a clear decrease visible in the number of self-referrals to the ED and an increase 

in the referrals by GP/GP-posts in The Netherlands, as illustrated in Figure 8. However, this is mainly 

caused by the fact that GP-post and EDs are now working together more. This way the ED 

automatically sends the self-referrals to the GPs (Nederlandse Zorgautoriteit, 2019). 

 
Figure 8 The percentage of patients entering the ED referred by (blue = self, brown = ambulance or 112 and green = GP or 
GP-post in The Netherlands.9 

Once the patient arrives at the ED they will be registered and take place in the waiting room. A nurse 

will be appointed to the patient and they will do the first anamnesis and triage. The nurse will direct 

the patient to an empty room and will conduct some standard tests and assess the priority of the 

patient. There are different systems to classify the urgency, as mentioned earlier the GP-post and 

emergency services use NTS. Some EDs also use this system, but the ED in Winterswijk uses the 

Manchester triage system (MTS) to determine the priority of the patient. Each priority is associated 

with a target time in which the patient should be seen by a doctor. Table 5 illustrates the five 

priorities of the MTS. It shows a similar structure and logic as the NTS. 

Table 5 Triage priorities given to patients according to the MTS. 

Priority Colour Triage category Target time to be seen  by a doctor (min) 

1 Red Immediate 0 

2 Orange Very urgent 10 

3 Yellow Urgent 60 

4 Green Standard 120 

5 Blue Non-urgent 240 

 
9 Illustration retrieved from: Marktscan acute zorg 2017 https://puc.overheid.nl/nza/doc/PUC_3650_22/1/ 
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Most issues that patients have can be treated immediately. In the EDs in the Netherlands, the patient 

can often go back to their home after a few hours (almost 2 out of 3 times) (Nederlandse 

Zorgautoriteit, 2019). They sometimes have to come back at a later time for a check-up but are 

discharged from the hospital for now. However, a fairly big portion, a little bit more than one third 

requires admission to the hospital. This is mainly dominated by older people (65+ years old) and 

young children (0-4 years old). The remainder, a really small portion (±2%) go to any of the other 

options, for example; intensive care, first-line stay, etc. In Figure 9 we see that there seems to be an 

increasing trend of patients that require admission after they visit an ED in The Netherlands. These 

are also the patients that often require the most intense care and contribute to crowding. 

 
Figure 9 The percentage of ED visits that require clinical admission for the years 2013-2016 in The Netherlands.10 

 
10 Picture retrieved from: marktscan acute zorg 2017 https://puc.overheid.nl/nza/doc/PUC_3650_22/1/ 
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3 Literature review 
This chapter will address the literature review that has been conducted. In section 3.1 we will list our 

findings of crowding measures that are used in the acute care domain. In section 3.2 we will list 

predictors of crowding that were found in the literature. Section 3.3 will show researches that have 

been conducted on predicting crowding in the acute care domain. Lastly, section 3.4 will give an 

overview of machine learning methods and decide which model we will use in this research. 

3.1 Measures used for Crowding in the acute care domain 
This section will give an overview of the measures of overcrowding found in the literature. The 

conclusion of this section will determine which measure will be used during this research. 

3.2.1 Measures to identify crowding in the acute care domain 
All over the world healthcare institutions have researched measures to quantify crowding in the 

acute care domain. There is no global consensus about a golden rule to measure crowding. Several 

measures have been proposed and tested in research. This section will give an overview of different 

techniques to track crowding in the acute care domain.  

One metric that is used and is pretty straightforward is the total amount of patients at the facility 

within a certain frame (Ospina, et al., 2007). A larger amount of patients at the facility creates an 

increased demand for care and thus resources from the facilities. Taking this a step further and we 

get the occupancy rate, which is the ratio between the number of patients and the total amount of 

resources. This ratio can be calculated at any moment and gives an impression of the overall 

saturation of resources (Ospina, et al., 2007) (van der Linden, et al., 2016). The system is considered 

to be crowded as soon as the ratio exceeds 1. This means that there are more patients present than 

there are available resources. This metric is often calculated with the available number of beds in the 

ED but can be used with other forms of resources as well, for example, available employees. Another 

measurement that is often used to express crowding is the length of stay (LOS) / total duration, 

which is the time that a patient spends within the acute care facility. This can be seen as an indirect 

measure of crowding. When the average time spent on a patient increases it suggests that the 

outflow of patients is stagnating. This will result in an increase in overall patients as time flows 

(Ospina, et al., 2007) (van der Linden, et al., 2016). There are also several other time-related 

variables, such as time from bed request to bed assignment, time from triage to examination by an 

emergency physician, and time from the bed being ready to transfer to the ward. Where a longer 

time indicates a more busy ED (Ospina, et al., 2007). 

Previously named metrics are based on one metric, but there are also scores developed that are 

based on multiple criteria. One of these scores for crowding in the ED is the National Emergency 

Department Overcrowding Score (NEDOCS). This is a score based on a 23-question site-sampling 

based on input from academic physicians at eight medical schools representative of academic EDs 

nationwide. Based on these results and the assessment of the charge nurse and ED physicians of the 

crowding on the ED at randomly selected times, a model was created for predictive purposes. 

Although the model considering all variables was the most accurate, it was not practical for EDs. 

Therefore a five-question reduced model was calculated used a backward step-down procedure. The 

results of a five-question reduced model are valid and accurate in predicting the degree of 

overcrowding in academic centers (Weiss, et al., 2004). Although there are doubts about whether the 

NEDOCS measure works outside the USA and whether it's too complex (Boyle, et al., 2015). There are 

also doubts about whether the NEDOCS tool might be accurate for an extremely high-volume ED 

setting (Wang, et al., 2014). An alternative version, the mNEDOCS was tested in the Netherlands and 
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found a strong correlation between the score and perceived crowding by ED staff in both a low 

volume and high volume ED (van der Linden, et al., 2018). 

Similar to the idea behind the NEDOCS there is also the Emergency Department Work Index (EDWIN). 

Which is calculated by a formula based on five variables, related to the patient and it’s urgency and 

resources of the ED. The formula was tested during a setting over 35 consecutive days at 225-time 

points in which 2647 patients aged 18 and older were assessed. The measurement of crowding was 

estimated by the charge attending physician and nurse using a Likert scale. The EDWIN exhibits face 

and content validity and at one institution was associated with nurse and physician assessment of ED 

crowding. The score may be programmed into patient tracking software for use as a real-time 

measurement of ED activity (Bernstein, Verghese, Leung, Lunney, & Perez, 2003). 

Lastly, another method of assessing the crowding at the ED is an eight-point measure, called the 

International Crowding Measure in Emergency Departments. The idea is based on eight rules which 

can be violated. An increase in violations is associated with increased crowding perception of the 

personnel. A combination of violations, probably three, predicts clinician concerns better than 

individual violations. However future work is required to validate this (Boyle, et al., 2015). 

The formulas and checklist behind the NEDOCS, EDWIN, and ICMED can be found in Appendix A. All 

measures mentioned in the text above as well as the literature associated with them are summarized 

in Table 6. 

 Table 6 Summary of metrics found in the literature to quantify crowding. 

Measure for crowding Description Literature 

Total number of patients The total number of patients 
that are present at the facility 

(Ospina, et al., 2007) 

Occupancy ratio The ratio between the number 
of patients and the available 
resources 

(Ospina, et al., 2007) and (van 
der Linden, et al., 2016) 

Length of stay The total length of stay of a 
patient at the facility 

(Ospina, et al., 2007) and (van 
der Linden, et al., 2016) 

Time-related variables Different times are associated 
with how long the patient 
must wait for transfers or 
consults. 

(Ospina, et al., 2007) 

NEDOCS A score based on five variables 
to score the crowding of an ED 

(Weiss, et al., 2004), (Boyle, et 
al., 2015), (Wang, et al., 2014) 
and (van der Linden, et al., 
2018) 

EDWIN A tool that calculates crowding 
based on five variables 

(Bernstein, Verghese, Leung, 
Lunney, & Perez, 2003) 

ICMED An eight-point evaluation 
system for crowding 

(Boyle, et al., 2015) 

 

3.1.2 Conclusion on measures to identify crowding in the acute care domain 
In the previous section, we listed several measures commonly used to measure crowding in the acute 

care domain. It must be noted that these are all based on research done in EDs. The reason being 

that the GP-post as it is used in the Netherlands is quite a unique concept. The result is that we were 

not able to find any research in which they propose measures for crowding at the GP-post. However, 

some of the metrics for EDs can of course directly be used for GP-post as well, such as the total 

number of patients, occupancy ratio, and certain times between actions. The NEDOCS, EDWIN, and 
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ICMED would be more difficult as the GP-post lacks certain criteria that are required to calculate 

these measures.  

Unfortunately, we are also not able to use most of the measures that we’ve found in the literature 

for our situation. The reason being that we have to use an old dataset in which certain variables are 

not collected. Since we cannot obtain new data from the facilities due to the reasons explained 

earlier (Covid-19). For that reason, we’ve decided to use a variation of the first metric in Table 6. We 

will look at the total number of patients that visit the GP and ED on a given day as a metric for 

crowding. Using this metric we will be able to create a one-day-ahead forecast for the total number 

of visitors to the ED and GP-post. Predictions on the same day for a certain time slot is not possible 

with our datasets, since the arrival times are not always (correctly) registered. Additionally, a 

prediction that spans more days for example one-week-ahead would be less effective. Since it would 

be hard to determine on which days of that particular week more patients are expected since the 

values would be aggregated. Predictions one-day-ahead would still allow planners to schedule 

rosters of employees to the predicted demand, whilst keeping the uncertainty of when the peak 

demand will occur relatively low. 

3.2 Predictors of crowding in acute care domain 
This section will give an overview of predictors of overcrowding found in the literature. The 

conclusion of this section will determine which predictors will be used during this research. 

3.2.1 Predictors for crowding in acute care domain 
In section 3.1 we found different measures that quantify the crowding in the acute care domain. In 

this section, we want to find predictors for these measures. Knowing these can help the facilities to 

identify and notice crowding such that hopefully, they can react before it occurs. A summary of the 

predictors can be found in Table 7. 

The ED is open the entire day but studies show that there are time-related variables that influence 

the daily volume and LOS. Daily demand for ED services is characterized by seasonal and weekly 

patterns (Calegari, et al., 2016). Similarly, an increase of LOS has also been associated with days of 

the week, months of the year, and even the time of arrival, where mornings seemed to be the most 

noTable (Hofer & Saurenmann, 2017) (Weiss, Rogers, Maas, Ernst, & Todd, 2014).  

 

We also found that there are weather-related variables that influence the daily volume of ED visitors. 

A study found that temperature may be a sensitive marker for total ED patient volume (Tai, Lee, Shih, 

& Chen, 2007). Another study found that some climatic factors displayed a significant correlation 

with demand series but did not increase the accuracy of prediction when incorporated in the model 

(Calegari, et al., 2016). 

 

There are also characteristics associated with the patient that appears to influence crowding. The 

urgency given to a patient (triage level 5 most severe) is associated with increased LOS (Hofer & 

Saurenmann, 2017). Similarly, patients that are referred by general practitioners often require more 

intense care and have a serious impact on crowding (van der Linden C. , et al., 2013) (Hofer & 

Saurenmann, 2017). Patients with multiple trauma (comorbidity) also have an impact on crowding 

(van der Linden C. , et al., 2013). A study in the Netherlands found that crowding at the GP-post 

occurs due to parents with young children with non-urgent problems (Keizer, et al., 2018).  
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One less expected predictor for crowding is using the road traffic flow data. A study has shown that 

road traffic as an external overall covariate can contribute to an improvement in forecasting 

crowding in emergency departments (Rauch, Hübner, Denter, & Babitsch, 2019). 

 
Table 7 Summary of metrics found in the literature to quantify crowding. 

Predictor of crowding Description Literature 

Time-related variables Variables related to the 
month, day, and time of the 
day 

(Hofer & Saurenmann, 2017),  
(Calegari, et al., 2016) and 
(Weiss, Rogers, Maas, Ernst, & 
Todd, 2014) 

Weather-related variables Variables related to weather 
conditions such as; 
temperature, rain fail, etc. 

(Tai, Lee, Shih, & Chen, 2007) 
and (Calegari, et al., 2016) 

Patient-related variables The urgency of the required 
care, referral by the general 
practitioner, comorbidity, and 
age 

(Hofer & Saurenmann, 2017), 
(van der Linden C. , et al., 
2013) and (Keizer, et al., 2018) 

Road traffic flow The activity on the roads 
measured as a flow 

(Rauch, Hübner, Denter, & 
Babitsch, 2019) 

 

3.2.2 Conclusion on predictors for crowding in acute care domain 
In the previous section, we’ve listed variables that have been associated with crowding in the acute 

care domain. Similar to the measures of crowding, most of the research was related to EDs, although 

we also managed to find one paper that addressed young children as a factor for crowding in GP-

posts. However, we once again think that the most relevant predictors for the ED will also work for 

the GP-post, for that reason we will not make a difference in the selection of predictors for the 

facilities. 

We will try to use all the variables listed in Table 7 as predictors for our models, except for the 

patient-related variables. Some of the variables are not or only partially collected, such as the 

comorbidity and age. However, since we use aggregated daily volumes as a measure for crowding, it 

would also not make much sense to include the details of the patients that visited the facilities a day 

prior (which are used to predict for today). We also include events (festivals, gatherings, etc.) and 

pollen data in our predictors. We did not find any literature about these predictors, but these were 

suggested as potential predictors by experts in the acute care domain. 

3.3 Literature related to the research goal 
In the previous sections, we’ve found metrics and predictors for crowding and we’ve chosen the daily 

volume of patients as a measure for crowding. In this section, we will try to list research in which 

they have tried to predict the daily volumes of patients (or similar) in the acute care domain. We will 

list which techniques were applied and what kind of results were found. 

3.3.1 Literature on related research 
There have been multiple attempts at predicting crowding in the acute care domain. (Calegari, et al., 

2016) tried to forecast the daily volume and acuity of patients in the emergency department. They 

used exponential smoothing (ES),  multiplicative holt-winters (SMHW), seasonal autoregressive 

integrated moving average (SARIMA), and multivariate autoregressive integrated moving average 

(MSARIMA). When all types of patients were jointly considered, the ES performed best. The SARIMA 
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performed better for the very urgent and urgent patient. The MSARIMA did not improve the 

performance over SARIMA. 

(Jones, et al., 2008) also looked at forecasting the daily patient volumes in the emergency 

department. In this study, they used linear regression (as a benchmark), SARIMA, ES, Time series 

regression, and an Artificial neural network (ANN). They found that all the methods performed better 

than the benchmark, but the gain in accuracy was very small even for the best model (Time Series 

regression). 

