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Abstract

Mobile robot navigation attracts research and industrial interests in various fields in
recent years. Autonomous navigation in an environment has always been a chal-
lenge for mobile robots, especially in a dynamic environment. There are various
approaches to solve this problem for mobile robots, but most of the approaches
need a model of the entire map and precise prior knowledge of the environment,
which is difficult to implement in the real world. Therefore, motivation is formed to
apply reinforcement learning(RL) for this navigation task in an unknown environ-
ment. Since an optimal route to reach the target can be explored by RL through
trial-and-error interactions with the unknown environment and gaining the maximum
reward, which doesn’t need any prior knowledge. This project aims to implement
mobile robot navigation in an unknown dynamic environment with the reinforcement
learning method. Deep Q-network(DQN) is used in this project because of the ad-
vantage of the training stability.

To obtain an optimal policy for path planning with high efficiency and shorter tra-
jectory, we explore several kinds of reward functions and design a proper one for the
task in dynamic environments concerning the features of the current states receiv-
ing from the environment. Laser sensors are used to obtain the distance information
of the target and obstacles around the robot. The two main metrics, Q-value loss
and accumulated reward are considered to evaluate the performance of the reward
functions. Then it is validated that the reward function concerning both distance and
orientation information performs best among the proposed reward functions with low
loss value, high accumulated reward, and high stability.

Another problem to solve in this project is to extract high-dimensional observa-
tion from the environment and compress the observation to low-dimensional states.
We use an RGB camera to get observation images and use an auto-encoder to
implement state representation of the images. We proposed two methods to ex-
tract main features from the dynamic environment. The first one is combining the
encoded states from the auto-encoder with laser measurements and additional po-
sition states to get precise positions of moving obstacles. The second is inputting a
sequence of observations to auto-encoder to get the motion pattern of the moving
objects. It is proved that with these methods, the positions of the moving obstacles
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can be tracked, which improves the success rate of the navigation significantly.
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Chapter 1

Introduction

1.1 Motivation

With the continuous development of robot technology, intelligent mobile robots have
been applied in various fields and play an increasingly important role in home daily
services, medical services, industry, agriculture, military, and other fields. Autonomous
navigation, which meets the fundamental needs of mobility for real-life robots, plays
an important role in the fields of autonomous and intelligent mobile robots. As a
basic research content, robot navigation in an unknown environment is still a chal-
lenge, which makes it a technology focus. One of the advantageous approaches for
navigation in an unknown environment is reinforcement learning(RL).

RL enables an agent to autonomously discover an optimal behavior through trial-
and-error interactions with its environment [3]. The agent decides the next action
based on the information perceived from the environment. Then it receives feedback
from the environment in the next state to tell whether the taken action is good or
bad(i.e. the reward). By interacting with the environment, the agent would learn to
discover a path to reach the target. The goal of RL is to maximize the accumulated
long-term reward. Encouraged by this goal, the agent could explore the optimal
policy mapping from state to action and discover the shortest trajectory.

The problems that could be encountered when applying reinforcement learning
in robot navigation. Since getting the reward from the environment is the only way
for the agent to evaluate its learning performance and results in the decision on
the next action, designing a proper reward function is important and challenging.
Inappropriate reward function, such as reward sparsity case, would lead to algorithm
divergence [2] and make the agent fail to achieve the goal. In the robot navigation
case, the design of the reward function considers the features of the current state
responded from the environment. Next to that, the discretization of continuous states
and actions of the robots from observation always results in an exponential explosion
of states and lead to an expensive computation and low convergence rate [4]. The
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2 CHAPTER 1. INTRODUCTION

approaches for observation compression are discussed in Section 2.2.1 and auto-
encoder is proposed to be used in this project to reduce the dimension of the state
space.

This project focuses on the navigation problem for robots in unknown dynamic
environments based on RL. In dynamic environments, moving targets and obsta-
cles are considered. Deep Q-network(DQN) is the mainly discussed approach to
implement the goal, which has good training stability compared with traditional Q-
network [5].

Secondly, we designed different reward functions based on the responses from
the dynamic environment to improve learning efficiency. The performance of these
reward functions is evaluated. After a proper reward function being defined, we
use an RGB camera to obtain the information from the environment to get a visual
observation. An auto-encoder is applied to compress the observation to state repre-
sentation of the camera image for an efficient learning process. We explore several
methods to extract meaningful information from the environment and encode impor-
tant features from the observation to help the agent making a better decision on the
next action. Then we compare the performance between the methods with these
different observation data.

1.2 Research Questions

Based on the motivation proposed in section 1.1, the following research questions
are formulated:

1. RQ1: What is a proper reward function for the navigation task in a dynamic
environment to help the agent learning the policy and accelerate the learning
efficiency?

2. RQ2: In the navigation problem, how to reduce the dimension of the state
space and extract meaningful information with auto-encoder in a dynamic en-
vironment?

1.3 Report Organization

In Chapter 2, we introduce the concept of some basic methods and algorithms to
solve the navigation problems. This part also includes the introduction of relevant
methods used by previous works, together with their limitation and disadvantages.
Chapter 3 discusses solutions based on the concept introduced in chapter 2. Deep
reinforcement learning algorithms are discussed to provide a particular method for
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the final project. Especially, a novel path planning algorithm by means of local path
planning with double Q-network is briefly analyzed. To answer the research ques-
tions formulated in Section 1.2, we propose several approaches in Chapter 4. Firstly
we introduce the architecture of the neural network we use in DQN. Then we present
some different kinds of reward functions we use in the experiments and what are
the differences between these reward functions. Secondly, we introduce the frame-
work that applying state representation learning in the training of RL to compress
the observation state space. In Chapter 5, we first describe the environments and
hyperparameters we use in the experiments. Then we present the setup of the ex-
periments corresponds to each research question. Next to that, we show the results
of the experiments in Chapter 6 and analyze the possible reasons for the results
to answer the research questions in Chapter 7. Finally, in Chapter 8 we draw the
conclusions of the experiments and put forward the further researches that we will
discuss in the future.



Chapter 2

Background

This chapter introduces the basic concepts that we use to implement robot naviga-
tion. Section 2.1 gives an overview of RL, together with its key element Markov Deci-
sion Process(MDP). Then deep Q-learning(DQL) is presented, which is the method
mainly used in this project.

Next, the concept of state representation learning(SRL) is introduced in Section
2.2. This is used for feature learning dealing with high-dimensional problems. The
methods used in previous work to solve the problem of high-dimensional curse with
SRL are discussed in Section 2.2.1 and one of the approaches are introduced in
Section 2.2.2.

2.1 Reinforcement Learning

Reinforcement learning(RL) is a goal-directed learning method to learn how to max-
imize the value of the reward in the predefined task, which is actually a learning
process of mapping state to action. Compared with the classic supervised learn-
ing and unsupervised learning problems of machine learning, the main feature of
reinforcement learning is learning from interaction. During the interaction with the
environment, the agent continuously learns knowledge based on the obtained re-
wards or punishments and adapts to the environment. The main difference between
RL and supervised learning is that there is no output value of training data prepared
for supervised learning. Reinforcement learning only has a reward value obtained
at the next time step, which is not the same as the output value of supervised learn-
ing. At the same time, each step of RL is closely related to the time sequence. The
paradigm of RL is very similar to the process of humans learning knowledge, and it
is for this reason that RL is regarded as an important way to achieve general AI.

The classic quadruple in RL [3] is denoted as < A, S, R, P >. A represents
the set of actions of the agent. The action at taken by the agent at time t is a

4



2.1. REINFORCEMENT LEARNING 5

certain action in its action set. S is the state set of the environment that the agent
can perceive. The state st of the environment at time t is a state in its state set.
R is a reward function, representing the reward or punishment of the agent. The
reward rt+1 corresponding to the action at taken at state st at time t is obtained
at time t + 1. The reward function, which is the goal of RL, can be viewed as a
mapping from observed environment variables to the reward value, measuring the
satisfaction of that state or the taken action. The goal of a reinforcement learning
agent is to maximize a cumulative reward for long-term actions. The reward function
determines whether the current decision of the action is a good decision for the
agent. P is the state transition probability function, which represents the probability
that the environment is transferred to the st+1 state after an action at is performed in
s state.

The core problem in RL is to learn a good policy for sequential decision problems
by optimizing a cumulative reward signal. Policy, defined as π, is the choice of action
a made by an agent to make in the state s. A policy can be regarded as mapping
to action a after the agent explores the environment. If the strategy is stochastic,
the policy selects the action based on the probability π(a | s) of each action; if the
strategy is deterministic, the policy directly selects the action a = π(s) based on the
state s.

2.1.1 Markov Decision Process and Value Function

As it mentioned before, the next state of the environment st+1 depends not only
on the current state st but also on the action at taken by the agent at time t. The
interaction model of the transition can be modelled as MDP [6], which is defined as:

P(St+1, Rt+1 | S0, A0, R1, ..., St, At) = P(St+1, Rt+1 | St, At) (2.1)

where R is the reward, S is the state and A is the action. According to the property of
the MDP, the response of the environment at the next time t + 1 is only related to the
information from the current state st and action at. The interaction model between
agent and environment is shown in Figure 2.1.
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Figure 2.1: The agent-environment interaction model

The value function Vπ(s), defined as the average reward of action in the long-
term, can be estimated based on MDP, which is depend only on the current state s:

Vπ(s) = E[Gt | St = s] (2.2)

where Gt is the return of state st at time t:

Gt = Rt+1 + λRt+2 + ... =
∞

∑
k=0

λkRt+k+1 (2.3)

λ < 1 is the discount factor which means the current return is relatively important
and the impact reduces as time passing.

Also the action-value function Qπ(s, a) for policy π, which take action into ac-
count, is defined as:

Qπ(s, a) = Eπ[Gt | St = s, At = a] = Eπ[Rt+1 + λRt+2 + λ2Rt+3... | St = s, At = a]
(2.4)

To solve the problem of RL means to find an optimal policy π for an agent in
the process of interaction with the environment, which gains more reward than other
policies all the time. The optimal policy is expressed as π∗. Generally speaking, it is
difficult to find an optimal policy, but a better policy will be determined by comparing
the advantages and disadvantages of several different policies, that is, the local opti-
mal solution. The search for a locally optimal policy will be achieved by searching for
a better value function. The optimal state value function is defined as the maximum
value of state value functions generated under all policies:

V ∗ (s) = max
π

Vπ(s). (2.5)

And the action-value function is also defined in the same way:

Q ∗ (s, a) = max
π

Qπ(s, a). (2.6)

As long as the largest state value function or action-value function is found out, then
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the corresponding policy π∗ is the solution to the RL problem.

2.1.2 Deep Q-Learning

Q-learning is a classical algorithm of RL, which is a table method based on the past
state, policies, and iteration Q value. Q means action-utility function, to evaluate
the action decided in a specific environment is good or bad. In a simple case, the
combined amount of states and actions is finite. So after training the Q values will
be filled in a table corresponding to different state s and actions. The learned policy
π will choose the action with maximal Q value. The Q value is updated following:

Q(s, a)← (1− a)Q(s, a) + α[r(s, a) + γmaxaQ(s′, a)], (2.7)

where α is the learning rate; γ is the discount factor; r is the current reward.
The problems of Q-learning are, on the one hand, the available state and action

space of Q-learning is very small because of the limited size of the Q table, which is
impractical in complex cases with large state and action space; on the other hand,
Q-learning could not handle a new state never appeared before. In other words,
Q-learning has no predictive ability, that is, no generalization ability [7].

