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1 Abstract
Municipal solid waste is ubiquitous: every city, municipality, and country has to deal with
waste generated by its inhabitants. A common collection method is to let citizens deposit
their waste in large (5m3) waste containers close to the home from which it is then col-
lected. This thesis researches the unplanned (e.g. corrective) maintenance needs of such
large underground waste containers and attempts to forecast those maintenance needs. Lit-
erature on the subjects of maintenance forecasting and municipal solid waste generation is
studied to identify possible predictors. The identified predictors are validated using a linear
regression model in a case-study of the municipality of Amsterdam. The case-study shows
that asset age, specific asset types, and the number of assets are meaningful indicators of
upcoming maintenance. The final predictive model has an expected error of 32% of the
target variable. While the prediction error is too high for practical use, this thesis breaks
ground on prediction on these specific types of assets and thoroughly documents the subject
and open work for use in future work.
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2 Introduction
For municipalities, it is important that municipal solid waste (MSW) is collected in a quick
and efficient manner. Two common examples of MSW collection approaches are curbside
collection, where the waste is collected directly from the curb near a residency, and making
use of collection points, where garbage is deposited into centralized collection points by the
citizens, and collected from these points by the municipality. Such centralized collection
points can be implemented in the form of large waste containers near residencies. In the
Netherlands, aside from curbside collection, it is common for municipalities to place 5m3

containers within walking distance (200m) of homes.
Just like most assets, these containers need to be maintained: they require preventive

maintenance to ensure smooth functioning, require inspections to ensure they satisfy (legal)
requirements, and require corrective maintenance when they unexpectedly break down.
Assets that feature lots of moving parts may be monitored through sensors to preemptively
predict exactly when a specific asset is at risk of failing, a common example of this is
the analysis of vibrations in bearings [18]. However, garbage containers generally have
few moving parts that can be actively monitored. Furthermore, placing sensors is not
cost effective or overly complex due to a combination of factors such as rough handling
conditions, being subjected to weather, and not consistently having access to a power
supply. As such, real-time predictive maintenance on underground waste containers is not
feasible. Instead of predictive maintenance, this study will attempt to forecast the yearly
need for unplanned maintenance. Based on such a forecast, indicators can be identified and
possible addressed.

In literature, forecasting maintenance is known as Prognostic Health Management
(PHM). Generally, a Remaining Useful Life (RUL) of an asset is calculated/estimated,
based on which estimates can be made on the required maintenance in the near future.
Common methods of determining a RUL are real-time models using sensory input, e.g.
[17], referred to as Predictive Maintenance (PdM), or statistical models, e.g. [14]. However,
these methods either require sensor data or an extensive life-time history of (comparable)
assets to build statistical models on. This study will add to literature by predicting the total
required unplanned maintenance for a given timespan on a population underground waste
containers based on recent maintenance history, asset properties, and external factors, such
that sensor input or extensive life-cycle data is not required. The Dutch municipality of
Amsterdam is used as a case study of the proposed methods.

The municipality of Amsterdam has been deploying underground waste containers since
2012, and has consolidated maintenance efforts and coordination of these containers since
2017. At the end of 2019 Amsterdam has 862 965 inhabitants [4] and roughly 13 000 un-
derground waste containers, covering the majority of neighbourhoods. The distribution of
inhabitants and containers over the city is discussed in Section 4 and Section 5 respectively.
On these 13 000 containers, approximately 51 000 planned and 12 000 unplanned mainte-
nance actions were scheduled in 2019. Assets and maintenance are administrated through
the asset management application Grybb, created and maintained by the Dutch company
Curious Inc. The situation in the municipality of Amsterdam is discussed in more detail
in Section 4.

The municipality of Amsterdam has set the strategic goal of lowering the number of
maintenance actions on the waste processing infrastructure. Since the planned issues con-
sist mainly of (legally) required maintenance, and are thus hard to reduce, this reduction
should be sought in unplanned maintenance. Curious Inc. wishes to extend their appli-
cations functionality with actionable (unplanned) maintenance forecasts. This research
serves both goals in the following ways. First, by identifying meaningful factors to un-
planned maintenance, the feasibility of lowering maintenance can be determined and im-
plementation steps may be found. Secondly, the resulting predictive model can be used for
maintenance forecasts in Grybb.
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2.1 Problem statement
The field of PHM knows plenty of examples where maintenance on assets can be predicted on
short term based on sensor input, or long term based on statistical models. These methods
require sensor input or extensive history of the assets life-cycle to apply. Predictions on
assets that are not equipped with sensors or do not yet have an extensive history to base
statistical models on are not covered by existing literature. This thesis will attempt to fill
this gap, specifically on the prediction of maintenance on underground waste containers.
This prediction must be explainable to domain experts, such that the causes of maintenance
may be addressed if possible. To guide the thesis, the following research questions are
formulated.

Research question: How can unplanned maintenance on underground waste
containers be estimated?

To create a predictive model, two elements are of importance: what variables to consider
and what type of model to use. As such, the following sub questions are posed.

Sub question 1: What factors can be relevant in predicting required maintenance
on underground waste containers?

Relevant factors must be clearly identified and it should be possible to explain such
factors to domain experts, such that causality can be determined and optionally the causes
addressed.

Sub question 2: What types of models are appropriate to model the required
maintenance in such a way that relevant factors can be identified and explained
to domain experts?

To validate the identified variables and models, they will be used for a predictive model
for unplanned maintenance on underground containers in the municipality of Amsterdam.

Sub question 3: To what extent can the chosen model predict the required un-
planned maintenance for the municipality of Amsterdam?

Having answered these questions, it should be clear if, given the imposed restrictions,
prediction of maintenance on underground waste containers is feasible.

2.2 Methodology
To answer the formulated research questions, the design science research process (DSRP)
model as discussed in [20] is used. It distinguishes six steps to designing a solution within
information systems research: problem identification and motivation, solution objectives,
design development, demonstration, evaluation, and communication. Problem identifica-
tion, motivation, and solution objectives have been provided as part of this chapter.

Design and development will consist of two stages: a review of the state of the art
in prediction of maintenance and MSW generation, and the design of a predictive model.
A review of the state of the art should suggest what models commonly show success in
related studies, and what input variables matter to maintenance and the domain of waste.
A demonstration will then be implemented in the form of a case study in which the yearly
unplanned maintenance for the municipality of Amsterdam is predicted. The application
of the model in the context of the municipality of Amsterdam is further guided by the
Knowledge Discovery in Databases (KDD) framework, which details the general process
of distilling knowledge from raw data. Finally, the model is evaluated. This document
constitutes the final step of the DSRP, in which the process, artifacts, and results are
communicated.
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The structure of this thesis is as follows: Section 3 discusses the state of the art of main-
tenance and MSW prediction and provides answers to sub questions 1 and 2 with regard
to model and input variable selection. Section 4 details the current state of underground
containers and related maintenance in the municipality of Amsterdam and Section 5 dis-
cusses the data that is available in the case study in detail. Section 6 then explains how
the suggested model and variables are applied to the case study and Section 7 details the
results of the case study implementation. Finally, all findings are discussed and concluded
in Sections 8 and 9 respectively.
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3 Literature review
To explore the state of the art related to maintenance on underground containers, literature
in three areas is reviewed. Once done, this review should provide answers to sub questions 1
and 2, and the useful model(s) and input variable(s) should be clear. The following subjects
are reviewed in the following subsections:

• Maintenance prediction in public infrastructure. Maintenance in the specific
area of (underground) waste containers is, to the best of the authors knowledge, non-
existent. However, the most relevant property of underground waste containers seems
to be that they exist in the public domain and are actively used by citizens. These
traits are common to public infrastructure, and related literature can therefor help
place this research in context.

• Municipal solid waste generation. While not directly related to maintenance,
much research has been performed on the generation of municipal solid waste by citi-
zens. Patterns visible in the generation of waste may be transferable to maintenance
on waste-processing assets.

• Maintenance cost estimation. The estimation of the total cost of maintenance
is a subject that is also well-covered by existing literature. This literature gives a
more complete overview of predicting maintenance without being bound to a specific
domain.

Each section is concluded with the key points identified in literature for the current
research.

3.1 Predicting maintenance in public infrastructure
?? Various works cover prediction of various maintenance needs in public infrastructure.
While power networks, water mains, and roads are sufficiently covered in existing literature,
smaller infrastructure such as garbage processing infrastructure seems to be an untouched
topic. Some existing work on infrastructure will be discussed in an effort to identify common
factors which may prove useful in maintenance prediction for garbage related infrastructure.

In [3] by Bessani et al., a statistical analysis is made in an effort to predict maintenance
requirements on power substations in Brazil. Five categories of causes are identified: atmo-
spheric, environmental, urban, operational needs, and equipment failure. For each category,
the Kaplan-Meier estimator is used to estimate the repair times. It is concluded that at-
mospheric and environmental influences cause the most downtime. The authors state that
the planning of maintenance capacity can be optimized by using atmospheric forecasts and
maintenance can be prevented by keeping local vegetation pruned.

In [10] and [24], maintenance needs for the New York City power grid are studied. Gross
et al. rank electrical feeders based on their susceptibility to failure in [10]. Rudin et al.
expand on this by also ranking other components and manhole events, and estimating the
mean time between failure of feeders in [24].

Gross et al. describe three types of attributes to be used for the proposed ranking:
physical, electrical, and derived. Physical features are described by the components used,
electrical are described by simulated and measured system load, while derived attributes
are computed from formulas developed by domain experts. They compare three ranking
algorithms: pairwise ranking algorithm RankBoost, a classification score based ranker using
SVM, and Martingale Boosting. They show the SVM performs best while noting that in
previous works it did not, showing that algorithm performance may vary within a single
domain. Weather is found to cause concept drift: changing the distribution of failures during
the monitoring period. This concept drift is compensated for using adaptive windowing
techniques as opposed to static windowing.
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Rudin et al. expand on feeder failure ranking by ranking other failing parts as well as
including an absolute measure describing the probability of a feeder failure. Similar to the
work of Gross et al., the authors use physical characteristics (i.e. parts used), date put
into service, previous issues, previous power quality events, electrical characteristics, and
real time electricity data to perform the ranking. As an absolute measure of risk, the mean
time before failure is introduced. This measure is then used to estimate yearly unexpected
outages. Success in predicting this value is shown using an SVM.

In [22], maintenance on a nuclear power plant is studied. It is shown that part failure
can be modeled by a Weibull distribution. Subsequently, a Crow-AMSAA model is fit to the
data, estimating the number of events in a given timespan. Then, a model is constructed to
estimate the maintenance costs for specific parts. The model shows the following variables
are of importance for work order cost: number of repairs, equipment level of risk to loss
of power generation upon failure, equipment level of risk to damage frequency, parts being
subject to additional quality control.

Apart from power grids, water distribution nets are subject of study. In [14], water
pipe failures are predicted. Various types of pipes are examined, varying in material (steel,
PVC) and thickness. Three statistical methods are compared: Cox-PHM, Weibull PHM,
and Poisson method. Two meaningful factors are discussed that cause maintenance: (1)
previous maintenance within 10 meters that has disturbed the soil and therefore caused
a new failure, and (2) low number of users of specific parts of the system causing high
fluctuation in pressure. Pipe length is identified as having marginal influence in probability
of failure. The authors conclude that model performance varies between types of pipes,
suggesting that different types of pipes exhibit different statistical properties.

Finally, road infrastructure is subject to forecasts of required maintenance. In [12],
Karballaeezadeh et al. study a section of road in Iran in an attempt to predict the remaining
service life of road sections. They employ SVM models with particle filtering to estimate
the remaining service years of a road. It is concluded that major factors in an accurate
estimation is the temperature and thickness of the road measured at set time intervals.

Conclusion

Various methods are identified in existing literature that seem suitable to the prediction
maintenance for underground waste containers. Most notable are the statistical models such
as the Weibull distribution and the related Crow-AMSAA model. The existing literature
furthermore suggests that every part may exhibit it’s own statistical properties, and that a
prediction can benefit from modelling each part individually, instead of fitting a model to
a generalized failure of the entire container.

3.2 Municipal solid waste generation prediction
While not much work has been done on the prediction of maintenance in the field of mu-
nicipal solid waste specifically, a lot of work has been done on the prediction of the amount
of municipal solid waste generated by a population. Two reviews on the field will be dis-
cussed. Both reviews give an overview of the methods used for MSW generation prediction.
Finally, four papers using multiple regression analysis for waste generation prediction are
discussed. Given the availability of presumably independent variables (i.e. container meta-
data and demographics) and the research question, the usage of multiple regression analyses
are considered most relevant to the current work and are therefore covered in detail.

In [2] Beigl et al. name three groups of variables to predict waste generation: production
related, consumption related, and disposal related. The first relates to how much goods
are produced, and can in part be described by readily available monetary data such as
waste generated per GDP unit, and price per product unit. Secondly, consumption related
metrics describe the population that consumes products and thereby produces waste. Vari-
ables describing affluence are identified as important, such factors can be income, tenure
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of properties, and population density. Apart from affluence related factors, variables de-
scribing the type of households show correlation with waste generation. Finally, disposal
and collection related metrics can be used to identify the distribution of waste between
fractions, these factors include for example fostered recycling activities, container size, and
density of collection sites.