(Marcilio, Hajat, & Gouveia, 2013) looked at forecasting daily emergency department visits using 

calendar variables and ambient temperature readings. They tested three different methods; 

generalized linear models (GLM), generalized estimating equations (GEE), and SARIMA. All models 

were built with and without the effect of temperature. The GLM and GEE models showed the best 

performance and the inclusion of temperature did not improve the forecasting accuracy  

(Zlotnik, Gallardo-Antolín, Alfaro, Pérez Pérez, & Martínez, 2015) attempted to forecast emergency 

department visits and dynamic nursing staff allocation using machine learning techniques. For the 

visits, they used two different regression models in a free software tool (WEKA). They used support 

vector regression (SVR) and M5P tree and found that the performance of both models was superior 

to the stratified average model with a 95% confidence interval. 

(Volmer, et al., 2020) applied machine learning techniques and time series algorithms to forecast the 

demand at emergency departments. In this paper, they compared traditional time series algorithms 

like ES and ARIMA with machine learning algorithms such as; GLM, random forests (RF), gradient 

boosting machines (GBM), and k-nearest neighbors (k-NN). They found that the performance of both 

methods was more or less equal but the predictions were more diverse so that staked predictions 

are more robust and accurate. 

(Khaldi, El Afia, & Chiheb, 2019) forecasted weekly patient visits to the emergency department. Here 

they look at ANN combined with a signal decomposition technique, Ensemble Empirical Mode 

Decomposition (EEMD). They benchmark this versus a normal ANN, an ANN with a discrete wavelet 

transform (DWT), and an ARIMA model. They found that the ANN-EEMD outperforms the 

benchmarking models for approximation and generalization capabilities, thus the model can be 

employed to forecast efficiently ED arrivals. 

(Nas & Koyuncu, 2019) used ten different machine learning algorithms to predict the ED arrivals, 

which they then use for a simulation study. They found that the use of a long short-term memory 

(LSTM) model performed the best out of all models, followed by the RF and decision tree (DT) 

models.  

Last but not least (Ibrahim, 2019) did a study for the same acute care facilities as we investigate in 

our research. In this study, they tried to predict the daily volume of patients at a GP-post and ED with 

SARIMAX (a SARIMA model that can incorporate exogenous data) and a hybrid model using SARIMAX 

and gradient tree boosting. They found that the hybrid model gave the best performance  

3.3.2 Conclusion on related research 
Quite some literature was available about forecasting daily visitors to the ED. Most of the research 

was done using time series models such as SARIMA or variations of that. The performance of these 

models was often good. Some research also addressed different machine learnings techniques. These 

methods had similar performances and in some cases added additional benefits. Prior research has 

been conducted at the ED of SKB and the GP-post of HZOA in which SARIMAX models have been 
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applied. For that reason, we are not going to approach it in the same way again. We are more 

interested in the machine learning approach. The literature that we found mainly used time-related 

variables and weather variables as predictors for the machine learning prediction models. In our 

research, we want to expand on this literature by incorporating pollen data, events data, national 

holidays, and the visitors of the GP and ED respectively in our prediction models. We hope that the 

addition of these predictors will have a positive effect on the performance of the models. 

3.4 Machine learning models 
Machine learning models are a relatively new set of tools that utilize data for practical problems. The 

idea behind machine learning is that a computer creates its program using existing data. The 

program can then be used with new data for; classification, regression, clustering, etc. This is 

different in comparison with the traditional way of programming. Traditionally a program is created 

by the data scientist and used with the input data to say something about the output (Bishop, 2009). 

A comparison between traditional programming and machine learning is illustrated in Figure 10. 

 
Figure 10 Traditional programming versus Machine learning. 

As specified in the previous sections we want to predict daily ED and GP-post visitors, based on 

certain predictors. Since we want to link a numerical dependant variable to independent variables, 

we require regression methods. Machine learning algorithms that can deal with regression are a 

subset of the supervised methods. Supervised machine learning means that the computer is fed 

input data and the corresponding output data. The algorithm then learns to map the inputs to the 

output. The learning phase of the algorithm is also called model training and is done by a training set 

(a subset of the total dataset). Once the model is trained an additional test set (unseen data which 

was not used for training) can be used to determine the performance of the algorithm. This does 

however mean that the quality of the model depends on which data is chosen as a training and test 

set (Bishop, 2009). 

3.4.1 Machine learning models for regression 
In this section, we will address different machine learning algorithms that deal with regression and 

which we have also seen back in the literature about demand forecasting in acute care (section 3.3). 

A short description of the method and the characteristics will be given for each algorithm. The 

algorithms that will be considered are the following; artificial neural networks, decision trees 

(random forest and gradient boosting as well), and support vector machines. 
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3.4.1.1 Artificial Neural Networks 

Artificial neural networks (ANN) is a method that is inspired by biological neural networks that 

constitute animal brains. An ANN consist of several nodes and connections between the input data 

and the output (Bishop, 2009). These nodes are divided into distinct layers; the input layer, hidden 

layer, and output layer. The first type of layer is the input layer and contains the data that will be 

used for training. Every data category that will be considered is a separate node in the first layer. The 

second layer type is the hidden layer. A simple model can have one hidden layer but more advanced 

models can have several hidden layers next to each other. The last layer is the output layer and 

contains the associated output for a given input determined by the model. A simple illustration is 

presented in Figure 11. 

 
Figure 11 Schematic overview of a simple 2-3-1 ANN. We have 2 input variables, 3 nodes in the hidden layer, and 1 output 
value. 

All nodes that are connected have a certain weight that determines how much the value of a 

preceding node will influence the receiving node. A receiving node is a combination of all outputs of 

the preceding nodes, as we can see in Figure 11. The sum is taken over the combination of the 

output value times the weight. This value is then often transformed with the use of an activation 

function, such as; sigmoid, hyperbolic tangent, etc (Karlik & Olgac, 2010). This forward propagation 

continues until the output nodes have a value. The network is usually initialized with random weights 

between the nodes. The model is then trained with a training set to adjust the weights in such a way 

that the model finds satisfying output results. The performance of the output value is monitored by a 

so-called loss function. This function determines the difference between the output value of the 

model and the actual output value. A commonly used loss function is the residual sum of squares for 

regression problems. The error is then backpropagated through the network to find the new weights 

of the nodes using gradient descent. This process is repeated until the model has performed a certain 

number of iterations or the error has decreased under a certain threshold value. 

The advantage of ANNs is that the structure of the design allows a big variety of possibilities to model 

certain situations. The model contains lots of parameters that can be twisted to form the model to 

your design, such as; the use of different (nonlinear) activation functions, loss function, number of 

hidden layers, and number of nodes within a layer. This allows the model to often produce very good 

results if sufficient data is available. The ANN also has some drawbacks in comparison with other 

algorithms. The flexibility of the algorithm has a downside. By utilizing different layers and functions 
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within the model it will be really hard to grasp what is happening within the model. The model more 

or less becomes a black box where data is inserted and an output value comes out. The complex 

structure of the model can also cause computation times to increase fast for larger problems. 

Another disadvantage is that the algorithm often requires a large amount of data to give good 

results. Lastly, the algorithm uses numerical values as input and outputs within the nodes. This 

means that categorical variables require some sort of transformation. 

3.4.1.2 Decision Trees 

A decision tree (DT) algorithm is essentially a really simple algorithm. The algorithm constructs a tree 

with branches based on the most important features (Kingsford & Salzberg, 2008). When you follow 

the structure of the tree you will end up in a leaf node where a prediction is made based on the 

mean values within the node (in case of regression). A DT is built sequentially. Each split considers all 

available features and branches further on the feature with the most information gain. The Gini 

index and the entropy are often used to measure the information gain of a certain split (Kingsford & 

Salzberg, 2008). Both measures indicate the distortion within a node, a Gini index or entropy value of 

0 is therefore preferred. The information gain is determined by the amount of distortion before and 

after a split. The split that decreases the distortion the most has the most information gain. A simple 

example of a decision tree is illustrated in Figure 12. 

 

 
Figure 12 Simple illustration of a decision tree We start at the top node and branch until we reach a leaf node. 

A big advantage of this model is that it has high interpretability for the user. The important features 

are the ones with the most information gain and the overall method is easy to grasp and visualize. 

The model can also use categorical data without any transformation, as the variables can simply be 

branched on. A disadvantage is however the vulnerability to overfitting (small changes in the data 

can result in other trees), techniques like early stopping or pruning of nodes are implemented to 

prevent this from happening. The algorithm often performs less than other algorithms because it is 

limited by its simplicity (Hastie, Tibshirani, & Friedman, 2017). However, extensions have been 

created for the DT algorithm. The algorithm is used in so-called ensemble learning. This method 

combines several decision trees to produce a better prediction than utilizing a single decision tree. 

These extensions are called random forest and gradient boosting. 

 

Random forest 

A random forest (RF) is an assemble of many decision trees. This means that the algorithm does not 

train one decision tree, but multiple trees as in a forest. The different trees are built by selecting 

random samples and features for every tree in the forest (Breiman, 2001). When we are working 
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with regression models, we simply take the average over all the different trees in the forest for a 

certain input to obtain an estimate. A major advantage is that the performance of the model 

increases significantly in comparison with a single decision tree. Additionally, the algorithm is less 

likely to overfit on the data, since estimates are now averaged over a multitude of trees. The 

algorithm also requires no additional transformation of categorical variables and can deal with 

missing data. The algorithm is also quite flexible with hyperparameter tuning. Lastly, the model has a 

built-in validation method that can be used, the so-called Out-Of-Bag (OOB) error. This is determined 

by the samples that were not chosen during the random selection. A disadvantage in comparison 

with the traditional DT is that the interpretability is more or less lost. When the number of trees in 

the forest is large it's hard to keep track of all the different variants. However, the basic idea behind 

the model is still easy to explain. Despite this loss in interpretability, the algorithm can still give the 

feature importances, which also grants some explainability to the users. 

 

Gradient boosting 

Gradient Boosting (GB) is also an ensemble of decision trees, which combines weak learners to 

create a strong learner (Friedman, 2002). However different from RFs, in GB trees are not built in 

parallel, but sequentially. Trees are added one at a time and existing trees in the model are not 

changed. Every new tree is trained on the residuals of the previous tree which are defined by a loss 

function. During every new step, the derivative of the loss function is used to adjust the weights to 

find a way that minimizes the total error (gradient descent approach) (Bishop, 2009). This method of 

sequentially adding parts to the solution while lowering the error by adjusting the weights is called 

boosting. An advantage of the gradient boosting method is that the prediction accuracy is often very 

high. The algorithm is quite flexible with hyperparameter tuning. Similar to the RF and DT the 

categorical variables do not need to be transformed to use this algorithm and it can deal with missing 

data. Some disadvantages are that the algorithm tries to minimize all errors which makes it prone to 

overfitting. Parameter tuning must be done correctly to prevent this. The algorithm is also 

computationally expensive, as it often requires many trees which can be time and memory 

exhaustive. The ensemble of smaller models makes it hard to interpret the results, similar to RF 

models. However, tools to determine the variable importances are also available. 

 

3.4.1.3 Support vector machines 

The support vector machine is an algorithm that is developed intentionally for classification 

problems. Later on, it was extended to also deal with regression problems, this extension is named 

support vector regression (SVR) (Drucker, Burges, Kaufman, Smola, & Vapnik, 1997). In SVM a 

hyperplane is constructed such that the data is separated linearly into distinct classes. A hyperplane 

is a subspace whose dimension is one less than its ambient space. The hyperplane is linear but the 

training samples are often not linear. However, by utilizing the so-called kernel trick, it is possible to 

map nonlinear data points in its current dimension to points that are linearly separable in higher 

dimensions. Graphical visualization of mapping is presented with an example in Figure 13. 
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Figure 13 An example of data that is inseparable in the input space, but once it is mapped in a higher dimension a 
hyperplane can linearly separate the points.11 

The algorithm tries to maximize the boundaries of the hyperplane such that the closest pair of data 

points belonging to opposite classes are still separated. These points are called the support vectors 

as they determine how the margins are set. During training, the algorithm tries to find the maximal 

margin hyperplane that optimally separates the different classes. In SVR the method is similar but 

the hyperplane is not used to separate the classes but to estimate the continuous prediction (Bishop, 

2009). It is often not possible to find a perfect hyperplane and that is why some room for error is 

allowed and so-called soft margins are used. One of the main advantages of SVR is that its 

computational complexity does not depend on the dimensionality of the input space. Additionally, it 

has great generalization capability, with high prediction accuracy. A disadvantage is that the tuning of 

the kernel function and its parameters is quite hard. Additionally, the model requires the 

computation of the input data, which means that categorical variables must be transformed before 

they can be used. Lastly, the kernel function may map the data in dimensions greater than 3 which 

makes it hard to visualize what’s happening. 

 

3.4.2 Conclusion on the machine learning models 
In the previous section, we looked at a few different machine learning techniques that are used for 

regression and which have also been used for predicting daily visitors in the acute care domain 

(section 3.3). For our research, we require a method that is easily tunable and has good 

performance. For that reason, decision trees on themselves are less relevant, as they perform less 

than the other methods. It is also important that we can derive the important variables within the 

model, such that we can translate these as predictors of crowding to the partners. The RF and 

gradient boosting methods can quite easily give us feature importances with the use of the 

information gain. It is also possible to determine the feature importances with ANN and SVM, but 

these require more work and additional techniques. A plus for the ensemble methods is also that 

they can deal with categorical variables as well. The other algorithms can deal with them but require 

some sort of transformation to numerical variables. Another benefit of the RF model is that it has a 

built-in validation method with the out-of-bag predictions that it can make. Lastly, the RF model is 

also based on a quite simple expansion of decision trees. This keeps the explainability behind the 

algorithm quite high, although the model itself might become some sort of black box. Based on the 

overall positive sides of the RF algorithm, we’ve decided to use that algorithm for our models. 

  

 
11 Illustration obtained from: https://towardsdatascience.com/the-kernel-trick-c98cdbcaeb3f 
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4 Data Understanding and Preparation 
This chapter will introduce the internal and external datasets that will be used as input for the 

machine learning algorithm. The chapter will focus on understanding the basics of the datasets and 

explain which alterations must be made to construct the final dataset. 

4.1 Data collection and description 
The first step is to select different sources of data that could be of use for the final model. We will 

introduce the acquired datasets. These sets have been selected based on literature and expert 

opinions in the work field. We will also give a short explanation about sources that have been looked 

into but could unfortunately not be acquired during this research. Lastly, we will give a small 

overview of all the available datasets and their periods. 

4.1.1 Data from the ED of SKB and the GP-post HZOA 
The ED of SKB has provided a dataset that contains data collected from 2012-2018. The dataset 

contains the information of 85048 individual patients that have visited the ED in this period. This 

dataset will only be used to determine the daily visitors to the ED. The GP-post HZOA has provided a 

dataset that contains data collected from 2013-2017. The dataset contains the information of 

149725 individual consults (telephone, home visit, or consult at the post) given in this period. 

Similarly, as for the ED, the dataset will only be used to obtain the daily visitors to the GP-post.  