To solve the problem, the optimal action-value function will be parameterized by:

Q(s, q; θ) ≈ Q∗(s, a) (2.8)

where θ is the Q-network parameter for neural network weights. Reinforcement
learning has instability when a nonlinear function approximator, such as a neu-
ral network is used to represent the action-value function and will result in diver-
gence [8].This instability has resulted from the correlations present in the sequence
of observations and the correlations between the action values (Q) and the target
values.

DeepMind proposed a mechanism called experience replay [9] to deal with the
instability problem, which stores the agent’s experiences, environment state, action,
and reward at each time-step in a memory buffer. The mechanism reduced corre-
lations in the observation sequence by sampling random data from the pool of the
dataset when training the network.

Then the method of deep Q-network(DQN) is improved in 2015 by added a tar-
get Q-network, which updates parameters with a low rate after comparison with
predicted Q-network [10]. So the target Q-network and predicted Q-networks are
built with the same structure and use different parameters. The parameters in the
target Q-network is denoted as θi

′ and parameters in the predicted Q-network is θi.
The values in the target Q-network are only updated with the predicted Q-network
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in every C steps, thus the update of the target Q-network is delayed and over-fitting
is avoided.

The update mode of Q value is similar to that of Q-learning:

Q(s, a)← Q(s, a) + α[r + γmaxa′Q̂(s′, a′)−Q(s, a)]. (2.9)

The improved loss function is:

Li(θi) = E
[
(r + γmaxa′Q̂(s′, a′; θi

′)−Q(s, a; θi))
2
]

, (2.10)

where Q̂(s′, a′; θi
′) is target Q-network and Q(s, a; θi) is predicted Q-network(same

meaning of the notation in the following content).
DQN applied two key technologies:

1. Experience Reply: put the collected samples into the sample pool first, and
then randomly select a sample from the sample pool for network training. This
method removes the correlation between samples and makes them indepen-
dent from each other.

2. Fixed Q-target network: the existing Q value is needed to calculate the network
target value, which is provided by a network with a slow updating rate. This
improves the stability and convergence of training.

The DQN algorithm is described in Algorithm 1.

Algorithm 1 Deep Q-learning with experience replay [11])
Require: Initialize replay memory D to capacity N

1: Initialize action-value function Q with random weights θ
2: Initialize target action-value function Q̂ with weights θ− = θ
3: for each iteration do
4: Initialize S
5: for each environment step do
6: Observe state st
7: With probability ε select a random action at, otherwise select at =

argmaxaQ(s, a; θ)
8: Execute at and observe next state st+1 and reward rt = R(at, st), Set st+1 = st
9: Store transition(st, at, rt, st+1) in D

10: Sample random minibatch of transitions (st, at, rt, st+1) from D

11: Set
{

rj, i f episode terminates at step j + 1
rj + γmaxa′Q̂(s′, a′; θ), otherwise

12: Perform a gradient descent step on (yi −Q(s, a; θ))2 with respect to the network
parameters θ

13: Every C steps reset Q̂=Q
14: End for
15: End for
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2.2 State Representation Learning

In the robotics problems, the control of robots is based on the sensor data getting
from the environment. When the high dimensional data provided by sensors(e.g.camera),
the robot objective can always be expressed in a low-dimensional space as the state
of the system, which filtered much inessential original data and only keeps substan-
tial information. Instead of directly using original data, learning from low dimensional
representations, the tasks would be solved more efficiently [12]. State representa-
tion learning(SRL) is a particular case for feature learning with low dimension. The
objective of SRL is to transform original observations into a state set remaining the
most representative features for policy learning, which is based on time steps, ac-
tions, and optionally rewards [1].

Figure 2.2: General model : circle are observable and square are the latent state
variables [1]

The SRL formalism is based on the one for reinforcement learning introduced
in [3]. The general model of SRL is illustrated in Figure 2.2. The environment is
defined as E and actions taken at time step t are defined as at ∈ A, where A
is the action space. The arrow from s̃t to s̃t1 in Figure 2.2 reflects the transition
of the true state after the agent takes the action. The true state is denoted as S̃ .
ot ∈ O represents the observation of the environment E that the agent receives from
sensors, where Q is the observation space. Optionally, the reward given at s̃t to the
agent is denoted as rt and this is present as one of the goal of SRL. SRL aims to
learn a mapping φ of the observation to the current state st = φ(ot), where φ(ot)

also includes action at and rewards rt as parameters.
Generally applied approaches of SRL such as auto-encoder, forward model and

inverse model are introduced in following( [1]) based on the notations introduced
above. Reconstruction the observation is one of the SRL strategies for learning the
mapping function φ with a encoder and minimizing the reconstruction error between
the original observation and the reconstructed observation with a decoder φ−1. The
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state st and reconstructed observation are written as:

st = φ(ot; θφ) (2.11)

ôt = φ−1(st; θφ−1) (2.12)

Here ôt is the reconstructed observation. θφ and θφ−1 are the parameters of encoder
and decoder respectively. As shown in Figure 2.3, the difference between ot and ôt

is calculated as the reconstruction error.

Figure 2.3: Auto-Encoder: observation reconstruction [1]

Learning a forward model, shown in Figure 2.4, also helps to learn state rep-
resentations by encoding the substantial information to predict the next state. The
next state st+1 is predicted from st and at or ot. In order to learn the mapping φ

from observation ot to the state st, the prediction process is encoding from ot to st

and then transition from st and action at to the predicted state ŝt+1. Then the error
between the predicted state ŝt+1 and the actual next state st+1 at t+ 1 are computed
to learn for the model. After that the error is back-propagated from state ŝt+1 to state
st and back to observation ot.

ŝt+1 = f (st, at; θ f wd) (2.13)

Figure 2.4: Forward Model: predicting the next state [1]
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To predict action at from states st and st+1 or observations ot and ot+1, an in-
verse model is applied in SRL. To learn the mapping φ from observation ot to state
st, the framework firstly projecting ot and ot1 onto st and st+1 respectively. Then it
predicts the action ât based on the transition from st to st+1. The error is calculated
between the predicted action ât and the true action at for the prediction and then
back-propagated to the encoding model.

ât = g(st, st+1; θinv) (2.14)

Figure 2.5: Inverse Model: predicting the action [1]

2.2.1 Observation Compression for Robot Navigation

In the robot navigation cases, the more complex the environment is, the higher di-
mensionality of the observation and action is generated. So it will be hard to learn
the state representation, as only the substantial information and smaller dimension
of the state space we needed. To solve this problem, solutions for compressing state
and action spaces are discussed in previous work:

Methods used in [13] [7] applied auto-encoder to reduce state space, which will
be discussed in details in Section 2.2.2. The method compressed the state repre-
sentation using neural networks to extract the important features from original input
data through the hidden layer of the auto-encoder. Kimura et al. [14] proposed a
method to combine the auto-encoder with Q-network: training a network by an auto-
encoder; deleting the decoder layers, and adds a fully-connected layer on the top of
encoder layers as an input to DQN; training policies by the DQN algorithm initialized
by the pre-trained network parameters.

The curiosity-driven method proposed in [15] created an inverse model to extract
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features that impacted by action and used a forward model to predict the next state
based on the extracted features. This feature space can be learned by training a
deep neural network with two sub-modules: the first one encodes the raw state (st)
into a feature vector Φ(st); the second one takes the feature encoding Φ(st), Φ(st+1)

of two consequent states as inputs and predicts the action (at) taken by the agent to
move from state st to st+1.

The Value Prediction Network(VPN) applied by Oh et al. in [16] combined model-
based RL and model-free RL in a unified framework. The encoding module maps
the observation to the abstract state using neural networks(e.g., CNN for visual ob-
servations). Thus, an abstract-state representation will be learned by the network.

2.2.2 Auto-Encoder

Auto-encoder is widely used to learn state representation for data compression
implemented by a multi-layer neural network. It uses the backpropagation algo-
rithm to make the target value equals the input value. Given a data sample, auto-
encoder aims at extracting features and generating low-dimensional data as a self-
supervised model. In the robot navigation case, as mentioned in Section 2.2.1, the
auto-encoder is applied to compress the state space got from observation and build
a simpler representation of the states to improve the training efficiency.

Figure 2.6: The structure of auto-encoder

Auto-encoder has three components as shown in Figure 2.6: input layer, hidden
layer created by encoder block, output layer created by decoder block. The hid-
den layer contains lower-dimensional representing features of input data and output
layer reconstructs data from the vector from hidden layer. The encoder function and
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decoder function are defined as φ and ψ respectively:

φ : X → F ,
ψ : F → X ,
φ, ψ = argminφ,ψ ‖X− (φoψ)X‖2 ,

(2.15)

where x ∈ Rd = X is the given inputs.
In the simplest case with only one hidden layer, the encoder function maps the

input X to the latent space h ∈ Rp = F :

h = σ(Wx + b), (2.16)

Here σ is activation function that always uses non-linear function such as ReLU(Rectified
Linear Unit) and sigmoid. W is a weight matrix and b is a bias vector, which are up-
dated every iteration through back-propagation during training.

Similarly, the decoder function maps the latent space F to the output as a recon-
struction x′, which has the same shape as the input x:

x′ = σ′
(
W′h + b′

)
. (2.17)

To minimise the errors between the original input data and the reconstruction data,
loss function is used to training the neural network in back-propagation process:

L
(
x, x′

)
=
∥∥x− x′

∥∥2
=
∥∥x− σ′

(
W′(σ(Wx + b)) + b′

)∥∥2 . (2.18)

After being compressed and encoded, the high-dimensional original data is repre-
sented by a low-dimensional vector, The latent space F contains the typical features
of the original data and has lower dimensionality than the input space X. So the en-
coder block is useful for data compression.



Chapter 3

Robot Navigation Based on Deep
Reinforcement Learning

This chapter first discusses the methods applied in robot navigation based on Deep
Reinforcement Learning. Then Section 3.2 introduced a specific approach proposed
by a previous paper [2], which applied Double Q-Network(DDQN) to dynamic path
planning in an unknown environment.

3.1 Robot Navigation

The methods proposed in previous work [17] are categorized into two types, based
on the global environment and local environment information. In the first category,
the methods use a priori information to reconstruct the environment and try to find
the most optimal path [18] [19]. On the other side, the local navigation method uses
local environment data detected by sensors to plan actions for robots. This kind
of method is able to achieve real-time path planning [20] and is applied in dynamic
environment. Local learning-based navigation algorithms include Deep Learning
(DL) and Deep Reinforcement Learning (DRL) [21]. In this paper, we mainly discuss
methods based on Deep Reinforcement Learning.

