
University of Twente
EEMCS

Formal Methods and Tools

FPGA-on-FPGAemulation using subgraph homeomorphism
MSc Thesis

Pim van Leeuwen (s1602772)

Wednesday 18th November, 2020

Technical Supervisor

dr. W. Kuijper

Academic Supervisors

dr. ir. R. Langerak

H.H. Folmer MSc.

Abstract

FPGAs allow reconfiguration of its logic at any point after production. The result is that

they are effective at prototyping application-specific integrated circuits, updating the inter-

nal logic while in the field and at low-cost low-quantity use cases. To optimise these pro-

cesses, it is crucial to properly educate engineers in the implementation of FPGAprograms

and the FPGA compilation process. Traditional FPGA programming pipelines involve a

computationally expensive (NP-hard) place & route process that slows down iterations of

FPGA programs and hinders the educational process. We propose a virtual environment

in which the students perform place & route manually such that the student learns about

the intricacies of place & route and in which compilation is linear. To this end, we require

emulation of a virtual FPGA on a physical, concrete FPGA. In this research, we establish

a methodology for finding such emulation mappings. To this end, we create an algorithm

for subgraph homeomorphism and optimise it for usage with graphs representing FPGAs.

This algorithm aims to find an emulation in as many cases as possible, as quickly as pos-

sible. Based on experiments run using this algorithm, we evaluate different settings for

our algorithm and establish an optimal configuration set for FPGA emulation graphs. Us-

ing this configuration set, we show that subgraph homeomorphism is computationally and

space-wise feasible for FPGA emulation problems. The result is a software package that

computes FPGA emulators: programs whose output is a program for a concrete FPGA

that emulates the provided input program for the virtual FPGA.

CONTENTS

1 Introduction 3

2 Objectives 6

3 Background 7

3.1 FPGAs . 7

3.1.1 Lookup tables . 8

3.1.2 Registers . 9

3.1.3 Logic cells . 9

3.1.4 Routing . 10

3.1.5 Pins . 10

3.2 FPGA compilation . 11

3.3 The FPGA virtual machine . 12

3.4 FPGA emulation . 14

3.5 Graph theory . 14

4 Literature 17

4.1 FPGA compilation . 17

4.2 Subgraph isomorphism . 17

4.3 Subgraph homeomorphism . 20

5 Models 22

6 Algorithm 23

6.1 Basis . 23

6.2 How to choose vertex-vertex pairs . 25

6.3 Source graph vertex order . 26

6.4 Target graph vertex order . 27

6.5 Path iteration . 28

6.6 Optimisations . 29

6.6.1 Refusing long paths . 29

6.6.2 Runtime Pruning . 29

6.6.3 Contraction . 30

6.7 Avoiding unintended current flow . 33

1

6.7.1 Avoiding unintended current flow from/to paths 34

6.7.2 Avoiding unintended current flow between mapped vertices 35

7 Pruning 39

7.1 Domain filtering . 39

7.1.1 Labels and neighbours . 40

7.1.2 Free neighbours . 41

7.1.3 Reachability of matched vertices (M-filtering) 41

7.1.4 Reachability of neighbourhood (N-filtering) 42

7.2 Pruning methods . 43

7.2.1 ZeroDomain pruning . 43

7.2.2 AllDifferent pruning . 43

7.3 When to apply . 44

7.3.1 Runtime calculation . 44

7.3.2 Caching domains - incremental domain calculation 45

7.3.3 Parallel calculation . 45

8 End-to-end example 46

8.1 FPGAs . 46

8.2 Graph models . 47

8.3 Finding a subgraph homeomorphism . 49

8.3.1 Applying ordering . 49

8.3.2 Applying contraction . 50

8.3.3 Running algorithm . 50

8.4 Obtaining emulation mapping . 54

9 Business case: Lattice ECP5 56

10 Experiments 61

11 Discussion 83

11.1 Algorithm . 83

11.2 Representativeness of test cases . 84

11.3 Scalability . 84

11.4 Disadvantages . 84

12 Conclusion 86

13 Future Research 88

Appendices 90

.1 History of subgraph isomorphism algorithms 91

.2 Examples of path iterators . 93

.3 Proof: contraction preserves subgraph homeomorphism 97

2

1 INTRODUCTION

Field Programmable Gate Arrays (FPGAs) play a significant role in the semiconductor

industry. Because companies can configure the logic of these devices after mass hard-

ware production, they can effectively use them for prototyping and emulation ofApplication

Specific Integrated Circuits (ASICs). These are chips that are custom made for specific

purposes and cannot be reconfigured. FPGAs can also be used to reconfigure program

logic effectively, even while the hardware is in use. Moreover, the high computing perfor-

mance for parallel calculations yielded by a small chip makes an FPGAsuitable for sensor

systems [21], cryptography[56, 43, 29], digital signal processing[20], protocol implemen-

tations[48] and other types of high-performance computing [31].

We should adequately educate the engineers that implement FPGA programs to exploit

their potential in this variety of problem areas. Usually, this is done by having students im-

plement programs in a Hardware Description Language (HDL) such as VHDL or Verilog,

compile it using FPGA vendor software to bit-level code that is written to FPGA hardware

and execute it. This type of compilation takes a significant amount of time as the place &

route process required for compilation are both NP-complete problems [19]. Another op-

tion is to simulate FPGA programs instead, which is the industry standard used for testing

ASICs (non-programmable FPGAs). Simulation circumvents the place & route process.

However, simulation software run on a CPU has to simulate each component sequentially

for each CPU core, resulting in enormous performance loss and thus a negative learning

experience.

Another technique that could be used to execute an FPGA configuration is modelling the

semantics of virtual FPGAcomponents in an HDLmodule. The engineer can then simulate

the execution of a virtual FPGA program by providing both the input and configuration of

these components as (stored) inputs to the hardware. An example of this is illustrated in

Section 3.3 and Figure 3.7. The trade-off here is that the hardware uses many resources

for the simulation of each component. Because of this increased resource consumption,

the performance of FPGA programs decreases as well. This technique is generally not

used in the industry because of this reduced performance.

Techniques that require students to implement FPGA programs in HDLs furthermore ab-

stract away the process of place & route. This process significantly affects the perfor-

3

mance of the hardware implementation of the program. Since students should be edu-

cated to use this process optimally or even improve it, they should be aware of it and its

underlying operations to build a bottom-up understanding of the entire FPGA engineering

pipeline.

We propose an education environment where students implement program logic and place

& route manually in a simple, virtual FPGA. This way, the course designer has full control

over the learning environment without being constrained to physical hardware. Performing

the NP-complete place & route manually allows the rest of the compilation process to take

linear time, providing a configuration for the virtual FPGA. We aim to devise a method to

compiling this configuration for a virtual FPGAto a configuration compatible with a concrete

one in linear time.

This way, students can circumvent the time-consuming compilation from HDLs to FPGAs,

resulting in faster iterations and improved learning experiences. Furthermore, students

can use this environment to learn the inherent difficulty of place & route before they use

tools that encapsulate this process in a ‘black box’. They will have to do this when they

implement more complex structures in the virtual environment.

We can achieve this emulation by calculating amapping from the configuration of a virtual

FPGAto the configuration of a real-life FPGAboard (concrete FPGA). Thismapping retains

the semantics of the configuration but makes it suitable for execution on real hardware.

While the format of an FPGAconfiguration is usually kept secret by hardware vendors [25,

62, 4], some FPGA boards have been reverse engineered to reveal the underlying format

[58, 44]. Once this technique has been implemented and tested on those FPGAs, It can

be put in practice in lab sessions of colleges and universities. Moreover, vendors can im-

plement it for undisclosed FPGAdesigns and configuration formats as well for educational

purposes as well.

Another use case of such mappings is the synthesis of the same configuration to many

hardware FPGA devices. Using our technique, synthesis of some FPGA program only

has to take place once (to a virtual FPGA) before suitable configurations can be retrieved

for many hardware architectures. Other applications may also benefit from this research

when viewing partial FPGA emulation as a form of pre-compilation: performing FPGA

compilation as much as possible without the knowledge of some aspects of the configu-

ration. If this research is extended to include other forms of partial compilation, it may be

used to improve the speed of general iterations of FPGA development as well.

The goals of this research are specified in Chapter 2 (Objectives). This is a more spe-

cific description of the problem we outlined in this introduction requiring little background

information. In Chapter 3 (Background) we will provide background on FPGAs and the

graph problem ‘subgraph homeomorphism’: a graph problem we will use to reach our

objectives. In Chapter 5 (Models), we specify how we model FPGAs as graphs to make

them applicable for subgraph homeomorphism. In Chapter 6 (Algorithm), we describe the

algorithm we use to solve the subgraph homeomorphism with these graphs. We prune the

4

search space with methods described in Chapter 7 (Pruning). We perform experiments

with models and the algorithm with different settings in Chapter 10 (Experiments), followed

by a discussion (Chapter 11) interpreting the results and a conclusion in Chapter 12.

5

2 OBJECTIVES

This research involves how to emulate a virtual FPGA on a concrete FPGA. To this pur-

pose, we have established the following research question:

Given a graph specification of the structural layout of a virtual FPGAA and a graph spec-

ification of the structural layout of a concrete FPGA B, how do you assemble a linear1

function f such that for any representative model of a program x for model A, f(x) is a

representative model of a program for model B that is semantically equivalent?

Subquestion 1

How do the computational- and space requirements of the generation (not execution) of

f scale with the size of FPGAs A and B?

Subquestion 2

Howmuch wiring and how many components does the concrete FPGAneed for emulation

of a virtual FPGA of complexity x? Is this practical for use in education?

Expected outcomes

We expect an algorithm and an implementation of that algorithm that, given models of both

a virtual FPGAand a (larger) concrete FPGA, generates a function that translates a model

of an FPGA program compatible with the virtual FPGA to a model of an FPGA program

compatible with the concrete FPGA. We generalise this algorithm to other use cases with

the same underlying mathematical problem (subgraph homeomorphism). Furthermore,

we include specifications on how to model FPGAmodels for this purpose.

1i.e. a numeric constant c exist such that the number of instructions required in the execution of f is less

than c ∗ (the number of configurable components of the virtual FPGA). Note that this depends on the size

of the unconfigured virtual FPGA, not on the size of the user-provided configuration of said FPGA.

6

3 BACKGROUND

3.1 FPGAs

The computing hardware most people are familiar with is CPUs. Manufacturers incorpo-

rate them in every desktop pc, laptop, and most mobile devices. CPUs are very flexible

and efficient- which is why they are the de facto standard for any computation task. In

CPU computation, an integrated circuit (a processor) iteratively reads an instruction from

a RAM module (in the form of encoded bits), performs the instruction, and then continues

to read the next instruction. The instructions are not embedded in the circuit of the CPU

itself.

FPGAs are different from CPUs, as they do not store the programs they execute in RAM-

they instead configure them in the (highly parallel) logic of the circuit itself. Configuring an

FPGA to execute a specific program entails loading a configuration file onto the hardware

and restarting the FPGA such that it reconfigures its logic. The hardware will then perform

the configured logic on the input it receives via IO pins.

Because each logic cell performs logic independently, FPGAs can perform computations

highly parallel and without delays from sequentially loading instructions. This computation

process implies that FPGAs are very efficient at executing concurrent programs. Recon-

Logic Cell Configurable Logic Block FPGA

lut

reg

mux

Figure 3.1: The hierarchy of a typical FPGA. A typical FPGA mostly consists of Config-

urable Logic Blocks (CLBs), and a CLB mostly consists of logic cells. The way logic cells

and CLBs are connected may be different for each FPGA architecture.

7

p q p XOR q
F F F
F T T
T F T
T T F

Figure 3.2: A truth table that shows the result of an XOR operation

in_1

in_0

out_0

00

01

10

11

0
1
1
0

Figure 3.3: A Lookup Table (LUT) in which an XOR-operation is configured

figuring an FPGA is, however, a relatively expensive operation. Therefore, FPGAs are

unsuitable for changing from program to program, as a CPU does when running an op-

erating system. Moreover, FPGAs can be slower than CPUs for nonparallel applications

since its longer critical path length (i.e. distance an electric current has to travel each clock

cycle) results in a lower clock speed. Lastly, the different structure of an FPGA requires

programs for them to be developed in specialised HDL languages instead of CPU-based

programming languages. However, efforts are being made to bring these domains closer

together.

FPGAs perform execution using components such as lookup tables, registers, and special-

purpose modules1. These components are physical structures on the circuit. In the next

sections, we will discuss these modules.

3.1.1 Lookup tables

Any boolean logic formula can be expressed in the form of a truth table, such as in Figure

3.2. The leftmost column of a truth table specifies all possible combinations of T and F
for all inputs; the rightmost column then specifies what output that specific logic function

would give. Each distinct combination of T and F in the rightmost column corresponds

to a different boolean formula. FPGAs execute logic in the form of Lookup Tables (LUTs),

which model the evaluation of a truth table, but with ones and zeroes instead of T and

F : for every combination of ones and zeroes in the input, the LUT stores what output

it should give. The compilation software provided by the FPGA vendor can reconfigure

these outputs. This way, any boolean formula with the appropriate number of variables

can be implemented with a lookup table. Figure 3.3 shows a lookup table that has two

1These modules are used for efficient storage or calculation of specific functions. We will disregard them

in this research.

8

clock

D
Q

Figure 3.4: Traditional representation of a register. Note that input D and output Q may

consist of multiple wires.

input bits and one output bit. This lookup table is configured to perform an XOR-operation.

Lookup tables can have input and output consisting of any number of bits, depending on

the FPGA design.

3.1.2 Registers

Programs require intermediate data storage to perform any computation that is more com-

plex than combinational logic. FPGAs use registers for this purpose (see Figure 3.4).

Registers can store a small collection of bits, depending on the FPGA design. When a

register’s input clock changes from 0 to 1, the contents of the register are replaced by the

value of the input D, and the output Q takes the value of the previous content. The output

stays constant until the clock changes from 0 to 1 again when D has a different value.

FPGAs usually have clocks- wires whose signal constantly changes between 0 and 1

that is connected to registers in the hardware. These clocks can be a single global clock

connected to each register or a network of clocks each responsible for different parts of

the FPGA. The frequency of this clock is chosen such that all signals are guaranteed to

be stable when the clock becomes 1. This stability is very convenient for programmers,

who do not have to calculate the time it takes for a signal to propagate through a wire.

The implication is that each circuit combining only lookup tables that end in the D-input of

a register takes the same amount of time.

If the FPGAprogram has longer chains of lookup tables, then it takes longer for the output

signal to stabilise. The vendor software accommodates for this by setting the global clock

at a lower frequency. Since programs on FPGAs are highly parallel, there are likely some

parts of the calculation that do not require a lower clock speed and can cause slowdown

because of this. In these scenarios, adding registers to some parts of an FPGA program

can improve performance if it allows the global clock speed to be higher.

3.1.3 Logic cells

A typical logic cell is a combination of one or more lookup tables, a register, and a MUX

(a 3-input gate that outputs a copy of the first or second input, depending on the value of

the third input). The contents of the lookup tables can be configured to perform any logic

operation, and the value of the third MUX-input can be configured to specify whether the

9

clock

in

0000
· · ·
1111

x0

· · ·
xn

m

out

Figure 3.5: An n-input logic cell. xk and m must be configured for any 0 ≤ k ≤ n

computation is clocked/synchronous or combinatorial/asynchronous. A logic cell is shown

in Figure 3.5. Unfortunately for us, vendors have different logic cell designs, meaning we

cannot generalise this example.

FPGAmanufacturers often group Logic cells in Configurable Logic Blocks (CLB) that make

hardware production, placement, and routing (Section 3.2) easier.

The main building blocks of FPGAs are CLBs that are connected via routing fabric. These

are responsible for most of the computation of FPGA programs. FPGAs can have ad-

ditional modules such as RAM and Digital Signal Processors that optimise storage and

specialised arithmetic, respectively. Each of these modules’ functionality could also be

performed by a collection of logic cells at the cost of performance. In this research, we

will only consider CLBs.

3.1.4 Routing

Asingle logic cell can only perform simple programs such as logic gates. The FPGAneeds

to connect different logic cells to perform any kind of logic operation, dependent on what

program it needs to execute. The way logic cells and other modules are connected on a

physical FPGA in a specific configuration is called the routing of an FPGA. On the most

basic level, FPGAs perform routing with configurable transistors. These are tiny modules

on an FPGA board that are connected with an input wire and an output wire. They can

be configured to allow electric current flowing from its input to its output or to block any

incoming electric current.

3.1.5 Pins

To supply the FPGA with input and to allow it to provide output, an FPGA is equipped

with a set of metal pins. Each of those pins is connected with a wire on the FPGA board.

Each pin can be used for either input or output, depending on the configured program.

For example, an FPGA used to control an electric stepper motor will receive input with the

10

requested motor speed and direction and will output signals to specific circuits that need

to be activated to obtain that speed and direction.

3.2 FPGA compilation

To program an FPGA, an engineer has to specify a hardware design that describes the

semantics of the program. They write these hardware designs in a Hardware Description

Language (HDL). Commonly used languages for this purpose are VHDLand Verilog. They

specify on an abstract level what functionality the program should have, preferably in a

modular structure to improve maintainability.

The software then needs to translate this abstract description to a netlist: a description

of logic, registers, specialised components, and how they are connected. Depending

on the configuration of the compilation software, this netlist may undergo a sequence of

optimisations and transformations between several levels of abstraction. This process

is called synthesis; beware though that some sources call the entire FPGA compilation

process synthesis.

The next step in the compilation process is placement. The software maps each LUT,

register, and other components to a physical place on the FPGA. The software can place

components closer together to optimise the speed or can place components further apart

to increase the probability routes can be found. Finding the optimal placement for speed

is a proven NP-hard problem.

The last step in the compilation process is routing. State-of-the-art FPGA compilation

pipelines perform this step sequentially after placement[28]. With the components locked

in place, the software attempts to find a configuration of routing switches such that each

connection that the synthesis requires is made. Finding the optimal routes for speed is

an NP-hard problem while finding any matching routing configuration is an NP problem.

