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1 Introduction

This master thesis is written for the master Systems and Control directed to Robotics and
Mechatronics (RaM) at the University of Twente.

The research is done in context of the Portwings project. One of the project goals is to control
the variable stiffness of a mechanical bird wing. To achieve this the curvature can be measured
with embedded sensing in advanced fabrication techniques (3D-printing). The 3D-printing
research is accommodated under the RaM-chair in the NIFTy-group.

This report explains the steps which have been made to investigate different topics contribut-
ing to a closed-loop controlled bird wing.

1.1 Portwings project

The PortWings Project is working on flapping flight systems [University of Twente, 2020]. Not
only is this project dedicated to understanding how birds fly, but also to creating flapping-wing
robots. The Robird (figure 1.1) has been partly developed at the University of Twente, this has
led to the Portwings project. The Robird is a mechanical bird that can stably fly at 80 km/h
using a flapping motion. At this moment, the Robird is an open-loop system and has to be
controlled by a pilot. The Robird is also unable to take off on its own and its flapping motion is
symmetrical, therefore steering is done by the tail.

To improve the Robird, a closed-loop control system could be implemented. In this way the
bird becomes multi-modal, it can fly at different velocities, take off, land and can adapt to ex-
ternal variables. To get a closed-loop flapping motion, the sensing, actuation and control needs
to be studied, designed, implemented and tested.

Figure 1.1: State-of-the-art mechanical bird called the ’Robird’, which is able to fly with a pilot. ©Aerium
and Clear Flight Solutions

1.2 Problem Statement

Recently it has become possible to 3D-print multi-material structures with varying physical
properties [Nassar et al., 2018]. An example that can be printed in principle is a robotic bird
wing. Some of the materials which are available for 3D-printing are flexible materials, fiber-
reinforced filaments, (flexible) conductive materials and multi-material prints. Using fused
deposition modeling (FDM), sensors can be embedded in flexible structures. At the RaM-chair
capacitive and resistive sensors are already being investigated [Schouten et al., 2020]. Using
these new technologies, new challenges arise. Amongst others, these sensors tend to be sensi-
tive to creep and drift, furthermore they could behave non-linearly and have a hysteresis [Kos-
mas et al., 2020]. This makes that the 3D-printed sensors are hard to characterize and apply.
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2 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

Still, these sensors can be very useful. They can be embedded in the wing, so the sensors do
not have to be added to the wing in a post-fabrication step. Furthermore, there is large degree
of freedom with respect to the packaging and placement. Embedded sensors will influence
aerodynamic shape of the wing less than added external sensors.

Looking at an example in nature, birds can use proprioception to sense the position of their
wings, proprioception is the sense of self-movement [Han et al., 2016]. A beam with multiple
embedded sensors can be seen as a simplified mechanical bird wing. Even though it is hard to
characterize, embedded sensors can be used as input to control a structure.

In a bird wing morphing occurs during flight, which is described in [Douglas et al., 2015]. Mor-
phing can be done by varying the stiffness and angle of the bone hinge joint. If a mechanical
bird wing can actively vary the stiffness of the wing, then it would allow for varying flapping
patterns during flight.

Desired is to vary the stiffness of the wing during flight, a closed-loop control system is pro-
posed. Controlling the deformation of the wing will increase the flying capability of the me-
chanical bird. The proposed control will be energy-based, because this methodology can allow
complex systems to be controlled properly. The proposed control is suitable for controlled in-
teraction with the environment, for instance the air.

To close the loop, all different aspects should be connected. The embedded sensors, variable
stiffness actuator and the control loop should be designed, combined and tested.

1.3 Related work

Before research questions can be defined, relevant theory and research have to be investigated.
The Robird can be enhanced by combining theory on 3D-printed beams with embedded sen-
sors, variable stiffness modulation, and energy-based control into a single experimental setup.
Relevant literature regarding this thesis involve: theories for deforming beams, simulation
models for deforming beams, types of stiffness modulation, (conductive) 3D-printed struc-
tures, and models of energy-based control.

1.3.1 3D-printed beam with embedded sensors

3D-printed thermoplastic could reduce the structural weight compared to composite or
lightweight metal alloys, making it potentially favorable for wing structures. In the work of
Pecho [Pecho et al., 2019] the weight - load distribution relation of a UAV (unmanned aerial
vehicle) wing is researched. The weight - load distribution relation of a 3D-printed wing is
competitive against composite materials and light metal alloys, making it a suitable choice for
the Robird as well.

Not only the weight of a 3D-printed structure is of interest. Using multi-material printers, an
electrically conductive material can be printed into a non-conductive structure. The conduc-
tive material can be printed as a piezo-resistive strain sensor. A differential piezo-resistive sen-
sor setup, as described by [Schouten et al., 2020], can improve the linearity of the sensors to
be used for the curvature measurement of a structure. The dynamic performance of a differ-
ential piezo-resistive sensor printed into a beam is analysed in the work of Maurizi [Maurizi
et al., 2019]. This paper proves that the piezo-resistive sensor can capture dynamic behaviour
up to 800Hz. The sensors are found to be linear in the linear-response region of the structure.
However, Schouten concludes that the sensors have non-linearities. Those non-linearities can
decrease the accuracy of the sensors, this limitation must thus be addressed in the following
research.

Sander Roodink University of Twente



CHAPTER 1. INTRODUCTION 3

1.3.2 Variable stiffness modulation

Many technologies are already using variable stiffness solutions, often applied in soft robotics
[Sun et al., 2020]. Those variable stiffness solutions are studied by Melandri [Meleandri et al.,
2020]. A literature study is conducted on an experimental structure, which can vary the stiff-
ness of a simplified wing. In their work, two experimental setups are validated, one mechanism
with sliding segments and the other system is using a rotary movement (see figure 1.2. Both sys-
tems did work, however the tests are performed with a static stiffness, therefore more research
should be done focusing at the actuation and working in continuous time.

Figure 1.2: The sliding segment model of [Meleandri et al., 2020]

Another variable stiffness solution is using an axial load to stiffen or soften the simplified wing.
The effect of an axial load on a vibrating beam is studied in the book of Rao [Rao, 2017]. How-
ever, this is done for a supported-supported beam model whereas a wing can be modelled like
a fixed-free beam. This theory should be developed and tested.

1.3.3 Energy-based control

A beam can be modelled using the Euler-Bernoulli beam theory, see chapter A. This partial
differential equation can be written in a more structured way, which plays a major role in the
control design. A proposal is made to explicitly study the variation of energy in the beam, this
can be done using the port-Hamiltonian (pH) model. This model is also used in the work of
[Malzer et al., 2019]. In this research the pH model is used to develop a dynamic controller for
an Euler-Bernoulli beam actuated by a pair of piezoelectric patches. The article is concluded
with simulations. Experiments are not conducted in this work. Therefore a setup should be
built to continue this research.

1.4 Research objective

The scope of this work will be measuring the deformation of a beam using embedded sensors
and indirectly manipulating this deformation using an energy-based control loop. The loop
will control this deformation by altering the stiffness of the beam.

The research questions of this Master Thesis are:

1. How can stiffness variations of a beam be influenced?

2. How can 3D-printed embedded sensors be used to determine the flapping dynamics?

3. What beam behaviour (modifications) can be obtained by using controlled beam stiffness
variations?
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4 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

4. Can port-Hamiltonian modelling be used to design a stabilising control law for flexible
beams and how can this be achieved?

Answering these questions is the first step to understand and fabricate an actively controlled
bird wing. The wing will be simplified to a beam, which allows for simple and accurate mod-
elling. To actively control a bird wing via a closed-loop system, control input and output signals
are required. Sensors are implemented in the wing to measure the bending of the beam and
serve as input. This input will control the stiffness of the beam accordingly. In order to control
the bird-wing system via this method, the wing must first be stabilized. If damping is intro-
duced via a control-loop, the system stability can be increased [Ortega et al., 2001]. Damping is
thus proposed as the method to stabilize the system. Preferred is to get to critical damping by
controlling the system. To get a better understanding of these aspects listed above, a test setup
will be designed and tested.

Therefore, three sub-objectives are formulated:

• Design and test a prototype 3D-printed beam with embedded sensors, allowing the mod-
elling of the wing and measuring a controller input.

• Design a variable stiffness actuator for the experimental beam set-up, which translates
the control output to a change in effective stiffness.

• Design a controller using an energy-based method to stabilize the system.

The research is starting off with exploring related work. In the next step, different beam bending
theories will be analysed. This step gives information regarding the bending behaviour of static
and dynamic beams. Using this information, the variable stiffness modulation is analysed. An-
other analysis is done on 3D-printed sensors and flexible structures. The stiffness modulation
by energy-based control is the last part of this section. Here, the dynamics of beam are the ba-
sics of this topic, and are important for the stiffness modulation. Before a control-loop can be
analysed, the method of stiffness modulation should be known. This is due to the fact that the
method determines how the stiffness modulation enters the energy equation.

After the analysis, the design process is being described. The different design methods are
being divided into the following subjects: The 3D-printed design with additional electric cir-
cuits, variable stiffness mechanism and the control-loop. These different designs should be
connected to each other, which is ensured in the experimental setup. Subsequently, this setup
is analysed and validated. The different experiments are being discussed and concluded after-
wards.

1.5 Report Structure

Chapter 2 gives an overview of the design challenges, initially focusing on the sub-research
topics and FDM 3D-printed structures. But also on which questions arise when multiple topics
are being combined.

Chapter 3 describes the design of the 3D-printed beam, variable stiffness mechanism and con-
trol loop.

Chapter 4, considers the implementation. In this chapter, the complete setup is reviewed and
the experimental strategy is introduced.

Chapter 5 will focus on the experimental results: characterization of the sensors, dynamic be-
haviour of the beam, validation by visual recording, efficiency of damping-injection and adapt-
ability using control timing.

In the final Chapter the results will be concluded and discussed.

Sander Roodink University of Twente
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2 Analysis

To answer the research questions the stiffness actuation and energy-based control are ana-
lyzed. The first requirement is understanding how the stiffness of the beam can be modified. If
the stiffness can be varied, the behaviour of the beam can be adjusted to the desired movement.
Secondly, the stiffness actuation must be controlled, which can be done via an energy-based
control method.

2.1 Variable stiffness actuation

First, the variable stiffness actuation is discussed. This is the concept of changing the effective
stiffness of a beam. The stiffness of the beam can be varied by applying an axial load, which is
proven in [H. Jayasinghe, 2013].

2.1.1 Longitudinal load induced softening

Although it is known that axial load influences the effective stiffness of a beam, the exact rela-
tion between these two needs to be analysed. This is required in order to accurately control the
effective stiffness through the axial load. If a defined critical axial load is applied on a beam
it buckles. Right before buckling, longitudinal load induced softening occurs. This means
that the stiffness of the beam decreases. Understanding longitudinal load induced softening
can lead to finding the exact relationship between the axial load and stiffness of the beam. To
understand what is happening in the deforming beam during longitudinal load induced soft-
ening, the Euler-Bernoulli beam model is introduced in this section. This beam theory is a
computationally efficient approximation of a slender deforming beam. Despite the simplicity,
the approximation is considered to be sufficiently accurate. This is shown in the background
information in A.

To get to the Euler-Bernoulli beam model, first a free body diagram has to be drawn. This is
shown in figure 2.1.The beam is modelled as small segments which can have a deflection in the
y-direction, this method is from the work of [Rao, 2017].

Figure 2.1: Free body diagram of a section of a cantilever beam with an applied axial force

Robotics and Mechatronics Sander Roodink



6 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

From the free body diagram the force and moment equations are defined. The forces in x and
y-direction are important, as well as the moment around the origin.∑

Fx = 0

= N + d N

d x
d x −N

−→ d N

d x
= 0

−→ N (x) =−Q

(2.1)

with N the force in x-direction.

∑
Mz = 0

= M + d M

d x
d x −S ·d x +Q · d w

d x
d x −M

→ S(x) = d M

d x
+Q · d w

d x

(2.2)

with S being the force in y-direction, Q the applied axial load, and w is the displacement of the
beam in y-direction

∑
Fy = ρ · A · d 2w

d t 2 d x

=−dS(x)

d x
d x

(2.3)

where ρ is the density of the beam, A is the intersection area of the beam

By substituting equation 2.2 into equation 2.3, the Euler-Bernoulli beam theory is derived in-
cluding the axial load:

ρA
∂2w

∂t 2 + ∂2M

∂x2 +Q · ∂
2w

∂x2 = 0 (2.4)

When M = E I · ∂2w
∂x2 and ρA =µ are substituted into the equation:

µ
∂2w

∂t 2 +E I
∂4w

∂x4 +Q(t )
∂2w

∂x2 = 0 (2.5)

With µ the linear mass density, and E I the flexural rigidity. This equation includes the Euler-
Bernoulli dynamic equations, with an added term: the axial load. This equation is called the
free vibration equation.