DRL learns navigation policies by observation collected from interactions be-
tween the agent and the environment. For example, Oh et al. [16] proposed a value
prediction network(VPN) which combines model-based RL and model-free RL in a
unified framework. It learned to predict values via Q-learning and rewards via super-
vised learning, then implemented exploration in a 2D stochastic static environment.
Zhelo et al. [22] proposed curiosity-driven exploration strategies to argue robots’
abilities to explore complex unknown environments. However, these works mainly
focus on navigation in static environments, which are unpractical for most realis-
tic applications since various kinds of moving objects are required to be taken into

14
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consideration.
To navigate in a dynamic environment, Lei et al. [2] applied DDQN algorithm

to enhances the ability of the dynamic obstacle avoidance and local planning of
the agents in the environment. Bae et al. [23] combined the RL algorithm with
the path planning algorithm of the mobile robot to compensate for the demerits of
conventional methods by learning the situation where each robot has mutual influ-
ence. Zeng et al. [21] proposed a Memory and Knowledge-based Asynchronous
Advantage Actor-Critic approach, which improved A3C algorithm by using memory
mechanism, domain knowledge, and transfer learning. Yen et al. [24] proposed
three methods: forgetting Q-learning, feature-based Q-learning, and hierarchical Q-
learning. They used forgetting Q-learning to improve performance in a dynamic en-
vironment by reserving the navigation paths. Feature based RL is accomplished by
using a feature identification method to process state inputs. Hierarchical Q-learning
is proposed to lead towards both goals of navigation in a dynamic environment and
knowledge transference among multiple agents.

In the navigation tasks, the reward sparsity problem will result in slow conver-
gence or divergence of the algorithm. Several methods are put forward to solve the
reward sparsity problem. Deepak Pathak et al. [15] applied Intrinsic Curiosity Mod-
ule(ICM) to the navigation. This module makes the agent explore the environment
better through the additional reward generated by ICM. In sparse reward tasks, it
is low efficient for the agent to explore the environment. Then ICM is designed to
evaluate the familiarity of the environment. This is based on the current state and
the action to predict the next state, and then calculate the deviation from the actual
state. This familiarity is the extra reward, which is called curiosity. Mirowski et al. [25]
implemented navigation search is based on A3C with visual information. It adds two
auxiliary training tasks in addition to the convolutional neural network(CNN) with a
stacked LSTM layer. One is the depth prediction of each step that aimed to encour-
age learning of obstacle avoidance. Another one is loop closure prediction to detect
whether the local position is already visited in a local trajectory. The determination
of whether the robot has passed through the same location is used to train the CNN
network based on the data in the simulation environment. Further, an output is in-
troduced into the well-trained CNN network to output the position information, and
the position of the robot will be quite accurate after training for a period of time.

3.2 Path Planning with Double Q-Learning Network

As mentioned in Section 3.1, Lei et al. [2] proposed a method based on DDQN (in-
troduced in Appendix A in details) for path planning in dynamic environment with
random target and moving obstacles. Based on DQN, DDQN produces more ac-



16 CHAPTER 3. ROBOT NAVIGATION BASED ON DEEP REINFORCEMENT LEARNING

curate value estimates [5] [26], which reduces over-estimations by evaluating the
greedy policy with online network and estimate values with the target network. Lei
et al. achieved local path planning with DDQN using Lidar sensors and designed
reward function according to distance from the target point.

3.2.1 Path planing with DDQN

In the local path planning implemented by Lei et al. [2], the input data is the in-
formation getting from lidar sensors, which consists of angles in 360 degrees and
distances to obstacles within a circle, and the output is the chosen action.

Considering the input of the network is large and will result in expensive compu-
tation cost, a convolutional neural network(CNN) is used in DDQN to extract features
and reduce the dimensions of input. As the lidar data reflects the position of obsta-
cles and the range of free zone, CNN can reduce the network parameters efficiently
in a dynamic environment.

The reward function is designed to be related to the positions of target point and
obstacles. If the position of the agent is equal to the target’s, which means the
agent reaches the target, it will gain a reward of 1. If the position of the agent is
equal to the obstacle’s, which means the agent crashes to an obstacle, it will get a
penalty of -1. In other cases, the agent gets a penalty of -0.01. The agent will plan a
path avoiding the obstacles and reaching the target by trial-and-error learning. The
reward function is designed as:

r =



1(p(x′, y′) = g(x, y))

−0.01

(p(x′, y′) 6= g(x, y))

(p(x′, y′) 6= o(x, y))


−1(p(x′, y′) = o(x, y))

(3.1)

where p(x′, y′) is the current position, g(x, y) and o(x, y) present target point and
obstacle position respectively.

To improve the sample space and avoid the main states distributed in free space,
the radius L from the initial position to the target point is designed to be increased
gradually from a small value. The probability that the agent reaching the targets
will increase at the beginning stage and a positive incentive in the sample space is
ensured because the agent is close to the target point. The radius L increases with
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the neural network being updated gradually.

L =


Lmin (n ≤ N1)

Lmin +
√

(n−N1)
m (N1 < n < N2)

Lmax (n ≥ N2)

(3.2)

where Lmin and Lmax are the initial and maximum value of radius L respectively;
N1 and N2 are the thresholds of the iteration steps and they are depended on the
training parameters; n is the current iteration step and m is the batch size.

3.2.2 Results of Path Planning Simulation

In the experiments, Lei et al. [2] trained the proposed DDQN network in a dynamic
environment built by the Pygame module. The environment includes static walls and
dynamic obstacles moving in some fixed areas. To verify the DDQN approach, we
reproduce the method introduced in [2] and get the results in Figure 3.1 and Figure
3.2 after training 5000 epochs. Figure 3.1a and 3.1b show the loss function values
of both estimation and target Q-network decrease continuously and convergence
to less than 1 finally. Figure 3.2 presents the curve of average cumulative reward.
The reward value increases gradually finally reached a stable stage. This result
means the agents achieved to learn the environment and reach the target point after
training. As it is noticed in Figure 3.1a and Figure 3.1b, a high peak of loss value
and a low peak of reward value appear at about the first 1000 epochs and then
it increases. This is because that when the agent exploring the environment at the
initial stage of the training process, new batches of the information are received from
the environment and the policy is always updated based on the new information.

The application of the DDQN algorithm in the path planning task obtained a sat-
isfying result, which is capable and flexible in a dynamic unknown environment.
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(a) Training curve of the loss function of estima-
tion Q-network

(b) Training curve of the loss function of target Q-
network

Figure 3.1: Simulation Results

Figure 3.2: Average Cumulative Reward



Chapter 4

Methodology

In this chapter, we present the architecture of the DQN we use in this project and
discuss the answers to the research questions based on the current method. Ap-
proaches are elaborated to answer the research questions formulated in Section
1.2. The experiments designed according to these approaches are described in the
next chapter.

4.1 The Neural Network in DQN

In this project, we achieve our navigation goal with DQN that introduced in Section
2.1.2. The architecture of the neural network in DQN is shown in Figure 4.1.

Figure 4.1: The neural network architecture in DQN

The input layer is a one-dimensional state vector. The content of the state vec-
tor varies from different experiments for different research goals. In the preliminary
stage and reward function design in Section 4.2, We use 16 laser sensors on the
robot to detect the information of the environment over 360 degrees. In the observa-
tion compression cases in Section 4.3, we use a camera to get RGB and grayscale
images as observations and the input to DQN is the encoded latent state space.

19
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Also, some auxiliary states such as the position of the robot, the obstacles and the
target will be taken into account to help to learn more information from the envi-
ronment. The size of the state vector will be mentioned in the description of every
experiment in Chapter 5.

Since the input of DQN is a low-dimensional state vector, we only use three full-
connected(dense) layers in the neural network. The first two full-connected layers
contain 128 neurons in each layer and the rectified linear units(ReLU) is the activa-
tion of the dense layers. Then the next layer is a full-connected layer with a size of
3, which is the output layer. The output of the last full-connected layer is the action
space. This neural network can extract the features from the input state vector and
learn the best route in the dynamic environment efficiently.

4.2 RQ1:Reward Function Design

The goal of RL algorithm is to maximize the long-term accumulated reward so that
an optimal policy will be learned for the agent to reach the target. Given the state
of the environment and the action taken by the agent, the reward function returns
a value reflecting whether the action is good or bad for reaching the target. Thus,
reward shaping is an important aspect and it is challenging to design a good re-
ward function. In the navigation problems, the reward function is formulated as a
bonus given when the agent reaches the target and penalty given when a collision
happens. However, if the state-action space is too large, the possibility of find-
ing a reward will decrease so that it will not learn an optimal policy. Therefore, a
more sophisticated reward function is needed in navigation problems, such as take
the distance between the agent and the target into account, to make the algorithm
learning more efficiently. Several concepts of reward shaping are discussed in this
section and these methods will be evaluated in the experiments described in the
next chapter.

Exponential Euclidean Distance In this case, the agent will receive a penalty
according to the exponent of Euclidean distance between the current position and
the target position. The longer distance of the current position to the target point,
the fewer reward is given. The reward is formulated as given:

r = 1− eγd (4.1)

where d is the Euclidean distance between the agent and the target and γ is a
parameter of the decay rate of the exponent that can be tuned.
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In addition to the dense reward described above as the distance-based reward,
the sparse reward is defined when the agent collides with obstacles or reaches the
target: if the agent collides with an obstacle or the wall, the penalty is -20; if the
agent reaches the target position, it gets +20. This sparse reward is also defined
in the same way in the following reward functions. So the distance-based reward
function is designed as:

R(s, a, s′) =


20, if reach the target
1− eγd, otherwise
−20, if collide the obstacle

(4.2)

In environments with dynamic obstacles, an additional reward function based
on the distance to the closest obstacle is added. It helps the agent with collision
avoidance. When the agent is moving inside a range around the obstacles, which
means the minimum distance from the obstacles is less than a pre-defined thresh-
old, the penalty value is computed as inversely proportional to the minimum distance
from the obstacles. The closer to the obstacle, the penalty is larger. The complete
distance-based reward function in this case is designed as:

R(s, a, s′) =


20, if reach the target
1− eγd1 + (−A)/d2, if d2 ≤ threshold
1− eγd1 , otherwise
−20, if collide the obstacle

(4.3)

A is the scaling factor. d1 is the distance to the target. d2 refers to the minimum
distance to the obstacles. The threshold is set that if the distance between the
agent and the nearest obstacle is less than it, the penalty related to the distance to
the obstacle is given(same in the following reward functions).

Orientation-based Reward As an auxiliary reward to the distance-based reward,
the orientation of the agent is taken into account. This kind of reward is used to
avoid the agent stay in a position escaping the penalty and find an optimal route
toward the target. The idea is that: reward is given when the agent takes the action
with direction toward the target position; when the direction of the action is opposite
to the target position, a penalty(negative reward) is given from the environment.
The azimuth is calculated from the coordinates of the agent and target. Then the
reward value is computed as the difference of the azimuths in the current state st

and former state st−1. By computing this difference, we can get the direction that the
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agent moving towards. The equation is defined as:

ro = arctan
yst − ytarget

xst − xtarget
− arctan

yst−1 − ytarget

xst−1 − xtarget
(4.4)

(xst , yst) and (xst−1 , yst−1) are the positions of the robot in the state at t and t− 1
relatively. (xtarget, ytarget) is the target position.