Both can be reduced to the problem of fixed-vertex subgraph homeomorphism of which

the optimisation variant needs to explore the entire search tree, which [37] showed can be

computed in O(2|T |−|S|nO(1)) for the general case. However, routing algorithms are often

made for specific FPGAarchitectures, allowing for better heuristics and thus performance.

11

! Note that place & route of an FPGA program as described here is a very similar prob-

lem to the emulation an unconfigured virtual FPGA to a concrete FPGA (this research).

However, it is important to note that these are different problems: with place & route,

a mapping is obtained from a model of an FPGA program to the concrete FPGA. In

our research, we obtain a mapping from a model of a virtual FPGA to the concrete

FPGA. The two problems are on different levels of abstraction: an FPGA program

does not have the concept of unconfigured components or transistors while a virtual

FPGA does.

Placement of FPGA programs using place & route could theoretically also work on a

higher abstraction level, i.e. including unconfigured components. The problem with

this approach is that state-of-the art place & route pipelines perform these algorithms

sequentially: they perform placement based on speed- and routeability heuristics with-

out a guarantee that the placement can indeed be routed [28]. With the placement of

FPGAprograms, this is not a problem. They are usually modular with components that

have relatively few interconnecting wires. FPGAs, however, can consist of densely

connected components that can severely impact routeability. We leave the analysis

of place & route algorithms for compatibility with FPGA-on-FPGA emulation for future

research.

3.3 The FPGA virtual machine

In this research, we will not be implementing an FPGA virtual machine. However, for

clarity, we will explain what we mean by it. Imagine a software engineer wants to execute

a program P . Conventionally, they would program P in an HDL, compile it to an FPGA

configuration file and load it onto the hardware.

To instead simulate the synthesised program, the engineer can also program a generic

FPGA environment in an HDL, compile it to an FPGA configuration file and load it onto the

hardware. They can afterwards provide P as input to the program instead of using P as a

program. This way, the virtual FPGA can run in a “virtual machine” on the concrete FPGA.

The static configuration of the virtual FPGA uses the dynamic resources (e.g. RAM and

registers) of the concrete FPGA. A virtual machine of a single LUT is shown in Figure 3.7.

Although engineers could use FPGA virtual machines to execute FPGA programs on

FPGAhardware that the FPGAsoftware was not compiled for, it introduces a considerable

delay in execution. After all, many more dynamic components on the FPGA need to be

used to store and execute the configuration of the same program.

12

in_2

in_1

out_1

00

01

10

11

x0

x1

x2

x3

in_2

N/A

in_1

out_1

0

000

001

010

011

100

101

110

111

x00
x10
x00
x10
x20
x30
x20
x30

Figure 3.6: Emulation of an FPGA: the configuration of the virtual FPGA is reflected in the

configuration of the concrete FPGA. Any extra inputs and outputs are unused.

in_2

in_1

out_1

00

01

10

11

x0

x1

x2

x3

x0

x1

x2

x3

in_1

in_2

out_1

000000

000001

000010

· · ·
111101

111110

111111

0
0
0
· · ·
1
1
1

Figure 3.7: An FPGA virtual machine: the programming of the virtual FPGA is reflected

in additional input of the actual FPGA originating from some explicit configuration source,

e.g. RAM or a storage device connected to the concrete FPGA’s input pins. The config-

uration of the concrete FPGA does not depend on the configuration of the virtual FPGA

and additional logic- and storage resources are used.

13

3.4 FPGA emulation

Instead, our research entails finding out how we can perform emulation. With this, we

mean the execution of a program on a different FPGA such that no extra input is required.

Instead, the emulator software inspects the program for the virtual FPGA and generates

what program on the concrete FPGA would have the same semantics given the same

inputs as the source FPGA. Figure 3.6 shows the emulation counterpart of Figure 3.7 with

a smaller LUT. Since the target FPGAhas one more input than the virtual FPGA, that input

remains unused. Similarly, since it has one more output, that output remains unused (i.e.

always outputs 0). The configuration of the LUT is such that it has the same semantics as

the virtual LUT with these constraints in mind. We aim to find out how we can perform this

kind of emulation with any programwith any fixed source- and destination FPGAwhenever

such emulation is possible.

3.5 Graph theory

Because of the network structure of FPGAs, it is easy to model them as graphs. If we

model FPGA components as combinations of vertices and connections, we have a com-

plete representation of an FPGA suitable for graph algorithms.

A graph representation of the physical structure of FPGAs allows us to scan through the

structure of the concrete FPGA graph and look for structures that resemble the graph

of the virtual FPGA. Let us, for example, assume that the structure of the concrete FPGA

graphs contains a complete embedding of the virtual FPGAgraph. Then, by disabling each

component outside of this embedding and by copying configurations from components in

the virtual FPGAmodel to their respective components in the concrete FPGAgraphmodel,

we would have an emulation function. Obtaining this function could entail changing some

bits if, for example, the second output of a virtual LUT is mapped to the first output of the

concrete LUT and vice versa.2

The graph-theoretic name for finding these embeddings is subgraph isomorphism. It is

an NP-complete problem[15] with many algorithms explored. The problem with using an

approach of subgraph isomorphism is, however, that many possible emulations cannot

be found. For example, a concrete FPGA may have much more configurable routing

switches than a virtual FPGA. A subgraph isomorphism algorithm would in this case not

find an emulation, even though one is technically possible by configuring some routing

switches to function as wires.

A variant of subgraph isomorphism is (vertex disjoint) subgraph homeomorphism. In this

problem, intermediate vertices are allowed in the embedding on the target-graph side.

2While virtual components may also be emulated by structures of multiple concrete components con-

nected in specific ways, we deem finding such emulations out of scope for this research.

14

s1

s3s2 s4

t1

t2 t3

t4 t5

t6 t7

Figure 3.8: Two graphs G1 and G2. G1 is (node disjoint) subgraph homeomorphic to

G2 with the mapping {(s1, t5), (s2, t7), (s3, t4), (s4, t2), (s1 → s2, t5 → t7), (s3 → s1, t4 →
t5), (s3 → s2, t4 → t6 → t7), (s4 → s3, t2 → t3 → t4)}. Other homeomorphisms exist as

well.

This means that the embedding consists of a vertex-to-vertex mapping and an edge-to-

path mapping.

This is the essence of our research: finding some subset of the concrete FPGA (using

graphs) that is topologically the same way as the virtual FPGA and has the appropriate

components that can emulate virtual components one-to-one.

Definition 3.5.1 (graph). A graph is a tuple (V,E, L) where V is a set of vertices,

E is a multiset of directed edges such that each edge e ∈ E → e ∈ (V × V) and
L : (V → P(λ)) is a multilabelling function where λ is a finite alphabet.

Definition 3.5.2 ((vertex disjoint) subgraph homeomorphism). Let P the set of all

loopless paths in GT , let first(p) be the first vertex of a path p, let last(p) be the last

vertex of a path p and let intermediate(p) be all other vertices of a path p. Then, a
subgraph homeomorphism from graph S to graph T is a tuple (vmap,emap) where
vmap ⊆ (VS ↦→ VT) and emap ⊆ (ES ↦→ P) are both injective functions such that:

1. ∀s ∈ VS.LS(s) ⊆ LT (vmap(s))
i.e. vertices are mapped to vertices that have at least the same label set.

2. ∀(s1, s2) ∈ ES.first(emap(s1, s2)) = vmap(s1) ∧ last(emap(s1, s2)) = vmap(s2)
i.e. each edge in G1 is mapped to a path in G2.

3. ∀p ∈ values(emap).∀x ∈ intermediate(p).
̸ ∃p′ ∈ (values(emap) \ {p}).x ∈ intermediate(p′)

i.e. these paths are internally vertex disjoint.

This tuple is also the certificate for the decision problem of subgraph homeomor-

phism, which returns whether a tuple like this exists. A popular different way to

define the decision problem is whether the target graph contains a subgraph which

can be obtained by repeatedly intersecting the source graph’s edges with vertices.

Suppose we have graphs Gvirtual and Gconcrete. In that case, wherever a subgraph home-

omorphism from Gvirtual to Gconcrete exists, it describes a mapping where the logic of the

15

virtual FPGA may be performed on the concrete FPGA in an emulation34. The vertex-

to-vertex mapping vmap describes how to obtain configurations for the concrete FPGA

and the edge-to-path mapping emap describes how vertices in the concrete FPGA are

connected via paths of intermediate components configured as wires.

The similarity between subgraph isomorphism and subgraph homeomorphism allows us to

take inspiration from existing subgraph isomorphism algorithms and use similar methods

to solve subgraph homeomorphism and therewith the FPGA emulation problem.

3If no such relation exists, it does not mean a function f as specified in Section 2 does not exist. Emulation

could still be obtained by emulation of components by (multiple) components of possibly different types or

by emulation of routing switches by sets of connected routing switches.
4This does not hold if some vertices inGconcrete that are part of themapping are unconfigurably connected

and their mapped equivalents in Gvirtual are not. We account for this in our algorithm with the methods

described in Section 6.7.

16

4 LITERATURE

4.1 FPGA compilation

Yosys[53] is a free, open-source tool that performs general synthesis. These attributes

make it highly usable in education. It can perform modular optimisations and transforma-

tions on netlists depending on a script and outputs netlists in BLIF[10] format. It divides

synthesis into three steps:

• Behavioural synthesis - converting anHDLprogram toRegister Transfer Level (RTL):

a netlist graph of high-level modules such as adders, multiplexers et cetera.

• RTL synthesis - converting an RTL netlist to a netlist graph of low-level logic gates

and simple registers.

• Logic synthesis - converting a netlist graph of logic gates to a netlist graph of com-

ponents available on specific hardware, such as LUTs and larger registers.

Much literature exists on FPGA synthesis. The proposed research resembles logic syn-

thesis but does not involve the application of synthesis techniques. These techniques

rely on the absence of unconfigured components and an input that resembles an FPGA

configuration, which we both do not have.

4.2 Subgraph isomorphism

We performed literature research to obtain existing subgraph isomorphism and subgraph

homeomorphism algorithms, the results of which are shown in Appendix .1. We searched

the Scopus, ACM and IEEE libraries for the terms “subgraph isomorphism”, “subgraph

matching”. We examined matching papers and selected those that solve exact (not ap-

proximate) subgraph isomorphism or homeomorphism. We then iteratively added other

algorithms from performance comparisons and citations. In the chart, an arrow implies

that the paper of the newer algorithm or a survey paper showed that the algorithm at the

source of the arrow performed better (i.e. lower mean time to find a matching) than the

algorithm at the target of the arrow. A line between algorithms without arrowhead means

a paper showed that the algorithms perform equally well.

17

Malik et al.[40] simplify subgraph isomorphism by repeatedly randomly simplifying the tar-

get graph using a colouring.

PLGCoding[67], based on LSGCoding[66] uses the length of the shortest path and “Lapla-

cian spectra” to effectively index the target graph and search for subgraphs. However, the

invariants that these methods use to solve subgraph isomorphism do not necessarily hold

for subgraph homeomorphism.

subISO[1] divides the target graph into subregions based on a pivot vertex in the pattern

graph such that the number- and size of subregions is minimal. It then uses Ullmann[52] to

search these subregions for the subgraph. Similarly, InfMatch[39] uses heuristics to select

a node in the target graph and selects subregions in the target graph from that node to

search in. PTSim[55] also applies graph partitioning, continuing with a different subgraph

isomorphism algorithm on the resulting partitions, but only after first removing every edge

from the target graph if the combination of labels of its source and target does not occur in

the pattern graph. COSI[11] uses partitioning of graphs in cloud networks to find subgraph

queries in social network graphs. Afterwards, it uses L2G’s algorithm[2].

GRASS[7], a subgraph isomorphism algorithm for GPUs, solves the problem by iteratively

alternating between DFS and BFS of partial matchings on GPU cells as deep as the GPU

architecture allows. Since the search space of subgraph homeomorphism is much larger

than that of subgraph isomorphism, this may cause problems on GPU cells with limited

memory resources.

VF2++[30] is an adaptation of VF2+[12], an improvement on VF2[17] which in its turn is

an improvement of VF[16], a DFS algorithm in the search space of partial matchings in

which the target graph is pruned using feasibility sets and the nodes in the pattern graph

are matched in an efficient, fixed order. MuGram[34] is a variation upon VF2 that allows

multiple labels on each node. Since VF2++ has not been compared with RI-DS[6], it is

unknown whether a fixed node order is a more promising technique than a dynamic node

order.

RI[8] is similarly to VF2++ a variant of DFS. It assigns a variable to each node in the

pattern graph with the domain of possible matches in the target graph. In its DFS, it uses

a dynamic ordering of nodes. A node in the target graph is matched next if it has many

neighbours in the existing partial matching, many neighbours of neighbours in the existing

partial matching or else a large degree. With this, RI aims to maximise the number of

verifiable constraints. RI-DS[6] improves upon this by implementing a cache that checks

label compatibility for nodes quicker. Rudolf[47] proposes a querying method to access

graph data in a subgraph isomorphism problem within a constraint satisfaction problem

context but does not provide an algorithm.

Similarly to RI, LAD[50] solves subgraph isomorphism using constraints. It then applies

AllDifferent filtering (using an algorithm by Régin[45]) during constraint solving/DFS to

reduce the domain as much as possible. This filtering removes every u from the domain

18

of v whenever an assignment of v to u would result in an empty domain for some variable.

McGregor[42] performs this as well but with a different AllDifferent algorithm. PathLAD[33]

improves upon LAD by checking each match whether the number of 3-cycles of connected

nodes in the target graph is at least as high as the number of 3-cycles in the pattern graph

where it is matched.

CFL-Match[5] speeds up subgraph isomorphism by splitting the pattern graph into a dense

core of well-connected nodes and sparse trees attached to it. By matching the core first,

it avoids many unfruitful partial matches in DFS. Furthermore, it introduces a CPI data

structure. This data structure helps to find subgraph isomorphisms more efficiently and

takes polynomial time to construct.

LLAMA[33] and BM1[3] are portfolio techniques. Based on heuristics, they pick an ap-

proach from a collection that they expect to perform best. LLAMA picks from a collection

of different algorithms whilst BM1 picks from different pruning settings for VF2.

BoostISO[46] introduces a filtering optimisation for DFS: whenever a node u in the pattern
graph matches with a node v in the target graph and it fails, any v′ in the target graph

with a subset of the neighbours of v will be disregarded as candidate match for u. It

furthermore introduces a data structure that finds many subgraph isomorphisms as soon

as one subgraph isomorphism is found.

Glassgow[41] is a DFS algorithm with dynamic node ordering. Other than other often used

filtering techniques to disregard potential matches, it introduces backjumping: whenever

a finished recursive call fails to match a node v in the source graph, it jumps back to the

last time the domain of v was changed. Furthermore, it introduces supplemental graphs:

whenever a filter removes matches from the domain of a supplemental graph, it may also

be removed from the domain of the original graph.

TurboISO[24] extracts subregions from the target graph by finding instances of a com-

pressed tree (NEC) of the pattern graph in the target graph (a polynomial process). Fur-

thermore, it proposes using the results of this DFS to generate a vertex order to be used

in BFS for subgraph isomorphism.

SQBC[64] takes cliques into account when searching for subgraphs: any node in a max-

imal clique in the pattern graph needs to be matched with a node in a maximal clique in

the target graph that is at least as large.

STW[51] splits the pattern graph into small pieces and attempts to find all occurrences of

a graph piece. Within this set, it then iteratively searches for the next piece.

GraphQL[26] filters the domain of source graph nodes based on the fact that neighbour-

hoods of nodes need to be sub-isomorphic to matched nodes in the target graph. It fur-

thermore filters based on bijections from- and to adjacency subtrees. ILF [59] formalises

this sub-isomorphism by iteratively strengthens the filtering power of labels until a fixed

point indicates sub-isomorphisms. It uses these labels to reduce the domains of each

19

source node and then updates labels to be as strong as possible.

NOVA[65] computes for each node v in the source vertex a signature: for each node u of

distance x < c it lists its label and the number of paths from u to v of length x. It uses this
signature to filter out false matches from the domain of source graph nodes.

Treepi[60] and Gaddi[61] use the distances between node pairs to index graphs. Sing[18]

improves upon this by indexing the graph on the fly during the search process. SPath[63]

also uses indexing techniques on trees and subgraphs to speed up the search for a com-

plete mapping.

Subsea[38] recursively cuts the target graph along its minimal cut, searches for the sub-

graph on the edges on this cut and the continues in the resulting two subregions. This

algorithm assumes that a minimal cut has few edges and that the target graph is much

larger than the source graph.

QuickSI[49] makes use of a set of spanning entries to combine tree search with normal

DFS.

Cheng[13] proposes a method of storing constraints as matrices and performing matrix

operations on Ullmann’s[52] representation of partial mappings.

Ullmann[52] is often used as a baseline algorithm when testing subgraph isomorphism

algorithms. It performs DFS using nodes with the highest degree in the source graph with

random nodes in the target graph. L2G[2] improves upon this by selecting unassigned

nodes from the target graph that are connected to the partial matching first. Fast-ON[22]

improves upon Ullmann’s algorithm by ordering the pattern graph vertices by degree and

taking labels into account. UI[14] improves upon Ullmann’s algorithm[52] by ordering the

vertices of the pattern graph by a ‘subdegree’ measure in descending order and by break-

ing ties by choosing the node with the highest closed-neighbourhood clustering value.

From this literature research, we conclude that a DFS for partial mappings is a viable ap-

proach to subgraph isomorphism and thus potential to subgraph homeomorphism. Many

algorithms, however, use incompatible strategies to obtain subgraph isomorphisms. Ex-

perimentation will have to show what strategy is effective for subgraph homeomorphism.

4.3 Subgraph homeomorphism

We performed literature research using the same method as for subgraph isomorphism

but with the terms “subgraph homeomorphism” and “topological minors”. We found the

following existing research:

Lingas et al.[36] present an algorithm for subgraph homeomorphism under the assumption

the vertex placement is fixed. For general subgraph homeomorphism, they suggest trying

their algorithm on each possible vertex matching.

20

Xiao et al.[54] present an algorithm for subgraph homeomorphism when the length of the

intermediate paths is in a limited range1. Since our path lengths can be [1,+∞), we would
need to find an alternate solution.

