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Summary

Currently, imaging techniques are advancing widely in the medical field especially during
image-guided interventions and diagnosis. Among the available medical imaging techniques,
magnetic resonance imaging (MRI) offers the highest soft tissue contrast, which helps detecting
small lesions (such as tumors) at an early stage. However, MRI does not offer high update rate
acquisitions and thus the exact motion of the lesions remains uncertain. Moreover, respiratory
induced motion introduces significant challenges during medical image acquisition and
image-guided interventions. Respiratory induced internal liver motion causes uncertainties
in localizing hepatic lesions which could lead to motion artifacts and misdiagnoses during
image acquisition or inaccurate targeting and significant tissue loss in case of image guided
interventions. A common approach is Respiratory Motion Estimation (RME) in which the
internal liver motion is estimated by measuring external signals called surrogates that do not
directly measure the internal liver motion. The aim of this thesis is to determine the feasibility
of estimating the internal motion of the liver due to respiration acquired using MRI by tracking
small sized markers using a digital camera. The two acquired data will be processed offline
and a fitting algorithm will be developed to design motion models such that based solely on
tracking the external markers at a high update rate, the liver motion is estimated. In the same
context, three healthy subjects volunteered for human subject experiments. Each volunteer
was subjected to two sessions such that MRI acquired liver images were recorded alongside
with camera tracked external markers. The acquired liver and abdomen motion were utilized
to train three motion models (multiv-ariate, Ridge and Lasso regression models) to estimate
the superior-inferior (SI) motion of the liver. The conducted human subject experiments
demonstrated that the breathing patterns differ between sessions and subjects and thus,
patient specific motion models were designed. The liver SI motion estimated by the motion
models were compared to the true values acquired from MRI. Over the six acquired sessions,
the mean absolute error (MAE) predicted by the motion models ranged between 0.8 mm and
1.9 mm.

During the period of this thesis, a medical proposal was submitted to the local medical ethical
committee at the University of Twente to approve conducting the human subject experiments.
The medical proposal consisted of two main documents. Firstly, a detailed measurement
protocol was documented to explain the step by step procedures of the conduced human
subjects experiments (Appendix [A]). Secondly, a detailed description of the study was given to
the volunteers prior signing their consent (Appendix [B]). Furthermore, before conducting the
human subject experiments, various preliminary experiments (Appendix C) were conducted to
formulate and develop the measurement protocol.
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1 Introduction

This project aims to design, develop and validate an approach to estimate the respiratory
induced motion (RIM) of the liver by utilizing abdominal motion as a surrogate signal.

1.1 Context

Accounting for 9% of worldwide, the liver is considered the second main cause of cancer
deaths (WHO (2017)). However, if diagnosed and treated at early stages, 30-50% of cancer
cases could be prevented (WHO (2017)). Such prevention is a challenging task that requires
improving awareness, diagnosis and treatment equipment. There are multiple methods
to detect liver lesions depending on the stage of the cancer. Such diagnosis range from
physical examination, lab tests, imaging tests and biopsy (Oberfield et al. (1989)). In the same
context, liver cancer could be treated depending on the diagnosis and the stage of the cancer.
Such treatment options include invasive surgeries, tumor ablation using percutaneous needle
insertion, radiation therapy and chemotherapy (WHO (2017)).

The significance of utilizing imaging modalities during treatment (image-guided interventions)
and diagnosis (image acquisition) are indeed crucial. For instance, Medical imaging modalities
(such as computed tomography (CT), ultrasound (US), magnetic resonance imaging (MRI),
fluroscopy, etc.) are extensively utilized during such acquisitions and interventions. In
particular, MRI is more superior than other imaging modalities for soft tissues (such as the
liver), (Stemkens et al. (2015); Preiswerk et al. (2016)). To emphasize, high quality and update
rate medical images can improve the overall diagnosis and treatment of cancer patients
significantly. However, such requirements are often contradicting. For instance, MRI offers
high quality images for the liver at a low update rate compared to US that offers the opposite.

1.2 Problem Statement

RIM causes great challenges during image acquisition and image guided interventions. Since
respiration involves the simultaneous motion of the diaphragm and the ribcage, the organs in
the abdominal and thorax regions (such as lungs, liver, diaphragm, etc.) are mostly affected
(Keall et al. (2006); Ehrhardt et al. (2013)). For instance, since the liver is directly attached to
the diaphragm, its induced motion could range between 8-25 mm in a single direction (Langen
and Jones (2001); Shimizu et al. (1999)). As a result, uncompensated RIM alongside imaging
modalities that do not offer a high update rate introduces motion artifacts that significantly
influence the quality of the acquired images. Motion artifacts causes uncertainty in localizing
the exact tumor motion (McClelland et al. (2013)). Such issue could lead to misdiagnoses
during image acquisition and tissue loss during biopsy. Furthermore, the uncertain tumor
location causes further radiation exposure to healthy cells during radio therapy (Keall et al.
(2006)) and further damage to healthy tissues due to inaccurate targeting in case of needle
insertion and tumor ablation,

Breath holding is one common solution to RIM such that the patient is required to hold his/her
breath for approximately 20 seconds while the procedure is performed during the breath hold
period (Lal et al. (2012)). Moreover, respiratory gating is also a common solution to RIM
in radio therapy such that the motion of the lesions are constantly scanned during normal
breathing (Keall et al. (2006)). However, the radiation is delivered during a certain window
of the breathing cycle. The main disadvantage of breath holding and respiratory gating is that
both techniques increase the intervention time dramatically. Moreover, during breath holding,
patients might feel uncomfortable to hold their breath for that long due to illness or sedation
(Zhou et al. (2013)).

Robotics and Mechatronics Shamel Fahmi
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Additionally, Respiratory Motion Estimation (RME) is another approach that estimates the
actual motion of interest by measuring external signals so called surrogate signals (Ehrhardt
et al. (2013)). Surrogate signals could be any internal or external signals obtained at a tolerable
temporal resolution and with a strong correlation with the internal motion of interest. The
main objective of RME is given a set of surrogate and motion data, a motion model is designed
that describes the relation between the surrogate and motion data. The motion model is
developed by utilizing a fitting method that is typically a supervised learning algorithm which
fits the surrogate to the motion data.

1.3 Goals

This context will be focusing on respiratory motion estimation of the liver such that the motion
data are MRI acquired liver scans. Accordingly, the objectives of this paper are summarized as
follows:

• Analyzing the types of surrogate signals and determining appropriate surrogate data that
fit(s) the challenging MR environment.

• Developing motion model(s) by determining appropriate supervised learning
algorithm(s) that have a strong relationship between the surrogate and motion data.

• Validating the designed motion model(s) and the suggested RME approach by
conducting human subject experiments.

1.4 Outline

This thesis is outlined as follows:

• The developed RME approach and the conducted human subject experiments were
summarized in paper format. Abdominal motion tracking was chosen as the optimal
surrogate signal choice and was justified in the paper. Moreover, three supervised
learning algorithms were chosen accordingly. Additionally, human subject experiments
were conducted at an open bore MRI system at the University of Twente.

• A measurement protocol explaining the step by step procedures of the conduced human
subjects experiments was submitted to the local medical ethical committee and is
presented in Appendix [A].

• A brief description of the study given to the volunteers prior signing their consent was
documented and presented in Appendix [B].