4.1.2 Time-related data 
This is a dataset that contains information about time-related events. As literature has shown that 

these have a good influence on daily visitor prediction in the acute care domain. On top of this, we 

also include yearly recurring holidays in the Netherlands and some in Germany. The holidays in the 

Netherlands are relevant because the GP-post will be open 24 hours on weekdays contrary to normal 

weekdays if a holiday falls on them. We also include the regional holidays from Germany’s Lower 

Saxony and North Rhine-Westphalia. These are the regions that are close to Winterswijk. Expert 

opinions told us that they experience an increase in German patients that visited the Netherlands 

during these holidays. Table 8-9 show the time-related variables and holidays that we consider. 

Table 8 A description of the time-related data. 

Variable name Variable definition Variable type 

Day The day of the week Categorical (day) 

Month The month of the year Categorical (month) 

Holiday Specifies whether the day is a 
national holiday in The Netherlands 

Categorical (yes/no) 

GermanHoliday Specifies whether the day is a 
national holiday in Germany 

Categorical (yes/no) 

IsWeekend Specifies whether the day falls on 
the weekend 

Categorical (yes/no) 

Table 9 List of the national holidays and German specific holidays we take into account. 

National holidays German specific holidays 

New Year Ascension day Labour day All Saint’s day 

Easter Pentecost German Unity day Corpus Christi 

Queensday / 
Kingsday 

Christmas Reformation day  
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4.1.3 Weather data 
The first external dataset is a text file containing different weather-related measures. This dataset is 

obtained from The Royal Netherlands Meteorological Institute (Koninklijk Nederlands Meteorlogisch 

Instituut, KNMI). They have several weather stations distributed over the country and on the sea that 

accumulate daily values for a variety of weather-related measures. The station in Hupsel has been 

chosen as a reference for the weather conditions that apply to our region as this is the closest 

station. 

 
Figure 14 KNMI weather stations distributed over The Netherlands. The Arrow points at the chosen station and the red cross 
is the location of Winterswijk12. 

The location of this weather station can be found in Figure 14. The dataset is freely available on the 

website of the KNMI and can easily be downloaded from their website for a specified period. The 

dataset that we have acquired contains data from the period 01-01-2012 – 19-12-2018. This is equal 

to the period for which we have data about the ED. The total dataset contains 2545 days of 

measurements for 29 (numerical) measures. Table 10 shows the description of the various 

measurements collected in that dataset. 

Table 10 Measures in the KNMI dataset from Hupsel. 

Weather code: Description Weather code: Description 

DDVEC 
Vector average air direction 
(degrees) T10NH 

Hour when T10N was 
measured 

FHVEC 
Vector average air speed (0.1 
m/s) SQ 

Duration of sunshine (0.1 
hours) 

FG 
Daily average wind speed (0.1 
m/s) SP 

Percentage longest possible 
sunshine 

 
12 Illustration retrieved from: https://www.meteolimburg.nl/knmi-weerstation-arcen-blijft-bestaan 
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FHX 
Highest hourly average wind 
speed (0.1 m/s) Q 

Global radiation (J/cm2) 

FHXH 
Hour when FHX was 
measured DR 

Duration of rain (0.1 hours) 

FHN 
Lowest hourly average wind 
speed (0.1 m/s) RH 

The total amount of rain in 
the day (0.1 mm) 

FHNH 
The hour when FHN was 
measured RHX 

Highest hourly total rain (0.1 
mm) 

FXX 
Highest wind gust (0.1 m/s) 

RHXH 
Hour when RHX was 
measured 

FXXH 
The hour when FXX was 
measured UG 

Daily average relative 
humidity (percentage) 

TG 
Average daily temperature 
(0.1 degrees Celcius) UX 

Maximum relative humidity 
(percentage) 

TN 
Minimum temperature (0.1 
degrees Celsius) UXH 

Hour when UX was measured 

TNH 
The hour when TN was 
measured UN 

Minimum relative humidity 
(percentage) 

TX 
Maximum temperature (0.1 
degrees Celsius) UNH 

Hour when UN is measured 

TXH Hour when TX was measured EV24 Reference crop evaporation 

T10N 

Minimum temperature 10 cm 
above the ground (0.1 
degrees Celsius)  

 

 

4.1.4 Pollen data 
The second external dataset is about the amount of pollen in the air. These values are collected by 

the Elkerliek hospital located in Helmond, who has been doing this for over 25 years. They use a 

measurement system placed on top of the roof of their facility to collect this data. The website of 

Elkerliek contains the daily pollen values measured daily since 2012. An Excel file was obtained from 

them containing all the data from 2012 up to the point that the dataset was requested, mid-2019. 

The data after 19-12-2018 will not be used. The file contains the daily measurements of 44 different 

pollen types. They’ve also specified which pollen is non-, mildly-, strongly- or very strongly allergenic 

to people. Tables 11-12 show the allergenic and non-allergenic pollen that are listed in the dataset. 

Table 11 Allergenic pollen collected in the dataset. 

Mildly allergenic Strongly allergenic Very strongly allergenic 

Corylus Betula Poaceae 

Alnus Artemisia Ambrosia 

Rumex Cladosporium Alternaria 

Plantago   

Cedrus libani   
 
Table 12 Non-allergenic pollen collected in the dataset. 

Non-allergenic 
Cupressaceae Acer Rosaceae 

Ulmus Platanus Asteraceae 

Populus Pinus Ranunculaceae 

Fraxinus Ilex Apiaceae 

Salix Sambucus Brassicaceae 

Carpinus Castanea Urtica 
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Hippophae Tilia Chenopodiaceae 

Fagus Ligustrum Fabaceae 

Quercus Juncaceae Humulus 

Aesculus Cyperaceae Filipendula 

Juglans Ericaceae Indet 

 

4.1.5 Events data 
The third external dataset is an excel file containing events that occurred in the region of north and 

eastern Gelderland provided by the safety region north and eastern Gelderland (Veiligheidsregio 

Noord-en Oost- Gelderland, VNOG). This file contains information about events that occurred from 

2016 to 2019. For every event, five variables are collected. Table 13 shows the variables that are 

collected with their definitions. 

Table 13 Variables that are filled in for every event in the dataset. 

Variable name Variable definition Variable type 

Date start of Event The date (+ sometimes time) when 
the event starts 

Date (day/month/year) + time 

Description Event A short description of the event Text description 

Municipality The municipality where the event 
took place 

Categorical (municipality names) 

Visitors The number of visitors (if known) Numerical if known otherwise ‘Onbekend’ 

Risk classification The risk classification associated 
with the event 

Categorical (different options for risks) 

 

The risk classification is a measure given to registered events, to indicate the level of safety measures 

that are required. If an event does not need to be registered it will suffice to simply report that there 

is an event (Kennisgeving, in the file). All other events are classified in either class: A, B, or C 

- Class A events are regular events with no special risks. They require little or no extra 

cooperation from police, fire brigade, and medical services. For example a block party or 

small gathering. 

- Class B events are events that require extra attention, these events often require advice from 

police, fire brigade, and medical services. For example parties in the city or sports events. 

- Class C events are the events with the most associated risks and always require advice from 

police, fire brigade, and medical services to ensure safety during the events. For example 

music festivals or big gatherings. 

Several factors influence the risk that is associated with an event. For example, the number of visitors 

is an indicator of the risk, but also the target audience (young people with alcohol/drugs) and 

location (difficult to reach or not), and various more factors. It’s up to the municipality to decide 

which classification a certain event will obtain. 

4.1.6 Flu season data 
Another dataset that we wanted to acquire was about the flu season in the Netherlands. Nivel is an 

institution for research in healthcare and they collect and distribute information on different 

diseases in the Netherlands. They do this to create an active picture of the current cases and 

distribution of healthcare problems. They report their results weekly on their website. The flu is one 

of the healthcare problems that they provide information on. Nivel mentions on their website that 
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they provide data for research and that they can be contacted about possibilities13. After contacting 

them we had to, unfortunately, exclude this option. The reason being that the datasets were only 

buyable per year. The total costs to obtain the data over the period that we are interested in would 

cost several thousand euros, which are funds that we do not have available for this research project.  

4.1.7 Traffic intensity data 
Lastly, a dataset that we wanted to acquire was about the traffic intensity on big roads close to the 

region of interest. The national database traffic information (Nationale Databank 

Wegverkeersgegevens, NDW) collects and distributes data about traffic intensity and speed at 

certain roads in the Netherlands. 

 
Figure 15 The sections of interest are denoted by the pink spots within the black circle. 

Unfortunately, after further investigation, we found that there was only limited data available for the 

roads of our interest (A18/N18), visible in Figure 15. The available data contained the daily average 

over 2018, which was only one measure. For all other years, there was no data available. 

Unfortunately, this means that the data is not useful for our applications. 

4.1.8 Graphical overview of datasets 
In sections 4.1.1-7, we introduced the different datasets that are available during this research and 

the ones that were unfortunately not. In Figure 16 we’ve displayed all the different datasets that we 

will use and the period over which they have data available. The leading datasets are these of the ED 

and the GP-post since they contain the values that we want to predict. The GP-post is the smallest 

dataset of the two and thus is the leading set for the period over which the models could be made. 

 
13 https://www.nivel.nl/nl/nivel-zorgregistraties-eerste-lijn/griep-centraal-weekcijfers-en-meer 
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Figure 16 A display of all the available datasets and the periods over which they contain data. 

4.2 Explore data & verify the quality 
In this section, we will take a closer look at the available data. We will look at the quality of the data 

and check for anomalies within the datasets. We also try to find certain patterns and correlations 

within the data. Note that the descriptive statistics and correlation analysis in this section are not 

used for future selection for the models. They are purely determined to get an overall idea and 

expectation of the datasets we are dealing with. 

4.2.1 ED and GP-post data 
Before we can explore the data in these sets, we have to make a few alterations to the two datasets. 

The datasets from the ED and the GP-post contain unique patient arrivals. In this research, we want 

to say something about daily volumes. This means that we have to aggregate the datasets such that 

we obtain the total sum of patient arrivals per day. For all patients, the arrival dates were known, 

which also means there was no missing data (some other features had missing data, but these 

features are not used) to construct the aggregated values. After this alteration, we can plot the daily 

arrivals over the years and compute some descriptive statistics. 

 

Figure 17 Daily ED visitors from 2012 to the end of 2018 
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Figure 18 Daily GP-post visitors from 2013 to the end of 2017. 

Table 14 Descriptive statistics for GP-post and ED. 

 Count Mean Standard deviation Min 25% 50% 75% Max 

GP-post 1826 82.00 57.95 18 42 50 75 262 

ED 2545 33.42 6.92 15 28 33 38 65 

 

When we take a look at Figures 17-18 and Table 14, we can see that the variation in patient arrivals is 

a lot bigger for the GP-post in comparison with the daily arrivals of the ED. This is caused by two 

reasons; the first reason is that the GP-post sees more patients overall than the ED and the second 

reason is that the daily arrivals of the GP-post are heavily dependent on the day. During normal 

workdays, they are only open outside regular office hours, but at the weekend they are open 24 

hours a day. To illustrate the differences between the days in a week we have constructed two 

boxplots for both datasets that distinguish the patient arrivals per day in Figures 19-20 and created 

Table 15 with descriptive statistics for weekdays and weekends. 

Table 15 Descriptive statistics for ED and GP-post separately for weekdays and weekends. 

 Count Mean Stdev Min 25% 50% 75% Max 

GP-post (weekday) 1304 47.91 19.81 18 40 45 51 224 

GP-post (weekend) 522 167.13 24.75 112 150 165 182.75 262 

ED (weekday) 1818 34.29 6.65 15 30 34 39 57 

ED (weekend) 727 31.24 7.09 15 26 31 36 65 

Looking at Table 15, we can see that there is only a small difference for the arrivals at the ED during 

the weekends and the weekdays. It appears that they see slightly fewer patients at the weekend. For 

the GP-post we find that the mean arrivals are more than three times as large during the weekends. 

Looking at the boxplots in Figures 19-202, we can confirm that Saturday is the busiest day, followed 

by Sunday. It also seems like the ED has slightly more arrivals on Monday and Friday in comparison 

with the other days.  
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Figure 19 Boxplot for daily ED Visitors divided by day of the week. 

 

Figure 20 Boxplot for daily GP-post visitors divided by day of the week. 

Figure 20 suggests that there are quite some significant outliers for the number of visitors during the 

weekdays for the GP-post. This effect is caused by holidays in the Netherlands. On these days the GP-

post operates 24 hours contrary to normal weekdays. We obtain the boxplot displayed in Figure 21 

by temporarily removing the holiday weekdays to illustrate that the big outliers disappear once we 

look at normal weekdays only. 
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Figure 21 Boxplot for daily GP-post visitors divided by day of the week (non-holidays). 

We also wanted to check whether we find differences in the number of visitors if we separate the 

dataset by months. We created boxplots again for both scenarios. A slight adaption is made for the 

GP-post in which we take the difference between weekdays and weekends into account. The 

boxplots are presented in Figures 22-23. 

 

Figure 22 Boxplot for daily ED visitors divided per month. 
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Figure 23 Boxplot for daily GP-post visitors divided per month and grouped by weekend or non-weekend. 

The daily arrivals at the ED for the different months seem to be pretty stable. The slight variation 

may simply be caused by some randomness in the arrival pattern. The arrivals at the GP-post at the 

weekends do seem to fluctuate a bit more. Figure 23 suggests that July is the busiest month and that 

November seems to be the least busy. The high outliers are once again due to the holidays within 

these months. 

Lastly, we are also interested in whether there is a linear correlation between the arrivals at the ED 

and the GP-post. To also account for the difference in weekdays and weekends, we checked for three 

different scenarios and determined the correlation coefficients. The first scenario is simply the 

normal correlation coefficient between the two arrivals, the second scenario is comparing only 

weekend data and the last scenario compares only week data. We found the following correlation 

coefficients: 

- Scenario 1: -0.164 

- Scenario 2: 0.307 

- Scenario 3: -0.038 

Although all three are quite low it is interesting to see that there appears to be a fair correlation 

between the arrivals at the weekends according to the correlation relationship listed in appendix B. 

4.2.2 Weather data 
The weather dataset contains numerical values for all 29 different measures. We found that in the 

entire file there appears to be missing data for only one day in row 1787. This row misses data for; 

TG, UX, UXH, UN, UNH, and EV24. Since there is only one line with missing values in the file we 

decided to not use any in-depth missing data techniques to alter this. We simply imputed these 

values by taking the average over the three values before that missing entry and the three values 

after that missing entry. We’ve decided to create histograms of the different measures, to get an 

idea of the behavior and distribution of the variables. All these plots are combined into one big plot 

illustrated in Figure 24 to keep it tidy and clear. 
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Figure 24 Histograms of the 29 numerical variables in the weather dataset. 

We are also interested in whether there are any linear correlations between the daily weather data 

and the daily arrivals at the ED and GP-post. These correlation coefficients can be found in Tables 16-

17. The descriptions of the variables are given in section 4.1.3. 

Table 16 Correlation coefficients between weather variables and ED arrivals. 