Grohe et al.[23] show that for every fixed source graph, anO(|Vtarget|3) algorithm exists that

can find homeomorphic embeddings in any target graph. However, finding this algorithm

is a non-trivial, NP-hard process.

LaPaugh et al.[35] present some ways to reduce the graphs in a subgraph homeomor-

phism problem. These reductions are, however, not applicable to FPGA graphs.

1The algorithm involves precomputing all possible paths. The number of possible paths increases expo-

nentially with the sizes of both the pattern- and target graph. Applying this to a graph model of an FPGA is

infeasible.

21

5 MODELS

Our algorithm will generate an emulation using vertex disjoint subgraph homeomorphism.

To do this, we model both the virtual and concrete FPGA as vertex-multilabeled directed

graphs as defined in Definition 3.5.1. This section specifies this process.

In short, we model each logic cell and each wire and transistor that are not part of a logic

cell as vertices, and add an extra vertex for each input- and output of logic cells. The edges

between the vertices denote either the direction of a transistor (if connecting a transistor

and a wire) or the data flow of a logic cell (if connecting a wire with an in/output or an

in/output with a logic cell).

We label each wire vertex with the label WIRE, and the additional label EDGE if they function
as input- or output of the entire FPGA. We label each transistor with the label ARC, each
logic cell with the label SLICE and each in/output with the label PORT. Furthermore, we add

the label CE to an input that enables writing data to the register of the logic cell. Lastly,

we add the labels {CONFIGURABLE, UNCONFIGURABLE} to each transistor that is configurable
by the user, and the label UNCONFIGURABLE to transistors that are always enabled and not

configurable by the FPGAconfigurator. We use these labels to avoid unintended electrical

current flow between parts in the concrete FPGA. More information on how we use this

label within the context of our algorithm can be found in Section 6.7.

22

6 ALGORITHM

6.1 Basis

In our research, we will extend existing work on subgraph homeomorphism. In the lit-

erature, we found two existing well-defined algorithms: Xiao’s algorithm ‘ndSHD2’ [54],

and Lingas’ algorithm [36]. Xiao’s algorithm ndSHD2 is subjectively simpler: it is a depth

first search in partial subgraph homeomorphism mappings (with many similarities with

subgraph isomorphism algorithms) using precomputed paths. It combines attempting

vertex-on-vertexmappings with attempting edge-on-pathmappings. This algorithm specif-

ically solves the (l, h) subgraph homeomorphism problem, which is the same as regular

subgraph homeomorphism with the extra constraint that edges in the source graph are

mapped to paths of at least l edges and no more than h edges. In our use case, a valid

emulation mapping may have edges of any length (i.e. l = 1 and h =∞).

In comparison, Lingas’ algorithm suggests attempting their edge-path mapping strategy

on every possible vertex-on-vertex mapping, without indication of which vertex-on-vertex

mappings are likely to result in finding subgraph homeomorphism.

Because Xiao’s algorithm’s simplicity and coverage of each aspect of the algorithm’s pro-

cess, it is suitable for FPGA use cases and optimisations. However, because of the algo-

rithm’s exponential space requirements, we will devise a similar (less space-demanding)

algorithm using Xiao’s algorithm as inspiration. In this algorithm, we will compute paths

at runtime instead of as precomputation, and as such call it RTSH (Run Time Subgraph

Homeomorphism).

To understand our algorithm better, let us first examine what the output is supposed to

be. The algorithm should, given two graphs, not just indicate whether the latter graph

has a subgraph homeomorphism of the former, but also indicate what subgraph homeo-

morphism that is. More formally, we need to solve the certification problem rather than

the decision problem. This certification indicates to which target graph vertex each source

graph vertex is mapped and to which target graph path each source graph edge is mapped

such that the entire mapped source graph is a subgraph of the target graph. This is what

we will from now on refer to as the mapping. If during the execution, the mapping is not

yet complete, i.e. it does not have a target for some source graph vertex or edge, we refer

23

to it as the partial mapping.

Algorithm 1: Basis of RTSH

1 Inputs: the current vertex-vertex partial mapping vmap, the current edge-path emap

partial mapping

2 Outputs: found, indicating whether a valid subgraph homeomorphism has been

found.

3 if s is complete then
4 return true

5 end

6 found ←− false

7 while !found ∧ ∃ valid node/edge-path mapping pair do
8 if hasUnmatchedEdge() then
9 (eS, pT)←− GetNextEdgePathPair()
10 emap←− emap ∪ {(eS, pT)}
11 found ←− RTSH(vmap,emap)
12 if found then

13 return true

14 end

15 emap←− emap ∩ {(eS, pT)}
16 end

17 else

18 (vS, vT)←− GetNextNodePair()
19 vmap←− vmap ∪ {(vS, vT)}
20 found ←− RTSH(vmap,emap)
21 if found then

22 return true

23 end

24 vmap←− vmap ∩ {(vS, vT)}
25 end

26 end

27 return false

Our base algorithm is shown in Algorithm 1. It is a form of depth first search in a par-

tial mapping search space that attempts- and backtracks vertex-on-vertex mappings and

edge-on-path mappings.

In our literature study, we found that the core of many subgraph isomorphism algorithms1

is a form of similar DFS state space exploration where the states consist of partial vertex-

to-vertex mappings. In subgraph isomorphisms, the edge-to-edge mapping is elementary

1Ullman, VF, VF2, VF2+, VF2++, UI, Fast-ON, L2G, Cheng, QuickSI, GraphQL, ILF, TurboISO, Glassgow,

CLF-Match, RI, RI-DS, McGregor, LAD, PathLAD

24

by performing the vertex mapping on the edge source and target to obtain the target edge.

With the subgraph homeomorphism algorithm such as ours and Xiao’s, an additional map-

ping from ES to the path set of GT is needed.

The algorithm starts with an empty partial mapping and starts mapping source graph ver-

tices to target graph vertices. Whenever both vertices of a source graph edge have been

matched, the algorithm finds some path (according to some path iteration method) be-

tween the mapped edge source and target in the target graph that is internally disjoint

from target graph vertices already used in the partial mapping. The algorithm prioritises

extending the matching with an edge-path pair over extending it with a vertex-vertex pair.

Whenever no such path or vertex exists, the algorithm undoes (backtracks) the last match-

ing step taken and tries a different alternative.

The algorithm in Xiao’s paper is comparable to our base algorithm we present here and

leaves out some specific ordering details that may be relevant for the algorithm’s perfor-

mance. We specify our own orderings in Sections 6.3, 6.4. We will explain what ordering

of paths we use in Section 6.5. We will introduce some optimisations to the algorithm in

Section 6.6.

6.2 How to choose vertex-vertex pairs

There are different ways to choose which vertex-vertex pair to try adding to the partial

mapping first, and which only to try adding after other attempts have failed. Thesemethods

can be divided into three categories:

1. Choose a source graph vertex first using some heuristic, then attempt all target graph

vertex candidates using another heuristic.

2. Choose a target graph vertex first using some heuristic, then attempt all source graph

vertex candidates using another heuristic.

3. Choose a source vertex-target vertex with high heuristic first, then attempt all other

pairs.

While the strategy used does not affect the vertex-on-vertex mapping state space, it can

affect the average-case performance. Strategy 3, for example, uses combined heuristics

that may be more powerful. The disadvantage of it requires O(|Vs| ∗ |Vt|) heuristic com-

putations before the first pair is obtained. If these computations are done beforehand, the

heuristic cannot take the current partial mapping into account and is likely to be weak. If

this computation is done at each step in the search process, it introduces delay.

Strategies 1 and 2, on the other hand, require only O(|Vs| + |Vt|) heuristic calculations to
be made before obtaining a candidate pair. We choose strategy 1 with a source graph

vertex heuristic that is precomputed and provide two heuristics for target graph vertices,

one of which is precomputed and one of which is calculated runtime.

25

6.3 Source graph vertex order

The source graph vertex order is the order in which source graph vertices are added to

the partial mapping. For example, if s1 ≺M s2 in this ordering, then a pair with s2 and some

target graph vertex will only be added to the partial mapping if a pair with s1 is already in
it within the context of a partial matching M . If this ordering depends on M , it has to be

calculated at runtime. If it does not, it only has to be precomputed once.

Xiao does not specify a source graph vertex order. Instead, wewill use a high-performance

ordering technique from the subgraph isomorphism domain. From performance compar-

isons (see Appendix .1), we extract that the best performing algorithm that adheres to

partial mapping search for subgraph isomorphism is RI-DS [8]. In our literature study, we

found no evidence a faster algorithm in this category exists (although two algorithms using

other techniques do exists [7, 39]). This ordering does not depend onM , and thus we will

precompute the entire ordering.

To describe the ordering process of RI-DS, let us provide a few definitions:

Definition 6.3.1 (predecessors and successors). Given two graphs G = (V,E, L)
and some vertex v ∈ V , their predecessors and successors are defined as follows:

succ(v) := v′ ∈ V.(v, v′) ∈ E

pred(v) := v′ ∈ V.(v′, v) ∈ E

Definition 6.3.2 (neighbour set). If some v ∈ V , then neighbours(v) := succ(v) ∪
pred(v).

The algorithm RI-DS obtains a static source graph vertex ordering using a greedy algo-

rithm called “GreatestConstrainedFirst”. This algorithm starts with an empty list and adds

vertices to the end of the list, resulting in an ordering in which vertices earlier in the list are

prioritised. It starts with a list µ containing only the source graph vertex with the highest

degree, i.e. s ∈ VS where |neighbours(s)| is highest. Then, each source graph vertex not

yet in the list is assigned three scores N1, N2 and N3. N1(s) is the number of neighbours

of s that are already in the list (i.e. |{s′|s′ ∈ neighbours(s) ∧ s′ ∈ µ}|). N2(s) is the number

of neighbours of s that are not in the list themselves, but do have a neighbour in the list

(i.e. |{s′|s′ ∈ neighbours(s)∧s′ ̸∈ µ∧neighbours(s′)∩µ ̸= ∅}|). N3(sx) is the number of all

remaining neighbours of s (i.e. |{s′|s′ ∈ neighbours(s)∧s′ ̸∈ µ∧neighbours(sy)∩µ = ∅}|).
It selects each vertex s of which N1(s) is greatest. Ties are broken with the greatest N2-

value, and any remaining ties are broken with the greatest N3-value. Any remaining ties

are broken randomly. The selected vertex is added to the back of the list, and the process

repeats. This continues until every vertex has been added to the list.

The result of this ordering is that consequent vertices have many edges with vertices

earlier in the ordering. Xiao established that matching edges as soon as possible (rather

than matching vertices first) results in a faster algorithm. Using an order that allows early

26

placement of edges such as GreatestConstrainedFirst should (according to Xiao) result in

fast execution.

6.4 Target graph vertex order

The target graph vertex order is the order in which target graph vertices are added to the

partial mapping. For example, if t1 ≺ t2 in this ordering, then a pair with t2 and some

source graph vertex sx will only be added to the partial mapping if the pair (sx, t1) was
already proved infeasible. Xiao does not describe a specific target graph vertex order.

We found one subgraph isomorphism algorithm that describes a specific target graph ver-

tex order, being Glasgow [41]. In this algorithm, target graph vertices with a higher degree

are prioritized. Since this does not depend on the chosen source graph vertex or on the

current partial matching, this order can be precomputed, introducing only linear complex-

ity. Formally, when some source graph vertex s needs to bematched, target graph vertices

are chosen using the following metric, choosing vertices with lower metric values first:

metricdegree(s, t) = −|neighbours(t)|

Another option (that is not attempted by subgraph homeomorphism algorithms before) is

to take the current partial mapping into account. Using a degree-based or random target

graph vertex order will result in chosen target graph vertices to be independent of already

used target graph vertices, potentially requiring many resources to reach. However, we

can use information from the current partial mapping to obtain better candidates: since

we know the chosen source graph vertex and thus which edges will be mapped after this

vertex-vertex pair, we can choose our target vertex such that the paths associated with

these edges are as short as possible.

Whenever we need to match some source graph vertex s, This distance-based method

will choose target vertices first that have the lowest distance to the source graph vertex’

neighbours that are already in the partial matching. The result is that fewer number of

vertices need to be used as intermediate vertices in the paths associated with the edges

to those neighbours. The disadvantage of this method is that it requires runtime usage

of a computationally expensive shortest path algorithm to choose a target graph vertex

candidate. The shortest path algorithm can be cached, which reduces the number of

computations needed after backtracking but introduces quadratic (O(|Vs| ∗ |Vt|)) space
usage (we implement this with- and without caching). Formally, when some source graph

vertex s needs to be matched, tx are chosen using the following metric, choosing vertices

with lower metric values first:

metricdistance(s, t) =
∑︂

s′∈E(s)

{︄
|shortestPathUndirected(M(s′), t)| s′ ≺µ s

0 s ≺µ s′

27

Here,M is the current partial mapping, and µ is the source graph vertex order. We imple-

mented both methods to use in our algorithm.

6.5 Path iteration

In subgraph isomorphism, edge-on-edge mappings can be trivially computed from vertex-

on-vertex mappings. However, in subgraph homeomorphism, a source graph edge may

bemapped onmany target graph path candidates (all starting- and ending at the same two

vertices). Therefore, we cannot extract the order in which to try out paths from subgraph

isomorphism. Instead, we implemented different methods to iterate over paths to try:

• K-path - Try all loopless paths from shortest to longest, avoiding unusable vertices

in the existing partial mapping. We use Yen’s algorithm [57] for this. Faster and

more recent algorithms exist [27, 9] but lack public implementations.

• DFS - Search for paths using depth first search from the start vertex, choosing arbi-

trary directions at each vertex and avoiding unusable vertices in the existing partial

mapping.

• Greedy DFS (graph distance) - Search for paths using greedy depth first search,

choosing the direction closest to the goal vertex first (avoiding unusable vertices in

the existing partial mapping). We implement both a variant that precomputes all

shortest paths and a variant that calculates at runtime which direction to choose

(without caching).

• Greedy DFS (informed graph distance) - Search for paths using greedy depth first

search, choosing the direction closest to the goal vertex along a path that avoids

unusable vertices first (avoiding unusable vertices in the existing partial mapping).

We compute runtime which direction to choose.

• Control point - Select increasingly many ‘control points’ (from 0 to |V |) randomly in

the target graph that must be in the path in a specific order, then connecting them by a

shortest path algorithm that avoids unusable vertices in the existing partial mapping.

We implemented this with a recursive algorithm in which a replacement of some

control point is only attempted if all control points earlier in the control point order

have been attempted.2

These methods can iterate each path between two given vertices, providing each path

exactly once. The space requirements for each method are shown in Table 6.1, and ex-

amples of paths returned by them are shown in Appendix 2.

2To avoid duplicate paths, any path that can be generated with fewer control points is skipped. Further-

more, any control point configuration where shifting some control point towards the goal vertex along the

path results in the same path is skipped.

28

Path iterator Space complexity

K-Path O(|V |!)
DFS O(|V |)
Greedy DFS O(|V |2)
Control point O(|V |)

Table 6.1: Worst-case space complexity of each path iteration strategy. The computa-

tional requirements of each method change in different ways for subsequent calls.

6.6 Optimisations

Since our use case entails finding subgraph homeomorphisms in relatively large graphs,

any optimisation possible improves our chances of finding FPGA emulation mappings

within a reasonable time. Therefore, in addition to implementing ordering parameters for

the ndSHD2 algorithm, we implement some optimisations and individually evaluate them.

The algorithm with optimisations implemented is shown in Algorithm 2.

6.6.1 Refusing long paths

Since path iterators may provide any valid path to map an edge to during the matching

process, they may also provide paths that take up unnecessarily many resources. Specif-

ically, they take up so many resources that with a subset of the vertices and edges of that

path, a shorter path can be formed. Formally, some path t0 . . . tn is “unnecessarily long”

iff:

∃ti ∈ t0 . . . tn−2.∃tj ∈ ti+2 . . . tn.(ti, tj) ∈ ET

With this optimisation, such paths are skipped by path iterators. Examples of this effect

are shown in Appendix .2, Figures 2 and 3.

One observation of this optimisation is that unnecessarily long paths as described here

must have a vertex with outdegree ≥ 2, followed by a vertex with indegree ≥ 2. While

providing a great performance benefit for subgraph homeomorphisms in random graphs

that have these structures, this is not sufficient for our FPGA models which do not (such

vertices are instead connected via a port- or arc vertex). For our implementation, we allow

the “shortcut” edge to be intersected by a single arc or port.

6.6.2 Runtime Pruning

Some subgraph isomorphism algorithms [17, 41] prune the search space during the search

using some detection method of dead search paths. Xiao’s algorithm does this as well.

For our algorithm, we will implement different types of pruning methods of varying strength

(dead search branch detection capability) and computational requirements.

29

6.6.3 Contraction

The source graph of a homeomorphism case will often contain vertices that have exactly

one incoming edge and one outgoing edge. In FPGAs, for example, these could be tran-

sistors or ports of components. These vertices do nothing topologically but serve as an

edge; therefore they may also be thought of as an edge, where the edge source is the

vertex’ predecessor, and the edge target is the vertex’ successor. When we use the word

contraction, we mean suppressing all such vertices in the virtual FPGAand replacing them

with a single edge, as illustrated in Figure 6.1. This process transforms the source graph

S into the smallest graph Scont that is topologically equivalent to S. This may be a multi-

graph or a graph that contains self-loops. If a subgraph homeomorphism exists from S
to some target graph T , then there also exists a subgraph homeomorphism from Scont to

T (a proof is given in Appendix .3). The optimisation ‘contraction’ searches for a homeo-

morphism between Scont and the T instead of finding one between S and T . Because this

involves a smaller source graph, it also involves a smaller search space. Note that we do

not change/contract the target graph representing the concrete FPGA.

The process of finding a homeomorphism from Scont to T is slightly different from what

normal. This is because while every homeomorphism from S to T can be deduced to

a homeomorphism between Scont and T (by contraction of vertices and concatenation of

paths), not every homeomorphism from Scont and T allow a homeomorphism from S to T
to be inferred. An example is a case where Scont is isomorphic to T , and S subdivides a

single edge of Scont: there exists a subgraph homeomorphism from Scont to T since they

are isomorphic, but there is no subgraph homeomorphism from S to T . Because of this,

we need to adapt the subgraph homeomorphism search process such that it only finds

subgraph homeomorphisms from which we can infer a subgraph homeomorphism from S
to T .