The final reward is the sum of the distance-based reward and orientation-based
reward with scaling factors that are adjusted based on the learning efficiency. To
adapt to different environments, we designed two orientation-based reward func-
tions. In one case, the reward function given by Equation 4.5 is considered only in
case of the robot not being around the obstacle. In the other case, the reward func-
tion in Equation 4.6 considers the orientation-based value all the time. The reward
functions are defined as the following equations:

R(s, a, s′) =


20, if reach the target
1− e0.2∗d1 + (−0.5)/d2, if d2 ≤ threshold
1− e0.2∗d1 + ro, otherwise
−20, if collide the obstacle

(4.5)

R(s, a, s′) =


20, if reach the target
1− e0.2∗d1 + ro + (−0.5)/d2, if d2 ≤ threshold
1− e0.2∗d1 + ro, otherwise
−20, if collide the obstacle

(4.6)

d1 is the distance to the target and d2 is the distance to the closest obstacle. ro

is the orientation difference between the current and the former state.

Potential-based Reward The potential-based reward function defines a potential
value Φ(s) in each position of the environment, based on the distance between
the current state s and the target state s′ [27]. The potential-based reward value
of the current state is defined as F(s, a, s′), which is the difference of the potential
value of current state Φ(s′) and the value of former state Φ(s). In addition to the
potential-based reward, sparse reward is also taken into account as it in the case of
distance-based and orientation-based reward functions. The complete reward value
R′ equals to the sum of the accumulated potential-based reward value F and the
sparse reward value R:

R′ = R + F (4.7)

F(s, a, s′) = γΦ(s′)−Φ(s) (4.8)
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where γ is the discount rate. With this discount rate, the agent will get penalty even
though it stays in the same position without increasing the distance to the target. So
the agent will be encouraged to explore the path to the target.

The positions besides target and obstacles are set as a value in a range related
to the distance to the target. So the reward value will increase as the agent moving
towards the target or away from the obstacles. In these cases, an inverse propor-
tional value of the distance is calculated since we expect the potential value to be
larger when the agent getting closer to the target, and smaller when the distance to
the target getting larger. The value of each position can be adjusted according to
the learning efficiency of the experiments. The reward function is defined as:

R(s, a, s′) =


20, if reach the target
γ(A/d1(s′) + B/d2(s′))− (A/d1(s) + B/d2(s)), if d2 ≤ threshold
γ(A/d1(s′)− A/d1(s), otherwise
−20, if collide the obstacle

(4.9)

A and B are the scaling factors. A is a positive value as reward is gained when
the agent moving towards the target. B is a negative value as penalty is given when
the agent moving closer to the obstacles. d1 and d2 are the euclidean distances to
the target and the closest obstacle relatively.

4.3 RQ2:State Space Compression with Auto-encoder

To sense the complicated and dynamic environment in the navigation problem, an
RGB camera is added to achieve detailed information from the environment rather
than using only laser sensors. As it is described in Section 2.2.1, the problem
brought by a high-dimensional observation such as camera is that the state space
input to the neural network will be large and lead to a high computational cost for
training. To compress the state space, we apply SRL to map the observation to the
lower-dimensional state space. In this case, an auto-encoder mentioned in Section
2.2.2 is applied to learn the main features of the camera observation and the state
vector of the compressed state representation is used as the input for DQN. The
framework of deep auto-encoder and Q-network we use [14] is shown in Figure 4.2.
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Figure 4.2: Framework for Deep Auto-Encoder and Q-network

The architecture of the auto-encoder with single frame of observation

With the RGB-camera input data, we use a convolutional auto-encoder to compress
the observation states and extract the main features of the observation. As shown in
Figure 4.3, the architecture of the auto-encoder consists of two convolutional layers
and two full-connected layers in the encoder and decoder part relatively. The input
layer is a three-dimensional matrix with the size of 32×32×3, where the first two
dimensions are the size of the input image and the third dimension represents three
channels of the RGB image. The first convolutional layer in the encoder part is
designed with the receptive field of 3×3, the stride is 1×1 and the number of the
feature maps is set to be 32. Then the output of this layer is 3×3×32. The kernel
size of the second convolutional layer is still 3×3 and the number of filters is 64,
which means the output of this layer is 3×3×64. Via the flatten layer the three-
dimensional output is transferred to a one-dimensional vector in size of 576 and
connected to a dense layer with 64 neurons. Then the output is connected to the
next dense layer with 10 neurons. The latent state space is the output of the last
dense layer in size of 10 and is input to the DQN as a lower-dimensional state vector.

After the encoder part, the decoder part is started with a dense layer in size of
64 connected from the latent state vector. Then the output is connected to the next
dense layer and reshaped into 32×32×64, which represents image size×feature
maps number. Then it is input to a convolutional layer with 32 filters and kernel size
of 3×3, so the size of the output of this layer is 3×3×32. The kernel size of the
second convolutional layer is 3×3 and the number of the characteristic plane is 3,
which is the number of RGB image channels. After a flatten layer, the output of the
decoder is the reconstruction image in the size of 32×32×3.
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Figure 4.3: Architecture of Deep Auto-Encoder with Single Frame Input

We use the ReLU as the activation function. The loss function for the auto-
encoder calculating the loss value between the observation and the decoded image
is defined as:

Reconstruction loss =
N

∑
1
( ˆobsi − obsi)

2/N, (4.10)

where N is the number of data in the training batch; obsi is the ith camera raw input
and ˆobsi = D(E(obsi)) is the reconstruction of the ithcamera input.

The architecture of the auto-encoder with sequence frames of observation

In the dynamic environment with randomly moving targets and obstacles, the auto-
encoder with single frame of observation struggles to extract features of the motion
pattern of these moving objects. To observe the velocity and route of the moving
objects and choose a proper action for the next state more precisely, we input a
sequence of observations to the auto-encoder in this complex case. Inspired by
the image pre-processing method in Atari games [28] [29], we input 4 consequent
frames of the observation images to the auto-encoder and encode the features of
this sequence of observations in the latent state space. As the limitation of the sys-
tem memory, we convert the RGB images to grayscale images as the observation.
At the beginning of the training episode, we create 4 copies of the first frame of the
observation and create a vector by concatenating these 4 images together. So we
get a one-dimensional observation vector in size of 32×32×4. Then we add every
next observation into the observation vector and input the last 4 frames of observa-
tions to the auto-encoder. So we reconstruct 4 frames every time and compute the
loss value between the observation and reconstruction states of these 4 frames of
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images.
The architecture of the auto-encoder with the sequence of observations is shown

in Figure 4.4. Same as the single observation one, the auto-encoder consists of two
convolutional layers and two full-connected layers in the encoder and decoder part
relatively. The input layer is a three-dimensional matrix with the size of 32×32×4,
where the third dimension represents 4 frames the images. The kernel size and
the stride are the same as the case with single observation input. To extract more
features as the observation images increases, we double the filter number of the
convolutional layers. So the filter number of the first convolutional layer in the en-
coder part is 64 and the second convolution layer contains 128 filters. The output
of the convolutional layers is connected to the first dense layer with the same size
as the former case. Then the output is connected to the next dense layer with 15
neurons, which is increased to extract more features for the latent state space.

The decoder part is started with two dense layers connected from the latent state
vector with the same structure as the one with single observation. Then it is input
to a convolutional layer with 64 filters and the size of the output is 3×3×64. In the
second convolutional layer, the number of feature map is 4, which is the number of
observation frames. The output of the decoder is 4 frames of reconstruction images
in the size of 32×32.

Figure 4.4: Architecture of Deep Auto-Encoder with Multi-frames Input

The training process with the auto-encoder

In our project, the training process with observation compression is presented in Al-
gorithm 2. At the beginning stage of the training process, the actions are chosen by
a random policy instead of using an ε-greedy policy based on Q-values. Then the
Q-network is updated after the first time the state representation updates, which is
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after a fixed number of episodes. The number of episodes varies from the complex-
ity of environments in the experiments. In a more complicated environment, we set
more episodes between the state representation updates because more samples of
observations are needed to extract the main features more precisely. Updating the
Q-network and state representation with different frequencies is because the sudden
change of the compressed state representation will impact the Q-value distribution
and change the policy, which destabilizes the learning [30]. So an alternative updat-
ing of the network parameters [31] is applied to reduce this impact.

Algorithm 2 Training process with auto-encoder

Require: Initialize Q network, auto-encoder, ∀s ∈ S, a ∈ A(s), first SRL episode e,
SRL times n.

1: if iteration < e:
2: for each iteration do
3: Initialize S
4: for each environment step do
5: Observe state st and input it to auto-encoder, get the latent space state.
6: Input the latent space state as compressed observation, observe reward rt,

and select at ∈ A randomly.
7: Execute at and observe next state st+1 and reward rt = R(at, st)
8: Update Q network.
9: Update states: S← S′

10: if iteration == n ∗ e and SRL time <= n:
11: for each SRL iteration do:
12: Training every batch of the observations in the auto-encoder, output the

encoded states.
13: Update state representation
14: else:
15: for each iteration do
16: Initialize S
17: for each environment step do
18: Observe state st and input it to auto-encoder, get the latent space state.
19: Input the latent space state as compressed observation, observe reward rt,

and select at using policy derived from Q network.
20: Execute at and observe next state st+1 and reward rt = R(at, st)
21: Update Q network.
22: Update states: S← S′



Chapter 5

Experimental Design

This chapter shows the design of the simulation experiments to verify the perfor-
mance of the proposed approaches in different environments. We start by setting up
the simulation platform in Section 5.1. Afterwards in Section 5.2, we describe differ-
ent environments used in the experiments and tune the neural network parameters.
In the first set of experiments in Section 5.2.1, we aim to validate the effectiveness
of the DQN algorithm proposed in [2] with some preliminary experiments. Then in
Section 5.2.2 and 5.2.3, we introduce experiments that setting up to answer the re-
search questions in Section 1.2. Then in Section 5.3, we make a brief introduction
to test experiments.

5.1 Experimental Setup

The objective of the experiments is to find an optimal route from the original position
of the robot to the target with the proposed DQN approach. We use the robot sim-
ulator V-REP [32]to build the 3D virtual environment. To interact with the virtual en-
vironment, PyRep [33] is used as a toolkit built on top of V-REP. As shown in Figure
5.1, the simulated environment includes cuboid objects as the obstacles and a tar-
get for the robot to reach, presented as red circles. In the following experiments, the
obstacles are rendered in yellow and blue cuboid objects presenting dynamic and
static ones respectively. The pioneer robot is used as an agent and equipped with
laser sensors to detect environmental information. The sensors have a 360-degree
detection angle range, and 16-dimensional local obstacle distance information can
be obtained. The maximum detection distance range of the sensor is 5m. In the
experiments in Section 5.2.3, an RGB-camera is added to get an observation image
of the environment.

28
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Figure 5.1: Dynamic Environment with one moving obstacle

The DQN network is initialized with a neural network containing three dense
layers with 128 hidden neurons that are activated by the ReLU activation function as
shown in Figure 4.1. The network receives a state vector containing the information
of the environment as the input. The content of the state vector varies in different
cases and will be described in the following experiments. The outputs are the predict
Q-value for actions in three directions, forward, left, right, with a fixed velocity.

The choice of the action is decided according to the maximum value of all the Q-
values for a specific state. To avoid getting stuck at local optima, we apply a decaying
ε-greedy policy to choose an action at a specific possibility. A discount factor of
γ = 0.97 is used and the batch size is 128. The learning rate τ varies according
to the complexity of the environment. The more complex the environment, the less
value the learning rate. The training starts with ε as 1 to choose an action randomly
and then the ε value decays from 0.8 to 0.05 in a fixed number of episodes(depends
on the complexity of the environment). Since more training episodes are needed
in a complex environment, more episodes are needed for ε decaying. This ε-decay
policy aims to choose the action more depending on the learning policy and reflect
the improvement of the policy for each time.

