
AUTONOMOUS MAPPING AND NAVIGATION
OF AN UNKNOWN ENVIRONMENT USING A
REINFORCEMENT LEARNING APPROACH

R. (Rob) Schulte

MSC ASSIGNMENT

Committee:
dr. ir. J.F. Broenink
N. Botteghi, MSc

dr. M. Poel

November, 2020

057RaM2020
Robotics and Mechatronics

EEMCS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

ii
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Rob Schulte University of Twente

iii

Summary

The capability of autonomous (mobile) robots to navigate their environment is a critical first
step in the development towards deployment of mobile robots in our daily lives. Traditional
path planners utilize a map of the environment in order to plan a collision-free path. However,
a-priori map knowledge is not always precise or, depending on the task, not available at all.
Other approaches which construct a map of the environment during the navigation process,
such as (active) SLAM approaches, require pre-coded navigational directives or path planners
in order to obtain a collision-free path. In this work we formulate the navigation and mapping
task in a-priori unknown environments as a reinforcement learning problem such that the pre-
viously mentioned problems can be alleviated. In particular, a DDPG and SLAM approach is
used in order to navigate and map known and unknown environments using sensory informa-
tion obtained .

The main novelty of this work is aiding the robots navigational process by combining SLAM
information and a concept of reachability in the state-space within the reward function defini-
tion. In this work, four different reward functions are compared on several domestic simulation
environments with different sizes and complexities. The used reward structures are evaluated
in the training environment in addition to a-priori unknown environments to test the gener-
alization capabilities. The evaluation indicates that the proposed curiosity approach was able
to cut down training time significantly within the used training environments. Other used per-
formance metrics such as trajectories and success ratio also signify that the curiosity approach
surpasses all other approaches in both the training and testing environments.

Robotics and Mechatronics Rob Schulte

iv
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Rob Schulte University of Twente

v

Contents

1 Introduction 1
1.1 General statement of the problem . 1
1.2 Problem formulation and challenges . 2
1.3 Research questions . 3
1.4 Limitations . 4
1.5 Assumptions . 4
1.6 Outline . 4

2 Background 6
2.1 Reinforcement learning . 6
2.2 Policy gradient methods . 7
2.3 Actor-critic methods . 8

2.3.1 DPG . 9
2.3.2 DDPG . 9

2.4 SLAM . 10
2.5 Frontier based exploration . 13
2.6 Summary . 14

3 Innovations in the reward function 15
3.1 Exploration at a policy level . 15
3.2 Exploring by reward shaping . 17
3.3 Summary . 18

4 Method 19
4.1 Framework . 19
4.2 Reward Shaping . 19

4.2.1 Old reward function . 19
4.2.2 Baseline scenario . 20
4.2.3 Oracle scenario . 21
4.2.4 Information-gain scenario . 21
4.2.5 Curiosity scenario . 22

4.3 Generalization . 23
4.4 State vector design . 24
4.5 Experimental setup . 24

4.5.1 Simulation environment . 24
4.5.2 Neural network architecture . 25

4.6 Experiments . 27
4.6.1 Simulation environments . 27
4.6.2 Experiment: Comparison of different reward functions 27
4.6.3 Experiment: Generalization . 28
4.6.4 Experiment: DDPG vs DRQN . 28
4.6.5 Experiment: parameter tuning . 28

5 Results and Discussion 30
5.1 Experiment: Comparison of different reward functions 30

5.1.1 Maze . 30
5.1.2 Apartment . 33
5.1.3 A note on the different environment configurations 38

Robotics and Mechatronics Rob Schulte

vi
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

5.2 Experiment: Generalization . 39
5.2.1 Improving generalization . 42

5.3 Experiment: DDPG vs DRQN . 45
5.4 Experiment: parameter tuning . 47
5.5 Evaluation . 48

5.5.1 Different reward structures . 48
5.5.2 Generalization . 49
5.5.3 DDPG vs DRQN . 49

6 Conclusion and future work 50
6.1 Conclusion . 50
6.2 Future work . 52

6.2.1 Real-world experiments . 52
6.2.2 Adaptive naive curiosity . 52
6.2.3 Hierarchical reinforcement learning . 52
6.2.4 Imitation learning . 52
6.2.5 Frontier based exploration . 52

A Raw map-completeness data 53

B Hyper-parameters 54

C Additional reinforcement learning architectures 55
C.1 Hierarchical reinforcement learning . 55
C.2 Imitation learning . 55

D Supplementary information of the neural network architecture 57
D.1 Batch layer normalization algorithm . 57
D.2 Gradient descent optimizer . 57

E Structured Literature review 58
E.1 Search terms . 58
E.2 Inclusion criteria . 58

Bibliography 60

Rob Schulte University of Twente

1

1 Introduction

1.1 General statement of the problem
Autonomous exploration of unknown environments is a challenging, but well-researched topic
for mobile robots. In contrary to manual or operated robots, autonomous robots aim to reduce
the amount of required human assistance, given a task, to a minimum. This could increase
productivity (e.g. autonomous delivery drones) and in some cases boost safety levels (e.g. self-
driving cars). However, these applications often require navigation in environments that are
not inherently designed for robots - e.g. schools, offices, and cities. Hence, autonomous navi-
gation is the first step towards a future with autonomous robots in our daily lives.

The problem of autonomous navigation is very broad and depends, amongst other things, on
the type of environment (air, land, water), the involved sensors with which the robot can per-
ceive its environment, and the type of actuation which is used to drive the robot through its
environment. Furthermore, the robot needs to be able to localize itself within the environment
and plan a proper, collision-free, path. In principle, this can be obtained if a map of the envi-
ronment is accessible but in many real-world situations an accurate map of the environment
is not readily available a-priori (e.g. the mars-rover used to explore Mars might have had an
indication of its environment by training in the Nevada desert, but no proper map). Instead,
a numerical representation of the environment is often constructed using the robot’s onboard
sensors to aid the robot with the navigation process.

The process of keeping track of the constructed map and localizing the robot within this con-
structed map is known as a Simultaneous Localization and Mapping (SLAM) problem. Many
(approximate) solutions have been proposed within the context of mobile robots such as fast-
SLAM (Montemerlo et al. (2002)), which uses a non-linear, Extended version of the Kalman
Filter (EKF) in order to estimate the posterior distribution over the robots pose along with the
positions of the landmarks. Where the landmarks are static locations within the environment
described by two numerical values. As the environments grow larger so do the number of land-
marks within that environment and consequently the computational complexity. Therefore,
innovation in landmark selection was done (e.g. Guivant and Nebot (2001)). However, the
methods still rely on pre-code navigational directives based on landmark positions to func-
tion properly (e.g. go straight when you recognize landmark x). One can see how coding these
directives can be problematic if the environment is not known beforehand or not static.

Active SLAM methods, as the name implies, actively plans the path of the robot and at the
same time localizes and builds the map of the environment. The most well-known active SLAM
method is frontier-based exploration as introduced by Yamauchi (1997). It generates naviga-
tional targets (frontiers) located between the unknown and known areas of the built map and
then navigates to those points using the aforementioned path planner. The generated trajecto-
ries are often sub-optimal and introduce a decision-making dilemma: to which frontier should
the robot navigate next. Moreover, the path to the chosen frontier does not necessarily coin-
cide with the optimal path (e.g. navigating to the closest frontier is not always optimal). Within
the scope of this thesis, we aim to address some of these issues by using Reinforcement Learn-
ing (RL) in order to generate efficient trajectories and autonomously navigate and map an un-
known environment.

Reinforcement learning is an approach, which learns to navigate the environment through a
trial and error process by observing and interacting with its environment. The observations of
the environment can come in many forms such as pixels from a camera image or positional
data from an encoder. This information (state) is then used by the controller (agent) to deter-

Robotics and Mechatronics Rob Schulte

2
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

mine the "optimal" control signal (action) and the agent receives a reward based on how good
that action was. These reward signals are task dependant, for example bumping against a wall
might give a negative reward. The maximization of the sequence of rewards (r0,r1...rt) is the
goal of reinforcement learning. As the reward is the only feedback for the robot on how well it
performs in any environment, so-called reward shaping (designing the reward function), is cru-
cial for the success of the algorithm. This thesis contributes by proposing adaptations within
the reward structure in order to successfully map, navigate, and explore an unknown environ-
ment using a mobile robot.

1.2 Problem formulation and challenges
Within the context of robotics, reinforcement learning can be successfully used to generate
velocity commands for a mobile robot in order to navigate from a starting position A to de-
sired position B, as was shown by Mustafa et al. (2019). Herein, the reward signal for the robot
was based, amongst other things, on the distance to the desired point B. Furthermore, it was
concluded that shaping the reward function based on the grid map obtained from SLAM can
improve the training performance of the algorithm. However, this reward signal cannot be
applied when autonomously mapping unknown environments since there are no fixed naviga-
tional targets available. Within the scope of the individual assignment, (Schulte, 2019) showed
that obstacle avoidance behaviour can be achieved changing the reward signal to include a
notion of how complete the map build by SLAM is. However, these results also show that the
implemented reward signal does not sufficiently describe the quality of the trajectory and suc-
cessful navigation of the environment was thus only partially achieved. This thesis aims to ad-
dress these found issues by innovating reward signal further, as is discussed in Chapter 4 of the
thesis. This can be graphically illustrated within the standard reinforcement learning context,
as described in the previous section, as follows:

Action

Reinforcement
learning agent

RewardState

Environment

Figure 1.1: Reward signal within the context of the standard reinforcement learning framework

Within the reinforcement learning paradigm many choices for reinforcement learning agent
do exist that enable a robot to learn to map an environment using sensory information present
on the mobile robot. Most of the impressive results have been achieved by Deep-Q-Networks
(DQNs) (e.g. Mnih et al. (2013)). Although DQNs function in continuous environments, the
major downside is that they are not capable of handling continuous action spaces. In princi-
ple, we could discretize the action space to a forward, backward, left, and right motion, but
this straightforward solution introduces problems as described by Lillicrap et al. (2015). Most
notable among them is the exponential growth of the number of actions with the degrees of
freedom. For example, a mobile robot with 2 degrees of freedom and the most unrefined form
of discretization ai = {−k,0,k} we obtain 32 = 9 actions. If we require any finer speed settings
e.g. 3 for each dof ai = {−k,−2

3 k,−1
3 k,0, 1

3 k, 2
3 k,k} we would get 72 = 49 possible actions. One

can see how any refined action space would lead to an explosion in the action space in addi-
tion to throwing valuable information away about the nature of the action space. Instead, we
opt for a more principled approach, which is capable of handling continuous action spaces by

Rob Schulte University of Twente

CHAPTER 1. INTRODUCTION 3

parameterizing the policy. The algorithm, which is used, is the Deep Deterministic Policy Gra-
dient (DDPG), as introduced in Lillicrap et al. (2015). Despite these advantages, the authors of
(Botteghi et al. (2020)) have shown that it possible to get state-of-the-art results with a DQN
and DRQN approach when using an unrefined form of discretization. A comparison on per-
formance between DDPG and DRQN/DQN is one of the supplementary contributions of the
thesis.

The main goal of this project is to successfully explore, navigate and construct a 2-D map of an
(unseen) 3-D environment using the raw sensory data from a mobile robot and information
obtained by the SLAM algorithm. To achieve this, a reinforcement learning algorithm, DDPG
(Lillicrap et al. (2015)) is used to map the observations of the robot to physical control actions.
In addition, a Rao-Blackwellized Particle Filter (RBPF) SLAM algorithm (Murphy (2000) and
Doucet et al. (2013)) is used to construct the map and localize the robot in the constructed
map. Furthermore, we aim to find out the limitations of this approach when introducing the
robot to previously unknown environments. Hence, the challenge of this project is twofold:

i Reward Shaping
To successfully navigate and built a map of the environment, it is paramount that we
provide the agent with the proper exploration cues. Within the reinforcement framework,
these can be supplied by shaping the reward function in such a way that the desired behav-
ior is achieved. The challenge lies in incorporating the necessary knowledge (e.g. sensor
data, spatial information, etc) within this reward function in order to achieve optimal
performance. Altering the previously implemented reward function in this manner is con-
sidered the main contribution of this thesis.

ii Generalization
An important aspect to consider is that environments are dynamic and change over time.
Even if we develop a perfect algorithm for a certain environment, we have no guarantee it
will do well if this environment changes or the algorithm is used within a previously un-
known environment. As the goal is to have the robot perform well in unseen environments
beyond the performance of the algorithm in the trained environment we need to create an
agent that can perform well in the trained environment as well as the unseen environment.
Therefore, we will explore some commonly used strategies to improve generalization and
observe how this affects the robot’s performance both in training and testing environments
within the scope of this thesis.

1.3 Research questions
To complete the previously described main goal of the project and overcome the described
problems the following research questions have to be answered:

i What are state-of-the-art reward shaping novelties that can be successfully leveraged to
aid the exploratory process within the used framework?

ii To what extent can we utilize SLAM in order to improve the reward function and increase
the performance of the DDPG approach?

iii To which extent is the algorithm able to generalize in an unseen environment?

iv How does the reinforcement learning approach compare against a frontier based
exploration approach?

v To which extent do the previously described theoretical concerns of DQN show in a
practical setting and how does it perform against the used DDPG approach?

Robotics and Mechatronics Rob Schulte

4
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

1.4 Limitations
Training a reinforcement learning in a practical setting would be a time-consuming process
due to the handling of the robot. After every reset, the robot needs to be placed on its start-
ing location and this would be very impractical considering the length of the training period.
Therefore, an accurate simulation is used to approximate a real-world experience and speed
up the learning process. This will give a significant boost to the training performance. Ideally,
we would want to transfer the obtained policy during the training process on a real robot, how-
ever, due to the covid-19 regulations this can unfortunately not be done within the scope of this
thesis.

The focus of this thesis is mainly on the reinforcement learning side of the project, meaning
that the SLAM and frontier based exploration algorithms are not the main matter, but merely
an instrument used to construct the map and in the latter case a comparison tool.

1.5 Assumptions
To make the proposed approach within this thesis possible, it is assumed herein that the state
of the environment can be fully observed by the agent and hence are in an MDP. Although we
are not blindfolded by the fact that many conditions might violate this assumption and some
of these are also treated within the scope of this thesis.

1.6 Outline
The thesis is organized as follows:

Chapter 2. Background Starts with a brief explanation of the theory behind reinforcement
learning (section 2.1) in general and later expands that framework towards poly-gradient meth-
ods (section 2.2) and finally the used DDPG approach (section 2.3). It continues with a brief
explanation of the used SLAM approach (section 2.4) and a concise explanation of the frontier
based exploration algorithm (section 2.5).

Chapter 3. Innovations in the reward function Within this chapter, possible innovations
within the state vector from state of the art research is summarized. In section 3.1, the method-
ological approach for the used literature review is explained. The state-of-the-art research
found with the literature review is summarized in section 3.2

Chapter 4. Method Details the methodology, used to answer main research questions. It be-
gins by defining the used framework (section 4.1) and then proceeds with justifying the pro-
posed reward function structures (section 4.2). Furthermore, the performed experiments and
used environments are detailed (section 4.6), after an exhaustive treatment of the experimental
setup (section 4.5) containing the simulation environment (section 4.5.1) and the used network
architecture (section 4.5.2). The most important hyperparameters are also clarified within this
section.

Chapter 5. Results The results of the most important experiments are evaluated, discussed,
and analyzed. These include a comparison of the different reward structures (section 5.1), test-
ing the generalization capabilities of these structures (5.2), a comparison with a DQN/DRQN
algorithm (section 5.3) and an experiment parameter tuning (5.4).

Chapter 6. Conclusion This thesis ends with the conclusion to answer the separate research
questions (section 6.1) and debates possible future research avenues and adaptation in section
6.2.

Appendices. Appendix A: Raw map-completeness data shows the raw map-completeness
over time of the proposed approaches when training in the Apartment environment, an ex-
haustive list of used hyper-parameters is depicted in Appendix B: Hyper-parameters, Appendix
C: Additional reinforcement learning architectures presents supplementary information of the

Rob Schulte University of Twente

CHAPTER 1. INTRODUCTION 5

state-of-the-art research section, and additional information to the neural network architec-
ture is shown in Appendix D: Supplementary information of the neural network architecture.
Lastly, Appendix E: Structured Literature review shows the literature review process for obtain-
ing innovations in the reward structure.

Robotics and Mechatronics Rob Schulte

6
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

2 Background

This chapter starts a brief introduction to reinforcement learning1. It then continues with the
(mathematical) theory behind the used DDPG algorithm. Furthermore, the SLAM algorithm,
used to build a map, will be discussed in section 2.4. Lastly, a brief explanation of frontier based
exploration, used as comparison within this thesis, is given.

2.1 Reinforcement learning
In this thesis, we consider a standard reinforcement learning framework where we have an
agent interacting with the environment. These interactions of the agent happen at discrete
points in time t . At every timestep t the agent makes an observation ot ∈O of the environment,
performs an action at ∈A and receives a reward r (ot , at) ∈R, as can be seen in Figure 4.1. This
process is repeated until a terminal condition is reached and the episode ends. In the context
of this thesis, the agent can be viewed as a controller with as inputs the sensory information of
the robot and the information provided by the SLAM algorithm and as output the desired linear
and angular velocity, which will drive the actuators of the robot. The goal of reinforcement
learning is to learn an "optimal" behavior policy that maximizes the expected sum of rewards
encountered during an episode. A key aspect is that environmental dynamics can be described
as an MDP, which is a tuple consisting of all states, actions, a state transition model which
describes how the environment changes given action a is performed from state s and, a reward
model which yields the reward after action a is taken (Lillicrap et al. (2015)). Some formulations
add the discount factor γ which stresses the importance of immediate rewards versus future
reward (Silver (2015a)).