Variable Correlation Variable Correlation Variable Correlation Variable Correlation 

DDVEC -0.062 FXXH 0.012 SQ 0.184 UX -0.024 

FHVEC -0.066 TG 0.183 SP 0.150 UXH -0.054 

FG -0.080 TN 0.128 Q 0.208 UN -0.181 

FHX -0.071 TNH -0.050 DR -0.082 UNH 0.028 

FHX.1 0.047 TX 0.207 RH -0.036 EV24 0.208 

FHN -0.085 TXH 0.021 RHX -0.018   

FHNH 0.002 T10N 0.094 RHXH -0.070   

FXX -0.066 T10NH -0.045 UG -0.147   
 
Table 17 Correlation coefficients between weather variables and GP-post arrivals. 

Variable Correlation Variable Correlation Variable Correlation Variable Correlation 

DDVEC 0.023 FXXH 0.021 SQ 0.036 UX -0.034 

FHVEC 0.023 TG 0.036 SP 0.017 UXH -0.017 

FG 0.037 TN 0.029 Q 0.064 UN -0.055 

FHX 0.034 TNH 0.023 DR -0.016 UNH 0.020 

FHX.1 0.013 TX 0.038 RH -0.020 EV24 0.061 

FHN 0.025 TXH 0.036 RHX 0.003   

FHNH -0.018 T10N 0.023 RHXH -0.032   

FXX 0.036 T10NH 0.011 UG -0.057   
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We find that none of the daily weather variables have a correlation coefficient of at least (+ or -) 0.3 

with either the daily ED or GP-post arrivals. Therefore we conclude that there is no correlation 

according to the correlation relationship listed in appendix B. 

4.2.3 Pollen data 
The dataset of the pollen seems to contain three pollen types that have no values recorded over the 

entire period. These are the following: Fabaceae, Ranunculaceae, and Hippophae, which all are non-

allergenic. Additionally, it appears that two of the pollen types were only observed during 2012, 

2013, and a small portion (first 1.5 months) of 2014. These were the strongly allergenic Cladosporium 

and the very strongly allergenic Alternaria. Figure 25 presents the pollen count per day of all the 

allergenic pollen types. 

 

Figure 25 The data of all the allergenic pollen. Note that the pollen Alternaria and Cladosporium appear to be no longer 
collected after a certain period. 

The allergenic pollen that contained data over the full period was also compared with the daily ED 

and daily GP-post visitors to see if there are any linear correlations between them. We had to adjust 

the datasets for both scenarios because the pollen data had to be aligned with the ED and GP-post 

respectively since all three datasets have a different amount of data (different periods). The final 

correlation coefficients that were found are given in Table 18. 

Table 18 Correlation coefficient for allergenic pollen with full data versus ED visitors and GP-post visitors. 

Pollen type ED visitors  GP-post visitors 

Corylus -0.012 0.034 

Alnus 0.008 0.003 

Rumex 0.114 0.031 

Plantago 0.044 -0.024 

Cedrus libani 0.051 -0.009 

Betula 0.044 -0.017 

Artemisia 0.000 0.002 

Poaceae 0.100 0.055 

Ambrosia 0.014 -0.006 
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Table 18 suggests that there are no relevant linear correlations between the allergenic pollen in the 

air and the daily visitors to the ED or GP-post according to the correlation relationship listed in 

appendix B. 

Lastly, we cannot determine whether there are missing values in the dataset. The zero measurement 

values are listed as empty entries in the dataset. For this reason, we are not able to distinguish 

between missing values and a zero measurement. Therefore, we assume that all empty entries are 

zero measurements. 

4.2.3 Events data 
The Events dataset contains a total of 13,671 events distributed over the years 2016-2019. The 

number of visitors is known for 6,142 of the events, the remainder is unknown. There seems to be a 

mistake in the dataset as the minimum number of visitors for one of the events is -100, which should 

most likely be 100. The maximum number of visitors for a certain event is 250,000. The frequency of 

the risks that are associated with the events is illustrated in Table 19, with their average visitors (if 

known and not ‘onbekend’). 

Table 19 Counts for different risk groups for events. 

Risk 
classification 

Counts Avg Visitors 
(if known) 

Kennisgeving 3229 275 

Regulier (A)  8692 931 

Aandacht (B) 1580 4475 

Risico (C) 69 24054 

Empty 101 1229 

Table 19 shows that the majority of the events are regular events (Class A: less risk associated) or 

events that do not require registration (Kennisgeving = only report that there is an event). It’s also 

clearly visible that lower risk classifications are associated with fewer visitors. Unfortunately, a total 

of 101 events have no risk classification given to them. 

4.3 Data selection 
In the previous sections, we found that not all datasets have equal sizes and not all attributes are 

relevant or complete enough to use in the final model. In this section, we will determine which parts 

of each respective dataset will be used in the final dataset. 

4.3.1 ED and GP-post dataset 
We transformed all the unique arrivals into daily arrivals for the GP-post and ED. We will use all these 

daily values as our response variable in the models. We also want to use the values as a predictor for 

each other in the models. Unfortunately, the datasets were not collected over the same period. 

Which means that some data will be lost. The smallest of the two sets is that of the GP-post, which 

contains data from 01-01-2013 to 31-12-2017. That will be the time horizon that we will use in the 

base models. 

4.3.2 Weather dataset 
The weather station automatically collects the data from various measures. However, some of these 

measures are closely related to one another. This means that there is a very high correlation 

between them, which we want to prevent to counter collinearity. For example, the average daily 

temperature will be correlated with the minimum temperature measured 10 cm above the ground. 

Based on the prevention of this dependence and the used variables in literature we have decided to 
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include the following variables; daily average windspeed,  daily average temperature, duration of 

sunshine, duration of rainfall, total amount of rainfall, and daily average relative humidity as 

predictors for the daily visitors in the models. 

4.3.3 Pollen dataset 
The majority of the pollen in the dataset are nonallergenic for humans, which means they are not 

expected to have any effect on the daily arrival rate at either the ED or GP-post. Unfortunately, we 

also found that two of the allergenic pollen were only collected (or no longer exist) for the first two 

years. For that reason, we have decided to not include these in the models as they would yield no 

benefit for future predictions if they are no longer registered. The remainder of the allergenic pollen 

will be used as predictors in the model. 

4.3.4 Events dataset 
The dataset contains data from the start of 2016 until the end of 2019, as mentioned earlier our 

relevant time horizon is from 01-01-2013 to 31-12-2017. This means that we cannot use the data 

from 2018-2019 to increase the performance of our final model. Additionally, this means that we lack 

any event data for the years before 2016. If we were to delete all data before 2016, our models 

would lose a big portion of the already scarce data. For that reason, it would be smarter to make two 

models, one that does contain the events and one that does not. This way we can still research 

whether the inclusion of events has relevance.  

The dataset contains a lot of events in the region of North and Eastern Gelderland, however, not all 

of these events are relevant for our research. We will focus on events that take place in 

municipalities that are close to our region of interest. The municipalities that we will focus on are 

Aalten, Berkelland, Oost Gelre, and Winterswijk, since they are within the catchment area of the ED 

and GP-post. For these regions, we will sum all the events of a certain type per day and the total 

number of event visitors per day and use these as predictors for the model. 

4.4 Integrating and constructing data 
This section will show the steps that have been performed concerning the integration and 

construction of the data, such that we end up with datasets that can be used for the modeling part. 

4.4.1 Data integration 
All data is delivered in separate files, so the first thing that needs to be done is to integrate all data in 

four easy to use datasets, two for both the ED and GP-post models (with and without events). The 

main problem here is that all datasets have different lengths, so we have to make sure that we link 

the data from the correct dates with each other. Within these datasets, we still have to adapt some 

of the columns. Since we want to predict the daily visitors for the next day we need input values of 

the day before that. To do this we have to lag some of the predictors by 1 day. This means that the 

values of yesterday are used to predict the dependent variable of today. This is only done for 

variables that are not known on the day itself. For example, the day of the week or certain holidays 

are known for the future and don’t need this. 

4.4.2 Data construction 
Our new datasets now contain all relevant data that was originally acquired. However, we also need 

to construct some new variables based on some of the others. we need to transform the categorical 

variables that we created into numerical values. Normally this wouldn’t be the case for random 

forest regression, as the algorithm can work with categorical values. However, the random forest 

algorithm from the scikit-learn machine learning package in python requires the data to be 
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numerical. Fortunately, the data can easily be transformed into numerical values by using a method 

called one-hot encoding (Bishop, 2009). This method creates so-called ‘dummy’ variables for the 

different classes within a categorical variable. These dummy variables can then either have the value 

1 (true) or 0 (false). An example is illustrated in Table 20. 

Table 20 One-hot encoding example for variable; color. 

Color ColorRed ColorBlue ColorGreen 

Red 1 0 0 

Blue 0 1 0 

Green 0 0 1 

 

The example above shows that a single categorical variable ‘color’ with the values red, blue, and 

green can be transformed into three binary variables, which are either true (1) or false (0). Usually, 

one of the dummy variables is left out, since it can be predicted based on the values of the other 

dummy variables. For example, if the color is not red or blue it must be green. We can do this for our 

categorical variables as well to incorporate them into our models. 
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5 Method & experimental design 
This chapter will address the proposed method that will aid in solving the research objective. The 

properties and design decisions of the method will be elaborated. Additionally, we will describe the 

experimental design that is used to assess the performance of the proposed method for the ED and 

the GP-post.  

5.1 Proposed forecasting tool 
In chapter 1 we introduced the idea of an all-inclusive tool. The main goal of this tool is that it can be 

used to create forecasts for the ED and GP-post. The forecasts are for the daily volume of patients 

arriving at the ED and the GP-post. We want to have separate models for these forecasts. The idea is 

to build a graphical user interface (GUI) that contains several functions that are required for the 

process from raw datasets to forecasts. The main reason for this is to keep the application simple for 

the end-users. All the operations can be done within one application, with the use of self-explanatory 

buttons. The functions that we want to add to this application are: 

1) Use all individual raw datasets in combination with additional desired features to construct 

two separate main datasets that will function as input for the machine learning models of the 

ED and GP-post. This will allow the user to easily obtain the correct datasets and features for 

the actual training of the models. This also allows for easy adjustments in the future if new 

datasets are introduced or extra features need to be added since the function can simply be 

extended/altered. 

 

2) Train user-specified (parameter settings) machine learning models for the ED and GP-post. 

These models can be saved on the computer and loaded into the application for later use. 

This will allow the user to easily try out different settings for the model and make predictions 

with earlier created models. 

 

3) The trained machine learning models can be used to make predictions. These predictions can 

be on data for which the outcomes are known to test the performance of the model and also 

on real examples for which we have no verification (future forecasts). 

 

4) There will be an option to optimize the parameters of the machine learning model. The user 

will be able to perform a grid search with user-specified parameters and the application will 

return the model with the best performance. 

 

5) The performance of the machine learning model can be evaluated and shown within the GUI. 

The application and its features will be build using the programming language Python. Python is a 

widely-used programming language for data science problems. It has several extensive and ready to 

use libraries for application building and machine learning algorithms. On top of that, the 

environment is completely free to use and new technologies are added/updated frequently. 

A simplistic overview of the steps to be taken is illustrated in Figure 26 on the next page, the steps 

included will be explained more in-depth in the upcoming sections. We start with the raw datasets 

and combine these to create separate sets for the ED and GP-post. These sets contain all features 

and the labels (daily visitors) in the correct format to be used in the algorithm. We then pick our 

algorithm, set our hyperparameters, and give our datasets as input. The result will be a trained 
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model, with which we can create forecasts in real-life situations and also measure the performance 

on already known data.   

 

Figure 26 A simplified illustration of steps that need to be taken to go from the basic datasets to a useful forecast. 

The first two steps in the Figure above have been addressed in the previous chapter about data 

understanding and preparation. There we’ve introduced our datasets and explained which features 

will be used for the final models. In this chapter, we will focus more on the algorithm itself, how we 

can properly train the model, and check the performance of the model. 

5.2 Proposed model: random forest regression 
In the literature study (chapter 3), we’ve found that the random forest algorithm would be the most 

suitable algorithm for our forecasting problem. We want to train random forest regression models on 

our data that can predict the daily volume of arrivals at the ED and the GP-post. We will first address 

the Python algorithm that we will use and it’s required parameters. Secondly, we will elaborate on 

how we can determine the performance of the models that we train. We continue with the methods 

to validate our results and ensure that the produced errors are relevant and usable. Then we will 

address how we can find our model with the best parameters and performance. Lastly, we will 

explain what the forecasts for future situations should include. 

5.2.1 Random forest regression algorithm and its parameters 
The third block in the diagram in Figure 26 contains the algorithm and its predefined parameters that 

will be used to train a random forest model with the datasets. In Python, there is a machine learning 

library called scikit-learn which is free of use. This library provides functions for most common 

machine learning techniques, including a random forest regression algorithm. The function that will 

be used from this library is the ‘RandomForestRegressor’. This is a meta estimator that fits many 

decision trees on various sub-samples of the dataset and uses averaging to improve the predictive 

accuracy and control over-fitting. The function can take several parameters as input, which will 

influence the training of the random forest. Some of the parameters are not relevant for us to 

change and will be used with their default value. The parameters listed below are the ones which we 

will use to find the best models: 

1) N_estimators: This is the number of decision trees that we will train in our random forest 

model. The default value is set at 100 trees. 

2) Max_features: The number of features to consider when looking for the best split in a tree. 

This can be an integer that specifies the number of features or a float which will specify a 

ratio of the total number of features. The default value is set to the total number of features. 
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3) Min_samples_leaf: The minimum number of samples required to be a leaf node. This can be 

an integer that specifies the minimum number of samples to be in a leaf node or a float 

which is the ratio of the total number of samples. The default value is set at 1 sample. 

4) Max_samples: The number of samples to draw (with replacement) from the dataset to train 

each base estimator, only if bootstrap is true. 

5) Bootstrap: This specifies whether we want to use bootstrapped samples to build the trees or 

use the entire dataset. This can be turned on or off by setting the value to true or false 

respectively. The default value is set at true. 

6) Oob_score: This specifies whether the out-of-bag data (non-chosen samples during 

bootstrap) must be used to estimate the R2 on unseen data. This can also be specified as true 

or false. The default value is set at false. 

7) Random_state: This controls the randomness of the bootstrapping of the samples used when 

building the trees and the sampling of the features to consider when looking for the best 

split at each node. An integer value can be entered which will specify a certain random seed. 

The default is set at None, which means we get different results every time we run the same 

settings. 

A random forest model that contains more trees will always perform better than a model with fewer 

trees (Probst & Boulesteix, 2018). However, the improvement gained per tree decreases as the 

number of trees become larger and larger. For this reason, the number of trees should be set 

sufficiently high, whilst still maintaining reasonable running times. When the number of trees is 

chosen high enough, the randomness of the random forest is mainly influenced by max_features, 

min_samples_leaf, and max_samples (Probst, Wright, & Boulesteix, 2019). Max_features is shown to 

have the most effect, but experiments have shown that the latter two also are worth tuning. Section 

5.3.2 will give more information about the parameters and within which ranges they will be tuned for 

our models.  