• Before conducting the human subject experiments, various preliminary experiments
were conducted to formulate and develop the measurement protocol. The preliminary
experiments are presented in Appendix [C]

• The recruitment procedures of the volunteers are presented in Appendix [D]

Shamel Fahmi University of Twente
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2 Paper: Respiratory Motion Estimation of the Liver with
Abdominal Motion as a Surrogate: A Supervised Learning
Algorithm

Abstract – Respiratory induced motion introduces significant challenges during image
acquisition and image guided interventions. Respiratory induced internal motion causes
uncertainties in localizing hepatic lesions which could lead to motion artifacts and
misdiagnoses during image acquisition or inaccurate targeting and significant tissue loss
in case of image guided interventions. A common approach is Respiratory Motion Estimation
(RME) in which the internal liver motion is estimated by measuring external signals called
surrogates. In this paper, external markers placed on the human’s abdomen were measured
and subsequently correlated to the internal liver motion obtained during MRI acquisition.
Accordingly, appropriate correspondence models were designed to correlate the internal
liver motion with the external markers motion. Three subjects volunteered for two sessions
each such that MRI acquired liver images were recorded alongside with camera tracked
external markers. The acquired liver and abdominal motion were utilized to train three
correspondence models (multivariate, Ridge and Lasso regression models) to estimate
the superior-inferior (SI) motion of the liver. The conducted human subject experiments
demonstrated that the breathing patterns differ between sessions and subjects and thus,
patient specific correspondence models were designed. The liver SI motion estimated by the
correspondence models were compared to the true values acquired from MRI. Over the six
acquired sessions, the mean absolute error (MAE) predicted by the correspondence models
ranged between 0.8 mm and 1.9 mm. The results also concluded that using multiple markers
can improve the estimation accuracy as well as using multiple surrogates. The authors also
suggested that using high resolution (temporal and spacial) MRI images can significantly
improve the overall performance of the RME framework.

Robotics and Mechatronics Shamel Fahmi



Respiratory Motion Estimation of the Liver with Abdominal Motion as a Surrogate:
A Supervised Learning Approach

Shamel Fahmi1 and Momen Abayazid1

Abstract— Respiratory induced motion introduces significant
challenges during image acquisition and image guided
interventions. Respiratory induced internal motion causes
uncertainties in localizing hepatic lesions which could lead to
motion artifacts and misdiagnoses during image acquisition
or inaccurate targeting and significant tissue loss in case of
image guided interventions. A common approach is Respiratory
Motion Estimation (RME) in which the internal liver motion is
estimated by measuring external signals called surrogates. In
this paper, external markers placed on the human’s abdomen
were measured and subsequently correlated to the internal
liver motion obtained during MRI acquisition. Accordingly,
appropriate motion models were designed to correlate the
internal liver motion with the external markers motion. Three
subjects volunteered for two sessions each such that MRI
acquired liver images were recorded alongside with camera
tracked external markers. The acquired liver and abdominal
motion were utilized to train three motion models (multivariate,
Ridge and Lasso regression models) to estimate the superior-
inferior (SI) motion of the liver. The conducted human subject
experiments demonstrated that the breathing patterns differ
between sessions and subjects and thus, patient specific motion
models were designed. The liver SI motion estimated by the
motion models were compared to the true values acquired from
MRI. Over the six acquired sessions, the mean absolute error
(MAE) predicted by the motion models ranged between 0.8
mm and 1.9 mm. The results also concluded that using multiple
markers can improve the estimation accuracy as well as using
multiple surrogates. The authors also suggested that using high
resolution (temporal and spacial) MRI images can significantly
improve the overall performance of the RME framework.

Index Terms— Respiratory Motion Estimation (RME),
Magnetic Resonance Imaging (MRI), Respiratory Induced
Motion (RIM), Statistical Learning, Surrogate Signals, Optical
Tracking.

I. INTRODUCTION

A. Liver Cancer

The liver is the largest organ in the human body located
in the upper-right abdomen, attached to the diaphragm and
guarded by the rib cage [1]. Liver cancer is the second
main cause of cancer deaths worldwide accounting for
approximately 9%. In the Netherlands, liver cancer accounts
for 2.4% of all cancer cases [2]. Moreover, 70% of cancer
deaths occur in developing countries due to the lack of
diagnosis, care and prevention equipment. As stated by the
World Health Organization (WHO), 30-50% of cancer cases
could be prevented if diagnosed and treated early [3].

1S. Fahmi and M. Abayazid are with the Robotics and
Mechatronics Lab, Faculty of Electrical Engineering, Mathematics
and Computer Science, University of Twente, 7522 NH Enschede, The
Netherlands. a.m.s.b.m.fahmi@student.utwente.nl,
m.abayazid@utwente.nl.

Liver cancer diagnosis varies from physical examination,
lab tests, imaging tests and biopsy [4]. Moreover, there are
several treatment options for liver cancer depending on the
diagnosis and the stage of the cancer. These options could
be invasive surgeries, tumor ablation using percutaneous
needle insertion, radiation therapy, chemotherapy, etc
[3]. Percutaneous image-guided interventions are widely
performed during cancer treatment. These interventions
are utilized during needle insertion/biopsy, fluid collection
drainage and tumor ablation and are guided using medical
imaging modalities [5].

Medical imaging modalities (such as computed
tomography (CT), ultrasound (US), magnetic resonance
imaging (MRI), fluroscopy, etc.) are widely used during
image acquisition and image guided interventions. These
modalities are used depending on the type, structure and
number of lesions and/or the tissue of the organ. For
soft tissues (such as the liver), MRI is more preferable
than other imaging modalities [6], [7]. It is important to
emphasize the significance of imaging modalities during
treatment (image-guided interventions) and diagnosis (image
acquisition). In fact, high quality and real-time medical
images can significantly improve the overall diagnosis and
treatment of cancer patients. However, both requirements
are usually contradicting. For instance, MRI offers high
image quality at a low update rate compared to ultrasound
who offers the opposite [7].

B. Respiratory Induced Motion (RIM)

Organ motion during procedures causes a huge challenge
and dramatically reduces the efficiency of such procedures
[8]. One of the main causes of internal organ motion is due
to respiration. Respiratory motion is characterized mainly by
the diaphragm and the ribcage motion due to the expansion
and contraction of the lungs during inhalation and exhalation
(as shown in Fig. 1). Respiratory induced motion (RIM)
mainly affects the organs in the abdominal and thorax regions
(such as lungs, liver, diaphragm, etc.) [9], [10]. In fact,
respiratory induced liver motion could range from 8-25 mm
in a single direction and is more dominant in the superior-
inferior (SI) direction than the anterior-posterior (AP) and
lateral directions [8], [11].

In the same context, the average human breathing
frequency is 12-15 breaths per minute during normal
breathing (at rest) [12]. Thus, if RIM is not compensated
and the imaging modalities do not offer such an update rate,
the quality of the images will be significantly influenced by
motion artifacts [9]. As a result, during image acquisition,
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Fig. 1. Schematic sagittal slice showing respiratory induced motion (RIM)
due to breathing. During respiration the lungs expand and contract due to
the motion of the diaphragm and the rib cage.

motion artifacts significantly reduce the quality of the
acquired images which results in an uncertainty in locating
the exact tumor motion [13]. The same problem occurs
during treatment in radiotherapy, the uncertain tumor location
causes further radiation exposure to healthy cells which
might be hazardous for the patient [9]. Furthermore, during
image-guided interventions and biopsy, the exact knowledge
of the lesions’ locations are crucial to ensure accurate
targeting. Inaccurate targeting causes further damage to
healthy tissues in case of needle insertion and tumor ablation,
and misdiagnoses in case of biopsy.

A common solution to RIM is breath holding. Breath
holding is a technique that requires the patient to hold his/her
breath for approximately 20 seconds such that treatments
occur only during that period of breath hold [14]. The
main disadvantage of breath holding is that it increases
the intervention time dramatically. Moreover, patients might
feel uncomfortable to hold his/her breath for that long due
to illness or sedation [15]. Respiratory gating is also a
common solution during radiotherapy such that the RIM of
the lesions are constantly scanned during normal breathing
[9]. Nevertheless, the radiation is delivered during a specific
window of the breathing cycle henceforth the approach still
suffers from the increase in acquisition and intervention time.