Action At

Agent

Reward Rt State St

Environment

Figure 2.1: Reinforcement learning framework

There are many reinforcement learning algorithms that can be utilized to come to an (optimal)
policy, however, we will only discuss those which are applicable within the context of the the-
sis. The well-known Q-learning algorithm (Watkins and Dayan (1992)) will therefore serve as a
basis for both the DDPG and DRQN algorithm, explained later in this chapter. The Q-learning
algorithm is a temporal-difference (TD) learning method which updates estimates based on
previously learned estimates, without waiting for an outcome of the episode (bootstrapping).
Furthermore, it is an off-policy algorithm meaning that it follows a behavior policy (sometimes
referred to as exploration policy) with the intent of learning about a different target policy. The
one-step Q-learning algorithm works as follows: at every step, the learned action-value func-
tion Q(s, a) directly approximates the optimal value function Q∗ and the difference between
the estimate and the actual value is used to update the estimate:

Qπ(st , at) ←Qπ(st , at)+α{rt+1 +γmax
a

Qπ(st+1, at+1)−Qπ(st , at)} (2.1)

1For the basics of reinforcement learning the author refers the reader to Sutton and Barto (1998) and to Bishop
(2009) for the basics of neural networks and machine learning

Rob Schulte University of Twente

CHAPTER 2. BACKGROUND 7

Where α determines how much the estimate should be updated towards the difference and the
action-value function Qπ(s, a) depicts how good it is to be in a particular state s, taking action
a and thereafter following behavior policy π:

Qπ(s, a) = Eπ[
T∑

t=0
γt−1Rt |St = s, At = a] (2.2)

A popular choice for exploration is a ε−greedy policy (or a derivative thereof) where the algo-
rithm selects a random action with probability ε and acts greedily with respect to the action-
value function with probability 1−ε:

at =
{

random with probability ε

arg max
a

Qπ(st , at) with probability 1−ε (2.3)

The full Q-learning algorithm is then as follows:

Result: Q-learning algorithm as adapted from Sutton and Barto (1998)
Initialize Q(s, a) at random
for all Nepisodes do

get initial observation s0

for Nsteps ∈Nepisodes do
Select action at sampled from behaviour policy (e.g. ε− g r eed y)
Execute action at

Observe transition {at , st ,rt , st }
Update the Q-values:

Qπ(st , at) ←Qπ(st , at)+α{rt+1 +γmax
a

Qπ(st+1, at+1)−Qπ(st , at)}

end
end

It is important to note that this method uses a tabular lookup table to represent the Q-values for
every state-action pair. This is quite unfeasible for larger environments as the state-space will
blow up and the amount of memory required equally so. Furthermore, there are many (prac-
tical) limitations to this approach which makes this method unfeasible. For example, as the
table grows so does the amount of data that we have to loop trough, which is computationally
expensive and undesirable. Additionally, the often employed ε− g r eed y exploration, which is
a contextual multi-armed bandit problem, is only an approximate solution for this problem. It
will suffer linear regret (the difference in action-value between taking an action - e.g. random -
and the optimal one).

2.2 Policy gradient methods
In the reinforcement learning paradigm there a two types of ideas on how to select your actions:
value-based methods, which explicitly approximate how much return you are going to get by
taking a certain trajectory with action at from state st (e.g. 1000 reward for turning left and
850 for turning right from state st). Then, by parameterizing the value or action-value function
(e.g. acting greedily) the agent knows how to behave in a certain environment. However, this is
computationally costly for large action spaces and impossible for continuous action spaces.
Secondly, there are policy-based methods which directly parameterize the policy πθ(a|s) =
P(at |st ,θ). We consider policy-gradient methods that seek to maximize the performance of
some scalar performance measure J(πθ). Most of the policy gradient methods, as their name
implies, update their policy using the stochastic estimate whose expectation approximates the

Robotics and Mechatronics Rob Schulte

8
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

gradient of the performance measure, as explained in Sutton and Barto (1998). It then follows
that the policy parameters θ can be updated such that:

θt+1 = θt +αà∇J(θt) (2.4)

Given the following objective function J(θ) =∑
s∈Sdπθ (s)

∑
a∈Aπθ(a|s)Qπθ (s, a) we can find the

gradient of the objective function:

∇θJ(πθ) ∝∇θ

∑
s∈S

lim
t→∞Pr (st = s|s0,πθ)

∑
a∈A

πθ(a|s)Qπθ (s, a)

=∇θ

∑
s∈S

dπθ (s)
∑

a∈A
πθ(a|s)Qπθ (s, a)

= ∑
s∈S

dπθ (s)
∑

a∈A
πθ(a|s)

∇θπθ(a|s)

πθ(a|s)
Qπθ (s, a)

= Es∼dπθ ,a∼πθ [∇θ logπθ(a|s)︸ ︷︷ ︸
score function

Qπθ (s, a)] (2.5)

Where dπ(s) = limt→∞ Pr (st = s|s0,πθ) is the stationary distribution of Markov chain for πθ,
Qπ(st , at) the action-value function. The key take-away is that the derivative of the expected
reward is the expectation of the product of the reward and gradient of the log of the policy,
also known as the policy gradient theorem Sutton et al. (1999b).Furthermore, the authors of
Schulman et al. (2015) show that this result can be generalized for several expected reward
functions including but not limited to the action-value function and value function Vπ(st).

Most importantly, policy-based methods can operate in high-dimensional or continuous ac-
tion spaces and have better convergence properties than value-based methods. The usage of
policy gradient algorithms is widely used in the field of robotics since they allow for reinforce-
ment learning in continuous action environments. They do, however, tend to converge to local
optima for non-tabular environments, and evaluating them is typically inefficient and high in
variance Silver (2015b). This is the case because the computed gradient depends on the ran-
domly sampled trajectories. There are also methods that combine the ideas of policy approx-
imation with value-function approximation called actor-critic methods, which is discussed in
the next sections.

2.3 Actor-critic methods
Actor-critic methods combine the ideas of value-based and policy-based methods by follow-
ing an approximate policy gradient. They estimate the action-value function using a critic
Qw (s, a) ≈ Qπ(s, a) with parameters w and use an actor to update the behaviour policy with
parameters θ in the direction suggested by the critic. Compared to "vanilla" policy gradient
method the objective function change to J(πθ) =∑

s∈Sdπθ (s)
∑

a∈Aπθ(a|s)Qw (s, a) and the pol-
icy gradient from Equation 2.5 changes as follows:

∇θJ(πθ) ≈ Es∼dπθ ,a∼πθ [∇θ logπθ(a|s)Qw (s, a)] (2.6)

This reduces variance by bootstrapping (Updating the value estimate of a given state depending
on the estimated value of successive states). This does, however, introduce bias and therefore
might not find the right solution Silver (2015b),Sutton and Barto (1998). For example, consider
the aliased (grey squares) grid world example in Figure 2.2, where the objective is to get to the
treasure and avoid the skulls. If we would use features Qw (s, a) = f (φ(s, a), w) to describe where
we are in the environment (e.g. φ(st = wall to the north, at = moving east) and using an optimal
deterministic policy, we can either move west or east in both grey states, because they cannot
be distinguished. In such cases, where state aliasing occurs, the agent cannot observe the true
environment state and we lose the Markov property.

Rob Schulte University of Twente

CHAPTER 2. BACKGROUND 9

Figure 2.2: Aliased gridworld example with deterministic policy adapted from Silver (2015b)

2.3.1 DPG
Until now, we only considered stochastic policies πθ(a|s) conditioned on parameter vector
θ. However, these require integration of the whole state and action space, which require a
large number of samples. Silver et al. (2014) introduce a deterministic policy gradient (DPG)
method, as a special case of the stochastic one where σ2 = 0 , to compute the gradient more
efficiently. The objective function, given a deterministic policy a = µ0(s), can be described as
J(µθ) =

∫
Sdπ(s)Qµ(s,µ0(s))d s. The policy gradient is then calculated as follows:

∇θJ(µθ) =
∫
S

dµ(s)∇θµθ(s)∇aQ
µ(s, a)d s

= Es∼dµ[∇θµθ(s)∇aQ
µ(s, a)] (2.7)

In contrary to the previous methods, the DPG algorithm can in principle be deployed for both
on and off-policy learning. However, the authors mention that it is hard to introduce sufficient
exploration for the on-policy case, but could potentially be used in environments with inher-
ent noise to provide exploration. Instead one could use a stochastic behaviour policy π(a, s)
to learn about a deterministic target policy µθ(s). This way, suitable exploration levels can still
be ensured and the algorithm can still benefit from the efficiency of the policy gradient theo-
rem. The off-policy policy gradient seen in Equation 2.7 changes since trajectories are sampled
according to a behavior policy β(a|s):

∇θJ(µθ) ≈
∫
S

dµ(s)∇θµθ(a|s)∇aQ
µ(s, a)d s

= Es∼dβ [∇θµθ(s)∇aQ
µ(s, a)] (2.8)

Where Qµ(s, a) is substituted for the estimate of the critic Qw (s, a) and is approximated using
the Q-learning approach described in section 2.1. The parameters w and θ of the critic and
actor network, respectively, can then be updated as follows:

wt+1 = wt +αwδt∇wQ
w (st , at) (2.9)

θt+1 = θt +∇θµθ(st)∇aQ
w (st , at) (2.10)

δt = rt +γQw (st+1,µ0(st+1))−Qw (st , at) (2.11)

Where δt is known as the Temporal-Difference (TD) error. The results surpass that of the
stochastic equivalent, however, is still limited to relatively simple environments due to linear
function approximaters.

2.3.2 DDPG
Deep deterministic policy gradient (DDPG) extends DPG by using non-linear function ap-
proximators for the action-value function. It is well-known that this means convergence is no
longer guaranteed, but the authors of Lillicrap et al. (2015) show that the use of a replay buffer
and target networks, similar to the ones used in DQN (Mnih et al. (2013), Mnih et al. (2015)),
stabilizes the learning process.

Robotics and Mechatronics Rob Schulte

10
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Replay buffer
The problem with most non-linear function approximators (e.g. neural networks) is that they
assume samples that are i)independently and i i) identically distributed. Since the first clause
is obviously violated whenever sequential data is used the assumption no longer holds. In order
to alleviate this problem a replay buffer is used to break up the correlation between the samples
and the agents experience {st , at ,rt , st+1} at every time-step is stored in a memory M with finite
size. For efficiency, several experiences (mini batch) are uniformly drawn from the buffer and
used to update the critic and actor.

Target networks
It is a well-known fact that directly implementing Q-learning with neural networks proved to
be unstable in many environments, because the same network Q(s, a|θc) is used for both the
network update and the target yt (Mnih et al. (2015)).

L(θc) = Es∼dπβ ,a∼πβ [(

TD errorδt︷ ︸︸ ︷
Q(st , at |θc)− r (st , at)+γQ(at+1, st+1|θc)︸ ︷︷ ︸

TD targetyt

)2] (2.12)

With critic network parameters θc . The authors introduce slower updating target net-

works Q
′
(s, a|θc

′
) and µ

′
(s|θp

′
) in addition to the original critic and actor network Q(s, a|θc)

and µ(s|θp) to limit the variance in the target network. Using objective function J(µθp) =∫
Sdπ(s)Q(s,µ0(s)|θc)d s we can calculate the policy gradient:

∇θJ(µθ) ≈
∫
S

dµ(s)∇θpµθ(s|θp)∇aQ(s, a|θc)d s

= Es∼dβ [∇θpµθ(s|θp)∇aQ(s, a|θc)] (2.13)

The four networks can then be updated using:

θc
t+1 = θc

t +αθcδt∇θcQ(st , at |θc) (2.14)

θc
′
= θc + (1−τ)θc

′
(2.15)

θ
p
t+1 = θ

p
t +αθpδt∇θpJ(µθ) (2.16)

θp
′
= θp + (1−τ)θp

′
(2.17)

With τ ∈ [0,1]. If τ = 1 we recover the original network again and if τ = 0 we will never up-
date towards the original network. The authors recommend τ << 1 to stabilize the learning
process and slowly track the networks at the cost of a slower learning process. Since DDPG is
an off-policy algorithm it allows for a stochastic behavior policy, whilst still learning about a
deterministic target policy. Lillicrap et al. (2015) added serial correlated Gaussian noise, called
Ornstein-Uhlenbeck noise Uhlenbeck and Ornstein (1930a), to the sampled action such that:

µ
′
(st) =µ(st |θp

t +Nt) (2.18)

This will ensure continual exploration where the next noise sample Nt+1 is somewhat corre-
lated to the previous noise sample Nt . This is very useful for applications where the action
directly corresponds to a physical process such as the velocity of a motor since it will not be so
inconsistent. The full DDPG algorithm is then as follows:

2.4 SLAM
Building a map of an unknown environment is the objective of this thesis. This section will fo-
cus on the method used for tackling this problem. Furthermore, a state of the art active SLAM
method (frontier based exploration) is introduced. The achieved results in this thesis are com-
pared against this method.

Rob Schulte University of Twente

CHAPTER 2. BACKGROUND 11

Result: DDPG algorithm as adapted from Lillicrap et al. (2015)

Initialize actor µ(s|θp) and actor target network µ
′
(s|θp

′
) at random

Initialize critic Q(s, a|θc) and critic target network Q
′
(s, a|θc

′
) at random

initialize replay buffer M with size N

for all Nepisodes do
get initial observation s0

for Nsteps ∈Nepisodes do
Select action at sampled from behaviour policy µ(s|θp)
Execute action with exploration noise at +N

Observe transition {at , st ,rt , st } and store in M

Sample N transitions from memory M
Update the critic network by minimizing the loss:

L(θc) = 1

N

∑
i

[(r (si , ai)+γQ′
(si+1,µ

′
(si+1|θp

′
)|θc

′
)︸ ︷︷ ︸

slowly updating target network

−Q(si , ai |θc))2]

Update the actor network using the policy gradient:

∇θJ(µθ) ≈ 1

N

∑
i

[∇θpµθp (si |θp)∇aQ(si , ai |θc)]

Update the target critic network using:

θc
′
= θc + (1−τ)θc

′

Update the target actor network using:

θp
′
= θp + (1−τ)θp

′

end
end

SLAM methods attempt to construct a map of the environment, whilst estimating the pose of
a robot at the same time. This poses a computational problem since a suitable map is required
to localize properly and a good pose estimate in necessary for constructed a proper map. The
map can be a topological (e.g. A map of the city) or metric representation (e.g. landmark-
based map) of the environment, but in robotics, we generally consider 2-D/3-D grid-maps.
A large variety of SLAM methods exist in literature to tackle this problem (Dissanayake et al.
(2000); Montemerlo et al. (2003); Thrun (2000)), but in this thesis, we will utilize an RBPF-SLAM
approach, as introduced by Murphy (2000) and Doucet et al. (2013). It uses a probabilistic
approach and formally the objective can be described as estimating the pose x and map m of
a mobile robot, given its observations z and movements u:

p(x1:t ,m|z1:t ,u0:t−1) (2.19)

Using the chain rule of probability we can factor it into a product of simpler distributions Mur-
phy (2000):

p(x1:t ,m|z1:t ,u0:t−1) = p(x1:t |z1:t ,u0:t−1)︸ ︷︷ ︸
localization

·p(m|x1:t , z1:t) (2.20)

The key idea of RBPF-SLAM is that we can update the posterior of the map p(m|x1:t , z1:t) ana-
lytically and then represent potential trajectories of the robot p(x1:t |z1:t ,u0:t−1) using a particle

Robotics and Mechatronics Rob Schulte

12
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

filter. Where each particle j carries an individual map, build by observations z1:t and trajectory

x1:t . For each particle we then sample from proposal distribution x j
t ∼ π(xt |z1:t ,u0:t), assign

a weight w to each particle, resample and estimate the map. The proposal distributions are

typically approximated using the odometry motion model p(x j
t+1|xt ,ut) since the closed form

of this posterior is not accessible . However, the authors of Grisetti et al. (2005) claim this is
not optimal if an accurate laser ray finder is used as observation. They propose to include the

most recent sensor observation zt in the proposal x j
t ∼π(xt |x j

t−1, zt ut−1). Then weights can be
assigned to each particle as:

w j = p(x j
1:t |z1:t ,u1:t−1)

π(x j
1:t |z1:t ,u1:t−1)

(2.21)

They make up for the fact the proposal is presumably not identical to the target distribution.
Since we are attempting to represent a continuous target distribution with a finite number of
samples it is necessary to replace poor quality samples with higher quality samples. Generally,
weights with low values are replaced by weights with higher values, however, this can lead to
problems such as particle depletion Merwe et al. (2001). One intuitive solution to determine
whether resampling is required is to check the variance of the weights. If there is low variance
amongst the weights, it is likely that the samples are close to the true posterior and hence no
resampling is required. Similarly, higher variance indicates that the sample set is a bad ap-
proximation of the true posterior. The authors of Liu (1996) propose the following metric to
determine how well the sample set resembles the true posterior:

Neff =
1∑N

i=1(w j)2
(2.22)

The resampling procedure can then prompted if the value of Neff drops below a certain thresh-
old. In Grisetti et al. (2005) they consider the value of N /2 to be an adequate threshold for
initializing the resampling procedure. This procedure of resampling will allow the particle filer
to converge on the "true" pose estimate, which can then be used to estimate the posterior of
the map p(m|x1:t , z1:t). We can then represent the environment as an evenly spaced grid, with
each cell of the grid indicating whether or not the cell is occupied, unoccupied or unknown.
This concept is known as occupancy grid mapping and was first introduced by Moravec and
Elfes (1985). Under the assumption that occupancy of each cell is independent we can repre-
sent each grid cell mi individually:

p(mi) =

1, if occupied
0, if unoccupied
0.5, if unknown

(2.23)

The probability distribution of the entire map is then the product of the individual cells:

p(m|x1:t , z1:t) = ∏
i ∈M

p(mi |x1:t , z1:t) (2.24)

Where M is the total number of grid cells present in the map. The resolution of the map should
be selected such that the smallest obstacle can be accurately represented by a grid cell.