2.1.2 The correlation between the eigenfrequency and the stiffness of the beam

Two different methods of loading the beam in an axial direction are checked, the Beck and Euler
type. The difference between these methods is the axial load angle. In the Euler-type softening
the load is always parallel to the x-axis, while in the Beck-type softening load will be parallel to
the curvature of the beam, which is called a ’following load’. This is shown in figure 2.2. The
Beck-type softening will change the stiffness differently than the Euler-type softening.

Based on longitudinal load induced softening and Beck- or Euler-type softening, it still not
possible to see how the stiffness of the beam is behaving exactly. There is a strong correlation
between the beam’s effective stiffness and its eigenfrequency. Quantifying stiffness by using the
eigenfrequency allows for effective evaluation of the impact of Beck- or Euler-type softening.
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CHAPTER 2. ANALYSIS 7

Figure 2.2: Cantilevered beam deformation (A) Beck-type (follower loading) (B) Euler-type (vertical axial
loading)

To find possible solutions of the free vibration equation 2.5 we assume the following equation
cited from [T. Iwatsubo, 1972], see equation 2.6. In this equation the viscous damping is in-
cluded in the setup. This is not done in equation 2.5.

E I (t )
∂4w

∂x4 +Q(t )
∂2w

∂x2 +C (t )
∂w

∂t
+m(t )

∂2w

∂t 2 = 0 (2.6)

With E I the flexural rigidity, Q(t ) the axial force, C (t ) the viscous damping coefficient and m(t )
the mass of the beam per unit length. If the time axis is divided into small intervals ∆t and the
coefficients are constant. Equation 2.6 becomes the partial differential equation with constant
coefficients:

E Ii
∂4w

∂x4 +Qi
∂2w

∂x2 +mi
∂2w

∂t 2 +Cl
∂w

∂t
= 0 (2.7)

its solution can be written as w =W (x)T (t ). This is known as separation of variables . Equation
2.6 can be reduced to the next two differential equations:

E Ii
d4W

dx4 +Qi
d2W

dx2 −miω
2
i W = 0

d2T

dt 2 +2ζiλt
dT

dt
+ω2

i T = 0

(2.8)

With Ci /mi = 2ζiλi

To solve the eigenfunctions Wi from the first equation of 2.8, the viscous damping is not used.
Therefore this first equation can also be used to find the eigenfrequency from equation 2.5.

The next general solution is used [T. Iwatsubo, 1972]:

Wi (x) = A1 cos s2x + A2 sin s2x + A3 cosh s1x + A4 sinh s1 (2.9)

where

s2
1 =

−γi+
√
γ2

i +4k4
i

2 , s2
2 =

+γi+
√
γ2

i +4k4
i

2 with γi = Q
E I and k4

i = mω2
i

E I
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8 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

The Beck and Euler type cantilever stability have different boundary conditions. First the Euler
type cantilever boundary conditions are given:

0 = w(0, t )

0 = ∂w(0, t )

∂x

0 = ∂2w(l , t )

∂x2

0 = E I
∂3w(l , t )

∂x3 +Q(t ) · ∂w(l , t )

∂x

(2.10)

With cosθ ≈ 1, because of the small deformations.

For Beck-type cantilever the boundary conditions are:

0 = w(0, t )

0 = ∂w(0, t )

∂x

0 = ∂2w(l , t )

∂x2

0 = ∂3w(l , t )

∂x3

(2.11)

By substituting the different boundaries into equation 2.9, a coefficient matrix for the used
boundary conditions can be formed. From this matrix the determinant is used and set equal to
zero, so the eigenfrequencies can be solved. The Euler-type determinant of the coefficients is:

detE =s1s2
5 + s1

5s2 −γi s1s2
3 +γi s1

3s2 +2s1
3s2

3 cos(l s2)cosh(l s1)+ s1
2s2

4 sin(l s2)sinh(l s1)

− s1
4s2

2 sin(l s2)sinh(l s1)+γi s1s2
3 cos(l s2)cosh(l s1)−γi s1

3s2 cos(l s2)cosh(l s1)

−2γi s1
2s2

2 sin(l s2)sinh(l s1)
(2.12)

The Beck-type determinant of the coefficients is:

detB =s1s2
5 + s1

5s2 +2s1
3s2

3 cos(l s2)cosh(l s1)+ s1
2s2

4 sin(l s2)sinh(l s1)

− s1
4s2

2 sin(l s2)sinh(l s1)
(2.13)

2.1.3 Static eigenfrequency approximation

The static eigenfrequencies can be approximated using the the Beck and Euler-type determi-
nant defined in the section above. The following beam properties are used to determine the
determinant:

Value unit Type
0.300 m Length (chapter 3.2.1)
0.0150 m Width (chapter 3.2.1)
0.0005 m Height (chapter 3.2.1)
861 MPa Youngs modulus [Chamil Abeykoon, 2020]
0.0223 kg Mass
1.5625e-10 kgm2 Moment of inertia

Table 2.1: Properties of the beam, derived from the final experimental beam. See chapter 4.1.4

Using the determinant of both models, the eigenfrequencies of different axial loads are numer-
ically approximated in Matlab. The results of the Beck and Euler-type beam softening is shown
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CHAPTER 2. ANALYSIS 9

below in figure 2.3. For the Euler-type softening the critical buckling load is reached before 4 N.
This is not the case for the Beck-type softening, the first eigenfrequency increases. The sec-
ond mode eigenfrequency curves are both decreasing, However the Euler-type eigenfrequency
decreases faster than the Beck-type softening.

In this project, the behaviour of the first two eigenmodes are analysed and tested. To check if
the complete setup can work in different configurations.

However, when a variable stiffening actuator is used for a wing, the wire should be imple-
mented into the wing, because this does not affect the aerodynamics. Furthermore, the chance
of wire related issues like it getting stuck or breaking is decreased. If the wing is slender, the wire
shaft is narrow and Beck-type softening theory can be applied. If Euler-type beam softening is
used, the wire cannot be implemented in the wing. Therefore Beck-type softening is favored.
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Beck-type First eigenfrequency

Beck-type Second eigenfrequency

Figure 2.3: Eigenfrequency change by longitudinal load induced softening (tables in Appendix B)

2.2 Energy-based control

The idea is to use energy flows to control a physical system. In this thesis the deforming beam
is the system which is to be controlled. This will start with the Euler-Bernoulli beam theory and
using the Port-Hamiltonian model an energy balance equation to control the deforming beam
is found.

2.2.1 Dynamic beam theory

In this project a slender beam is used, so the Euler-Bernoulli beam theory in chapter A can be
used as framework. From the Euler-Bernoulli beam theory the dynamics of the beam can be
found. This is already done, and is shown in equation 2.5. The equation is shown again:

µ
∂2w

∂t 2 +E I
∂4w

∂x4 +Q(t )
∂2w

∂x2 = 0 (2.14)

Here x is the position along the beam, E is the elastic modulus, I is the second moment of
area of the cross-section, w is the displacement of the beam in the x-axis, µ is the linear mass
density, t is the time and Q is the distributed load on the beam in the z-axis. It is assumed
that the beam is made of a homogeneous material and the cross-section is constant, which

Robotics and Mechatronics Sander Roodink



10 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

means E I is constant. To make the equation more convenient to use, the axial load is rewritten:
Q(t )∂

2w
∂x2 = E I k ∂2w

∂x2 . So the rewritten equation becomes:

µ
∂2w

∂t 2 +E I
∂4w

∂x4 +E I k
∂2w

∂x2 = 0 (2.15)

This equation is rewritten:
wt t +µE I wxxxx +E I kwxx = 0 (2.16)

with ∂4w
∂x4 = wxxxx and ∂2w

∂t 2 = wt t . q(t ) is assumed to be distributed equally over the beam, so
this is not dependent of x. This equation is the base for the energy-balance equation.

2.2.2 Implementing beam theory by Port-Hamiltonian modeling

To track the variation of energy in the beam, the Port-Hamiltonian model is used. The Hamilto-
nian is a mechanical energy equation, which is the sum of the potential energy and the kinetic
energy. The potential energy is stored in the elastic deformation of the beam and hence in the
derivative of the displacement (curvature of the beam). The kinetic energy is stored in the ve-
locity of the beam, which is defined beforehand: wt (x, t ) = p(x,t )

µ . The potential and kinematic
energy density over the length of the beam is:

UPotential =
1

2
E I w2

xx

UKinetic = 1

2
µw2

t =
1

2

p2

µ

(2.17)

To find the total energy of the beam, the energy density is integrated over the beam. This results
in the Hamiltonian shown in equation 2.18.

H(t ) = 1

2

∫ L

0

(
p2

µ
+E I w2

xx

)
d x (2.18)

This expression suggests to choose new variables for the model, i.e. the energy variables are the
momentum p and the curvature wxx . The co-energy variables are associated with the energy
variables. The co-energy variables can be derived from the functional derivatives of the Hamil-
tonian with respect to the energy variables. The co-energy variables are the velocity(wt ) and
stress (E I wxx ):

δH

δp
= δp H = p

µ
= wt

δH

δwxx
= δwxx H = E I wxx

(2.19)

The co-energy variables are implemented in the Port-Hamiltonian model [Folkertsma and
Stramigioli, 2017]: (

ẇxx

ṗ

)
=

(
0 ∂

∂x2

− ∂
∂x2 0

)(
δwxx H
δp H

)
(2.20)

From the Port-Hamiltonian model is stated that:

ẇxx = ∂

∂x2δwp H

ṗ =− ∂

∂x2δwxx H
(2.21)

The derivative of the Hamiltonian is needed to find the conditions under which energy is added
or taken from the system. The derivative of the Hamiltonian is shown in 2.22. The variables ẇxx
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and ṗ are used to find a simplification of the derivative of the Hamiltonian. Because it will be
integrated by parts.

Ḣ(t ) =
∫ L

0

(
δH

δp
ṗ + δH

δwxx
ẇxx

)
d x

=
∫ L

0

(
−δp H

(
δwxx H

)
xx +

δH

δwxx

(
δp H

)
xx

)
d x

=−[(
δp H

)(
δwxx H

)
x

]L
0 +

[(
δwxx H

)(
δp H

)
x

]L
0

= E I (−wt (L)wxxx (L)+wt (0)wxxx (0)+wxx (L)wt x (L)−wxx (0)wt x (0))

= ∂Γ

(2.22)

This balance is only dependent on the time and position derivatives at the boundaries x = 0
and x = L. This is more convenient and efficient to compute than solving the Euler-Bernoulli
differential equations. The balance gives insight in the control method.

2.2.3 Implementing stiffness control in the Port-Hamiltonian cantilever model

The axial load applied on the tip of the beam is distributed through the whole beam. This dis-
tributed transversal load is dependent on curvature wxx , gain of the control k and the flexural
rigidity E I . Because the load is distributed over the beam, this term is added in the Euler-
Bernoulli free vibration equation:

wt t +µE I wxxxx +E I kwxx = 0 (2.23)

The energy and co-energy variables are not changed by the added distributed axial load. How-
ever, the interconnection matrix is:(

ẇxx

ṗ

)
=

(
0 ∂

∂x2

− ∂
∂x2 +k 0

)(
δwxx H
δp H

)
(2.24)

The derivative of the Hamiltonian is shown below and integration by parts is used:

Ḣ(t ) =
∫ L

0

(
δH

δp
ṗ + δH

δwxx
ẇxx

)
d x

= ∂Γ+E I k
∫ L

0
wt wxx d x

(2.25)

The derivative of the Hamiltonian should be negative, Ḣ < 0, to have damping-injection, which
is wanted to have a stable control-loop. Therefore equation 2.25 will be rewritten to:

Ḣ = ∂Γ+E I k
∫ L

0
wt wxx d x < 0 (2.26)

With:

∂Γ= E I (−wt (L)wxxx (L)+wt (0)wxxx (0)+wxx (L)wt x (L)−wxx (0)wt x (0)) (2.27)

All variables in equation 2.27 are dependent on the boundaries conditions. The studied model
is a cantilever beam. In this case the boundaries of the beam are at x = 0 and x = L. The
beam is excited to first or second mode, by moving x(0) in the Y-direction. At t = 0, x(0) is
clamped, therefore wt (0) = wt x (0) = 0. So all boundary conditions at x(0) are zero. At the
tip of a cantilever the curvature is always zero. This can also be seen in figure 3.5. therefore
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12 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

wxx (L) = 0. The slope of wxx (L) is also zero (again see figure 3.5), so wxxx (L) = 0. Knowing this
∂Γwill become zero. Equation 2.26 is chosen to be negative and E I is constant, therefore k is :

k =−
∫ L

0
wt wxx d x (2.28)

Equation 2.28 is the control design, which is used in this work.