Furthermore, Beigl et al. note that models using multiple variables are complex due
to interactions between variables, making model validation hard or impossible since it is
hard to prove independence of variables and variance and error requirements. Therefore,
bivariate analyses are common in predicting waste generation.

Kolekar et al. expand on the work of Beigl et al. in [15] by including more recent papers.
Beigl et al. covered papers up to 2005, whereas Kolekar et al. cover papers published
between 2006 and 2014. The authors confirm the continued use of income, employment,
and urbanization as strong variables, and also shows that the factors seasonal variation,
per capita municipal tax, wheather and temperature, and consumption of gas, water, and
electricity show good results. Furthermore, level of education and age groups are noted as
variables with the highest results in waste generation prediction. With regard to methods,
Kolekar et al. show that single regression analysis is the most commonly used model.
Artificial neural nets, multiple regression analyses, and fuzzy logic are also common.

Keser et al. [13] study the spatial dependency of variables in prediction of municipal
solid waste generation in Turkey. The authors observe spatial dependency in the data: many
factors exhibit a change in the east to west direction. This change is in in line with general
wealth distribution over the subject area. The goal of the study is to show significance
of this spatial variation and compensate for it in the prediction. Before analyzing spatial
relations, the regular variables are checked for normality using the Kolmogorov–Smirnov
test. Collinearity is between explaining variables is estimated by Pearson’s r for bivari-
ate collinearity and Variance Inflation Factor (VIF) for multivariate collinearity. Variables
with a collinearity value of 0.4 and 4 respectively were eliminated. The authors consider
four models: ordinary least squares regression (OLSR) with and without neigbouring areas,
spatial autoregression (SAR), and geographically weighted regression (GWR). Spatial au-
toregression performs regression and takes a global spatial correlation into account, while
geographically weighted regression allows for variation of spatial correlation between over-
arching areas in the considered data. The models are validated with a historic dataset. The
OLSR and SAR models perform comparable, the GWR model shows that the importance
of various indicators varies between different (types of) areas. Unemployment rate, tem-
perature, higher education graduates ratio, and agricultural production value are listed as
the main explanatory variables.

Chung [5] models the prediction of MSW generation as a time series in Hong Kong SAR.
They present the use of an autoregressive model based on ARIMA and compare long term
predictions (+-30 years ahead) to a pre-existing simple linear model on waste generation.
The authors note that many studies only take factors into account that are positively
correlated with waste generation such as population count. In contrast, the study also
consider the number of housing estates that participate in waste source separation. The
model is shown to track historic MSW generation numbers within a 95% confidence interval.
The independent variables used in the final model are GDP per capita, population, and
number of housing estates participating in source separation. The last variable shows a
strong negative correlation.

In [16], the MSW generation of 542 municipalities in the province of Styria, Austria, are
analyzed. A large part of these municipalities has less than 4000 inhabitants, 7% has more
than 4000 inhabitants. Waste separation is reported to be highly developed in this area. A
large number of demographic variables are considered, as well as 7 indicators related to waste
management (i.e. type of collection). To reduce the number of variables used for the model,
correlation was calculated for each variable with relation to MSW generation. Because not
all variables are normally distributed, Spearman’s rank correlation was used. Three criteria
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were used to select variables: representation of the different groups of influencing factors,
high correlation with MSW generation and low correlation with other variables, and data
availability. This pre-selection yields 5 variables: household size, municipal tax per capita,
difference in in- and outgoing commuters, percentage of residences with solid fuel heating
systems, and overnight stays. Not-normally distributed variables were transformed to a
normal distribution before being used in the model. Using the five pre-selected variables,
multiple regression models were trained with 1-4 variables. MSW generation was weighed
by population, to compensate for a hypothesized higher variance in lower-populated areas.

Conclusion

In conclusion, various demographic variables show promise in predicting the municipal solid
waste generation. Factors such as household size, residency type, age groups, employment,
gross domestic product (GDP), education, culture, geography, and climate can be seen to in-
fluence waste generation. It is possible that such indicators also translate to yearly required
maintenance on waste containers either through the amount of usage of the containers, or
the ways the containers are used by citizens. Furthermore, (spatial) autocorrelation is iden-
tified in existing works to exist in MSW generation. The use of linear models with multiple
variables and compensation for (spatial) autocorrelation are common for studies that put
emphasis on explainability of models.

The commonly used linear regression has several underlying assumptions which need to
be tested before the model is applied, as encountered in [2, 13, 16]. The assumptions that
must be satisfied before use of linear regression is valid, are (1) independence of explana-
tory variables, (2) constant variance and normality of errors (residuals), (3) linear relation
between predictor and response variables. Lebersorger et al. [16] utilize the Glesjer test to
test for the constant variance of residuals, which regresses the absolute residuals towards
the absolute predicted values. Beigl et al. [2] note in their survey that not every paper
validates these constraints, which holds true for [13] with regards to the constant variance
of errors. Multicollinearity is calculated using variance inflation factor (VIF) by both [16]
and [13].

3.3 Cost estimation
Finally, some papers reporting work in general cost estimation of maintenance are evaluated.

De Lucia et al. report success in predicting effort required of corrective maintenance in a
software project in [6]. A multiple linear regression model was used to estimate the required
effort of maintenance based on the system size and the number of tasks. Performance of the
model increased when the types of the maintenance tasks were included. While sacrificing
some accuracy, only features that were explainable were included in the model such that it
is transparent to business managers.

In [23] a tool is presented to estimate operation and maintenance costs of off-shore wind
farms. The tool uses an unspecified regression based on the annual failure frequency of
components and estimated costs of these failures. The tool is validated in the field with
success.

Edwards et al. [7] show a comparative analysis between a multiple regression and a
multilayer perceptron model to predict the hourly cost of maintenance of excavator ma-
chines. They report good performance of both models while the multilayer perceptron
performs slightly better. Moreover, important explainable features are presented: machine
weight, company (attitude towards preventive maintenance), type of industry the machine
is employed in, and type of machine.
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Conclusion

In conclusion, it is observed that a general regression on the cost of maintenance can be
viable. Details about the system being maintained combined with historic cost records can
be used as good predictor variables which are transparent to the end users.
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4 Case study background: municipality of Amsterdam
To test the models and variables that are identified from literature research on the prediction
of maintenance on underground waste containers, the proposed model and variables are
used on a case study. The subject of the case study is maintenance on underground waste
containers in the municipality of Amsterdam, the capital city of The Netherlands. The
case study is performed in three parts: first the situation regarding underground waste
containers and related maintenance in Amsterdam is presented (this Section), then the
data available as part of the case study is discussed (Section 5), and finally an experiment
is laid out and performed to predict the required maintenance in Amsterdam on a yearly
basis (Section 6).

In Amsterdam, the majority of municipal solid waste (MSW) is collected through the
use of underground containers. These containers have an input mechanism allowing citizens
to deposit garbage bags and store the garbage below street level. The containers are readily
accessible to citizens, usually within 200 meters walking distance from their residence. The
garbage is collected by the municipality from these containers, consolidating the effort of
collection when compared to classic curbside collection where every household places their
garbage in front of the house to be collected. Multiple containers are generally placed
together in a ”cluster” to facilitate separated collection of different waste streams (i.e.
plastics, glass, etc.). Figure 1 shows a single container in its normal position, with only the
insertion mechanism visible (1a), and lifted out of its well, in which the garbage storage is
also visible (1b).

(a) Stationary in well (b) Lifted out of well

Figure 1: Subject containers of this case study shown in its normal position (a), and lifted
out of the well (b).

Amsterdam is divided into a hierarchy of three different administrative levels, from
largest to smallest with their common Dutch name: districts/stadsdelen, wards/wijken,
and neighbourhoods/buurten. Before 2017, municipal solid waste processing was managed
by each individual district. Since 2017, management has been consolidated to be city-wide.
The districts, wards, and neighbourhoods are shown in Figure 2 along with the population
in each neighbourhood to give an overview of the size of the areas and their population
density. Districts are annotated in the figure with their name and a letter code used by the
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municipality. All districts, wards, and neighbourhoods have an identifying code. Districts
are identified by single capital letters, wards add a two digit number to this letter, and
neighbourhoods add a lowercase letter to this code. For example, neighbourhood A06j is a
neighbourhood of ward A06, which is a part of district A. As of 2019, there are 8 districts,
99 wards, and 481 neighbourhood, however, since district ”B Westpoort” is an industrial
area and houses very few containers, it is generally ignored in this study.

Figure 2: Population by neighbourhood. Districts are separated by black lines, wards by
dashed lines, and neighbourhoods by blue lines.

4.1 Containers and wells
A container allows the citizen to deposit their garbage in a centralized place. It consists of
five major parts, with exception of the electronics module, all items are shown in Figure 1:

• Insertion mechanism/inlet, referring to the entire encasing of the visible part of
the container and specifically the mechanism that allows the citizen to insert garbage.
Generally a revolving door that allows citizens to deposit 60L or 30L garbage bags.
Due to the construction of the mechanism, there is no direct access to the garbage
storage. There is an access door on the side of the house to allow mechanics access
to the internals of this mechanism.

• Garbage storage. The core of the container where the garbage is stored. Typically
a container has an internal storage of 5 m3, but exceptions of 3 m3 and 7 m3 exist.
The outside of the storage area is visible in Figure 1 (b).

• Emptying doors. Doors on the bottom of the container that allow the container
to be emptied. The doors are controlled by the hoisting mechanism. The side of the
emptying doors can be seen in Figure 1 (b)
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(a) Partly opened safety floor (b) Safety wall

Figure 3: Examples of subject wells, with their safety measures (partly) deployed, (a) shows
a safety floor (deployed on the right halve, the left halve in a maintenance setting), while
(b) shows a safety wall.

• Hoisting mechanism. A hook, rod, or similar construction on top of the container
that an emptying or maintenance truck can latch onto to lift the container out of its
well. It features a mechanism to release the emptying doors.

• Pedestrian platform. A platform around the inlet to cover the garbage storage and
provide a tight and seamless connection to the surrounding street, over the edge of
the well.

• Electronics. A mechanism to restrict and administrate citizens’ ability to deposit
garbage. May be used for usage-based billing of citizens (also known as DifTar:
differential tariffs).

A container is placed in a well: a concrete support structure to allow the container to
be easily lifted out of and lowered into the ground. The well features a safety mechanism
which prevents direct access to the well whenever it is empty. The primary goal of this
mechanism is to prevent people from falling into the well. The mechanism is implemented
in one of two ways: a temporary floor is deployed by springs when the container leaves
the well, or a temporary wall rises up around the edges of the well as the container leaves
the well. Both mechanisms retract automatically as soon as the container enters the well.
Figure 3 shows both mechanisms. Table 1 summarizes the parts of a container and well.

4.2 Container and well maintenance
The containers need to available to citizens as much as possible. Various types of mainte-
nance play a role in ensuring maximum availability:

• Quarterly cleaning is scheduled to keep the container and well clean and remove any
stray garbage from the well. Cleaning may also be scheduled incidentally if required.

• Yearly inspections and preventive maintenance ensure general safe function of the
containers and prevent breakdown. The inspection is legally required and ensures the
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Asset Component Function
Container Inlet Allow input of garbage bags

Storage Store the garbage
Pedestrian platform Allow people to walk on the container
Emptying doors Allow garbage to be released from the bottom

of the container
Hoisting Mechanism Allow lifting the container and control the

emptying doors
Electronics Mechanism to administrate citizens’ access to

dump garbage in the container
Well Well Allow the container to be placed underground

Safety measure Prevent direct access to the well while it con-
tains no container.

Table 1: Summary of container and well components.

container does not pose a safety risk. Generally, preventive maintenance is sched-
uled shortly ahead of inspections to ensure the container passes inspection. During
preventive maintenance, small defects are corrected and maintenance such as lubri-
cation of moving parts is performed. If any defects are encountered that cannot be
fixed immediately, followup maintenance is planned to correct them before inspec-
tion. Such followup maintenance is unexpected and hence categorized as unplannable
maintenance in this study.

• When a container is unusable due to damage or a danger to the immediate vicinity,
corrective maintenance is scheduled.

Maintenance tasks are prioritized based on their impact on safety and the ability to
collect garbage. Four priority levels are used: critical, high, normal, low. Critical issues
denote issues where either (1) the container poses a direct danger to the vicinity (e.g. sharp
edges, danger of tripping) or (2) the container is unable to process garbage (e.g. it is full
or the insertion mechanism is broken). High priority issues are issues where it is likely that
either of the conditions of a critical issue will soon appear. Normal and low priority issues
need to be solved but do not represent any immediate problems or chance thereof. Normal
priority tickets generally are followup tickets to preventive maintenance were a defect has
been detected that does not directly influence use or safety, but might if left unattended.
Low priority issues generally are issues that are not of a pressing nature. An example of a
typical low priority issue is an inspection: while it has to be performed eventually, they are
planned far ahead and often have long deadlines of weeks or months.