Rob Schulte University of Twente

CHAPTER 2. BACKGROUND 13

Figure 2.3: Frontier selection procedure with a) the occupancy grid map (size of dot indicates probabil-
ity of occupation), b) frontier cells, c) frontier areas larger than the robots size. Adapted from Yamauchi
(1997)

2.5 Frontier based exploration
Frontier based exploration, as already briefly mentioned in the introduction, is an active SLAM
method, which attempts to guide the robot to the boundaries between the explored and un-
explored areas of the map. In the case of an occupancy grid map, these are the boundaries
between the known cells (unoccupied and occupied) and unknown cells of the grid map (not
yet captured by the sensors of the robot or not yet processed). The problem frontier based
exploration tries to solve is twofold:(i) deciding which of the (possible) multiple frontiers to
navigate to in order to uncover the largest portion of the map and (i i) figuring out a collision-
free path in order to reach that target within a reasonable amount of time. There are many
frontier based exploration algorithms that have different strategies to solve the aforementioned
problems such as random frontier selection, decision-theoretic selection of frontiers, and map
segmentation based frontier selection. However, the rather naive approach of simply selecting
the closest frontier, as first introduced by Yamauchi (1997), works surprisingly well and is able
to compete with more sophisticated approaches whilst being computationally efficient Holz
et al. (2010). The algorithm works as follows: any cell next to an unknown cell is considered a
frontier cell. Bordering frontier cells are grouped together into frontier areas and if these areas
are larger then the robot itself it is considered a frontier, as is depicted in Figure 2.3. Once a
frontier has been detected it will determine the frontier which is closest to the robot:

closest frontier = arg min
c ∈F

P ((x y)T ,position robot) (2.25)

Where F denotes the set of found frontiers and P ((x y) the length of the shortest path from
the robot to the frontier. This is typically done using a path planner, starting at the robot’s
current cell and utilizing a to traverse to the frontier cell. If the target cell is reached, the frontier
is added to a list of visited frontiers and the next closest frontier is selected as a target. This
procedure will repeat until there are no more frontiers remaining to visit. If for some reason

Robotics and Mechatronics Rob Schulte

14
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

a frontier cannot be reached within in some period of time it is marked as inaccessible and
discarded from the frontier list.

2.6 Summary
In this chapter, reinforcement learning is introduced alongside the fundamental building
blocks for the reinforcement learning architecture used within the scope of this thesis was dis-
cussed. Furthermore, the used SLAM and frontier based exploration algorithms are explained
on a conceptual level.

Rob Schulte University of Twente

15

3 Innovations in the reward function

In this Chapter, reinforcement learning techniques which improve the agent’s ability to explore
the environment and thereby make sure reinforcement learning is able to solve the underlying
MDP are discussed. The intent is to use some of the innovations found in literature in order to
improve the reward function. This Chapter contains a review of the current literature following
the methodological approach described in Appendix E.

The balance of exploration versus exploitation is one of the fundamental problems of reinforce-
ment learning. The conundrum is trying something new, which might lead to higher long-term
benefits or doing something you know will give a reward, but you might lose out on poten-
tial higher rewards that are unknown to you. Hence, exploration increases the knowledge of
the whole state space and long-term gain, at the expense of some short-term gain. Whilst ex-
ploitation leverages the current knowledge of the state space for short term gain. For example,
visiting your favorite restaurant, which you know to have decent food, versus visiting a new
restaurant, which might have even nicer food. It is important is to gather enough information
about the state-space in order to make the best overall decision. The main purpose of explo-
ration is to ensure that the agent’s behavior does not converge prematurely to a local optimum.
The remainder of this chapter summarizes state-of-the-art strategies to do so within the rein-
forcement learning paradigm.

3.1 Exploration at a policy level
Incentivizing exploration in reinforcement learning can be done in several ways. One of those
ways is adjusting your action selection to make sure some form of exploration is present during
the training phase. A well-known method for probabilistic policies is ε -greedy, where the agent
takes the best action known to the agent from a given state with probability ε and a random
action with probability 1−ε. This ensures that over time the whole state space is explored, but
will also incur reward loss over time as a random action might not be the optimal one.

For algorithms with continuous action spaces, such as DDPG, adding random noise (e.g ad-
ditive Gaussian noise) to the action space during the training process is very popular to make
them explore better. However, one can imagine that for robotic applications and navigational
tasks in particular this can lead to undesirable chattering of the robot. For this reason, the use
of correlated noise or colored noise is very attractive in the field of robotics (?). Correlated noise
is a stochastic process wherein values tend to be correlated with other values nearby in space
or time. This leads to smoother transitions, which is necessary for better exploration when
considering that the action space generally consists of velocities of the motors or derivatives
thereof. Therefore, the norm in the field is to use correlated additive Gaussian action space
noise (Ornstein–Uhlenbeck process Uhlenbeck and Ornstein (1930b)). When using some type
of Gaussian action noise with mean µ and standard deviation σ2, actions are sampled accord-
ing to some policy π. This results in an action according to at = π(st)+N(µ,σ2I). Therefore,
it can be the case that one would yield a completely different action for every time that state
is sampled. This can be undesirable and the authors of Plappert et al. (2017) suggest replacing
action space noise with so-called parameter space noise. Parameter noise adds adaptive noise
to the parameters of the neural network policy instead of the action space, as can be observed
in Figure 3.1.

The parameter vector of the current policy is pertubed by additive Gaussian noise, such that:

θ̂ = θ+N(0,σ2I) (3.1)

With policy parameters θ and pertubed policy parameters θ̂. It is demonstrated that both off-
policy and on-policy methods can benefit from this approach and is particularly easy to adapt

Robotics and Mechatronics Rob Schulte

16
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Figure 3.1: Action space noise (left network) versus parameter space noise (right network) adapted from
Plappert et al. (2017)

for off-policy methods such as DDPG. Furthermore, experimental results show increased per-
formance compared to traditional Ornstein–Uhlenbeck -approaches, particularly in environ-
ments with sparse or very sparse rewards. Despite the theoretical advantages of parameter
space noise, Mustafa (2019) argue that it does not always work in practice due to sensitivity of
the neural network to parametric perturbations.

Rob Schulte University of Twente

CHAPTER 3. INNOVATIONS IN THE REWARD FUNCTION 17

Figure 3.2: ICM module, adapted from Pathak et al. (2017)

3.2 Exploring by reward shaping
Curiosity
Expecting to navigate to a goal or map of an environment successfully with a semi-random
exploratory process is likely to be fruitless in all but the simplest environments. In any en-
vironment with a sparse reward setting or with a complex task, it is important to encourage
the exploration of the state-space. Adding some form of intrinsic reward in addition to the
extrinsic (environmental) reward can help the agent to explore "novel" states. Furthermore,
it can help the agent reduce the uncertainty in the transition dynamics of the environment
by encouraging actions that are uncertain to the agent. In order to achieve this, the authors
of Pathak et al. (2017) propose an intrinsic reward signal based on the prediction error of the
agent’s uncertainty about its environment. They determine the prediction error by calculat-
ing the difference between a predicted action ât = g (st , st+1;θI) and the actual action sampled
from the policy at ~π(st ;θP), such that:

min
θI

L I (ât , at) (3.2)

With learned function g (also known as inverse dynamics model), loss function L I and neural
network parameters θI and θP , respectively. They also stress the importance of not encoding
the raw states (e.g. laser data, pixels of a camera, etc.) directly because this would likely lead
to undesired behavior if the environment dynamics are hard to model. They propose to train
another neural network that takes as input a feature vector φ(st) in addition to the action at to
predict the feature encoding at the next timestep φ̂(st+1) = f (φ(st), at ;θF), by minimizing the
loss function LF :

LF (φ(st), φ̂(st+1)) = 1

2
||φ̂(st+1)−φ(st+1)||22 (3.3)

Finally, the intrinsic reward r i
t can be calculated as r i

t = η LF for some scaling factor η > 0, as
shown in Figure 3.2. The major limitation of this method as hinted to before are stochastic
dynamics in the environment. If the dynamics are truly random no model can predict the
environment transistions properly. Even if they are not truly random, the agent will search
for transitions with the highest prediction error, which can be problematic for sub-optimal
learning algorithms and POMDP problems. For example, Burda et al. (2018) showed that an
agent, using an ICM approach, preferred watching a noisy TV placed in an environment over
exploring the rest of the state-space. The authors of Savinov et al. (2018) propose the concept
of novelty trough reachability to overcome the aforementioned issues. The approach uses an
episodic memory to store past observations and compare them against the current observation

Robotics and Mechatronics Rob Schulte

18
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

of the agent in order to determine the novelty of the observation. To be exact, they use a neural
network approximator to determine if the current observation can be reached within the k-
steps of the stored observation, as shown in Figure 3.3. They propose to calculate the intrinsic
reward as follows:

r i
t =B(M ,e) =α(β−C(M ,e)) (3.4)

Where C(M ,e) is then the similarity score ∈ [0,1] between the memory in the buffer and what
is reachable with the current observation. The hyperparameters α ∈ R+ and β ∈ R should be
picked according to the scale of the task. The ICM and episodic curiosity methods show similar
performance across the used environments. Moreover, the latter shows significant improve-
ments in terms of convergence rate (2x as fast) and does not suffer from the aforementioned
environmental issues.

Figure 3.3: k-step reachability, adapted from Savinov et al. (2018)

3.3 Summary
This chapter introduced basic concepts for state space exploration by adjusting both the action
space and by tweaking the reward function. The concepts of episodic curiosity and OU-noise
are promising concepts and are leveraged in the remainder of this thesis to innovate the reward
function.

Rob Schulte University of Twente

19

4 Method

The DDPG algorithm is capable of handling continuous action space, but the exploratory pro-
cess is a major challenge for DDPG and reinforcement learning in general. We have seen in
Chapter 2 that DDPG is capable of exploring an environment through the use of stochastic be-
haviour policy to learn about a deterministic target policy. As the exploratory process is vital in
achieving a good performance and can affect the learning rate, Chapter 3 introduced two ways
of aiding the exploratory process: exploring on a policy level and exploring by reward shaping.
This chapter presents the used architecture in section 4.1 and then proceeds by explaining the
choices for the innovation within the reward function definition in section 4.2. To that end,
four different reward structures are introduced within that section. The details of the simu-
lation, neural network architecture and the performed experiments are explained in the later
sections of this Chapter.

4.1 Framework
The main purpose of this research is to design a reinforcement learning algorithm capable of
mapping known and unknown indoor environments with a flat surface using its on-board sen-
sors. To achieve this goal, the DDPG algorithm, discussed in Chapter 2, is utilized. The state of
the agent, St , is comprised of the sensory information provided by the robot’s onboard sensors
(laser data), the pose estimate provided by the SLAM algorithm and the previous action 1. This
is then passed through the actor neural network to obtain the next primitive control action At ,
which consists of the desired angular and linear velocity of the mobile robot.These are then fed
through a PID controller to ensure the desired movements are properly executed by the robot’s
actuators. In a sense the reinforcement learning can be viewed as a setpoint generator for the
PID controller loop. When the interaction with the environment is completed, new sensory in-
formation is obtained and the cycle continues until the whole area is mapped. To improve the
behaviour of the actor over time, the critic network is used to assess the quality of the possible
actions given the current state. The network parameters of the actor is then slowly be adjusted
in the direction of the gradient of the action-value function, as proposed by the critic. This pro-
cess is repeated to a satisfactory performance level or optimal policy is achieved. The SLAM
algorithm is utilized to obtain a pose estimate of the mobile robot within the map, given the
odometry and laser data from the robot (Figure 4.1).

4.2 Reward Shaping
4.2.1 Old reward function
It has been concluded that the previously investigated reward function from Schulte (2019) is
not indicative enough of the optimal trajectory through the environment. In the previous work,
the reward of the agent was formulated as:

R(st) =

rmap completed, if ct ≥C
rcrashed, if robot crashed
rdense, otherwise

(4.1)

Where the reward for completing the map rmap completed was assigned whenever the environ-
ment was mapped to a certain threshold ct ≥ C . A penalty rcrashed was given whenever the
robot crashed or came too close to a wall and a reward was assigned, rdense, proportional to
the % of the map completed at that given time-step. The latter reward, rdense, turned out to be
troublesome as even standing still would grant a reward. Exploring more of the environment
would in principle grant more reward compared to standing still, however, if the robot crashed

1The sensory information is explained in-depth in Section 4.4

Robotics and Mechatronics Rob Schulte

20
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Reward

Environment

Desired action

Mobile robot
Kp

Ki

Kd

State

Actual action

Laser
data

Pose
estimate

SLAM algorithm

Odometry data
Laser data

Reinforcement learning
agent

Error

Figure 4.1: The proposed architecture for autonomous mapping and navigation of an unknown envi-
ronment. The reinforcement learning agent is the high level controller which uses sensory information
from the robot and SLAM algorithm to determine its next action. The PID controller then makes sure
the desired action is executed by the actuators of the robot.

the penalty would always be larger then the dense bonus. Since the initial room of the environ-
ment was rather difficult to escape, the algorithm would learn that driving circles within the
room would optimize the amount of reward. This way it would never find the large reward for
completing the map and it was stuck in a local optimum. Such behaviour was also shown by
(Matheron et al. (2019)) in a simpler 1-D environment. Suggested problems which are known
to cause issues are sparse rewards and inefficient exploration. The authors of Matheron et al.
(2019) have established the less trivial fact that, even if exploration does find the reward con-
sistently but not early enough, an actor-critic algorithm can get stuck into a configuration from
which rewarded samples are just ignored. In this Section, we propose several reward structures
and aim to find out which works best for office and apartment-like environments.

4.2.2 Baseline scenario
Since the reward function has a direct impact on the exploratory behaviour of the agent and
convergence time of the algorithm, as shown in Chapter 3, we employ four reward structures
to assess the impact on the results. The first reward structure was created to evaluate relative
performance compared to the starting point of this project. The Baseline scenario has a sparse
reward setting in the form of a penalty or bonus whenever a terminal state has been reached,
such that:

R(st) =

rmap completed, if ct ≥C
rcrashed, if lt ≤ lmin∀lt ∈ L
0, otherwise

(4.2)

For some value C and lmi n . This reward setting will provide no additional incentive to explore
the environment beyond the bonus for completing the map. The hope is that by learning

Rob Schulte University of Twente

CHAPTER 4. METHOD 21

to avoid obstacles it is able to drive through the environment and complete the map. Any
improvement of exploratory behaviour or convergence time over this reward setting can in this
way directly be contributed to the difference in reward structure.

4.2.3 Oracle scenario
In the second scenario, called Oracle, it is assumed that the total area of the environment is
known. This way, we can reward the agent for exploring new areas of the map by giving a reward
proportional to the newly discovered area of the map in addition to the "sparse" rewards of the
Baseline scenario. The major difference between this reward and the one found in Equation
4.1 is that the latter incentives standing still and this one does not. This should drive the robot
forward to "unknown" areas of the map and greatly increase exploratory behavior compared to
the first scenario. The reward function can then be described as follows:

R(st) =

rmap completed, if ct ≥C
rcrashed, if lt ≤ lmin∀lt ∈ L
ct − ct−1, otherwise

(4.3)

This reward function has the caveat that it is necessary to define the area of the environment
beforehand in order to obtain the map completeness. In a practical setting, an estimation of
the size of the area can be obtained from the SLAM algorithm if this is unknown.

4.2.4 Information-gain scenario
The third reward function is a decision-theoretic approach where we take advantage of the map
that slam provides. Every cell within the map is assigned a probability value of being occupied,
as explained in Chapter 2. High values indicate that the cell is likely occupied by an obstacle
and low values indicate that the cell is likely unoccupied. Furthermore, a value of 0.5 indicates
that it is not known whether the cell in question is occupied or unoccupied, as show in the
following Figure: Using the uncertainty of this posterior Using the uncertainty of this posterior

Figure 4.2: Occupied, unoccupied and unknown cells within a constructed map adapted from (Abbeel,
2006)

Robotics and Mechatronics Rob Schulte

22
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

(Entropy), we can calculate the uncertainty in the map:

H(m) =− ∑
c∈M

p(c) log (p(c))+ (1−p(c)) log (1−p(c)) (4.4)

If a large portion of the map is unknown, the majority of the cells will have a value of p(c) ≈ 0.5
and H(m) is approximately −1. Controversly, if the map is largely known the term H(m) will
approach 0. Hence, the rationale is that by making the reward proportional to the reduced
uncertainty of the map from time t to t +1 a good exploratory behaviour should develop. This
is also known as (expected) information-gain:

R(st) =

rmap completed, if ct ≥C
rcrashed, if lt ≤ lmin∀lt ∈ L
ζ(Ht −Ht−1), otherwise

(4.5)

With some scaling factor ζ.

4.2.5 Curiosity scenario
Lastly, we investigate a "naive", but practical adaptation2 of the curiosity reward function,
proposed by Savinov et al. (2018), to improve the exploratory behaviour of the algorithm and
simultaneously remove the a-priori information about the map from the reward function. In
contrast to the method in Savinov et al. (2018), we can prevent using the complete state and
use only that part of the state which is comprised of the location of the robot.