C. Respiratory Motion Estimation (RME)

Respiratory Motion Estimation (RME) is another approach
that estimates the actual internal motion of interest by
measuring external signals so called surrogate signals [10].
Surrogate signals are signals that do not measure the actual
internal motion of interest but have a strong correlation
with it and could be easily measured. RME is genuinely
utilized in applications when it is not possible or feasible
to directly acquire the actual internal motion of interest
with a tolerable temporal resolution/update rate [13]. RME
depends on deriving a motion model that describes the
relation between the internal motion of interest with the
surrogate signals.

?

ONONON

Fig. 2. RME system overview: the figure illustrates the overview of RME.
The surrogate data and motion data (which represents the actual internal
motion of interest) are acquired at the same time. The fitting algorithm
trains the motion model using a supervised learning algorithm such that
using only the surrogate data, motion estimates could be predicted.

The system overview and definitions of RME are
addressed as follows (see Fig. 2):

• Motion Data: The actual internal motion of interest that
are usually medical imaging data acquired at a low
update rate [16].

• Surrogate Data: External or internal signals that do not
directly measure the internal motion of interest despite
having have a strong relationship with the motion data.

• Motion Model: The model is a mathematical description
of the relation between the motion data and the
surrogate data. The relationship between the surrogate
and motion data is represented by set of parameters.
For example, if the relationship is linear, the motion
data could be estimated by linear combinations of the
surrogate data.

• Fitting Method: The method that the motion model
uses to fit the surrogate and motion data. This is
typically a supervised learning algorithm that computes
the parameters of the motion model for the optimal fit.

• Motion Estimate: The motion estimate is the estimated
motion determined by the motion model. Usually the
motion estimates are reconstructed data of the same type
as the motion data. Motion estimates could be of other
types, such as raw data (displacements of the internal
motion of interest), data of different imaging modality
or a boolean gate signal used during respiratory gating.
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As shown in Fig. 2, the RME approach consists of two
main phases. Firstly, a training phase is required such that the
motion data and surrogate data are used by the fitting method
to train the parameters of the motion model. Typically, a
suitable supervised learning algorithm should be chosen to
find the correlation between both data. Secondly, during
the prediction phase, the surrogate data (of high update
rate) is fed to the motion model and motion estimates are
determined.

D. Objectives

This context will be focusing on RME of the liver. The
motion data are MRI acquired liver scans while the motion
estimates are raw data of the estimated liver motion. The
objectives of this paper are summarized as follows:

• Choosing appropriate surrogate data that fit(s) the
challenging MR environment.

• Choosing appropriate fitting algorithm(s) that have
a strong correspondence between the surrogate and
motion data.

• Validating and assessing the designed motion model(s)
and the suggested RME framework by conducting
human subject experiments.

E. Contribution

Sect. II analyzed and reviewed the various types of
surrogate data used in RME. Accordingly, abdominal motion
tracking using external markers was chosen as the surrogate
data. To the authors’ best knowledge, RME of the liver
using MRI acquisition is not often addressed in the literature
due to its challenging environment. In fact, as shown in
Table I, most of the approaches in RME of the liver focus
on other types of surrogate data (such as MRI, bellows,
accelerometers, etc.). As illustrated in Table I, and to the
authors’ knowledge, this context is the first in representing
RME of the liver using abdominal motion as a surrogate. In
the same context, apart from not using MRI as motion data,
studies who used external markers as a surrogate for RME
of the liver validated their approaches on either phantoms
or animal subjects. In fact, the authors paced ahead by
extending and validating the suggested approach on human
subjects by utilizing state of the art supervised learning fitting
methods (namely linear, Ridge and Lasso), and surpassing
other studies in RME of the liver by introducing Lasso
regression as a fitting method (as shown in Table I).

F. Outline of this Paper

The outline of this paper is as follows. Firstly, the
types of the surrogate data are mentioned in Sect. II.
In the same section, abdominal motion tracking will be
chosen and justified as the optimal surrogate choice during
MRI acquisition. Additionally, the designed motion models
are presented in Sect. III. The conducted human subjects
experiments are presented in details in Sect. IV-C followed
by the post-processing methodology in Sect. IV-D. Finally,
the results are presented in Sect. V and discussed in Sect. VI
followed by the conclusion in Sect. VII.

II. SURROGATE DATA

A. System Requirements

As explained earlier in Sect. I-D, MRI is the medical
imaging modality used. The surrogate data will be selected
as follows:

• The surrogates should be MRI compatible such that
nether the quality of the MRI acquisition nor the
surrogate signal is affected.

• The surrogates should operate safely in the MRI as well
as operating outside the MRI.

• The surrogates should not cause additional discomfort
or burden to the patient.

• The surrogates should have an enough update rate
to capture the variety of the breathing patterns. The
update rate should be greater than double the breathing
frequency. Thus, since normal breathing is below 0.33
Hz [12], the surrogate update rate should be greater
than 0.67 Hz. Additionally, the surrogates should
also be high enough to account for processing and
computational costs during estimation.

B. Surrogate Data: Analysis

MR navigators are the most common surrogates for MR
imaging in RME. They are partial MRI data (window)
obtained during acquisition [24]. They are mostly used to
track a window of the diaphragm SI motion [13]. The
navigators are convenient for MR applications since they do
not require extra equipment or installation. However, MR
navigators will increase the acquisition time [7]. Moreover,
since MR navigators rely on MRI acquisition, they can not
be used without the MRI.

Another surrogate example for RME is spirometery.
Spirometers reply on measuring the respiratory volume of
the air flow in and out of the lungs [25]. The main advantage
of spirometers is that they are simple one dimensional
signals that have a high correlation to the respiratory motion
[26]. However, studies have shown that spirometers have a
noticeable drift due to air leakage [24], [27], [28]. as well
as a noticeable discomfort for patients [25].

In the same context, respiratory bellows (pneumatic belts)
are as common as spirometers. The respiratory bellow is
an air filled bag that is tapered around the subject’s thorax
measuring the thorax motion due to respiration [29]. As the
thorax moves due to respiration, air is driven in and out
of the bellow creating a flow that is measured [13], [30].
The bellows share the same advantages and disadvantage
of spirometers. The most common disadvantage in bellows
is in its placement since they restrict the operating area
of the patient. Moreover, to get an accurate measurement,
the bellows have to be tightly stretched around the patient’s
thorax, which is uncomfortable for the patient [24].

Accelerometers are also utilized as surrogate signals [31]
during percutaneous interventions [5] and have been tested
for their MRI compatibility [24]. Nevertheless, they are
usually not preferred due to their poor MRI compatibility
and low correlation to respiratory motion. [31].
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TABLE I
SUMMARY OF THE RELATED WORK ON RESPIRATORY MOTION ESTIMATION (RME) OF THE LIVER.

Related Work Motion Data Surrogate Data Fitting Methods Experimental Validation

Beddar et al., 2007 [17] CT External Markers Linear Regression Human Subjects
Odille et al., 2008 [18] MRI Respiratory Bellows Others Motion Phantom & Human Subjects
White et al., 2009 [19] MRI MRI Others Human Subjects

Nguyen et al., 2009 [20] CT MRI Others Human Subjects
Hinkle et al., 2009 [21] CT External Markers Others Motion Phantom
Ernst et al., 2009 [16] Xray External Markers Support Vector Regression Porcine Subject

Rijkhorst et al., 2011 [22] MRI MRI Linear Regression Human Subjects
Buerger et al., 2012 [23] MRI MRI B-spline Smoothing Human Subjects
Preiswerk et al., 2016 [7] MRI US Kernel Smoothing Human Subjects

Chen et al., 2017 [24] MRI Accelerometers & Bellows Linear & Ridge Regression Motion Phantom & Human Subjects
Abayazid et al., 2017 [5] EM1 Accelerometer RAkEL2 Motion Phantom

Fahmi et al., 2017 MRI External Markers Linear, Ridge & Lasso Regression Human Subjects
1 Electromagnetic sensor 2 Random k-Labelset

Surrogates could also rely on other medical imaging
modalities. For example, a low resolution US has been
studied to measure the diaphragm motion while using high
resolution MRI as motion data [7]. The results are promising,
however, US is still not MRI compatible unless the US
is wired with optical fibers which might be expensive
and fragile. Fluoroscopy could be also used as a real
time surrogate for diaphragm tracking. However, it causes
additional radiation to the patient [26].