2.3 Conclusion

Using the Euler-Bernoulli beam theory and the port-Hamiltonian Model a control law is found,
which can apply damping-injection on a vibrating beam with small deformations. This can be
used by designing a setup, so the analyses can be validated in practice.
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3 Design

This chapter treats the design choices which are made to have a working setup. The design is
divided into three sections: Embedded 3D-printed strain sensors, the variable stiffness modu-
lation, and the implementation of the Hamiltonian control-loop. But first the requirements are
established.

3.1 Design requirements

The requirements are established from the information given in the introduction 1 and the
analysis 2. As there are limited time and resources, the requirements are ranked using the
MoSCoW (Must, Should, Could, Will not) criteria to be able to prioritize between the require-
ments. The prioritisation is based on the following question: "Is this requirement needed to
stabilize a vibrating 3D-printed beam using stiffness modulation?"

The design of the 3D printed beam ...

• ... must have embedded sensors, which can measure the curvature (section 1.3.1).

• ... must allow an attachment to modulate the stiffness (section 1.3.2).

• ... should have dimensions such that the first two modes can be measured (section 2.1.3).

• ... should handle small deformations (section A).

• ... could use a material which can be fabricated easily (section 1.3.1).

The design of the stiffness modulator ...

• ... must be controlled continuous real-time (section 1.3.2).

• ... must change the effective stiffness by a distributed load (section 2.1.1).

• ... could be implemented in the bird wing (section 2.1.3).

The design of the control-loop ...

• ... must be controlled using energy variables (section 2.2.2.

• ... should be stabilized by damping-injection (section 2.2.3).

• ... should control the first two eigenmodes (section 2.1.3).

• ... could decrease the damping of the beam (section 2.2.3).

3.2 Embedded 3D-printed strain sensors

The beam for this project is printed using fused deposition modelling (FDM), shown in fig-
ure 3.1. This type of printing is used because it is affordable, easy accessible, and multi-material
printing is possible. Various 3D-printers are available in the lab, not all of them capable of
printing the beam as is required.

Robotics and Mechatronics Sander Roodink



14 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

Figure 3.1: Schematic drawing of used deposition modelling printing [3Dilla, 2020]

The beam deformation is measured using embedded strain sensors. In this section, the design
choices for these embedded strain sensors are elaborated. As tested by [Schouten et al., 2020],
a good way to measure the curvature of a 3D-printed structure, while dealing with the non-
linear properties of the material, is using differential strain sensors. Differential measurements
increase the linearity of the sensors by compensating ideally for the odd orders of non-linearity.

3.2.1 Beam dimensions

In order to set the dimensions of the beam, multiple factors have to be taken into account. The
beam design is dependent on a multitude of factors, including materials and eigenfrequencies.
There are also constraints in place on the possible dimensions of the beam, determined by the
3D-printer, strain sensors and experimental setup.

Materials

When printing embedded sensors with FDM it is possible to print a stiff material or a flexible
material. There are two parts in the beam, a piezo-resistive part which can be used as strain
sensor, and a non-conductive part to create the rest of the beam structure. These two parts
should be constructed from materials with similar mechanical properties to ensure uniform
behaviour along the beam [Dumstorff et al., 2014]. Not only the uniform behaviour is impor-
tant, if two similar materials are used, larger stresses around the sensors are avoided [Dum-
storff et al., 2014]. There are two material combinations available; the stiffer non-conductive
PLA with conductive Proto-pasta [Dijkshoorn et al., 2018], and the softer non-conductive TPU
(NinjaFlex) with conductive ETPU [Schouten et al., 2020]. Those materials have different prop-
erties in stiffness, flexibility, damping and print quality. The Young’s modulus of PLA is around
3.5 GPa [Makeitform, 2020]. For FDM 3D-printing this is a relative high Young’s modulus. On
the other hand, TPU has a low Young’s modulus, which is around 12 MPa [NinjaTek, 2020].
Based on this two prototype-beams are printed, shown in figure 3.2. One is built from PLA with
Proto-pasta sensors and one is built from TPU with ETPU.
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Figure 3.2: Orange: TPU with ETPU sensor; Blue: PLA with Proto-pasta sensor, which is used for the
sensor characterisation in section 5.1

A low damping coefficient is preferred. This is due to the fact that in the experiments, the damp-
ing will be analysed. If a beam has a high damping coefficient, it quickly stops vibrating after
excitation and yields insufficient data. This makes it difficult to analyse, requiring a low damp-
ing coefficient to obtain useful results. The PLA with Proto-pasta beam has a lower damping
coefficient than TPU. Besides this, the Euler-Bernoulli beam theory is only applicable for small
deformations. Due to its higher elasticity, TPU has significantly higher tip displacement when
vibrating, and thus relatively large deformations take place. As a result, PLA with Proto-pasta is
the material of choice for the final setup.

Piezo-resistive measurement

Strain sensors are already common in many applications, for instance load cells. The most
commonly used strain sensors are metal film strain gauges. When a beam bends, the resistance
of the film strain gauge at the convex side of the beam increases. At the same time, the sensor
at the concave side of the beam will decrease in resistance due to compression. This is due to
the geometrical effect. As shown in figure 3.3, a Wheatstone half-bridge would be an accurate
way to measure the curvature in this case [Peter Myler, Leslie M. Wyatt, 1994]. This setup will
also be used for the ’Proto-pasta sensors’.

Figure 3.3: Half-bridge metal film strain gauge setup [Tony R. Kuphaldt, 2006]

Strain gauge design

The conductive Proto-pasta is used for the piezo-resistive sensors. In previous work [Maurizi
et al., 2019], meandering sensors were used. This meandering increases the total length of the
gauge channel; which increases the sensitivity if the cross-sectional area is constant . However,
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16 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

this also increases resistance, which reduces the sensitivity if it becomes too high. A trade-off
is thus made between the length of the gauge and the resistance, with a maximum resistance
set at 100 kΩ. By iteration it is found that a meander of four lines with a total length of 100 mm
has a resistance around 80 kΩ depending on the printing quality of the sensor and the cross-
sectional geometry. This is considered satisfactory for this research.

In FDM-printing the lines can vary in width due to printing quality, which decrease the reliabil-
ity of the sensor. By printing multiple parallel lines the relative effect of these printing liabilities
is reduced. These lines can be printed next to each other and on top of each other to keep the
sensor channel compact. After tuning the channel width and height of the sensor, the material
was stable and had no defects when the gauge channel had four lines in a 2 x 2 layout with a
line width of 0.4 mm and height of 0.2 mm.

In other work, the meandering channels are connected by thicker perpendicular channels. If
this thicker channel is printed more lines are printed, which results in a disrupted line. If cur-
rent flows through a continuously printed line the electric conductivity is homogeneous. If cur-
rent flows perpendicular through the lines, the electric conductivity changes [Dijkshoorn et al.,
2020]. Therefore a curved bridge is chosen to connect the channels. So now the meandering
channels are printed in one line.

The sensor will have a total length of 40 mm and is 12 mm thick, including the soldering paths.
The first and final sensor design is shown in figure 3.4.

Figure 3.4: (A) First iteration; visible are the non-continuous lines (B) Final sensor design; continuous
printing lines

Eigenfrequency

The eigenfrequency of the beam is determined by its material and dimensions. The de-
sired eigenfrequency can be found by looking at the median wing-beat frequency of different
birds [Bruno Bruderer, Dieter Peter, Andreas Boldt, Felix Liechti, 2010], the flapping frequencies
are between 2 and 17 Hz. The peregrine falcon, which is researched by the PortWings project,
has median frequency of 5.1 Hz. As the project aim is to simulate this bird species flight, the
eigenfrequency of the beam should be as close as possible to this 5.1 Hz. With the desired
eigenfrequency and materials known, the beam dimensions can be determined through FEM
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(finite element method) simulations in Solidworks. The minimum height and width are deter-
mined based on the following items:

• The variable stiffness wire must be implemented in or around the beam.

• The electrical wires of the strain gauges are implemented into the beam. If the wires are
at the normal line of the beam, the wires will affect the beam stiffness the least.

• The strain gauges are embedded into the beam, on both sides of the beam two layers of
conductive material are printed, to ensure the sensor will not have an internal misprint.
These have a height of 0.4 mm. Because a differential measurement is done two sensors
are needed.

• When the beam is removed from the printer, the beam will deform a bit. If the beam is
too slender, the beam has an offset curvature in the beam. This is not desired, because
the critical buckling load will be decreased. The offset curvature can be reduced by heat-
ing the beam in an oven. The residual stress decreases in this process. This process is
described in the implementation, chapter 4.1.4.

• When reducing height and width, buckling may become a threat. This threat can be mit-
igated by adapting the axial load on the beam based on the dimensions.

• The 3D-printer has a bed size of 416 mm (the used 3D-printer is described in chapter 4).
50 mm from the edges was avoided, because the printing quality decreases at the edges.
The maximum length of the beam is thus 316 mm.

• The sensors are printed in a meander way, which is 12 mm width (including contact
pads). An additional 1.5 mm edge is printed for stability, making the minimum width
15 mm.

In Solidworks the first simulations of a PLA beam are performed with dimensions 200 x 7 x
20 mm, showing a first eigenfrequency of 30 Hz. A slender beam has a lower eigenfrequency
than a thicker beam. So, to lower the eigenfrequency closer to the desired 5.5 Hz, the beam
is made as slender as possible. The height is decreased to the minimum of 5 mm. The total
length of the beam is increased to 315 mm. The first 15 mm of the beam is used to clamp the
beam, therefore the effective length is 300 mm. Finally, the width of the beam is also reduced
to the minimum 15 mm. Using these new dimensions 315 x 5 x 15 mm, another simulation is
run in Solidworks. This yields a first eigenfrequency of 15.3 Hz minimum frequency for the first
eigenmode without axial load.

3.2.2 Strain sensor positions

Not only the materials and the differential measurement are important to measure the curva-
ture of the beam. Also the location of the gauges at the beam are important. Because the first
two eigenmodes will be analysed, the curvature of those modes are important to find the best
location for the strain gauges.

To find the best locations the first and second eigenmode shapes are needed. Because the stain
sensors are measuring the curvature, the lateral curvature shape is needed. The lateral dis-
placement shape of a cantilever is calculated using the Matlab script of E. Cheynet [E. Cheynet,
2020]. The lateral curvature shape can be found by differentiating the lateral displacement
twice. The result is shown in figure 3.5. In this figure the green vertical lines will be the position
of "sensor 1" and the cyan vertical lines is the position of "sensor 2".

To measure the maximum curvature, the sensors should be located at the peaks of the graph.
For first mode this is at x = 0 and for the second mode this is at x = 50. The two sensors are also
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18 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

shown in the graph, by the vertical green and cyan lines. With those locations also the different
modes can be identified. This is used in the control-loop, and explained in chapter 3.4.2.
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Figure 3.5: Sensor positions targeted to highest curvature for first and second mode. The green vertical
lines will be the position of sensor 1 and the cyan vertical lines is the position of sensor 2

3.3 Stiffness actuation

From the variable stiffness actuation analysis in chapter 2 two different longitudinal load in-
duced softening theories can be used to change the stiffness of the beam. The first one which
is analysed is the Beck-type softening and the second one the Euler-type softening. This de-
sign, is comparable with a tendon actuation, which is lightweight. The weight of a setup is very
important the mechanical bird.

3.3.1 Wire through a shaft

To get a correct implementation of the Beck-type softening a wire should be placed on the
neutral line of the beam, this can be achieved by incorporating a shaft through the length of
the beam. This is shown in figure 3.6. The shaft can directly be built into a slender beam using
FDM 3D-printing.