The method works as follows: at the beginning of each episode, the initial position is appended
to a novelty memory. At every step during that episode consecutive positions of the robot are
compared against all novel positions in memory. We will consider a position "novel", if the
distance between the current position st and the positions in memory is larger then some dis-
tance k (Figure 4.3). If a position is determined to be "novel", the agent receives a bonus and
the novel position is added to memory.

Figure 4.3: Three sequential screenshots of the mobile robot depicting distance K, which imposes the
red area as non-novel. In the third screenshot a new novel point is reached and added to the novelty
memory, which imposes an additional area as non-novel. The path of the robot is depicted in purple.

This way anything that is quickly reachable by the robot (< k) will become uninteresting since
no further reward can be obtained from there. Whilst reaching positions further away from
the robot (> k) are encouraged. This should drive the robot to unexplored areas by using the
pose estimate from the SLAM algorithm. Positions within some distance of the walls are not
considered as novel positions since this would encourage undesired behaviour. A benefit of

2To overcome practical issues mentioned in the paper and on the Github page such as requiring 10M training
steps and northwards of 50gb RAM

Rob Schulte University of Twente

CHAPTER 4. METHOD 23

this is that the robot should have a natural tendency to stay in the middle of the room.

We can increase the exploratory behaviour of the robot further by making the bonus dependent
on the average distance to all novel states in memory. This will motivate the robot to drive
away from the set of novel states. The "intrinsic" reward function can then be calculated as
r i

t =α d(P0,P1) for some scaling factor α and distance between two points d(P0,P1). Given an
episodic environment with maximum amount of stepsNsteps andNepisodes amount of episodes,
the complete adaptation is as follows:

Algorithm 1: Episodic Curiosity Reward

Result: Write here the result
initialize episodic memory buffer B with size N ;

for all Nepisodes do
for Nsteps ∈Nepisodes do

if d(Pt ,P) > k ∀P ∈M then
M← Pt ;
r i

t = α
M

∑
P∈M

d(Pt ,P);

return r i
t ;

else
return r i

t = 0 ;
end

end
end

Where the simplest form to calculate the distance between two points is picked: d(P0,P1) =√
(xt −xt−1)2 + (yt − yt−1)2. Intuitively, k should be picked such that the reward is dense (a

reward that gives value to most of the transitions), however, picking it too small will have a sig-
nificant impact on performance since all the novel states are appended too a memory. Picking
it too large (e.g. k = ∞) will make the reward sparse again providing no additional benefits
to exploration. Moreover, α can control the scaling of the bonus and in a sense the urgency
with which to drive away from the set of known states. Additionally, the sparse structure of the
Baseline scenario is maintained and the complete reward is then given as follows:

R(st) =

rmap completed, if ct ≥C
rcrashed, if lt ≤ lmin∀lt ∈ L
r i

t , otherwise
(4.6)

4.3 Generalization
As the goal is to have the robot perform well in unseen environments beyond the algorithms
performance in the trained environment we need to come up with a good way to test general-
ization capabilities. In traditional machine learning, one would split training and testing data
sets to test performance. However, reinforcement learning generally does not have split train-
ing and testing sets. Instead, it is accepted practice to examine performances directly on the
training environments (Zhang et al. (2018)). In some circumstances, such as the Atari (Belle-
mare et al. (2012)) environment, it can make sense since the application environment is the
same as the training environment. However, this is not a good way to test the abstraction capa-
bilities of the agent and certainly would not extent well into real-world environments. There-
fore, to test the generalization properties of the algorithm we clearly distinguish training envi-
ronments Θtr ai n from the testing environment Θtest and formalize the robustness to unseen

Robotics and Mechatronics Rob Schulte

24
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

environments as:

ηptest (Θ) (µ
∗)|[µ∗argmax

µ
ηptr ai n(Θ) (µ), ptr ai n(Θ) 6= ptest (Θ)] (4.7)

With ηp(Θ) (µ) denoting the expected return under environmental distribution pΘ:

ηp(Θ) (µ) = EΘ∼p(Θ)[Eτ∼(µ)[
T∑

t=0
γt r (st ,µ(st))]] (4.8)

This metric is used to compare the ability of the algorithm to generalize in different environ-
ments and with different reward settings. Similarly, they are compared on map-completeness
as this is the objective of the algorithm.

4.4 State vector design
In this framework, the sensory information will consist of the pose estimate pt and the laser
data lt , respectively. The former is comprised of the x-y coordinates and the yaw (rotation
around the z-axis within the Cartesian coordinate system). The laser data will consist of 720
laser points, equally distributed in a 360-degree scan field obtained from the robot’s Lidar sys-
tem. However, adding such a large number of laser data to the state vector would inadvertently
prolong the training time unnecessarily. The main goal of adding the laser data is to detect ob-
stacles, and during the early experiments, it has been found that 80 laser points are sufficient
information for the robot to detect them consistently. Consequently, the output is the desired
angular and linear velocity of the robot in order to successfully navigate the environment. The
state vector will then be the following:

st = [lt , pt , at−1] (4.9)

The state must be comprised of all information necessary to make an informed decision, which
means only the current state st in the case of an MDP. However, there are many minor discrep-
ancies in this simulated environment (e.g. between the command velocity and actual velocity
of the robot, noisy sensor information etc.) which can make an MDP assumption unstable.
Moreover, in a finite horizon MDP, where the problem can be solved within a set number of
time-steps T it can be important to make the robot aware of the terminal conditions such as
the number of time-steps remaining. The authors of Pardo et al. (2017) showed that in finite
horizon problems, time limits should be included in the state vector to avoid state aliasing and
violation of the MDP assumption. This can be particularly important if the notion of time is
a part of the optimal policy (e.g. find the fastest route from point A to B). Since the running
assumption is that we are in an MDP environment, we should include this information in our
state vector. In this thesis, the reinforcement learning problem is considered a finite horizon
MDP, where the problem can be solved within a set number of time-steps T . In this case, it
becomes important to make the algorithm aware of the terminal conditions by appending rel-
evant information to the state vector as explained by Pardo et al. (2017). In our case this means
the number of time-steps remaining T − t in any given episode alongside the percentage of the
map still to be completed C − ct should be included in the state vector, such that it becomes:

st = [lt , pt , at−1, C − ct , T − t] (4.10)

4.5 Experimental setup
4.5.1 Simulation environment
The open-source Gazebo simulation platform offers dynamics simulation capabilities with the
physics engine and realistic rendering of environments. This 3-D engine is used to simulate the

Rob Schulte University of Twente

CHAPTER 4. METHOD 25

robot’s dynamics. The algorithm is constructed in Python 2.7 using the "standard" RL package
of Tensorflow, Cuda, Cudnn and OpenAI-gym. Tensorflow are used to create the neural net-
work allowing for relatively simple construction of complex networks and integrates easily with
Python. The Robot Operating System (ROS), which allows for low-level device control, is used
to obtain sensory information (Lidar and odometry) and provide data exchange from python
to Gazebo using its parameter server. Additionally, ROS allows for easy integration with SLAM
packages and the gmapping package is used to create the map.

4.5.2 Neural network architecture
To obtain the next action, the state vector, described in chapter 4, is passed through a neural
network as depicted in Figure 4.4 for the actor-network. A similar network architecture is used
in (Mustafa et al., 2019) to successfully navigate to a pre-set point with a mobile robot. The
actor-network is comprised of three fully connected dense (fully connected) layers with 512
neurons each. All of the layers are activated with a Rectified Linear Unit (Relu) activation func-
tion. Relu activation function is a (piece-wise) linear function that will output the input directly
if is positive, otherwise, it will output zero. It can be viewed as a bounded linear function, which
simply returns the input if positive:

g (x) = max(0, x) (4.11)

For any input x. It has become the staple activation function within the reinforcement learning
paradigm resulting in more efficient and better performances. They preserve many of the
properties that make linear models easy to optimize with gradient-based methods (e.g. they
are differentiable and generalize well). The actor network outputs a 2-dimensional vector
comprised of the desired linear and angular velocity of the robot. The outputs are constrained
using the (non-linear) hyperbolic tangent or sigmoid activation function. The hyperbolic
tangent can be used to transform the input into a value between -1 and 1. Much larger values
are transformed to 1 and values much smaller are converted to a -1. Similarly, the sigmoid
activation function can be used to constrain the output of the network between 0 and 1. This
effectively allows us to control the degrees of freedom of the robot and constraint the linear
velocity movement to only forward with the sigmoid activation function. The angular velocity
will use the hyperbolic tangent (tanh) to allow turning (around the z-axis) in both directions.
The actor’s output will directly be imposed on the robot’s actuators as can also be observed
in Figure 4.4. The laser scanner (LiDAR) of the robot has a field of view of 360 degrees, which
allows the robot to effectively map the environment. The LiDAR will have a minimum range of
0.2 and a maximum range of 10m. This will allow efficient exploration within the used training
and testing environment .

State [67]

Laser data points [60]
Pose estimation [3]
Previous action [2]

Map-completeness [1]
Steps left [1]

Dense layer [512]

Batch norm

ReLU activation

Dense layer [512]

Batch norm

ReLU activation

Dense layer [512]

Batch norm

ReLU activation

Tanh

Sigmoid

Actions [2]

Angular velocity [1]
Linear velocity [1]

Figure 4.4: Actor network architecture

Robotics and Mechatronics Rob Schulte

26
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

The critic network will have a similar composition to the actor-network in that it will have three
fully connected dense layers of 512 neurons. However, the actions are also appended in the
second layer as output. With the intent to let the first layer learn a good representation from the
states alone. Instead of the hyperbolic and sigmoidal activation functions in the actor, a linear
activation function is used to obtain the state-action (Q-value) as output. The critic network is
shown in Figure 4.5.

State [67]

Laser data points [60]
Pose estimate [3]
Previous action [2]

Map completeness [1]
Steps left [1]

Dense layer [512]

ReLU activation

Dense layer [512]

ReLU activation

Dense layer [512]

ReLU activation
Linear

Activation
Q-value [1]

Actions [2]

Angular velocity [1]
Linear velocity [1]

Figure 4.5: Critic network architecture

The weights of the neural network are initialized at random and normalized using batch layer
normalization after each dense layer. The normalization is important since all the layers
are fully connected and even small fluctuations of the independent variables (input) can be
amplified throughout the network to affect the later hidden layers. This can be problematic
when earlier layers receive updates and therefore the inputs to the later layers change of value,
known as covariate shift 3. For all experiments, the learning rate γ is set to 1e − 3 and 1e − 4
for the actor and critic network, respectively. The learning rates of the target networks τ are
set to 1e −3 for both networks. To perform the gradient descent for both the actor and critic,
the Adaptive Moment Estimation (Adam) is used (Kingma and Ba, 2014). It is a method that
computes flexible learning rates for each parameter. Also, it keeps an exponentially decaying
average of past gradients and thereby attempts to approximate second-order gradient-based
optimization at the computational cost of a first-order optimizer 4. A full list of hyperparameter
used within this thesis can be found in Appendix B.

Target network updates
In the original DDPG implementation both target networks are updated in accordance with
Equation 2.17 and 2.15 with a decay of 1−τ:

θtarget = (1−τ)θtarget + (τ)θ (4.12)

Using a decay of 0.999 allows us to update the original network parameters θ slowly towards
θtarget. However, we can do better than just making a copy of the variables by applying a post-
processing step which maintains an exponential moving average of the original network pa-
rameters:

θema = (1−λ)
N∑

i=0
λiθN−i (4.13)

3for a detailed explanation of batch layer normalization see Appendix D Section 1
4More details on the gradient descent optimizer can be found in Appendix D Section 2

Rob Schulte University of Twente

CHAPTER 4. METHOD 27

Where λ ∈ [0,1] is the decay rate and θN the neural network weight after N steps. Using a decay
close to 1, the calculation is similar to Equation 4.12. Over time the network updates become
smaller and less consequential, which improves performance.

4.6 Experiments
First, this section will describe the environments used to test the algorithm during training and
testing. In the second part of this section, the performed experiments are explained which are
used to assert the effectiveness of the reward structures.

4.6.1 Simulation environments
The experiments are trained and tested on a variety of environments with different complexi-
ties to test the capabilities and limitations of the algorithm and each scenario individually. All
the environments are indoor environments, comprised of a set of walls with a flat floor. The
four environments are named Maze, Apartment and Apartment2, as shown in Figure 5.7. The
Maze environment has a total area of 22 m2 with few walls and serves as a relatively "simple"
starting point. The challenge within this environment is provided by the small and narrow
starting room (2x2.5) making it hard for the robot to escape. Using this environment has two
advantages: 1. improvement over the previous work of Schulte (2019) can be shown since this
environment is identical to the one used therein. 2. due to it’s relatively small area training
time is limited to a minimum and hence some parameter tuning is feasible in order to deter-
mine what is functioning well and what is not feasible.

The layout of the second environment, Apartment, is based on a real-life, self-contained hous-
ing unit with a single floor from the Dutch housing website funda (2020). Although all clutter
except the walls is omitted, the intent is to showcase the capabilities of the algorithm in a semi-
realistic environment. It is almost triple the size compared to the maze environment (65 m2)
and is comprised of a hallway, living room and three additional rooms. Although there is more
space to navigate compared to the Maze environment, mapping the whole environment will
provide a significant challenge since the navigational (OU) noise is less likely to be impactful.
This puts an additional strain on the reward structure to provide the exploration incentives,
which is the intent.

The third environment, Apartment2, is similar to the second environment and with a total area
of 68.5 m2 it features slightly more open-space with less enclosed rooms. This environment
will mainly be used to test the generalization capabilities of the agent when trained on the
comparable Apartment environment.

4.6.2 Experiment: Comparison of different reward functions
The four different reward structures mentioned in the Method section of the thesis are evalu-
ated in this experiment with the intent to (partially) answer research question ii. Hence, it is
paramount to determine the quality of the obtained trajectory and exploratory behaviour. In-
tuitively, proper exploratory behaviour will lead to a successful mapping of the environment.
Additionally, a strong exploration policy should be able to map the whole environment in a
minimum of actions and with the shortest possible trajectory. Hence, the quality of the trajec-
tory is assessed by the length of the trajectory, the number of collision samples and whether or
not the environment is successfully mapped.

First, the four different reward structures are trained on the maze environment until a satisfac-
tory performance level is achieved. After the training period, the reward structures are tested
on the same environment for 10 episodes whilst omitting the exploration noise. Thereafter, the
reward structures are trained and tested on the Apartment environment in a similar fashion.
In both instances, they are compared to the non-reinforcement learning approach of frontier
based exploration, as introduced in Chapter 3.

Robotics and Mechatronics Rob Schulte

28
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

(a) Maze

(b) Apartment

(c) Apartment2

Figure 4.6: Used environments

4.6.3 Experiment: Generalization
In this experiment, the ability of the algorithm to generalize is tested with the intent to an-
swer research question iii. Therefore, the learned policy is directly transferred to a second
apartment-like environment showcased in Figure 4.6c. Herein, the area of the environment is
similar, however, the room structure is drastically different. It is expected that the agent would
suffer in terms of performance since (some) encountered states will unfamiliar to the agent.

4.6.4 Experiment: DDPG vs DRQN
As mentioned in the Introduction (Chapter 1), the authors of Lillicrap et al. (2015) argue that, in
theory, discretization of the action space will lead to several issues. However, it is not obvious
how this will hold up in practice if the action-space is very coarsely discretized. The aim of this
experiment is not to disprove any statements made within the paper, but an attempt to show-
case possible limitations, advantages or drawbacks of discretization with regards to training
phase and testing phase. Specifically, exploratory behaviour and quality of the trajectories are
considered when evaluating the experiments. The results of the experiments for the DRQN ar-
chitecture were performed during an earlier stage of the thesis and published in Botteghi et al.
(2020). The Curiosity reward structure was not specifically considered herein and therefore not
compared. Furthermore, only the results of the Maze environment are compared, because the
Lidar ranged was capped at 4m in the paper, making a comparison on the larger environment
improper. Moreover, the paper compared a DQN and DRQN architecture. Although the latter
also features a Long Short-Term Memory (LSTM), the reported results of the DRQN are only
marginally better in terms of learning curve and variance in terms of map-completeness (Bot-
teghi et al., 2020). This, in addition to the inherent weakness of the DDPG to non-Independent
and Identically Distributed (iid) data and thus inability to profit from the LSTM layer justify this
comparison.

4.6.5 Experiment: parameter tuning
As already introduced, parameter tuning is a vital part of the reinforcement learning paradigm.
If not done properly the performance of the algorithm might suffer significantly or in some
cases not converge at all. In principle, it would be best to test these parameters in different

Rob Schulte University of Twente

CHAPTER 4. METHOD 29

settings and compare the results. However, the sheer number of parameters to tune is always a
major limitation to this approach. Not to mention that different environments require different
parameters for optimal performance. Additionally, there is variance present with each training
session and hence the time investment necessary and the computing force required is massive.
Only big tech companies like Google can pull off large parameter sweeps and thereby come to
the best results. Nevertheless, an adequate amount of parameter tuning has been done during
this thesis and this experiment will show some of the recorded results. In particular, the tuning
experiments for the Curiosity approach with different values for k and novelty bonus are shown.

Robotics and Mechatronics Rob Schulte

30
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

5 Results and Discussion

In this chapter, the result of the performed experiments are depicted, discussed and analyzed.
Section 5.1 compares the different reward functions on both the Maze and Apartment training
environment. The results herein are split between the training of the policy (training phase)
and the evaluation in that same environment (performance evaluation in the training environ-
ment). The generalization experiment in Section 5.2 compares the performance evaluation in
training environment to the performance in the unknown environment Apartment2. Further-
more, the obtained results are compared to a DRQN approach in section 5.3. The influence of
the parameter K for the curiosity approach is discussed in Section 5.4 and in the last Section all
the overall results are evaluated.