Finally, optical tracking is another choice of surrogate
data. By using an infrared (IR) or a digital camera, markers
placed on the patient’s chest or abdomen are tracked.
Many studies showed that tracking the patient’s thorax
motion by placing external markers has a good correlation
with respiration [16], [17], [25], [31] - [32]. For example,
Beddar et al. used Real-time Position Management System
(RPM, Varian Medical Systems, Palo Alto, CA) which had
a reflective marker placed on the human’s abdomen and
tracked using IR camera [17]. Beddar et al. also showed
that the motion is well correlated with the internal motion
of liver [17]. Vedam et al. studied the same effect but
for internal motion of the diaphragm and obtained similar
correlation results [33] . Moreover, Ernst et al. studied the
correlation between multiple external IR reflective LEDs
and the internal liver motion of a swine in which it was
shown that one marker was not sufficient for tracking the
liver motion [16]. Henningsson et al. and Wasza et al. stated
that using external markers is advantageous due to its high
temporal and spacial resolution [30], [34]. Wilms et al. also
elaborated that by using optical tracking, multiple markers
could be advantageous since the dimensionality of the system
will increase without adding an extra cost to the setup [35].

C. Surrogate Data: Selection
Optical tracking is the final choice for the surrogates.

Using MR navigators is not preferred since it depends
on MRI acquisition thus would not operate without MRI.
Accelerometers are also not preferred due to its limited MRI
compatibility. Spirometers and bellows are rejected due to

their lack of information, discomfort to the patient and due to
the limited space of the MRI environment. As a result, optical
tracking is the optimal choice for the following reasons:

• They are Image modality independent such that they
could be used with and without MRI.

• They are not tighten around the patient’s abdomen but
stuck on the body and thus saving space.

• They are drift free [36].
• They are not one dimensional since multiple markers

could be placed in different locations.

An industrial color camera is chosen compared to infrared
due to is relatively cheaper cost and availability. IR tracking
is less sensitive to light intensities. However, the light
environment of the MRI room does not change dramatically
to choose IR instead.

III. MOTION MODEL

A. Motion Model: Analysis

According to [13], the motion model is made up of the
following:

• Choice of surrogate data: What are the types of
surrogates used? As explained earlier in Sect. II-C,
optical tracking of multiple markers are the chosen
surrogate data.

• Choice of motion representation: How is the motion
represented in the model? In this context, the liver
motion is presented by the SI displacement of the liver
upper border and the abdominal motion is represented
by the tracked displacements of the markers.

• Motion model correspondence: How it the motion data
related to the surrogate data? If the model is patient
and session specific (intra-fractional variation, which
is the case in this context), linear representations are
sufficient. Linear representation does not mean using
a single 1D surrogate, but means that the motion
model could be estimated by linear combinations of the
surrogates.
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• Fitting method: Which algorithm is chosen to fit the data
motion model? Since the motion and surrogate data are
linearly related, linear fitting methods were chosen in
this context. The most common method is multivariate
linear regression (MVR) [13], [37]. Other methods are
modifications of MVR such as Ridge regression [38],
[39], principle component regression [40], etc.

Given that the liver motion could be estimated by linear
combinations of the tracked markers, MVR was used as
a fitting method. Shrinkage methods (such as Ridge and
Lasso) were also used and compared to MVR. Shrinkage
methods are used when multiple surrogate data that are
highly correlated with each other are used.

B. Multivariate Linear Regression (MVR)

The main objective of MVR is, given a set of N training
sample pairs {(x1, y1), (x2, y2), ..., (xN , yN )}, find (learn)
a regression model f(x) that could predict new values of
y. The MVR model f(xi), for a sample pair (xi, yi) is
formulated as follows:

yi ≈ f(xi) = β0xi0 +

p∑
j=1

xijβj (1)

such that β = [β0, β1, ..., βp] are the parameters/coefficients
of the regression model, xi = [xi1, xi2, ..., xip] are the model
features of the ith sample, p is the number of parameters.
xi0 is a dummy unity variable called the intercept. Under
the assumption that y could be estimated from linear
combinations of the features, the parameters β are estimated
using the ordinary least squares (OLS) method [37]. The
parameters β are obtained by minimizing the cost function
J(β) over all the training samples:

J(β) =

N∑
i=1

(yi − f(xi))
2

=

N∑
i=1

(yi − β0xi0 −
p∑

j=1

xijβj)
2 (2)

The optimization problem is solved either analytically using
the normal equation or numerically using the gradient
descent. In this context, y represents the liver motion
acquired from the motion data while x represents the markers
motion acquired from the surrogate data.

C. Shrinkage Methods

MVR obtains a set of parameters β that minimizes the cost
function J(β) to obtain the optimal fit to the training samples
(training data). However, MVR could be challenging when
dealing with multiple features because overfitting might
happen since the grater the number of features, the more
MVR tries to fit the training data[37]. Moreover, the training
data might contain noise or idiosyncratic characteristics.
Thus, the more the features the more MVR captures the
noise of the signal rather than the physical model. Overfitting
might also occur when the features are highly correlated
which is the case when the features are tracked markers

locations [13]. As a result, MVR has to be extended to
penalize the model for the number of parameters β [41].
One of the shrinkage methods is Ridge regression [42]. Ridge
regression extends the cost function of MVR such that the
cost function is written as follows:

JR(β) =

N∑
i=1

(yi − β0xi0 −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

β2
j

= J(β)︸︷︷︸
Fitting Penalty

+ λ

p∑
j=1

β2
j︸ ︷︷ ︸

Shrinkage Penalty

(3)

Thus, in Ridge regression, we penalize the model for the
number of coefficients by tuning the shrinkage parameter λ
(λ ≥ 0). If λ is zero then we’re back in MVR. If λ is too
big then the model is optimized to minimize the parameters
rather than fitting the model which will underfit the data.
The greater the shrinkage parameter, the more the parameter
β shrinks towards zero. Thus, there has to be a trade off in
selecting the shrinkage coefficient. The parameter λ is tuned
by validating the motion model over a set of validation data
and choosing the parameter λ which results in the smallest
prediction error. Shrinkage parameter selection is stated in
Sect. III-E.

Lasso regression is another method for shrinking the
regression parameters [43]. However, unlike Ridge, Lasso
penalizes the absolute size of the coefficients as follows:

JL(β) = J(β)︸︷︷︸
Fitting Penalty

+ λ

p∑
j=1

|βj |︸ ︷︷ ︸
Shrinkage Penalty

(4)

The main difference between Ridge and Lasso is that Ridge
shrinks the parameters towards zero while Lasso has the
ability to shrink the parameters to exactly equal to zero [41].
This means the the corresponding feature is neglected, if the
shrinkage parameter λ is relatively large. Thus, Lasso has
the ability to cancel out the features that are not needed.
In other words, if the features are highly correlated, Lasso
selects number of features and shrinks the others to zero.
On the other hand, Lasso is relatively more computationally
expensive than Ridge because there is no closed form
solution for its optimization problem.