3.3.2 Wire implement by bow wire principle

The second setup which is built and tested is based on the Euler-type softening. This can be
seen as a bow, where the wire is the bowstring and the beam the bow itself. Although it comes
close to the Euler-type softening, it is not exactly the same due to a force component in the
y-direction in the setup, which is not present in the Euler-type formulation. The three different
implementations are shown in figure 3.6
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Figure 3.6: beam softening methods (A) Beck-type (B) Euler-type (C) Bow principle

In the analysis the difference between the Euler- and Beck-type softening (see equations 2.10
and 2.11) is visible in the shear force boundary, the difference is:

0 = ∂3w(L, t )

∂x3

0 = E I
∂3w(L, t )

∂x3 +Q(t ) · ∂w(L, t )

∂x

(3.1)

The first equation is shear force boundary of the Beck-type and the second equation is the
shear force boundary of the Euler-type. Shown is, that Euler-type also dependent on the load
multiplied with the slope of the beam and not only on the third derivative of the beam. This can
be implemented in equation 2.22, the derivative of the port-Hamiltonian model. This results
in:

−Q(t )

E I
wt (L)wx (L)−E I k

∫ L

0
wt wxx d x < 0 (3.2)

This equation can also be implemented into the control-loop which is designed. By using de-
formation models, wt (L) and wx (L) can be approximated. However this is the Euler-type solu-
tion. The bow principle is a bit different, instead of using the slope of the free end, the slope of
the wire should be used. Therefore the following shear force boundary is proposed for the bow
principle:

0 = E I
∂3w(L, t )

∂x3 +Q(t ) · tan−1 w(L, t )

L
(3.3)

This results again in a change of the proposed control equation:

−Q(t )

E I
wt (L) · tan−1 w(L)

L
−E I k

∫ L

0
wt wxx d x < 0 (3.4)

3.3.3 Wire tension actuator

The wire tension needs to be adjustable to actively control the stiffness of the beam. The mech-
anism needs to be able to pull on the wire to create a predetermined level of tension in the
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string. This could be done by a winch driven by a DC-motor. In figure 3.7 the angular velocity-
torque gradient of a DC-motor is shown. When the angular velocity is zero, the torque is at its
maximum. In this research only the torque is important, because the DC-motor will be stalled
during the experiments. To control the stall torque, the current can be limited. The current is
linear with the torque of the motor as shown in equation 3.5. Using a pulley the torque will be
converted to a force. This force will pull on the wire, which in turn changes the stiffness of the
beam. As a result, stiffness of the beam can be changed as desired by using a specific current.

MR = kM · I0 (3.5)

With MR the torque of the motor, I0 is the current which flows trough the motor and kM is the
motor constant.

Figure 3.7: Angular velocity vs. torque of a DC motor [Maxon motors, 2014]. In this project the DC motor
will be driven at zero angular velocity, at stall

3.3.4 Design of the stiffness modulator

Now all the different components of the modulator can be connected. To get from a current to
a modulation in stiffness the following components are needed:

Figure 3.8: Block-diagram of the variable stiffness modulator

The Maxon 142733 DC-motor is used in this project. In previous work [Roodink, 2017] this DC-
motor is characterized. In this work, the stalling torque is around 0.15 Nm when the torque-
angular velocity line is extended to an RPM of 0.

From the Solidworks simulations of the beam, the critical buckling load is 12 N. This is the
maximum load which can be applied on the beam. Knowing the torque and the critical buck-
ling load, the maximal length of the pulley arm can be calculated. Chosen is an arm length of
0.01 m, now the beam could not buckle and the beam will not deform.

r = T

F
= 0.15

12
= 0.0125m (3.6)
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All parameters are known, which means the variable stiffness modulator can be designed using
Solidworks. The beam brackets, motor bracket, and pulley are 3D-printed. The drawings are
shown in Appendix A. In Solidworks, simulations are done to see the eigenfrequency of the
different brackets. The lowest eigenfrequency of the brackets must have a safe margin between
the eigenfrequency of the beam to avoid interference resonance. The second eigenfrequency
of the beam is 86.2 Hz (experimentally tested in 5.2). So to be safe the lowest eigenfrequency of
the brackets should be at least 200 Hz The build setup is shown in figure 3.9.

Figure 3.9: Variable stiffness modulator with: The DC motor axle is connected to the pulley by a screw;
the bracket is holding the motor and beam at its place; the pulley could easily be changed so the torque
arm length is changed; around the pulley the wire is visible

3.3.5 Variable stiffness modulation characterisation

Before the variable stiffness modulator can be used, the setup should be characterised. First,
the linear load-current relation will be measured. If this is known, the beam can be actuated to
different static loads, to see if the eigenfrequencies change in the way they are calculated in the
analyses.

To characterise the stiffness modulation setup, the motor will be driven by a current stair func-
tion. The stair function will have a range from 0 A to 2.5 A, with steps of 0.5 A.The output force
is measured using a spring scale. Measuring this force is done in two different ways, one is the
static load, so when the current is stable. The other measurement is peak force, this peak occurs
when the current is changed to the next step. This is measured because in the experimental
setup the current will not be static; it will be modulated during the experiment. Therefore this
linear force curve is more important than the static load curve. Both curves are shown in figure
3.10.
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Figure 3.10: Characterisation of the load on the wire
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With the maximum of 2.5 A supply current, the 15 N load could almost be reached. This is
above the critical buckling load from the Solidworks simulations and the Euler-type softening
calculation, see Appendix B. This is happening because the current is set at 2.5 A and the motor
controller used in the setup will produce a maximum current of 2 A. Therefore, this motor and
pulley can be used to measure the eigenfrequency change, by the wire though the shaft and the
bow wire.

3.4 Control

In figure 3.11 the schematic block diagram of the designed controller is shown. First, the signals
of the sensors will have to be manipulated to become a useful input for the ’mode checker’. The
mode checker is distinguishing the different eigenmodes, and therefore the sensor values can
be fitted to the right eigenmode. In this case, there are 2 possible eigenmodes. Both modes have
their own curvature and displacement. When the curvature and displacement of the whole
beam are known, the control gain can be estimated using the derivative of the Hamiltonian.
The control gain will be the input of the stiffness modulator. The block diagram of the controller
is implemented in 20-Sim figure 3.12. 20-Sim helps to model dynamic systems and simulate
their behaviour. A 20-Sim model can be exported to a C-code using 20-Sim 4C. The different
design parts of the control loop are elaborated in this section.

Figure 3.11: Schematic block-diagram of the control-loop

Figure 3.12: 20-Sim model of the schematic block-diagram
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3.4.1 Pre-control signal processing

The control loop needs a clean input signal, because the differential of the curvature is used
further on in the loop. The reason is explained in section 3.4.3. To prepare the loop, first the
offset should be removed from both sensor signals, which is added by a small difference in
resistance between the passive resistor and the strain gauge in the voltage dividers. The mean
is calculated over the first second of the test and subtracted from the input signal. This is done
in every test, because due to creep and drift the mean is changing over time. Now that the
offset is removed from the signal, the signal will go through a low-pass filter. This low-pass
filter is a build-in block of 20-Sim and is shown in figure 3.13. The second mode is measured at
around 86.2 Hz, and must go through the filter. The used filter is a Butterworth second-order
filter with a cut-off frequency of 105 Hz The bode plot magnitude and phase-shift of this filter
is shown in figure 3.14. Two differential sensors are embedded on the positions from figure 3.5.
To understand the sensor signals, the raw data and filtered data are shown in figure 3.15. Now
the signal can be used to check which eigenmodes are present in the beam.

Figure 3.13: 20-Sim block-diagram of input signal processing

Figure 3.14: Bode plot of the Butterworth filter with a cut-off frequency of 105 Hz
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Figure 3.15: First mode (14.2 Hz) excitation response (A) Raw sensor signal (B) filtered sensor signal

3.4.2 Eigenmode check

As stated in the design requirements, the control loop should work at the frequencies of the
different eigenmodes. From the third eigenmode on, it becomes extremely difficult to make
accurate measurements. Therefore, the first 2 modes will be controlled. To distinguish the 2
modes, an eigenmode check has been implemented. The curvature and displacement curves
of the first 2 eigenmodes are shown in figure 3.5. The strain gauges are measuring the curvature
at 2 different places. Combining those results the eigenmodes of the beam can be predicted.
When the beam is in the first mode, both signals will be simultaneously positive or simulta-
neously negative. When the beam is in the second mode, one sensor will measure a positive
curvature while the other sensor will measure a negative curvature. Knowing this, logical oper-
ation built-in blocks are used as can be seen in figure 3.16.
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Figure 3.16: Schematic block-diagram of eigenmode checker. An Xor and NXor port are used to define
the eigenmode.

Two operators are used, an Xor operator for the second mode and an NXor operator for the
first mode. The measured signal is going through another filter. For the first mode this is a
Butterworth second-order filter with a band pass between 10-20 Hz, because the peak of the
bode plot is at exactly 14.2 Hz. For the second mode the band pass is changed to 70-100 Hz,
because the peak is positioned at 86.2 Hz. The bode plots of the filters are shown in figure 3.17.
The phase shift is also shown in this figure. Which is close to zero at the eigenfrequencies.
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Figure 3.17: (A)Bode plot of first eigenfrequency band-pass filter (B)Bode plot of second eigenfrequency
band-pass filter

3.4.3 Hamiltonian integral implementation

From chapter 2, it can be concluded that the derivative of the Hamiltonian should be negative
to damp the system. The result of this equation is shown again:

k =−E I
∫ L

0
wt wxx (3.7)

If removing energy from the system is desired, the sign of k should be opposite of the sign of
the integral. E I is constant and always positive and is neglected in this equation. To get from
the sensor data to the sign of k the next block diagram is used:

Sander Roodink University of Twente



CHAPTER 3. DESIGN 27

Figure 3.18: From the sensor signals to the control law design; n are the elements of the beam

The sensors are measuring the curvature of the beam at element 1 and 15 (shown in figure 3.5).
The beam is divided in 30 elements. With the curvature sign known at element 1 and 15 the
curvature sign and deflection sign of all elements can be approximated. the curvature sign can
be used directly in the integral, however the deflection is differentiated over time to get the
velocity sign. Which is also implemented in the integral. This results in the sign of k, this sign
of k is used to vary the stiffness. A model is built in 20-Sim, see figure 3.19.

Figure 3.19: 20-Sim model from simulated sensors to integral output; beam mode equation code is
shown in appendix C

An important note is that the precise gain is not needed for this damping-injection control-
loop, but the sign of the curvature and displacement curve are. Also the curvature relation
between those different finite elements is needed for the integral approximation.

Based on the displacement curve, the velocity curve can be approximated by differentiating the
displacement curve over time. Normally noise will introduce high peaks when it is differenti-
ated, but the signal is filtered digitally. Therefore high-frequency noise does not occur. Now
wt wxx can be integrated over the length of the beam. For the simulation 14.2 Hz is used, which
is the first eigenmode. The simulation results of this model are shown in figure 3.20. In the first
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plot the simulated sensor values are plotted, in the second plot the integral output is shown.
The frequency of the integral output is doubled compared to the input signal. So the doubled
frequency is the result of the multiplication of the two shifted harmonic signals with the same
frequency.

Figure 3.20: First mode simulation of the integral output, with the use of simulated curvature sensors

Control signal

The control signal is chosen to have a sinusoidal shape. Because only the sign of the integral
is important to implement damping-injection, the control signal could also be a square wave.
This is called a ’bang-bang’ signal. It could be that the controller is more effective with a square
wave than when using the sinusoidal wave, however the linearity of the signal would be lost. To
keep a linear system, the sinusoidal signal is chosen.

Knowing that the curvature and velocity of the beam are correlated, the control integral could
be simplified by removing the velocity approximation. In a harmonic system, the velocity can
also be estimated by the curvature, because the velocity is a quarter period delayed compared
to the curvature. The magnitude of the velocity will be lost. However the error which occurs
by differentiating the beam shape is removed from the system when using this estimation. Be-
cause this estimation only works for controllers of harmonic systems, it is not chosen. To keep
the controller as universal as possible, the velocity of the beam is thus approximated by differ-
entiating the beam displacement shape.

Knowing the signal is sinusoidal and has a frequency twice the displacement frequency, the
control signal is similar to parametric stiffness effects. The concept of damping with parametric
stiffness is discussed in Appendix E. In the discussion the results of this control method and the
parametric stiffness actuation method are compared.

3.4.4 Post-processing

The last step is processing the integrator output so it can be used as control input to the variable
stiffness modulator. This process is shown in figure 3.21.

Sander Roodink University of Twente



CHAPTER 3. DESIGN 29

Control timing

The most important post-processing is the damping injection timing. Because the system has
delays, the timing will be slightly off. Those delays occur at the digital filters, analog low-pass
noise filters, digital processing (like differentiating), the motor controller, motor inertia and
wire stretching. The digital filter delays can be found by the Bode-plots, but the other delays
are mostly mechanical delays which are difficult to model. To compensate these delays, a lead-
lag compensator can be used. A lead-lag compensator adds poles and zeros to the system. To
do this, a working model of the whole system is needed, and this is not available. As such,
another method must be found.

Because the setup is based on a flapping motion, it is harmonic. In a harmonic system an
artificial delay can be added to sync the controller output with the sensor signals. Thus, the
output is calculated on one cycle and implemented on the next half cycle, because the control
frequency is twice the flapping motion. Because the system delay is not known, a delay sweep
is done to see when the damping-injection occurs. This will be shown in chapter 5.