5.1 Experiment: Comparison of different reward functions
5.1.1 Maze
Training phase
The comparison of the Baseline, Oracle, Information-gain and Curiosity reward structures in
the maze environment, during the training phase, are depicted in Figures 5.1a - 5.1b. It is
apparent, from Figure 5.1a and Table 5.1c, that the Baseline reward function does not con-
verge to the optimal solution within the environment and therefore was stopped early at 400
episodes of training. It was trained for 100 episodes less then the other reward functions,
however, almost required double the amount of steps (398.923 in total) to achieve this amount.
This can also clearly be observed in Figure 5.1b, where the baseline reward structure requires
the maximum number of steps (1000) nearly every episode, indicating it almost always didn’t
experience the bonus for completing the map. This can be contributed to the "sparse" reward
setting which doesn’t promote exploration of the environment and hence the agent gets stuck
in a local optimum. The Information-gain and Oracle reward structures have similar conver-
gence times with a total of 277.028 and 266.048 steps, respectively. Although these reward
structures initially also do not experience the reward bonus for completing the map, they do
get reward uncovering unknown parts of the map and hence progressively work towards that
goal. With 176.151 steps, the Curiosity reward structure trains significantly faster than all the
other reward structures.

Performance evaluation in the training environment
The trained reward structures are tested in the same environment as they are trained in: the
maze (Figure 4.6a). The testing phase was comprised of 11 episodes of at most 1000 actions
where the correlated Orhnstein-Uhlenbecker noise was omitted to exclude any randomness
and make the comparisons as proper as possible. Similar to the training phase, the robot was
spawned in the same position every time the episode was started.

In Table 5.2a the map-completeness, reward, amount of crashes, and success rate during test-
ing is illustrated. All reward functions (except Baseline) are able to complete the map 100% of
the time with no significant difference in the average map-completeness. The baseline reward
structure was unable to map the whole environment during training time and consequently
unable to do so during testing. Furthermore, the trajectories during testing (a sample trajectory
is shown in Figure 5.3), and the amount of crashes (Table 5.2a) indicate that the robot did learn
obstacle avoidance behaviour by circling around in the initial room. This, in addition to the
small variance in map-completeness suggest that the algorithm was stuck in a local optimum.
The intuitive explanation for the learned behaviour is that the bonus reward for completing the
map was never experienced during training, and by only imposing an angular velocity the walls
will not be hit and therefore no penalty is incurred.

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 31

0 100 200 300 400 500
Episodes

20

40

60

80

100
M

ap
co

m
pl

et
en

es
s

Baseline reward
Oracle reward
Information-gain reward
Curiosity reward

(a)

0 100 200 300 400 500
Episodes

200

400

600

800

1000

N
um

be
ro

fa
ct

io
ns

(b)

Reward structure
Convergence time

[in steps]

Baseline 398,923†

Oracle 266,048
Information-gain 277,027
Curiosity 176,151

(c)

Figure 5.1: a) Smoothed (moving-average) map-completeness of the Baseline, Oracle, Information-gain
and Curiosity reward structures over time whilst training on the maze environment, b) Smoothed num-
ber of actions of the Baseline, Oracle, Information-gain and Curiosity reward structures over time whilst
training on the maze environment, c) Convergence time of the reward structures in steps during train-
ing. † did not convergence

The other reward structures are consistently able to map the whole environment with success
rates 100%, 100% and 100% for Oracle, Information-gain and Curiosity, respectively. On closer
inspection of the trajectories, the Oracle reward function shows some tendency to venture close
to the wall near the entrance of the first room (Figure 5.3). Looking at the crash data confirms
that, with an average of 15 timesteps per episode spent too close to the wall (≤ 0.2m). This is
obviously not optimal behaviour, however, makes sense given that the agent perceived more
reward by uncovering a greater part of the map taking this trajectory. The bonus for uncovering
part of the map outweighs the small penalty accrued due to crashing. Hence, the balance of
the reward structure can ultimately affect the developed behaviour. In principle we can train
the algorithm for a longer period of time such that better behaviour is achieved, but this makes
the algorithm prone to overfitting, hurting the generalization capabilities as we will discuss in
Experiment 2. Overall, Curiosity performs the best of the four reward structures within the
Maze environment. With the least amount of crashes (7) and highest reward (257.9) on aver-
age1.Furthermore, the variance σ2 of the obtained reward and amount of crashes for both the
Curiosity and Information-gain reward structure suggest that a longer training time might be
beneficial to improve performance even more.

The results of the "best" trajectory from each reward structure are compared to a trajectory
of the frontier-based exploration algorithm, as explained in chapter ??. The frontier-based
exploration algorithm had the same settings as previously explained for the other reward
structures to make the comparison unbiased. The "best" trajectory in this context is defined
as the trajectory of the episode which obtained the highest reward. In Figure 5.3a, these tra-

1It must be noted that one cannot directly compare reward, since different reward structures yield different re-
wards for the same task and thus would be an improper comparison. However, the reward in combination with the
amount of crashes and the trajectory length gives an improved picture.

Robotics and Mechatronics Rob Schulte

32
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

jectories are depicted together with the length of the trajectory (Figure 5.3b). Herein it can be
observed that the length of the taken trajectories does not differ much between Oracle (3.31m),
Information-gain (4.49m) and Curiosity (4.72m). One could argue Oracle performs best here,
however, as hinted at before, shows a significantly higher number of collisions, in contrary
to the Information-gain and Curiosity reward structures. Curiosity shows a greater tendency
to stay further away from the walls, incentivized by it’s reward structure to not obtain reward
whenever close to a wall. Furthermore, Information-gain shows similar behaviour staying in
the middle of the room, which is a desirable property whenever exploring. All of these reward
structures have similar trajectory lengths to the frontier-exploration algorithm with a trajectory
length of 3.90m. Hence, it can be concluded they perform on par with a staple active SLAM
algorithm. Baseline, like the performance during training, was not able to map the entire
environment at all and thus had a large trajectory length (28.43m).

Reward structure
Map-completeness

[in %]
Reward

[per episode]
Amount of crashes

[per episode]
Succes rate

[in %]

µ σ2 µ σ2 µ σ2

Baseline 48.1 5.7 -12.2 758.0 12 762.2 0
Oracle 94.2 0.4 236.0 3.1 15 1.5 100
Information-gain 93.1 0.02 195.3 157.2 9 174.0 100
Curiosity 93.4 0.2 257.9 379.8 7 32.4 100

(a)

Figure 5.2: a) Map-completeness, reward, amount of crashes, and success rate of the Baseline, Oracle,
Information-gain and Curiosity reward structures over time whilst testing on the maze environment.
Where µ denotes the average, and σ2 the variance. The map is considered complete if the explored area
>= 93 %.

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 33

Starting point

(a)

Trajectory length shown trajectory
0

5

10

15

20

25

Le
ng

th
 o

f t
he

 tr
aj

ec
to

ry
 in

 m
et

er
s

 28.43

 3.31
 4.49 4.72 3.90

Baseline
Oracle
Information-gain
Curiosity
Frontier

(b)

Figure 5.3: a)Trajectory comparison between the Baseline (blue), Oracle (red), Information-gain
(green), Curiosity (black) reward structures and frontier based exploration (magenta) over time whilst
testing on the Apartment environment, b)Trajectory length comparison of the best trajectory in meters.
† indicates the environment was not successfully mapped

5.1.2 Apartment
Training phase
The comparison of the Baseline, Oracle, Information-gain and Curiosity reward structures in
the Apartment environment, during the training phase, are depicted in Figures 5.4a - 5.4b. The
map-completeness during training (Figure 5.4a) is surprisingly similar between the Baseline,
Oracle and Information-gain reward structures. Whilst it would be expected that the Oracle
and Information-gain converge faster to a solution since they incentivize exploration. A pos-
sible explanation can be found when looking at the raw data for the Baseline reward2, instead
of the moving-average, as shown in Figure 5.4c. Herein, it can be observed that the Baseline
reward completes the map multiple times within the first 100 episodes, probably due to fortu-
nate pathing trough the environment and thereby experiencing the bonus for completing the
map. Multiple training runs should be performed to support this hypothesis, however, this is
not done in this thesis due to time-constraints and required training time.

2Raw data for the Oracle, Information-gain and Curiosity reward function can be found in Appendix A

Robotics and Mechatronics Rob Schulte

34
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

0 100 200 300 400 500
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Baseline reward
Oracle reward
Information-gain reward
Curiosity reward

(a)

0 100 200 300 400 500
Episodes

200

400

600

800

1000

N
um

be
ro

fa
ct

io
ns

(b)

0 100 200 300 400 500
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Baseline reward
Map considered complete

(c)

Reward structure
Convergence time

[in steps]

Baseline 391,928
Oracle 404,957
Information-gain 407,913
Curiosity 173,459

(d)

Figure 5.4: a) Smoothed map-completeness of the Baseline, Oracle, Information-gain and Curiosity
reward structures over time whilst training on the apartment environment, b) Smoothed number of ac-
tions of the Baseline, Oracle, Information-gain and Curiosity reward structures over time whilst training
on the apartment environment, c)Raw map-completeness of the Baseline reward structure over time
whilst training on the apartment environment with a visual indicator in black showcasing the percent-
age of the environment required to be mapped in order to be considered complete, d) Convergence
time of the reward structures in steps during training.

The Curiosity reward structure clearly outperforms the other reward structures in terms of
convergence time, completing the map consistently from the 160th episode onwards. This
also becomes apparent when looking at the number of actions taken per episode, as shown in
Figure 5.4b. The number of actions per episode sharply drop for the Curiosity reward structure
and only slightly decrease after roughly 200 episodes. This implies it quickly reaches a solu-
tion for the environment due to the need to drive away from the set of known "novel" states.
The Information-gain reward structure requires about the same actions after 500 episodes of
training whilst the Baseline and Oracle reward structures perform significantly worse. This
indicates they have found sub-optimal solutions for the task and require additional training or
they are stuck in a local-optimum, which is not uncommon for policy-gradient methods. It is
noteworthy that the Curiosity reward structure requires less than half the total amount actions
throughout the training phase 173.459 compared to the others 391.928, 404.957 and 407.913
for Baseline, Oracle and Information-gain respectively (Table 5.4d).

As the training time of the algorithms is one of the bottlenecks for reinforcement learning, the
Curiosity reward structure offers a significant improvement over the others. To put this in per-
spective, using my personal computer and setup as an example, every 100.000 actions require
around 9 hours to complete saving approximately more then 18 hours when using Curiosity.

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 35

0 2 4 6 8 10
Episodes

20

40

60

80

100
M

ap
co

m
pl

et
en

es
s

Baseline reward
Oracle reward
Information-gain reward
Curiosity reward

(a)

0 2 4 6 8 10
Episodes

−1000

−750

−500

−250

0

250

C
um

ul
at

ed
re

w
ar

d

(b)

Reward structure
Map-completeness

[in %]
Reward

[per episode]
Succes rate

[in %]

µ σ2 µ σ2

Baseline 67.0 64.7 -108.9 615,533.0 0
Oracle 78.8 229.0 -706.8 196,268.4 18
Information-gain 87.5 93.5 -122.7 83,785.5 54
Curiosity 92.2 13.2 12.8 315,243.0 73

(c)

Figure 5.5: a) Map-completeness of the Baseline, Oracle, Information-gain and Curiosity reward struc-
tures over time whilst testing on the apartment environment. The black dotted line shows the percent-
age of the environment required to be mapped in order for it to be considered complete,b) Cumulated
reward of the Baseline, Oracle, Information-gain and Curiosity reward structures over time whilst testing
on the apartment environment, c)Map-completeness, reward, and success rate of the Baseline, Oracle,
Information-gain and Curiosity reward structures over time whilst testing on the maze environment.
Where µ denotes the average, and σ2 the variance. The map is considered complete if the explored area
>= 93 %.

Performance evaluation in the training environment: overall performance
The trained reward structures are tested in the same environment as they are trained in: the
apartment (Figure 4.6b). The testing phase was comprised of 11 episodes of at most 1000
actions where the correlated Orhnstein-Uhlenbecker noise was omitted to exclude any ran-
domness and make the comparisons as proper as possible. Similar to the training phase, the
robot was spawned in the same position every time the episode was started.

In Figure 5.5a the map-completeness during testing is illustrated with a black dotted line to
indicate the threshold for the environment to be considered mapped. In Figure 5.5b, the cumu-
lated reward per episode can be observed. Moreover, the succes ratio is reported in Table 5.5c
alongside the mean, and variance of the map-completeness and cumulated reward. The Cu-
riosity reward outperforms the others with a success ratio of 73%, average map-completeness
of 92%, and an average cumulated reward of 12.8. It is meaningful to mention that the average
map-completeness is a slightly biased metric, because map-completeness can go over the
required completeness of 93% depending on the path taken, speed of the robot and trigger of
the SLAM algorithm to update the map. Information-gain is a close second in terms of average
map-completeness 88%, however, was only able to complete the map 6 out of 11 times with
a success ratio of 54%. The Baseline and Oracle are the worst performers with average map-
completeness of 67% and 79%, respectively. The former shows particularly poor performance
never being able to successfully complete the map within the 11 episodes whilst the latter

Robotics and Mechatronics Rob Schulte

36
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

achieves a success rate of 18%. From the low average and high variance in reward per episode
it becomes readily apparent that the determinstic policy can be trained further to improve
performance if desired. Furthermore it indicates a drastic performance difference between
episodes, which are investigated in the following Section.

Performance evaluation in the training environment: trajectories
Next we want to take a closer look at the trajectories of the robot during the 11 test episodes so
we can start to analyze the quality of the trajectories and exploratory behaviour. Some sample
trajectories are depicted in Figures 5.6a - 5.6d to show the variance in trajectories for the Base-
line, Oracle, Information-gain and Curiosity reward structures, respectively3. The Baseline
scenario shows the expected obstacle avoidance behaviour due to the penalty for crashing,
however, shows no interest in exploring the other rooms or completing the environment. The
Oracle and Information-gain rewards show improved exploratory behaviour traversing multi-
ple rooms in most instances. This can be attributed to utilization of map-dependent knowledge
driving the robot to unexplored areas of the map. The latter still illustrates significant circling
behaviour, which indicates it did not yet converge to optimal behaviour. Furthermore, both
are showing a significant increase in the number of crashes - trajectories 2, 4, 5, 6, 7, 9, 10
for Oracle and 5, 6, 7, 8 and 9 for Information-gain - compared to the Baseline scenario. An
explanation can be found in the fact that there is an supplementary exploration reward, which
somewhat seems to reduce the impact the penalty of crashing, if there is sufficient bonus
gathered from uncovering unknown parts of the map. Furthermore, trajectories are sequential
and therefore states located far away from the initial position are visited less often. This could
be alleviated by additional training time, however, this will not guarantee a solution to this
problem. This is because once convergence is achieved it is unlikely to return to sub-optimal
parts of the state-space and thereby only learning from a certain set of observations over and
over. Increasing the noise can help frequent the state-space more often, but this will introduce
obvious problems such as increasing the incurred regret (opportunity loss) and training time
with only small deviations to the optimal trajectory. One possible solution is randomizing the
starting position of the robot to some degree. This will force the robot to search solutions from
different parts of the state-space and this option is considered in Experiment 5.2.

3Due to a little variance in the odometer and by plotting the trajectories on an image, some trajectories might be
a little skewed

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 37

4

6

9

Starting point

(a) Baseline

1

6

8

10

Starting point

(b) Oracle

0

2

7

10

(c) Information-gain

0
1

4

5

6

(d) Curiosity

Figure 5.6: Trajectories of the a) Baseline, b)Oracle, c)Information-gain and d)Curiosity reward struc-
tures over time whilst testing on the apartment environment. The labels on the trajectories correspond
to the results found in Figures 5.5a and 5.5b.

Since the robot is only allowed to move forward with a minimum speed of 0.1 m/s it is un-
able to drive any further whenever a collision occurs. Hence, getting stuck means that it will
only receive negative reward from that point moving forward and thus circling behaviour is
encouraged. The inability of the robot to escape obstacles also clarifies why there are a num-
ber of episodes where the endpoint is a wall in case of Oracle or Information-gain. Allowing
the robot to have negative linear speed would allow it to recover from a crash at the cost of
some algorithmic complexity. However, this is not done within the scope of this thesis due to
time-constraints. The Curiosity reward structure does not seems to suffer from that same issue
as points close to wall cannot be considered novel points. Therefore, it will try not to venture
too close to a wall as can be observed in the trajectories. Moreover, in trajectories 1 (orange)
it shows some backtracking behaviour which can be desirable in more complex and unseen
environments.

Robotics and Mechatronics Rob Schulte

38
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Lastly, the results of the "best" trajectory from each reward structure are compared to a tra-
jectory of the frontier based exploration algorithm, as explained in chapter 2. Where "best" is
defined as trajectory of the episode with the highest reward, where the environment was suc-
cessfully mapped, as shown in Figure 5.5b. The frontier-based exploration algorithm had the
same parameters4 as the other reward structures to make the comparison fair. In Figure 5.7a,
these trajectories are depicted together with the length of the illustrated trajectory. Similar to
previous comparisons, Curiosity has the best performance with a trajectory length of 8.3 me-
ters. Oracle is a close second with a length of 10.2 meters, taking a slightly sub-optimal route
trough the right-top room and thereafter travelling down. Both Curiosity and Oracle outper-
form Frontier-based exploration (20.2 meters) and follow significantly shorter paths. The other
reward structures, Baseline and Information-gain, either where unable to map the environ-
ment in the case of Baseline or took a very long path (Information-gain 56.7 meters).