D. Model Selection

The aim of the motion model is to predict future liver
motion given a set of training data. Thus, to evaluate the
model, it is important to know how will the model perform
upon new dataset (so called test data) which means that
we are interested in knowing the test error rather than
training error. In other words, evaluating the model based
on the training data alone will result in giving optimistic
values that might not be the same if new dataset are
used. Moreover, the features and shrinkage parameter should
be also selected based on another set of data (so called
validation data). Accordingly, the acquired dataset has to be
split into three segments: training data, validation data and
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Fig. 3. Feature and Shrinkage Parameter Selection: the figure represents the
procedure to select the features (left) and shrinkage parameter λ (right) for
the chosen regression algorithms. The figure also shows that the selection
should be based on the validation data.

test data [37]. Such that the training data is used to fit the
models, the validation data is used to select the features and
shrinkage parameter and the test data is used to evaluate
the performance of the models. The ratio between the test,
selection and training data are chosen to be 50%, 20% and
30% respectively.

E. Feature and Shrinkage Parameter Selection

The features are selected such that they are simple,
interpretable, intuitive and have a good fit to the data. The
types of the features could be designed as follows [37]:

• Quantitative: Numeric values of the input signals such
as the positions of the markers.

• Basis Expansions: Polynomial representations of the
input signals (quadratic, cubic, or higher order
representations).

• Others: In the context of RME, it could be the
derivative(s) of the input signals [5], [16] or a
signal indicating inhalation/exhalation [13], or a signal
indicating the respiratory phase.

It is important to note that the number of features selected
affects the overall fit of the data. It is not preferred to
use many unnecessary features which might cause overfit.
Moreover, MVR is scale invariant, which means that the
scale of the features does not matter. However, since in
shrinkage methods, the cost function penalizes the sum of
the parameters, the parameters should have the same scale
[41]. Thus, after selecting the types of features, the features
are scaled to have a common scale range. The features are
normalized to have approximately a zero mean and unit
standard deviation.

Additionally, after choosing the regression algorithm, the
features should be selected. As shown in Fig. 3, features
should be selected based upon the validation data because
the higher the model complexity the lower the training error
(since the higher the complexity of the model the more the
model tries to overfit the data) is which is not intuitive.
Thus, by using the validation data, a minimum value will

correspond to the optimal feature type. In the same context,
the shrinkage parameter will be selected by varying the
shrinkage parameter and selecting the one with the lowest
prediction error. The lower the shrinkage parameter, the
smaller the value of λ. As shown in Fig. 3, the shrinkage
parameter should also be selected based upon the validation
data.

F. Model Evaluation

To evaluate the models used, two performance measures
will be calculated. These performance measures are the
mean absolute error (MAE) and the adjusted coefficient of
determination (adjusted R squared, R2

adj) and are calculated
as follows:

MAE =

∑N
i=1 |Yi − Ŷi|

N
(5)

R2
adj = 1− RSS.(n− 1)

TSS.(n− k)
(6)

such that N is the number of test samples and k is the number
of predictors (β) including the intercept (which could also
be interpreted as the number of features). Yi and Ŷi are
the actual (ground truth) and estimated liver motion from
the test data respectively. Moreover, RSS and TSS are the
residual and total sum of squares respectively and calculated
as follows:

RSS =

N∑
i=1

(Yi − Ŷi)2 (7)

TSS =

N∑
i=1

(Yi − Ȳ )2 (8)

such that Ȳ is the mean value of Y . Note that R2
adj is an

indication of the goodness of the fit of the model. R2
adj could

be any value less than or equal 1. R2
adj closer to 1 indicates

a better fit. R2
adj is used compared to R2 because the former

pays an extra price for the inclusion of unnecessary features
[41]. Furthermore, MAE is used to obtain a quantitative
result of the predicted response. The smaller the MAE the
smaller is the test error.

IV. EXPERIMENTS

A. Overview

The previous sections presented an overview of the
suggested RME system such that the motion data was
presented as MRI acquired liver scans while the surrogate
data were presented as tracked abdominal motion using a
digital camera. Moreover, MVR, Ridge and Lasso were
chosen as motion models. In this section, the suggested
approach was validated by conducting human subject
experiments. Fig. 4 presents an overview of the experimental
setup such that the presented study involved two markers
placed on the subject’s abdomen tracked using a digital
camera outside the MRI cage. A regular MRI coil was
placed on the subject’s thorax away from the markers
to acquire MRI liver scans. The surrogate and motion
data were acquired simultaneously at different update rates.
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Fig. 4. Overview of the experimental setup. Firstly, during the training phase, the motion and surrogate data are acquired simultaneously. Moreover,
during the prediction phase, based solely on the surrogate data, the motion estimate are predicted.

Fig. 5. Workflow of the suggested approach. Firstly, the sagittal MRI liver images and camera acquired abdominal motion were acquired simultaneously.
The acquired images were segmented and the liver and marker motion were extracted. Additionally, the acquired data are processed and split for designing
and evaluating the motion model.

Subsequently, the three motion models were trained offline.
In the actual scenario, the subject should be requested to
leave the MRI and based solely on the tracked abdominal
motion, the motion data are estimated. However, since
evaluating the motion estimate required the knowledge of
the true values of the motion data, the subject did not leave
the MRI room.

B. Workflow

The workflow of the proposed approach is shown in
Fig. 5. Firstly, the motion and surrogate data were acquired
simultaneously with their relative timestamps. Additionally,
the MRI and camera images were segmented offline and
the liver and abdominal motion were extracted. Moreover,
the extracted signals were processed and split into three
datasets (training, validation and test data). The training and
validation data were utilized to train the motion model while
the test data of the abdominal motion was fed to the motion
model. The motion model estimated the liver motion and
therefore was evaluated compared to the actual liver motion.

C. Human Subject Experiment

1) Measurement Protocol: Three healthy subjects (two
males and one female) over the age of 18 participated in the
human subject experiments. Each subject was informed about
the study, received a detailed description of the experiment
and filled in a consent form. The investigators made sure
that the subjects were familiar with MRI safety regulations.
Each subject was subjected to two sessions, 3 minutes each.
The total investment time of each subject was 60 minutes
(including the two sessions, pre- and post- scan procedures).
The experiments were done at the University of Twente
(Enschede, the Netherlands) and an ethical proposal have
been approved by the local medical ethical committee of
the university. During the scan, each subject was requested
to breath normally (without any previous training) and try
not to move during the scan. For more details regarding the
measurement protocol and the consent form of the human
subject experiments, refer to Appendix[A,B] respectively.
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Fig. 6. Hardware Setup: (a) Subject is positioned in supine position with his/her hands behind the head. A suitable coil was adjusted such that the
subject’s liver is centered. Head, elbow, back and feet cushions were added for the subject’s comfort. (b) Two markers were placed on the subject’s
abdomen. Preliminary experiments were conducted to determine the optimal marker locations. The markers are placed 5cm to the right of the subject’s
umbilicus. Marker M2 is coinciding horizontally from the subject’s umbilicus and marker M1 is 5cm above M2. (c) The camera is placed at the door of
the MRI cage which is approximately 2m from the center of the MRI bore facing the subject’s sagittal plane.

2) Hardware Setup: The setup consisted of two main
modalities: MRI and camera tracking. The MRI system used
was the ESAOTE c© G-scan Brio system (Genoa, Italy) which
is a 0.25 T open-bore MRI system (as shown in Fig. 6a).
The MRI system is at the University of Twente. As shown
in Fig. 6a, the subject was placed on the MRI table in supine
motion with the head is to the left of the MRI system.
Additionally, the subject was positioned with his/her hands
behind his/her head. A suitable coil was positioned such
that the center of the field of view is approximately at the
border of the liver. Accordingly, an initial placement of the
subject required moving towards the coil till the subject’s
armpit reached the coil. Further subject positioning was
performed to obtain an optimal field of view for the liver
(see Appendix[A]).