Each episode will come to termination when the robot encounters obstacles,
reaches the target position or achieves a predefined number of moving steps. We
set 200 steps as the max step number of each episode, aiming to train the robot to
find an optimal route with limited steps.

All the parameters are shown in Table 5.1:
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Parameters Value Attribute
Exploration factor(ε) 0.8→ 0.05 Decreases with episodes
Discount factor(γ) 0.97 Constant

Learning rate(τ) 0.003→ 0.0003 Decreases with the complexity of
the environment increasing

Batch size 128 Constant
Maximum steps per episode 200 Constant

Table 5.1: Experiments parameters

5.2 Training Experiments

In every experiment, we have two phases of the training phase and the testing
phase. In the training phase, we train the robot with the approaches described in this
Section. When the accumulated reward gained by the robot reaches a stable level
of positive value, an optimal policy is learned and the training process is successful.
After this stage, we will turn to the testing phase to validate the learned policy. The
testing phase will be introduced in Section 5.3.

5.2.1 Preliminary Experiments

To validate the effectiveness of the proposed DQN algorithm in implementing the
navigation task, a set of preliminary experiments are done with different dynamic
environments. We introduce three kinds of environment: moving target and static
obstacles, moving obstacles and static targets, moving target and moving obstacles.

In the experiments with dynamic targets and static obstacles environment, as
shown in Figure 5.2, three targets are set. The original position of the target is
chosen randomly at the beginning of every episode. Taking the original position as
the center, the target moves back and forward along the red arrows in a distance
range of 3 meters with a velocity of 0.05m/dt. The training episode is 2000 and
the learning rate is set as 0.003. The ε value decayed to 0.05 from 0.8 in 1000
episodes. The state vector that input to DQN we use in this experiment contains the
laser measurements(16) and the position states(coordinates of x and y) of the robot
and the target, so the size of state vector is 20.
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Figure 5.2: Dynamic Environment with moving targets

In the experiments with static targets and dynamic obstacles environment, the
moving route of the obstacles are shown in Figure 5.3. The obstacles moving along
the clockwise route as presented in blue arrows. The speed of these obstacles
are random in range of 0.05m/dt ∼ 0.50m/dt. The training episode is 4000 and
the learning rate is set as 0.001. The ε value decayed to 0.05 from 0.8 in 2000
episodes. The state vector that input to DQN we use in this experiment contains the
laser measurements(16) and the position states(coordinates of x and y) of the robot
and the obstacles, so the size of state vector is 24.

Figure 5.3: Dynamic Environment with moving obstacles

In the experiments with dynamic targets and obstacles environment, we test with
three environments in Figure 5.4. Figure 5.4a shows that targets are moving inside
the red area with random motion and obstacles moving inside the blue area ran-
domly. The red area and blue area do not overlap with each other. At the beginning
of every episode, one of the original positions of the target, rendered in red circles,
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will be chosen and the target will move inside the relative area. In the environment
shown in Figure 5.4b, it is almost the same as 5.4a but only includes a third mov-
ing obstacle with a regular moving motion following the blue arrows. The moving
area of this regular moving obstacle has an overlapping area with one of the tar-
get motion area. In the third environment(Figure 5.4c), we try with the scene that
the motion areas of targets and randomly moving obstacles partially overlap each
other. In these environments, the speed of the robot varies randomly from 0.05m/dt
to 0.50m/dt in every step. The training episode is 4000 and the learning rate is set
as 0.0005. The ε value decayed to 0.05 from 0.8 in 2000 episodes. The state vector
that input to DQN we use in these experiments contains the laser measurements
and the position states of the robot and the obstacles, the size of state vector is 24.

(a) Without overlapping area (b) Overlapping regular moving
area

(c) Overlapping random mov-
ing area

Figure 5.4: Dynamic Environment with moving obstacles and targets

The results of these preliminary experiments are presented and discussed in
Section 6.1.

5.2.2 Reward Functions

To answer the first research question, we come up with three kinds of reward func-
tions: distance-based, orientation-based, and potential-based as introduced in Sec-
tion 4.2. In this section, experiments are set to do a comparison among these dif-
ferent reward functions and make a conclusion on the most optimal one for this nav-
igation task. The reward function is designed to avoid the obstacles and approach
the target point with the shortest movement path.

The first experiment uses the distance-based reward function containing the ex-
ponential Euclidean distance from the robot position to the target position. To find
an optimal discount factor γ in Equation 4.1, experiments in the static environment
with different γ value are done. Apart from that, the distance to the closest obsta-
cle is considered as an inverse proportional value for obstacle avoidance(Equation
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4.3). The second one adds the orientation-based reward(Equation 4.5 and 4.6) that
depends on the difference of the azimuths of the robot to the target in two con-
secutive states. In the third experiment, we apply the potential-based reward that
takes the inverse proportional value of distances to the target and obstacles into
account(Equation 4.9). We test with different γ value in Equation 4.9 and find an
optimal one with experiments in the static target and dynamic obstacles environ-
ment(Figure 5.3). We use the parameters shown in Table 5.1 in these experiments.
The state vector that input to DQN we use in these experiments contains the laser
measurements and the position states of the robot and the obstacles, the size of
state vector is 24.

At last, we compare the performance of these reward function in the same envi-
ronment. In this way, we can answer the first research question with the comparison
results discussed in Section 6.2.

5.2.3 Observation Compression

In the experiments to answer the second research question focusing on the ob-
servation compression problem, we add an RGB camera to obtain the information
from the environment and apply the auto-encoder to extract the main features of
the environment. After the auto-encoder generates the latent space representation,
the compressed state vector is input to the DQN network and trained to update the
Q-values. The reward function we use in this case is the optimal reward function
chosen in Section 6.2. The loss function we use in Q-network is Equation A.2. The
reconstruction loss in auto-encoder is computed by Equation 4.10.

We set up experiments in three different dynamic environments. The first one
contains one single static target with regularly moving obstacles as shown in Figure
5.5a. The motions of obstacles are marked with blue arrows. The second environ-
ment includes multiple static targets with randomly moving obstacles as shown in
Figure 5.5b. The motion of regularly moving obstacle is marked with blue arrows
and moving areas of randomly moving obstacles are marked with blue rectangles.
At the beginning of every episode, the target is randomly chosen in a set of pre-
defined target points. We de-visualize all the target points other than the chosen
one in the observation to avoid making the robot confused. The third environment
has multiple moving targets with randomly moving obstacles in Figure 5.5c. Same
as the second environment, the motion of moving obstacles are marked with blue
arrows and rectangles. The targets are randomly moving in the area marked with
red rectangles. The targets start with two different original positions. One is chosen
randomly at the beginning of every episode and the other one is de-visualized. The
speed of moving objects is in range of (0.05m/dt, 0.5m/dt).
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(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

Figure 5.5: The environment for visual observation

The camera is set on top of the robot and observes only the part of the environ-
ment in front of it. The observation changes when the robot takes action. So the
observation reflects the position of the robot at the corresponding state. For easier
detection of the target position, we mark it with a red circle(s) at the chosen posi-
tion(s) in the environment, so the camera can observe it. The colors of the walls in
the environment are set to be different to tell apart from different directions.

In the experiments with the first environment(in Figure 5.5a), only RGB-camera is
used to observe the environment and the latent space vector from the auto-encoder
is input to the Q-network. So the size of the state vector is the size of the latent state
space of 10. In the experiments with the second environment(in Figure 5.5b), the
laser measurements and some specific states are added because of the increased
complexity of the environment. The state vector that input to the Q-network con-
tains the latent space vector, 16 laser measurements, and some additional states
including positions of the robot and the three obstacles(we call these states ”addi-
tional states” in the following context). So the size of the state vector is 34. In the
experiments with the third environment(in Figure 5.5c), we apply the sequence of
observations in grayscale images for the auto-encoder as introduced in Section 4.3.
Only the representation states of the sequence of images are input to DQN. So the
size of the state vector is 15. Also, we compare the performances in this environ-
ment with the methods using laser measurement, single observation, and sequence
of observations.

The resolution of the RGB images from the environment is 640× 640 pixels. The
images are resized 32× 32 before inputting to the auto-encoder. The auto-encoder
updates every 400 episodes to collect sufficient samples for the SRL. After testing
with different updating times, the state representation will be updated 3 times in the
first two experiments to get an encoded state vector containing the main features
of the observation. In the third case, as the environment is more complicated, the
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update time is increased to 4.

As it is introduced in Section 4.3, an approach is applied with different training
frequencies between DQN and SRL to make a balance between the training stability
and efficiency. So the auto-encoder updates at the 400th, 800th, and the 1200th(and
1600th in the third environment) episode. When the camera collects information
for the SRL before the first update at the 400th episode, the agent chooses the
action randomly in this stage instead of applying the ε-decay policy. Then the auto-
encoder trains with these observations and inputs the compressed latent states of
the observations to the Q-network.

To guarantee the accuracy of the encoded states, we set the epoch of the SRL(iteration
time) as 20 in single observation cases and 40 in multi-observations cases after
tests. In every iteration, the training batch size of the observation in each training
epoch is 256. The training epoch in every iteration is 50 with single observation.
The number of training epoch is set to be 25 in the multi-observations case because
of the limitation of the system memory. The size of latent state space is 10 in single
observation cases and 15 in multi-observations cases since the features increased.

After the first update of the auto-encoder, the agent applies ε-decay policy to
choose the optimal action. The ε-decay policy is reducing gradually from 0.8 to
0.05 in 1200 episodes in the first two environments and 1600 episodes in the third
environment. This means the ε value decays to an invariant value of 0.05 after
training 1600 episodes in the first two environments and 2000 episodes in the third
environment.

The hyperparameters we use in this section are presented in Table 5.2 and 5.3.
Especially, we present the size of the state vector to DQN for every experiment in
Table 5.4.

To analyze the performance of the auto-encoder, the decoder will output recon-
struction figures after training every 100 episodes. Then we can compare the recon-
struction figure with the observation figure in the same state.

The results of these experiments are discussed in Section 6.3 and then we will
answer the second research question for state compression in Section 1.2.

Parameters Value Attribute
Exploration factor(ε) 0.8→ 0.05 Decreases in 1600 episodes
Discount factor(γ) 0.97 Constant
Learning rate(τ) 0.0003 Constant

Batch size in DQN 128 Constant
Maximum steps per episode 200 Constant

Table 5.2: Experiments parameters for DQN
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Parameters Value Attribute
Batch size in SRL 256 Constant

Image size 32×32× 3 With single observation
32×32 With sequence of observations

Latent state size 10 With single observation
15 With sequence of observations

Iteration times in SRL 20 With single observation
40 With sequence of observations

Batch number in each iteration 50 With single observation
25 With sequence of observations

Episodes between SRL 400 Constant
SRL times 3 With single observation

4 With sequence of observations

Table 5.3: Experiments parameters for SRL

Observation Size of state
vector Content

Experiment 1 RGB camera 10 encoded states of camera image

Experiment 2 RGB camera +
laser sensors 34

encoded states of camera image
+ laser measurements + position

states

Experiment 3 RGB camera 15 encoded states of camera
images

Table 5.4: State vector for DQN

5.3 Test experiments

In the testing phase after trained successfully with the reward value reaching a sta-
ble level, we test the learned policy with 100 episodes in the same environment.
The ε value is set to be 0, which means the robot will choose the next action only
depending on the learned Q value. The average steps that the robot takes in the
trajectory to the target and the success rate of the 100 episodes test are taken as
evaluation metrics.