Starting point

(a)

Trajectory length shown trajectory
0

10

20

30

40

50

Le
ng

th
 o

f t
he

 tr
aj

ec
to

ry
 in

 m
et

er
s

 18.75

 10.16

 56.73

 8.33

 25.91

Baseline
Oracle
Information-gain
Curiosity
Frontier

(b)

Figure 5.7: a)Trajectory comparison between the Baseline (blue), Oracle (red), Information-gain
(green), Curiosity (black) reward structures and frontier based exploration (magenta) over time whilst
testing on the apartment environment, b)Trajectory length comparison (in meters). † indicates the en-
vironment was not successfully mapped

5.1.3 A note on the different environment configurations
At first glance, the objective for the robot seems relatively simple in the maze environment:
getting out of the room. However, it has been shown that, due to its narrow configuration, es-
caping the initial room is a challenge, especially for the Baseline reward structure. It took the
other reward structures also relatively long to converge considering the size of the maze en-
vironment, with Information-gain and Oracle taking around ≈ 130,000 steps less to converge,
compared to the larger Apartment environment. This can again be contributed to the narrow
environment, leaving little room for maneuvering and consequently a relatively long training
time. It can be concluded that the configuration of the environment significantly impacts the
training performance and it might be beneficial to take this into account when shaping the
reward function.

4Shown in appendix B

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 39

5.2 Experiment: Generalization
In this section, the generalization of the learned policies to unseen environments are discussed
in more details. In the first part, the (successful) policies trained on the Apartment environ-
ment, discussed in Experiment 5.1, is directly transferred to unseen environment of Figure
4.6c. The robot was allowed to start 3 times from 4 different pre-picked position for a total of
12 times. The results are depicted in Figure 5.8a for the map-completeness over time. It can be
observed that the Curiosity reward structure performs best on average across all the starting
positions 91.0 %, whilst Information-gain and Oracle have a lower average of 83.9 and 73.8 %,
respectively. Curiosity consequently has the highest average success ratio (64 %) against 46 %
of Information-gain and 28 % of the Oracle reward structure.

0 2 4 6 8 10
Episodes

20

40

60

80

100

M
ap

co
m

pl
et

en
es

s

Oracle reward
Information-gain reward
Curiosity reward

(a)

0 2 4 6 8 10
Episodes

20

40

60

80

100

M
ap

co
m

pl
et

en
es

s

Oracle reward†

Information-gain reward†

Curiosity reward†

(b)

0 2 4 6 8 10
Episodes

−750

−500

−250

0

250

C
um

ul
at

ed
re

w
ar

d

(c)

0 2 4 6 8 10
Episodes

−1000

−750

−500

−250

0

250

C
um

ul
at

ed
re

w
ar

d

(d)

Figure 5.8: a) Map-completeness of the Oracle, Information-gain and Curiosity reward structures
over time, whilst being tested on the Apartment environment,b)Map-completeness of the Oracle,
Information-gain and Curiosity reward structures over time whilst being tested on the unknown Apart-
ment2 environment, c) Cumulated reward of the Oracle, Information-gain and Curiosity reward struc-
tures over time whilst testing on the Apartment environment, d) Cumulated reward of the Oracle,
Information-gain and Curiosity reward structures over time whilst testing on the unknown Apartment2
environment. The black dotted line shows the percentage of the environment required to be mapped in
order for it to be considered complete and the daggers † indicates testing performance on the unknown
environment

Robotics and Mechatronics Rob Schulte

40
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Reward structure Map-completeness Reward Succes rate

Env1 Env2 Env1 Env2 Env1 Env2

µ1 σ2
1 µ2 σ2

2 µ2 −µ1 µ1 σ2
1 µ2 σ2

2 µ2 −µ1 % %

Oracle 78.8 229.0 73.8 362.6 -5.0 -706.8 196,268.4 -365.3 210,622.2 341.5 18 28
Information-gain 87.5 93.5 83.9 149.6 -3.7 -122.7 83,785.5 90.4 8,733.6 213.1 54 46

Curiosity 92.2 13.2 91.0 40.6 -1.3 12.8 315,243.0 -100.1 302,892.1 -112.8 73 64

Table 5.1: Map-completeness, reward, and success rate of the Baseline, Oracle, Information-gain and
Curiosity reward structures over time whilst testing on the Apartment and Apartment2 environment.
Where µ denotes the average, σ2 the variance, and µ2 −µ1 the performance difference during testing
between the unseen Apartment2 (Env2) and Apartment (Env1).

In this section we are more interested in the generalization capabilities of the respective agents.
The performances are set side to side in Figures 5.8a - 5.8b for map-completeness and Figures
5.8c - 5.8d for the results of testing on Apartment (solid lines) and Apartment2 (dotted lines),
respectively. In terms of map-completeness, directly transferring the policy on a similar en-
vironment seems to have only a slight negative impact on average performance: -1.3 % for
Curiosity, -3.7 % for Information-gain and -5 % for Oracle. As one might expect the reward
gained (on average) per episode is lower (-87.3) in the Apartment2 environment for Curiosity.
Surprisingly, the Oracle reward function gets, on average, 341.5 more reward per episode in the
unseen (Apartment2) environment compared to the seen (Apartment) environment. Further-
more, the Information-gain reward function also performs better in the unseen environment
with a positive reward difference of 213.1 (Table 5.1).

We are going to explore the possible reasons why by taking a look at the trajectories in Fig-
ures 5.9. Herein, the Oracle reward function has relatively long trajectories with only a few
time-steps spent crashing.The results of section 5.1 show some short trajectories with a lot of
crashing, which is penalized heavily. Hence, this can possibly explain the positive difference
in reward between the two environments. Moreover, starting position 1 features a lot of open
space, which gives the Information-gain and Oracle structures a boost in map-completeness
and thus reward. Overall, it can be concluded that the ability of the proposed reward structures
is satisfactorily with relatively small drops in performance (map-completeness) and in some
instances a better performance (reward). This opens up potential for the agent to train on
a single environment and to do well in multiple environments by direct policy transfer, if a
diverse enough training environment is constructed. This can save immense amounts of train-
ing time and consequently computer resources, which is the major downside of reinforcement
learning as of today.

It is noteworthy to mention that none of the algorithms were able to perform well from starting
position 2. A possible reason for that is that the agent is not trained on backtracking and loop-
ing back trough it’s starting area in this fashion. The Curiosity reward structure has particular
trouble with starting position 2. Whilst starting from this position, the only way for the robot to
map the environment is by looping back trough the already explored part. This might imply a
weakness of the reward structure in that previous novel position do not provide additional ben-
efits to exploring already explored areas of the map without training for this explicitly. Starting
position 4 was also difficult for the agents, because of the narrow opening of the room. This
made it particularly challenging to get out of, similar to the Maze environment. Overall, Cu-
riosity clearly has the best performance being the only reward structure to completely map the
environment from 3 out of 4 starting positions.

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 41

Sample videos of the performance can be found on Youtube:

1. Curiosity

2. Information-gain

3. Oracle

Starting point 1
Starting point 2
Starting point 3
Starting point 4

(a) Oracle

Starting point 1
Starting point 2
Starting point 3
Starting point 4

(b) Information-gain

Starting point 1
Starting point 2
Starting point 3
Starting point 4

(c) Curiosity

Figure 5.9: Trajectories of the a) Oracle, b)Information-gain and c)Curiosity reward structures over time
whilst testing on the Apartment2 environment.

Robotics and Mechatronics Rob Schulte

https://youtu.be/b8h-FEhQ1zE
https://youtu.be/fi-E0VO9lgs
https://youtu.be/fi-E0VO9lgs

42
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

5.2.1 Improving generalization
In this section, the Curiosity reward structure is specifically (re)trained for generalization by
starting from a random initial position with random orientation within the Apartment envi-
ronment. The initial position was uniformly sampled from 4 possible starting locations, as can
be observed in Figure 5.10c. The intent here is to observe if (i) the shortcomings (e.g. backtrack-
ing) of the Curiosity reward structure within the unknown environment can be resolved by vis-
iting all parts of the state-space more frequently during training, and (ii) to see what effect this
strategy has on the trained environment (Apartment) and on the generalization performances
in the unknown environment (Apartment2).

Training phase
During the training, the Curiosity approach with random initial positions and orientation took
initially longer to learn, which makes sense given that it had to learn from a more diverse sam-
ple distribution (Figure 5.10a). It also depicts a steeper learning curve, compared to the Cu-
riosity without random initials. This is because once the learned trajectories from the different
starting positions connect, the robot is instantaneously capable of navigating through multiple
rooms. Consequently, the map-completeness then rises quickly, as can be observed around
50 and particularly around 150 episodes. The result is that the Curiosity with random initials
does not require many additional steps to converge, compared to the Curiosity approach (Ta-
ble 5.10d). Furthermore, the trend in the number of actions during training is similar between
the two approaches (Figure 5.10b).

0 100 200 300 400 500
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Curiosity
Curiosity random initials

(a)

0 100 200 300 400 500
Episodes

200

400

600

800

1000

N
um

be
ro

fa
ct

io
ns

(b)

(c)

Reward structure
Convergence time

[in steps]

Curiosity 176,151
Curiosity random initials 222,835

(d)

Figure 5.10: a) Smoothed (moving-average) map-completeness of the Curiosity and Curiosity with ran-
dom initials over time whilst training on the maze environment, b) Smoothed number of actions off the
Curiosity and Curiosity with random initials over time whilst training on the maze environment, c) The
four possible starting positions of the mobile robot within the Apartment environment, d) Convergence
time of the Curiosity and Curiosity with random initials in steps during training.

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 43

Performance evaluation in the training and testing environment
The testing performance in terms of reward and map-completeness for both approaches
is illustrated in Figures 5.11a - 5.11d for the tests performed on both the Apartment and
Apartment2 environment. Furthermore, the success rate, average map-completeness and
cumulated reward is reported in Table 5.2.

It becomes immediately clear when observing the results that the Curiosity with random ini-
tials approach performs better in both the unknown and training environment. Furthermore,
the small amount of variance in map-completeness and reward (5.2) indicate that the taken
trajectories are quite consistent and that any noise in the sensors, particularly the pose estima-
tion, is very well dealt with. This can be contributed to the the samples accrued in positions
it would otherwise (without random starting position and orientation) less likely encounter.
This does come at the cost of a longer training time (50.000 extra steps).

0 2 4 6 8 10
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Testing perfomance on Apartment

Curiosity
Curiosity random intials

(a)

0 2 4 6 8 10
Episodes

50

60

70

80

90

100
M

ap
co

m
pl

et
en

es
s

Testing perfomance on Apartment2

Curiosity
Curiosity random intials

(b)

0 2 4 6 8 10
Episodes

−1000

−750

−500

−250

0

250

C
um

ul
at

ed
re

w
ar

d

Testing perfomance on Apartment

(c)

0 2 4 6 8 10
Episodes

−750

−500

−250

0

250

500

C
um

ul
at

ed
re

w
ar

d

Testing perfomance on Apartment2

(d)

Figure 5.11: a) Map-completeness of the Curiosity and Curiosity with random initials over time, whilst
being tested on the Apartment environment,b)Map-completeness of the Curiosity and Curiosity with
random initials over time whilst being tested on the unknown Apartment2 environment, c) Cumulated
reward of the Curiosity and Curiosity with random initials over time whilst testing on the Apartment
environment, d) Cumulated reward of the Curiosity and Curiosity with random initials over time whilst
testing on the unknown Apartment2 environment. The red dotted line shows the percentage of the
environment required to be mapped in order for it to be considered complete.

Robotics and Mechatronics Rob Schulte

44
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Reward structure Map-completeness Reward Success rate

Env1 Env2 Env1 Env2 Env1 Env2

µ1 σ2
1 µ2 σ2

2 µ2 −µ1 µ1 σ2
1 µ2 σ2

2 µ2 −µ1 % %

Curiosity 92.2 13.2 91.0 40.6 -1.3 12.8 315,243.0 -100.1 302,892.1 -112.8 73 64
Curiosity random 94.0 0.3 95.5 7.7 1.5 388.4 3.6 365.0 8,155.6 -23.4 100 90.1

Table 5.2: Map-completeness, reward, and success rate of the Curiosity and Curiosity with random ini-
tials over time whilst testing on the Apartment and Apartment2 environment. Where µ denotes the
average, σ2 the variance, and µ2 −µ1 the performance difference during testing between the unseen
Apartment2 (Env2) and Apartment (Env1).

The Curiosity trained with random initials shows significantly longer trajectories from all of
the four different starting locations (Figure 5.12b). Furthermore, it exhibits a tendency to go
to the corner of any particular room and thereafter circle back in the direction it came from.
This behaviour seems to appear even if the room in question is already mapped (e.g. top-left
room for the red trajectory or circling back to the starting point in case of the blue trajectory).
One could argue this is sub-optimal behaviour compared to the Curiosity which is not trained
with random initials (Figure 5.12a). However, from the agent’s point of view this is considered
"optimal" behaviour since it achieves a better result (Table 5.2), both in terms of reward and
map-completeness, behaving this way. This is because there is no penalty for taking additional
steps within a particular episode given that there are no crashes involved and extra reward can
be accrued by collecting excess novel points. One could consider this a flaw in the reward struc-
ture design if short trajectories are desired, which could be resolved by adding a term which in-
creases the urgency of exploration (e.g -1/timestep) and thereby negating this effect. However,
it shows the best exploratory behaviour, by carefully inspecting every room within the state-
space, which allows it to traverse complicated rooms. Thus, the generalization capabilities of
the Curiosity with random initials is better in every way compared to the Curiosity with normal
training procedure. A sample video of the Curiosity with random initials on the Apartment2
can be found on Youtube: Curiosity trained with random intials

Starting point 1
Starting point 2
Starting point 3
Starting point 4

(a) Curiosity

Starting point 1
Starting point 2
Starting point 3
Starting point 4

(b) Curiosity trained with random initials

Figure 5.12: Side to side comparison of the best trajectories from each of the four starting positions of
the a) Curiosity, b)Curiosity trained with random initial position and orientation whilst testing on the
Apartment2 environment.

Rob Schulte University of Twente

https://youtu.be/Az8zbYk442w

CHAPTER 5. RESULTS AND DISCUSSION 45

5.3 Experiment: DDPG vs DRQN
In this section, the results of the DDPG algorithm are compared to a DRQN algorithm, which
are both trained and tested on the Maze environment 4.6a. The training results of the DRQN
algorithm are shown in Figure 5.13a, whilst Figure 5.13b depicts the familiar training results
of DDPG. It is abundantly clear that the DRQN algorithm shows better results during training
time, achieving convergence at around 100 episodes for all reward structures. This is more
than 250 episodes faster then the best performing DDPG algorithm, converging at around 350
episodes. Similar differences can be found in terms of actions performed during the training
period averaging 108,369 actions for the DRQN algorithm across all reward structures and av-
eraging 313,999 actions for DDPG (Figure 5.13d). The differences can be explained due to the
discretization of the action-space (0,k) for the linear and −k,0,k for the angular velocity) and
thus training is a lot faster then training over a continuous action range.

0 100 200 300 400 500
Episodes

20

40

60

80

100

M
ap

co
m

pl
et

en
es

s

DDPG

Baseline reward
Oracle reward
Information-gain reward

(a)

0 50 100 150 200
Episodes

20

40

60

80

100

M
ap

co
m

pl
et

en
es

s

DRQN

(b)

(c)

Reward structure
Average convergence time

[steps]

Baseline DDPG† 398,923
Oracle DDPG 266,048
Information-gain DDPG 277,027
Baseline DRQN 99,543
Oracle DRQN 114,540
Information-gain DRQN 111,025

(d)

Figure 5.13: a) Smoothed map-completeness of the Baseline, Oracle, Information-gain and Curiosity
reward structures over time whilst training on the maze environment utilizing the DRQN architecture
(Botteghi et al. (2020)), b) Smoothed map-completeness of the Baseline, Oracle, Information-gain and
Curiosity reward structures over time whilst training on the maze environment utilizing the DDPG ar-
chitecture, , c) Best trajectories of the Baseline DDPG (blue), Baseline DRQN (blue dotted), Oracle DDPG
(red), Oracle DRQN (red dotted), Information-gain DDPG (green), Information-gain DRQN (green dot-
ted) and Frontier (magenta) reward structures over time whilst testing on the maze environment

Robotics and Mechatronics Rob Schulte

46
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

The results in terms of best trajectories are shown in Figure 5.13c. The Baseline reward struc-
ture performs better for DRQN, compared to DDPG. However, the Oracle reward structure
performs better for DDPG (3.3m against 4.7m). In the case of information-gain the DRQN has
the upper hand (4.1m against 4.7m). One could conclude that in fact there are only minimal
difference between the trajectories.

The used action space is not massive with when using a 2 dof robot. Hence, the described theo-
retical concerns do no hold if the action-space is sufficiently small. It must be noted that within
this environment, which is mostly comprised of straight sections of walls, the coarse discretiza-
tion is not really noticeable among the trajectories. However, one could imagine that maneu-
vering in a more complex environment would prove more difficult and a finer discretization
might be required.

Performance evaluation Apartment and Apartment2 environment
As stated in Chapter 5, we cannot really compare the training results of the Apartment directly,
because of the reduced Lidar range used by the authors of Botteghi et al. (2020). However,
we can compare the test results in the Apartment and unknown Apartment2 environment in
terms of average map-completeness, success ratio and general navigational behaviour (ignor-
ing trajectory length) for the two architectures. Since the Baseline (called Sparse in Botteghi
et al. (2020)) performs very poorly for both architectures in the Apartment and Apartment2
environment, these results are omitted.