Two 2 cm diameter 3D printed markers were placed on
the subject’s abdomen as shown in Fig. 6b. These marker
locations were chosen during preliminary experiments (in
Sect. V-A). The marker locations were chosen to have the
largest excursion (range) of the abdomen. As shown in
Fig. 6b, the markers were placed 5 cm to the right of the
subject’s umbilicus such that the first marker was placed 5
cm above the second marker. Both markers were placed away
from the MRI coil.

An industrial camera (MVBlueFox3) from Matrix
Vision c© (Oppenweiler, Germany) was chosen with a
suitable lens (25 mm, 1.4 focal length) to track the subject’s
chest. The camera was placed outside the MRI cage
(approximately 2 m from the center of the MRI bore) facing
the subject’s sagittal plane (as presented in Fig. 6c).

3) Data Acquisition: For the MRI acquisition, a
predefined sequence from ESAOTE c© G-scan Brio was
performed. The MRI sequence is a 0◦ 2DHYCES, sagittal
plane, slice thickness = 15 mm, repetition time = 7 s, echo
time = 3.5 s, reconstructed resolution = 1.5 mm × 1.5 mm,
flip angle = 40◦, field of view = 38 mm × 38 mm, temporal
resolution approximately 1 fps. The markers were acquired
at 10 fps with a spacial resolution of 0.15 mm. The region of
interested of the camera was 200 mm × 200 mm. The time

Fig. 7. Post-processing: the figure represents the acquired frames from
MRI and camera and the segmented output. The markers were segmented
from the camera while the liver’s border was segmented from the MRI. The
corresponding superior-inferior (SI) and anterior-posterior (AP) axes of the
markers and the liver are presented at each segmented frames. According
to the defined frames, inhalation corresponds to a negative SI and AP for
the markers and positive SI and AP for the liver.

stamp of each acquired frame from the MRI and the camera
was recorded for temporal alignment and synchronization.

D. Post-processing

1) Image Processing: Consequently, after MRI and
camera acquisition, the video streams were segmented. Each
DICOM frame from the MRI video stream (with its relative
time stamp) was segmented using a suitable threshold value.
Series of morphological operations (erosion, dilation and
edge detection) were performed to detect the upper border of
the liver. Only the SI motion was detected due to the fact that
the acquired spacial resolution (1.5 mm × 1.5 mm) was too
low to detect the respiratory induced AP motion (which is
approximately 2 mm [8]). The segmented SI positions were
computed relative to the reference frame as shown in Fig. 7a.

In a similar manner, each frame from the camera video
stream (with its relative time stamp) was segmented using
a suitable threshold value (as shown in Fig. 7b). Series
of morphological operations were performed to detect the
markers. The markers’ SI and AP centroid positions are
computed relative to their relative frame. As shown in Fig. 7,
inhalation corresponds to a negative SI and AP marker
motion and positive SI and AP liver motion (and vice versa).
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Fig. 8. Marker Location: Fig. 8(a) represents different marker locations
and their corresponding normalized range of motion in Fig. 8(b). The figure
shows that markers 4 and 5 have the higher range of motion compared to
the other markers. The figure also shows that the closer the markers are
from the umbilicus, the higher the range of motion.

2) Signal Processing: After image segmentation, the
markers’ positions (SI and AP positions of the two markers)
and the liver’s SI position were processed. First, outliers were
observed manually and omitted from the signals. Moreover,
a suitable low pass filter was designed for the two signals.
The signals were re-sampled in order to obtain the same
sample rate. Finally, the signals were transformed from pixel
dimensions into millimeter dimensions by multiplying each
signal with its calibrated pixel spacing (1.5 mm and 0.15
mm for the MRI and camera acquired frames respectively).
Temporal synchronization was performed in two steps.
Firstly, the two signals were aligned according to their
relative time stamps. Secondly, the two signals were aligned
using correlation analysis to correct for the time delay.

V. RESULTS

This section presents the evaluation and validation of the
RME of the liver with abdominal motion as a surrogate.
Firstly, a preliminarily experiment conducted to investigate
the optimal marker location is presented in Sect. V-A. The
analysis of the acquired MRI and camera signals (including
power density, correlation and motion analysis) are presented
in Sect. V-B to Sect. V-D. Furthermore, the features selection
and shrinkage parameters tuning of the motion models are
demonstrated in Sect. V-E and Sect. V-F respectively. Finally,
the estimated SI motion of the liver is compared to the actual
SI motion and is presented in Sect. V-G.

A. Marker Locations

To select the optimal marker location, a preliminary
experiment was conducted to track the markers in several
locations. Fig. 8a represents the markers in several locations
and their corresponding normalized range of motion in
Fig. 8b. The markers’ locations were chosen to have the
highest range of motion (excursion). As shown in the Fig. 8,
the range of motion increased ascendingly from marker
location 1 to 5. Marker locations 4 and 5 showed the
highest range of motion compared to the other marker
locations. Moreover, the closer the marker was to the
subject’s umbilicus, the higher the range of motion. However,
during camera tracking, it was preferred to locate the markers
away from the center of the MRI bore to avoid any shadow

Fig. 9. Power Density Analysis: the figure shows the power density
(periodogram) of the liver superior-inferior (SI) motion (black solid line)
and the markers motion (gray dotted line) for all the subjects. The figure
shows that the signals are dominated by breathing frequencies below (0.5
Hz). However, there are spikes in the low frequencies (below 0.1 Hz). The
figure also shows no heart beat induced motion

or inconsistent light conditions. Thus, a trade off has been
chosen and markers 4 and 5 were chosen to be in the
midway between the two vertical locations to the right of
the umbilicus as explained in Sect. IV-C.2.

B. Power Density Analysis

Fig. 9 represents the normalized power density of the
markers and the liver (SI) signals for all the sessions.
Comparing the plots in the same row allows the assessment
of intrafractional variations between patients while the
columns allow the assessment of the variations between
patients. As shown in the figure, the liver and marker signals
were dominated by the breathing frequencies [12]. The figure
also represented spikes at low frequencies (smaller than
0.1 Hz) which indicated the presence of noise or drift in
positions. The figure also showed that each subject had a
different breathing pattern thus the model has to be patient
specific. Moreover, Fig. 9 showed that the breathing patterns
are not identical for each subject over the two sessions which
clearly confirmed that the model should be updated for the
each session (intrafractionally). Note that according to the
obtained data, the signals were not affected by other organ
induced motion such as the heart beats (operating over 1 Hz
[12]). This is because for the MRI acquired liver signals,
the temporal resolution (1 fps) would not capture such high
frequencies. However, for the markers, even though the
temporal resolution would capture heart beats, the markers
signals were not affected by the beats due to the fact that
the markers were located away from the heart.
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Fig. 10. Correlation Analysis: The figure shows the auto correlation (right)
and cross correlation (left) analysis of the liver SI motion and the two
markers M1 and M2. The figure shows that the signals are not rhythmic
and well synchronized.

C. Correlation Analysis

Fig. 10 represents the normalized auto correlation (of
the liver SI motion and markers M1 and M2) and cross
correlation (of the liver SI motion and M1 and the liver
SI motion and M2) of the signals. The cross correlation
analysis showed that the signals are not rhythmic (which
was expected since breathing signals varies at different
respiratory cycles). Moreover, the cross correlation plots
showed that both signals are temporally aligned with no
observed time delay between the liver and markers motion.