Chapter 6

Results

In this chapter, the results of the experiments are presented and discussed to vali-
date the performance of the proposed method and answer the research questions.
The curve of average accumulated reward reflecting the learning efficiency and the
average loss function value reflecting learning accuracy are shown as results. Af-
ter training the network, a test is presented for the learned policy will run and the
trajectory of the agent.

To analyze the performance of the proposed approaches, the following metrics
are set as the main evaluation criteria:

(i) The final Q-value loss calculated from the loss function A.2 after the curve of
loss convergences successfully. This evaluates the accuracy that the network able
to predict the next state.

(ii) The accumulated reward value after the agent learned an optimal policy,
which means the stage after the average reward reaches a stable value.

(iii) The convergence speed presented by the training episodes number that re-
quired to convergence to a maximum level of accumulated reward.

(iv) The success rate in the testing phase which is computed when the robot
reaches the target in 100 testing episodes.

6.1 Results for Preliminary Experiments

In the preliminary experiments, our objective is to evaluate the performance of the
proposed DQN approach in dynamic environments described in Section 5.2.1. The
reward function we use in this set of experiments is the distance-based reward func-
tion formulated in Section 4.2. In the partial dynamic environments, we use the
reward function in Equation 4.2 that is only related to the Euclidean distance to
the targets. As the complexity increased, we use the reward function formulated in
Equation 4.3 that adds the distance to the closest obstacle in the environments with

37
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both targets and obstacles moving(in figure 5.4) to help the robot learning the policy.

Results With Moving Targets

In the experiment with moving targets in Figure 5.2, three different targets((-0.5,
3),(3, 3),(3,-0.5)) are set, and one is chosen randomly in every episode. As the
moving motion of the targets described in Section 5.2.1, the ranges of the target
position are: (-0.5, 3±0.5), (3, 3±0.5) or (3±0.5, -0.5). We use reward function 4.2
in this experiment since the obstacles are static.

Results in Figure 6.3 show that it takes about 800 episodes for the reward value
to reach a level and the robot can reach the target in over 95% episodes after that.
The Q-value loss increases to a peak value of 2.5 at the beginning of the training
and then convergences to around 0.5 finally.

Figure 6.2 presents the trajectories of the agent achieving different targets in the
testing phase. The target is marked with a red circle and obstacles are marked with
green squares. The blue lines are the route of the robot toward different targets. In
all the situations, the agent can find the shortest route to avoid moving obstacles
and reach the target position with a success rate of 100% in 100 testing episodes.

(a) Q-value loss (b) Accumulated reward

Figure 6.1: Results in dynamic environment with moving target
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(a) (-0.5,3) (b) (3,-0.5) (c) (3,3)

Figure 6.2: Test trajectory in the dynamic environment with multiple targets

Results With Moving Obstacles

In the experiment with moving obstacles(Figure 5.3), two different targets((3, 3),(3,1))
are set and one is chosen randomly in every episode. The speed of the moving ob-
stacle randomly changes in the range of 0.05m/dt∼0.50m/dt. In this experiment, we
use the reward function 4.3 that considers the moving obstacles.

Results in Figure 6.3 shows that it takes about 2000 episodes for the reward
value being stable, where is the exploration factor(ε) decaying to 0.05. After 2000
episodes, the robot will reach the target with a success rate of over 90%. The Q-
value loss increases at the beginning of training and reaches a peak value during
500 episodes. After that, the loss value decreases and convergences to less than 1
after 1000 episodes.

(a) Q-value loss (b) Accumulated reward

Figure 6.3: Results in dynamic environment with moving obstacles

Results With Moving Targets and Obstacles

In this experiment, we test in three scenes with different moving areas of the targets
and obstacles. We also use the reward function in Equation 4.3 in this case. In
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the environment without overlapping moving area of the targets and obstacles(in
Figure5.4a) together with the environment with the target moving area overlapping
the route of the regularly moving obstacle(in Figure5.4b), the robot will learn the
policy successfully after around 2000 episodes as the reward value shown in Figure
6.4b and 6.5b. Figure 6.4a and 6.5a present that the Q-value loss will convergence
as the episode increasing.

(a) Q-value loss (b) Accumulated reward

Figure 6.4: Results in dynamic environment without overlapping area

(a) Q-value loss (b) Accumulated reward

Figure 6.5: Results in dynamic environment with partial overlapping area

In the environment that the motion areas of the two randomly moving obstacles
partially overlap the target moving areas(in Figure 5.4c), the robot fails to learn the
policy and reach the target with a high success rate. As the results are shown
in Figure 6.6a, the loss value takes around 1000 episodes before decreasing and
finally convergences to a high level of over 1.5. As for the reward curve in Figure
6.6b, the oscillation of the reward value is larger than former experiments and it
increases with a low growth rate. After the training process is finished, the reward
value doesn’t reach a relatively stable level and the maximum value is lower than 0.
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This should due to the unpredictability of the targets’ and obstacles’ moving routes.
In this environment, there is some overlapping area that the target and obstacle can
both enter that area randomly. So the robot is not able to predict that if the target
is in the overlapping area, whether the obstacle would run into the area when the
robot reaching the target and collide with the obstacle. In this situation, the robot
will bypass the motion area of the obstacle and fails to explore a collision-free route.
Thus, the robot can only succeed to reach the target when the target is not in the
overlapping area and result in a low success rate.

(a) Q-value loss (b) Accumulated reward

Figure 6.6: Results in a dynamic environment with overlapping area

In these results of preliminary experiments, a common feature is that the Q-value
loss increases at the beginning of training episodes and decrease after reaching a
peak value. The reason for this is that at the starting stage, new batches of unknown
observations are obtained continuously and the Q-network is not trained enough to
predict all the possible states. Thus, the robot is still exploring the environment to
find an optimal route to the target and avoid the obstacles. As more information
from the environment is obtained, the network will predict the surrounding situation
more precisely and the robot will be more confident to explore the route. Another
feature is that the reward value has a large oscillation even though the robot has
learned the policy. This is due to the random positions of the targets and obstacles
in the dynamic environment, so the route and accumulated reward value vary from
every episode. Also at the final stage of the training process, some small increment
appears in the curve of the loss value when it converging(such as Figure 6.4a and
??). The reason is that the network can’t predict the motion of the randomly moving
targets and obstacles, so the oscillation in a reasonable range exists.

In the following experiments, we will find approaches to improve the learning
efficiency and accuracy by testing different reward functions and using the camera
to obtain the observation.
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6.2 Results for Different Reward Functions

In this section, we evaluate the performance of different reward functions and make
comparisons between these reward functions based on the same environment.

Distance-based reward

In the preliminary experiments, we use the distance-based reward function intro-
duced in Section 4.2. For the equation of exponential Euclidean distance(Equation
4.1), the parameter γ is tuned according to the longest distance from the target posi-
tion to the starting position, which avoids high penalty that results in passive impacts
on learning the policy. We test with different values of the parameter γ in the static
environment and get the performance in Figure 6.7. We can observe that the accu-
mulated reward value(Figure 6.7b) is higher when γ = 0.2 or 0.3 than the case we
use γ = 0.1. But the case with γ = 0.2 convergences to a lower Q-value loss than the
cases with either γ is 0.1 or 0.3 in Figure 6.7a. So when the γ value is 0.2, we can
get a balanced relation between the penalty in every state and the distance to the
target. This means when the robot doesn’t reach the goal, the penalty value in every
state will not too high to make the agent passive to find the target, or not too low to
encourage the agent staying at the same state. So in the all experiments using the
reward functions including Equation 4.1 we define the parameter γ equaling to 0.2,
such as Equation 4.3, Equation 4.5 and Equation 4.6.

(a) Q-value loss (b) Accumulated reward

Figure 6.7: Performances using different parameter in the distance-based reward
function
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Orientation-based reward

To explore the impact of the direction taken by the robot in every step, we add the
orientation-based reward based on the distance-based reward function. In a simpler
environment with a static target and moving obstacle(Figure 5.3), we use the reward
function 4.5 with orientation-based reward only in case of the robot not being around
the obstacle. This is considering that the obstacle will take avoidance as a prior
choice when it moving close to obstacles. To compare with, we also test with the
reward function 4.6 that the orientation-based value is considered all the time.

We compare these two reward functions with distance-based reward functions
in two different environments. In the static target and moving obstacle environ-
ment(Figure 5.3), we only test the Function 4.5 with partial applied orientation-based
reward. As shown in Figure 6.8, these two reward functions can hardly tell a differ-
ence in the performance. This is due to that the correction of the orientation does
not help a lot in this complexity of the environment.

(a) Q-value loss (b) Accumulated reward

Figure 6.8: Comparison between reward functions in the dynamic environment in
Figure 5.3

Then we tested in a more complicated environment with randomly moving tar-
gets and obstacles in Figure 5.4b. We applied the Function 4.6 that considering
orientation-based reward all the time and compare the performance of these three
reward functions.

As shown in Figure 6.9, the difference between the three reward functions is
larger. Function 4.6 performs better with lower loss value and higher accumulated
reward. The learning efficiency of these three functions is similar to learning an
optimal policy at around 2500 episodes. After testing the learned policy with the
exploration factor ε = 0, the success rates of these reward functions are also similar
at around 94%. So the reward function 4.6 that combined distance-based reward
and orientation-based reward performs best in learning accuracy and exploring with
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an optimal route to the target.

(a) Q-value loss (b) Accumulated reward

Figure 6.9: Comparison between reward functions in the dynamic environment in
Figure 5.4b

Potential-based reward

In the experiments using the potential-based reward function presented in Equation
4.9, the parameter of discount factor γ is tuned to a suitable value for the best
performance. This parameter determines how much does the potential value of
the next state count and how much penalty or reward the agent will get from the
potential difference. We choose the environment in Figure 5.3 for testing and four
values decreasing from 1.0 are tested.

The curves of loss value and accumulated reward are shown in Figure 6.10 and
the success rates in the testing phase are shown in Table 6.1. The function with γ =
0.85 gets the lowest loss but also the lowest reward value. Although the success rate
is not low, this is not a proper discount factor value. This result is because the reward
value in every step depends more on the former state, it gains less reward towards
the target. So the motivation for the robot to find the target is not enough and it takes
more steps for the robot to the target with average steps of 150 in the testing phase.
When γ = 1.0, the robot obtains the highest reward over the other values, but it only
gets a success rate of 65%. The problem is that the potential difference is high.
Even though the robot stays in one position, it still gains reward. So the robot tends
to rotate in the original position without exploring the environment. The other two
γ values have similar performance with a high success rate and reasonable reward
value. So the values in the range of 0.9 ∼ 0.95 are optimal for the potential-based
reward function.
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(a) Q-value loss (b) Accumulated reward

Figure 6.10: Parameter Tuning

Gamma value Success rate
γ = 0.85 88%
γ = 0.9 96%

γ = 0.95 94%
γ = 1.0 65%

Table 6.1: Success rate for different discount factors

After tuning the key parameter of the potential-based reward function. We make a
comparison among these three reward functions in the environment from Figure 5.3.
From the results shown in Figure 6.11, we obtain the information that the potential-
based reward gets the highest loss value and performs unstable with large oscillation
in the curves. The reward value with reward function 4.6 is much higher than using
reward function 4.3, and also the loss value is lower. The success rate doesn’t tell
much difference among these three reward functions according to Table 6.2.