In some of the models, the oob_score will also be activated to keep track of the performances of 

different models. We need to include the use of bootstrap samples to do this. More information 

about this method will be given in sections 5.2.3-4. 

Lastly, the random_state is used to reproduce the same results when we rerun the algorithm. The 

actual number is not relevant, any seed will suffice. However, we must use the same random state 

for all different models (different parameter settings). This way we guarantee that we compare the 

performance of different models fairly and that the change in performance is not due to picking 

other features, samples, etc. 

5.2.2 The performance of the model 
Once the models have been successfully trained we need to determine the performance of such 

models. We are dealing with regression forecasts, therefore we’d like to express the error in terms of 

the predicted value and the actual value on known data. There are scale-dependant and percentage 

errors to assess the performance of a model (Hyndman & Athanasopolous, 2018) of which three will 

be introduced on the next page. These three metrics will be calculated and used to compare different 

models with each other on their performance.  

For the performance metrics below (formulas 1-3) we define the error (et) as the actual value (yt) 

minus the predicted value (ŷt). Where the actual value is a data point in the dataset and the 

predicted value is produced by the model. Since the objective is to create forecasts that are similar to 

the actual value it speaks for itself that the errors should be as low as possible. 
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Mean absolute error 

The Mean Absolute Error (MAE) is a scale-dependent error. Forecast methods that minimize the MAE 

will lead to forecasts of the median. This method should not be used if you want to compare series 

that involve different units. The error has the same scale as the prediction, which in our case is the 

number of patients. 

 

𝑀𝐴𝐸 = 𝑚𝑒𝑎𝑛(|𝑒𝑡|)          (1) 

 

 

Root mean squared error 

The Root Mean Squared Error (RMSE) is also a scale-dependent error. This metric is similar to the 

mean squared error but is easier to interpret because the scale is similar to that of the data. Similar 

to the MAE, this error also has the same scale as the prediction. 

 

𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛(𝑒𝑡
2)          (2) 

 

Mean absolute percentage error 

The Mean Average Percentage Error (MAPE) is a unit-free measure and is expressed as a percentage. 

The error is simply divided by the actual value Yt. This measure is often used to compare the 

performance of different datasets and results where the scale is not the same. This method does not 

work well when the actual values are close to 0 since the error would then approach infinity. 

𝑀𝐴𝑃𝐸 = 𝑚𝑒𝑎𝑛 (|
𝑒𝑡

𝑌𝑡
|) = 𝑚𝑒𝑎𝑛(|𝑝𝑡|)         (3) 

 

5.2.3 Validation of the model 
Now that we know how to evaluate the models on their predictions we need to ensure that metrics 

are calculated over a representative portion of the dataset. We must ensure that data that is used for 

training is not used to also evaluate the model, as this will give biased results. Secondly, we need to 

ensure that the set for evaluation is sufficiently large, whilst also keeping training samples large. We 

will use two different methods to validate our models. One of the methods is using the built-in 

function in the machine learning algorithm and is based on bootstrapping the data. The second 

method is a more commonly known method using k-fold cross-validation to estimate the error. 

5.2.3.1 Bootstrapping 

Earlier in this chapter, we mentioned that the machine learning algorithm had the option to include 

bootstrapping of the data. This is a technique to utilize the dataset for training and testing. Starting 

with the full dataset, for every iteration (every tree in the forest) we select a random amount of data 

points from the entire dataset for training. We do this with a replacement of already chosen points, 

which means that data points can be selected more than once. The unselected data points within an 

iteration will be used to determine the performance and are the so-called out-of-bag data points. 

Figure 27 illustrates this principle with an example. 
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Figure 27 Bootstrapping illustration; we start with five data points and for every experiment, we select five random points 
with replacement for training, the remainder of the points will be used for testing. 

Let us consider that we have (n) samples in our dataset and we pick (n) random samples with 

replacement. Since we pick them at random we have a  
1

𝑛
  chance to pick a sample and a 1 −  

1

𝑛
 

chance to not pick a sample. The total chance that after (n) picks we did not pick a certain sample 

is (1 – 
1

𝑛
)𝑛 which for large n is approximately 

1

𝑒
 ≈ 0.368. In other words, we have around 36.8% of 

samples that will not be used for training in a certain tree of the random forest. Since the random 

forest consists of many trees which are all built with different training samples and have different 

unused samples, we can use this to our advantage. We check for every sample in our dataset in 

which tree they were not used for training. We then give this sample as input to these trees and take 

the average over all the outputs. This way we obtain a single value prediction for that sample. In the 

end, we will have an out-of-bag estimate for all our samples in the dataset. These predictions can 

then be used to determine our performance metrics. This principle is illustrated for a single sample in 

Figure 28.  

 

Figure 28 Example of a sample in a random forest consisting of six trees where the sample was out-of-bag in two of them. 
We then take the prediction of this sample from the two trees in which it was not used for training. The test prediction for 
Sample 1 will be the average of  10 and 11. 

5.2.3.2 K-fold cross-validation 

This method divides the entire dataset into different folds. The ‘K’ stands for the number of folds in 

which the total dataset will be partitioned. K-models are then trained with (k-1) training folds and 

tested with one testing fold. The testing fold and training folds are different for each of the K-models, 

although the training set will have overlap (Hastie, Tibshirani, & Friedman, 2017). An example of 4-

fold cross-validation is illustrated in Figure 29. 
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Figure 29 4-fold cross-validation; the testing fold is denoted by the yellow area and is different for every model, the training 
fold changes similarly but has overlap with the training set in the other models. 

The performance of the final model is then estimated as the average over the error over the different 

testing folds. In the example above we’d take the four test errors and calculate the average of these 

to find the model performance. 

5.2.4 Best model selection 
Now that we know the important parameters of our model and how we can test the performance of 

our models. We can combine this knowledge to find the best parameters for our model such that we 

obtain the model with the best performance. To do this we need to train many different models with 

varying parameters and compare their performances with each other. We propose to apply a grid 

search on the parameters that influence the performance of the random forest model. The process 

to find the model with the best parameters would work as depicted in Figure 30.  

 

Figure 30 Process to obtain the model with the best parameter settings for optimal results. 
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The parameters in the grid search will be; the max features to be considered per split, the minimum 

number of samples in a node, and the number of samples to draw as mentioned earlier. The actual 

values that we will consider for these parameters will be introduced in section 5.3 about the 

proposed experiments.  

The optimization is performed twice, once for each of the validation methods. The option to use 

bootstrap samples within the random forest algorithm will be turned on during the bootstrap 

experiments and off during the K-fold cross-validation method. Once all experiments are performed 

we will have the results in Excel. Depending on the validation method we can then find the best 

model as follows: 

Bootstrap Method: The models are trained and tested with all available data points. The best model 

will be selected based on the out-of-bag error estimates of the models.  

Cross-validation Method: We will have K-models for every parameter setting that we try. We can 

estimate the model performance by taking the average over the (K) performances. The final model is 

then fitted to all the data with the corresponding parameter settings (Hastie, Tibshirani, & Friedman, 

2017). 

We also want to know which of the features are most important within the best models. We want to 

create an overview of the most important features in the final models. These features are important 

for the acute care domain to get an idea of which factors influence the crowding on the ED or GP. We 

do this using the feature_importances attribute of the random forest algorithm in Python. The 

documentation of the algorithm specifies that the importance of the feature is computed as the total 

reduction of the criterion brought by that feature. The standard measure of the criterion is the mean 

squared error (MSE, 4) for random forest regression models (Sklearn Ensemble 

RandomForestRegressor, 2020). In formula (4) the mean squared error is given in terms of the actual 

value 𝑦𝑖 and the prediction ŷ𝑖. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)2𝑛

𝑖=1          (4) 

This means that for every split it checks how much the overall error improves for the predictions. The 

variables can then be ranked based on their improvement, where a larger improvement means a 

more important variable. 

5.2.5 One-day-ahead forecast 
The final model that we obtain can be used to create one-day-ahead forecasts for the number of 

visitors at the ED and the GP-post. This forecast will be an average over all the outputs of every 

individual tree within the forest. In addition to the forecast, we want to provide a prediction interval 

for this value. The model consists of multiple individual decision trees. So instead of only presenting 

the average value, the idea is to also register all the individual tree forecasts. These can then be 

ordered from smallest to largest. We then pick the 5th and 95th percentile of these numbers as a 

lower and an upper limit of the prediction. A good model would preferably have a small prediction 

interval for a prediction. 

5.3 Proposed experiments 
This section introduces the experiments that will be conducted to answer the research questions of 

this project. We first explain the experiments that we will do for the final models of the ED and the 

GP-post. Secondly, we will explain the variety of experiments that will be done to find the best 
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parameters for these models. Lastly, we address the comparison that we will make between the 

results of the models and some baseline predictions. 

5.3.1 Unique models for ED and GP-post 
As mentioned before we will create separate models for the ED and the GP-post. The reason being 

that they both operate independently of each other and also show great variation in the number of 

daily visitors, caused by the different opening times. In addition to that, we will also separate the 

dataset into one with events and one without. The model without the events will include all data 

from 2013 to 2017. The model with events however will only include data from 2016 to 2017. We 

decided to separate this because the period over which we have event data is so small that it would 

be a big waste to delete all other data for the period before that. We’d hope to see that the addition 

of events will have a beneficial effect on the model. Although a comparison between the two models 

will be difficult as there is a large gap in the available data. We also want to make the comparison 

between the dataset which was formed by ourselves after selecting data in chapter 4 and the full 

dataset including all features, without any preselecting. Lastly, we’d have to run the above-

mentioned models all twice to account for the two validation methods. The total number of models 

that we will find are shown in Table 21. 

Table 21 Total number of models for ED and GP-post. Note that they should be multiplied by two to account for both 
validation methods. 

Model Years Labels Number of 
features 

ED (All data - Event) 2013-2017 Daily ED Visitors 100 

ED (All data + Event) 2016-2017 Daily ED Visitors 105 

ED (Selected data - Event) 2013-2017 Daily ED Visitors 42 

ED (Selected data +  Event) 2016-2017 Daily ED Visitors 47 

GP-post (All data - Event) 2013-2017 Daily GP-post Visitors 100 

GP-post (All data + Event) 2016-2017 Daily GP-post Visitors 105 

GP-post (Selected data - Event) 2013-2017 Daily GP-post Visitors 42 

GP-post (Selected data +  Event) 2016-2017 Daily GP-post Visitors 47 

This means that with all models mentioned in the Table above and the two validation methods that 

we have we will have to find 16 optimal models. The parameters that we will change to find the best 

models will be explained in the next section. 

5.3.2 Experiments for finding the best model parameters 
In the previous section, we mentioned that we will create 16 final models. Eight for each, the ED and 

GP-post. To obtain these final models we will have to perform a grid search on the model parameters 

as explained in section 5.2.4. This grid search will be done over three parameters; the maximum 

features per split, the minimum samples per node, and the sample size. We earlier mentioned that 

the number of trees should be sufficiently large to obtain good models. Research on 29 datasets with 

the random forest model has found that there were no significant differences between random 

forests build-out of 128 trees and more (Oshiro, Perez, & Baranauskas, 2012). However, since the 

running time of our algorithm is pretty fast we can take some safety for our models. We decided to 

use a total of 1000 trees in all the models. This should be more than enough to guarantee sufficient 

decision trees in every model.  

For the actual parameters, we will try different values within the allowed limits. The maximum 

features considered per split can be any number between 1 and the total number of features. Since 

the total number of features of our datasets is not large we can easily explore all numbers within that 
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range. Typical values for maximum features per split are 1 and 5 used for classification and 

regression problems respectively (Probst, Wright, & Boulesteix, 2019). We can try to find differences 

in the performance of the models by changing that value from 1 to 5. Lastly, the sample size 

influences the diversity of the individual trees which has the effect of producing less correlating 

trees. On average this could increase the accuracy but the individual trees become less accurate. The 

optimal value for the sample size is found to be less than the total number of samples, which is often 

suggested to use (Martínez-Muñoz & Suárez, 2010). We will check for fractions between 0.5 and 1 of 

the total number of samples. This will only be done for the models validated by the bootstrap 

method, as the other models validated by the cross-validation method will have their respective folds 

for training and testing. This means that no samples will be drawn for these models and therefore 

this parameter is not relevant. All values for the different parameter settings can be found in Table 

22. 

Table 22 Parameter grid search for the best models. Note: The sample size is only used for bootstrap models. 

Parameter Minimum value Step size Maximum value 

Number of trees 1000 - 1000 

Maximum features per split 1 1 Total number of features 

Minimum samples per node 1 1 5 

Sample size (fraction of total) 0.5 0.1 1 

 

5.3.3 Comparison model results versus baseline results 
Lastly, we want to address the comparison that we want to make between the performance of the 

best models versus some fairly simplistic baseline results. The expectation is that the models will 

improve a lot on the results in comparison with these baseline results. If this is not the case then it 

means that the models are not able to outperform relatively easy methods of prediction. 

The number of visits in the past that are known can be used in some way to create predictions for 

the one-day-ahead forecasts. The easiest would be to just assume that today’s number of visits will 

be the number of visits for tomorrow. We can also slightly extend this by taking the average over the 

last three days as our prediction for the next day. This should provide better results for the ED than 

for the GP, the reason being that the GP is not always open for an equal number of hours (weekdays 

and weekends for example) in contrast to the ED. Therefore the arrivals of one day could differ 

greatly from the next day.  

To compensate for that effect we also want to add predictions based on the known value of one 

week ago and the average of that same day over three weeks. For example, the prediction of 

Monday 28-5 would be based on Monday 21-5 for the first prediction and the average over Monday 

(7-5, 14-5, and 21-5) for the second prediction. Table 23 gives an overview of the four different 

baseline methods that we will take into account and compare with the results of our best models. 

Table 23 Prediction methods for the baseline results, where �̂�
𝑡
 is the prediction and 𝑦

𝑡
 are known values. the period t is 

given in days, such that a difference of seven equals one week. 

Prediction method Prediction 

One day prior ŷ𝑡 =  𝑦𝑡−1 

 

Average of three days prior 
ŷ𝑡 =

 𝑦𝑡−1 + 𝑦𝑡−2 + 𝑦𝑡−3

3
 

One week prior ŷ𝑡 = 𝑦𝑡−7 
 

Average of three weeks prior 
ŷ𝑡 =

 𝑦𝑡−7 + 𝑦𝑡−14 + 𝑦𝑡−21

3
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6 Experimental Results & Discussion 
This chapter will present the results that were acquired by performing the experiments proposed in 

the previous chapter. The results for the ED and the GP-post will be divided into separate sections. 

This chapter will conclude with a discussion about the results. 