Wire pre-tensioning

To make it possible to both stiffen and soften the beam, the control gain will have an offset of
0.5 V. This is called pre-tensioning the wire. Using this pre-tensioning the beam stiffness can
vary in both directions, as now it is also possible to release tensioning of the wire. During char-
acterization pre-tension will also be used, because the eigenfrequency of the beam is different
than when no tension is applied to the wire.

Control gain

The output of the integrator should be negated, as shown in equation 3.7. This negation is done
in the control gain block. In this block the gain in is tuned so that the maximal control is 1 V
and the lowest gain is 0 V. This is chosen due to the motor controller using an input voltage of
0 to 1 V. A limiter is also set from 0 to 1 V to avoid the peak voltages. The limit is in a normal test
not reached. The variable stiffness actuator can not implement a load which brings the beam
into buckling.

With this last step the control-loop is finished, and therefore can be implemented into the
setup.

Figure 3.21: 20-Sim model for post-processing the integral output to the variable stiffness modulator

3.5 Conclusion

In this chapter the designs for the three sub-objectives, the 3D-printed beam with embed-
ded sensors, variable stiffness actuator and energy-based controller, are introduced. The 3D-
printed beam is designed such that the first eigenfrequency is at 14.2 Hz and the second mode
at 86.2 Hz (as determined in the results, chapter 5.2). The differential sensors are positioned
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such that the highest curvature can be measured. For the variable stiffness actuator, two dif-
ferent principles will be tested. One is the bow principle, the other one is the wire through a
shaft. After the characterisation, the final design will be used in the experiments. The con-
troller is tested in simulations, which show a positive result. Now the three different parts will
be implemented in a setup, to test if the parts, and their combination, work as expected.
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4 Implementation

In the implementation, the different parts of the design chapter are combined into an exper-
imental setup. Fabricating and experimenting the combination of 3D-printing, energy-based
control, and stiffness modulation is a state-of-the-art setup. The fabrication of the setup is ex-
plained in the first section of this chapter. In the second section, the experimental plans are
discussed.

4.1 Fabrication & Assembly

The experimental setup consists of multiple connected parts of hardware. This section is di-
vided into multiple sub-sections based on each component: RaM-stix (4.1.1), a shaker (4.1.2),
a variable stiffness actuator (4.1.3), and the 3D-printed beam (4.1.4). First the complete setup
is shown in figure 4.1.Also a block-diagram of the setup is shown in figure 4.2.

Figure 4.1: The experimental setup
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Figure 4.2: Block-diagram of the experimental setup, with all hardware components (except the ampli-
fier for the shaker)

4.1.1 The RaM-stix board

The heart of this setup is the RaM-stix board, a piece of hardware connecting and controlling all
the separate components. This baseboard is built by the University of Twente RaM group. This
board is used for several reasons. The first one, the board has a sufficient number of analog
inputs and outputs to connect all hardware. The second reason is that the board is compatible
with 20-Sim. In 20-Sim the complete control-loop can be built and the data can be extracted
from the RaM-stix. The third reason is that a high sample frequency can be used due to the
fast internal calculations. As the control and data logging is done at the field-programmable
gate array (FPGA), the data will not be transmitted through the LAN-port. By avoiding the slow
transmission through the LAN-port, the processing time of the control-loop is decreased. Due
to these reasons the RaM-stix is chosen over alternatives such as the NI MyDAQ and the Ar-
duino Mega.

The processor, Gumstix Overo [Gumstix, 2020], of this board can be programmed using 20-
Sim with the 20-sim 4C plug-in. 20-Sim 4C is an open-source real-time Linux, which helps
running c-code on hardware (RaM-stix) to control setups. The RaM-stix is an expansion board
for Gumstix Overo modules and, therefore connects the Gumstix with the FPGA. Digital and
analog inputs/outputs are also built-on the RaM-stix, the board is shown in figure 4.3.

The C-code based control-loop, which is elaborated on in chapter 3, is exported to the RaM-
Stix. The analog output ports of the RaM-stix are connected to the shaker and the variable
stiffness modulator. The analog input ports are connected with the strain gauges. The variables
of the input ports, output ports and state parameters of the control-loop can be logged. The
logging can be done at high sample frequencies. With the used control-loop the maximum
sample frequency is 5000 Hz, otherwise data drops out.
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Figure 4.3: The RaM-stix board, all used ports are marked

4.1.2 The shaker

The beam can be excited using a shaker. The shaker applies a vibration on the variable stiffness
actuator and the beam. The stiffness actuator has to vibrate in tandem with the beam, else the
wires will tension related to the displacement when the beam is displaced by vibration. This is
not desired, as it leads to uncontrolled changes in tension and thus beam stiffness. Because the
stiffness actuator and the beam must be harmonically excited, a shaker is required with enough
power to vibrate the entire mass of this system. The MB PM-50A shaker is able to do this [MB
Dynamcis, 2020]. The resonance frequency of the shaker is at 8000 Hz, which is far above the
second mode (86.2 Hz).

The shaker is used in the experiments to excite the beam harmonically to the specific eigenfre-
quencies, a minimum of 46 V was found to be required for the MB PM-50A shaker to do this.
The analog output of the RaM-stix is only 1 V, thus this signal is amplified 46 times. With the
amplified signal the shaker can excite the whole setup. The RaM-stix, controlled by 20-Sim, is
used to tune the amplitude, frequency, phase, start time and stop time.

4.1.3 Variable stiffness actuator

In figure 3.9 the variable stiffness actuator is already shown. To implement the stiffness ac-
tuator, the motor must be driven using current control as the motor will be actuated in stall
mode. This is done via a motor controller, with the only requirement being that the current is
linear to the voltage input. The used controller is a Maxon ADS50/5 4-Q-DC [Maxon motors,
2020], which meets this requirement. This motor’s input voltage should be between 0 and 12 V
to produce minimum and maximum current. However the analog output of the RaM-stix is
1 V, therefore the signal should be amplified. A 12x amplifier circuit is designed and shown in
appendix F.

4.1.4 The 3D-printed beam

Printer restrictions

A beam with embedded sensors is made of at least two materials, so the 3D-printer should have
at least two different extruders. Also, the bed of the printer should be large enough to print
the beam. Therefore the Diabase H-series printer is used for its multi-material capabilities in
combination with its large printing volume. The Diabase printer is shown in figure 4.4
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The Diabase H-series 3D printer has a printing volume of 416 mm x 186 mm x 210 mm (X x Y
x Z ) [Diabase Engineering, 2020]. The beam will be printed horizontally because this is the
largest dimension.

Figure 4.4: (A) Diabase 3D-printer (B) the five extruders of the printer ©Gerjan Wolterink

In chapter 3.2.1 shafts for electric wires were incorporated into the design. The electric wires
connect the strain sensors to the RaM-stix. The electric wires are implemented inside the beam
instead of on top of the surface. This is done because it means the wires are at the midline of
the bending beam, where the stress during bending is minimal. Therefore the wires do not
come under tension and do not influence the stiffness of the beam. Another advantage is that
the wire is surrounded by the beam, effectively acting as a continuous clamp, and therefore
the wire connections to the sensor pads are tensionless. When a connection is tensionless the
results are expected to be more reliable. The electric wire is melted into the contact pads of the
sensor using a solder iron at 200 ◦C.

The dimensions of the beam are 300 x 15 x5 mm, as discussed in chapter 3.2.1. When the beam
is printed and removed from the printer bed, the beam is not completely straight. Residual
stress is present inside the beam. To reduce the residual stress the beam is heated to 150 ◦C for
ten minutes. The result is shown in figure 4.5.

Figure 4.5: 3D-printed beam with embedded gauges and internal shafts
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4.1.5 Total setup

The complete 20-Sim model, which is uploaded to the RaM-stix, is shown in figure 4.6. The
setup is the same as figure 3.11, only the shaker is added. The RaM-stix with the 20-Sim model
from figure 4.6 will be connected to the hardware using the analog ports. The two inputs are
connected to the voltage dividers of the strain gauges. One of the outputs is connected to the
amplifier of the shaker. And, last, the output of the control-loop is connected to the stiffness
modulation motor. The other blocks, which are part of the control-loop, are already explained
in chapter 3.4. The sensor values are processed so the present eigenmode can be found. Know-
ing the eigenmode the eigenshape can be estimated. Therefore the sign of the velocity and
curvature are known and the integral can be solved. This result will be processed to go into the
stiffness actuator.

Figure 4.6: 20-Sim model used for the experiments

4.2 Experimental structure

To characterise the setup and validate the theory, the experiments are divided in five sections:
Sensor characterisation, dynamics of the beam, effect of damping-injection, adaptability using
control timing and video validation. Those five experiments give insight into the answers to the
research questions.

4.2.1 Sensor characterisation

The sensor characterisation can confirm research question two "How can 3D-printed embed-
ded sensors be used to determine the flapping dynamics?". As mentioned in chapter 5.1, the
curvature of the beam can be measured differentially using two sensors. The sensors are posi-
tioned at the same x-position of the beam, with a displacement from the midline in the positive
and negative y-direction. This measuring manner will be tested during the sensor characteri-
sation, to see if the quality of the sensor output signal is high enough to be used for the control
input. Therefore, the SN-ratio, symmetry of the signal, non-linearity, hysteresis and creep are
measured to assess the sensor output signal quality.

The sensors can be characterised by position controlling the tip of the beam while measuring
the sensor output. For this test a single differential sensor is printed in a smaller beam, which
is connected with a nylon bolt to a linear actuator (SMAC LCA25-050-15F). See figure 4.7. The
linear actuator is controlled using a sinusoidal position as setpoint trajectory. If the beam is
connected directly to the SMAC-actuator, the beam will be clamped at both tips. This will in-
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duce stiffening in the beam. To counteract this behaviour a nylon bolt is used with a diameter
of 5 mm. This bolt is stiff in the axial direction but compliant for bending. The bolt is used as
flexure to release rotational stiffness at the tip. Therefore the beam behaves like a cantilever.

Using the voltage dividers, explained in chapter 5.1, the output voltage and position of the
SMAC-actuator are logged using a TiePie osciloscopes.

Figure 4.7: SMAC-actuator upper left corner, driven by a sinoidal position trajectory. In the middle the
blue beam with embedded sensors, which will be characterised.

4.2.2 Dynamics of the beam

As discussed in chapter 2.1 the stiffness of the beam can be quantified by the change in eigen-
frequency. A lower eigenfrequency corresponds to a softer beam, which leads to an answer on
research question one "How can stiffness variations of a beam be influenced?". The first and
second eigenfrequency of the beam can be found by applying a static axial load on the beam
and performing a frequency sweep. The experimental setup of figure 4.1 will be used, except
the control will be open-loop so the axial load is static. This means that a frequency sweep is
done with the shaker while having a fixed axial load. The RaM-stix will be used to actuate and
log.

This is also a suitable way to test whether the wire through the shaft beam construction gen-
erates enough stiffness variation for the desired effects. If this is not the case, this will also be
assessed for the bow principle to determine which setup should be used in the final experi-
ments.

4.2.3 Effect of damping-injection

As part of research question four "Can port-Hamiltonian modelling be used to design a stabil-
ising control law for flexible beams and how?" , the effect of the control law on the damping of
the system must be analysed, in order to discover how control-loop output correlates to the sys-
tem’s damping-coefficient. If this can be found, the proposed control law holds true in practice
and can be used to control the system as desired.

A method to measure the damping of a system is by measuring the decay of the excitation
response. The system should be excited, and by natural damping the beam vibrations will de-
crease over time. If damping-injection is applied, the exponential decay will increase. With the
curve fitting toolbox of Matlab the exponential decay can be approximated, and therefore also
the effect of damping-injection.

To excite the beam to one of the eigenmodes, the shaker will vibrate at the corresponding eigen-
frequency, after two seconds the shaker is stopped. At this point the beam can be damped nat-
urally or by damping-injection. The behaviour of the beam after the shaker is stopped is called
the excitation response. The input signal of the shaker is shown in figure 4.8. Also the natural
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excitation response of the beam in first mode, as measured by the embedded strain gauges, is
shown.

To understand how the beam vibrations behave when the proposed control is applied, the
damping should be investigated by running multiple excitation response tests with different
control gains. The control gain will be tuned using 20-Sim, between 0 and 1 with steps of 0.2.
The control-loop calculations are done through the whole experiment. Only from two seconds
the output is connected to the variable stiffness mechanism. By approximating the different
damping coefficient, the effect of the damping-injection can be quantified.
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Figure 4.8: Shaker input and measured sensor signal (beam curvature)

4.2.4 Video validation with different eigenmodes

The sensors, variable stiffness actuator and control-loop injection-damping have been tested
separate from each other. To validate whether the entire system works as expected in practice,
sensor measurements should be compared to observed beam behaviour. Two methods can be
used: an accelerometer at the tip of the beam or a high-speed camera. If an accelerometer
is added, the dynamics of the beam are changed due to the added mass on the tip and wires
which can influence the stiffness of the beam. Using a camera will not change the dynamics.
A big disadvantage is that it can not be logged like an accelerometer, and only provides a vi-
sual indication of displacement, which is correlated with the curvature of the beam. Luckily,
for validating the damping-injection exact logging is not needed. Using a natural damped sys-
tem and a controlled system, the difference in displacement between the two can be seen over
time. The visual difference in displacement between the video and the difference in curva-
ture as measured by the sensors can then be compared. Not only should the sensor measure-
ments correspond to the visual displacement, the differences between the natural damped and
damping-injection systems should be proportionally similar for both the sensor measurements
and visual displacement.