(a) Q-value loss (b) Accumulated reward

Figure 6.11: Comparison with different reward functions
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Reward function Success rate
Distance-based 93%

Orientation-based 94%
Potential-based 96%

Table 6.2: Success rate for different reward functions

6.3 Results for Observation Compression

In this section, we discuss the performance after adding a camera and applying
the auto-encoder to compress the camera observation to states in different dynamic
environments. Except for the evaluation criteria described at the beginning of this
chapter, the performance of the reconstructed image from the decoder is considered
as an auxiliary metric. In the experiments in this section, we use the reward function
4.6 as the optimal one chosen from Section 6.3.

Evaluation of the auto-encoder

In this experiment, we test the performance of the auto-encoder to check whether
the important features of the environment are encoded in the latent space state. We
test in the static environment with different target positions. Every target position will
change randomly at the beginning of the episode.

(a) Observation (b) Reconstruction

Figure 6.12: Observation and reconstruction images in the same state

After the auto-encoder is updated 3 times, we can observe in the reconstruction
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image in Figure 6.12b that the walls are well reconstructed but the red target point
in Figure 6.12a is missed.

To find out whether the target position is encoded in the latent space state, we
plot the trajectories to two different targets after the robot has learned the optimal
policy. Then we plot the state of every step in these trajectories in the PCA image
for the latent space state. To compare the states, we select two similar observations
in the routes toward different targets.

(a) The original state observation
in both routes

(b) The observation contains tar-
get position in one route

(c) The observation contains tar-
get position in the other
route

Figure 6.13: Similar observations in different routes

In Figure 6.13a we select the origin position that the robot in different cases
observes the same scene. In Figure 6.13b and 6.13b, we choose two similar scenes
contain the red target point in the two different routes. The PCA plots in Figure 6.14
shows the clustering of states in the trajectories. The red circles are the states of
the targets and the blue circles are the states of similar observations in different
routes. We can observe that even in similar positions in the environment, the state
representation of these states are different from each other when the targets are
different. This means that the state representation of the observations contains the
information of the target position by telling the difference of the targets.
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(a) The pca plot represents the state of the obser-
vation in Figure6.13b

(b) The pca plot represents the state of the obser-
vation in Figure6.13c

Figure 6.14: The pca plot represents the state of the observation to different target

Experiment 1

In the first experiment with a single static target and regularly moving obstacles(Figure
5.5a), the camera is set on the robot observing the front view.

(a) Q-value loss (b) Accumulated reward

Figure 6.15: Results in the environment with single target and regular moving ob-
stacles

The curves of loss value and accumulated reward are presented in Figure 6.15.
The reward curve shown in Figure 6.15b starts increasing after the first time the
auto-encoder updates at the 400th episode and reaches a stable level after training
around 1700 episodes, which means it learns an optimal policy after the ε value
decayed to 0.05.

The reward value presents a sudden decrease after every time updating the state
representation and after that the reward value increases. The loss value shown in
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Figure 6.15a also increases suddenly after the first and second time the state repre-
sentation updates. This is because of the sudden change of the state representation
and the main features of the observation are not extracted accurately at this stage.
During the training process between the auto-encoder updates, small increases ap-
pear in the loss value curve due to the new samples from the observation. The
loss value convergences after the auto-encoder finished 3 times updating, where
the encoded states contain the main features of the observation.

The success rate at the testing stage is 93% with an average of 24 steps per
episode, which indicates the optimal policy is learned in this case the agent observes
the environment through a front-view camera on the robot.

Experiment 2

In the second experiment with multiple static targets and randomly moving obstacles
in a fixed area(in Figure 5.5b), we still use the camera on the robot with the front view.
The target is chosen randomly in the target set at the beginning of every training
episode. However, the robot failed to learn a policy when training with the same
state vector and parameters as it in Experiment 1. The reconstruction image also
misses the important information of moving obstacles, such as Figure 6.16. This is
because when the obstacle is moving randomly in a fixed area and the area is on
the way to the target, the robot with a front view camera can’t predict the motion of
the obstacle and be aware of it if the obstacle runs into the robot from the directions
out of sight.

(a) Observation (b) Reconstruction

Figure 6.16: Observation and reconstruction images in the same state

To solve this problem, the laser measurements together with a set of additional
states are added to the state vector. The additional states include the position of the
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robot, the orientation of the robot, and the positions of the obstacles. So the agent
is aware of the positions of the obstacles and the distances to them. So the state
vector that input to DQN includes the latent state space encoded from the camera
observation, the laser measurements, and the position states.

(a) Q-value loss (b) Accumulated reward

Figure 6.17: Results in the environment with single target and regular moving ob-
stacles

As the results shown in Figure 6.17b, the reward begins to increase after the
first time the auto-encoder updates at the 400th episode and reaches a stable level
after training around 1900 episodes. So an optimal policy is learned with an average
reward value of 5. In the training process, before the policy is learned, the reward
values fluctuate greatly while increasing. This is because of the change of targets
in every episode that leads to different routes with variant accumulated reward. The
random motion of the obstacles also contributes to these fluctuations because of the
uncertainty of their state.

Similar to the results in Experiment 1, the Q-value loss shown in Figure 6.17a
increases suddenly after the state representation updates because of the sudden
change of the state representation and then decreases because of the training of
the Q-network. Also, the impact of this change reflects in the curve of reward with 3
times sudden decrease after the 400th, 800th, and 1200th episodes. The loss value
decreases and convergences under 0.5 after the auto-encoder finishes 3 times up-
dating. There is a small increase after episode 2000, which is because of the uncer-
tainty of this dynamic environment with randomly moving objects. The appearance
of some new samples of the observation will lead to a small oscillation in the curve.
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(a) Q-value loss (b) Accumulated reward

Figure 6.18: Comparison between the results of different observation data

A comparison of the results among cases with different observation sensors is
presented in Figure 6.18. All these cases include the state of the positions in the
state vector. The loss value with only camera observation keeps at the highest level
and the laser+camera case has the lowest loss value, although the latter one has
a high loss value before the auto-encoder finishes updating(in Figure 6.18a). This
shows that the camera observation helps for higher accuracy in choosing a proper
action than the cases with only laser sensors. For the convenience to compare
with, we cut the part of the reward curve before the first time update of the auto-
encoder in the cases with camera observation. As shown in Figure 6.18b, these
three methods have a similar efficiency to learn an optimal policy in around 1500
episodes. However, the approach with both laser and camera observations reached
a higher reward value than the other two cases. The policy with laser and camera
observation can accumulate reward over 5 with 24 steps on average reaching the
target. In comparison, the policy with only laser measurement gets a reward of
around -5 with over 30 steps on average to achieve the goal. The policy with only
camera observation performs worse with negative accumulated reward value. And
also the reward values are not stable in this stage.

State vector Success rate
Laser measurements + position states 92%
Camera observation + position states 64%

Laser + Camera + position states 96%

Table 6.3: Success rate with different state vectors

When we turn to the testing phase, we can get a success rate of 92% in the case
with only laser sensors and 96% with both laser sensors and camera from Table
6.3. As the higher dimension of data is received from camera observation than laser
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sensors, the agent can learn more information with sufficient samples and building
a more complete knowledge from the environment. So the visual sensors lead to
a more efficient route to the target. However the case with only the camera has
a success rate of only 64%, so including the laser measurement and additional
position states in this dynamic environment helps to get accurate positions of the
obstacles from the environment and improve the performance significantly.

Experiment 3

In this experiment with randomly moving obstacles and targets in a fixed area(in
Figure 5.5c), the motion pattern of the moving objects is hard to predict because
of the high uncertainty. We make experiments with two methods to extract more
important information from the environment and improve training performance.

The first one is the method we use in Experiment 2 that adds position states in
the state vector to get the accurate position of the obstacles and the robot in every
step. So the distance from the robot to the moving obstacle is known by the agent
and can be used for obstacle avoidance. But as more states are input to DQN for
training, the simulation time, in this case, is 2 times as the case without additional
states. The second method is to input 4 frames of consequent observations as it in-
troduced in Section 4.3 and 5.2.3. With the consequent observations in a sequence
of timesteps, the agent can observe the motion pattern of the moving objects. Then
it makes a path planning to avoid moving obstacles and find the moving target by
predicting the route of these moving objects.

In Figure 6.19, we present the comparison result among three different number of
input observation frame: single, 2 frames, and 4 frames. It’s obvious to observe that
the case with 4 frames of observations has the best performance. It has the lowest
Q-value loss of 1.5 in Figure 6.23a at the final training stage and convergences
fastest compared with the other two cases. Figure 6.23b presents that it reaches
the highest reward of -10 with the highest efficiency and tiniest oscillation in the final
stage. The case with single observation gets the worst performance with the highest
Q-value loss of 2.5 and the lowest reward value of -30.
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(a) Q-value loss (b) Accumulated reward

Figure 6.19: Comparison between the results of different frames of observations

The observation and reconstruction images in single frame and 4 frames of ob-
servation cases are presented in Figure 6.20 and 6.21 relatively. We can notice
that with single frame observation, the reconstruction image is totally different from
the observation image. This is the same reason as the failure of reconstruction in
Experiment 2(Figure 6.16). As the environment becomes more complicated, more
important information is failed to be extracted with a single observation.

(a) Observation (b) Reconstruction

Figure 6.20: Observation and reconstruction images with single observation

When we come to the reconstruction image from sequence of observations in
Figure 6.21, we can find that the reconstruction image is blurry. This is because of
the limitation of the system memory, the training samples for auto-encoder are not
enough so the information is lack. The other reason is that the obstacles are moving
randomly, therefore it is impossible to predict their positions exactly. But the position
information of the obstacles can still be extracted by detecting its contour. The re-
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sults of latent state space in Figure 6.22a shows that the reconstruction loss value
convergences to lower than 5 after four times SRL, which means the high similarity
of the main features between the observation and reconstruction images. Figure
6.22b presents the clustering of the states related to the reward value. We can ob-
serve from the obvious clustering colors that the SRL can encode and cluster the
states with similar rewards value together. So the robot learned enough information
for the navigation task from the encoded states.

(a) Observation (b) Reconstruction

Figure 6.21: Observation and reconstruction images with 4 frames of observations

(a) AE loss value (b) T-SNE visualization

Figure 6.22: Results in latent state space

In Table 6.4, we present the success rate with different frame numbers of obser-
vations in the testing stage. With single or 2 frames of observation, the success rates
are lower than 50% which means the agent didn’t learn an optimal policy without
enough information from the environment. The case with 4 frames of observations
reaches the success rate of 99%, so 4 consequent observations are enough for the
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auto-encoder to extract main information from the environment to train an optimal
policy.