6.1 Results for the GP-post 
Experiments were performed with four different scenarios for the GP-post. The scenarios either 

include the Events data or not and are done with the full dataset and the reduced dataset (four 

scenarios in total). We also used two validation methods to find the optimal models. The result is 

that we obtained four optimal models based on the Bootstrap method and four optimal models 

based on the cross-validation method. The models in the Bootstrap method are ranked by their out-

of-bag score which is automatically calculated by the random forest algorithm when bootstrap 

samples are included. This score is closely related to the RMSE which we’ve also calculated for all 

models. For that reason, the models validated by the cross-validation method will be ranked by their 

RMSE score. Additionally, the performance of these models is the average over the performance of 

the five different folds. The best models that we found for these two validation methods are 

summarized (numbers rounded to two decimals) in Tables 24-25. Note that the running time is in 

seconds, the MAE and RMSE are expressed in patients and the MAPE is expressed in a percentage 

error. The top ten models for every scenario can be found in Appendix C. 

Table 24 Best models found for the GP-post, validated with the Bootstrap method. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time (s) 

MAE RMSE MAPE OOB 
Score 

Reduced (No Event) 1000 20 3 0.9 4.69 8.32 11.44 12.49 0.96 

Reduced (with Event) 1000 35 3 1.0 3.11 8.45 11.72 12.48 0.96 

Full (No Event) 1000 71 3 0.9 14.47 8.31 11.47 12.35 0.96 

Full (with Event) 1000 72 3 1.0 5.86 8.57 11.83 12.62 0.96 

Table 25 Best models found for the GP-post, validated with the Cross-validation method. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time (s) 

MAE RMSE MAPE 

Reduced (No Event) 1000 29 5 4.12 8.39 11.51 12.57 

Reduced (with Event) 1000 36 2 2.64 8.48 11.67 12.53 

Full (No Event) 1000 65 5 9.73 8.35 11.55 12.41 

Full (with Event) 1000 79 3 4.82 8.58 11.76 12.67 

Looking at the results above we see that the performance of the models with no events is slightly 

better than the models with events for both of the validation methods. However, we must realize 

that the available data for the models with events is much smaller. Similarly, we’ve also found that 

the reduced models perform slightly better on the ranking criteria than the models containing all 

features. However, the differences are minimal in both cases. This could be due to the fact a lot of 

useless variables are still included in the full dataset, which could cause a random selection to only 

have bad picks. We’ve also determined the top 10 most important features for each of the models, 

these are displayed in tables 26-27. Interestingly it appeared that all models were greatly dominated 

by the same features. The most important feature in all of the models was whether the day was on 

the weekend or not. After this feature, a few features were fluctuating around in position a bit. These 

features were;  
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- The days; Saturday and Sunday 

- Whether the day is a holiday or not 

- The daily GP visitors of the day before 

The importance of the features that came after these were all very small and almost neglectable on 

the total importance.  

Table 26 Top 10 features for GP-post models validated with the Bootstrap method. 

 Reduced (No Event) Reduced (with Event) Full (No Event) Full (with Event) 

Feature 1 IsWeekend_Yes (0.39) IsWeekend_Yes (0.44) IsWeekend_No (0.42) IsWeekend_Yes (0.42) 

Feature 2 IsWeekend_No (0.37) IsWeekend_No (0.41) IsWeekend_Yes (0.42) IsWeekend_No (0.42) 

Feature 3 Day_Saturday (0.09) Day_Saturday (0.03) Day_Saturday (0.03) Day_Saturday (0.04) 

Feature 4 Day_Sunday (0.04) Holiday_Yes (0.03) Holiday_No (0.03) Holiday_Yes (0.03) 

Feature 5 Holiday_Yes (0.03) Holiday_No (0.03) Holiday_Yes (0.03) Holiday_No (0.03) 

Feature 6 Holiday_No (0.03) Day_Sunday (0.01) Day_Sunday (0.02) Day_Sunday (0.02) 

Feature 7 Daily-GP-1 (0.02) Daily-GP-1 (0.01) Daily-GP-1 (0.01) Daily-GP-1 (0.01) 

Feature 8 TG (0.01) TG (0.01) TX (0.00) Event_K (0.00) 

Feature 9 UG (0.00) Event_K (0.00) TG (0.00) TX (0.00) 

Feature 10 SQ (0.00) FG (0.00) DDVEC (0.00) TG (0.00) 
 
Table 27 Top 10 features for GP-post models validated with the Cross-validation method. 

 Reduced (No Event) Reduced (with Event) Full (No Event) Full (with Event) 

Feature 1 IsWeekend_Yes (0.42) IsWeekend_Yes (0.44) IsWeekend_No (0.42) IsWeekend_Yes (0.43) 

Feature 2 IsWeekend_No (0.42) IsWeekend_No (0.41) IsWeekend_Yes (0.41) IsWeekend_No (0.42) 

Feature 3 Day_Saturday (0.04) Holiday_Yes (0.03) Day_Saturday (0.04) Holiday_No (0.03) 

Feature 4 Holiday_Yes (0.03) Holiday_No (0.03) Holiday_Yes (0.03) Holiday_Yes (0.03) 

Feature 5 Holiday_No (0.03) Day_Saturday (0.03) Holiday_No (0.03) Day_Saturday (0.03) 

Feature 6 Day_Sunday (0.02) Day_Sunday (0.01) Day_Sunday (0.02) Day_Sunday (0.01) 

Feature 7 Daily-GP-1 (0.01) Daily-GP-1 (0.01) Daily-GP-1 (0.01) Daily-GP-1 (0.01) 

Feature 8 TG (0.01) TG (0.01) TX (0.00) Event_K (0.00) 

Feature 9 UG (0.00) Event_K (0.00) TG (0.00) TX (0.00) 

Feature 10 FG (0.00) FG (0.00) Day_Friday (0.00) TG (0.00) 

 

We were also able to plot the results of the out-of-bag predictions accompanied by their prediction 

intervals. This was only available for the models trained with the bootstrap samples. We’ve also 

added the actual values as an indication of the performance of the models. The predictions of the 

best model can be found in Figure 31 and the other plots can be found in the first three Figures of 

Appendix D. Note that the predictions are sorted from smallest to largest, which clearly shows the 

difference in predictions during the normal working days and when they are open 24 hours. We also 

see that the gap between the lower and upper bound of the prediction intervals are quite big, which 

suggests that the model is not certain about the prediction. On top of that, quite some of the actual 

values fall outside of the prediction interval bounds, which also suggests that the model is not 

performing optimally. We’ve also determined the residuals of the prediction and constructed a Q-Q 

plot to compare the quantiles of the residuals to that of a normal distribution. These plots are 

illustrated in Figure 32. Similar plots can be found for the other models in the first three Figures in 

Appendix E. 
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Figure 31 GP-post out-of-bag predictions + intervals for the scenario with the reduced dataset and no events sorted from 
small to large. The gap illustrates the difference between normal working days and days when the GP is open 24 hours. 

 

 

Figure 32 Q-Q plot and residuals of out-of-bag predictions for the scenario with the reduced dataset and no events. 

We see that the points in the Q-Q plot in Figure 32 mostly follow the theoretical line. However, there 

are some deviations at the beginning and the end of the line. Note that this is a somewhat unfair 

comparison, as we compare the residuals of the predictions of the longer days with the shorter days. 

The deviation is less prominent when the residuals are split for the shorter days and longer days as 

shown in Figure 33. 
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Figure 33 Q-Q plots of residuals of out-of-bag predictions adjusted for values smaller than 80 and larger than 80 for the 
scenario with the reduced dataset and no events.  

Lastly, we also want to compare the results of the best models with the baseline results as proposed 

in section 5.3.3. The results of the baseline performances are displayed in Tables 28-29. 

Table 28 Baseline results for GP models with no events. 

Baseline Prediction MAE RMSE MAPE 

One day prior 44.03 67.03 62.91 

Average over 3 days prior 60.03 74.63 82.48 

One week prior 14.41 25.60 21.21 

Average over 3 weeks prior 12.85 21.83 19.20 
 
Table 29 Baseline results for GP models with events. 

Baseline Prediction MAE RMSE MAPE 

One day prior 43.24 66.17 61.48 

Average over 3 days prior 59.53 73.91 81.47 

One week prior 14.11 24.86 20.52 

Average over 3 weeks prior 12.27 20.90 18.55 

As expected the first two predictions perform very badly since the demand per day varies a lot for 

the GP. We see that the best baseline performances are obtained by taking the average value over 

the three days that are respectively 1, 2, and 3 weeks ago for both the models with events and 

without events. The performance is however significantly worse in comparison with the performance 

of the best random forest models. This shows that the model has an advantage over simple 

prediction methods. 

6.2 Results for the ED 
Similarly as for the GP-post, a total of four scenarios were tested for the ED and validated with the 

Boostrap and Cross-validation method. The models were respectively ranked by their out-of-bag 

score and the RMSE again. The best models that we found for these two validation methods are 

summarized (numbers rounded to two decimals) in Tables 30-31. Note that the running time is in 

seconds, the MAE and RMSE are expressed in patients and the MAPE is expressed in a percentage 

error. The top ten models for every scenario can be found in Appendix C.  
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Table 30 Best models found for the GP-post, validated with the Bootstrap method. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

Reduced (No Event) 1000 5 5 0.8 2.05 5.02 6.29 15.94 0.13 

Reduced (with Event) 1000 5 1 0.6 1.66 5.21 6.44 16.57 0.11 

Full (No Event) 1000 45 3 0.5 6.69 5.02 6.30 15.91 0.13 

Full (with Event) 1000 8 3 0.7 1.67 5.23 6.49 16.69 0.10 

Table 31 Best models found for the GP-post, validated with the Cross-validation method. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

Reduced (No Event) 1000 5 5 1.60 5.03 6.30 15.94 

Reduced (with Event) 1000 5 5 1.11 5.21 6.46 16.61 

Full (No Event) 1000 22 2 5.12 5.01 6.29 15.86 

Full (with Event) 1000 5 4 1.14 5.27 6.52 16.79 

Similarly, as for the GP-post, we find that the models with no Events perform slightly better than the 

models with Events. Additionally, the models created with the reduced dataset seem to outperform 

the models with the full dataset, except for the cross-validated models with no events. The 

differences are once again very minimal, similar to the previous section. We also determined the top 

10 most important features of the models again. However, this time we found that there was no 

clear winner for the most important feature. As most of the features seemed to be equally (low) 

important in value. Only in the models with the reduced dataset, validated by cross-validation and 

Bootstrapping method. We found that the daily visitors of the GP-post of the day before and the 

temperature of the day before scored an importance value of greater than 0.1. All other importances 

that were found were around the same value but in comparison to the GP-post models, mostly not 

time-related (weekend or day). Most of the important values are weather-related. the top 10 

important features for all of the best ED models can be found in Tables 32-33. 

Table 32 Top 10 features for ED models validated with the Bootstrap method. 

 Reduced (No Event) Reduced (with Event) Full (No Event) Full (with Event) 

Feature 1 Daily GP (0.11) SQ (0.08) Daily GP (0.05) SQ (0.04) 

Feature 2 TG (0.11) TG (0.08) DDVEC (0.04) Q (0.03) 

Feature 3 SQ (0.09) Daily GP (0.08) TX (0.04) Daily GP (0.03) 

Feature 4 FG (0.07) FG (0.07) Day_Monday (0.04) TX (0.03) 

Feature 5 UG (0.06) UG (0.07) Q (0.04) SP (0.03) 

Feature 6 Daily-ED-1 (0.06) Daily-ED-1 (0.07) TG (0.04) TG (0.03) 

Feature 7 Day_Monday (0.06) RH (0.05) Daily-ED-1 (0.03) UN (0.03) 

Feature 8 Poaceae (0.05) Visitors (0.05) UN (0.03) DDVEC (0.03) 

Feature 9 RH (0.04) DR (0.04) T10N (0.03) TN (0.03) 

Feature 10 DR (0.04) Poaceae (0.04) TN (0.03) T10N (0.03) 
 
Table 33 Top 10 features for ED models validated with the Cross-validation method. 

 Reduced (No Event) Reduced (with Event) Full (No Event) Full (with Event) 

Feature 1 Daily GP (0.11) SQ (0.09) Daily GP (0.05) SQ (0.04) 

Feature 2 TG (0.10) Daily GP (0.08) TX (0.04) Q (0.03) 

Feature 3 SQ (0.09) TG (0.08) DDVEC (0.04) Daily GP (0.03) 

Feature 4 FG (0.07) UG (0.07) Q (0.04) SP (0.03) 

Feature 5 UG (0.07) Daily-ED-1 (0.06) TG (0.03) TG (0.03) 

Feature 6 Daily-ED-1 (0.06) FG (0.06) Day_Monday (0.03) UN (0.03) 

Feature 7 Day_Monday (0.06) Poaceae (0.05) T10n (0.03) TX (0.03) 
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Feature 8 Poaceae (0.04) Visitors (0.05) TN (0.03) T10n (0.03) 

Feature 9 RH (0.04) RH (0.05) UN (0.03) EV24 (0.03) 

Feature 10 DR (0.04) DR (0.04) Daily-ED-1 (0.03) TN (0.03) 

 

 

Figure 34 ED out-of-bag predictions + intervals for the scenario with the reduced dataset and no events. 

We also made plots for the out-of-bag predictions obtained by the models that were validated by the 

bootstrap method. The model with the best performance is plotted in Figure 34. The others can be 

found in the last three Figures in Appendix D. Looking at the predictions and their interval it is very 

clear that this is not a good model. The interval is quite broad and many of the observations still fall 

outside of the region. This means that the actual values are not predicted within any of the trees in 

the 5th and 95th percentile. We’ve also created a plot of the residuals and Q-Q plot, illustrated in 

Figure 34. The quantiles of the residuals seem to fit the theoretical normal quantiles pretty well, with 

a few small deviations at the beginning and end of the line. Similar plots for the other models can be 

found in the last three Figures of Appendix E. 

 

Figure 35 Q-Q plot and residuals of out-of-bag predictions for the scenario with the reduced dataset and no events. 

Lastly, we also determined the baseline performances for the ED with and without events, presented 

in Tables 34-35. 
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Table 34 Baseline results for ED models with no events. 

Baseline Prediction MAE RMSE MAPE 

One day prior 7.36 9.22 23.1 

Average over 3 days prior 6.04 7.52 18.34 

One week prior 7.05 8.88 22.13 

Average over 3 weeks prior 5.82 7.37 17.70 
 
Table 35 Baseline results for ED models with events. 

Baseline Prediction MAE RMSE MAPE 

One day prior 7.30 9.18 23.05 

Average over 3 days prior 6.24 7.69 19.08 

One week prior 7.34 9.19 23.04 

Average over 3 weeks prior 5.95 7.53 18.08 

We see that the average over the days respectively 1, 2, and 3 weeks ago provide the best 

performance. In contrast to the baseline results of the GP models, we now find that these are similar 

to those of the random forest model. This suggests that the random forest model is only able to 

slightly perform better than simple prediction methods. 

6.3 Discussion of the Results 
In the previous two sections, we demonstrated the main findings of our experimental design. In this 

section, we will take a closer look at the results and compare them with other findings we discussed 

in our literature review. Besides we will also discuss what we could’ve done differently and how the 

models should improve before they can be useful. 