When we apply contraction to replace a series of edges E separated by contractable

vertices by a single edge e with the intermediate vertices contracted, we save the label

sets for each intermediate vertex in E in the order that they appear (following the direction

of e) before starting the search algorithm.

During edge-path matching in the partial mapping search, we may need to map an edge

(u, v) that contains contracted vertices. For each edge ∈ Econt with the same source-

and target vertex we recall their lists of contracted label sets. Each time we find a path

candidate for (u, v) we check the compatibility of that path with each of those lists of label

sets. We then retrieve all other paths already found for edges with this source- and target

and use an all-different constraint (see Section 7.2.2) to verify that each edge ∈ Econt has

a compatible path. Whenever the number of paths is smaller than the number of edges

(i.e. paths still need to be found further in the partial mapping search), we assume paths

that are compatible with every list of label sets.

If the all-different constraint fails, it implies that from the current partial mapping, we cannot

find paths that emulate the contracted vertices. In this case, we backtrack. If the all-

30

different constraint succeeds, finding a subgraph homeomorphism is still possible, and

we continue.

This optimisation introduces some delay since the algorithm needs to check compatibility

between label set sequences and paths and solve an all-different constraint. However, it

also saves time since it reduces the source graph’s size.

Contraction for undirected graphs

Although we are focused on directed graphs in our algorithm, it is interesting to note that

each optimisation is also applicable to undirected graphs, including contraction. Contrac-

tion can be applied to undirected graphs by temporarily applying a uniform direction to

each chain of 2-degree vertices in the source graph and then applying directed contrac-

tion, after which the edges may lose their direction again. Then, during the compatibility

checking process, we perform the same procedure, making sure the list of label sets is

checked in the correct direction, i.e. for each temporarily directed edge (u, v) ∈ Econt and

partial mapping M , the path M(u, v) in T should be checked in the direction from M(u) to
M(v).

Contraction is not compatible with refusing long paths

While contraction and refusing longer paths both have the potential for saving time in our

algorithm, they are not out-of-the-box compatible with each other. Contraction relies on the

fact that whenever Scont has two vertices v1 and v2 with an edge between them e in which

vertices were contracted, and some path exists in T between vmap(v1) and vmap(v2)
with intermediate vertices that can emulate the contracted vertices, that the path itera-

tion algorithm will encounter that path at some point. However, the “refusing long paths”

optimisation could refuse precisely the path that was required for emulation if a shortcut

existed in the path without the ability to emulate the contracted vertices. An example of

this effect is shown in Figure 6.3.

31

(a) Part of a source graph that may be contracted

(b) The result of contraction

Figure 6.1: Contraction applied to vertex s2, a vertex with indegree 1 and outdegree 1.

During contraction, we save that a single vertex has been contracted with an empty label

set.

(a) A source graph before contraction

(b) The same source graph after contraction.

Figure 6.2: Contraction applied to a source graph with labels. With this optimisation, 3

fewer vertices and 4 fewer edges need to be mapped. During contraction, we save the

label sets of the contracted vertices in the order of the contracted path.

32

Figure 6.3: An example of why contraction is incompatible with refusing longer paths. In

the top part (without contraction), the algorithm can correctly find the one subgraph home-

omorphism mapping denoted by the arrows. However, if we apply contraction (bottom

part), the path t1 → t2 → t4 → t6 → t5 will be refused by the “refuse longer paths” optimi-

sation because the shortcut t1 → t3 → t5 exists, even though this shortcut cannot emulate

the contracted vertices. Therefore, the algorithm will not find the subgraph homeomor-

phism.

6.7 Avoiding unintended current flow

As mentioned in Chapter 5, the concrete FPGA may contain transistors that are always

enabled, i.e. cannot be configured to block the flow of electrical current and function as

a diode. If we would ignore this property of transistors, we may obtain a mathematically

sound subgraph homeomorphism that does not include every unconfigurable transistor

from the target graph in its mappings. If some unconfigurable transistor (or a sequence

of them) connect two vertices in the target graph that are part of the mapping, then the

subgraph homeomorphism does not describe a valid emulation: if the states of two com-

ponents are independent in the virtual FPGA, they should be independent in the concrete

FPGA as well to preserve the semantics of the FPGA configuration. An example of this

effect is given in Figure 6.4. To avoid this issue, we propose two measures:

33

Figure 6.4: An example of a pair of FPGAswith an unconfigurable transistor in the concrete

FPGA. There exists a mathematically sound subgraph homeomorphism ({s1 → t1, s2 →
t2, s3 → t3}, {(s1, s2) → [(t1, t2)], (s2, s3) → [(t2, t3)]}). However, a configuration in which

the virtual FPGA transistor s2 is disabled cannot be translated to a configuration in the

target FPGA with the same semantics. While t2 can be configured to be disabled, the

electrical current can always flow from t1 to t3 through t4. The algorithm should avoid

finding subgraph homeomorphisms like these.

6.7.1 Avoiding unintended current flow from/to paths

Our first remedy is to avoid adding target graph vertices to the partial mapping that are

connected to some path already present in the edge-path partial mapping through uncon-

figurable vertices.

These vertices can get electrical currents whenever it flows through the path, possibly

breaking the program’s semantics. Therefore, we avoid adding these vertices to the par-

tial mapping by deleting them from the graph in search branches that include the corre-

sponding paths. Deleting them prevents us from adding them to the partial mapping and

having our semantics changed.

More formally:

Let unconfigurable ∈ (VT × VT) be the relation between two vertices if they are connected

through a vertex representing an unconfigurable transistor, i.e.:

unconfigurable := {(t1, t2) ∈ (VT × VT)|∃u ∈ (VT \ {t1, t2}). UNCONFIGURABLE ∈ L(u)∧
CONFIGURABLE ̸∈ L(u)∧
{(t1, u), (u, t2)} ⊆ ET}

Let unconfigurable
∗
be the symmetric closure of the transitive closure of unconfigurable.

Then, whenenever we add an edge-path pair (e, p) to the partial mapping, we delete each

vertex x for which ∃v ∈ intermediate(p).(x, v) ∈ unconfigurable
∗
. Whenever (e, p) is later

removed from the partial mapping, each such vertex and its edges is added back to the

target graph. After all, these vertices are allowed to be in our mapping if p is not.

34

6.7.2 Avoiding unintended current flow between mapped vertices

Our second remedy is to avoid adding target graph vertices to the partial mapping that are

connected to some target graph vertex already present in the vertex-vertex partial mapping

through unconfigurable vertices. Allowing this could result in wires in the concrete FPGA

receiving an electrical current that is not part of the program’s semantics.

We also do this by deleting vertices: this time, whenever we add a vertex-vertex pair

(s, t) to the partial mapping, we delete each vertex x for which (x, t) ∈ unconfigurable
∗
.

Whenever (s, t) is later removed from the partial mapping, each such vertex and their

edges is added back to the target graph.

Algorithm 2: RTSH

1 Inputs: the source graph GS and the target graph GT

2 Outputs: Whether a valid subgraph homeomorphism has been found.

3 if contraction then

4 GS, chains←− contract(GS) // sec. 6.6.3
5 end

6 return RTSH∗(vmap, emap) // Algorithm 3
7

35

Algorithm 3: RTSH*

1 Inputs: the current vertex-vertex partial mapping vmap, the current edge-path emap partial

mapping

2 Outputs: found, indicating whether a valid subgraph homeomorphism has been found.

3 if s is complete then
4 return true

5 end

6 found ←− false

7 while !found ∧ ∃ valid node/edge-path mapping pair do
8 if hasUnmatchedEdge() then
9 (eS, pT)←− GetNextEdgePathPair()
10 if isUnnecessarilyLong(pT)∨ // sec. 6.6.1
11 wouldPrune(vmap,emap ∪ {(eS, pT)})∨ // algo. 4
12 (contraction ∧ ¬chainsCompatible(emap, from(eS), to(eS), pT)) then // sec. 6.6.3
13 continue

14 end

15 VT ←− VT \unconfigurableCover(intermediate(pT)) // sec. 6.7.1
16 emap←− emap ∪ {(eS, pT)}
17 found ←− RTSH∗(vmap,emap)
18 if found then

19 return true

20 end

21 emap←− emap ∩ {(eS, pT)}
22 VT ←− VT ∪unconfigurableCover(intermediate(pT)) // sec. 6.7.1
23 end

24 else

25 (vS, vT)←− GetNextNodePair()
26 if wouldPrune(vmap ∪ {(vS, vT)},emap) then // algo. 4
27 continue

28 end

29 VT ←− VT \ unconfigurableCover(vT) // sec. 6.7.2
30 vmap←− vmap ∪ {(vS, vT)}
31 found ←− RTSH∗(vmap,emap)
32 if found then

33 return true

34 end

35 vmap←− vmap ∩ {(vS, vT)}
36 VT ←− VT ∪unconfigurableCover(vT) // sec. 6.7.2
37 end

38 end

39 return false

36

Algorithm 4: wouldPrune

1 Inputs: the current vertex-vertex partial mapping vmap, the current edge-path emap

partial mapping

2 Outputs: whether pruning should be applied.

3 if serialPruning ∨ (parallelPruning ∧ pruningThreadFailed) then
4 domains←− filterDomains(vmap,emap)
5 end

6 else if cachedPruning then

7 domains←− updateDomains(vmap,emap)
8 end

9 else

10 return false

11 end

12 toPrune←− false

13 if ZeroDomain then

14 toPrune←− ∅ ∈ values(domains) // sec. 7.2.1
15 end

16 else if AllDifferent then

17 toPrune←− ¬satisfiesAllDifferent(domains) // sec. 7.2.2
18 end

19 if parallelPruning ∧ ¬toPrune then
20 pruningThreadFailed ←− false

/* Set to true by pruning thread whenever it would prune the partial
mapping that it queried from the main thread. */

21 end

22 return toPrune

37

Algorithm 5: chainsCompatible

1 Inputs: the current edge-path emap partial mapping, the source vertex vs and the

target vertex vt of the edge to be added, the path to be associated with that edge p
2 Outputs: Whether we need are safe to continue (true) or need to backtrack (false)

due to contraction compatibility issues.

3 labelsetSequences←− chains(vs, vt);
4 pathBag←− {emap(e).e ∈ ES ∧ from(e) = vs ∧ to = vt} ∪ {p};
5 edgesToGo←− |{e ∈ ES.e ̸∈ emap ∧ from(e) = vs ∧ to(e) = vt}|
6 repeat edgesToGo times

7 pathBag←− pathBag ∪ {⊤};
8 end

9 for seq ∈ labelsetSequences do
10 domain(seq)←− {p′ ∈ pathBag.containsSubSequence(seq, p′)};
11 end

12 return satisfiesAllDifferent(domains);

Algorithm 6: containsSubSequence

1 Inputs: A sequence of label sets S0 . . . Sm, a path v0 . . . vn
2 Outputs: Whether the path v0 . . . vn is compatible with the label set sequence

S0 . . . Sm, i.e. is able to emulate it.

3 if v0 . . . vn = ⊤ ∨ S0 . . . Sm = [] then
4 return true;

5 end

6 else if v0 . . . vn = [] then
7 return false;

8 end

9 else if S0 ⊆ LT (v0) then
10 return containsSubSequence(S1 . . . Sn, v1 . . . vn);
11 end

12 else

13 return containsSubSequence(S0 . . . Sn, v1 . . . vn);
14 end

38

7 PRUNING

During the search for a complete matching, during which the algorithm only has partial

matchings, the algorithm will often explore dead branches, i.e. branches of the search

tree that will not eventually lead to a homeomorphism. Exploring an entire dead branch

may be costly: its size is exponential1 thus exploration costs an exponential amount of

time. A solution to this is to implement methods of early detection of such dead branches,

i.e. pruning methods. These methods can, by nature not detect every dead branch effi-

ciently2. Therefore, there exists a tradeoff between strength, i.e. what proportion of dead

branches it can detect, and performance, i.e. how the number of instructions used by

pruning scales with the size of the inputs. Xiao’s algorithm uses pruning as well, using

specialized methods to suit their storage methods. We will implement different methods

for RTSH, each with different tradeoffs. Although some of these pruning methods use

reachability requirements, be reminded that our algorithm does not precompute paths. In

those cases, reachability is calculated during runtime, optionally cached.

The input of these pruning methods comes down to an assignment of domains (sets of

target graph vertices) to variables (source graph vertices). These domains represent the

target graph vertex candidates for each source graph vertex in vertex-on-vertex match-

ing. See Figure 7.1 for an example. Source graph vertices that are already in the partial

matching have a domain of size one: the target graph vertex they have been matched

to. The other vertices have domains that can be calculated in different ways (see Section

7.1). The pruning method then decides whether the algorithm should continue the search

in this branch (i.e. do not prune) or whether the algorithm should backtrack. The different

methods of deciding this are elaborated in Section 7.2.

7.1 Domain filtering

The goal of domain filtering during a search is to assign a domain of target graph vertices

to each source graph vertex such that the following three criteria are satisfied:

1. If at least one homeomorphism can be found from this search branch, then for some

1due to the NP-completeness of node disjoint subgraph homeomorphism
2again, because of the NP-completeness of node disjoint subgraph homeomorphism.

39

Figure 7.1: An example case. With an empty partial mapping, the domain of s1 is {t1, t2},
every compatible vertex in the target graph. The domain of s2 is initially {t5, t6} and the

domain of s3 {t3, t4}. This holds for any filtering method mentioned in this chapter. When

pairs are added to the partial mapping, the domain of each source graph vertex may be

reduced.

homeomorphism that can be found from this search branch with vertex-on-vertex

matching MV it holds that ∀(s→ t) ∈MV .t ∈ domain(s).

2. Each domain assignment contains as few ‘false positives’ as possible, where a false

positive is a pair of a source vertex s and a target vertex t such that t is in the domain

of variable s and no homeomorphism exists from the current search path in which s
is matched to t.

3. The process of domain filtering has a computational complexity that is as low as

possible.

In this section, we will explore different methods to obtain these domains, each with dif-

ferent tradeoffs between strength (performing better at criterium 2) and performance (per-

forming better at criterium 3). While technically any combination of these methods can

be in combination (i.e. by intersecting the domains they find), we limit ourselves with the

assumption that each method is combined with every computationally cheaper filtering

method.

7.1.1 Labels and neighbours

The weakest and fastest method to obtain domains for some source graph vertex u is by

selecting each target graph vertex v that is not already used in the current partial mapping,

has compatible labels and has compatible in- and outdegrees:

40

Definition 7.1.1 (compability under label constraint). If M is the current partial

matching, then:

compatibleLABEL(s, t) := t ̸∈M ∧
L(s) ⊆ L(t) ∧
|pred(t)| ≥ |pred(s)| ∧
|succ(t)| ≥ |succ(s)|

This method satisfies criterium 1 since every homeomorphism needs each source graph

vertex s to be matched with a target graph vertex t that has at least the same label set as

s, and the possibility of connecting with each mapped predecessor and successor of s. It
has a low average computational complexity per source-target pair (O(|LS|)).

7.1.2 Free neighbours

A somewhat stronger and somewhat slower method to obtain domains in addition to label

filtering is to compare the indegree- and outdegree of each unmatched source graph vertex

s to other unmatched source graph vertices to the in- and outdegree of the target graph

vertex t to other unmatched target graph vertices. The target graph vertex must have a

larger or equal indegree and outdegree compared to the source graph vertex:

Definition 7.1.2 (compatibility under free neighbours constraint). IfM is the current

partial matching, then:

compatibleFN(s, t) := compatibleLABEL(s, t) ∧
|pred(t) \M | ≥ |pred(s) \M | ∧
|succ(t) \M | ≥ |succ(s) \M |

This method satisfies criterium 1 since each unmatched neighbour must yet be matched

with a target graph vertex that is (vertex disjointly) connected with the target graph vertex.

For this purpose, an unused connection to the vertex is required. It has a slightly higher

average computational complexity per source-target pair since (if no cached approach is

chosen) each neighbour of s and of t needs to be counted: O(|LS|+ |ES|/|VS|+ |ET |/|VT |).

7.1.3 Reachability of matched vertices (M-filtering)

A strong (and computationally very expensive) method of filtering the domain we will use

to calculate whether a target vertex t is in the domain of a source graph vertex s in addition
to label- indegree and outdegree compatibility is to check that t can reach the mapped ver-

tices of successors of s, and that t can be reached from the mapped vertices of predeces-

sors of s, i.e. that candidate paths exist for the upcoming edge-path matching attempts.

This pruning method does not check whether a set of paths exist that is vertex disjoint

since that is the task of the main algorithm: it merely checks the existence of paths. If no

path exists, then no vertex disjoint path exists, and pruning is required. An example of a

domain filtered by reachability can be found in Figure 7.2. Formally:

41

Figure 7.2: After vertex placements s1 → t4 and s2 → t2, the domain for vertex s3 would
normally be {t1, t3}. However, by checking for reachability from t4 we can reduce this to

{t3}. The numbers represent the matching order, and the circle styles represent labels.

Definition 7.1.3 (compatibility under reachability constraint). IfM is the current par-

tial mapping and P is the set of paths in the target graph, then:

compatibleM−REACH(s, t) :=compatibleFN(s, t) ∧

compatibleM−REACH,pred(s, t)∧

compatibleM−REACH,succ(s, t)

where:

compatibleM−REACH,pred(s, t) := ∀s′ ∈ (pred(s) ∩M).∃p ∈ P. first(p) = M(s′) ∧
last(p) = t ∧
intermediate(p) ∩M = ∅

compatibleM−REACH,succ(s, t) := ∀s′ ∈ (succ(s) ∩M).∃p ∈ P. first(p) = t ∧
last(p) = M(s′) ∧
intermediate(p) ∩M = ∅

If Dijkstra’s algorithm is used to find p, we have a complexity of O(|ET | + |VT | ∗ log(|VT |))
for each neighbour, resulting in a total average case complexity per source-target pair of

O(|LS|+ (|ET |+ |VT | ∗ log(|VT |)) ∗ |ES|/|VS|)

7.1.4 Reachability of neighbourhood (N-filtering)

In addition to filtering domains based on reachability from- and to matched vertices that

have a domain of one target graph vertex, we can also perform this on unmatched vertices

that have multiple vertices in their domain. In this case, any single vertex in the domain

of the source graph neighbour qualifies. If some source graph vertex s1 with domain D1

has an edge to some vertex s2 with domain D2, then for each target graph vertex t1 ∈ D1

there must exist a path to some vertex t2 ∈ D2. If not, then t1 may be removed from D1.