The DRQN architecture shows better testing results in the environment it was trained in (Ta-
ble 5.3). With much better success rate and map-completeness on average, however, it’s per-
formance drops considerably when testing on the Apartment2 environment (-43.6 and -31.7
map-completeness for Oracle and Information-gain, respectively). Hence, they generalize sig-
nificantly worse than their DDPG counterparts. In both instances, the Information-gain reward
structure seems to be the superior choice. It can be concluded that the DRQN architecture is a
feasible choice if the training environment is the same as the application environment.

Reward structure
Map-completeness

[difference]
Succes rate

Env1 Env2 Env1 Env2

DDPG µ1 σ2
1 µ2 σ2

2 µ2 −µ1 % %

Oracle 78.8 229.0 73.8 362.6 -5.0 18 28
Information-gain 87.5 93.5 83.9 149.6 -3.7 54 64

DRQN

Oracle 93.7 0.5 50.1 562.7 -43.6 100 11
Information-gain 94.3 0.4 62.6 221.5 -31.7 100 11

Table 5.3: Map-completeness, reward, and success rate of the Oracle and Information-gain reward
structures (for both the DDPG and DRQN architecture) over time whilst testing on the Apartment and
Apartment2 environment. Where µ denotes the average, σ2 the variance, and µ2 −µ1 the performance
difference during testing between the unseen Apartment2 (Env2) and Apartment (Env1).

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 47

5.4 Experiment: parameter tuning
In this section some interesting parameters regarding the Curiosity approach are discussed and
analyzed. In particular, some of the parameters affecting the reward process directly such as
novelty parameter K.

Starting
point

(a)

rti = 9

rti = 9
rti = 12

rti = 16

rti = 19

rti = 18

rti = 19rti = 21

rti = 23

rti = 28

rti = 28

rti = 27

rti = 21 rti = 29

rti = 31

rti = 34

rti = 24
Total trajectory

reward=368

(b)

rti = 11

ri =547

rti = 15 rti = 20 rti = 23

rti = 16

rti = 17

rti = 21

rti = 28

rti = 33

rti = 38

rti = 45
rti = 45

rti = 44

rti = 46

rti = 48

rti = 48

rti = 49

(c)

Figure 5.14: a) Depiction of a too large parameter K considering the starting room for the Curiosity ap-
proach within the Apartment environment, b) Intrinsic curiosity reward per time-step and total reward
depicted for manually driven trajectory whilst staying in a singular room, c) Intrinsic curiosity reward
per time-step and total reward for a trajectory depicted for manually driven trajectory trough multiple
rooms

As hinted at before, a weakness of the Curiosity approach is it dependency on selecting the
appropriate novelty distance K . The appropriate value for this hinges on many factors, such
as the topology of the rooms within the environment, the starting position of the robot within
the environment, the training methodology (e.g random starting positions), and the range of
your LiDAR. The parameter K effectively determines the radius of the novelty circle (area on
the map where no new novelty point can be obtained) with as origin the position of the novel
point. As the first novel point is the starting point of the robot within an environment, it can
be beneficial for the training process to select K such that several novel points can be obtained

Robotics and Mechatronics Rob Schulte

48
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

within the starting room. Selecting K too large compared to the starting room of the robot can
be detrimental to the learning process. For instance, consider the starting location depicted
in Figure 5.14a, where the robot first has to escape the room to obtain additional novel points.
Given the Curiosity reward structure (4.6), the robot has to exclusively rely on the exploratory
noise in this instance in order to escape the room. This reverts the reward structure back to
a sparse setting (similar to the Baseline reward structure), which can be problematic in some
instances (e.g. training performance of Baseline in the Maze environment 5.1a).

Similarly, selecting K too small can lead to situations where an abundance of novel points can
be collected within the confines of the same room (Figure 5.14b). Herein it can be observed
that a relatively large intrinsic (curiosity) reward can be collected (368) by following the de-
picted trajectory, with near to no progress made with respect to the objective (mapping the
environment). This can lead to a longer converge time during training, however, it is unlikely
that no progress is made since the height of the reward is dependant on distance travelled from
the novel points in memory. To illustrate this, the intrinsic reward obtained from two distinct
trajectories collecting the same amount of novel point are depicted in Figures 5.14b - 5.14c.
Herein it can be observed that novel points further away from the already collected set of novel
points yields a greater reward (Figure 5.14c) compared to novel points collected in the same ap-
proximate area as the already collected novel points (5.14b). Hence, due to the distance term
in the curiosity reward structure there is some built-in robustness to the selection of K. To con-
clude, the parameter K should be selected small enough to make several novelty circles possible
within the confines of the starting room to aid the training process, but large enough such that
it does not affect behaviour in a detrimental way (e.g. too many circles possible).

5.5 Evaluation
In this section, the strengths and weaknesses and improvements of the proposed approach are
analyzed and discussed. One could conclude the following from the made observations so far:

5.5.1 Different reward structures

i It is evident that the Curiosity reward structure has the best results during both training
and testing phase. In terms of quality of the trajectory and exploratory behaviour the ap-
proach significantly outperformed all other methods including the state-of-art Frontier-
exploration.

ii Although Information-gain has higher overall performance during training and testing in
comparison to the Oracle reward structure, the quality of the taken trajectories which are
successful are significantly worse compared to the Oracle method.

iii Sparse reward functions do not function well in complex and big environments

Furthermore, it seems important that the algorithm is able to map the whole environment
within the first 100 episodes as otherwise it seems develop wall avoiding behaviours mainly,
which can hurt the performance of the algorithm. It was observed that learning this circling
behaviour will make it very difficult for the robot to escape that local optimum in consecutive
episodes. Hence, one could conclude that, due to the robot’s inability to escape the walls, it de-
velops behaviour which is detrimental to the goal. This is also confirmed by the performance
of the Baseline reward structure as showed before. Although obstacle avoidance in and of itself
is not undesirable, the current implementation is sub-optimal. Possible solution to improve
are:

1. Adding a backwards action to the linear velocity and thereby allowing it to escape walls
making the penalty less impactful at the cost of computational complexity.

Rob Schulte University of Twente

CHAPTER 5. RESULTS AND DISCUSSION 49

2. Omitting the penalty for collision entirely or replacing it with an alternative which suits
the objective better (e.g. a time-step penalty instead of (or in addition to) the collision
penalty).

3. Better balancing of the existing reward functions to decrease the impact of the collision.

5.5.2 Generalization

i The proposed Curiosity approach adapts well to previously unknown (simulation) environ-
ments using direct policy transfer. Given that the used environment is similar to the trained
environment.

ii The generalization of the Curiosity approach can be improved if started from different po-
sitions and with random orientation during training. This comes at the cost of additional
time to convergence time.

5.5.3 DDPG vs DRQN
The low-level controller can output continuous actions in the case of the DDPG architecture
leading to improved trajectories over a DRQN approach. This helps the generalization capabil-
ities of the algorithm at the cost of additional training time an hence decreased training perfor-
mance compared to DRQN.

Robotics and Mechatronics Rob Schulte

50
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

6 Conclusion and future work

6.1 Conclusion

• What are state-of-the-art reward shaping novelties that can be successfully leveraged to
aid the exploratory process within the used framework?

As a first step towards innovation in the reward function, a form of episodic Curiosity in
the context of this framework was identified as a prime candidate to significantly improve
the exploration process of the robot.

• To what extent can we utilize SLAM in order to improve the reward function and increase
the performance of the DDPG approach?

The proposed reward structures (Baseline, Oracle, Information-gain and Curiosity) have
been trained and tested on the Maze and Apartment environment to evaluate the per-
formance within the training environment. It can be concluded that all of the proposed
approaches that capitalized on the map information (Oracle, Information-gain, Curios-
ity), provided by SLAM, are able to successfully navigate and map the Maze and Apart-
ment environments, contrary to the Baseline counterpart. Furthermore, by combining
SLAM information with an episodic memory and a concept of reachability in the state-
space within the reward definition, the convergence time during training was cut down
significantly (more than 50% in the Apartment environment) in both environments.

• To which extent is the algorithm able to generalize in an unseen environment?

To check the generalization capabilities of the reward structures to different environ-
ments, the policy (trained in the Apartment environment) was directly transferred to the
a-priori unknown Apartment2 environment. The results indicate that the tested algo-
rithms (Oracle, Information-gain and Curiosity) are able to complete the map in the un-
seen Apartment2 environment trough direct policy transfer. Particularly the Curiosity
approach was generally able to complete the map with shortest trajectories and a ten-
dency to navigate toward doorways. It was also shown that changing the training strategy
by letting the robot start from a random position and with random orientation - thereby
increasing the diversity of the seen samples - greatly increases the generalization capa-
bilities of the agent at the cost of longer but safer trajectories.

• How does the reinforcement learning approach compare against a frontier based explo-
ration approach?

The Curiosity reward structure is able to map the environment using a shorter trajectory
compared to the state-of-the-art frontier based exploration in the Apartment environ-
ment. All reward structures which leverage SLAM information achieve similar results
in terms of trajectory length in the Maze environment compared to frontier based ex-
ploration. The major benefit of the proposed approach is that the it does not require
pre-coded navigational directives in order to function compared to the frontier based
exploration algorithm.

• To which extent do the previously described theoretical concerns of DQN show in a prac-
tical setting and how does it perform against the used DDPG approach?

Lastly, the Oracle and Information-gain reward structures were compared to results ob-
tained using a DRQN architecture within the Maze, Apartment and Apartment2 environ-
ment. In the compared Maze environment, the concerns of blowing up the actions-space

Rob Schulte University of Twente

CHAPTER 6. CONCLUSION AND FUTURE WORK 51

and consequently unsuccessful training of DRQN networks do not show. Paradoxically,
the DRQN network trains faster, in terms of training steps, and achieves better results
than the proposed DDPG approach within the trained environment. However, the DRQN
fails to generalize well, making the proposed DDPG architecture a better candidate for
exploring unknown environments.

All in all, the proposed SLAM + Curiosity reward structure can be used to generate safe but
efficient trajectories for exploring, navigating and constructing a map in both known and un-
known environment. The major drawback of this approach is the additional novelty parameter
K. Making this parameter adaptive and deploying this approach in real-life circumstances is
the next step for this framework.

Robotics and Mechatronics Rob Schulte

52
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

6.2 Future work
In this sections directions for future work are discussed.

6.2.1 Real-world experiments
The proposed approach works well for the used simulation environments but extending this
work towards deploying the obtained policy on a real robot in real-life scenarios is the next
step. The learned policy can hypothetically directly be transferred to the real robot, however, a
difference model to capture the difference between the real and simulated system such as the
one used in Mustafa (2019) is a good candidate. Additionally, testing the proposed approach in
more interesting (dynamic) environments could be a step up towards this.

6.2.2 Adaptive naive curiosity
One of the drawbacks of the naive curiosity approach is the dependency on the novelty param-
eter k. For every environment, this has to be manually tuned for every specific environment
and thus if the unseen environment has a divergent structure, compared to the training envi-
ronment, the performance can suffer. Making this parameter adaptive (e.g. moving average of
the laser readings) could help overcome this difficulty. However, this adaptive distance might
uncorrelate the received reward and state-action taken which might require a different network
structure or more training time.

6.2.3 Hierarchical reinforcement learning
A weak point of the proposed naive Curiosity approach is mainly looping back trough areas
which are already explored as these will provide no additional reward. A hierarchical approach
such as option-critic, briefly mentioned in Appendix C, could help overcome this issue. For
example, by utilizing the map of SLAM you could have a specialized option for returning to
areas which are already explored if the naive exploration (e.g Curiosity) option is not making
any further progress.

6.2.4 Imitation learning
Learning from an expert is not possible in every case, but could be interesting if the environ-
ment allows for it. So-called Imitation Learning, as introduced in Appendix C, could signifi-
cantly reduce convergence time for the proposed approach by letting reinforcement learning
agent learn from expert trajectories in a supervised learning setting. This could also be applied
as a post-processing step to further improve the generated trajectories

6.2.5 Frontier based exploration
Frontier based exploration is capable of generating a decent navigational target, which could
be utilized by the reinforcement learning agent as a target to navigate instead of the traditional,
computationally expensive, path planner.

Rob Schulte University of Twente

53

A Raw map-completeness data

In Figures A.1a - A.1d, the non-smoothed map-completeness over time can be observed.
Herein it can be observed that the Baseline, Oracle, Information-gain and Curiosity approaches
indeed do complete the map within the first 100 episodes. This is something which cannot be
seen in the smoothed map-completeness, however, is vital for convergence of the algorithm.

0 100 200 300 400 500
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Baseline reward
Map considered complete

(a) Baseline

0 100 200 300 400 500
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Oracle reward
Map considered complete

(b) Oracle

0 100 200 300 400 500
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Information-gain reward
Map considered complete

(c) Information-gain

0 100 200 300 400 500
Episodes

50

60

70

80

90

100

M
ap

co
m

pl
et

en
es

s

Curiosity reward
Map considered complete

(d) Curiosity

Figure A.1: Raw map-completeness of the a) Baseline, b)Oracle, c)Information-gain and d)Curiosity
reward structures over time whilst training on the apartment environment. Dotted line indicates the
threshold for the map to be considered complete

Robotics and Mechatronics Rob Schulte

54
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

B Hyper-parameters

In Table B.1 the hyper-parameters for the SLAM and reinforcement learning approach are
showed. It must be noted that dense layer bias is only applied whenever no batch layer nor-
malization is used. This is done because batch layer normalization applies bias on its own and
this would forgo the benefits of using the batch layer normalization.

RL and SLAM parameters Value
optimizer ADAM

DDPG actor learning rate 10−3

DDPG critic learning rate 10−4

Dense layer bias initialization min value −1
512

Dense layer bias initialization max value 1
512

Dense layer weight initialization min value −1
512

Dense layer weight initialization max value 1
512

discount factor γ 0.99
Batch size 64

Replay buffer size 1e6
particles 80

process scan threshold translation 0.05
process scan threshold rotation 0.05

grid cell size 0.05m×0.05m
occupancy threshold 0.60

LiDAR max. range 10m
LiDAR min. range 0.2m
collision threshold 0.2m

map completed threshold 93 %
novelty distance k maze 0.8

novelty distance k apartment 1.8

Table B.1: Parameters of the experiments.

Rob Schulte University of Twente

55

C Additional reinforcement learning architectures

C.1 Hierarchical reinforcement learning
There is converging evidence in developmental psychology that newborns, primates, children,
and adults rely on the same cognitive systems for their basic knowledge. These cognitive sys-
tems include entities, agents, actions, space, social structures and intuitive theories. During
open-ended games such as stacking up physically stable block structures, toddlers will use this
knowledge to set sub-goals. To achieve these goals, toddlers seem to generate sub-goals within
the space of their basic knowledge, engaging in temporal abstraction . This is precisely the ap-
proach Hierarchical Reinforcement Learning (HRL) takes in order to solve larger and complex
problems. The authors of Sutton et al. (1999a) coin the term Options1 for generalizing prim-
itive actions to include temporally extended courses of action. An Option is a triple <I,π,β>
consisting of an Initation set I, a policy π and a terminal condition β. Options can be taken if
they are available from state st ∈ I and henceforth follow option policy π until an option termi-
nal condition β is reached. From there a new option can be selected. In this way, specialized
and specific tasks can be constructed such as "search the hallway" option depicted in Figure
C.1. This enables planning on a per room basis instead of a per cell basis, which significantly
speeds up the learning process.

C.2 Imitation learning
Although most achievements in the field focus on including deep learning in reinforcement
learning methods, the authors of Hussein et al. (2017) show that learning from an example can
result in significant reduction in the policy space. This approach, generally referred to as Imita-
tion Learning, is a form of supervised machine learning and can lead to an efficient learning ex-
perience and effective policy from demonstration, if sufficient training examples are available.
The authors of Vinyals et al. (2019) show that by combining learning from demonstrations and
experience, together with a multi-agent approach, they are able to surpass human level perfor-
mance in the game of Starcraft II, which is considered the benchmark environment (for games)
with 1026 possible actions each timestep and a massive solution space. In the area of robotics,
the authors of Hussein et al. (2017) show that learning from demonstrations can outperform
methods like A3C and DQN in a navigational task. However, one of the big problems with im-
itation learning in general is the Independent and Identically Distributed (i.i.d.) assumption:
while supervised learning assumes that the state-action pairs are distributed i.i.d., in MDP an

1For the scope of this thesis only Options are treated, however, other HRL methods include Feudal learning,
Hierarchical Abstract Machines, MAXQ and many others

Figure C.1: Different options in the context of a gridworld, adapted from Sutton et al. (1999a)

Robotics and Mechatronics Rob Schulte

56
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

action in a given state induces the next state, which breaks the previous assumption. This also
means, that errors made in different states add up, therefore a mistake made by the agent can
easily put it into a state that the expert has never visited and the agent has never trained on. In
such states, the behaviour is undefined and this can lead to catastrophic failures as can be seen
in Figure C.2. In the case of unknown environments the applicability and usability is limited
since it requires human interference, which makes the environments known by definition.