The video validation will be done using the Casio Exilim ex-zr200 camera. This camera has
a high-speed setting, which increases the fps (frames per minute), but decreases the image
format. The maximum fps is 1000 with an image format of 224x64 pixels. This is used for the
second eigenfrequency (86.2 Hz). With 1000 fps around 12 images are taken in one cycle. This
is the bare minimum to investigate the damping behaviour of the beam, because the maximal
deflection should be capered every cycle. For the first eigenfrequency (14.2 Hz) 480 fps are
used, so around 34 images are taken in one cycle. When a lower framerate is used the image
quality increases to 224x160 pixels. This is desired because the data is compared visually. The
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naturally damped and damping-injection responses are video-layered on top of each other in
the video footage. This way the difference in displacement becomes visible.

4.2.5 Adaptability using control timing

By changing the timing the beam behaviour can be modified, this will help to get to understand
research question 4 "What beam behaviour (modifications) can be obtained using controlled
beam stiffness variations?". In the post-processing of the control (section 5.5) an artificial de-
lay is implemented to ensure the right timing of the stiffness actuation with the signal cycle.
This effectively neutralizes the delays added by the filters, amplifiers and mechanical system.
The system delays plus the artificial delay should cause the signal output to shift exactly one
cycle. The cycle length is known, but as the system delay is unknown due to its complexity, the
artificial delay can not be determined analytically. Instead, this is determined experimentally
through testing the effectiveness of damping with different artificial delays. Damping should
be most effective when the total delay equals exactly one cycle.

The control frequency is twice the vibration frequency of the beam. In figure 3.20 the vibration
and control signals are shown. Therefore a shift of 180 deg at the eigenfrequency equals a shift
of one cycle of the control frequency.

The first eigenfrequency is at 14.2 Hz (experimental data 5.2) and the RaM-stix sample fre-
quency is set at 5000 Hz (sample time is 0.2 ms). Therefore every beam cycle yields 352 data
samples. If a beam cycle of the first eigenmode has 352 samples, the control cycle of the first
mode will have 176 samples. This means that for the first mode a delay sweep between 1 and
176 sample delays is tested.

The damping-injection delay which corresponds to the maximum effective damping in the sys-
tem is the desired delay. For the first mode delay steps of 25 are used so in total there are eight
excitation responses, from 1 to 175. The excitation responses are processed in Matlab by using
the curvefit toolbox. This results in a damping coefficient - delay time plot.

4.3 Conclusion

In this chapter the three objectives, a 3D-printed beam with embedded sensors, variable stiff-
ness actuation and the controller are implemented in a setup. This setup can be excited using
a shaker. The various experiments are elaborated. The experimental results are shown in the
next chapter.
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5 Experimental Results

In chapter 3, different design choices are elaborated. Those designed parts are: a 3D-printed
beam, a variable stiffness mechanism and the control; they are combined into a final setup
in chapter 4. The final setup is tested by a test sequence which proves if the beam vibrations
can behave as desired. The performance of the proposed system will be evaluated along the
following lines:

• Characterization of the sensors by measuring both the displacement and the sensors in-
dividually, as well as combined. Also the hysteresis, creep and drift are analysed.

• The Dynamic behaviour of the beam is tested using a frequency sweep to find the eigen-
frequencies. Multiple tests are done with different axial loads to see if this results in a
shift in eigenfrequencies. This test will be done with two different setups, one with the
wire inside the shaft and one with the wire outside.

• Validation by video first and second mode sensor-values are compared with high-speed
video footage. This is done to see if the damping increases when the control is imple-
mented.

• Effect of damping-injection, exciting the beam in the first mode a sequence of different
control gains is tested to understand how the damped system behaves.

• Adaptability using control timing, the timing is important to increase the damping of the
system.

5.1 Characterization of the sensors

In chapter 3.2, a differential voltage measurement setup is found to be preferred to measure
the curvature of the beam. The curvature is needed as input for the control-loop. To control
the effective stiffness of the beam, the sign of the curvature and the frequency are important.
This could be tested by logging the sensor values and the displacement at the tip.

To measure the behaviour of the sensors, a test has been executed. The test setup of chapter
4.2.1 is used. The linear actuator (SMAC) is moving the tip of the beam in a sinusoidal trans-
lation between −2.3 mm and 2.3 mm for 10 s. The individual strain sensor outputs are logged
and are also subtracted from each other. The results are shown in figure 5.1. Because a nylon
flexure between the beam and the SMAC-actuator is used, the beam behaves like a cantilever.
However the the vibration frequency is set at 2 Hz. Because the SMAC-actuator can not drive at
a frequency of 14.2 Hz while maintaining a displacement-amplitude that is measurable.

As can be seen, the individual sensors do not respond in a linear manner. When the sensor is
compressed first the voltage increases and at a certain moment, it stops increasing and even
decreases. This behaviour is also concluded in [Christ et al., 2017]. The signal is not symmet-
ric, however the time between zero crossings is the same every half cycle. So the sign can be
measured and can be used as controller input.
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Figure 5.1: (A) The two signals of the difference sensor with a low pass filter cut-off frequency at 105 Hz,
same as in the control-loop. And the offset is removed (B) Signals combined and plotted with the tip
displacement

Another uncertainty of the sensor is the signal-to-noise ratio. If this ratio is too low, the control-
loop can not distinguish the curvature of the beam from the noise. To investigate the noise
intensity, the frequency spectrum plot is shown in figure 5.2. In this test the data is not filtered,
therefore all peaks are visible. It can be seen that the peak at 2 Hz is the highest peak. This is
as expected, because the SMAC-actuator is vibrating at 2 Hz. The 2 Hz signal peak is way above
the SNR of 3 (see equation 5.1). In the controller the signal will also be filtered and therefore it
can be used in the control-loop.

SN R = Pdesired

Pnoise
= 0.8053

1.5692e−6 = 5.1319e5 (5.1)

There are some smaller fundamental frequency peaks up to 12 Hz, which are the non-linearities
of the sensor, to reduce those peaks differential sensing is used. Now the tip position - sensor
difference voltage can be analysed, as shown in figure 5.3. A filter of 12 Hz is used to remove
the high frequency noise. The curve does not show hysteresis, drift, or creep. But other non-
linearity is visible close to the zero crossing, this could influence the curvature sign measure-
ment. However, the non-linearity is small, therefore no further research was deemed to be
required for the application of the sensors in this work.
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Figure 5.2: The frequency spectrum is plotted, to give insights for the signal to noise ratio. This is unfil-
tered data

Figure 5.3: The sensor voltage difference plotted against the tip displacement to check the hysteresis,
drift, creep and other non-linearities. The signal has been filtered by a lowpass-filter, with a cut-off
frequency of 12 Hz.
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5.2 Dynamic behaviour of the beam

To measure the effective stiffness change of the beam, the shift of eigenfrequencies can be anal-
ysed by running a frequency sweep. Multiple frequency sweeps from 0- 120 Hz are performed
with different axial loads. This is done with two setups, in the first setup the wire is inside the
beam (through a shaft), section 3.3. In the second setup the wire is outside the beam (bow
principle), see figure 3.6.

The frequency sweep is done with five different load gains from 0 to 1. If a gain of 1 is used,
a current of 2.0 A flows through the motor. From the static load curve of figure 3.10, the axial
load is 7 N. The frequency domain plot of the wire through the shaft at the middle line is shown
in figure 5.4. The frequency plot of the bow principle is shown in figure 5.5. In both setups
the first two eigenfrequencies are shown. For each load gain the eigenfrequencies are found
and plotted against each other. Those results are shown in figure 5.6. The eigenfrequencies are
found in the frequency spectrum using the findpeaks tool of the Matlab toolbox.

In both tests, bow principle and wire through a shaft, at sensor 1 a peak is visible around 43 Hz,
this is the first eigenmode in the z-direction. With linear strain sensors, this mode in z-direction
could not have been measured. Because the 3D-printed sensors are not linear, as shown in
figure 5.1, this mode is also exposed.

For the wire through the shaft, the results are different than expected. The first eigenfrequency
should increase by the Beck-type softening. But it decreases by 0.1 Hz over 7 N. The difference
between theory and experiments may be explained by at least two reasons. First, the shaft has
a diameter of 1 mm. Therefore the wire is not exactly at the mid-line, and therefore a small
bow-type softening occurs. The second clarification could be that when the beam is curved,
the wire will apply not only a force on the tip of the beam in axial direction, but also a force
against the wall of the shaft. This theory should be researched in future work. However, the
second eigenfrequency is decaying as expected from the analysis.

Looking at the second setup, when the wire is implemented at the outside of the beam, a shift
in eigenfrequencies is visible. The decrease of the first eigenfrequency is around 0.5 Hz and the
second eigenfrequency decreases around 4 Hz, going from no to maximum axial load. This is
less than expected from the analysis when looking at the Euler-type softening. But with the bow
principle not only a force in the x-direction is applied, like the theoretical Euler-type softening
theory. But also a small component is applied on the y-direction.

The stiffness change is less than expected. In this particular experiment a static load is applied.
In the other experiments the axial load varies. This results in peak loads. In figure 3.10 the peak
loads are also shown. The applied force is higher than when only using a static load. For this
reason the stiffness will vary more in modulation than is shown in the static test. Therefore, the
bow principle is used in the final experiment.

Knowing that the bow principle will be used in further tests, the first and second eigenfrequen-
cies are determined. The wire will be pre-tensioned at 0.5 ’motorgain’. If pre-tensioning is used
the beam’s stiffness can be made both stiffer and softer, whereas without pre-tensioning the
wire can only be tensioned. The eigenfrequencies are found using the findpeaks tool from the
Matlab toolbox.

The bow principle test at 0.5 pre-tension gain shows that: the First eigenfrequency is at 14.2 Hz
and the second eigenfrequency is at 86.2 Hz
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Figure 5.4: Power versus frequency response with static stiffness, with the inside wire. The first two
eigenfrequencies are shown at around 14 Hz (first order mode) and around 86 Hz (second order mode).
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Figure 5.5: Power versus frequency response with static stiffness, with the outside wire. The first two
eigenfrequencies are shown at around 14 Hz (first order mode) and around 86 Hz (second order mode).
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Figure 5.6: The axial load is plotted versus the eigenfrequency, with a different wire setup

5.3 Validation by video

The video validation is done in two different sub-sections, the first one will evaluate the results
of the first mode damping-injection. The same is done in the second sub-section for the second
mode.

5.3.1 First eigenmode

To verify damping-injection two tests are done. The beam will be excited in the first eigenfre-
quency. At 2 s in the test, the shaker input signal is stopped. After 2 s the system will damp
naturally in the first test. In the second test damping-injection is applied. In both excitation
responses the lateral curvature is measured by the strain gauges. The result of this is shown in
figure 5.7. The input of the stiffness modulation system is shown in figure 5.8.

Especially looking at the first sensor, the one closest to the clamped-end, the additional damp-
ing is clearly visible in the measurement. This is so because the first sensor is at the position
were the curvature is maximal. The blue line shows a faster decay of the amplitude.

The videos of both tests are superimposed, this is shown in figure 5.9. The orange beam is the
naturally damped system. The green beam is the exciting response with damping-injection.
Visible is that at the start, the beams are exactly on top of each other. At the maximal displace-
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ment positions (peaks of the curvature), the green beam has reduced deflection. This indicates
an increase in damping.