To our knowledge, this research was the first time in which a random forest regression model was 

used with GP-post/ED connected data, pollen data, event data, and holidays in The Netherland and 

Germany. Some literature addresses random forests as a means for predicting patients, whilst using 

weather and time-related variables. This research is therefore an extension of the available literature 

on random forest models for acute care prediction with external predictors. 

Starting with the results for the ED models we see that the performance is quite bad. The out-of-bag 

score is varying between (0.10 and 0.13). This suggests that the predictors do not work well for the 

predictions in the ED setting. We see this back in the performance on the MAE, RMSE, and MAPE. 

Looking at the RMSE, which is the metric we used to sort the models, we find values ranging from 

6.29 to 6.52. Although that does not look too high, we have to keep in mind that the ED in our 

research only sees 33 patients per day on average. We also found that the performance of the 

models was only slightly better than the simple baseline prediction results, which suggests that the 

complex model is not a great addition. The models for the GP-post are better and we find out-of-bag 

scores of 0.96 for all of the models. This indicates that the predictors do a better job in the GP-post 

setting in comparison with the ED. The RMSE for these models is still quite high, they range from 

11.44 to 11.83 but the GP-post in this research sees on average 82 visitors per day (48 on weekdays 

and 167 on weekends). These models did however show a great improvement in comparison with 

the baseline predictions, which suggests that a more complex model is better for prediction. 

Comparing our results with our findings in the literature research it seems strange that our 

performance seems to lack in comparison to the performance of the other two papers that applied 

RF models (Volmer, et al., 2020) (Nas & Koyuncu, 2019). It could be that the ED and GP-post 

considered in our setting was too small or the data (and utilization of the data) was not sufficient to 
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get an accurate model. The EDs in their settings had arrivals of 75, 106, and 208 patients per day. 

Which is significantly bigger than our ED. However, in comparison with a similar study for the same 

GP-post and ED, we find results that are somewhat equal in performance. A hybrid model of 

SARIMAX and Gradient Tree boosting found MAE, RMSE, and MAPE of 5.25, 6.56, and 16.5% for the 

ED and 9.09, 13.19, and 13.26% for the GP-post (Ibrahim, 2019). Our models were slightly better but 

the difference is neglectable. This suggests that the model might not be the problem, but that the 

available data is simply not able to perform better. 

Looking at the important features we do not match the findings of the expert opinions in the acute 

care domain. They’ve stated that schedules are adjusted for some known big events but we do not 

find any improvements in the models with events, on the contrary, they are even slightly worse. 

Although a comparison between the models is not completely fair as the period is not equal for these 

models. The decrease in model performance could be caused by the lower amount of data, or that 

these years were simply less predictable. Additionally, experts have also stated that on warm days 

they can see an increase in demand in the facilities. Although the average temperature does seem to 

be in the top 10 of some of the models, the contribution is rather small. Lastly, We also did not find 

any significant influence of the pollen data on the prediction models. While that was also suggested 

by experts as a potential predictor of crowding.  

We do find some similarities with predictors which we found in the literature. We mentioned 

temperature shortly above, but other weather-related variables have appeared mostly in the ED 

models. This suggests that they do explain some of the variability although it is very small. This is in 

agreement with some of the research that we have found (Tai, Lee, Shih, & Chen, 2007) (Calegari, et 

al., 2016). We also find that date-related variables such as holidays and weekdays play an important 

role in the models for the GP-post. This is in agreement with research done by others (Hofer & 

Saurenmann, 2017) (Calegari, et al., 2016) (Weiss, Rogers, Maas, Ernst, & Todd, 2014). Although the 

biggest contribution is easily explained by the fact that the GP-post is opened longer on weekends 

and holidays. It was therefore more or less expected that this would be the biggest predictor for 

these models. The daily visitors on the weekends are significantly higher than on weekdays. Lastly, 

the German holidays did not seem to play a significant role in any of the models. Although many 

Germans seem to visit the Netherlands on their holidays it does not seem to contribute to a 

significant effect on the acute care demand. 

We’ve focused on one-day-ahead daily visitor predictions. The idea behind this was that the planners 

could still adjust the rosters of personnel for the next day. Predicting for different times on the day, 

was not possible due to the available data. Predictions over a longer period, for example, one week 

could’ve been possible. However, one loses the ability to adapt daily schedules as we’d lose 

information about which day would be the busiest. The predictions are mostly based on data that 

occurred one day before the prediction. It may be that some of these predictors don’t show their full 

potential based on their 1-day effect only. For some variables such as weather-related, it would not 

make sense that they’ll affect the demand one week later. However, for some types of events, it 

could be that the demand for care arises a few days later. Unfortunately, we didn’t look into this 

aspect. 

The current prediction tool provides the GP-post and ED with predictions that are not good enough 

to base rosters for personnel on it. As we saw the prediction interval on the predictions for both 

models was quite large. Considering that our ED and GP-post only see 33 and 82 (48 on weekdays 

and 167 on weekends and holidays) patients on average per day, the intervals shouldn’t be too wide. 

When we provide the facilities with a prediction that has an interval of 10-15 patients, this would 

have no added value since that would be almost half the daily capacity for the ED. To have added 
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benefits the models would have to improve significantly. Since the daily visitors vary between the ED 

and GP, they would require different standards. It’s difficult to give a definitive number for how 

much the models should improve. It’s unknown how much personnel is currently used to deal with 

the patients. However, it is safe to say that the performance of the models should be such that it is 

clear for planners that extra personnel is required for a certain day, thus the models should be able 

to produce predictions with prediction intervals that correspond with -1 or +1 extra personnel. Any 

predictions that are more uncertain than that would not be able to function well as a basis for roster 

planning. 
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7 Conclusion and Recommendations 
In this chapter, we will give the conclusions that were acquired during this research. Additionally, we 

will provide the limitations of this research. Lastly, we will give useful recommendations for further 

research. 

7.1 Conclusion of the research 
In chapter 1 we introduced the main research question and the corresponding sub-questions of this 

research. In this section, we will present the main findings of our research and answer the research 

question. The research question that we formulated in chapter 1 was the following: 

What machine learning model can be used as an adequate early warning system for 

overcrowding and what is its performance in the acute care domain in the region of Oost-

Achterhoek? 

We were able to build several random forest regression models that predict the daily number of 

visitors for the GP-post and the ED in the region of Oost-Achterhoek. These models were built using 

daily visitor data from the acute care domain, date-related data, data related to german and dutch 

holidays, pollen data, events data, and weather-related data. These models were validated with two 

techniques; the bootstrap method and cross-validation. With both these validations techniques, a 

total of four models were created for the ED and GP-post. The best model found for the GP-post and 

the ED are summarized in Tables 36-37 for both of the validation methods.  

Table 36 Best Models out of all scenarios found by the Bootstrap method. The first entry is the best GP-post model and the 
second is the best ED model. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time (s) 

MAE RMSE MAPE OOB 
Score 

GP Reduced 
(No Event) 

1000 20 3 0.9 4.69 8.32 11.44 12.49 0.96 

ED Reduced 
(No Event) 1000 5 5 0.8 2.05 5.02 6.29 15.94 0.13 

 

Table 37 Best models out of all scenarios found by the cross-validation method. The first entry is the best GP-post model and 
the second is the best ED model. 

Dataset Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time (s) 

MAE RMSE MAPE 

GP Reduced (No Event) 1000 29 5 4.12 8.39 11.51 12.57 

ED Full (No Event) 1000 22 2 5.12 5.01 6.29 15.86 

 

The models for the GP-post were mostly explained by the time-related features. With one in 

particular which is whether the day is on the weekend or not. Then of less importance are features 

such as the current day, whether it is a holiday or not, the number of GP-post visitors of yesterday, 

and some weather-related features. The models for the ED were mostly explained by the weather-

related-features, albeit not so much, as the OOB score indicates. 

In its current state, the one-day-ahead forecasts produced by the best models that we found will not 

be an adequate early warning system for overcrowding, since the degree of uncertainty is too large. 

The range of the predictions still varies too much to be used for employee schedules. The models for 

the GP-post were able to outperform baseline predictions quite significantly, however, this was not 

the case for the ED models. Further research and improvements, as well as newer data, are required 
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to improve the performance of the models and decrease the prediction uncertainty before it can be 

used for personnel planning. 

7.2 Limitations of the research 
- The data that we used during this research was limited, which resulted in the fact that we 

had different datasets each spanning a different period. We were also not able to obtain any 

new data from the GP-post or ED. The data from the GP-post was recorded over 2013-2017, 

whilst the data from the ED was recorded over 2012-2018. Since we used each other as 

predictors for the models this meant that we lost the years 2012 and 2018 from the ED 

dataset. Unfortunately, the Events data was also only available over 2016-2019, which meant 

that we could only use the data from 2016-2017. 

 

- The pollen data were collected in the Elkerliek hospital in Helmond. This means that they 

may not be representable for the same amount of pollen in the air in the region of 

Winterswijk. 

 

- The Acute care domain in this research was first introduced as the ED, GP-post, and 

emergency services of Winterswijk. Unfortunately, the last one was not looked further into 

for the models as no data was obtainable due to the Covid-19 pandemic. Some potential 

valuable information may be lost by this. 

 

- There are also limitations to the method that was used to create the model. A predefined 

algorithm in Python was used, which meant that some utilities were used as they were 

programmed by default. For example, a random forest model usually does not require data 

transformation for categorical variables, however, the algorithm that was used did require 

numerical values.  

7.3 Recommendations for further research 
- The ED and GP-post should try to increase the amount of data they collect. Currently, most 

of the measures for crowding in literature could not be calculated for them. Registering for 

example the available number of beds or number of present employees allows the 

calculation of occupancy rate, which is commonly used as a metric for crowding. Additionally, 

the registration of scores like the NEDOCS, ICMED, or EDWIN might provide more 

information about their overall daily crowding.  

 

- In this research, we forecasted the daily volume of visitors to the ED and GP-post for the next 

day. Doing this we mainly used predictors of the day prior, which may not be a good 

representation of what will happen the next day. This could be extended by also including 

certain measures from 2,3, et cetera days ago for some of the variables. In addition to the 

above, it may also be interesting to log certain measures more frequently throughout the 

day, such that models could be created that try to identify the crowding on the same day. 

 

- Further improvements may be obtained by including extra data to the model. In this 

research, we also looked at the flu season as a predictor and the volume of cars on the roads. 

However, we were not able to obtain relevant data on these matters, due to monetary 

reasons and lack of available data. Perhaps that further cooperation with Nivel or 

Rijkswaterstaat could help in sharing data or start collecting new data.  
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- The plan was to also include ambulance data from the start, but due to reasons mentioned 

before this was no longer an option. We found that the daily visitors of the day before to the 

GP was a predictor in both the GP and ED models. A similar relation might be possible for 

ambulance data, which could be beneficial for the models. The inclusion of ambulance data 

would also mean that models could be made for them. For that reason, the second 

recommendation does count for them as well, it might be beneficial to log certain measures 

throughout the day to try and capture crowding differences within a day. 

 

- In this research, we chose to predict the crowding with random forest regression. One of the 

reasons was that the model is easy to understand for people unfamiliar with the subject, it 

has no ‘black-box’ mechanic. Perhaps that some other methods like neural networks or 

support vectors regression which are somewhat less understandable can provide an 

additional gain in performance while losing some of the information about which variables 

are important. However, it is suggested to do this in combination with the recommendations 

above. It would not be advised to do additional research with the current datasets, as two 

studies have been conducted with this data and the performance seems to be similar and not 

sufficient. 
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A Methods to measure crowding in ED 
NEDOCS 

The NEDCOS is based on five variables and two known parameters of the ED. The formula used to 

determine the score is presented below (5) and the different outcomes are presented in Table 38. 

 

𝑁𝐸𝐷𝑂𝐶𝑆 = 85.8 ∗ (
𝐶

𝐴
) + 600 ∗ (

𝐹

𝐵
) + 13.4 ∗ 𝐷 + 0.93 ∗ 𝐸 + 5.64 ∗ 𝐺 − 20   (5) 

A = Number of ED beds 

B = Number of inpatient beds 

C = Number of ED patients 

D = Number of critical care patients (in ED) 

E = Longest ED admit (in hours) 

F = Number of ED admits 

G = Last door-to-bed time (in hours) 

 
Table 38 Different levels of NEDOCS. 

NEDOCS score 0-20 21-60 61-100 101-140 141-180 181> 

ED situation Not busy Busy Extremely busy Overcrowded Severely 
overcrowded 

Dangerously 
overcrowded 

 

EDWIN 

The EDWIN score is evaluated based on five variables. The formula used to determine the score is 

presented below (6) and the different outcomes are presented in Table 39. 

 

𝐸𝐷𝑊𝐼𝑁 = ∑
𝑛𝑖𝑡𝑖

𝑁𝑎(𝐵𝑡−𝐵𝑎)
          (6) 

ni = number of patients present in ED triaged with urgency i 

ti = the triage category ordinal scale 1-5 (ESI reversed so 1 least acute and 5 severe) 

Na = number of attending physicians at a given time 

Bt = total number of beds in ED 

Ba = number of admitted patients (holds in ED) 

 
Table 39 Different levels of EDWIN. 

EDWIN score Score < 1.5 1.5 < Score < 2 Score > 2 

ED situation Active but manageable Busy ED Crowded ED 

 

ICMED 

The ICMED is based on the violation of eight rules, where more violations are linked to more 

crowding. The eight rules are listed below: 

- The ability of ambulances to offload patients (90th centile > 15 min waiting) 

- Patients who leave with being seen (>=5%) 

- Time until triage (>5 min after arrival) 

- ED occupancy rate (>100%) 

- The patient total length of stay (90th centile > 4 hours) 

- Time until physician first sees patient (>30 min) 

- ED boarding time (if less than 90% left the ED 2 hours after admission decision) 

- Number of patients boarding in the ED (occupancy is >10% by boarders) 
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B Strength of correlation coefficients. 
In this research, we use the guideline presented in Table 40 on the strength of the linear relationship 

corresponding to the correlation coefficient value. (Chan, 2003) 

Table 40 Strength of linear relationship. 

Correlation coefficient Strength of linear relationship 

+ 1 -  1 Perfect 

+ 0.9 -  0.9 Very Strong 

+ 0.8 -  0.8 Very Strong 

+ 0.7 -  0.7 Moderate 

+ 0.6 -  0.6 Moderate 

+ 0.5 -  0.5 Fair 

+ 0.4 -  0.4 Fair 

+ 0.3 -  0.3 Fair 

+ 0.2 -  0.2 Poor 

+ 0.1 -  0.1 Poor 

0 0 None 
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C Settings for models found by optimization 
Results GP-post: reduced dataset no events 
A total of 1260 models were created using the bootstrap validation method and a total of 210 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 41 and 42. 