Some of the common critical issues that present an immediate danger to the vicinity or
prevent the container from accepting waste are:

• The container is (partly) raised outside of its well in rest, creating a dangerous sharp
edge around the pedestrian platform. This can be caused by a damaged safety mech-
anism which is unable to be retracted, or an obstruction in the well such as leaked
garbage, or water in the well causing the container to float.

• The safety measure cannot be deployed properly, posing a danger during emptying.

• The safety measure cannot be retracted properly, preventing the container from being
returned to the well.

• The garbage inlet is damaged or blocked, preventing garbage from being input.
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4.3 Maintenance administration
Every maintenance action is recorded in an application called Grybb, operated by Curious
Inc., a service provider of the municipality. For every action, a ticket is created to track
the progress of the action. If the action requires a followup action, a new ticket is created
with a reference to the previous ticket. A ticket records the progress of work, the related
assets (container, well), the required action, parts used and work expended, priority, type
of maintenance, and any additional comments made by reporter of the ticket, servicemen,
and administrators. A more comprehensive overview of the data associated with a ticket is
provided in Section 5.2. While all maintenance related activities are administrated in Grybb,
other activities and functionalities such as emptying the containers and administrating
electronic container access are administered in other systems.

A typical inspection cycle for a container may for example result in three tickets: first
preventive maintenance is scheduled, during which a larger defect is detected requiring a
separate action, and finally the inspection itself is performed. All tickets refer to their
predecessor allowing to identify all related tickets. Critical issues often result in two tickets:
one in which the immediate danger to the environment is quickly mitigated (e.g. the area
is cordoned of), and one in which the underlying issue is resolved.

4.3.1 Unplannable maintenance

In this research, unplanned or unexpected maintenance is defined as all specific work that
cannot be reasonably expected one year ahead. As such, in the context of Amsterdam,
corrective maintenance falls under this definition, but also any issues that cannot be fixed
during preventive maintenance. Preventive maintenance itself does not fall under this
definition: every container is maintained once every year and one can reasonably assume a
small and known set of parts and work to be used.

Additionally, some tickets are marked as being part of a ”project”, a specific task that
is applied to many containers. Historic examples of such projects are to apply reference
stickers on containers or replace parts with manufacturing defects. Such projects are not
considered to be reasonably predictable. As such, project-related tickets are ignored in the
study.

4.4 Ticket life-cycle
All tickets go through a certain process between creation and being closed. Figure 4 outlines
the steps a ticket commonly goes through. A ticket is created by an end-user, generally
the municipality using the container/well and is assigned to a service company which can
either accept the ticket or reject it. Generally, a service company accepts a ticket. Only if
another service company is better suited, or the service company has no capacity to address
the issue it will reject the ticket and optionally forward it to another service company. As
soon as the service company accepted the ticket, it should assess whether the expected
costs of a ticket are high (>€250). If the expected costs are high, the customer has to
approve the intended solution before-hand, otherwise the service company may continue
without explicit approval. The ticket then goes through a series of stages within the service
process, a serviceman is assigned to the ticket and the ticket is planned for a timeslot.
The serviceman executes the work and solves the issue, after which the applied solution
is approved by a service manager. Finally, the customer approves the applied solution
and associated costs. During these four stages, a ticket may be prematurely closed if for
example the problem appears non-existent (i.e. due to a false/wrong report), the problem
has a different root cause then expected and the client must approve the expected costs,
or any other edge case occurs. Generally, when a ticket is prematurely closed and there is
still a problem, a followup ticket is scheduled.
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Figure 4: Overview of the states and transitions a ticket commonly goes through.
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5 Case study: data
Relevant variables and models have been selected during literature research but not all data
is available or relevant to the situation of the case study. This section identifies what data
is available, why it is, or is not, used, and what data is unavailable.

The three available data sources that will be used for the prediction are as follows.

1. Containers and wells: detailing the assets that are maintained;

2. Maintenance: three years of maintenance records: 2017, 2018, 2019;

3. Demographics: demographic and geographic information of the municipality of Am-
sterdam.

Other data sources that are available but remain unused for the predictions are as fol-
lows. Section 8.1 discusses how these data sources may be used in the context of prediction
maintenance on underground waste containers in future research.

1. Weather data: temperature and rain information is widely available. However, since
the case study covers a relatively small area and the analyzed time-span is also rela-
tively constrained (three years), weather is not expected to be discriminating enough.

2. Collection weights: data since 2017 is available that details when a certain fraction of
waste from a ”cluster” (see Section 4, first paragraph) is collected. It is impossible to
consistently recover which exact container was emptied, and high inconsistency and
error rate within the data has been encountered in previous research [9]. While an
aggregation on neighbourhood or district level is feasible, the data data is left out due
to its low quality and limited scope of this research.

The container and well, and maintenance history datasets are proprietary and based on
an excerpt from the ticket management application Grybb made on August 5 2020. General
demographics data is publicly available at Statistics Netherlands (CBS). For this study, a
set that has been supplemented by Amsterdam is used which is publicly available [1]. In
this research, the version of July 10 2020 is used. Both datasets are stored in a normalized
format (in the context of database normalization), denormalization and transformation of
the data is considered trivial and not discussed. Any changes to the contents of the data
are discussed in Section 6.

The following subsections discuss each dataset in detail, Section 5.1 discusses the con-
tainer and well data, Section 5.2 discusses maintenance records, and Section 5.3 demo-
graphics.

5.1 Containers and wells
Containers and wells have two properties in common: both have four dates that mark life-
cycle events of the unit, and both can be described by a type detailing the make of the asset
(i.e. parts used). Containers furthermore have a fraction associated with them, referring
to either rest, plastics, bio, glass, paper, or textiles, and a well in which they are placed.
Wells have a location in the form of longitude and latitude.

An asset can be marked inactive when it is no longer being used. This way any history
pertaining to the asset is saved but the asset will not show up in operational reports. This
generally happens when the asset is demolished if it has reached end of life.

A reference to all asset properties can be found in Table 2.
The dataset contains a total of 14 455 containers and 14 161 wells, while data of other

municipalities is available, the data quality maintained by the municipality of Amsterdam
is superior and makes the data eligible for analysis. Figure 5 shows the growth of containers
and wells over recent years. It is clearly visible that the number of assets has grown steadily
by approximately 1 000 containers and wells per year.
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Field Description Example data
Container/well created at Date of asset created in sys-

tem
01-03-2016

Container/well delivery date Date of asset delivered to
customer

07-03-2016

Container/well placing date Date of asset placed at lo-
cation

10-03-2016

Container/well operational date Date of asset entering ser-
vice

10-03-2016

Container/well type Make of the asset, detailing
parts used

5m3 KHC Papier Am-
sterdam Standaard
1192*1192*2341

Container/well active Whether the asset is in use Yes/No
Container fraction Type of waste handled by

container
Glass

Container well Well that holds the con-
tainer

Reference to well by ID,
e.g. 23412

Well location Coordinates of well (lati-
tude and longitude, 6 digit
precision)

52.096487, 5.008091

Table 2: Summary of asset data available, with example data.

Figure 5: Bar chart showing the number of containers and wells in the municipality of
Amsterdam per year. Data between the years 2001 and 2015 is omitted due to lack of
relevance.
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Figure 6: Heatmap of Amsterdam neighbourhoods showing how many containers are present
in the neighbourhood. Districts are separated by black lines, wards by dashed lines, and
neighbourhoods by blue lines.

Figure 6 shows a heat map that shows how many container each neighbourhood in
Amsterdam has at the end of 2019. It shows similarity to the population density shown
in Figure 2 and shows that some some residential areas have significantly more containers
than others.

5.1.1 Container and well types

Each container and well is associated with a ”type” that provides information about the
make and model of the asset. For every container type the insertion mechanism, hoisting
mechanism, (empty) weight, and storage volume are administrated. Smaller details such
as the form factor of the garbage storage are implicit to the model and not administrated
explicitly. Well types are described by internal volume and dimensions, and the type of
safety mechanism installed in the well. Table 3 shows a summary of the available data with
examples.

Container and well type names are often overly specialized, making it non-trivial to
extract common makes and models. The type names often include information not directly
linked to the container type or details of the type that are also explicitly administrated.
For example the container types ”5m3 KHC Papier Amsterdam Standaard 1380*1380*2690”
and ”5m3 KHC Plastic Amsterdam Standaard 1380*1380*2690” contain: the volume of the
type (5m3), the hoisting type (KHC refers to Kinshofer, a type of hoisting mechanism),
the fraction (plastic), and the dimensions of the container. Volume and hoisting type are
already separately administrated, while fraction is administered per container. The actual
model of the container ”Amsterdam Standaard” is obscured by superfluous information in
the name of the type.

In part due to the reasons explained above there are 210 different container types and 87
different well types in use. These are combinations of the previously explained properties.
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Category Field Example data
Container type Name 3TV1423R KH BEL 80

TROPL
Hoisting mechanism Kinshofer
Insertion mechanism Belfast
Weight 550 (Kg)
Volume 3 (m3)

Well type Name 1 delig 1670*1670*2750
KA-4 (Bammens, Amster-
dam Standaard)

Volume 5 (m3)
Dimensions 2750x1670x1670 (height,

width, length, in mm)
Safety type Veiligheidsvloer zonder

mangat

Table 3: Summary of asset type data available, with example data.

However, there are only 101 container types and 48 well types that are used more than 10
times. Figure 7 shows how many containers of each type exist at the end of 2019. It is clear
from the figure that a few of the well and container types represent a large part of all the
assets. Many (largely) unused container types have references to Amsterdams districts in
the name, hinting that their lack of use may have been part of an administrative consoli-
dation in which previously separately administrated container types were consolidated into
centrally administrated ones.

Figure 7: Number of containers of a given type for the 50 most occurring normalized
container types, showing high usage of a very limited number of container types and a
long tail of other types. Container type names are omitted for readability, the two most
occurring types are ”Kinshofer Amsterdam standard” and ”Haaks metro”.

5.2 Maintenance
Maintenance actions are recorded as tickets. A ticket signifies a single maintenance action
taken on a container (and optionally the associated well). Table 4 shows a reference of all
data available per ticket with example values and a short description of the field. Since
Grybb is primarily an application that supports the daily work of service companies, the
data contained in it is bound to contain a certain degree of noise. Not every edge case is
covered by the application, and employees in the field may be forced to ”misuse” a field
to convey message that is otherwise not supported by the application. Alternatively, if a
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situation is complex and not covered by the system, mechanics often fall back to a phone
call to explain the situation, and put down a summary of the discussion in the ticket, which
may not cover the full extent of the issue. Given the general scope of this study, this is not
expected to have a significant impact on the experiment, but should be noted for future
more in-depth studies.

Field Description Example data
ID Unique identifier of the ticket 370048
Ticket type e.g. corrective, preventive, ... Corrective
Priority e.g. emergency, high, medium, low Emergency
Problem description A free form text field describing ex-

tra details
Leegloper 1

Problem modules A selection of components of the
container/well that are relevant to
the problem

Other

State Current state of the ticket, e.g.
”new”, ”planned”, ”solved”, ...

Approved by client

Created at System time when the ticket was
created

2019-12-16 07:41:24

Service company Company assigned to solve the
problem

ASW (Reiniging)

Ticket owner Asset owner, responsible for creat-
ing the ticket

K Zuid 2

Parent ticket Reference to a preceding ticket -
Work and parts Consumed parts and spent time Empty out well

Table 4: Summary of the relevant ticket data available, with example data.

To differentiate between the various types of action that can be taken, every ticket is
assigned a category, various relevant ticket types are:

• Corrective

• Preventive

• Inspection

• Cleaning

• Project

• Repair as a result of preventive

• Repair as a result of inspection

A total of 19 types exist, ticket types irrelevant to this study have been omitted for brevity.
The priority of a ticket can either be emergency, high, medium, or low. Each priority has

a specific reaction time associated with it which is governed by a Service License Agreement
(SLA) between the ticket owner and service company. The problem description is a free
text field that contains comments from the creator of the ticket or administrator. This
field is generally used to specify the exact problem or reason of the problem. The problem
modules field may refer to one or more components of the container or well that are related

1Rough translation: drained. Meaning the container contents have been accidentally dumped in the
well.

2The name associated with city part Zuid in the application
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to the issue. This field may help in strategic analysis of tickets, but is generally not specific
enough to identify the exact problem, for which the problem description is used. Valid
values of this field are the container and well components presented in Table 1.

The current state of the ticket shows what step in the process has been performed last,
and which step is next. Generally, a ticket goes through the stages new, accepted by service
company, planned, executed, closed, approved by customer, as discussed in Section 4.4. The
time of each of these steps is logged for purposes of enforcing SLA and strategic analysis.