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

Time [s]

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

V
o

lt
a

g
e

 d
if

fe
re

n
c

e
 [

V
]

Sensor 1 Curvature

Natural damping

Damping-injection control

2 2.05 2.1 2.15 2.2 2.25 2.3 2.35 2.4 2.45 2.5

Time [s]

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

V
o

lt
a

g
e

 d
if

fe
re

n
c

e
 [

V
]

Sensor 2 Curvature

Natural damping

Damping-injection control

Figure 5.7: First eigenfrequency excitation response(14.2 Hz) (A) First curvature sensor (B) Second cur-
vature sensor ; Voltage differential measurement in the case of natural damping and damping-injection
with control gain 1 (video validation)
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Figure 5.8: Input of the variable stiffness actuator, in the case of natural damping and damping-injection
control (video validation)
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Figure 5.9: First mode video frames captured at zero- and peaks-curvature; orange beam is without con-
trol; green beam is with damping-injection control. In the left column the green beam is less deflected
than the orange one. This is also the case in the third column. Only three quarter of the beam is captured

5.3.2 Second eigenmode

Two tests are done to test the second mode excitation response, one with control and one with-
out. But now the shaker excites the second mode. The sensor signal results are shown in figure
5.10. The stiffness actuation input is shown in figure 5.11. In the second order excitation re-
sponse of sensor 1 not only the second eigenfrequency occurs. Also the first eigenfrequency
occurs, probably due to the suddenly stop of the shaker. This coupling of different modes was
not encountered by simulations of the control-loop. However the dynamics of the beam be-
have differently when controlled compared to the natural damped system. Visible is that the
first eigenmode is amplified by the control. In section 5.5 the delay sweep is shown, when
the timing is 11 delay samples (which is used in this test), the controller damping coefficient
is lower than a natural damped system. This shows that the first mode is amplified. Looking
at the second sensor the influence of the first mode is less. This is as expected, because the
curvature of the first mode is higher at the first sensor.

This mixed frequency response is also visible in the video. In the first mode every displace-
ment peak was reduced by the damping-injection, this is not the case in the second mode
test. The sensor’s values and video are matching, however it was not possible to capture video
frames and implement them in the report. To see the video, see the digital attachments. But the
damping-injection control lacks the ability to damp first and second mode at the same time.
This is confirmed with the frequency spectrum analysis of the sensors (figure 5.12). When the
damping-injection is implemented the peak at the second eigenfrequency decreases, however
the first eigenfrequency increases.
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Figure 5.10: Second eigenfrequency excitation response (86.2 Hz) (A) First curvature sensor (B) Sec-
ond curvature sensor; Voltage differential measurement in the case of natural damping and damping-
injection control (video validation)
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Figure 5.11: Input of the variable stiffness actuator, in the case of natural damping and damping-
injection control (second eigenfrequency with video validation)

Robotics and Mechatronics Sander Roodink



48 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

100 101 102

f (Hz)

10-5

10-4

10-3

10-2
|P

(f
)|

Frequency response sensor 1, video validation

Natural damping

Damping-injection control

100 101 102

f (Hz)

10-5

10-4

10-3

10-2

|P
(f

)|

Frequency response sensor 2, video validation

Natural damping

Damping-injection control

Figure 5.12: Frequency response from the sensors for the second mode. With damping-injection the
second mode decreases and the first mode increases.

5.4 Effect of damping-injection

To understand how the vibrating beam behaves under damping-injection, the effect of the con-
troller is tested. As explained in chapter 4.2.3 the damping coefficient quantifies the damping
and for that reason will be approximated in this section.

The intention is to test the effect of the controlled system by tuning the gain of the control-
loop. This can be tested by running multiple excitation responses with different control gains.
the control gain is varied between 0 and 1. When the control gain is zero the control loop
is turned off. When the control gain is at 1, a maximum current of 2.0 A is allowed into the
variable stiffness modulator. The test results are plotted in the same graph, figure 5.13. The
differences between the signals is clearly visible from this plot. When the control gain increases,
the curvature of the beam decreases and therefore also the deflection. This indicates that the
control-loop is successfully applying damping-injection.

In the bottom graph of figure 5.13 the voltage difference between the natural response and con-
trolled response is shown. At 2.1 s there is a difference of 0.012 V between the natural damped
system and the highest control gain response. The voltage amplitude of the natural damped
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system is 0.048 V, measured by the strain sensors. At 2.1 s the curvature amplitude is decreased
by 25%.

Figure 5.13: (A) Six excitation responses with different control gains (B) control signals subtracted by
the natural damping signal (0 control gain)

As explained, the damping coefficient is desired. To get from the excitation response to the
damping coefficient, first the envelope of the curvature peaks is needed. The envelope of the
peaks is found by using the envelope function from the Matlab toolbox. This function deter-
mines the peak envelope using the spline interpolation to find the local maximums and mini-
mums. The results is shown in figure 5.14.

From the envelope, the exponential decay of the signals can be approximated. Using the Curve
Fitting App (cftool) from the Matlab toolbox, the exponential function is approximated. To see
if the controlled system still results in an exponential decay, a logaritmic scale is used, to see
if the resulting graph is linear. This result is shown in 5.15 The envelope will be fitted to the
following exponential function:

y = aebs (5.2)

With y the damping curve, a amplitude of the signal before damping, s is time in samples
and b the damping coefficient. The damping coefficient results are shown in figure 5.16. The
damping coefficient is linearly related to the control gain. This is very interesting, it means
that the axial load and damping are related in a linear fashion. However when the control
gain increases, the R2 decreases (from 0.9939 to 0.9196), this means that the curve fitting error
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increases. Because the error increases when the control gain increases, the exponential decay
probably is changing differently than expected in equation 5.2.

Without control the damping coefficient is 3.6×10−4 Nsm−1. When the control gain is one, the
damping coefficient is 4.7×10−4 Nsm−1 this is change of 16.7%.
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Figure 5.14: the envelope of the six different excitation responses
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Figure 5.16: The damping coefficients plotted by the control gain; R2 value left to right [0.9939, 0.9809,
0.9723, 0.9566 0.9414, 0.9196]

5.5 Adaptability using control timing

The last experiment focuses on the adaptability by changing the control timing. This is done by
varying the added delay in the control-loop. One control cycle in the first loop has 176 samples.
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Therefore a delay sweep is done from 1 to 175 with steps of 25 samples and one test is done
without control, which is used as reference. 25 samples is a delay of 0.005 s.

The first mode excitation response of the nine tests is shown in figure 5.17. The bold red line is
the excitation response without control. The delay sweep results show, an increase in damping,
but also a decrease in damping. With a sample delay of 75 samples the damping is the highest.
From the upper curve-fit of the peaks a logarithmic plot is made, to check the exponential de-
cay, shown in figure 5.18. The exponential decay is found and plotted in figure 5.19. Analyzing
those figures shows that the controller can increase or reduce the natural damping, depending
on the delay. The amplification is not within the scope of this project, but it can be interesting
for future work. Figure 5.19 can also be compared with figure E.2. In this figure the damping-
injection is simulated using parametric stiffness effects. In this figure only for a small timing
window, damping-injection can be applied. This is also the case using the control law.

Figure 5.17: Top figure: Nine first mode excitation responses with time delay sweep; Bottom figure:
Damping curve-fit using the peaks of the top figure
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Figure 5.18: Upper damping curve-fit of the peaks in a logarithmic plot, to see exponential decay

0 20 40 60 80 100 120 140 160 180

sample delay

-4.5

-4

-3.5

-3

-2.5

-2

D
a
m

p
in

g
 c

o
e
ff

ic
ie

n
t 

N
s
/m

10-4 Control phase-sweep by curvefitting models

different control delays

no control

Figure 5.19: The damping coefficient of the delay-sweep; Error bars are the 95% confidence bound of
the curve-fit tool

5.6 Conclusion

Various experiments have been performed and analysed. The goal of these tests is to answer
the research questions. First the sensors are characterised. The performance of the sensors
is sufficient to use them in the control-loop. Also the variable stiffness actuator is tested. The
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last goal was to implemented damping-injection in different ways, varying the control gain and
control timing. Those results will be discussed and concluded in the next chapter.
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6 Discussion & Conclusion

The final part of this report is discussing and concluding the system. Which leads to recom-
mendations for future work.

6.1 Discussion

In this chapter the analysis, design and test are discussed. The theories and models will be
connected and motivated with the test results.

6.1.1 Control law by an axial load

In the analysis (chapter 2) two different types of longitudinal load induced softening are ex-
plored, the Euler- and Beck-type. From the variable stiffness analysis, the Beck-type bound-
aries are implemented into the port-Hamiltonian equation. This type was favored over the
Euler-type, because then the wire could be implemented in a wing through a shaft. But af-
ter testing, the stiffness did not change as much as desired. Therefore the bow principle was
introduced, which results in a change of the proposed control equation:

−Q(t )

E I
wt (L) · tan−1 w(L)

L
−E I k

∫ L

0
wt wxx d x < 0 (6.1)

However, this equation is not used in the tested controller. The shear boundary is different, as
it depends on the variables: axial load, velocity and displacement. The value of this boundary
will stay close to zero, because of the tan−1 value. This value will always be small, due to small
deflections. Therefore the controller accuracy could be further improved by implementing this
equation in the setup. This could result in a better damped system.

6.1.2 Approximating the sign using embedded sensors

The tip position - sensor curve in figure 5.3 shows a sensor with minimal hysteresis. The curve
still has non-linearities, but this does not influence the sign approximation for the control law.
This is different from what was expected beforehand, the position - sensor curves of TPU are
far more non-linear than those of PLA.

6.1.3 Port-Hamiltonian model in combination with imperfect sensors

So, it is known is that the sensors are not perfect; there are non-linearities in the signal. There-
fore models are researched to compensate for those non-linearities [Kosmas et al., 2020]. How-
ever, in this research those models are not used. The small non-linearities are not a problem
because the control law is only depending on the sign of the curvature. Thus, an error can only
occur when the curvature is close to zero by measuring the wrong curvature sign. But when
the curvature is close to zero, the gain of the sinusoidal control output is also close to zero.
Therefore the proposed control law still works well despite the imperfect sensors .

6.1.4 First and Second mode interference

The video validation of the second mode experiment did not work as expected. This test was
not as accurate as expected because the first mode was interfering. This mode is probably
excited due to the suddenly stop of the shaker. Because the control timing could only be tuned
to the first or second mode, a combination of modes is not possible with the built controller.
However, in the frequency spectrum a decrease of the second eigenfrequency is visible. This
shows that the second mode could also be damped.
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6.1.5 Effect of damping-injection

The damping-injection was tested by varying the control gain. The damping coefficients of
the different control gains is plotted in figure 5.16. At the maximum the damping is 25%.
This shows that the controller works, however the controller should be improved to get crit-
ical damping . This has multiple reasons like: differences in boundary conditions, the change
of effective stiffness in the beam is lower than analysed and the imperfect sensors.

6.1.6 Control timing

The timing of the controller at the beam vibration is very important to apply damping-
injection. If the timing is off, the damping coefficient decreases, which leads to a less damped
system. However, this can also be used as an advantage. This shows that the control law can
also work to increase the amplitude. So this delay sweep shows not only damping increas-
ing behaviour, but also damping decreasing behaviour. The non-linear sensors can affect the
control timing. However, the non-linearity of the embedded sensors can be compensated by
changing the time delay. But a mixture of modal excitations is not possible in the setup used in
this research.

6.1.7 Parametric stiffness effects

In the design a comparison between the control law and parametric stiffness effects is men-
tioned. Because both systems can implement damping-injection in the experimented system,
by controlling the stiffness of the beam with a sinusoidal frequency twice the vibrating fre-
quency. Comparing figure 5.19 and figure E.2 shows similarities in control timing. However
introducing damping by parametric stiffness can only be applied on a harmonic signal, this is
not the case for the control law. The control law can be implemented in a non-periodic signal,
however the controller design should be changed. The delay, should be changed to a lead-lag
compensator [Verma et al., 2015]. Therefore this method is more general.

6.2 Conclusion

This study tries to answer the following research questions, which are related to the Portwings
project:

1. How can stiffness variations of a beam be influenced? The first part of the analysis is fo-
cused on how the longitudinal load is influencing the stiffness of the beam. The eigenfre-
quencies are used to see how the beam behaves in two different setups. The Euler-type
and Beck-type induced softening. From this analysis two setups are designed and tested:
the bow principle and the wire trough the shaft principle. The wire through a shaft prin-
ciple was initially favored because this design can be directly implemented into the bird
wing. However, after "the dynamic behavior of the beam experiment" it was shown that
the wire through a shaft principle did not work as expected. Therefore the rest of the
experiments was conducted using the bow principle. The bow principle did work, the
stiffness could be changed and therefore, damping-injection is applied by changing the
stiffness.

2. How can 3D-printed embedded sensors be used to determine the flapping dynamics? First
the results of question one will be concluded. From existing 3D-printed projects, a lot
of information has been used. This is used to print a beam with embedded sensors. A
difference in previous work is the strain sensor lay-out: the side way paths have been
printed in a single path to reduce the resistance. Also the differential sensing, which is
researched in the work of [Schouten et al., 2020], improved the linearity of the sensors.

Looking at the tip position - sensor measurements, the hysteresis is minimal. However
non-linearity is shown in results, which can affect the zero-crossing. The sign can be
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measured incorrectly by measuring the wrong zero-crossing. This can be counteracted
by changing the delay of the control-loop. Because the zero-crossing error will be con-
stant over the experiment.