Figure C.2: Failure in imitation learning, adapted from Brunskill (2020)

Rob Schulte University of Twente

57

D Supplementary information of the neural network
architecture

D.1 Batch layer normalization algorithm
Co-variate shift can be illustrated by the following example: imagine you are building a neu-
ral network and train it on images of cats. You would like to classify images by either cat or
non-cat, however, only train it on images of black cats. If you would then show the clas-
sifier images of a coloured cats, the classifier would likely not perform very well. The rea-
son is that the distribution of the pixel intensity vector has shifted considerably. By using
batch normalization, we can prevent covariate shift by normalizing the output of a previous
activation layer by subtracting the batch mean and dividing by the batch standard deviation

Algorithm 2: Batch normalization

Result: yi = Batchnormγ,β(xi)
µB ← 1

m

∑
i∈m xi

σ2
B
← 1

m

∑
i∈m(xi −µB)2

x̂i ← xi−µB√
σ2
B
+ε

yi ← γx̂i +B

Where ε is used to avoid a division by zero (typically in the range of 1e−5 and parameters γ and
β are learned during training along with the model by letting the gradient descent optimizer
change only these two weight for each activation instead of changing all weights. This will
allow a greater range in the selection of parameter selection and speeds up training, as showed
in Ioffe and Szegedy (2015).

D.2 Gradient descent optimizer
For the Adam optimizer, the parameters θ of the stochastic objective function are updated such
that:

θt ← θt−1 −α m̂t√
v̂t +ε

(D.1)

Where α is the step size,m̂t and v̂t are the first and second bias-corrected raw moment esti-
mates:

m̂t ← mt

1−βt
1

(D.2)

mt ←β1mt1 + (1β1)g t (D.3)

v̂t ← vt

1−βt
2

(D.4)

vt ←β2vt1 + (1β2)g 2
t (D.5)

g t ←∇θ ft (θt−1) (D.6)

Where g t is the gradient with respect to the objective function ft (θ), β1 and β2 the exponential
decay rates of the moment estimates. The authors propose default values of 0.9 for β1, 0.999
for β and 10e−8 for ε. They show empirically that Adam works well in practice and compares
favorably to other adaptive learning-method algorithms. Furthermore, the robustness of the
default values is the reason for Adam to be so popular as it is. With other, comparable (on
performance level), methods requiring intensive tuning of the parameters.

Robotics and Mechatronics Rob Schulte

58
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

E Structured Literature review

In order to establish a proper research question and find an answer to that research question,
a structured literature review has been conducted. This method has been chosen because the
benefits of conducting a structured literature review are manifold. First of all, by making use
of a structured literature review to dive into a novel research area, the current state of research
on this topic can be determined. In order to find out to what extent a certain topic has already
been studied and gather the existing research results, this method is most adequate. Moreover,
the experts on this specific topic can be recognized as well as key questions that still need an
answer. Consequently, the way is paved for future research.

E.1 Search terms
The way of researching will involve (accessible) online databases trough which we can gather
literature and scientific studies. An obvious choice is the online research database FindUT,
which is comprised of multiple scientific libraries. Primarily, the scope of the present research
needs to be specified in terms of search terms and entered in the research database.

The pool of search terms includes terms that might provide valuable insight in the problem
statements and research questions and are directly related to these. The used terms are “Mobile
robots”, “Reinforcement learning”, “SLAM”, “Mapping”, “Navigation”, “Exploration”, "Reward
shaping", "Reward function" and "DDPG". In order to receive the most relevant results, two
search term combinations have been compiled and entered into the online research database.
The quotation marks have been added to the search terms while browsing the different online
databases in order to make sure that they appear as the whole established term in the articles
and lead to the most relevant search results.

The used combinations of search terms can be found in Table E.1. The first search term combi-
nation of "reinforcement learning" , "DDPG" and "exploration" is specifically aimed at finding
exploratory strategies suitable for the the DDPG framework. Furthermore, the second search
term combination is aimed at finding exploratory strategies which are not directly applicable
in the DDPG framework, but with some adaptation are usable in the framework. These terms
include "reinforcement learning", "exploration", "mobile robots" and "navigation". In addi-
tion papers and derivatives in the previous work and recommendations by the supervisors are
analyzed.

E.2 Inclusion criteria
Several general inclusion criteria have been determined as means to decide on which articles
to use in this structured literature review. The inclusion criteria were: (i) The language in which
the articles are composed had to be English in order to make the analysis more convenient and
coherent and provide a set of references in a language the readers of this research are able to
understand; (ii) the articles had to be peer-reviewed; and (iii) the publications have to be recent
for which we selected a time-frame of 5 years.

Table E.1: Used search term combinations for the literature review process

Search terms combinations

1st "Reinforcement Learning" AND "DDPG" AND "exploration"
2nd "Reinforcement Learning" AND "exploration" AND "mobile robots" AND "navigation"

Rob Schulte University of Twente

APPENDIX E. STRUCTURED LITERATURE REVIEW 59

Table E.2: Reduction process of the found articles for the first search term

Stepwise reduction of articles (first term) Number of residual articles

Searching for articles in Databases 277 hits
Filtering on type:article 14 hits
Filtering on published last 5 years (2015 - 2020) 12 hits
Checking titles for adequacy 5 hits
Analyzing abstracts concerning the inclusion criteria 2 hits

Table E.3: Reduction process of the found articles for the second search term

Stepwise reduction of articles (second term) Number of residual articles
Searching for articles in Databases 421 hits
Filtering on type:article 410 hits
Filtering on published last 5 years (2015 - 2020) 142 hits
Checking titles for adequacy 7 hits
Analyzing abstracts concerning the inclusion criteria 2 hits

Robotics and Mechatronics Rob Schulte

60
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Bibliography
Abbeel, P. (2006), Lecture notes on gmapping.
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/slides/
gmapping.pdf,

Bellemare, M. G., Y. Naddaf, J. Veness and M. Bowling (2012), The Arcade Learning
Environment: An Evaluation Platform for General Agents, CoRR, vol. abs/1207.4708.
http://arxiv.org/abs/1207.4708

Bishop, C. M. (2009), Pattern Recognition and Machine Learning, Springer Science+Business
Media, LLC, ISBN 978038731073-2.

Botteghi, N., B. Sirmacek, R. Schulte, M. Poel and C. Brune (2020), REINFORCEMENT
LEARNING HELPS SLAM: LEARNING TO BUILD MAPS, ISPRS - International Archives of
the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B4-2020,
pp. 329–335, doi:10.5194/isprs-archives-XLIII-B4-2020-329-2020.
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.
net/XLIII-B4-2020/329/2020/

Brunskill, E. (2020), Lecture 7: Imitation Learning in Large State Spaces.
http://web.stanford.edu/class/cs234/slides/lecture7.pdf

Burda, Y., H. Edwards, D. Pathak, A. Storkey, T. Darrell and A. A. Efros (2018), Large-Scale Study
of Curiosity-Driven Learning.

Dissanayake, G., H. Durrant-Whyte and T. Bailey (2000), A computationally efficient solution
to the simultaneous localisation and map building (SLAM) problem, in Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation.
Symposia Proceedings (Cat. No.00CH37065), volume 2, pp. 1009–1014 vol.2.

Doucet, A., N. de Freitas, K. Murphy and S. Russell (2013), Rao-Blackwellised Particle Filtering
for Dynamic Bayesian Networks.

funda (2020), https://www.funda.nl/, https://www.funda.nl/ (accessed: April
2020), house finding website in the Netherlands.

Grisetti, G., C. Stachniss and W. Burgard (2005), Improving Grid-based SLAM with
Rao-Blackwellized Particle Filters By Adaptive Proposals and Selective Resampling, pp.
2432–2437, doi:10.1109/ROBOT.2005.1570477.

Guivant, J. E. and E. M. Nebot (2001), Optimization of the simultaneous localization and
map-building algorithm for real-time implementation, vol. 17, no.3, pp. 242–257.

Holz, D., N. Basilico, F. Amigoni and S. Behnke (2010), Evaluating the Efficiency of
Frontier-based Exploration Strategies, pp. 1 – 8.

Hussein, A., E. Elyan, M. Gaber and C. Jayne (2017), Deep imitation learning for 3D navigation
tasks, Neural Computing and Applications, vol. 29, doi:10.1007/s00521-017-3241-z.

Ioffe, S. and C. Szegedy (2015), Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift, CoRR, vol. abs/1502.03167.
http://arxiv.org/abs/1502.03167

Kingma, D. and J. Ba (2014), Adam: A Method for Stochastic Optimization, International
Conference on Learning Representations.

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver and D. Wierstra (2015),
Continuous control with deep reinforcement learning.

Liu, J. S. (1996), Metropolized Independent Sampling with Comparisons to Rejection
Sampling and Importance Sampling.

Rob Schulte University of Twente

https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/slides/gmapping.pdf,
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa11/slides/gmapping.pdf,
http://arxiv.org/abs/1207.4708
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2020/329/2020/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2020/329/2020/
http://web.stanford.edu/class/cs234/slides/lecture7.pdf
https://www.funda.nl/
https://www.funda.nl/
http://arxiv.org/abs/1502.03167

Bibliography 61

Matheron, G., N. Perrin and O. Sigaud (2019), The problem with DDPG: understanding failures
in deterministic environments with sparse rewards.

Merwe, R., A. Doucet, N. Freitas and E. Wan (2001), The Unscented Particle Filter, NIPS, vol. 13.

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. A. Riedmiller
(2013), Playing Atari with Deep Reinforcement Learning, CoRR, vol. abs/1312.5602.
http://arxiv.org/abs/1312.5602

Mnih, V., K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare, A. Graves, M. Riedmiller,
A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg and D. Hassabis (2015), Human-level control through deep
reinforcement learning, Nature, vol. 518, pp. 529–33, doi:10.1038/nature14236.

Montemerlo, M., S. Thrun, D. Koller and B. Wegbreit (2002), FastSLAM: A Factored Solution to
the Simultaneous Localization and Mapping Problem, in In Proceedings of the AAAI
National Conference on Artificial Intelligence, AAAI, pp. 593–598.

Montemerlo, M., S. Thrun, D. Koller and B. Wegbreit (2003), FastSLAM 2.0: An Improved
Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably
Converges, Proc. IJCAI Int. Joint Conf. Artif. Intell.

Moravec, H. and A. Elfes (1985), High resolution maps from wide angle sonar, pp. 116 – 121,
doi:10.1109/ROBOT.1985.1087316.

Murphy, K. (2000), Bayesian Map Learning in Dynamic Environments.

Mustafa, K. A. A. (2019), Towards Continuous Control for Mobile Robot Navigation: A
Reinforcement Learning and SLAM Based Approach.
http://essay.utwente.nl/79803/

Mustafa, K. A. A., N. Botteghi, B. Sirmacek, M. Poel and S. Stramigioli (2019), TOWARDS
CONTINUOUS CONTROL FOR MOBILE ROBOT NAVIGATION: A REINFORCEMENT
LEARNING AND SLAM BASED APPROACH, ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLII-2/W13, pp.
857–863, doi:10.5194/isprs-archives-XLII-2-W13-857-2019.
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.
net/XLII-2-W13/857/2019/

Pardo, F., A. Tavakoli, V. Levdik and P. Kormushev (2017), Time Limits in Reinforcement
Learning, CoRR, vol. abs/1712.00378.
http://arxiv.org/abs/1712.00378

Pathak, D., P. Agrawal, A. A. Efros and T. Darrell (2017), Curiosity-driven Exploration by
Self-supervised Prediction.

Plappert, M., R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel and
M. Andrychowicz (2017), Parameter Space Noise for Exploration.

Savinov, N., A. Raichuk, R. Marinier, D. Vincent, M. Pollefeys, T. P. Lillicrap and S. Gelly (2018),
Episodic Curiosity through Reachability, CoRR, vol. abs/1810.02274.
http://arxiv.org/abs/1810.02274

Schulman, J., P. Moritz, S. Levine, M. Jordan and P. Abbeel (2015), High-Dimensional
Continuous Control Using Generalized Advantage Estimation.

Schulte, R. (2019), Autonomous mapping and navigation of a mobile robot using
Reinforcement Learning - Individual Assignment.

Silver, D. (2015a), Lecture notes on Markov Decision Processes.
https://www.davidsilver.uk/teaching/

Silver, D. (2015b), UCL Course on RL: Lecture 7 - Policy Gradient Methods.
https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

Robotics and Mechatronics Rob Schulte

http://arxiv.org/abs/1312.5602
http://essay.utwente.nl/79803/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/857/2019/
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-2-W13/857/2019/
http://arxiv.org/abs/1712.00378
http://arxiv.org/abs/1810.02274
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/wp-content/uploads/2020/03/pg.pdf

62
Autonomous mapping and navigation of an unknown environment using a reinforcement

learning approach

Silver, D., G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller (2014), Deterministic
Policy Gradient Algorithms, 31st International Conference on Machine Learning, ICML 2014,
vol. 1.

Sutton, R., D. Precup and S. Singh (1999a), Between MDPs and Semi-MDPs: A Framework for
Temporal Abstraction in Reinforcement Learning, Artificial Intelligence, vol. 112, pp.
181–211.

Sutton, R. S. and A. G. Barto (1998), Introduction to Reinforcement Learning, MIT Press,
Cambridge, MA, USA, 1st edition, ISBN 0262193981.

Sutton, R. S., D. McAllester, S. Singh and Y. Mansour (1999b), Policy Gradient Methods for
Reinforcement Learning with Function Approximation, in Proceedings of the 12th
International Conference on Neural Information Processing Systems, MIT Press, Cambridge,
MA, USA, NIPS’99, p. 1057–1063.

Thrun, S. (2000), An Online Mapping Algorithm for Teams of Mobile Robots, Int. J. of Robot.
Research, vol. 20.

Uhlenbeck, G. E. and L. S. Ornstein (1930a), On the Theory of the Brownian Motion, Phys. Rev.,
vol. 36, pp. 823–841, doi:10.1103/PhysRev.36.823.
https://link.aps.org/doi/10.1103/PhysRev.36.823

Uhlenbeck, G. E. and L. S. Ornstein (1930b), On the Theory of the Brownian Motion, Phys. Rev.,
vol. 36, pp. 823–841, doi:10.1103/PhysRev.36.823.
https://link.aps.org/doi/10.1103/PhysRev.36.823

Vinyals, O., I. Babuschkin, W. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. Choi, R. Powell,
T. Ewalds, P. Georgiev, J. Oh, D. Horgan, M. Kroiss, I. Danihelka, A. Huang, L. Sifre, T. Cai,
J. Agapiou, M. Jaderberg and D. Silver (2019), Grandmaster level in StarCraft II using
multi-agent reinforcement learning, Nature, vol. 575, doi:10.1038/s41586-019-1724-z.

Watkins, C. and P. Dayan (1992), Technical Note: Q-Learning, Machine Learning, vol. 8, pp.
279–292, doi:10.1007/BF00992698.

Yamauchi, B. (1997), A frontier-based approach for autonomous exploration, in Proceedings
1997 IEEE International Symposium on Computational Intelligence in Robotics and
Automation CIRA’97. ’Towards New Computational Principles for Robotics and Automation’,
pp. 146–151.

Zhang, C., O. Vinyals, R. Munos and S. Bengio (2018), A Study on Overfitting in Deep
Reinforcement Learning, CoRR, vol. abs/1804.06893.
http://arxiv.org/abs/1804.06893

Rob Schulte University of Twente

https://link.aps.org/doi/10.1103/PhysRev.36.823
https://link.aps.org/doi/10.1103/PhysRev.36.823
http://arxiv.org/abs/1804.06893

	Summary
	Contents
	1 Introduction
	1.1 General statement of the problem
	1.2 Problem formulation and challenges
	1.3 Research questions
	1.4 Limitations
	1.5 Assumptions
	1.6 Outline

	2 Background
	2.1 Reinforcement learning
	2.2 Policy gradient methods
	2.3 Actor-critic methods
	2.3.1 DPG
	2.3.2 DDPG

	2.4 SLAM
	2.5 Frontier based exploration
	2.6 Summary

	3 Innovations in the reward function
	3.1 Exploration at a policy level
	3.2 Exploring by reward shaping
	3.3 Summary

	4 Method
	4.1 Framework
	4.2 Reward Shaping
	4.2.1 Old reward function
	4.2.2 Baseline scenario
	4.2.3 Oracle scenario
	4.2.4 Information-gain scenario
	4.2.5 Curiosity scenario

	4.3 Generalization
	4.4 State vector design
	4.5 Experimental setup
	4.5.1 Simulation environment
	4.5.2 Neural network architecture

	4.6 Experiments
	4.6.1 Simulation environments
	4.6.2 Experiment: Comparison of different reward functions
	4.6.3 Experiment: Generalization
	4.6.4 Experiment: DDPG vs DRQN
	4.6.5 Experiment: parameter tuning

	5 Results and Discussion
	5.1 Experiment: Comparison of different reward functions
	5.1.1 Maze
	5.1.2 Apartment
	5.1.3 A note on the different environment configurations

	5.2 Experiment: Generalization
	5.2.1 Improving generalization

	5.3 Experiment: DDPG vs DRQN
	5.4 Experiment: parameter tuning
	5.5 Evaluation
	5.5.1 Different reward structures
	5.5.2 Generalization
	5.5.3 DDPG vs DRQN

	6 Conclusion and future work
	6.1 Conclusion
	6.2 Future work
	6.2.1 Real-world experiments
	6.2.2 Adaptive naive curiosity
	6.2.3 Hierarchical reinforcement learning
	6.2.4 Imitation learning
	6.2.5 Frontier based exploration

	A Raw map-completeness data
	B Hyper-parameters
	C Additional reinforcement learning architectures
	C.1 Hierarchical reinforcement learning
	C.2 Imitation learning

	D Supplementary information of the neural network architecture
	D.1 Batch layer normalization algorithm
	D.2 Gradient descent optimizer

	E Structured Literature review
	E.1 Search terms
	E.2 Inclusion criteria

	Bibliography