A ticket may serve as a followup to another ticket. For example the category ”Repair
as a result of preventive” is scheduled as followup to preventive maintenance if a defect
was detected that could not be repaired at the time. In such case, the followup ticket will
have a reference to the previous ticket so that it is clear that these tickets are related. This
reference is referred to as the ”parent ticket”. It is only possible for a ticket to have a single
parent, and having a parent is optional. However, every followup ticket itself can have a
followup ticket again, allowing for ticket ”chains” of arbitrary length. Such chains generally
consist of 4 or less tickets; on a total of 133 864 chains (both plannable and non plannable),
less than 500 consist of 5 or more tickets. The number of ticket chains with a given length
are shown in Figure 8, it shows an roughly exponentially decreasing number of chains with
increasing lengths (note the log scale of the number of chains).

Figure 8: Number of ticket chains of a certain length in Log10 scale.

Work performed and parts used are often billed as a fixed item, for instance in the
example presented in Table 4, ”Empty out well” (last row) is a fixed work item with a fixed
price. All parts have fixed prices. In the case where there is no specific work item to fit
the work performed, a, standard work items for spent time (e.g. ”15 minutes with/without
truck”) are available.

Between 2017 and 2019, 118 779 non plannable tickets were registered, Figure 9 shows
the distribution of these tickets over the years and various categories. The number of tickets
has rapidly increased over these years, almost doubling between 2017 and 2018 and more
then doubling between 2018 and 2019. This trend is visible in the figure, however is not
evenly distributed over the four major categories: periodic cleaning has relatively increased
more when compared to the other 3 categories, the reason for this is unclear but is expected
to be the result of increased adoption of the administrative system. Furthermore, the growth
of tickets seems to be much higher than the growth in number of containers as shown in
Figure 2. The cause of these increases is unknown but might be explained by factors
considered in the case study experiment.

5.3 Demographics
Amsterdam publishes a general register with key figures of areas in the city with up to 788
variables per area known as the BBGA or Basis Bestand Gemeente Amsterdam (General
Register Municipality Amsterdam) [1]. Areas are defined as districts, wards, neighbour-
hoods, and various alternative definitions. Districts are the largest areas, followed by wards
and neighbourhoods. The 788 variables describe information on several themes, some of
the useful themes for the purposes of this research are: population, age, diversity, activities,
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Figure 9: Distribution of all tickets in Amsterdam between 2017 and 2019 by category.

public space, education, work, income, and citizen participation. The case study experi-
ment makes use of variables that report on the following subjects, based on the literature
on predicting municipal solid waste: population, household details, income, residency type,
and education.

A full list of used variables with examples is presented in Table 7, the category and
original BBGA field name is shown along with a translation and explanation. An example
of data of one specific variable in one year is shown in Table 5. It shows the spendable
income in 2018 of two districts and the associated neighbourhoods. It shows reasonably
consistency within neighbourhoods of a ward, and a general difference between wards; the
spendable income in ward F86 is generally lower than that of ward K52, the spendable
income of the associated neighbourhoods vary around the values for the wards.

Data is present for all districts, wards, and neighbourhoods for these variables with some
exceptions. The percentage of missing data is detailed in Table 6 on the levels of ward and
neighbourhood separately. Large amounts of missing data (> 30%) in the income variables
and education are caused by the fact that Statistics Netherlands (CBS) has not yet released
these numbers for 2019 at the time of writing. Lower amounts of missing data (≤ 5%) can
be caused by either the sample size being too small to produce anonymous results, or the
administrative area not existing at the time. This study assumes for simplicity sake that all
administrative areas existing at the time of writing have not changed in the time considered.

3Calculation takes education and income in to account and produces a number between 2 and 10. Low
scores are considered 2-4.
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Area code Spendable income
F86 35100
F86a 36900
F86b 33200
F86c 35500
F86d 42500
F86e 29000
F86f 25300

Area code Spendable income
K52 48600
K52a 56500
K52b 45900
K52c 48600
K52d 49000
K52g 34800
K52h 65800

Table 5: Spendable income of two wards and accompanying neighbourhoods, showing the
differences in demographics variables between administrative areas. Note that the first rows
denote the wards themselves and subsequent rows the neighbourhoods.

Missing data
Category Wards Neighbourhoods
Population 1% 3%
Household 1% 6%
Income 34% 46%
Residency 1% 11%
Education 34% 43%

Table 6: Missing data per category on ward and neighbourhood levels.
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Category BBGA Field Field description Example data
- - Area code A05c
- - Year 2018
Population bevtotaal Total population 2492

bev0 4 Population aged 0-4 (incl.) 95
bev5 9 Population aged 5-9 (incl.) 87
... ... ...
bev85 89 Population aged 85-89 (incl.) 23

Household beveenouderhh P Single parent households % 116
bevalleenhh p Single person households % 59%
bevpaarzkindhh p Households without children % 21.7%
bevpaarmkindhh p Households with children % 10.4%
bevoverighh p Other households % 1.1%

Income ihhink gem Average spendable income 40 200
iinkq1 p Household % in 1st income quantile 31%
iinkq2 p Household % in 2nd income quantile 21%
iinkq3 p Household % in 3rd income quantile 15%
iinkq4 p Household % in 4th income quantile 14%
iinkq5 p Household % in 5th income quantile 18%

Residency wbezet Average number of residency inhab-
itants

1.62

wcorhuur p Residencies owned by housing cor-
poration %

42.6%

wparthuur p Residencies privately rented % 34%
wkoop p Residencies privately owned % 23.4%

Education bevopllaag p Population low education % 17%
bevoplmid p Population medium education % 32%
bevoplhoog p Population high education % 51%
skses234 p Population with low socio-economic

score 3
30%

skses gem Average socio-economic score 3 6.4

Table 7: Overview of demographics data used, with example data for neighbourhood ”A05c”
in the year 2018.
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6 Case study: prediction
To test the models that were selected in the literature review, the available data is used to
apply maintenance forecasting the case study: underground waste containers in Amster-
dam. This section breaks down the process of building the model and discusses extracting
knowledge from the data that may prove useful in satisfying Amsterdams goals: reducing
the number of tickets.

To extract patterns from the available data, a process similar to the Knowledge Discover
in Databases (KDD) method outlined in [8] is used. In KDD the final product gained after
extracting patterns is termed knowledge, it represents the answers to the research questions
in this study. First, data is selected from the raw sources. Secondly, the selected data is
pre-processed to filter out errors in the data and fill missing data. Then, it is transformed
into a format that allows for easy analysis. Finally it is mined for patterns to extract
knowledge to answer the research questions. This process is outlined in Figure 10.

Figure 10: High level overview of the methodology, showing the process steps resulting in
knowledge.

In this section, all process steps are discussed in detail. Before data selection, the target
variable of the prediction is identified, such that the goal of the methodology is clear.

6.1 Target variable
The target of the prediction is the number of unplanned maintenance issues. In the case
of Amsterdam and in the dataset, this value is represented by the number of unplannable
tickets. Unplannable tickets are defined as those tickets that are of ticket type:

• Corrective

• Repair as a result of inspection

• Cleaning (as opposed to a ”Planned cleaning”, ”regular” cleaning is not planned)

• Repair as a result of preventive

The sum of all tickets that match this description is then the target variable. This sum
can be calculated per year and area. Amsterdam is divided into administrative areas on
three levels: districts, wards, and neighbourhoods. Any of these three area levels may be a
suitable scope for the prediction. However, since there are only seven districts, predicting
the target variable per district may lead to results that are not specific enough. Since de-
mographics input data is only available per year, and there are three years of data available,
a prediction horizon of a year is considered the most reasonable.

6.2 Data selection
To select data from the available data, information that may be relevant to the predicted
variable is identified. For some data relevance is identified based on evidence from domain
experts or based on literature. For other data the expected relevance is not grounded
in existing research or expertise, in which case it is argued why the data is assumed to
be relevant to the target variable. The selected information can be categorized in two
categories: asset data and demographics. The selected data, that can subsequently be
transformed into input variables to a predictive model is as follows:
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1. Asset data:

(a) Asset count. The number of assets is expected to influence the required main-
tenance; more assets leads to more (unplanned) maintenance.

(b) Asset age. The asset age is shown by literature to give an indication of the
”wear and tear” of an asset. Higher wear and tear is in turn expected to result
in a higher likelihood of damage, causing more unplannable tickets.

(c) Asset type. The asset type described the components of the asset. Literature
has shown that various types of assets show different maintenance behaviour.
Furthermore, domain experts have specifically indicated that certain asset types
are more likely to suffer from unplannable maintenance. One example in this
case is a container type that compresses garbage before storing it, these con-
tainers suffer from much more unexpected breakdowns than other types. It is
assumed that similar trends may exist based on the example given. Certain
types of assets or components may be more error-prone than other components
resulting in more unplannable tickets than others. Asset types are identified
by four types of data: the container/well type provides a single reference to
the make and model of an asset while the associated insertion type, hoisting
type, and safety measure type reference types of specific parts of the assets.
Finally, to effectively capture the example of compression containers requiring
more maintenance than other types, one extra feature is constructed from the
asset type: the number of compressing containers. The feature is the sum
of all containers of a type with the text ”pers” (Dutch for ”compression”) in its
name. These types are then discarded as separate asset type features.

(d) Waste fraction served. An example has been presented by domain experts
in which the fraction of the waste influences the way the container is emptied.
Specifically, paper containers have been used in some cases to attempt to com-
press the waste in the truck it was emptied in with (possible) damages to the
container (and truck) as a result. Other such cases may or may not exist and
may be identified by this data.

2. Demographic data:

(a) Population count. The number of inhabitants of an area may serve as a proxy
to total usage of containers in an area. It is expected that heavily used containers
are more likely to be the subject of unplanned maintenance. To quantify this, the
population count per container can be calculated. Furthermore, it is identified
in literature as a relevant factor in MSW generation.

(b) Household type, Income, Residency type, Education. Demographic vari-
ables have been shown in literature (see Section 3) to influence the generation of
waste and degree of separation into various waste streams. The amount of waste
per stream generated may influence usage of the container and hence required
maintenance.

This data must subsequently be pre-processed and transformed into usable input vari-
ables.

6.3 Pre-processing
To provide consistent input values that reflect reality, the data must first be filtered to
remove errors or noise, and be corrected to fill missing values. It can then be transformed
to be used as input variables in a predictive model. The filtering, correction, and trans-
formation steps are as follows. Each step is discussed in further detail in the following
sections.
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1. Data filtering:

(a) Wells that are used solely for administrative purposes are removed;
(b) Plannable tickets and non-solved tickets are removed;
(c) Project related tickets are removed.

2. Data correction:

(a) Container names are stripped of extraneous details;
(b) Missing asset lifecycle dates are filled;
(c) Missing demographic values are linearly interpolated;
(d) Chains of tickets are reduced to single tickets.

3. Data transformation:

(a) Tickets are assigned the location of their subject well;
(b) Ticket and asset creation dates and location are used to produce values per

year/area combination.
(c) Features with absolute values are scaled (0-1) within categories, such that it is

possible to compare absolute values between categories at a glance. Percentage
values are converted to a 0-1 scale if necessary.

6.3.1 Filtering

Two specific wells and their associated containers are removed from the dataset: the ”Al-
gemene order” well (ID 6271) and container (ID 6272), and the wells located at ”Papaverweg
33” (IDs 59220 and 71935). The first well is used to book costs that cannot be otherwise
administrated in the application. The second set of wells is located at a yard of the mu-
nicipality and do not actually house containers. Containers are brought to the yard to
be fixed or demolished and may remain here for unknown reasons. This action is purely
administrative and not related to the actual functioning of containers in the municipality,
as such they do not contribute to the dataset and are removed.

Since the only concern is to identify patterns in the non plannable tickets, all plannable
tickets are removed from the dataset as defined in Section 6.1. Furthermore, tickets that
are not solved are removed. Possible non-closed states may be that the ticket has been
forwarded to another service company (and subsequently a new ticket is created), the ticket
is intentionally not solved (for example because the price was too high, or the issue deemed
irrelevant), or the ticket was never solved for reasons unknown.

Some of the tickets that are of a ticket type that is considered non-plannable are part
of large projects. An effort is made to remove these types of tickets from the dataset since
they do no represent incidents that requires acute maintenance. Instead they represent
structural defects in past processes or manufacturing, or changes in policy. Two such
projects are identified in the data: (1) (re)placing identification stickers on containers and
(2) a systematic inspection of all components of a specific type. To remove ticket associated
with these project, any ticket that contains the text ”sticker”, ”referentie”, ”nummeren”,
or ”ketting controle” is removed. The first three terms often identify projects to (re-)apply
identification stickers, the last term is related to a systematic check of certain chains in wells.
These terms are manually identified from observations of the data, no concrete methodology
has been applied in identifying these terms.
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6.3.2 Corrections

The names of container and well types are stripped of details that are already associated
with the assets or their types in an effort to consistently reduce containers to their type. To
build on the example of such data given in Section 5.1.1: after this normalization, all con-
tainers of the types ”5m3 KHC Papier Amsterdam Standaard 1192*1192*2341” and ”5m3
KHC Glas Amsterdam Standaard 1192*1192*2341” (difference in ”Papier” and ”Glas”) can
be matched to the type ”Amsterdam Standaard” while the volume, hoisting type, fraction,
and dimensions are still retained in the asset and type.