3. What beam behaviour (modifications) can be obtained using beam controlled stiffness
variations? The controller gain can vary the stiffness actuation. The damping which is
applied by the controller is linearly dependent on the controller gain. Therefore it is pos-
sible to modify the beam behaviour with stiffness variations. The timing of the controlled
stiffness modulation is also important to apply damping-injection. The timing is critical
for damping-injection, but it is also promising looking at decreasing damping. By chang-
ing the timing a decrease in damping is possible, which can be used in the closed-loop
control for the mechanical bird.

4. Can port-Hamiltonian modelling be used to design a stabilising control law for flexible
beams and how? The results of experiment "effect of damping-injection" conclude that
energy-based control is a suitable method to model this complex setup. By using the
derivative of the Hamiltonian, a control law is found, which can control the stiffness of
the beam, by only using the embedded strain sensors. Looking at the results the con-
troller damps the system.

The integral of the control law is dependent on the curvature and velocity of the beam.
The curvature is measured at two positions at the beam. With the curvature shape of the
first or second mode, the curvature of the beam is approximated. This is also done for
the displacement. The displacement curve is differentiated to the velocity. Using those
the control output is calculated. However attention should be paid to higher frequencies,
because differentiating a noisy displacement signal ends up in a unusable velocity signal.

Looking at the whole project, the proposed control law is able to control the vibrating beam.
Using damping-injection ensures stability [Melchiorri et al., 1999]. From here it is possible to
improve the system, so not only damping-injection is applied on the system. Other possibility
could be, to increase the flapping amplitude.

6.3 Future work

In future work, this study can proceed in different aspects:

• Increase the complexity of the wing model. In this research a 1D-beam is used as frame-
work. If the model dimensions are increased, multiple loads can be applied, such as lift
and twist by the aerodynamic foil shape.

• At this moment only damping-injection is researched. However in the control timing re-
sults (5.5) a decrease in damping is also found to be possible. Therefore it is interesting
to dive deeper in the derivative of the Port-Hamiltonian model. Instead of damping, it
could be possible to amplify the system. If this is possible the system could be more en-
ergy efficient than an open-loop system. However a study is needed to see if it is possible
to overcome the natural damping of the system by means of the proposed. And also the
amount of energy used by the variable stiffness actuation should be researched.

• In the design 3.3.2 it is already shown that the shear force boundary could be improved.
In future work this difference can be studied and improved. This will increase the effect
of the control law.

• In flapping flight control it is also interesting to look at parametric stiffness effects. If
the parametric stiffness effects are used, the controller could be simplified even more.
When using parametric stiffness to control the system, only the timing and frequency are
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important, because the controller output is only a sinusoidal which does not depend on
the measurement of a strain sensor. This could be measured using an encoder.

• From the frequency sweep, the first mode in the z-direction is measured. For the given
symmetric structure relative to the midline of the beam, with linear sensors this can not
be measured. Knowing this, the sensors could be used in different setups. It can also
measure displacement in the z-direction. A problem occurs is, which component is mea-
sured.

• The controller signal is a sinusoidal signal, this is used so the system is linear. However,
in theory a bang-bang controller could be more effective. This is because the stiffness
change is maximal in both directions for a longer time.

• The variable stiffness actuator changes the stiffness. By using a DC-motor the axial load
is applied to the beam. This motor is quite heavy and energy inefficient. If a variable
stiffness mechanism is used which uses less energy and a higher stiffness change, the
system can be improved. For instance by continuing the work of Melandri [Meleandri
et al., 2020] on distributed variable stiffness mechanisms.

• In this work an artificial delay is implemented in the control-loop, so the control time
is a cycle later. This works in a harmonic setup, however, in an non-harmonic system
the artificial delay will not work. The delay by the system can be compensated using a
lead-lag compensator.
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A Euler-Bernoulli beam theory assumptions

The Euler-Bernoulli beam theory can model the deformations of a beam [Labuschagne et al.,
2009]. This theory was developed around 1750 and is still one of the methods which is used
most to analyse the behavior of bending beams.

In the Euler-Bernoulli theory it is assumed that the modelled beam is slender, therefore the
shear deformations are neglected. To use the Euler-Bernoulli theory the next assumptions are
made [Labuschagne et al., 2009]:

• The plane sections remain plane and normal to the longitudinal axis in every finite ele-
ment of the beam.

• The beam is linear elastic, isotropic and the Poisson’s ratio effects are ignored.

• The deformed angles (slope) of the beam are small. if x is the location along the beam
length, and w(x) is the displacement of the beam at position x the slope(α) will become:

α= d w

d x
(A.1)

Knowing that the deformed angles are small, the square of the slope will even be smaller,
and can be assumed as zero. See equation A.2

α2 =
(

d w

d x

)2

≈ 0 (A.2)

Now, referring back to angles looking at small changes using a Taylor expansion, the fol-
lowing assumptions can be made :

sinα≈α
cosα≈ 1

(A.3)

Based on those assumptions the Euler-Bernoulli Theory results in the following equation:

−d 2w

d x2 = M(x)

E I
(A.4)

Here d 2w
d x2 is the second derivative of the deflection of the beam, M is the internal moment in

the beam over the length, E is the Young’s modulus and, lastly, I is the moment of inertia of the
cross-section.
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B Tables of eigenfrequency change by axial load

In this appendix the tables of Euler-type, Beck-type and Solidworks simulations of axial load -
eigenfrequency are shown.

Load [N] first eigenfrequency[Hz] second eigenfrequency[Hz]
0 15.2 95.5
0.5 14.2 94.8
1 13.1 93.6
1.5 11.9 92.5
2 10.5 91.4
2.5 8.9 90.1
3 6.8 89
3.5 3.5 87.8
3.6 2.4 87.6
3.65 1.6 -
5 - 84.2
10 - 71.1
15 - 56.3
20 - 41.2

Table B.1: Euler-type softening calculated eigenfrequency change dependent on the axial load

Load [N] first eigenfrequency[Hz] second eigenfrequency[Hz]
0 15.2 95.6
4 16.8 92.2
8 18.4 88.2
12 20.8 84
16 23.2 79.3
20 26.2 74.2

Table B.2: Beck-type softening calculated eigenfrequency change dependent on the axial load

Load [N] first eigenfrequency[Hz] second eigenfrequency[Hz]
0 13.5 84.684
4 10.8 81.9
8 6.7 79.1
10 2.7 77.6
12 - -

Table B.3: Solidworks simulations of the Euler-type softening; eigenfrequency change dependent on the
axial load
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C 20-Sim code

Block: beam_mode_equati on1

Robotics and Mechatronics Sander Roodink



62 Energy-based control of a 3D-printed vibrating beam using stiffness modulation.

Block: cur ve_model_mode1
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E Damping of a beam by parametric stiffness

In this report damping injection by means of varying the stiffness through applying an axial
load is researched. However, tt is also possible to parametrically vary the stiffness for peri-
odic excitation. This is studied for damping among others by Dohnal, with parametric anti-
resonance [Dohnal, 2012]. This appendix presents a brief study of damping through parametric
stiffness.

E.1 1 Degree of Freedom approximation cantilever

A one degree of freedom (DoF) approximation is used to model the first eigenmode vibration
of the cantilever beam (figure E.1). A simple approximation of a harmonic oscillator is found
in [vlab.amrita, 2011]. The deflection h of the tip of the cantilever can be modelled by:

meffh +γh +k0h = F0 cos(ωs t ) (E.1)

meff
∂2h

∂t 2 +γ∂h

∂t
+k0h = F0 cos(ωs t ) (E.2)

With:

• The effective mass of an oscillating cantilever in first mode can be approximated as a
mass at the tip by:meff ≈ 33

140 mbeam

• The stiffness of a cantilever is approximated through beam theory by (assuming the ef-
fective mass acts at the tip of the cantilever):k0 = 3E I

L3

• A linear damping of γ is assumed

• The system is excited by a harmonic force with amplitude F0 and angular frequency ωs

Figure E.1: 1 DoF model of the cantilever beam

E.2 Parametric stiffness

The parametric pumping (varying the stiffness) in this example is applied by an axial load, to in-
crease or decrease the stiffness of the beam. For parametric damping, the pumping frequency
should be twice as high as the cantilever vibration frequency. Important parameters are:

• kp, the pumping stiffness variation
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• φ, is the delay of the pumping frequency with respect to the period of the vibration fre-
quency. The control timing gets into the equation through substituting a shift in time∆t ,
which results in:

2ωs(t +∆t ) = 2ωs t +2ωs∆t = 2ωs t +2φ (E.3)

The parametric oscillator will have the form of the damped Mathieu equation:

mḧ +γḣ + (
k0 −kp cos

(
2ωs t +2φ

))
h = F0 cos(ωs t ) (E.4)

this is rewritten to e by Euler’s formula:

mḧ +γḣ +
(
k0 −

kp

2

(
e j 2ωs t e2φ−e− j 2ωs t e−2φ

))
h = F0

2

(
e jωs t +e− jωs t

)
(E.5)

The interaction of the vibration signal and the pumping signal causes parametric frequency
mixing in the solution. Besides the driving frequency ±ωs , also the frequency ±3ωs will be
present. Therefore the Mathieu equation cannot be expressed in terms of solutions for a
second-order linear ordinary differential equation. To find an analytical approximation, the
method of harmonic balancing will be used.

E.3 Harmonic balancing

The parametric mixing introduces higher harmonics into the system. However, due to the at-
tenuation above the resonance frequency of the system, only the first higher modes have to
be considered. Harmonic balancing is a method for approximating the analytical solutions by
limiting the analysis only to the most important frequencies (so higher order frequency terms
are truncated). Due to the linear nature in h of the Mathieu equation, the oscillations at dif-
ferent frequencies are a linear combination and therefore the analytical approximation can be
found by “balancing” the frequency terms ±ωs and ±3ωs . A nice application of this method
on an electromechanical system with parametric stiffness can be found in [Droogendijk et al.,
2013].

The solution h will be of the following form:

h(t ) = h1e jωs t +h2e− jωs t +h3e j (3ωs t ) +h4e− j (3ωs t ) (E.6)

The system of equations can be written as a linear system of coupled differential equations,
with one equation for every frequency i . Which leads to:

(−mω2
i + jγωi +k0)hi −

kp

2

(
e j 2ωs t e2φ−e− j 2ωs t e−2φ

)
hi

= F0

2

(
e jωs tδ (ωi −ωs)+e− jωs tδ (−ωi +ωs)

) (E.7)

The δ-function is required to only express the driving force at the excitation frequency. Fur-

thermore the following constants are defined: gi = −mω2
i + jγωi + k0, a1 = kp

2 e j 2φ, a2 =
kp

2 e− j 2φ, b = F0
2 . This simplifies the equations to:

gi h −a1e j 2ωs t h −a2e− j 2ωs t h = be jωs tδ (ωi −ωs)+be− jωs tδ (−ωi +ωs) (E.8)

The matrix of linear equations becomes:
g1 −a1 −a2 0
−a2 g2 0 −a1

−a1 0 g3 0
0 −a2 0 g4




h1

h2

h3

h4

=


b
b
0
0

 (E.9)
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To determine the coefficients hi , h = [. . .]−1b needs to be solved:
h1

h2

h3

h4

= b

a2
1a2

2 −a1a2
(
g1g3 + g4

(
g2 + g3

))+ g1g2g3g4


−a1a2g3 +a1g3g4 + g2g3g4

−a1a2g4 +a2g3g4 + g1g3q4

a2
1(−a2)+a2

1g4 +a1g2g4

−a1a2
2 +a2

2g3 +a2g1g3

 (E.10)

This equation is solved in Matlab, using the parameters from the table 2.1 and the amplitude
of kp = 7,32. This results in the following , which will be compared to the control timing plot in
figure 5.19:

The gain due to parametric stiffness is determined with:

Gain = |h1|
|h1(kp = 0)| (E.11)

The solution can be found in figure E.2 (the magnitude of h3 was also calculated, but is very
small compared to h1). It becomes clear that the parametric stiffness can give rise to both
damping and amplification, depending on the phase of the stiffening with respect to the har-
monic excitation.

Looking at the two methods, damping by parametric stiffness and damping by the control law,
both are dependent on the timing of stiffness varying compared to the vibration frequency.
However the parametric stiffening is only applicable at sinusoidal harmonic signals. This is not
the case using the control law, this can also be implemented in a more general case. However
in the test setup a harmonic signal is controlled.

Figure E.2: Simulated gain of the amplitude with parametric stiffness divided by the amplitude without
parametric stiffness
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F Amplifier circuit

Figure F.1: 12x Amplifier circuit for the variable stiffness actuator; the LM324 op-amp is used as amplifier
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