Frame number of observation Success rate
Single 33%

2 frames 41%
4 frames 99%

Table 6.4: Success rate with different frame numbers of observation

Then we compare the results with these two methods using in Experiment 2 and
Experiment 3: encoding the states of single camera observation and then inputting
to DQN with laser measurements and additional states, encoding the states of 4
frames of consecutive observations. In Figure 6.19, we can observe that the first
method with laser measurements can convergences to a lower Q-value loss and
reach a higher reward which means it can find a better policy. However, since the
size of state vector increases with the additional states in the first method, it will
increase the computational complexity and take more time to train an optimal policy.

(a) Q-value loss (b) Accumulated reward

Figure 6.23: Comparison between the results of different observations



Chapter 7

Discussion

In this chapter, we analyze further about the results in Chapter 6 and the perfor-
mance of the approaches mainly considering the two metrics: the Q-value loss and
the accumulated reward.

7.1 Preliminary experiments

In Section 6.1, we conduct the experiments with DQN in different dynamic envi-
ronments to evaluate the performance of this approach. According to the training
results and high success rate in the testing phase, the DQN approach is effective in
this navigation problem. As for the experiment in a regular moving obstacles envi-
ronment(in Figure 5.4a), the robot learns to predict the route of the obstacles and
bypass them when it moves close. As for the experiment in a randomly moving ob-
stacles environment(in Figure 5.4b), the robot will avoid entering the area that the
obstacles moving in. When the target is moving, the robot will track the regular mov-
ing route or enter the randomly moving area to find the target. If the motion areas
of the target are accessible and that of obstacles are predictable, the robot will find
a collision-free path to reach the target. To learn the optimal policy, auxiliary states
include the positions of the robot and the target, the distance between the robot and
the target are considered and predicted by the Q-network, which are crucial for the
success of the training process. With these additional states, the agent is aware of
the position of the robot and estimate the distance from the target to plan the route.

7.2 Reward Functions

In Section 6.2, we present the results of different reward functions based on the
distance to the target and obstacles, the orientation of the robot toward the target,
and the potential value of the robot. In comparison between reward function 4.3
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and 4.6, the latter one also includes the orientation of the robot, the performance
of these two reward functions are similar in a simpler environment such as static
target and moving obstacles. As the complexity of the environment increases, the
advantage of the reward function 4.6 combined both distance and orientation factors
will expand (in Figure 6.11). This is because in an environment with more dynamic
objects, a more precise prediction of the states need to take more auxiliary mea-
surements into account. So a better policy is learned with higher reward and shorter
routes. As for the results in Figure 6.11, we didn’t compare the accumulated reward
value of the potential-based reward function with the other two, since the calculation
and the ranges of the reward value are different according to Equation 4.9. But we
can observe from the trend of the curve that the potential-based reward doesn’t per-
form stable compare to the results of the other two functions and also has a higher
loss value. Due to the dynamic environment, the potential value of every position is
always changing as the obstacles and targets moving randomly, the difference be-
tween two consecutive states cannot present the same potential value even though
the robot is in the same position. This increases the uncertainty of the reward value
in the training process and results in the oscillation.

7.3 Observation Compression

Section 6.3 presents the performances after using an RGB camera with higher di-
mensional observations and applying the auto-encoder to learn the state represen-
tation of the camera images and extract the main features from the observations.
The reconstruction images and the visualization of latent state space presented in
this section show the performance of the observation compression. Although we
can’t find the target point in the reconstruction images (in Figure 6.12), the features
of the target position are encoded. Since when we plot the state of every step in
the trajectories to different targets, the states with similar observations are mapped
in different positions of the plots (in Figure 6.14). This means that the change of
the target position tells a difference in the state representation of the environment.
The target positions are extracted in the latent space state and input to the DQN for
training. So in this method the auto-encoder helps to compress the high-dimensional
observations to low-dimensional vectors and extracts the main features of the ob-
servations successfully.

In the environment with regular moving objects(in Figure 5.5c), the agent can
learn an optimal policy successfully with only a single RGB-camera observation and
the auto-encoder. But when it comes to more complicated cases with randomly
moving objects and targets, the single observation image is not enough for the robot
to learn the main information since the position of the obstacles is hard to predict.
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We come to two methods: combining the encoded states of the single observation
with laser measurements and adding additional information, inputting a sequence of
observations for feature encoding.

Adding additional information such as positions of the robot and the obstacles
helps obstacle avoidance and makes up for the limited sight. We compare the
performance with three different observations: laser sensors, RGB camera, laser
sensors together with RGB camera. All these three cases are combined with the
additional information mentioned above. From the results in Figure 6.18, we notice
that the case combined with both laser sensors and the RGB camera get the highest
accumulated reward value and also the lowest loss value. Also in the testing phase,
the case of the combined sensors gets the highest success rate. This means that
with the help of laser measurements and position information, a higher-dimensional
observation helps the robot to find a better policy than using only low-dimensional
observation.

The second method, input a sequence of observations to auto-encoder, can help
to extract information of moving route and velocity of obstacles and targets. We
compare the performance of different numbers of input frames in Figure 6.19 and
the case with 4 frames of observations gets the best performance with the highest
reward and success rate(Table 6.4). Compared to single observation, sequence of
observations records the motion pattern of the obstacles and targets in the field of
view. This enhances the success rate for reaching the target in a dynamic environ-
ment. According to the t-SNE plot of latent state space in Figure 6.22, the robot can
learn the meaningful information from the environment and find a route to the target
based on the extracted information after the SRL with 4 frames of observations.

When comparing with these two methods in Figure 6.23, we notice that the first
method performs better in converging to lower loss and accumulating higher reward.
This is because the laser measurements and position information position the obsta-
cles and robot precisely in every time step. Although the agent can obtain the motion
pattern of the obstacles from a sequence of observations in the second method, the
location of the obstacles can’t be predicted precisely because the moving routes are
random and result in a less optimal result than the first method. However, adding the
position states in the state vector, of which the size is over two times as the size of
the state vector in the second method, will increase the simulation time significantly.
In the real world, it is impractical to obtain the exact position of the obstacles in the
environment all the time. And using extra laser sensors in addition to RGB camera
also increase the cost but not improve the performance obviously according to the
success rate in Table 6.3 and 6.4.
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Conclusions and Future work

In this chapter, we first explain how we answer the research questions that we raise
in Chapter 1 with the conclusions of our experiments in Section 8.1. Then we discuss
the future work for this project in Section 8.2.

8.1 Conclusions

The goal of this thesis is to achieve the navigation for the robot in a dynamic envi-
ronment. The solution is realized by training the DQN to learn an optimal policy. It
is proven that the robot could learn a policy to plan the shortest path to the stochas-
tic dynamic target and avoiding moving obstacles by choosing an action from the
maximum Q-value to gain an optimal reward value. After analyzing the results of the
experiments, we could answer the formulated research questions:

• RQ1: What is a proper reward function for the navigation task in a dynamic
environment to help the agent learning the policy and accelerate the learning
efficiency?

To answer this question, three kinds of reward functions are tested in the exper-
iments: distance-based, distance and orientation-based, and potential-based.
In Figure 6.8, the reward function based on both distance and orientation per-
forms better with higher reward value and lower loss than the one based only
on distance. As for the results in 6.11, the success rate and reward value
of these three reward functions are similar in a partial dynamic environment.
The first two reward functions perform better than the potential-based one be-
cause the loss value of the latter one is higher and the reward curve in the final
stage has large oscillation which dues to the uncertainty of the potential value.
Therefore, among the tested reward functions, the optimal one that can be ap-
plied in a dynamic environment is the distance and orientation-based one in
Equation 4.6.

59
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• RQ2: In the navigation problem, how to reduce the dimension of the state
space and extract meaningful information with auto-encoder in a dynamic en-
vironment?

To reduce the dimension of the observation state and extract main features
from the environment, we trained the auto-encoder and Q-network alterna-
tively and the ε-decay policy is applied for taking an action after the first time
updating the state representation. As the comparison results given in Figure
6.18, the case with state compression can reach a higher accumulate reward
and plan a shorter path to the target than the case with low-dimensional ob-
servation such as laser measurements. As the results of Experiments 2 and 3
shown in Section 6.3, by adding position states or applying sequence of conse-
quent observations in the auto-encoder, the motion pattern of moving objects
can be encoded and the robot can succeed in reaching the target in a compli-
cated dynamic environment. In these cases, high-dimensional data with more
information from the environment can be applied to extract the task-relevant
knowledge, which is beneficial for the agent to learn an optimal policy with the
shortest route. Considering a shorter simulation time and practicality in the
real world, using the method with only RGB camera and learning the state
representation from a sequence of observations in auto-encoder is preferred
in this navigation task.

8.2 Future work

In the experiments for observation compression, we use a sequence of observations
to extract more information from the environment. But due to the limitation of the
system memory, we convert RGB image to grayscale image and use a limited size
of memory buffer as well as latent state space in the auto-encoder. In the future, we
will increase the size of the observation image, memory buffer, latent state space,
and the number of filters to extract more meaningful information in the dynamic
environment. So the performance can be improved.

In our project, we test the learned policy only in the same environments as we
training it. In future work, a generalization of the policy will be implemented using
transfer learning methods, so the learned optimal policy can be generalized to a
larger environment, with obstacles moving in different areas or with more moving
obstacles.

The navigation of the robot is expected to be able to be realized in the real world.
We only implemented all of the proposed methods in virtual environments. We will
apply transfer learning to generalize the policy learning on the simulation platform
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to the real robot and environment in the future. This can avoid expensive time and
human costs from learning a policy directly from the real environment.
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Appendix A

Double Q-Learning

As introduced in the Chapter 1, the deep Q-network added a target Q-network based
on former Q-learning algorithms, which improved the instability problem. However,
this update mode of the Q-learning algorithm leads to an overestimation problem
of the action values, which estimates the value of a state too optimistically. Then
Double Q-network algorithm is proposed to optimize this problem [5]. The DDQN
algorithm evaluates the greedy policy by maximizing the value of the online network
and estimates the value using the target network, instead of selecting and estimating
an action with the maximum value of the target network.

Figure A.1: The framework illustration of DDQN [2]

The target value yi is calculated as:

yi = E
[
(r + γQ(s′, argmax(Q(s′, a′; θi)); θi

′) | s, a
]

, (A.1)
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The loss function is:

Li(θi) = E
[
(r + γQ(s′, argmax(Q(s′, a′; θi)); θi

′)−Q(s, a; θi))
2
]

(A.2)

The DDQN algorithm is described in Algorithm 3. The framework of the DDQN
algorithm is shown in Figure A.1.

Algorithm 3 Double Q-learning(Hasselt et al. [34])

Require: Initialize primary network Q1, target network Q2, ∀s ∈ S, a ∈ A(s), τ << 1
1: for each iteration do
2: Initialize S
3: for each environment step do
4: Observe state st, reward rt, and select at ∼ π(at, st) derived from Q1 and Q2
5: Execute at and observe next state st+1 and reward rt = R(at, st)
6: With 0.5 possibility:
7: Q1(st, at)← Q1(st, at) + α(rt + γQ2(st+1, argmaxaQ1(st+1, a)−Q1(st, at))
8: else:
9: Q2(st, at)← Q2(st, at) + α(rt + γQ1(st+1, argmaxaQ2(st+1, a)−Q2(st, at))

10: Update states: S← S′
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