Table 41 Top 10 models based on bootstrap validation (reduced dataset no events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 20 3 0.9 4.69 8.32 11.44 12.49 0.96 

1000 23 4 0.7 4.14 8.31 11.44 12.46 0.96 

1000 25 5 0.8 4.47 8.31 11.44 12.44 0.96 

1000 19 3 0.8 4.20 8.32 11.44 12.50 0.96 

1000 25 2 0.7 5.20 8.33 11.44 12.49 0.96 

1000 20 3 0.8 4.41 8.33 11.44 12.51 0.96 

1000 27 4 0.7 4.42 8.32 11.44 12.45 0.96 

1000 25 5 0.9 4.67 8.33 11.45 12.49 0.96 

1000 34 5 0.7 5.05 8.33 11.45 12.44 0.96 

1000 24 3 0.5 3.84 8.31 11.45 12.43 0.96 

 

Table 42 Top 10 models based on 5-fold cross-validation (reduced dataset no events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 29 5 4.12 8.39 11.51 12.57 

1000 27 5 3.90 8.38 11.51 12.58 

1000 25 4 3.95 8.38 11.51 12.58 

1000 22 5 3.46 8.38 11.51 12.57 

1000 23 4 3.66 8.37 11.51 12.56 

1000 20 4 3.37 8.38 11.51 12.59 

1000 22 4 3.67 8.38 11.51 12.57 

1000 26 4 4.87 8.38 11.52 12.57 

1000 18 3 3.37 8.39 11.52 12.60 

1000 27 4 4.14 8.39 11.52 12.58 

 

Results GP-post: reduced dataset including events 
A total of 1410 models were created using the bootstrap validation method and a total of 235 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 43 and 44. 

Table 43 Top 10 models based on bootstrap validation (reduced dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 35 3 1.0 3.11 8.45 11.72 12.48 0.96 

1000 38 3 1.0 3.25 8.47 11.72 12.51 0.96 

1000 36 3 1.0 3.13 8.47 11.73 12.50 0.96 
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1000 37 3 1.0 3.17 8.45 11.73 12.48 0.96 

1000 39 3 1.0 3.27 8.45 11.73 12.45 0.96 

1000 34 1 0.7 3.28 8.47 11.73 12.49 0.96 

1000 32 3 1.0 2.95 8.46 11.73 12.49 0.96 

1000 40 3 1.0 3.36 8.45 11.74 12.44 0.96 

1000 39 2 1.0 3.63 8.47 11.74 12.51 0.96 

1000 42 3 1.0 3.48 8.48 11.74 12.49 0.96 

 

Table 44 Top 10 models based on 5-fold cross-validation (reduced dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 36 2 2.64 8.48 11.67 12.53 

1000 30 2 2.41 8.48 11.68 12.52 

1000 38 2 2.73 8.48 11.68 12.52 

1000 42 2 2.92 8.49 11.69 12.52 

1000 41 2 2.89 8.49 11.69 12.52 

1000 42 3 2.62 8.46 11.69 12.46 

1000 41 3 2.81 8.47 11.69 12.48 

1000 37 2 2.75 8.49 11.69 12.53 

1000 38 3 2.49 8.46 11.69 12.46 

1000 32 2 2.48 8.49 11.70 12.53 

 

Results GP-post: full dataset no events 
A total of 3000 models were created using the bootstrap validation method and a total of 500 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 45 and 46. 

Table 45 Top 10 models based on bootstrap validation (full dataset no events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 71 3 0.9 14.47 8.31 11.47 12.35 0.96 

1000 50 2 0.9 12.00 8.33 11.49 12.40 0.96 

1000 47 1 1.0 14.44 8.32 11.49 12.39 0.96 

1000 55 3 0.8 10.83 8.32 11.49 12.37 0.96 

1000 66 2 0.8 14.06 8.33 11.49 12.37 0.96 

1000 43 2 0.9 10.66 8.31 11.49 12.40 0.96 

1000 62 2 0.8 13.31 8.33 11.49 12.39 0.96 

1000 63 1 0.9 17.03 8.32 11.49 12.38 0.96 

1000 72 5 0.7 10.86 8.30 11.49 12.32 0.96 

1000 86 2 0.9 19.02 8.32 11.49 12.34 0.96 

 

Table 46 Top 10 models based on 5-fold cross-validation (full dataset no events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 65 5 9.73 8.35 11.55 12.41 
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1000 61 5 9.24 8.36 11.56 12.42 

1000 73 5 10.68 8.35 11.56 12.40 

1000 63 5 9.53 8.35 11.56 12.41 

1000 70 5 10.28 8.36 11.56 12.41 

1000 71 5 10.81 8.35 11.56 12.40 

1000 68 5 10.35 8.36 11.56 12.40 

1000 67 5 9.88 8.35 11.57 12.40 

1000 62 4 9.83 8.36 11.57 12.41 

1000 72 5 10.59 8.37 11.57 12.41 

 

Results GP-post: full dataset including events 
A total of 3150 models were created using the bootstrap validation method and a total of 525 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 47 and 48. 

Table 47 Top 10 models based on bootstrap validation (full dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 72 3 1.0 5.86 8.57 11.83 12.62 0.96 

1000 71 3 1.0 5.86 8.56 11.83 12.59 0.96 

1000 81 3 1.0 6.47 8.56 11.84 12.62 0.96 

1000 91 3 1.0 7.06 8.60 11.84 12.65 0.96 

1000 74 3 1.0 6.06 8.54 11.84 12.59 0.96 

1000 84 3 1.0 6.58 8.60 11.84 12.64 0.96 

1000 74 2 1.0 6.97 8.58 11.84 12.61 0.96 

1000 63 2 1.0 5.91 8.58 11.85 12.60 0.96 

1000 78 3 1.0 6.28 8.57 11.85 12.60 0.96 

1000 94 3 1.0 7.20 8.62 11.85 12.66 0.96 

 

Table 48 Top 10 models based on 5-fold cross-validation (full dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 79 3 4.82 8.58 11.76 12.67 

1000 81 3 4.91 8.59 11.76 12.67 

1000 76 3 4.73 8.59 11.76 12.68 

1000 89 3 5.24 8.58 11.76 12.65 

1000 84 2 5.58 8.60 11.76 12.70 

1000 82 2 5.54 8.59 11.77 12.70 

1000 67 2 4.74 8.59 11.77 12.70 

1000 94 3 5.51 8.61 11.77 12.69 

1000 78 3 4.82 8.60 11.77 12.68 

1000 65 2 4.67 8.60 11.77 12.69 
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Results ED: reduced dataset no events 
A total of 1260 models were created using the bootstrap validation method and a total of 210 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 49 and 50. 

Table 49 Top 10 models based on bootstrap validation (reduced dataset no events). 

 Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 5 5 0.8 2.05 5.02 6.29 15.94 0.13 

1000 5 3 0.7 2.03 5.02 6.29 15.93 0.13 

1000 4 4 0.7 1.80 5.03 6.29 15.95 0.13 

1000 4 3 0.8 1.95 5.02 6.30 15.93 0.13 

1000 5 4 0.6 1.84 5.03 6.30 15.94 0.13 

1000 4 4 0.6 1.73 5.03 6.30 15.96 0.13 

1000 4 5 1.0 1.98 5.03 6.30 15.95 0.13 

1000 3 3 0.7 1.94 5.03 6.30 15.96 0.13 

1000 3 2 0.6 1.94 5.03 6.30 15.96 0.13 

1000 5 4 0.8 2.09 5.03 6.30 15.94 0.13 

 

Table 50 Top 10 models based on 5-fold cross-validation (reduced dataset no events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 5 5 1.60 5.03 6.30 15.94 

1000 5 4 1.59 5.03 6.30 15.93 

1000 7 4 1.87 5.03 6.30 15.93 

1000 6 4 1.74 5.03 6.30 15.94 

1000 5 3 1.68 5.03 6.30 15.93 

1000 8 5 1.91 5.03 6.30 15.93 

1000 8 4 1.98 5.03 6.30 15.93 

1000 9 4 2.13 5.03 6.30 15.93 

1000 4 5 1.43 5.03 6.30 15.97 

1000 7 5 1.85 5.03 6.30 15.94 

 

Results ED: reduced dataset including events 
A total of 1410 models were created using the bootstrap validation method and a total of 235 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 51 and 52. 

Table 51 Top 10 models based on bootstrap validation (reduced dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 5 1 0.6 1.66 5.21 6.44 16.57 0.11 

1000 5 2 1.0 1.72 5.20 6.44 16.57 0.11 

1000 6 5 0.5 1.38 5.18 6.44 16.52 0.11 

1000 3 2 1.0 1.42 5.20 6.44 16.58 0.11 

1000 5 3 0.5 1.41 5.19 6.44 16.55 0.11 
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1000 2 3 1.0 1.27 5.20 6.44 16.58 0.11 

1000 8 2 0.7 1.67 5.20 6.44 16.55 0.11 

1000 7 1 0.5 1.73 5.20 6.44 16.57 0.11 

1000 5 5 0.5 1.33 5.18 6.44 16.53 0.11 

1000 3 1 0.5 1.53 5.21 6.44 16.58 0.11 

 

Table 52 Top 10 models based on 5-fold cross-validation (reduced dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 5 5 1.11 5.21 6.46 16.61 

1000 3 4 1.00 5.21 6.46 16.61 

1000 4 5 1.03 5.21 6.46 16.62 

1000 3 5 1.02 5.22 6.47 16.63 

1000 2 3 1.02 5.22 6.47 16.65 

1000 4 3 1.08 5.22 6.47 16.63 

1000 4 4 1.08 5.22 6.47 16.64 

1000 7 5 1.19 5.22 6.47 16.62 

1000 6 5 1.16 5.22 6.47 16.62 

1000 5 4 1.13 5.22 6.47 16.63 

 

Results ED: full dataset no events 
A total of 3000 models were created using the bootstrap validation method and a total of 500 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 53 and 54. 

Table 53 Top 10 models based on bootstrap validation (full dataset no events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 45 3 0.5 6.69 5.02 6.30 15.91 0.13 

1000 31 1 0.5 6.59 5.02 6.30 15.94 0.13 

1000 31 3 0.9 7.41 5.02 6.30 15.90 0.13 

1000 27 1 0.6 6.84 5.02 6.30 15.92 0.13 

1000 19 2 0.5 4.14 5.03 6.31 15.94 0.13 

1000 23 2 0.8 6.38 5.02 6.31 15.92 0.13 

1000 18 2 0.6 4.45 5.03 6.31 15.94 0.13 

1000 17 2 0.6 4.39 5.03 6.31 15.95 0.13 

1000 22 2 0.5 4.63 5.02 6.31 15.93 0.13 

1000 22 2 0.6 5.13 5.03 6.31 15.94 0.13 

 

Table 54 Top 10 models based on 5-fold cross-validation (full dataset no events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 22 2 5.12 5.01 6.29 15.86 

1000 33 2 7.14 5.01 6.29 15.87 

1000 27 2 5.93 5.01 6.29 15.87 
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1000 41 2 8.45 5.01 6.29 15.87 

1000 18 2 4.43 5.01 6.29 15.87 

1000 29 2 6.29 5.01 6.29 15.87 

1000 31 2 6.65 5.01 6.29 15.86 

1000 32 1 8.15 5.01 6.29 15.88 

1000 19 3 4.06 5.01 6.29 15.88 

1000 28 2 6.08 5.01 6.29 15.87 

 

Results ED: full dataset including events 
A total of 3150 models were created using the bootstrap validation method and a total of 525 

models were created using the cross-validation method (with 5-fold). The top 10 models based on 

the out-of-bag score (RMSE for cross-validation) of these models are presented in Tables 55 and 56. 

Table 55 Top 10 models based on bootstrap validation (full dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Sample 
Size 

Run 
Time 

MAE RMSE MAPE OOB 
Score 

1000 8 3 0.7 1.67 5.23 6.49 16.69 0.10 

1000 17 1 0.5 2.28 5.24 6.49 16.68 0.09 

1000 9 1 0.7 2.19 5.25 6.49 16.71 0.09 

1000 9 1 0.6 2.08 5.24 6.50 16.70 0.09 

1000 11 4 0.7 1.81 5.23 6.50 16.65 0.09 

1000 16 1 0.7 2.56 5.25 6.50 16.71 0.09 

1000 11 3 1.0 2.09 5.24 6.50 16.68 0.09 

1000 16 3 0.6 1.98 5.25 6.50 16.70 0.09 

1000 14 1 0.5 2.22 5.23 6.50 16.68 0.09 

1000 8 2 0.6 1.70 5.24 6.50 16.69 0.09 
 
Table 56 Top 10 models based on 5-fold cross-validation (full dataset including events). 

Num of 
Trees 

Max 
Features 

Min 
Samples 

Run 
Time 

MAE RMSE MAPE 

1000 5 4 1.14 5.27 6.52 16.79 

1000 4 2 1.27 5.28 6.52 16.83 

1000 7 1 1.72 5.29 6.53 16.83 

1000 2 1 1.26 5.28 6.53 16.84 

1000 4 1 1.48 5.28 6.53 16.82 

1000 3 1 1.41 5.29 6.53 16.85 

1000 8 4 1.31 5.27 6.53 16.79 

1000 5 2 1.33 5.28 6.53 16.81 

1000 5 3 1.18 5.27 6.53 16.82 

1000 8 3 1.41 5.28 6.53 16.79 
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D Out-of-bag predictions versus actual values 
For the models that were validated by the bootstrap method, we were able to generate out-of-bag 

predictions on the dataset. In addition to these predictions, we’ve also added prediction intervals 

based on the 5th and 95th percentile of predictions over all trees in the forest. The actual values are 

also plotted in the Figures. Figures 36-38 contain the predictions for the GP-post and Figures 39-41 

for the ED. 

 

 

Figure 36 GP-post Out-of-bag predictions + intervals for the scenario with the reduced dataset and Events. 

  

Figure 37 GP-post Out-of-bag predictions + intervals for the scenario with the full dataset and no Events. 
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Figure 38 GP-post Out-of-bag predictions + intervals for the scenario with the full dataset and Events. 

 

 

Figure 39 ED Out-of-bag predictions + intervals for the scenario with the reduced dataset and Events. 
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Figure 40 ED Out-of-bag predictions + intervals for the scenario with the full dataset and no Events. 

 

Figure 41 ED Out-of-bag predictions + intervals for the scenario with the full dataset and Events. 
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E Residual analysis plots of predictions 
For the models that were validated with the bootstrap method, we’ve also created plots of the 

residuals and the q-q plots of these residuals testing against a normal distribution. The plots for the 

GP models are shown in Figures 42-44 and the plots for the ED are shown in Figures 45-47. 

 

Figure 42 Q-Q plot and residuals of out-of-bag predictions for the scenario with the reduced dataset and events for the GP. 

 

Figure 43 Q-Q plot and residuals of out-of-bag predictions for the scenario with the full dataset and no events for the GP. 

 

Figure 44 Q-Q plot and residuals of out-of-bag predictions for the scenario with the full dataset and events for the GP. 
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Figure 45 Q-Q plot and residuals of out-of-bag predictions for the scenario with the reduced dataset and no events for the 
ED. 

 

Figure 46 Q-Q plot and residuals of out-of-bag predictions for the scenario with the full dataset and no events for the ED. 

 

Figure 47 Q-Q plot and residuals of out-of-bag predictions for the scenario with the full dataset and events for the ED. 