Assets record the dates at which they are declared operational, placed, delivered, and
created in the system. However, the operational, placed, and delivered dates are not always
filled in. Values are forward-filled in the following sequence: created in the system, delivered,
placed, operational. Meaning that if a value is missing, the last known value is used. See
Table 8 for a (fictional) example of this method. This method is judged to be sufficient by
domain experts for the purposes of this study.

Field Value
Operational date n/a
Placed date 01-02-2017
Delivery date n/a
Created date 01-01-2017

Field Value
Operational date 01-02-2017
Placed date 01-02-2017
Delivery date 01-01-2017
Created date 01-01-2017

Table 8: Fictional example of forward filling of various lifecycle dates of assets. The table
of the left shows the original data with missing fields, while the table on the right shows
the corrected data with forward filled values in bold.

Missing demographics variables are interpolated by linear regression. The most notable
missing values are in variables that are missing data for the entire year 2019 (as discussed
in Section 5.3). Values for a certain variable in a given area often display a trend over
the years which must be preserved. To that end a linear regression is applied to fill in the
missing values based on available data. No extensive testing is performed on this linear
interpolation, but domain experts agree that this method should be sufficient for the pur-
poses of this research. Alternatives considered but not implemented are (1) forward filling
values (basing missing values on the last known value), and (2) shifting values forwards
such that observations for 2016 are used for 2017, observations from 2017 for 2018, and
observations from 2018 for 2019. However these methods do not interpolate the trend of
the data, or fail if more than 1 year of data is missing.

Since chains of tickets describe only a single problem and multiple tickets are only
created for administrative purposes, the chains are squashed to single tickets. Figure 8
roughly shows how many chains of certain lengths exist. When only considering the non
plannable tickets, 5 449 chains exist of length 2 or higher. These are reduced to single
tickets by taking the values of the last ticket in the chain, the priority of the first ticket
in the chain (this reflects the priority of the original issue), the creation date of the first
ticket, and an aggregation of the ticket descriptions and problem modules.

6.3.3 Transformation

To count the number of tickets in an area, a ticket has to be assigned to an area. To this
effect, the location of the subject asset of the ticket is assigned to the ticket. If the only
subject is a container, the location of the well housing the container is used.

Up to this point, both tickets and assets are associated with an exact point in space
in the form of a coordinate. However, all data must still be transformed such that every
desired variable produces a single value for every area/year combination. Administrative
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areas are described by bounded polygons, which can used to resolve a coordinate to the area.
For tickets, the creation date is used to place the ticket in a year, and the ticket location
is used to place the ticket in an administrative area. To count the existing containers and
wells in an area, the operational date of the asset is used to place the asset in a year, and
the well location to place the asset in an area. Counting the number of assets of a certain
type or fraction is done in a similar fashion, but constrained to the type that is counted. To
summarize the ages of asset, the descriptive statistics minimum, maximum, average, and
standard deviation are calculated of the asset ages within a year/area combination.

A full overview of all available input variables (including the target variable ”ticket
count”) with example values for a neighbourhood level prediction is shown in Appendix A.

Features with absolute values and the target variable are scaled on a scale of 0-1 so the
features importance in the linear regression model can be better interpreted. Since absolute
values within categories are expressed in the same unit (e.g. number of containers, age in
days, population count, income), scaling values within categories accurately maintains the
relative value of a feature. By scaling the feature, the linear coefficient does not need to
correct for the order of magnitude of the feature, and can therefore be better compared
between categories and prediction levels. An example of a difference in order of magnitude is
between population (104) and average income (105). Percentage values are already ensured
to be on a 0-1 scale.

6.4 Predictive models
Literature reports success with various models in the prediction of maintenance and MSW
generation: statistical models such as Weibull and Poison distributions are used to predict
the likelihood of failure within a given timespan, and regression models such as single- and
multiple linear regression, support vector machine, and neural networks are used to predict
the generated MSW of an area. The target model must be able to handle multiple input
variables and clearly show the impact of these variables on their own. The best fit for these
requirements in the multiple linear regression, which has shown success in predicting MSW
generation. It provides an interpretation of the data that is easily interpreted by domain
experts and clearly shows the importance of variables.

In addition to the multiple linear regression, a reference prediction is made using Ran-
dom Forest regression. It may serve to identify the prediction potential by using non-linear
relations in the data. However, depending on the decision tree size it may be more complex
to explain the model to domain experts and the model is more likely to overfit than the
linear regression. Due to these reasons, the main focus of the research will be predicting
the target variable using a linear regression.

The models are generated using the LinearRegression and RandomForestRegressor mod-
ules of the Python programming language library scikit-learn [19] version 0.23.2. The linear
regression is implemented using Ordinary Least Squares (OLS). The random forest model
has plenty of hyper-parameters to influence the way the model functions. To prevent over-
fitting, the max depth of the random forest is limited to 4 levels, and the minimal samples
of a leaf is set at 3.5% of the sample size, and the number of estimators in the model is set to
30. These values have been determined using an exhaustive grid search for values between
1 and 10, 0.01% and 10%, and 10 and 150 respectively on the complete ward dataset.

6.5 Experiment: ticket prediction
To identify meaningful factors that may predict the number of unplannable tickets in an
area in a given year, the discussed models are used to predict the number of tickets based
on the identified input variables. A baseline model is constructed that predicts the target
variable with only the number of containers as input using linear regression. This is an
intuitive model that translates to a certain percentage of assets having a number of issues
per year. Figure 11 shows the number of tickets and number of assets in several selected
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Figure 11: Number of assets and number of tickets for selected wards, showing the relation
between number of assets and tickets.

wards. It can be gathered from the figure that wards with higher number of assets generally
have more tickets than wards with lower numbers of assets. It is also clear from the figure
that this relation does not always hold, nor is the general number of tickets per container
always the same.

Following the construction of a baseline model, some steps are taken to arrive at a final
model. The steps are designed to reduce the high number of features to an explainable and
good performing set.

1. For each category of predictors:

(a) Collinear predictors are eliminated to satisfy model assumptions, the elimination
process is described in Section 6.5.1.

(b) A linear model is constructed using the remaining predictors of the category and
those of the baseline.

(c) If the performance of the model is better than the performance of the baseline
in terms of R2

adj , the category of predictors is marked ”meaningful”, i.e. it is
meaningful to the target variable.

2. A feature set of all remaining features of the meaningful categories is created, multi-
collinear features are again eliminated using the process discussed in Section 6.5.1.

3. A final linear and random forest model is created using the remaining feature set.

This process ensures that the features are not strongly dependent of each other. A
high degree of multicollinearity within the categories is to be expected since they describe
similar concept, while a medium degree of multicollinearity between categories is expected,
since many social factors still correlate with each other, for example wealth and education
[21]. Among collinear features, the features with the highest predictive value are kept.

The final models with the remaining features are validated and used for final results.
Based on these results, manual alterations can be made to the model to further optimize it
in terms of simplicity and performance.

6.5.1 Discarding collinear features

To eliminate multi-collinear features from a given feature set, an iterative process is used.
Given a set of features, the variance inflation factor (VIF) is calculated for each feature.
For all features with a VIF higher than the threshold of 4, a linear model is constructed
to predicts the target variable using only the specific feature. The feature model with the
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lowest R2 is eliminated, and the process repeated. The process stops when there are no
features with a VIF over 4, or when there is a single feature left. This process ensures
features are not multi-collinear while retaining the most valuable features

Once this process is completed, a large part of the features are eliminated, but features
may still be present that only marginally improve the results of the model. Such features
can be removed manually. By removing features that provide only a small improvements
to the performance of the model, the model is improved in terms of explainability and
generalizability.

6.6 Model evaluation
Model evaluation consists of two steps:

1. The use of the model is validated: the linear regression model makes assumptions
about the data, if these assumptions are not valid, results of the model may be overly
optimistic or pessimistic;

2. The performance of the model is evaluated so it is clear how well the model predicts
the target variable and explains the data.

To properly evaluate the model, the dataset has to be split into a training dataset and
an validation dataset. The model is trained on the former and is evaluated using the latter.
Care must be taken to prevent dependency between these two sets. In the case of predicting
maintenance occurrences for city areas it is reasonable to assume that a given area performs
similar over time. To prevent the model from learning the characteristics of specific areas
and reliably evaluate the model, the training and validation sets must be representative
for the entire dataset. Since the dataset exists of data over three years, it is possible to
split the dataset on these years. Two thirds is then used for training purposes, while the
final third is used for validation. Three-fold cross-validation is then applied: training and
validating the model with each possible combination. Evaluation can then be performed
over the three folds.

6.6.1 Model assumptions

Familiarity with the linear regression model is assumed, however the required assumptions
for the model to be valid are discussed in order to clearly discuss the required steps in
model validation.

In general, linear regression models build on several assumptions in order for the ex-
pected value of the predicted variable to be reliable. Given a linear model of the form
y = Xβ + ε, these assumptions are [11]:

1. Weak exogeneity. A linear regression is assumed to model causation of the predictor
variables x and error term ε on predicted variable Y . Therefore, predicted variable
Y must not cause X. Also, since ε in part causes Y , ε must also not cause X. By
assuming exogeneity of X, we assume that the predictor variables x are fixed values
imposed from outside the model, and not caused by the model itself.
This assumption also means that X is assumed to be free of any (measurement) errors.
Only the error term ε accounts for any errors in the dependent variable Y .

2. Linearity. The predicted variable must be a linear combination of parameters and
predicting variables. However, since it is possible to transform the predicting variables
in any way before applying the regression, this assumption only restricts the model
parameters β.
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3. Homoscedasticity. The variance of the errors in the predicted variable is constant
over the entire range for predictor variables. This assumption is for example violated
when the variance of the errors for large predicted values is larger than that of small
predicted values.
If this assumption is violated and the variance of errors varies based on the predictor
variables’ values, the variance can not be accurately modeled for the entire range of
the data. This can result in under- or overestimating the importance of a residual
since it is unclear if the residual can be caused by the variation or not.

4. Independence of errors. The errors of the predicted variable should be uncor-
related with each other. An example of such dependence in this context is spatial
autocorrelation: errors in a certain area may be higher than other areas. If the errors
are not random, the model does not fully capture all relations.

5. Lack of perfect multicollinearity. Predictor variables should not be perfectly
correlated with each other. For example, this can happen if a variable and a linear
transformation of this variable are present in the dataset.

6.6.2 Model validation

To confirm the assumptions made by the linear regression model, the following actions are
taken once a model has been constructed:

1. For each predictor variable: reason that the predicted variable is unlikely to cause an
influence in the predictor.

2. Plot the residual against the location and time based data. If a pattern emerges, the
errors are likely (spatially) autocorrelated, which means they are not independent.

3. Plot the residuals against the predictors to identify if the variance of the errors is
constant.

4. Test multicollinearity using Variance Inflation Factors (VIF). Literature shows a com-
mon upper threshold of 4 or 5. If the value is above this threshold, serious multi-
collinearity is present.

Furthermore, normality of errors is specifically desired when employing the common
Ordinary Least Squares (OLS) linear regression. Normality of errors can be tested using a
QQ plot. The random forest regression makes little assumptions about the data, however
normality of errors is desired because it implies the errors can not be predicted any more
by available data.

6.6.3 Evaluation criteria

Several common measures exist to evaluate model performance:

1. Mean error (ME) is calculated by taking the mean of the residuals. It can show
whether the model systematically over- or underpredicts values, i.e. has a bias. It
places no emphasis on outliers which may skew the result.

2. Mean absolute error (MAE) is comparable to ME, however it takes the mean of the
absolute values of the residuals. It can therefore show how large the average error is.

3. Root mean square error (RMSE) is calculated by taking the square of the residuals
and then taking the root of the mean of that. By squaring the residuals, it is more
sensitive to outliers than ME or MEA and does not indicate the direction of the error.
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4. Coefficient of determination, denoted by R2, expresses the percentage of variance in
the predicted variable that is explained by the linear model. When using multiple
variables, the adjusted R-squared R̄2 is recommended, R2 and R̄2 are formulated as
follows:

R2 = 1 −
∑

i e
2
i∑

i (yi − ȳ)2

R̄2 = 1 − (1 −R2) n− 1
n− p− 1

The ME identifies a systematic bias in the model, while the MAE and RMSE give an
indication as to the size of the errors. R2

adj shows how much of the variance in the data is
identified by the model. All metrics carry value for judging the performance of the produced
models. These evaluation criteria can be used for both linear regression as well as random
forest regression since they only deal with the prediction and target value.

6.7 Feature importance
Finally, to determine which factors are important to the prediction, the feature importance
is determined for all features of the final model. In linear regression, the features are as-
sumed to be independent and the impact of the feature on the prediction can be determined
by taking the coefficient of the feature, or βi. A large absolute value of a coefficient implies
that the feature has a large impact on the target variable. Feature importance for the
random forest can be measured using the Gini index.
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7 Case study: results
In this section, the results of data pre-processing, the experiment, model validation, and
feature importance are presented. With regards to pre-processing, notable changes in size
of the dataset and contents of the data are reported. Construction of the final model
and its features and performance are discussed, model validation is performed and feature
importance reported.