D. Motion and Surrogate Data Analysis

Fig. 11 represents the processed data of the subjects. The
figure presents the mean and the standard deviation (µ± σ)
of the peak-to-trough (PPT) motion of the liver SI motion
and the markers SI and AP motion. As shown in Fig. 11, the
motion data showed expected range of motion [8]. Subject 3
had the highest range of motion for the liver and abdominal
motion. The other two subjects had approximately similar
range of motion. The values of the curves plotted in Fig. 11
are summarized in Table II. As shown in Table II, the highest
PTT liver and markers motion were observed in subject 3.
The maximum PTT motion was 21.3 mm for the liver’s
SI motion, 13.9 mm and 11.7 mm for the two markers’
AP motion and 1.9 mm and 3.2 mm for the two markers’
SI motion (all observed in subject 3). The minimum PTT
motion was 10.0 mm for the liver’s SI motion (observed in
subject 1), 0.4 mm and 0.2 mm for the two markers’ SI
motion (observed in subjects 1 and 2 respectively) and 2.5
mm for the two marker’s AP motion (observed in subject 2).
In all subjects, the markers’ AP motion had a higher range
of motion than their SI motion. The tables also demonstrated
the variations in breathing magnitudes between the subjects
and between each session thus confirming that the motion
models should be patient specific.

E. Feature Selection Analysis

Nine types of features have been chosen as shown in
Table III. In order to chose the optimal feature type, each
feature type was validated using the validation data as

explained in Sect. III-E and Fig. 3. Moreover, Fig. 12
represents the normalized MAE (NMAE) against the type
of feature for the training and validation data. The type
of feature is directly proportional to the model complexity.
Thus, the higher the feature type the higher the model order
and thus the complexity. As shown in Fig. 12, choosing
more than one marker improved the estimation accuracy.
However, marker 2 (type 2) outperformed marker 1 (type 1).
Moreover, choosing a more complex model (higher order)
did not improve the performance of the model upon new
data (test data). Thus, the optimal feature selected was type
3. Finally, Fig. 12 also demonstrated that the type of feature
should be selected upon validated data and not training data.

F. Shrinkage Parameter Analysis

The shrinkage parameters (for Lasso and Ridge) were
selected by validating the model performance using the
validation data. Ridge and Lasso models had the same type of
feature selected in Sect. V-E. Fig. 13 represents the NMAE
against the shrinkage parameter λ for Ridge and Lasso.
Fig. 13 showed expected results as explained in Sect. III-E
and Fig. 3. However, due to the limited resolution acquired
for the liver data, the feature and shrinkage analysis were
more challenging to tune. According to Fig. 13, the shrinkage
parameter was minimal at the values (0, 0.2] and (0, 0.4] for
Ridge and Lasso respectively. Thus, the average values of λ
were taken. These values were 0.1 and 0.2 for the Ridge and
Lasso algorithms respectively.

G. Estimation Accuracy

This subsection is evaluating the performance of the
designed motion models. To evaluate the designed models,
the estimated liver SI motion Ŷ obtained from the regression
model in (1) was compared t0 the true values of the liver SI
motion Y . The three fitting methods used were MVR, Ridge
and Lasso. Feature type 3 was chosen for the three methods
and the chosen shrinkage parameter λ was 0.1 and 0.2 for
Ridge and Lasso respectively.

Fig. 14 represents the plots of the estimated Ŷ and the true
values Y of the liver SI motion using the test data acquired
from the conducted six sessions using MVR, Ridge and
Lasso. Each row in Fig. 14 corresponds to one session. Thus,
comparing the plots in the same row allows the assessment
of the three designed models while comparing the plots in
the same column allows the assessment of each regression
model through out the sessions. Tables IV and V represent
the performance measures (MAE and R2

adj respectively) of
the estimated liver SI motion using MVR, Ridge and Lasso.
The performance measures MAE and R2

adj are calculated for
each session. Furthermore, each row in IV and V correspond
to one session. Thus, comparing the values in the same
row allows the assessment of the three designed models
while comparing the values in the same column allows
the assessment of each regression model through out the
sessions. As mentioned earlier in Sect. III-F, R2

adj closer to
1 indicates a better fit while MAE closer to 0 indicates a
better estimation accuracy.
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Fig. 11. Motion Data Analysis: mean µ and standard deviation σ of peak-to-trough (PTT) motion of the liver’s SI motion and the markers’ SI and AP
motion. The mean and standard deviation of the presented figure is summarized in Table II.

TABLE II
MOTION DATA ANALYSIS: MEAN µ AND STANDARD DEVIATION σ OF PEAK-TO-TROUGH (PTT) MOTION OF THE LIVER SI MOTION AND THE

MARKERS SI AND AP MOTION .

Subject, Session SI (µ± σ) Marker 1, SI (µ± σ) Marker 1, AP (µ± σ) Marker 2, SI (µ± σ) Marker 2, AP (µ± σ)

Subject 1, Session 1 11.8 ± 1.6 0.5 ± 0.1 3.7 ± 0.6 0.5 ± 0.2 3.3 ± 0.6
Subject 1, Session 2 10.0 ± 1.8 0.4 ± 0.1 3.3 ± 0.7 0.4 ± 0.1 2.9 ± 0.7
Subject 2, Session 1 11.1 ± 1.1 1.3 ± 0.2 2.5 ± 0.4 1.3 ± 0.2 2.5 ± 0.4
Subject 2, Session 2 10.3 ± 1.2 1.2 ± 0.2 2.5 ± 0.3 0.2 ± 0.1 2.8 ± 0.4
Subject 3, Session 1 19.2 ± 3.0 1.6 ± 0.3 11.7 ± 2.9 1.6 ± 0.3 11.7 ± 2.9
Subject 3, Session 2 21.3 ± 2.1 1.9 ± 0.3 13.9 ± 1.8 3.2 ± 0.4 11.5 ± 1.5

TABLE III
FEATURE SELECTION: THE TYPES ARE ARRANGED SUCH THAT THE

TYPE 1 CORRESPONDS TO THE LEAST COMPLEX AND TYPE 9
CORRESPONDS TO THE MOST COMPLEX.

Type Description

Type 1 Marker 1
Type 2 Marker 2
Type 3 Marker 1 and Marker 2, 1st order polynomial
Type 4 Marker 1 and Marker 2, 2nd order polynomial
Type 5 Marker 1 and Marker 2, 3rd order polynomial
Type 6 Marker 1 and Marker 2, 4th order polynomial
Type 7 Marker 1 and Marker 2, 5th order polynomial
Type 8 Marker 1 and Marker 2, 6th order polynomial
Type 9 Marker 1 and Marker 2, 7th order polynomial

Fig. 12. Feature Selection: the figure represents the normalized MAE
(NMAE) against the feature type. The plot shows that feature type # 3 has
the smallest NMAE and thus is the selected feature type.

Fig. 13. Shrinkage Parameter Selection: the figure represents the
normalized MAE (NMAE) against the shrinkage parameter λ for both
Ridge and Lasso regression. The plot shows that the minimum NMAE is
at approximately 0.1 for Ridge and 0.2 for Lasso.

As shown in Fig. 14, the three algorithms managed to
properly estimate the liver motion. There was no time lag
observed between the estimated and the actual plots in the
first two subjects. However, subject 3 had an observable
deviation in both session during the first 20 seconds. As
shown in Table IV, subject 3 had a maximum MAE of
1.9 mm ± 1.9 mm , 1.8 mm ± 1.9 mm and 1.8 mm
± 1.9 mm for MVR, Ridge and Lasso respectively while
subject 2 had the minimum MAE of 0.8 mm ± 0.7 mm
for MVR, Ridge and Lasso. For subjects 1 and 2, Lasso
generally outperformed MVR and Ridge in the first session
while the three models had equal estimation accuracy in
the second session (as shown in Table IV). For subject 3,
MVR and Lasso had a higher accuracy than Ridge during
the first session while Ridge and Lasso had a higher accuracy
during the second session. As shown in Table V, Lasso
outperformed Ridge and MVR in the first three sessions. The
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Fig. 14. Evaluation Results: the figure represents the estimated values of the liver SI motion (Ŷ ) compared with the actual liver SI test data Y against
time. Each row of the figure represents the subject (S) and session number (Se) while each column represents the regression algorithm used. The MAE,
standard deviation and R2

adj of the presented graph is summarized in tables IV and V respectively.

second session of the second subject and the first session
of the third subject had similar performance by the three
models. Finally, Lasso and Ridge outperformed MVR during
the second session of the third subject. As a general trend,
Lasso outperformed MVR and Ridge in three of the six
conducted sessions while in the other three, Lasso had equal
performance with Ridge.