42

Since this process is dependent on the domain of other vertices and reduces the size of

domains itself, this process yields new (smaller) domains and is therefore repeated until

a fixed point is reached.

Definition 7.1.4 (compatibility under neighbourhood reachability constraint). If M
is the current partial mapping and P is the set of paths in the target graph, then

neighbourhood reachability compatibility is defined as

compatibleN−REACH(s, t) := lim
i→+∞

nreachi(s, t)

where:

nreachi(s, t) =

{︄
compatibleM−REACH(s, t) i = 0

ncompi,pred(s, t) ∧ ncompi,succ(s, t) otherwise

ncompi,pred(s, t) := ∀s′ ∈ pred(s).∃t′ ∈ VT .nreachi−1(s
′, t′)∧

∃p ∈ P. first(p) = t′∧
last(p) = t∧
intermediate(p) ∩M = ∅

ncompi,succ(s, t) := ∀s′ ∈ succ(s).∃t′ ∈ VT .nreachi−1(s
′, t′)∧

∃p ∈ P. first(p) = t∧
last(p) = t′∧
intermediate(p) ∩M = ∅

7.2 Pruning methods

7.2.1 ZeroDomain pruning

The ZeroDomain pruning method decides to backtrack if and only if one of the domains

is empty, i.e. there exists some source graph vertex that cannot be matched with any

target graph vertex. Since each source graph vertex must be matched with some target

graph vertex in a subgraph homeomorphism, this implies the search is in a dead branch. A

homeomorphism cannot be found in the current search branch as no potential match exists

for this source graph vertex. An example of a domain assignment where ZeroDomain

prunes the search space is shown in Table 7.1.

7.2.2 AllDifferent pruning

The AllDifferent constraint specifies that given some assignment of domains to variables,

each variable should have a non-empty domain (i.e. AllDifferent is stronger than Ze-

roDomain) and and some injective mapping exists from variables to values in their do-

43

Source graph vertex Target graph candidates

s1 {t1, t3, t5}
s2 {t1, t2, t3, t4}
s3 {t2, t3, t6}
s4 ∅

Table 7.1: If the empty domain pruning method detects an empty target graph domain for

some source graph vertex, backtracking is initiated. This is the case if the possible target

graph candidates are as shown as in this table.

Source graph vertex Target graph candidates

s1 {t1, t2, t3}
s2 {t1, t2}
s3 {t2, t3}
s4 {t1, t3}

Table 7.2: In this example, four source graph vertices have a total domain of only three

target graph candidates. By the pigeonhole principle, no injective assignment is possible.

AllDifferent recognises this and initiates backtracking.

mains. Since a homeomorphism requires the vertex-vertex mapping to be injective (and

extending a non-injective vertex-vertex mapping can never make it injective again), the

AllDifferent pruning algorithm backtracks whenever no such injective mapping exists. Alld-

ifferent uses quadratic space since each domain needs to be known at the same time (in

contrast with zero-domain, in which the knowledge of each domain separately is suffi-

cient). An example of a domain assignment where AllDifferent prunes the search space

but ZeroDomain does not is shown in Table 7.2.

7.3 When to apply

When a pruning method has been selected and a strategy to obtain the domains, one

must lastly decide when to apply the pruning method.

7.3.1 Runtime calculation

The simplest option is to calculate the domains and run the pruning strategy each time

a vertex is selected for usage in a matching. This could be a target graph vertex that is

selected as for vertex-on-vertex matching or a target graph vertex that is part of a path

in edge-on-path matching. This changes the partial matching and thus the domains. The

pruning method then decides to allow it or to disallow it.

44

7.3.2 Caching domains - incremental domain calculation

Another option is to cache the domain of each variable and update it based on the current

partial matching. This saves valuable time but requires quadratic space3 (for each source

graph vertex ∈ |Vsource| it needs to store a domain of average size O(|Vtarget|)). If M-

reachability filtering or N-reachability filtering is used, paths need to be cached as well.

That is, for each edge ∈ Esource we need to store a path of O(|Vtarget|) vertices.

7.3.3 Parallel calculation

Finally, we can perform the domain filtering and procedure in a separate CPU thread while

the algorithm continues without backtracking. The pruning thread queries the current

matching and calculates whether pruning is appropriate for that matching. If it decides

that it is not, it re-queries the current matching. Otherwise, it will interrupt the main thread

and signal it to backtrack until the pruning method does not detect a dead branch any-

more. This method cannot perform caching, since that requires updating the cache every

time the partial matching is extended - and performance benefits are only gained when

the partial matching is only occasionally queried.

3i.e. some constant c exists such that the space required has an upper bound of c ∗ |Vtarget|2

45

8 END-TO-END EXAMPLE

To illustrate the process documented in this thesis, we provide an end-to-end example

on a small use case. This entails the process from modelling FPGAs all the way up to

applying an emulation mapping on configurations of the virtual FPGA.

8.1 FPGAs

We introduce the virtual FPGA VirSample. This simple FPGA has two inputs, has a 2-

input-1-output LUT and two outputs (one of which is always zero). Figure 8.1 shows the

layout and different configurations of this virtual FPGA.

Suppose we want to emulate configurations of VirSample on a real, physical FPGA Con-

creteSample (shown in Figure 8.2). This FPGAhas a 2-input-2-output logic cell, a register

and a multiplexer (a component that selects one of its two input sets as output depending

on its configuration). Intuitively, we may find an emulation mapping by hand:

Figure 8.1: Both configurations of VirSample. The left configuration is specified by config-

uration bit v5 = 0 while the right configuration is specified by v5 = 1.

46

Figure 8.2: The ConcreteSample FPGA. It has 9 configurable bits, 8 of which in its lookup

table and one of which a selector of its multiplexer.

• c1 ←− v5 ∧ v1
• c2 ←− ¬v5 ∧ v1
• c3 ←− v5 ∧ v2
• c4 ←− ¬v5 ∧ v1
• c5 ←− v5 ∧ v3
• c6 ←− ¬v5 ∧ v3
• c7 ←− v5 ∧ v4
• c8 ←− ¬v5 ∧ v4
• c9 ←− 0
• virtual input 1 = concrete input 1

• virtual input 2 = concrete input 2

• virtual output 1 = concrete output 1

• virtual output 2 = concrete output 3

We will show that a similar emulation mapping will also be the result of applying our

method. First, we will design graph models for both FPGAs in Section 8.2. We will find a

subgraph homeomorphism between those graphs in Section 8.3.1. Finally, we will retrieve

the emulation mapping in Section 8.4.

8.2 Graph models

Wemodel our FPGAs using the model specified in Chapter 5, with one addition: we model

LUTs with a new label LOGIC. Since we only model physical structures (i.e. wires, tran-

sistors and logical components) instead of semantics, we need to think of ways that Vir-

Sample could have been implemented using these physical structures. After all, this FPGA

does not physically exist. Some implementations of VirSample will yield graph models that

have subgraph homeomorphism embeddings in ConcreteSample’s graph while some will

not. In this example, we will make a single compact graph model, although, for practi-

47

Figure 8.3: Graph model of the virtual FPGA.

cal use, we recommend trying out different models. This graph model is shown in Figure

8.3. This model assumes that the physical implementation of VirSample uses a 2-input-

2-output LUT, with the limitation that for each input combination in the LUT, at least one

output should be configured to be zero, depending on v5.

Obtaining the graph model for the concrete FPGA is easier: since ConcreteSample phys-

ically exists, we already know where transistors, wires and LUTs are used. Using the

model from Chapter 5 with the LUT addition we obtain the graph shown in Figure 8.4.

We omit the register since we logically induce that, since VirSample only uses combina-

torial components, an emulation on ConcreteSample would never include the usage of its

register.

Figure 8.4: Graph model of the concrete FPGA.

48

Figure 8.5: Graph model of the virtual FPGA with vertices ordered using GreatestCon-

strainedFirst.

8.3 Finding a subgraph homeomorphism

8.3.1 Applying ordering

We apply GreatestConstrainedFirst to our source graph from Figure 8.3 to obtain the graph

shown in Figure 8.5.

Furthermore, we order the target graph vertices from the target graph from Figure 8.4 by

their degree to obtain the graph shown in Figure 8.5

Figure 8.6: Graph model of the concrete FPGA with vertices ordered by degree.

49

8.3.2 Applying contraction

We use our algorithm with contraction enabled, meaning we will preprocess our source

graph to reduce its size, keeping track of contracted vertices to use later in the algorithm.

Contracting each source graph vertex with indegree 1 and outdegree 1 leaves us with the

graph shown in Figure 8.7.

Figure 8.7: Contracted graph model of the virtual FPGA.

8.3.3 Running algorithm

We start with a partial mapping (vmap,emap) where vmap and emap are both empty and

run Algorithm 3.

• (lines 8, 25) There exists no unmatched edge, so retrieve the next node pair (s1, t1).
• (line 26) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17, t21}
s7 → {t16, t18, t19, t20}
s8 → {t16, t18, t19, t20}
s9 → {t17, t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 30) We add (s1, t1) to vmap, which is now {(s1, t1)}.
• (line 31) We enter a recursive call.

• (lines 8, 25) There exists no unmatched edge, so retrieve the next node pair. For briefness, we

will omit attempts to match s6 with t1 . . . t16: these will each result in being pruned

in line 11 because of reachability and label compatibility problems, until we try

(s6, t17).

50

• (line 26) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16, t18, t19, t20}
s8 → {t16, t18, t19, t20}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 30) We add (s6, t17) to vmap, which is now {(s1, t1), (s6, t17))}.
• (line 31) We enter a recursive call.

• (lines 8, 9) There exists an unmatched edge (s6, s1), so retrieve the next edge-path pair (using
DFS path iteration) (s6 → s1, t17 → t9 → t1).

• (line 10) Since no shortcuts exist in the path t17 → t9 → t1, isUnnecessarilyLong(t17 →
t9 → t1) is false.

• (line 11) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16, t18, t19, t20}
s8 → {t16, t18, t19, t20}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 12) Contraction is enabled, and we find that the path t17 → t9 → t1 satisfies the

requirements of having a single intermediate vertex with at least the label PORT
(vertex t9). Therefore, we do not prune.

• (line 16) We add (s6 → s1, t17 → t9 → t1) to emap, which is now {(s6 → s1, t17 → t9 → t1)}.
• (line 17) We enter a recursive call.

• (lines 8, 25) There exists no unmatched edge, so retrieve the next node pair (s7, t16). For

briefness, we will omit attempts to match s7 with t1 . . . t15: these will each result in

being pruned in line 11 because of reachability and label compatibility problems,

until we try (s7, t16).
• (line 26) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16}
s8 → {t18, t19, t20}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 30) We add (s7, t16) to vmap, which is now {(s1, t1), (s6, t17), (s7, t16))}.
• (line 31) We enter a recursive call.

• (lines 8, 9) There exists an unmatched edge (s1, s7), so retrieve the next edge-path pair (using
DFS path iteration) (s1 → s7, t1 → t5 → t8 → t4 → t2 → t15 → t16).

• (line 10) Since no shortcuts exist in the path t1 → t5 → t8 → t4 → t2 → t15 → t16,
isUnnecessarilyLong(t1 → t5 → t8 → t4 → t2 → t15 → t16) is false.

51

• (line 11) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16}
s8 → {t18, t19}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 12) Contraction is enabled, and we find that the path t1 → t5 → t8 → t4 → t2 → t15 →
t16 satisfies the requirements of having a single intermediate vertex with at least

the label PORT (vertex t5). Therefore, we do not prune.

• (line 15) Since vertex t20 is in the cover reachable by vertices from this path through un-

configurable transistors, we delete it from the graph until this path is backtracked.

• (line 16) We add (s1 → s7, t1 → t5 → t8 → t4 → t2 → t15 → t16) to emap, which is now

{(s6 → s1, t17 → t9 → t1), (s1 → s7, t1 → t5 → t8 → t4 → t2 → t15 → t16)}.
• (line 17) We enter a recursive call.

• (lines 8, 25) There exists no unmatched edge, so retrieve the next node pair (s8, t18). For

briefness, we will omit attempts to match s7 with t1 . . . t17: these will each result in

being pruned in line 11 because of reachability and label compatibility problems,

until we try (s8, t18).
• (line 26) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16}
s8 → {t18}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 30) We add (s8, t18) to vmap, which is now {(s1, t1), (s6, t17), (s7, t16), (s8, t18)}.
• (line 31) We enter a recursive call.

• (lines 8, 9) There exists an unmatched edge (s1, s8), so retrieve the next edge-path pair (using
DFS path iteration) (s1 → s8, t1 → t7 → t10 → t11 → t3 → t14 → t18).

• (line 10) Since no shortcuts exist in the path t1 → t7 → t10 → t11 → t3 → t14 → t18,
isUnnecessarilyLong(t1 → t7 → t10 → t11 → t3 → t14 → t18) is false.

• (line 11) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16}
s8 → {t18}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 12) Contraction is enabled, and we find that the path t1 → t7 → t10 → t11 → t3 →
t14 → t18 satisfies the requirements of having a single intermediate vertex with at

least the label PORT (vertex t7). Therefore, we do not prune.

52

• (line 15) Since vertex t19 is in the cover reachable by vertices from this path through un-

configurable transistors, we delete it from the graph until this path is backtracked.

• (line 16) We add (s1 → s7, t1 → t5 → t8 → t4 → t2 → t15 → t16) to emap, which is now:

{(s6 → s1, t17 → t9 → t1),
(s1 → s7, t1 → t5 → t8 → t4 → t2 → t15 → t16),
(s1 → s8, t1 → t7 → t10 → t11 → t3 → t14 → t18)}.

• (line 17) We enter a recursive call.

• (lines 8, 25) There exists no unmatched edge, so retrieve the next node pair. For briefness, we

will omit attempts to match s6 with t1 . . . t20: these will each result in being pruned

in line 11 because of reachability and label compatibility problems, until we try

(s9, t21).
• (line 26) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16}
s8 → {t18}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 30) We add (s9, t21) to vmap, which is now {(s1, t1), (s6, t17), (s7, t16), (s8, t18), (s9, t21)}.
• (line 31) We enter a recursive call.

• (lines 8, 9) There exists an unmatched edge (s9, s1), so retrieve the next edge-path pair (using
DFS path iteration) (s9 → s1, t21 → t6 → t1).

• (line 10) Since no shortcuts exist in the path t21 → t6 → t1, isUnnecessarilyLong(t21 →
t6 → t1) is false.

• (line 11) The pruner (which uses N-reachability filtering) obtains the domains:

s1 → {t1}
s6 → {t17}
s7 → {t16}
s8 → {t18}
s9 → {t21}
Since an injective mapping exists from this domain, we do not prune.

• (line 12) Contraction is enabled, and we find that the path t21 → t6 → t1 satisfies the

requirements of having a single intermediate vertex with at least the label PORT
(vertex t6). Therefore, we do not prune.

• (line 16) We add (s9 → s1, t21 → t6 → t1) to emap, which is now:

{(s6 → s1, t17 → t9 → t1),
(s1 → s7, t1 → t5 → t8 → t4 → t2 → t15 → t16),
(s1 → s8, t1 → t7 → t10 → t11 → t3 → t14 → t18),
(s9 → s1, t21 → t6 → t1)}.

• (line 17) We enter a recursive call.

• (line 4) Since the partial mapping is complete, we return true.

• (line 19) We return true from the recursive call, along with (vmap,emap)

53

• (line 33) We return true from the recursive call, along with (vmap,emap)
• (line 19) We return true from the recursive call, along with (vmap,emap)
• (line 33) We return true from the recursive call, along with (vmap,emap)
• (line 19) We return true from the recursive call, along with (vmap,emap)
• (line 33) We return true from the recursive call, along with (vmap,emap)
• (line 19) We return true from the recursive call, along with (vmap,emap)
• (line 33) We return true from the recursive call, along with (vmap,emap)
• (line 33) We return true from the recursive call, along with (vmap,emap)

In the end, we have a subgraph homeomorphism with the vertex-on-vertex mapping:

{(s1, t1), (s6, t17), (s7, t16), (s8, t18), (s9, t21)}

and the following edge-on-path mapping:

{(s6 → s1, t17 → t9 → t1),
(s1 → s7, t1 → t5 → t8 → t4 → t2 → t15 → t16),
(s1 → s8, t1 → t7 → t10 → t11 → t3 → t14 → t18),
(s9 → s1, t21 → t6 → t1)}

8.4 Obtaining emulation mapping

To obtain the emulation mapping, we follow the following rules:

1. For each contracted vertex replaced by some edge e, assume that is is matched with

the first label-compatible vertex in the path M(e).

2. Each configurable concrete FPGA transistor that is not in the subgraph homeomor-

phism is configured to be disabled (i.e. does not allow an electrical current to flow

through them).

3. Each configurable concrete FPGA transistor M(s) that is in the subgraph homeo-

morphism in the vertex-vertex mapping is configured equal to transistor s.

4. Each configurable concrete FPGA transistor that is in the subgraph homeomorphism

in the edge-path mapping as an intermediate vertex is configured to be enabled, i.e.

always letting electrical current flow through.

5. Each concrete FPGA LUT that is not in not the subgraph homeomorphism is config-

ured to output all zeroes regardless of the input.