7.1 Data pre-processing
Data pre-processing has lowered the number of tickets and changed the values in the data.
This subsection presents the impact of the pre-processing.

7.1.1 Filtering

Filtering has decreased the number of tickets per year and category. While removing the
non-plannable tickets is part of the filtering process, number of tickets after filtering are
also reported for the non-plannable tickets for reference.

After applying filtering, the number of tickets for analysis is reduced from 178 554 (all
tickets created by Amsterdam on assets owned by Amsterdam created in 2017, 2018, or
2019) to 114 558, of which 32 446 are non plannable. Table 9 shows a breakdown of the
number of tickets per year and category before and after processing. Around 40 000 tickets
are discarded due to sharing a single root ticket of which roughly 6 000 tickets are non
plannable. Furthermore, approximately 5 500 tickets are removed due to being likely part
of a project of which 2 500 are non plannable.

2017 2018 2019
Category Before After Before After Before After
Corrective 3 632 2 898 6 180 4 539 11 653 9 297
Cleaning 206 197 2 712 2 590 7 244 7 182
Repair after preventive 578 298 3 577 1 964 1 813 954
Repair after inspection 1 810 1 057 704 378 2 128 1092
Other (plannable) 23 510 14 752 34 341 21 078 69 466 46 282
Total non-plannable 6 226 4 450 13 173 9 471 22 838 18 525
Total 38 736 19 202 47 514 30 549 92 304 64 807

Table 9: Number of tickets per category and year before and after pre-processing.

A trend of increasing number of tickets over the years is visible both before and after
filtering.

7.1.2 Data correction

The number of distinct container types is reduced from 211 to 155 by normalizing container
types names. Of the available 28 000 assets (wells and containers), 16 000 are missing either
the operational, placement, or delivery date which is subsequently forward filled. As an
indication of the impact of this imputation: for those assets that do have the operational
date and created date filled (process wise these dates are the last and first dates recorded
respectively), the 90th percentile of the difference in these dates is 223 days. This means
that the difference between these dates is generally quite large, and forward filling these
dates may have a large impact as an asset is likely to be placed in the wrong year.
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The number of missing demographic values is discussed in Section 5.3. With exception
of one ward in the ward dataset and 47 neighbourhoods in the neighbourhood dataset, all
missing values are amended through the use of linear regression. Ward IJburg Oost (M50)
has too much missing data to interpolate missing values. Furthermore, 3 years of data for
46 neighbourhoods and 1 year for the remaining neighbourhood can not be interpolated.
The result is that 3 records in the ward dataset and 139 records in the neighbourhood
dataset have to be discarded due to missing data.

7.1.3 Data transformation

Data is transformed to have one value for each feature per year and area combination.
Two variants are produced: one on the resolution of neighbourhoods and another on the
resolution of wards. The former exists of 1 193 datapoints, while the latter exists of 292
datapoints. An example of a full record of the neighbourhood variant is shown in Ap-
pendix A. The data consists of 227 features, the distribution of features over categories is
shown in Table 10 in the column ”Initial”. The other columns show how many features
in these categories remain after applying two iterations of feature selection as discussed in
the methodology, these values are further discussed in the next subsection. It should be
noted about the feature set that the container, insertion, and hoisting type features are
very sparse arrays, given the fact that most areas have a very low number of different types
of containers.

Ward Neighbourhood
Category Initial Intermediary Final Intermediary Final
Existing containers 1 1 1 1 1
Asset meta information 4 3 2 3 2
Asset type 175 - - - -
Compression containers 1 1 1 1 1
Hoisting type 5 5 4 5 4
Insertion type 15 - - - -
Waste fraction 7 - - - -
Demographics 39 10 - 1 -

Population 19 1 - 1 -
Household 5 - - - -
Income 6 1 - - -
Residency 4 3 - - -
Education 5 2 - - -

Table 10: Number of features in each category in the initial dataset, after intermediary
elimination of features based on multi-collinearity within categories, and after elimination
of features for the final model based on multi-collinearity between categories.

7.2 Experimental results
After data pre-processing, the experiment is performed: the feature set is narrowed down
based on the predictive power and multi-colinearity of features, a model is created and its
performance evaluated. The experimental results consist of the following parts, all parts
are discussed in the following sections:

1. Baseline model performance: linear and random forest;

2. Meaningful category selection;
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3. Final model performance and validation;

4. Final model feature set and importance.

7.2.1 Baseline model

The baseline model is constructed to predict the number of tickets solely based on the
number of containers in an area. Model performance for the baseline and final model for
both ward- and neighbourhood level prediction are shown in Table 12. These results are
discussed in results discussed in Section 7.2.3. In both the ward and neighbourhood models,
the linear model outperforms the random forest model.

7.2.2 Meaningful categories

The number of features has been heavily reduced by eliminating multi-collinear features
within categories. As shown in Table 10 after initial collinearity elimination and removing
categories that do not improve the baseline model, the total number of remaining features
is 20 for ward level models, and 11 for neighbourhood level models. These features are
distributed over the following categories that have shown to improve the baseline model:
asset age information, hoisting type, population, income, residency, education.

Table 11 details the performance of the intermediary models that combine the baseline
model with all non-collinear features of each category. A notable result is the excessively
bad scores of the model that has been augmented with the type features. This likely a
result of the high number of features combined with the sparseness of these features, even
after eliminating multi-collinear columns within the category, it still holds 55 features. The
model is expected to overfit during training because of the high number of very specific
features.

The variables are combined into a single set per prediction level. After eliminating
multi-collinear variables within these sets, all demographic variables are eliminated and
the number of variables in the remaining categories is reduced. Only one difference re-
mains between the ward and neighbourhood models: while the ward-based model kept the
minimum and average asset age, the neighbourhood-based model kept the minimum and
maximum asset age. The final feature sets for the ward- and neighbourhood-based models
are shown in Table 14 along with the importance of each feature. Feature importance is
further discussed in Section 7.2.4.

7.2.3 Model evaluation

The final models produced by the proposed methodology are those with the non-collinear
feature sets as described in Table 14. This subsection discusses the performance and validity
of the produced models. The scaled results of the final models are presented alongside their
baseline equivalents in Table 12, which allows for comparison of ward and neighbourhood
performance. The absolute results of the final models are shown in Table 13, which allow
for interpreting the errors in terms of number of tickets. The final models are subsequently
manually improved, the results of which are shown in Table 15 (scaled performance), Table
16 (absolute performance), and Table 17. The steps taken to improve the models and
discussion of their results is discussed in Section 7.2.5. The results show that the final
models outperform their baseline equivalents, but still show a relatively low R2

adj value, and
relatively high errors.

To validate the models, the steps outlined in Section 6.6.2 are performed.

1. • It is unlikely that the number of tickets has a direct effect on the number of con-
tainers with a given hoisting type; no decisions to place containers with specific
hoisting types have been known to be made based on the number of tickets.
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Prediction level Category ME MAE RMSE R2
adj

Ward Age 0.003 0.072 0.118 0.407
Compression 0.001 0.078 0.125 0.340
Hoisting type 0.001 0.078 0.125 0.322
Population 0.000 0.080 0.128 0.299
Income 0.001 0.082 0.130 0.281
Education 0.001 0.082 0.130 0.277
Housing 0.000 0.083 0.132 0.260
Insertion type 0.004 0.084 0.130 0.240
Fraction 0.004 0.086 0.134 0.230
Type 6.943e+10 6.943e+10 3.884e+11 -7.919e+24

Neighbourhood Hoisting type 0.001 0.065 0.099 0.317
Compression 0.001 0.066 0.101 0.294
Age 0.000 0.066 0.101 0.284
Income 0.000 0.070 0.105 0.238
Education 0.000 0.070 0.105 0.236
Population -0.001 0.070 0.105 0.236
Insertion type 0.003 0.068 0.105 0.228
Housing 0.000 0.070 0.105 0.227
Fraction 0.003 0.070 0.107 0.205
Type -1.485e+09 1.485e+09 1.208e+10 -1.106e+22

Table 11: Performance of intermediary linear models that add all features of a category to
the baseline features. Categories are ordered by descending R2

adj score, such that the best
performing categories per level are at the top. Categories in bold are considered meaningful
features.

• The number of tickets is unlikely to influence the minimum, average, and max-
imum asset ages. High number of tickets may lead to high number of asset
replacements, lowering the ages of assets. However, this would require a high
number of severe tickets (requiring replacement of the asset) and no such large
amounts of severe tickets has been observed in the data.

• The high number of tickets may influence the number of compression containers.
It is a known fact that compressing containers have a much higher need for
maintenance than non-compressing containers. As such, high number of tickets
have lead to a stop in acquiring such containers. The impact of this decision is
however not expected to be noticeably present in the data given the time of this
decision and the long life-span of existing containers.

2. The residuals of the predictions are plotted against the district the predicted ward
belongs to, and against the years they were made in, in Figure 12. Residual plots
for the neighbourhood predictions are similar to those of the ward predictions and
are therefore not shown. The residuals per year show a clear upward trend for both
linear regression and random forest regression, implying that the number of tickets
has increased in a way that the models/data cannot explain. The residuals per district
show a reasonably independent spread with the clear exception of the linear regressions
in district ”N” (Noord). This exception may be explained by the fact that Noord
is the only district with high numbers of compression containers and is therefore
significantly different from other districts. This is a non-linear relation the linear
model can clearly not explain. The random forest model is, however, able to account
for this phenomenon, as can be observed from Figure 12 (d), where the residuals for
district Noord are also evenly spread around 0.
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Model Type ME MAE RMSE R2
adj

Ward baseline Linear 0.001 0.082 0.130 0.284
Random forest 0.002 0.085 0.143 0.139

Ward final Linear 0.003 0.072 0.115 0.426
Random forest 0.016 0.072 0.119 0.385

Neighbourhood baseline Linear 0.001 0.070 0.105 0.240
Random forest 0.000 0.070 0.110 0.162

Neighbourhood final Linear 0.001 0.061 0.097 0.345
Random forest 0.004 0.062 0.102 0.273

Table 12: Performance metrics of all produced models, with exception of intermediary
models used for feature selection. Note that all features and the target variable are scaled
between 0-1, meaning that the absolute performance metrics do not give an indication in
number of tickets.

Model Type ME MAE RMSE R2
adj

Ward baseline Linear 0.443 45.286 71.657 0.284
Random forest 0.378 47.130 78.433 0.142

Ward final Linear 1.683 39.547 63.766 0.429
Random forest 6.835 40.629 67.785 0.343

Neighbourhood baseline Linear 0.112 14.307 21.447 0.240
Random forest 0.139 14.298 22.488 0.165

Neighbourhood final Linear 0.117 12.556 19.852 0.345
Random forest 1.021 12.875 21.223 0.251

Table 13: Performance metrics of all produced models, with exception of intermediary
models used for feature selection. Error values are absolute, allowing them to be interpreted
as number of tickets.

3. Plotting the residuals per feature shows one clear issue: the residual plots for hoisting
types show that the range of these features is very limited, consisting of 3-10 unique
values with the majority of points being 0. An example of this observation is shown
in Figure 13 (a) showing the residuals of hoisting type ”3 haken” for neighbourhood
level prediction. While this phenomenom is less pronounced for ward level predictions
shown in Figure 13 (b), there is still a noticibly high number of ”0” values. Given the
limited range of values, it seems the features are not informative to the model.

4. VIF scores are presented in Table 14, they show that the VIF scores of all features
are below the threshold of 4, this is a natural result of the chosen methodology in
which all features over the threshold of 4 are discarded.

Errors are not normally distributed, showing less than expected errors in the lower
positive residual ranges (0-150) and more than expected errors in the higher positive range
(150-500), see Figure 14. A possible explanation of this observation is that the variance in
the number of tickets increases with the number of tickets, making the higher ranges less
predictable than the lower ranges.
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(a) Residuals by year - Linear regression (b) Residuals by district - Linear regression

(c) Residuals by year - Random forest regres-
sion

(d) Residuals by district - Random forest
regression

Figure 12: Residual plots for the linear model predicting number of tickets in wards for (a)
years and (b) districts and for the random forest model for (c) years and (d) districts.

7.2.4 Feature importance

The feature importance of the final models used in predicting the number of tickets for
wards and neighbourhoods are shown in Table 14. From the tables, it is clear that both the
linear model as well as the random forest model identify the number of existing containers,
the number of compression containers, and the lowest and average asset ages as important
factors. The hoisting types ”1 haak” is identified by the random forest model as reasonably
important, but in the linear model, the feature is not less important.

7.2.5 Manual improvements

Based on the determined feature importance, features can be pruned that do not add
significant value to the model. All hoisting type features and the lowest asset age have
relatively low coefficients and/or Gini indexes. If these features are removed from the
model, the predictive capabilities of the linear models stays roughly the same, while the
model is conceptually simpler. The performance of the final models with reduced features
is shown in Table 15 (scaled) and Table 16 (unscaled), compared to the original models
with extended features. Feature importance is reported in Table 17.
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(a) Neighbourhood level prediction (b) Ward level prediction

Figure 13: Residual plots for hoisting type ”3 haken” for neighbourhood and ward level
predictions, showing the low number of unique values and high number of ”0” values.

(a) Error histogram - Random forest (b) QQ-plot of residuals - Random forest

Figure 14: Error histogram and QQ-plot of the prediction of number of tickets for wards.
The linear regression model plots look similar.

The final manually improved models show that for ward level predictions more variance
in the data is explained when compared to neighbourhood level predictions. This is likely
due to a reduction in noise when comparing ward level data to neighbourhood level data.
However, the (scaled) MAE and RMSE scores of the ward models are higher than those
of the neighbourhood models, implying that the ward model perform worse. However, the
difference is small, and the reason for this difference may also lay in the scaling method: large
outliers in one data level and small outliers in another may skew the scales unrealistically.
Based on the MAE scores, one can reasonably expect an error of 40 tickets on ward level
predictions and 12 on neighbourhood level predictions. RMSE values of approximately 65
and 20 show that the errors are prone to having outliers. Given an average number of
tickets of 206 and 50 respectively, these error rates are reasonable, but seem too large for
practical use.
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Prediction level Feature Coefficient β Gini index VIF
Ward Hoisting type ”1 haak” 0.062 0.124 1.709

Hoisting type ”3 haken” 0.044 0.023 1.168
Hoisting type ”anders” -0.101 0.003 1.079
Hoisting type ”geen” -0.092 0.045 2.029
Compression containers 0.188 0.170 1.172
Existing containers 0.387 0.350 2.550
Lowest asset age -0.111 0.104 1.883
Average asset age 0.262 0.182 2.918

Neighbourhood Hoisting type ”1 haak” 0.268 0.259 1.458
Hoisting type ”3 haken” 0.038 0.016 1.116
Hoisting type ”anders” -0.020 0.001 1.032
Hoisting type ”geen” -0.042 0.027 1.804
Lowest asset age 0.004 0.152 1.564
Highest container age 0.067 0.138 2.236
Existing containers 0.265 0.269 2.669
Compression containers 0.204 0.139 1.233

Table 14: Features in the final prediction models. Feature importance for the linear model
(Coefficient β) and random forest (Gini index) are shown.

Type ME MAE RMSE R2
adj

Ward final Linear 0.003 0.072 0.115 0.426
Random forest 0.016 0.072 0.119 0.385

Ward final - reduced features Linear 0.001 0.072 0.116 0.429
Random forest 0.004 0.073 0.122 0.370

Neighbourhood final Linear 0.001 0.061 0.097 0.345
Random forest 0.004 0.062 0.102 0.273

Neighbourhood final - reduced
features

Linear 0.001 0.060 0.094 0.381
Random forest 0.001 0.063 0.102 0.276

Table 15: Scaled performance metrics of the final model with reduced features, compared
to the original.

Type ME MAE RMSE R2
adj

Ward final Linear 1.683 39.547 63.347 0.426
Random forest 6.835 40.629 67.785 0.343

Ward final - reduced features Linear 0.826 39.536 63.766 0.429
Random forest 2.078 40.743 66.917 0.371

Neighbourhood final Linear 0.117 12.556 19.852 0.345
Random forest 1.021 12.875 21.223 0.251

Neighbourhood final - reduced
features

Linear 0.173 12.244 19.337 0.381
Random forest 0.279 12.785 20.838 0.281

Table 16: Unscaled performance metrics of the final model with reduced features, compared
to the original.
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Prediction level Feature Coefficient β Gini index VIF
Ward Average asset age 0.259 0.335 1.709

Compression containers 0.202 0.184 1.162
Existing containers 0.411 0.480 1.602

Neighbourhood Average asset age 0.386 0.392 1.496
Compression containers 0.234 0.177 1.136
Existing containers 0.340 0.437 1.459

Table 17: Feature importance of the final models with reduced features.
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8 Discussion
In this section, the literature study, case study experiment, and their results will be dis-
cussed. An analysis is made of the weaknesses and strengths to this study, what new
questions and areas of research this study uncovered, and what threats exist that could
invalidate the results of this study.

The literature study has identified that maintenance prognostics generally rely on the
age of an asset, and that multiple instances of a model are created to take into account
different circumstances such as different cities, different asset types, and different time spans.
These models are often of a statistical nature, in which the likelihood of an asset requiring
maintenance is a function of time or usage, but exceptions exist. Using this likelihood of
is also known as condition based maintenance. The chosen approach for the case study
experiment, training and applying a linear regression model for a specific area, is in line
with these common approaches. The used model, linear regression, was chosen to support
more input variables than common statistical methods and to allow for easy determination
of feature importance. However, since the results identify the age of an asset as the primary
factor, a statistical model may have sufficed.

While the literature study does identify the taken approach as a commonly successful
one, it lacks quantitative support for the decision to apply these methods to the case study.
This study would benefit from a more structured literature study in which the use of this
approach is identified and the performance of different types of models, scenarios, and used
variables are reported for a higher number of studies than is currently the case, in a more
structured manner.

The literature study furthermore identifies relevant information from the domain of
MSW prediction. Even though the prediction of waste generation is not directly transferable
to the prediction of maintenance, it was expected to assist maintenance predictions by
providing (latent) information on the usage of the container, which can subsequently impact
maintenance requirements. However, the experiment has shown that this impact is either
not present or negligible. Future research into the topic of this thesis should therefore treat
this problem more as a maintenance-oriented problem, and less as a socially-oriented one.

The case study describes three parts: the background of underground waste container
maintenance in Amsterdam, the available data, and the experiment. While not a primary
goal of the thesis, the gathered background information and data description is expected
to be of great value to the stakeholders in this research: the municipality of Amsterdam
and Curious Inc. The consolidation of information and complete presentation of current
processes and data can serve as a reference for both parties to understand each others
processes for future collaboration.

The experiment is grounded in existing work and leads to the clear conclusion that
the only relevant factors for underground container maintenance in the municipality of
Amsterdam are related to asset age. An issue left unexplained by the experiment is the
apparent yearly increase in maintenance. An increase which is not (linearly) correlated with
the increase in number of assets as one might expect. This open point is further discussed
as future work in Subsection 8.1.

Some problems in the maintenance data have become apparent that are expected to
have an impact on the results. The most concrete issue with the data is that historic
locations of a container are not recorded. If a container is moved from one location to
another, all references of the container existing at the previous location are lost. Moreover,
since the maintenance history of the container is moved along with it, the new area inherits
all past maintenance of the container. The exact impact of this deficiency is not clear,
however domain experts indicate that moving a container between neighbourhoods seldom
happens. Additionally, various aspects of the data reflect another issue: the current data
set and maintenance administration application is very much optimized for operational
support, but not so much for strategic analysis. Indicators of this include the needlessly
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high number of container types (which may work well in practice, but make aggregation
hard), the previously mentioned lack of history of a containers placement (which makes
reliable historic analysis questionable), and lack of administration of certain fields (most
notably placing/delivery/operational dates). Detailed causes/damaged parts for historic
maintenance actions are also hard to deduce, since only the problem module is consistently
identified and the free form text description is hard to parse. It should be noted that since
2019, the municipality has started to consistently administrate the cause of the problem
(i.e. misuse by garbage collector, misuse by citizen, fire, vandalism, etc.) which should
assist in future research. Based on the issues encountered in this thesis, the municipality
is advised to also create an exhaustive list of common problems and resolutions (i.e. ”inlet
stuck due to damage”, ”repair inlet” or ”replace inlet” respectively) such that these may
be easily identified in future research and analysis on specific problems can be performed,
without the need to rely on automated text parsing.

Some demographics data has been interpolated based on previous years, while assumed
to be accurate enough for the purposes of this study, it must be noted as a possible threat
as it may have caused compounding errors. For a deeper analysis of this approach and its
advantages and disadvantages, the reader is referred back to Section 6.3.2.

8.1 Future work
This subsection will discuss various new avenues of research that have surfaced during the
writing of this thesis. Such avenues may serve to deepen this research, revisit assumptions
made in this thesis, or address new issues that have presented themselves.

The following questions have surfaced during this study that may be answered in sub-
sequent research.

A trend of rising numbers of tickets over time that is not proportional to the increase in
number of assets has been shown, as is well illustrated in Table 9 and Figure 9. This trend
can be explained by the increasing age of the assets as the years increase. However, the
research has also shown that while age is indeed an important factor to estimate the yearly
maintenance of a container, it has also shown that it is not a particularly strong predictor.
As such, it is expected that other causes exist that cause the number of tickets to increase
over the years such as an increased willingness to use Grybb to report and administrate
issues.

The various districts have been shown to behave differently when it concerns the number
of tickets as also clear from Figure 11. Such a difference could be easily explained given
the fact that the districts where in control of waste processing themselves until end 2016,
with varying policies and processes as a result. While the processes have been consolidated
city-wide at the start of 2017, old behaviour of users in the various districts is expected
to still be present, and have an impact on the number of tickets generated by a district.
As such a relation can hardly be represented by a linear regression model while still being
generalizable, the discrepancies between districts may be addressed by creating a model
per district. Such models should then be created with the feature set that is concluded by
city-wide experiments to keep the models generalizable.

Apart from optimizing models to fit various districts, the maintenance policies of these
districts could be analyzed for similarities and differences based on the results found in this
study. The results of the study may be used to help calculate the ideal age to replace a
container; at which point the cost of the generated tickets break even with replacement
costs and subsequent reduced maintenance.

To deepen this specific research topic, the following opportunities have shown them-
selves.

The garbage collection data that has been ignored by this study may be re-examined
at a later time when flaws are hopefully resolved. Furthermore, given that the flaws of the
data are known and consistent, it may be possible to formulate some coarse features with
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it. Specifically, while a roughly estimated 20% of all garbage collections is missing, as long
as this missing data is spread evenly over districts it may be useful for the purposes of this
particular subject. However, determining the extent of the data reliability is a matter of
research on its own.

A comparative study between municipalities may be performed to (1) validate the results
of this study and (2) generalize the results, given that the municipality has a similar setup
and workflow regarding underground waste containers. Furthermore, if such a municipality
shows a significantly different weather pattern than the municipality of Amsterdam, such
a study may also study the effects of weather on maintenance load.

Opportunities specific to the maintenance data concern processing the free text descrip-
tion of a ticket and refining the exact issues that are the cause of a ticket. It seems feasible
that the free text can be mined to include extra features with fine-grained descriptions of
the problems. Furthermore, an attempt may be made to specialize prediction models on
very specific problems, such as predicting only the number of broken hoisting rods. Ticket
description mining may assist in narrowing tickets down to a suitable level.

While useful to know, predicting the number of tickets in a year is not the most impor-
tant target variable when considering the use case of a yearly budget planning. The most
important variable to predict could be the total cost, or materials and man-hours required.
These numbers can, in part, be retrieved from the available data but it is unknown how
consistent and reliable these records are. If performed, a regression can be made directly
on the total expected cost. Alternatively, the expected cost/time given a type of ticket
can first be calculated and then combined with a prediction of the how often such a ticket
occurs to arrive at a total estimate.

Furthermore, this study performed a forecast of maintenance and not predictive main-
tenance due to the lack of real-time data. Given the results of the experiment which seem
to point towards age as being the primary explaining factor of maintenance, it seems irrel-
evant at this time to invest in gaining real-time data of containers and their usage. Further
research into more specific cases of damage may find that they do require sensor data. For
example, if the causes of damage to the inlet is further analyzed, information on how often
the inlet mechanism is opened and how much garbage is deposited might be benificial.

Some assumptions that are made in this research may be separate subjects of study.
Most notable in this category is the prediction of demographic variables: is such a pre-

diction feasible and accurate, and how should it be executed? Additionally, the validation
of the predictive model assumes that the performance of an administrative area is indepen-
dent from the performance of previous year. However, cases are imaginable in which this
is not true: for example when a neighbourhood has an excessive number of tickets in one
year, special care may be taken during the next year to keep the number of tickets low.
The development of a single area over multiple years may be studied to confirm or disprove
such assumptions.

Finally, this study has only considered unplanned tickets to satisfy one of the goals of
the municipality of Amsterdam: lowering the overall number of tickets. The reasoning was
that lowering the number of unplanned tickets is more feasible than lowering the number
of planned tickets because planned tickets are generally (legally) required to be performed.
However, periodic cleaning is part of these planned tickets and performed quarterly per
container. A feasible approach to lowering the number of planned tickets may be deciding
whether or not a container should actually be cleaned quarterly, or if a lower frequency is
also acceptable.

8.2 Research sidetracks
Aside from the research presented in this thesis, two other research directions were explored
but not thoroughly followed due to lack of results or promise. This section makes note of
those sidetracks in a short, less formal way such that this knowledge is not lost. Two
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subjects were explored: predictive maintenance on underground waste containers using
collection data, and cost prediction of yearly maintenance.