6. Each concrete FPGA LUT that is in the subgraph homeomorphism as part of the

vertex-vertex mapping is configured based on the configuration of the virtual LUT

such that if the input PORT vertices of the virtual FPGAgraph s-in1 . . . s-inm aremapped

to concrete FPGA vertices t-in1 . . . t-inm and the output PORT vertices of the virtual

FPGAgraph s-out1 . . . s-outn are mapped to concrete FPGAvertices t-out1 . . . t-outn,

54

the function implemented by the concrete FPGALUT from t-in1 . . . t-inm to t-out1 . . . t-outn
is equal to the function implemented from s-in1 . . . s-inm to s-out1 . . . s-outn. All re-
maining outputs should be configured to be zero.

7. Each concrete FPGA LUT that is is in the subgraph homeomorphism in the edge-

path mapping as an intermediate vertex is configured to output the value of its one

input that is in the mapping to its one output that is in the mapping, and zeroes to

each other output.

8. To emulate a signal coming into the virtual FPGA on some input wire s, one should

send the same signal to the input wire M(s) on the concrete FPGA.

9. The emulated output of each virtual FPGA output wire s is the output of the concrete
FPGA output wire M(s).

Following these rules and the obtained subgraph homeomorphism, we establish the fol-

lowing configuration mapping:

• c1 ←− v5 ∧ v1

• c2 ←− ¬v5 ∧ v1

• c3 ←− v5 ∧ v2

• c4 ←− ¬v5 ∧ v1

• c5 ←− v5 ∧ v3

• c6 ←− ¬v5 ∧ v3

• c7 ←− v5 ∧ v4

• c8 ←− ¬v5 ∧ v4

• c9 ←− 0

• virtual input 1 = concrete input 1

• virtual input 2 = concrete input 2

• virtual output 1 = concrete output 2

• virtual output 2 = concrete output 4

Now, whenever a student creates a configuration consisting of values v1 . . . v5 for the virtual
FPGA, a configuration is also defined by the values c1 . . . c9 for the concrete FPGA that

has the same semantics.

55

9 BUSINESS CASE: LATTICE ECP5

We will apply our algorithm to map virtual FPGAs to the concrete Lattice ECP5 FPGA.

An image of this FPGA on an evaluation board is shown in Figure 9.1. This FPGA’s ar-

chitecture consists of ‘tiles’ of different types in a grid pattern. Each of these tiles has

an associated x- and y-coordinate in the grid system and is (generally) topologically the

same as tiles of the type elsewhere in the grid. There exist I/O tiles which’ function is to

retrieve and send data from outside the FPGA, DSP tiles that perform signal processing

calculations, tiles that only provide routing structure, RAM tiles and tiles that are internally

used for clock management and configuration.

The structure of an ECP5 FPGA is shown in Figure 9.2. This figure shows the grid/tile

structure of the ECP5 along with specific components from the electrical engineering do-

main. The largest portion of the grid structure consists of logic tiles that contain 8 LUTs

and 8 registers (or flip-flops (FF)), bundled in 4 modules. We will focus on this type of tile to

find homeomorphisms. We used Project Trellis [44] to obtain graphs of both an individual

tile (shown in Figure 9.5) and of collections of adjacent tiles.

The virtual FPGA we aim to emulate on this board (which we will call VirBoard) is one

1http://www.latticesemi.com/products/developmentboardsandkits/ecp5evaluationboard, ac-

cessed July 10th 2020
2ECP5™and ECP5-5G™Family Data Sheet (FPGA-DS-02012 Version 1.9), accessed October 1st 2020

Figure 9.1: Evaluation board of the LFE5UM5G-85F FPGA: a variant of the ECP5.1

56

Figure 9.2: Architecture of the ECP5 FPGA. Note that it is tile-based in a square grid

structure.2

that, like the ECP5 consists of a tile-like structure with no wires spanning no more than a

single tile. Because of this limitation, a student may freely drag-and-drop functionality in

the virtual environment without worrying about implicitly overlapping connections. Each

tile in this virtual FPGA has significantly less functionality than one of the ECP5. It has a

single in- and output at each compass direction, a 2-bit LUT and a 1-bit register. It can be

configured in several ways:

1. As a single wire from one compass direction to the opposite

2. As a cross-section of two orthogonal wires

3. As a wire from direction A making a 90-degree turn to direction B, and a wire from

direction B to the opposite direction of A.

4. As a configurable 2-input-2-output LUT with any two compass directions as inputs

and the other two as outputs

5. As a 1-bit register with any compass direction as data input, any other compass

direction as clock-enable (allowing the register value to be set) and any single re-

maining compass direction as register output. The final compass direction outputs

the input of the register.

These different configurations are visualised in Figure 9.3.

57

Figure 9.3: All five possible configurations of VirBoard.

There are countless ways to model this functionality using wires, transistors and logic cells,

each of which would yield working emulations if a subgraph homeomorphism of the model

is found in the graph model of the concrete FPGA. In principle, one could enumerate all

such models and attempt to find subgraph homeomorphisms with each of them, maximis-

ing the expected result. For the scope of our research, however, we limit ourselves to

a single graph model that performs well for subgraph homeomorphism search. For this

purpose, we design the model of the virtual FPGA with two goals in mind:

1. It contains as few vertices and edges as possible, so that the search space is as

small as possible.

2. It contains as few rare resources as possible, so that more subgraph homeomor-

phisms are present.

We designed a graph model of VirBoard that encompasses all listed functionality and

contains a total of 30 vertices and 32 edges. We were not able to produce a smaller

model or one that uses fewer resources. This graph model of VirBoard is shown in Figure

9.4.

58

Figure 9.4: A graph model of a single cell of the virtual FPGA aimed to emulate on the

Lattice ECP5

59

Figure 9.5: Graph model of a single ECP5 logic tile (out of ±42000 logic tiles). Transistors
are purple, logical units are red, ports are blue, wires are orange (except those that are

neighbouring an adjacent cell, which are brown).

60

10 EXPERIMENTS

Using a machine with an AMD Ryzen 5 3600 CPU @ 3.7GHz and 32GB 3200MHz mem-

ory1 we conduct several experiments with different inputs and settings. For this purpose,

we generate random pairs of source graph- and target graph that have subgraph homeo-

morphisms in them and random pairs that do not.

Firstly, we pose a method for generating random graphs representing virtual FPGAs that

adhere to our FPGAmodelling methodology:

1. From |V | we establish how many wires, transistors, logic cells and ports it needs to

have the same distribution as the virtual FPGA.

2. We apply the appropriate labels to the vertex set as specified in Chapter 5.

3. We connect each port to a random logic cell in a random direction (except the CE port
which has to be an input). We add a single one if the graph is so small that there is

no logic cell.

4. We connect each port to a random wire in the appropriate direction.

5. We connect each transistor vertex to two different random wire vertices (one with an

incoming edge and the other with an outgoing edge).

Since vertex disjoint subgraph homeomorphisms are rare in random graph pairs, we ar-

tificially construct source graph-target graph pairs such that it is guaranteed a subgraph

homeomorphism exists:

1. First, we generate a random source graph with VS vertices using the 5-step method

described above.

2. Then, we establish a distribution of |VT | wires, transistors, logic cells and ports we

need to add to resemble the FPGA use case target graph distribution as closely as

possible and add missing vertices to the source graph such that the total vertex set

encompasses the established distribution.

1Comparitive experiments were sometimes run on amachine with an Intel
®
Xeon

®
E5-2630V3@2.4GHz

and 128GiB memory

61

3. We apply the appropriate labels to these extra vertices as specified in Chapter 5.

4. We connect each new port vertex to a random logic cell vertex, prioritising new logic

cell vertices over existing ones while the new logic cell vertices have a lower average

degree. Furthermore, we connect each new port vertex to a random wire in the

appropriate direction.

5. We use half of the extra wires to intersect existing connections. With each intersec-

tion equally likely, we intersect a (WIRE → ARC → WIRE)-connection into a (WIRE →
ARC → WIRE → ARC → WIRE)-connection, intersect a (PORT → WIRE)-connection into

a (PORT→ WIRE→ ARC→ WIRE)-connection or intersect a (WIRE→ PORT)-connection
into a (WIRE→ ARC→ WIRE→ PORT)-connection.

6. We connect each remaining transistor vertex to two different random wire vertices

(one with an incoming edge and the other with an outgoing edge), connecting with at

least one new wire vertex while the new wire vertices have a lower average degree.

Using this method we obtain random test cases that resemble the graphs of the FPGA

use case as closely as possible while still introducing some randomness that allow us to

benchmark our algorithm’s performance under a variety of optimisations.

Firstly, we compare the different methods of path iteration. The time taken to find a homeo-

morphism gives an indication of the overhead introduced by a path iterator and also taking

the heuristic value of that path iterator into account. This comparison is shown in Figure

10.1. We compare the K-path, control point (CP), DFS, Greedy cached DFS (GDFS C),

greedy in-place DFS using a distance metric (GDFS O IP) and greedy in-place DFS using

a partial-mapping-aware distance metric (GDFS A IP) path iteration methods. We used

target graphs that were respectively 50%, 200% and 400% larger than the source graph2.

We also add the performance of a portfolio method: running the algorithm in parallel with

each path iteration method and choosing the fastest outcome for each individual test case.

We measure the space usage of each path iterator, the results of which are shown in Fig-

ure 10.2.

Without optimisations, we observe exponential behaviour with approximate complexity

O(e0.7∗|VS |) for |VT | = 11
2
∗ |VS|, O(e1.0482∗|VS |) for |VT | = 3 ∗ |VS| and O(e1.133∗|VS |) for |VT | =

5 ∗ |VS|. Extrapolating this to the FPGA use case where |VT | = 97 ∗ |VS| assuming a

logarithmic trend, we get a scalability of ±O(e2.57442∗|VS |) for our FPGA use case without

pruning or contraction. For the presented business case, this provides an estimate of

8 ∗ 1015 times the the age of the universe.

We measure the performance difference between using GreatestConstrainedFirst as the

source graph vertex ordering compared to a random ordering in Figure 10.3. Similarly, we

compare the distance-based target graph vertex ordering with a degree-based ordering

2In the FPGA business case, the target graph is ± 97 times larger than the source graph. This, however,

is too computationally expensive for most of our benchmarks.

62

in Figure 10.4 and compare the degree-based ordering with a random ordering in Figure

10.5.

Next, we measure the performance gain from “refusing longer paths” and contraction by

plotting the mean time increase or decrease in cases where subgraph homeomorphisms

are present in Figures 10.6 and 10.7, respectively. Similarly, we measure the performance

gain from each method of pruning (pruning technique, filtering and application) compared

to applying no pruning at all in Figures 10.8 through 10.15 and measure its impact on

space usage in Figures 10.16 and 10.17.

Lastly, we take the optimal set of settings and measure method how long the algorithm on

average takes to find a subgraph homeomorphism where one exists, the results of which

are shown in Figure 10.18 (and separately measured the space requirements in Figure

10.19. The results for |VT | = 97 ∗ |VS| can be approximated with the exponential formula

t = 38.708 ∗ e0.4231∗|VS | (based on the last six datapoints, i.e. the part of the data scaling

worst); this gives us an estimation for the business case with |VS| = 30 of ± 146 days of

computation time.

63

5 10 15 20 25 30
10−4

10−3

10−2

10−1

100

101

102

103

|VS|

se
co
n
d
s

(a) |VT | = 11
2 ∗ |VS |

4 6 8 10 12 14 16 18 20
10−4

10−3

10−2

10−1

100

101

102

103

|VS|
se
co
n
d
s

(b) |VT | = 3 ∗ |VS |

4 6 8 10 12 14 16
10−4

10−3

10−2

10−1

100

101

102

103

|VS|

se
co
n
d
s

(c) |VT | = 5 ∗ |VS |

Timeout 10m

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Portfolio

Figure 10.1: Performance of using different path iterators in test cases with present sub-

graph homeomorphisms. We avoid unnecessarily long paths, and use no pruning or con-

traction. We include a portfolio method that takes the best performance rating for each

individual test case.

64

4 5 6 7 8 9 10 11 12

5

10

15

20

25

30

35

|VS|

M
B

CP

DFS

GDFS A IP

GDFS C

GDFS O IP

K-Path

Figure 10.2: Space usage of the algorithm with each path iterator. |VT | = 11
2
∗ |VS|, source

vertices are ordered by GreatestConstrainedFirst, target vertices are ordered by degree,

contraction is disabled, “refusing longer paths” and no pruning is used.

65

4 5 6 7 8 9 10
10−4

10−3

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) |VT | = 11
2 ∗ |VS |

4 5 6 7 8 9

10−2

10−1

100

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) |VT | = 3 ∗ |VS |

4 6 8 10 12
10−5

10−4

10−3

10−2

10−1

100

101

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) |VT | = 5 ∗ |VS |

Equal performance

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.3: Performance of our algorithmwith the GreatestConstrainedFirst source graph

vertex order relative to the performance of the algorithm with a random source graph

vertex order. “refuse longer paths” and contraction are disabled and we use no pruning.

Data points above the black reference line denote the GreatestConstrainedFirst ordering

introduces more delay, and data points below the reference line denote that it saves time.

Note the logarithmic y-axis.

66

4 6 8 10 12 14
10−2

10−1

100

101

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) |VT | = 11
2 ∗ |VS | (no caching)

4 6 8 10 12 14

100

101

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) |VT | = 11
2 ∗ |VS | (cached)

4 6 8 10 12
10−2

10−1

100

101

102

103

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) |VT | = 3 ∗ |VS | (no caching)

4 6 8 10

100

101

102

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(d) |VT | = 3 ∗ |VS | (cached)

4 5 6 7 8

10−2

10−1

100

101

102

103

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(e) |VT | = 5 ∗ |VS | (no caching)

4 4.5 5 5.5 6 6.5 7

100

101

102

103

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(f) |VT | = 5 ∗ |VS | (cached)

Figure 10.4: Performance of our algorithm with the distance based target graph vertex

order relative to the performance of the algorithm with the degree-based target graph

vertex order. “refuse longer paths” and contraction are disabled and we use no pruning.

Data points above the black reference line denote that this ordering introduces more delay,

and data points below the reference line denote that this ordering saves time. Note the

logarithmic y-axis.

67

4 6 8 10 12 14

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) |VT | = 11
2 ∗ |VS |

4 6 8 10 12

10−2

10−1

100

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) |VT | = 3 ∗ |VS |

4 4.5 5 5.5 6 6.5 7

10−2

10−1

100

101

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) |VT | = 5 ∗ |VS |

Equal performance

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.5: Performance of our algorithm with the degree-based target graph vertex

order relative to the performance of the algorithm with a random target graph vertex order.

“refuse longer paths” and contraction are disabled and we use no pruning. Data points

above the black reference line denote the degree-based ordering introduces more delay,

and data points below the reference line denote that it saves time. Note the logarithmic

y-axis.

68

5 10 15 20

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) |VT | = 11
2 ∗ |VS |

4 6 8 10 12 14 16 18

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) |VT | = 3 ∗ |VS |

4 6 8 10 12 14 16

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) |VT | = 5 ∗ |VS |

Performance allowing longer paths

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.6: Mean relative time consumption of avoiding unnecessarily long paths for

subgraph homeomorphism search compared to allowing unneccessarily long paths for

subgraph homeomorphism for different path iteration methods (no pruning or contraction,

greatest constrained first / degree based orderings). For data points below the reference

line refusing unnecesarily long paths saves time while for data points above it it costs extra

time. We handled a maximum of 1000 test cases or 10 minutes per value of |VS| for each
path iteration method.

69

5 10 15 20 25 30

10−4

10−3

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) |VT | = 11
2 ∗ |VS |

5 10 15 20
10−4

10−3

10−2

10−1

100

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) |VT | = 3 ∗ |VS |

4 6 8 10 12 14 16 18

10−4

10−3

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) |VT | = 5 ∗ |VS |

Contraction-disabled performance

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.7: Mean relative time consumption of contraction-enabled subgraph homeomor-

phism search compared to contraction-disabled for different path iteration methods. For

data points below the reference line contraction saves time while for data points above

it contraction costs extra time. “refuse longer paths” is disabled and no pruning is used.

We handled a maximum of 1000 test cases or 10 minutes per value of |VS| for each path

iteration method.

70

4 6 8 10 12 14

10−0.2

100

100.2

100.4

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) Serial

4 6 8 10 12 14

10−0.5

100

100.5

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) Cached

4 6 8 10 12 14

100

100.2

100.4

100.6

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) Parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.8: Performance of our algorithm with ZeroDomain pruning using ‘Labels and

neighbours’ filtering relative to the performance of the algorithm without pruning. |VT | =
11
2
∗ |VS|, “refuse longer paths” and contraction are disabled and we use the degree-based

target graph vertex ordering. Data points above the black reference line denote that the

pruning method introduces more delay, and data points below the reference line denote

that the pruning method saves time. Note the logarithmic y-axis.

71

4 6 8 10 12

100

101

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) serial

4 6 8 10 12 14

10−0.5

100

100.5

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) cached

4 6 8 10 12 14

100

100.2

100.4

100.6

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.9: Performance of our algorithm with ZeroDomain pruning using ‘Free neigh-

bours’ filtering relative to the performance of the algorithmwithout pruning. |VT | = 11
2
∗|VS|,

“refuse longer paths” and contraction are disabled and we use the degree-based target

graph vertex ordering. Data points above the black reference line denote that the pruning

method introduces more delay, and data points below the reference line denote that the

pruning method saves time. Note the logarithmic y-axis.

72

4 6 8 10 12 14

10−3

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) serial

4 6 8 10 12 14

10−3

10−2

10−1

100

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) cached

4 6 8 10 12 14

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.10: Performance of our algorithm with ZeroDomain pruning using ‘M-filtering’

filtering relative to the performance of the algorithm without pruning. |VT | = 11
2
∗ |VS|,

“refuse longer paths” and contraction are disabled and we use the degree-based target

graph vertex ordering. Data points above the black reference line denote that the pruning

method introduces more delay, and data points below the reference line denote that the

pruning method saves time. Note the logarithmic y-axis.

73

4 6 8 10 12 14

100

100.2

100.4

100.6

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) serial

4 6 8 10 12 14

10−0.5

100

100.5

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) cached

4 6 8 10 12 14

100

100.2

100.4

100.6

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.11: Performance of our algorithm with ZeroDomain pruning using ‘N-Filtering’

filtering relative to the performance of the algorithm without pruning. |VT | = 11
2
∗ |VS|,

“refuse longer paths” and contraction are disabled and we use the degree-based target

graph vertex ordering. Data points above the black reference line denote that the pruning

method introduces more delay, and data points below the reference line denote that the

pruning method saves time. Note the logarithmic y-axis.

74

4 6 8 10 12 14
10−2

10−1

100

101

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) serial

4 6 8 10 12 14

10−3

10−2

10−1

100

101

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) cached

4 6 8 10 12 14

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.12: Performance of our algorithm with AllDifferent pruning using ‘Labels and

neighbours’ filtering relative to the performance of the algorithm without pruning. |VT | =
11
2
∗ |VS|, “refuse longer paths” and contraction are disabled and we use the degree-based

target graph vertex ordering. Data points above the black reference line denote that the

pruning method introduces more delay, and data points below the reference line denote

that the pruning method saves time. Note the logarithmic y-axis.

75

4 6 8 10 12 14

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) serial

4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) cached

4 6 8 10 12 14

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.13: Performance of our algorithm with AllDifferent pruning using ‘Free neigh-

bours’ filtering relative to the performance of the algorithmwithout pruning. |VT | = 11
2
∗|VS|,

“refuse longer paths” and contraction are disabled and we use the degree-based target

graph vertex ordering. Data points above the black reference line denote that the pruning

method introduces more delay, and data points below the reference line denote that the

pruning method saves time. Note the logarithmic y-axis.

76

4 6 8 10 12 14

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) serial

4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) cached

4 6 8 10 12 14

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.14: Performance of our algorithm with AllDifferent pruning using ‘M-filtering’

filtering relative to the performance of the algorithm without pruning. |VT | = 11
2
∗ |VS|,

“refuse longer paths” and contraction are disabled and we use the degree-based target

graph vertex ordering. Data points above the black reference line denote that the pruning

method introduces more delay, and data points below the reference line denote that the

pruning method saves time. Note the logarithmic y-axis.

77

4 6 8 10 12 14

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(a) serial

4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

|VS|
re
la
ti
v
e
ti
m
e
s
p
e
n
t

(b) cached

4 6 8 10 12 14

10−2

10−1

100

|VS|

re
la
ti
v
e
ti
m
e
s
p
e
n
t

(c) parallel

Performance without pruning

CP

DFS

GDFS C

GDFS A IP

GDFS O IP

K-Path

Figure 10.15: Performance of our algorithm with AllDifferent pruning using ‘N-filtering’

filtering relative to the performance of the algorithm without pruning. |VT | = 11
2
∗ |VS|,

“refuse longer paths” and contraction are disabled and we use the degree-based target

graph vertex ordering. Data points above the black reference line denote that the pruning

method introduces more delay, and data points below the reference line denote that the

pruning method saves time. Note the logarithmic y-axis.

78

4 6 8 10 12

0.7

0.8

0.9

1

1.1

1.2

|VS|

re
la
ti
v
e
s
p
a
c
e
u
s
a
g
e

(a) Serial

4 6 8 10 12 14 16

0.9

1

1.1

1.2

1.3

|VS|
re
la
ti
v
e
s
p
a
c
e
u
s
e
d

(b) Cached

4 6 8 10

0.7

0.8

0.9

1

|VS|

re
la
ti
v
e
s
p
a
c
e
u
s
e
d

(c) Parallel

Pruning-disabled memory

Labels and Degrees

Free neighbours

M-Filtering

N-Filtering

(d) Serial

Figure 10.16: Memory usage of our algorithm with ZeroDomain pruning using various

filtering methods compared to memory usage without pruning. |VT | = 11
2
∗ |VS|, “refuse

longer paths” and contraction are disabled and we use the degree-based target vertex

ordering and use DFS path iteration. Data points above the black reference line denote

that the pruning method increases memory usage and data points below the reference

line denote that the pruning method saves memory.

79

4 6 8 10 12 14 16

0.8

0.85

0.9

0.95

1

1.05

|VS|

re
la
ti
v
e
s
p
a
c
e
u
s
e
d

(a) Serial

4 6 8 10 12
0.9

1

1.1

1.2

1.3

|VS|
re
la
ti
v
e
s
p
a
c
e
u
s
e
d

(b) Cached

4 6 8 10 12

0.6

0.8

1

1.2

1.4

|VS|

re
la
ti
v
e
s
p
a
c
e
u
s
e
d

(c) Parallel

Pruning-disabled memory

Labels and Degrees

Free neighbours

M-Filtering

N-Filtering

(d) Serial

Figure 10.17: Memory usage of our algorithm with AllDifferent pruning using various

filtering methods compared to memory usage without pruning. |VT | = 11
2
∗ |VS|, “refuse

longer paths” and contraction are disabled and we use the degree-based target vertex

ordering and use DFS path iteration. Data points above the black reference line denote

that the pruning method increases memory usage and data points below the reference

line denote that the pruning method saves memory.

80

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

10−2

10−1

100

101

102

103

1 minute

|VS|

s
e
c
o
n
d
s
/
c
a
s
e

Timeout 10m

|VT | = 11
2
∗ |VS|

VT	= 3 ∗	VS
VT	= 5 ∗	VS
VT	= 97 ∗	VS

Figure 10.18: Performance of our algorithm RTSH using the configurations that individu-

ally perform best: DFS path iteration, N-reachability AllDifferent pruning and a portfolio of

(avoiding unnecessarily long paths and contraction). We use 10 minutes worth of tests for

each data point and stop testing when that is not enough for finding a homeomorphism in

a single test case.

81

0 20 40 60 80
0

20

40

60

80

100

120

|VS|

M
B

(a) |VT | = 11
2 ∗ |VS |

0 20 40 60 80
0

20

40

60

80

100

120

|VS|
M
B

(b) |VT | = 3 ∗ |VS |

5 10 15 20 25 30

20

40

60

|VS|

M
B

(c) |VT | = 5 ∗ |VS |

5 10 15 20

20

40

60

80

100

120

|VS|

M
B

(d) |VT | = 97 ∗ |VS |

Figure 10.19: Space usage of our algorithm RTSH using the configurations that individ-

ually perform best: DFS path iteration, N-reachability AllDifferent pruning and a portfolio

of “refuse longer paths” and contraction. We use 10 minutes worth of tests for each data

point and stop testing when that is not enough for finding a homeomorphism in a single

test case.

82

11 DISCUSSION

11.1 Algorithm

We created an algorithm ‘toolbox’ for our algorithm RTSH with many changeable settings.

We benchmarked these settings against each other in the previous section an obtained

informative results about their impact on performance. Firstly, we found that in-place depth

first search path iteration is (of the methods compared) the most efficient path iteration

method to replace Xiao’s structure with precomputed paths for our business case. The

memory usage of each path iteration methods is approximately polynomial and far below

the memory limits of any pc of this era. All path iteration methods (except for control point

iteration) seem to scale approximately equally within our graph size range with depth first

search being the fastest method.

Our experiments show that the GreatestConstrainedFirst source graph vertex ordering

fromRI-DS [8] is indeedmore efficient than a random ordering. Moreover, the experiments

show that ordering target vertices by degree introduced by Glasgow [41] is on average

more efficient than a random ordering or the distance-based ordering we introduced.

We benchmarked contraction and observed that it generally increases the performance of

our algorithm. However, for smaller graph ranges there still existed a significant portion of

test cases for which contraction was slightly slower. These cases are ones with subgraph

homeomorphisms found so quickly that the minor additional computations introduced by

contraction started to matter.

We compare each of our 24 combined pruning methods and conclude that cached AllDif-

ferent pruning with N-filtering is the most computationally effective pruning method for our

business case. This finding is partly in line with Xiao’s algorithm, which uses a very similar

form of pruning, but with ZeroDomain pruning.

With regards to space usage, we observe that the fastest pruning method (i.e. cached

AllDifferent pruning with N-filtering) uses superlinearly scaling space. However, these

space requirements are still far below hardware limitations for cases with challenging com-

putational complexity.

For applications of our algorithm outside of FPGA emulation, different settings may yield

83

better performance. Our test cases are specifically designed to represent graphs that

adhere to our FPGA graph model and may have properties that graphs from a different

domain do not have. Therefore, verifying the appropriate settings for a different business

case is advisable if computational requirements are relevant.

11.2 Representativeness of test cases

For our research, we aimed to have our test cases as close to real business cases, yet

randomised and of any desired size to allow benchmarking of our algorithm. With this in

mind, we devised a method of generating test cases with a guaranteed subgraph home-

omorphism. While these test cases adhere to our graph model of FPGAs, they might not

be representative of real business cases. For example:

• Our test cases allow two wires to be connected through multiple configurable tran-

sistors, while in practice there will likely only one.

• Our test cases allow different logical units to have a different number of in- and

outputs, while in practice these are likely equal within the same FPGA architecture.

• Our test cases allow FPGA structures that can have no functional purpose (for ex-

ample, a logical unit without outputs).

Because of these examples and many more, our benchmarks will likely differ somewhat

from the average time needed to find subgraph homeomorphisms in real business cases.

Our test case generation methodology can be considered a best effort to balance rep-

resentativity of real FPGAs with testability while guaranteeing presence of a subgraph

homeomorphism.

11.3 Scalability

The performance of our set of optimal configurations performs well enough for our FPGA

business case. From the test results, we estimated to require 39 minutes of computation

for our business case or cases of comparable size. Computing this once for each pair of

virtual FPGA and concrete FPGA is feasible.

11.4 Disadvantages

Adisadvantage of our approach is that it requires modelling the virtual FPGA into hardware

components (wires, transistors et cetera). Some models might result in subgraph home-

omorphisms being found, while some models might not. A possible technique to remedy

this is to attempt several different models simultaneously, using heuristics to estimate the

likeliness of each model to result in a subgraph homeomorphism being found.

84

Even then, a subgraph homeomorphism may not be found even though a theoretical em-

ulation exists: our methodology only looks for emulation of individual virtual components

by individual concrete components and does not look for solutions where sets of virtual

components are emulated by sets of virtual concrete components that may be composed

of different component types. However, there might not be a solution to this: in general,

an emulation mapping should map each possible function on the virtual FPGA to a se-

mantically equivalent function on the concrete FPGA. Deciding whether two functions are

semantically equivalent is an undecidable problem in general, only limited by the size of

the FPGA. It is thus appropriate to use a methodology that is most likely to find an emula-

tion mapping where one exists, for which we provide a candidate with our methodology.

85

12 CONCLUSION

In this research, we aimed to investigate how to map a configuration for a virtual FPGA to

one usable for a real-life concrete FPGA. One goal of such emulation is allowing college

students to learn about the FPGAcompilation and synthesis process using a simple, easy-

to-understand FPGAbut still running their configurations on real hardware. Moreover, this

problem fits within the greater research area of partial FPGAcompilation: abstracting parts

of an FPGA away such that they may be used for other purposes. We reduced this emu-

lation problem to ‘subgraph homeomorphism’, an NP-complete graph problem. This is a

problem for which several algorithms existed, but none met the space- and computational

requirements needed for the scale of the inputs (graphs of the FPGAs). Because of this,

we decided to create an algorithm that does meet the requirements. We took inspiration

from the algorithm ndSHD2: an algorithm that has minimum exponential space- and com-

putational requirements. We create a similar algorithm that only has polynomial space

requirements. To improve our chances of finding subgraph homeomorphisms, we added

several optimisations: refusing paths using unnecessarily many FPGA resources, con-

traction, AllDifferent pruning and various ways to order vertices in either graph. We found

that each of these optimisations (except distance-based target graph vertex ordering) may

reduce the time spent on finding homeomorphisms.

To answer our first research subquestion, we benchmarked the performance of this al-

gorithm with optimal settings and extrapolate that cases similar to the business case will

take approximately 146 days’ time. Furthermore, it requires an amount of memory for this

computation that is found in every desktop computer. This is reasonable for an FPGAedu-

cation environment since this only has to be computed once before an emulation mapping

is found on a machine with a realistic amount of memory. Unfortunately, our algorithm

showed there is no subgraph homeomorphism from our virtual FPGA model to an ECP5

tile, or to blocks of up to 3-by-3 times. Since we were not able to find a subgraph home-

omorphism between the FPGAs of the business case yet, we are unable to answer our

second research subquestion: how many resources of the concrete FPGA are needed for

each virtual logic case. We can, however, conclude a lower bound of 9 ECP5 tiles needed

for a single virtual logic cell1

1other layouts of 9 tiles or less that do not fit within a 3-by-3 grid might yield subgraph homeomorphisms

for our business case; however, there are many of such layouts.

86

The algorithm we proposed is also applicable for graphs outside of the FPGA emulation

domain. While the conclusions we make from our experiments are based on graphs rep-

resenting FPGAs with their structure, our software toolbox with individually changeable

settings allows for benchmarks on other graphs as well. Our software (or other software

created with our methodology) can be used to establish the appropriate configuration for

any other domain reducible to subgraph homeomorphism.

Based on this algorithm, we establish a methodology to obtain a mapping for linear time

emulation of virtual FPGAs on concrete FPGAs. The code for this research can be found

on https://doi.org/10.5281/zenodo.4279324.

87

https://doi.org/10.5281/zenodo.4279324

13 FUTURE RESEARCH

Through our research, we encountered multiple opportunities for further research, both in

our algorithm and in the general problem of FPGA emulation.

We improved Xiao’s algorithm and optimised it for finding subgraph homeomorphisms

between FPGA models. There are, however, techniques that we have not implemented

but could yield performance gains of the algorithm.

• Since our algorithm is a form of search space exploration, exploration of different

branches of the search tree could be performed in parallel. This has the potential

of speeding up the algorithm by a factor of the number of computing cores used in

parallel.

• Secondly, our algorithm could be improved by adding ”backmarking and backjump-

ing” [32]. This technique improves the pruner by recognising which addition of the

partial mapping caused the pruner to kick-in, backtracking potentially several steps

instead of one. This technique was already implemented in Glassgow [41], a sub-

graph isomorphism algorithm that is as of now not shown to be superseded by a

better performing algorithm (See Appendix .1).

• The contraction optimisation has room for improvement. Whenever a duplicate edge

appears due to contraction of some transistor or port, the algorithm attempts to find

appropriate paths for the two edges independently. An optimisation would be to

avoid mapping them with a set of paths if some mapping from those edges to the

same set of paths has already been attempted before.

• The pruner currently has no knowledge of contracted vertices or limitations of map-

ping edges with contracted vertices to paths. Taking this into account in the pruner

could result in some speedup.

• Our algorithm could take hierarchy into account. Whenever the source graph con-

tains some graph pattern multiple times, it may be easier to find matches in the

target graph for these repetitions after one instance is completely included in the

partial mapping.

• Our version of “refusing longer paths” is not compatible with contraction, which is a

88

shame since both optimisations can be very effective. Future research into combin-

ing these optimisations could result in a much faster algorithm.

• Lastly, if one is able to retrieve information about the physical location of compo-

nents of the concrete FPGA, this information can be used as a heuristic for vertex

orderings.

There are other areas of research possible as well. One of the problems of our methodol-

ogy is that it requires a 1-to-1 mapping of physical components. If we build a repository of

component structures along with structures that can emulate them, we could move away

from subgraph homeomorphism to a more general variant that allows mapping groups of

components on other groups. Lastly, we observe that, contrary to placement & routing al-

gorithms, our algorithm performs best when the sizes of the two inputs are close together.

Combining our research with research on placement & routing algorithms has the potential

of resulting in an approach that works well with approximately equal input sizes and with

widely different input sizes.

89

Appendices

90

.1 History of subgraph isomorphism algorithms

91

92

.2 Examples of path iterators

(a) First path (b) Second path

Figure 1: The first two iterations of the K-path path iterator in a square graph. This example

is unaffected by “refusing longer paths”.

93

(a) First path (b) Second path

(c) First path (refusing longer paths) (d) Second path (refusing longer paths)

Figure 2: The first two iterations of the DFS path iterator in a square graph.

94

(a) First path (b) Second path

(c) First path (refusing longer paths) (d) Second path (refusing longer paths)

Figure 3: The first two iterations of the greedy DFS path iterator in a square graph.

95

(a) First path (0 control points) (b) Second path (1 control point)

Figure 4: The first two iterations of the control point path iterator in a square graph. This

example is unaffected by “refusing longer paths”.

96

.3 Proof: contraction preserves subgraph homeomorphism

Proof. Let vcontractS′→S and econtractS′→S be the (injective) vertex-to-vertex mapping

and (injective) edge-to-path mapping from the contracted graph Scont to S, respectively,
and let (vmapS→T ,emapS→T) be some vertex disjoint subgraph homeomorphism from S
to T , respectively.

We then construct a vertex-to-vertexmapping vmapS′→T bymapping each vertex v ∈ VS′ to

vmapS→T (vcontractS′→S(v)). Recall from the definition of subgraph homeomorphism that

∀s ∈ VS.LS(s) ⊆ LT (vmapStoT (s)). This holds for S and T since we assumed a subgraph

homeomorphism existed between the two.

Since for every vertex v ∈ VS′ we have vcontractS′→S(v) ∈ Vs, it also holds that ∀s′ ∈
VS′ .LS(vcontractS′→S(s

′)) ⊆ LT (vmapS→T (vcontractS′→S(s
′))). Moreover, since labels of

remaining vertices are preserved through contraction, we have ∀v ∈ VS′ .LS′(v) = LS(vcontractS′→S(v)).
Therefore, it holds that: ∀s′ ∈ VS′ .LS′(s′) ⊆ LT (vmapS→T (vcontractS′→S(s

′))). Therefore,
this vertex-to-vertex mapping satisfies the first prequisite out of three for vertex disjoint

subgraph homeomorphism.

We then construct an edge-to-path mapping emapS′→T . For each edge (u, v) ∈ ES′, we

take the edges of the path econtractS′→S((u, v)) and concatenate the edges of the corre-

sponding paths in T to obtain a new path p′. We then add ((u, v), p′) to emapS′→T . Recall

from the definition of subgraph homeomorphism that:

∀(s1, s2) ∈ ES. first(emapS→T (s1, s2)) = vmapS→T (s1)∧
last(emapS→T (s1, s2)) = vmapS→T (s2).