Application of predictive maintenance was attempted based on waste collection data.
Domain experts have indicated that certain types of damages are a direct result of rough
handling during collection (or maintenance) of a container. For example, when the container
is not lifted out of its well perpendicular to street level, horizontal forces are exerted on
the hoisting mechanism, which is primarily designed to handle vertical forces, causing the
hoisting rods to bend occasionally.

During garbage collection, the weight of garbage in the container is measured using
sensors. The container is lifted out of it’s well, kept hanging stationary in the air to
perform a measurement, emptied, weighted again, and lowered back into the well. The
expectation was that anomalies might present themselves that would correlate to specific
cases of damage such as bent hoisting rods. However, such a pattern did not become visible
and the research was not pursued further.

Secondly, an optimistic goal of this thesis was to predict the expected cost of maintenance
for a year. The chosen approach was to first predict the number of maintenance issues
and then predict the costs based on the expected number of tickets. The primary issue
encountered in this approach was that the prediction of number of tickets is not reliable
enough to base another prediction on. Furthermore, estimating the cost of specific issues
(i.e. a bent hoisting rod, broken emptying doors) proved a challenge and may be a subject
of research on its own. As such this part of the research was removed from scope. The main
challenge in estimating costs of specific issues is the absence of detailed and structured data
with regards to the exact damaged parts, causes, and actions taken. Such data is often
generally described by structured data, but the specifics are contained in free text fields.
As such, future research in this direction might start with text mining of free text fields in
tickets.
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9 Conclusion
In this thesis, a model is created to predict the required yearly maintenance on underground
waste containers for the municipality of Amsterdam, the Netherlands. The goals of the
study are to identify relevant factors to the yearly required maintenance such that they
may be addressed if possible, and the maintenance lowered. The construction of the model
is inspired by existing literature in the areas of Prognostics Health Management (PHM)
and Municipal Solid Waste (MSW) generation. Subsequently, the model adapted based
on local domain expert input and available information and applied to the case study. To
conclude the thesis, the research questions are answered.

Sub question 1: What factors can be relevant in predicting required maintenance
on underground waste containers?

Literature on PHM suggests use of asset age, weather conditions and location of the
asset. Literature on MSW shows demographics play a role in MSW generation and names
factors such as household size, residency type, age groups, employment, gross domestic
product, education, culture, geography, and climate.

Sub question 2: What types of models are appropriate to model the required
maintenance in such a way that relevant factors can be identified and explained
to domain experts?

In the field of PHM, mostly statistical models are used such as Weibull distributions,
Kaplan-Meier estimators, and Cox Proportional Hazard Model. Such models generally
only take one input parameters and produce a likelihood of the asset failing in a given time
span. To compensate for different operating circumstances of assets (weather, environment,
etc.), separate models are constructed for different operating contexts. Both a Weibull
distribution and a Kaplan-Meier estimator have limited complexity and can be explained
to stakeholders. Predictions on MSW generation are commonly performed using a wide
array of data driven models such as linear regression, support vector machines, and neural
networks. Such studies often note that a linear model is preferred given that it is easy to
explain to (non-technical) stakeholders.

Sub question 3: To what extent can the chosen model predict the required un-
planned maintenance for the municipality of Amsterdam?

A linear regression model is created to predict the number of unplanned maintenance
occurrences on underground waste containers in the municipality of Amsterdam. An iter-
ative approach is used to discard (multi-)colinear or irrelevant features. The final model
has a mean absolute error of 40 tickets, on an average value of 69 tickets per district per
year. As such, roughly speaking, one can expect a 60% error on the prediction. While
this final model performs better than an intuitive baseline prediction, its predictions are
hardly actionable in a practical context. The iterative feature elimination has discarded all
features except the number of containers, age-related features, and asset type features. The
latter, however, have been shown to not be meaningful predictors, and have been discarded
manually.

Research question: How can unplanned maintenance on underground waste
containers be estimated?

The primary answer this thesis gives to this question is that a solution to the problem
should be sought within the domain of PHM and maintenance. Factors that have shown
to be relevant to waste generation have little to no impact on the number of unplanned
maintenance occurrences. Furthermore, maintenance prediction using a linear model has
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been shown to be feasible, but the prediction is overall not accurate enough to be useful in
practice. Prediction using a linear model does show promise, and, supported by findings in
this thesis, future work may be able to arrive at a model suitable for use in practice.

The main contribution of this research is the exploration of maintenance forecasts on
underground waste containers. The approach of maintenance forecasting in domains sim-
ilar to underground waste containers has been tested against a use case and found to be
applicable. During implementation of the use case, a detailed breakdown of available data
has been made exposing its strengths and flaws which may serve to improve the gathering
of data for the sake of future research. Furthermore, future work has been suggested to
further delve into maintenance forecasts for underground waste containers in the munici-
pality of Amsterdam, which is expected to be transferable to different Dutch municipalities,
lowering the future cost and effort required to keep garbage disposal facilities available for
citizens.
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A Full example record
Below is a full example of a record on neighbourhood level (as opposed to ward level) used
to train and validate the predictive models. This record is from the full dataset and has
not been checked for multi-collinearity.

Feature name Value
n code A00d
year 2019
year num 2019
d code A00
cp code A
existing containers 2
ticket count 1
meta age min container age -256
meta age average container age -25
meta age max container age 93
meta age stddev container age 123.107
type afvalboei bovengrondse container blauwgeel... 0
type algemene order 0
type asw bos lommer belfast khc rest 0
type asw khdc glas kh 0
type asw khdc papier kh 0
type asw khdc rest 0
type asw khdc rest kh 0
type asw rubens rest kh 0
type asw vconsyst metro rest kh 0
type bauer rest bovengrondse 0
type bg brood rolcontainer 0
type bos en lommer ondergrondse rest 0
type bovengronds cushion bwaste 0
type bovengrondse collector bammens glas 0
type bovengrondse collector bammens papier 0
type bovengrondse collector bammens rest 0
type bovengrondse glas 0
type bovengrondse rest 0
type bovengronds papier 0
type bovengronds rest 0
type bovengronds textiel symphanie 0
type centrum amsterdam evo glas 0
type centrum amsterdam evo papier kh 0
type centrum evo l glas 0
type centrum evo l papier 0
type centrum evo l rest 0
type centrum glas kh evol 0
type centrum papier kh evoll 0
type centrum rest evo kh 0
type centrum stadsdeel evo papier kh 0
type centrum stadsdeel evo rest kh 0
type centrum stadsdeel glas 0
type centrum stadsdeel glas kh 0
type centrum stadsdeel glas kh eigen zuil 0
type centrum stadsdeel papier kh wolff 0

52



type engels upperground 0
type gft kh oc vconsyst 0
type glasbont kh semibg bauer 0
type glas wit hkz oc vconsyst 0
type haaks glas bammens downcost 0
type haaks glas metro 0
type haaks papier metro 0
type haaks plastic metro 0
type haaks rest metro 0
type hms rest 0
type khc glas amsterdam standaard 0
type khc glas amsterdam vconsyst 0
type khc glas bg 0.888889
type khc kartonklep amsterdam standaard 0
type khc papier amsterdam standaard 0
type khc papier amsterdam standaard kk 0
type khc papier amsterdam vconsyst 0
type khc papier bg 1
type khc plastic amsterdam standaard 0
type khc plastic amsterdam vconsyst 0
type khc plastic bg 0
type khc rest amsterdam standaard 0
type khc rest amsterdam vconsyst 0
type khc rest belfast 0
type khc rest bg 0
type khc rest semi 0
type khc textiel amsterdam standaard 0
type kh glas bammens downcost 0
type kh glas bammens inwerpzuil 0
type kh glas icova 0
type kh glas rub tr verstel 0
type kh metro 0
type kh papier bammens downcost 0
type kh papier icova 0
type kh papier metro 0
type kh rest bammens downcost 0
type kh rest bammens inwerpzuil 0
type kh rest metro 0
type kikker rest 0
type kunststof plastic kh bg mcb 0
type mcb bovengrondse glas 0
type mcb bovengrondse papier 0
type mcb bovengrondse plastic 0
type mcb bovengrondse rest 0
type nieuwe west belfast glas 0
type nieuwe west belfast rest 0
type nieuw west belfast papier 0
type nieuwwest glas kh tr opl inst 0
type nieuw west kuub ru ki pap 0
type nieuw west papier 0
type nieuwwest papier 0
type nieuw west rest 0
type nieuw west rest belfast 0
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type nieuwwest rest rubens 0
type nieuwwest sv rest tr opl inst 0
type oost belfast ed kh db rest 0
type oost stadsdeel bwaste glas 0
type oost stadsdeel bwaste papier 0
type oost stadsdeel bwaste rest 0
type oost stadsdeel dc glas h 0
type oost stadsdeel dc papier h 0
type oost stadsdeel dc rest h 0
type oost stadsdeel ijburg papier kh 0
type oost stadsdeelijburg rest rubens kh 0
type oost stadsdeel ijburg rubens kh glas 0
type oost stadsdeel ijburg rubens rest kh 0
type oost stadsdeel khdc glas 0
type oost stadsdeel khdc papier 0
type oost stadsdeel khdc rest 0
type oost stadsdeel rubens glas kh 0
type oost stadsdeel rubens papier kh 0
type oost stadsdeel vconsyst glas 0
type oost stadsdeel vconsyst glas ral 0
type oost stadsdeel vconsyst kunststof 0
type oost stadsdeel vconsyst papier 0
type oost stadsdeel vconsyst papier ral 0
type oost stadsdeel vconsyst rest 0
type oost stadsdeel vconsyst rest grijsblauw ral 0
type oost stadsdeel vconsyst rest ral 0
type oost stadsdeel vconsyst textiel 0
type papier hkz oc vconsyst 0
type papier kh semibg bauer 0
type pers rest icova metro klem 0
type plastic khc pers amsterdam standaard sidcon 0
type rest hk oc vconsyst 0
type rest hkz oc vconsyst 0
type rest khc pers amsterdam standaard sidcon 0
type rest kh oc vconsyst 0
type rhino pers rest belfast kh 0
type rolcontainer kunststof rest 0
type rolcontainer staal rest 0
type semi ondergrondse oc asw 0
type sia melding 0
type sidcon pers rest 0
type sulo classic ii 0
type svg hkpf evol tropl 0
type svg hkz bel pap tropl 0
type textiel hkz oc vconsyst 0
type tvg hkz bel pap tropl 0
type tvg hkz bel tropl 0
type tvg kh bel tropl 0
type tvg khc utr tropl 0
type tv khfc snaas ams rest trinl 0
type tvr g kh bel gl tropl isol 0
type tvr g kh bel pap tropl 0
type tvr g kh bel tropl 0
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type tvri hz metro rest tr 0
type tvr kh bel gl tropl 0
type tvr kh bel pap tropl 0
type tvr kh bel pap tropl g 0
type tvr kh bel tropl 0
type tvr kh bel tropl g 0
type tvrkliko bel tropl 0
type utrecht rhino perscontainer rest 0
type west stadsdeel vconsyst glas 0
type west stadsdeel vconsyst papier 0
type west stadsdeel vconsyst rest 0
type zuidoost stadsdeel kliko rest 0
type zuid oost stadsdeel metro glas 0
type zuidoost sulo rest 0
bbga bevtotaal 352
bbga beveenouderhh 8
bbga bevalleenhh p 58
bbga bevpaarzkindhh p 29.2
bbga bevpaarmkindhh p 5.3
bbga bevoverighh p 4
bbga wbezet 1.35
bbga ihhink gem 45455.6
bbga iinkq1 p 23.9643
bbga iinkq2 p 20.6786
bbga iinkq3 p 22.4643
bbga iinkq4 p 13.5714
bbga iinkq5 p 19.25
bbga wcorhuur p 5.4
bbga wparthuur p 67.3
bbga wkoop p 27.3
bbga bevopllaag p 5.5
bbga bevoplmid p 27.5
bbga bevoplhoog p 67.5
bbga skses234 p 17
bbga skses gem 7.33333
bbga bev0 4 12
bbga bev5 9 4
bbga bev10 14 6
bbga bev15 19 4
bbga bev20 24 53
bbga bev25 29 74
bbga bev30 34 51
bbga bev35 39 39
bbga bev40 44 19
bbga bev45 49 16
bbga bev50 54 19
bbga bev55 59 16
bbga bev60 64 13
bbga bev65 69 13
bbga bev70 74 5
bbga bev75 79 5
bbga bev80 84 2
bbga bev85 89 1
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hoisting type 1 haak 0
hoisting type 3 haken 0
hoisting type anders 0
hoisting type geen 0
hoisting type kinshofer 1.88889
insertion type amsterdam 0
insertion type amsterdam standaard 0
insertion type anders 0
insertion type belfast 0
insertion type bovengrondse 1.88889
insertion type broodbak 0
insertion type bwaste 0
insertion type down cost 0
insertion type evolution 0
insertion type geen inwerpzuil 0
insertion type kikker 0
insertion type metro 0
insertion type rubens 0
insertion type type 2002 0
insertion type v consyst 0
pers containers 0
fractie brood 0
fractie gft 0
fractie glas 0.888889
fractie papier 1
fractie plastic 0
fractie rest 0
fractie textiel 0
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