Applying this formula to two consecutive edges allow us to conclude:

∀(s1, s2), (s2, s3) ∈ ES. first(emapS→T (s1, s2)) = vmapS→T (s1)∧
last(emapS→T (s2, s3)) = vmapS→T (s3).

And similarly for more concatenated edges. Choosing the edge sequences such that each

edge sequence in S corresponds to a single edge in S ′ gives us:

∀(s′1, s′2) ∈ ES′ . first(emapS→T (firstEdge(econtract(s
′
1, s

′
2)))) = vmapS→T (vcontract(s1))∧

last(emapS→T (lastEdge(econtract(s
′
1, s

′
2)))) = vmapS→T (vcontract(s

′
2))

which shows we satisfy the second prerequisite.

Lastly, we prove that performing a single contraction does not violate the third prerequisite

∀p ∈ values(emapS→T).∀x ∈ intermediate(p). ̸ ∃p′ ∈ (values(emapS→T)\{p}).x ∈ intermediate(p′)

and induce that performing any number of contractions does not. Obviously, the base

case holds since it is our assumption (i.e. S is vertex disjoint subgraph homeomorphic to

T).

97

Let s ∈ VS have indegree 1 and outdegree 1, qualifying it for contraction. Let the edges

be (prec(s), s) and (s, succ(s)) where prec(s) may be equal to succ(s). We know that

emapS→T (prec(s), s) is internally vertex disjoint from all other paths in values(emapS→T),
as well as emapS→T (u, succ(u)). They share at least an end vertex vmapS→T (s) and pos-

sibly vmapS→T (prec(s)) if prec(s) = succ(s). We know that vmapS→T (s) is not the end

vertex of another path since s has indegree- and outdegree 1, and not the intermediate

vertex of another path since that is not permitted for subgraph homeomorphism. All in all,

the combined paths contain intermediate vertices intermediate(emapS→T (prec(s), s)) ∪
intermediate(emapS→T (s, succ(s))) ∪ {vmapS→T (s)} that are not intermediate vertices of

other paths in values(emapS→T).

When we contract this vertex, we get a new edge (prec(s), succ(s)) with start vertex

vmapS→T (prec(s)), end vertex vmapS→T (succ(u)), and as intermediate vertices

intermediate(emapS→T (prec(s), s))∪ intermediate(emapS→T (s, succ(s)))∪{vmapS→T (s)}.
The vertex set used in T remains exactly the same, thus does still not share intermediate

vertices with other paths in values(emapS→T).

By induction, the third prerequisite holds. Since all prerequisites hold, S ′ is a vertex disjoint

subgraph homeomorphism of T .

98

Bibliography

1. Abulaish, M., Ansari, Z.A., and Jahiruddin: SubISO: A Scalable and Novel Approach for Subgraph Iso-

morphism Search in Large Graph. In: 2019 11th International Conference on Communication Systems

Networks (COMSNETS), pp. 102–109 (2019)

2. Almasri, I., Gao, X., and Fedoroff, N.: Quick mining of isomorphic exact large patterns from large graphs.

In: IEEE International Conference on Data Mining Workshops, ICDMW, pp. 517–524 (2015)

3. Battiti, R., and Mascia, F.: An algorithm portfolio for the sub-graph isomorphism problem (2007)

4. Benz, F., Seffrin, A., and Huss, S.A.: Bil: A tool-chain for bitstream reverse-engineering. In: 22nd Inter-

national Conference on Field Programmable Logic and Applications (FPL), pp. 735–738 (2012)

5. Bi, F., Chang, L., Lin, X., Qin, L., and Zhang, W.: Efficient subgraph matching by postponing Cartesian

products. In: Proceedings of the ACM SIGMOD International Conference on Management of Data,

pp. 1199–1214 (2016)

6. Bonnici, V., and Giugno, R.: On the Variable Ordering in Subgraph IsomorphismAlgorithms. IEEE/ACM

Transactions on Computational Biology and Bioinformatics 14(1), 193–203 (2017)

7. Bonnici, V., Giugno, R., and Bombieri, N.: An Efficient Implementation of a Subgraph IsomorphismAlgo-

rithm for GPUs. In: Proceedings - 2018 IEEE International Conference on Bioinformatics and Biomedicine,

BIBM 2018, pp. 2674–2681 (2019)

8. Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D., and Ferro, A.: A subgraph isomorphism algorithm and

its application to biochemical data. BMC Bioinformatics 14(SUPPL7) (2013)

9. Brander, A.W., and Sinclair, M.C.: “A Comparative Study of k-Shortest Path Algorithms”. In: Perfor-

mance Engineering of Computer and Telecommunications Systems: Proceedings of UKPEW’95, Liv-

erpool John Moores University, UK. 5–6 September 1995. Ed. by M. Merabti, M. Carew, and F. Ball.

London: Springer London, 1996, pp. 370–379. ısbn: 978-1-4471-1007-1. doı: 10.1007/978-1-4471-
1007-1_25. https://doi.org/10.1007/978-1-4471-1007-1_25.

10. Brayton, R.K., Chiodo, M., Hojati, R., Kam, T., Kodandapani, K., Kurshan, R., Malik, S., Sangiovanni-

Vincentelli, A.L., Sentovich, E., Shiple, T., Singh, K., and Wang, H.: BLIF-MV: An Interchange Format

for Design Verification and Synthesis. Tech. rep. UCB/ERL M91/97, EECS Department, University of

California, Berkeley (1991)

11. Bröcheler, M., Pugliese, A., and Subrahmanian, V.S.: COSI: Cloud Oriented Subgraph Identification in

Massive Social Networks. In: 2010 International Conference on Advances in Social Networks Analysis

and Mining, pp. 248–255 (2010)

12. Carletti, V., Foggia, P., and Vento, M.: VF2 plus: An improved version of VF2 for biological graphs (2015)

13. Cheng, J., and Huang, T.: A subgraph isomorphism algorithm using resolution. Pattern Recognition

13(5), 371–379 (1981)

14. Čibej, U., and Mihelič, J.: Search strategies for subgraph isomorphism algorithms (2014)

15. Cook, S.A.: The Complexity of Theorem-Proving Procedures. In: Proceedings of the Third Annual ACM

Symposium on Theory of Computing. STOC ’71, pp. 151–158. Association for Computing Machinery,

Shaker Heights, Ohio, USA (1971)

99

https://doi.org/10.1007/978-1-4471-1007-1_25
https://doi.org/10.1007/978-1-4471-1007-1_25
https://doi.org/10.1007/978-1-4471-1007-1_25

16. Cordella, L.P., Foggia, P., Sansone, C., and Vento, M.: Fast graph matching for detecting CAD image

components. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, 1034–

1037 vol.2 (2000)

17. Cordella, L., Foggia, P., Sansone, C., and Vento, M.: A (sub)graph isomorphism algorithm for match-

ing large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(10), 1367–1372

(2004)

18. Di Natale, R., Ferro,A., Giugno, R., Mongiovì, M., Pulvirenti,A., and Shasha, D.: SING: Subgraph search

In Non-homogeneous Graphs. BMC Bioinformatics 11 (2010)

19. Donath, W.E.: Complexity Theory and Design Automation. In: 17th Design Automation Conference,

pp. 412–419 (1980)

20. Gao, L., and Long, T.: Spaceborne Digital Signal Processing System Design Based on FPGA. In: 2008

Congress on Image and Signal Processing, pp. 577–581 (2008)

21. García, G., Jara, C., Pomares, J., Alabdo, A., Poggi, L., and Torres, F.: A survey on FPGA-based sensor

systems: Towards intelligent and reconfigurable low-power sensors for computer vision, control and

signal processing. Sensors (Switzerland) 14(4), 6247–6278 (2014)

22. Gouda, K., and Hassaan, M.: A fast algorithm for subgraph search problem. In: DE53–DE58 (2012)

23. Grohe, M., Kawarabayashi, K.-I., Marx, D., and Wollan, P.: Finding topological subgraphs is fixed-

parameter tractable. In: pp. 479–488 (2011)

24. Han, W.-S., Lee, J., and Lee, J.-H.: Turbo<inf>ISO</inf>: Towards ultrafast and robust subgraph isomor-

phism search in large graph databases. In: Proceedings of the ACM SIGMOD International Conference

on Management of Data, pp. 337–348 (2013)

25. Hauck, S., and DeHon, A.: Reconfigurable Computing: The Theory and Practice of FPGA-Based Com-

putation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2007)

26. He, H., and Singh,A.K.: Graphs-at-a-Time: Query Language andAccess Methods for Graph Databases.

In: Proceedings of the 2008ACM SIGMOD International Conference on Management of Data. SIGMOD

’08, pp. 405–418. Association for Computing Machinery, Vancouver, Canada (2008)

27. Hershberger, J., Maxel, M., and Suri, S.: Finding the k Shortest Simple Paths: A New Algorithm and Its

Implementation. ACM Trans. Algorithms 3(4), 45–es (2007)

28. Al-Hyari, A.: Towards Smart FPGA Placement Using Machine Learning (2019).

29. Ikram, J., and Mohsen, M.: FPGA Implementation of a Quantum Cryptography Algorithm. Smart Inno-

vation, Systems and Technologies 146, 172–181 (2020)

30. Jüttner, A., and Madarasi, P.: VF2++—An improved subgraph isomorphism algorithm. Discrete Applied

Mathematics 242, 69–81 (2018)

31. Kanazawa, K., and Maruyama, T.: An approach for solving large SAT problems on FPGA. ACM Trans-

actions on Reconfigurable Technology and Systems 4(1) (2010)

32. Kondrak, G., and van Beek, P.: A theoretical evaluation of selected backtracking algorithms. Artificial

Intelligence 89(1), 365–387 (1997)

33. Kotthoff, L., McCreesh, C., and Solnon, C.: Portfolios of subgraph isomorphism algorithms (2016)

34. Krishna, V., Ranga Suri, N., andAthithan, G.: MuGRAM:An approach for multi-labelled graph matching.

In: 2012 International Conference on Recent Advances in Computing and Software Systems, pp. 19–26

(2012)

35. LaPaugh, A.S., and Rivest, R.L.: The Subgraph Homeomorphism Problem. In: Proceedings of the Tenth

Annual ACM Symposium on Theory of Computing. STOC ’78, pp. 40–50. Association for Computing

Machinery, San Diego, California, USA (1978)

36. Lingas, A., and Wahlen, M.: An exact algorithm for subgraph homeomorphism. Journal of Discrete Al-

gorithms 7(4), 464–468 (2009)

37. Lingas, A., and Wahlen, M.: On Exact Complexity of Subgraph Homeomorphism. In: Cai, J.-Y., Cooper,

S.B., and Zhu, H. (eds.) Theory and Applications of Models of Computation, pp. 256–261. Springer

Berlin Heidelberg, Berlin, Heidelberg (2007)

38. Lipets, V., Vanetik, N., andGudes, E.: Subsea:An efficient heuristic algorithm for subgraph isomorphism.

Data Mining and Knowledge Discovery 19(3), 320–350 (2009)

100

39. Ma, T., Yu, S., Cao, J., Tian, Y., and Al-Rodhann, M.: InfMatch: Finding isomorphism subgraph on a big

target graph based on the importance of vertex. Physica A: Statistical Mechanics and its Applications

527 (2019)

40. Malík, J., Suchý, O., and Valla, T.: Efficient Implementation of Color Coding Algorithm for Subgraph

Isomorphism Problem (2019)

41. McCreesh, C., and Prosser, P.: A parallel, backjumping subgraph isomorphism algorithm using supple-

mental graphs (2015)

42. McGregor, J.: Relational consistency algorithms and their application in finding subgraph and graph

isomorphisms. Information Sciences 19(3), 229–250 (1979)

43. Nawari, M., Ahmed, H., Hamid, A., and Elkhidir, M.: FPGA based implementation of elliptic curve cryp-

tography. In: Institute of Electrical and Electronics Engineers Inc. (2015)

44. Project Trellis. SymbiFlow Team. GitHub, 2018.

45. Régin, J.-C.: Filtering algorithm for constraints of difference in CSPs. In: pp. 362–367.AAAI, Menlo Park,

CA, United States (1994)

46. Ren, X., and Wang, J.: Exploiting Vertex Relationships in Speeding up Subgraph Isomorphism over

Large Graphs. Proc. VLDB Endow. 8(5), 617–628 (2015)

47. Rudolf, M.: Utilizing Constraint Satisfaction Techniques for Efficient Graph Pattern Matching. In: Ehrig,

H., Engels, G., Kreowski, H.-J., and Rozenberg, G. (eds.) Theory and Application of Graph Transfor-

mations, pp. 238–251. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

48. Saha, S., Alam, M., and Mondol, R.: FPGA implementation of FlexRay protocol with built-in-self-test

capability. In: Institute of Electrical and Electronics Engineers Inc. (2014)

49. Shang, H., Zhang, Y., Lin, X., and Yu, J.X.: Taming Verification Hardness: An Efficient Algorithm for

Testing Subgraph Isomorphism. Proc. VLDB Endow. 1(1), 364–375 (2008)

50. Solnon, C.: AllDifferent-based filtering for subgraph isomorphism.Artificial Intelligence 174(12-13), 850–

864 (2010)

51. Sun, Z., Wang, H., Wang, H., Shao, B., and Li, J.: Efficient subgraph matching on billion node graphs.

In: pp. 788–799. Association for Computing Machinery (2012)

52. Ullmann, J.R.: An Algorithm for Subgraph Isomorphism. J. ACM 23(1), 31–42 (1976)

53. Wolf, C.: Yosys Open SYnthesis Suite. (2016)

54. Xiao, Y., Wu, W., Wang, W., and He, Z.: Efficient Algorithms for Node Disjoint Subgraph Homeomor-

phism Determination. In: Haritsa, J.R., Kotagiri, R., and Pudi, V. (eds.) Database Systems for Advanced

Applications, pp. 452–460. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

55. Xie, X., Li, Z., and Zhang, H.: Efficient Subgraph Matching in Large Graph with Partitioning Scheme. In:

Proceedings - 13th Web Information Systems andApplications Conference, WISA2016 - In conjunction

with 1st Symposium on Big Data Processing andAnalysis, BDPA2016 and 1st Workshop on Information

System Security, ISS 2016, pp. 28–33 (2017)

56. Yalla, P., and Kaps, J.-P.: Lightweight cryptography for FPGAs. In: pp. 225–230 (2009)

57. Yen, J.Y.: Finding the K Shortest Loopless Paths in a Network. Management Science 17(11), 712–716

(1971)

58. Yu, H., Lee, H., Lee, S., Kim, Y., and Lee, H.-M.: Recent advances in FPGA reverse engineering. Elec-

tronics (Switzerland) 7(10) (2018)

59. Zampelli, S., Deville, Y., and Solnon, C.: Solving subgraph isomorphism problems with constraint pro-

gramming. Constraints 15(3), 327–353 (2010)

60. Zhang, S., Hu, M., and Yang, J.: TreePi: A novel graph indexing method. In: Proceedings - International

Conference on Data Engineering, pp. 966–975 (2007)

61. Zhang, S., Li, S., and Yang, J.: GADDI: Distance Index Based Subgraph Matching in Biological Net-

works. In: Proceedings of the 12th International Conference on Extending Database Technology: Ad-

vances in Database Technology. EDBT ’09, pp. 192–203. Association for Computing Machinery, Saint

Petersburg, Russia (2009)

62. Zhang, T., Wang, J., Guo, S., and Chen, Z.: A Comprehensive FPGA Reverse Engineering Tool-Chain:

From Bitstream to RTL Code. IEEE Access 7, 38379–38389 (2019)

101

63. Zhao, P., and Han, J.: On Graph Query Optimization in Large Networks. Proc. VLDB Endow. 3(1–2),

340–351 (2010)

64. Zheng, W., Zou, L., Lian, X., Zhang, H., Wang, W., and Zhao, D.: SQBC: An efficient subgraph matching

method over large and dense graphs. Information Sciences 261, 116–131 (2014)

65. Zhu, K., Zhang, Y., Lin, X., Zhu, G., and Wang, W.: NOVA: A novel and efficient framework for finding

subgraph isomorphism mappings in large graphs. Lecture Notes in Computer Science (including sub-

series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 5981 LNCS(PART 1),

140–154 (2010)

66. Zhu, L., and Song, Q.: A study of Laplacian spectra of graph for subgraph queries. In: pp. 1272–1277

(2011)

67. Zhu, L., Yao, Y., Wang, Y., Hei, X., Zhao, Q., Ji, W., and Yao, Q.: A novel subgraph querying method

based on paths and spectra. Neural Computing and Applications 31(9), 5671–5678 (2019)

102

	Introduction
	Objectives
	Background
	FPGAs
	Lookup tables
	Registers
	Logic cells
	Routing
	Pins

	FPGA compilation
	The FPGA virtual machine
	FPGA emulation
	Graph theory

	Literature
	FPGA compilation
	Subgraph isomorphism
	Subgraph homeomorphism

	Models
	Algorithm
	Basis
	How to choose vertex-vertex pairs
	Source graph vertex order
	Target graph vertex order
	Path iteration
	Optimisations
	Refusing long paths
	Runtime Pruning
	Contraction

	Avoiding unintended current flow
	Avoiding unintended current flow from/to paths
	Avoiding unintended current flow between mapped vertices

	Pruning
	Domain filtering
	Labels and neighbours
	Free neighbours
	Reachability of matched vertices (M-filtering)
	Reachability of neighbourhood (N-filtering)

	Pruning methods
	ZeroDomain pruning
	AllDifferent pruning

	When to apply
	Runtime calculation
	Caching domains - incremental domain calculation
	Parallel calculation

	End-to-end example
	FPGAs
	Graph models
	Finding a subgraph homeomorphism
	Applying ordering
	Applying contraction
	Running algorithm

	Obtaining emulation mapping

	Business case: Lattice ECP5
	Experiments
	Discussion
	Algorithm
	Representativeness of test cases
	Scalability
	Disadvantages

	Conclusion
	Future Research
	Appendices
	History of subgraph isomorphism algorithms
	Examples of path iterators
	Proof: contraction preserves subgraph homeomorphism