VI. DISCUSSION

In the previous section, we evaluated the developed
RME approach. A preliminary experiment was conducted
to evaluate the optimal marker locations and showed that

the closer the marker is from the subject’s umbilicus, the
higher is the range of motion. These results were shown
in Fig. 8 and were validated also in Fig. 12 such that the
higher the marker range, the higher the estimation accuracy.
The data acquired from the markers and the MRI showed that
breathing signals vary between patients and consequently the
models designed were patient specific. The acquired data
also showed no indication of other induced motion (such as
the heart). The liver SI motion ranged between 10.0 mm -
21.3 mm which is consistent with other previous studies on
the liver [17], [11]. The markers motion were dominant in

15



TABLE IV
EVALUATION RESULTS: MAE AND STANDARD DEVIATION σ OF THE

ESTIMATED LIVER SI MOTION USING MVR, RIDGE AND LASSO.

MVR Ridge Lasso
Subject, Session MAE ± σ MAE ± σ MAE ± σ

Subject 1, Session 1 1.5 ± 1.2 1.5 ± 1.1 1.2 ± 1.1
Subject 1, Session 2 1.0 ± 0.8 1.0 ± 0.7 1.0 ± 0.7
Subject 2, Session 1 1.4 ± 0.8 1.4 ± 0.8 1.0 ± 0.7
Subject 2, Session 2 0.8 ± 0.7 0.8 ± 0.7 0.8 ± 0.7
Subject 3, Session 1 1.5 ± 1.3 1.6 ± 1.3 1.5 ± 1.2
Subject 3, Session 2 1.9 ± 1.9 1.8 ± 1.9 1.8 ± 1.9

TABLE V
EVALUATION RESULTS: R2

adj OF THE ESTIMATED LIVER SI MOTION

USING MVR, RIDGE AND LASSO.

MVR Ridge Lasso
Subject, Session R2

adj R2
adj R2

adj

Subject 1, Session 1 0.6 0.6 0.7
Subject 1, Session 2 0.7 0.7 0.8
Subject 2, Session 1 0.7 0.7 0.8
Subject 2, Session 2 0.8 0.8 0.8
Subject 3, Session 1 0.8 0.8 0.8
Subject 3, Session 2 0.7 0.8 0.8

the AP (ranged between 2.5 mm - 13.9 mm ) rather than
the SI motion (ranged between 0.2 mm - 3.2 mm). The
results also indicated a strong linear relationship between
the abdominal motion and liver’s SI motion and that higher
order models (more complex models) did not improve the
overall fit of the data. Furthermore, the results show that
using only one marker would result in a lower accuracy
than using multiple markers. Such conclusion was also
assessed by [16] and concluded the same results. Moreover,
the location of the marker affects the estimation accuracy
such that the closer the marker was from the umbilicus the
higher the estimation accuracy. The results also illustrated the
accuracy of the estimated SI liver motion such that the MAE
ranged between 1.9 mm and 0.8 mm for the three regression
models. The results demonstrated consistent performances
compared to previous research studies on the liver and
external markers as a surrogate [16], [33], ultrasound as a
surrogate [7] and accelerometers as a surrogate [24]. In the
same context, Lasso outperformed MVR and Ridge in the
overall estimation accuracy. However, the spacial resolution
of the acquired MRI liver images prevented a more detailed
evaluation of the three models.

VII. CONCLUSION

In this paper, we developed and evaluated an RME
approach to estimate the liver SI motion due to respiration.
External markers placed on the human’s abdomen were
tracked using a digital camera. Abdominal motion tracking
was chosen as a surrogate data due to its MRI compatibility,
patient’s comfort, independence (could operate in and out
of the MRI), high temporal and spacial resolution and

high correlation with the liver motion. The motion data
(liver) and the surrogate data (markers) were used to fit
supervised learning regression models that were used to
estimate the motion data based on the surrogate data.
Three supervised learning regression models were selected
and their performance and accuracy were evaluated. To
validate the proposed approach, human subject experiments
were conducted. Three healthy subjects participated in the
experiments in a total of six sessions three minutes each.
The MRI acquired liver data and the camera acquired marker
data were first segmented, processed and split into training
and testing segments. The three motion models were then
trained and the optimal model parameters were selected. The
designed models were further evaluated upon the test data.
The results showed that the markers succeeded in estimating
the liver motion with a good accuracy (below 2 mm).

As mentioned in this paper, RME consists of three main
categories (motion data, surrogate data and fitting method).
Each of these categories significantly affects the overall
performance of the RME framework. In this study, a low
field MRI system was used to acquire the motion data
which resulted in a low temporal and spacial resolution that
limited the overall evaluation of the proposed framework.
The most crucial improvement to the proposed framework is
to acquire the motion data by using a more powerful MRI
system. Acquiring images at a higher temporal resolution
would significantly affect the performance since more data
samples could be acquired which would reduce the scanning
session. Moreover, acquiring images at a higher spacial
resolution allows investigating other liver motions (AP and
lateral motions) that were not investigated due to the low
spacial resolution and the relatively small motion in these
directions. Obtaining higher spacial resolution of the motion
data will result in a finer feature and shrinkage parameter
tuning since the minimum values of these parameters are
sharper. In the same context, the experiments were conducted
at the University of Twente on healthy subjects with no
lesions or fiducial internal markers present in the liver. Thus,
estimating a specific region of interest in the liver was rather
challenging. Moreover, anatomical features (such as the gall
bladder or vessels) could have been chosen as the region
of interest. However, tracking such anatomical features were
challenging since their motion were inconsistent during the
acquired sessions. As a result, further improvements could
involve additional experiments on subjects or patients with
implanted fiducial markers or lesions in the liver. Such
fiducial or lesions could be positively identified and thus their
3D motion could be tracked.

In addition, temporal alignment was performed by
acquiring the timestamps of the motion data and surrogate
data independently since the MR system prevented any
signal triggering from/to the system. Thereupon, using a
common clock or signal triggering to both MRI and camera
acquisition would improve the estimation accuracy as well as
significantly preventing unnecessary post-processing errors.
As illustrated in the results, the differences between the
three regression models were not significant. Thus, using a
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more complex regression algorithm would not improve the
estimation accuracy significantly [35]. In fact, as explained
before, shrinkage regression methods (such as Ridge and
Lasso) outperform MVR in case of high dimensional data.
Thus, using more than two markers will increase the system
dimensionality and thus improve the estimation accuracy in
Ridge and Lasso. In fact, multiple markers has been used in
previous studies that indicated that using multiple markers
will increase the system dimensionality that might capture
more complex breathing patterns [16], [35]. Finally, using
multiple surrogates could improve the overall performance
by increasing the system dimensionality [31]. For example,
[44] suggested that augmenting external markers with lung
volume measurement (spirometers) might be used to improve
the correlation accuracy.

To sum up, the objectives of this paper were to (1) choose
appropriate surrogates and fitting algorithms that fit the
MR environment alongside having a strong correspondence
to the motion data and (2) validating such approach on
human subjects. In deed, the objectives were met clearly
such that it was justified earlier in this paper that abdominal
tracking was the optimal surrogate choice. Accordingly,
MVR, Ridge and Lasso were chosen and validated on
human subjects throughout six sessions. The authors of this
paper designed, implemented and validated an MRI acquired
RME of liver with abdominal motion as a surrogate which
was not addressed before in the literature. The authors
also excelled by implementing Lasso regression which was
also not addressed in the literature. Moreover, the authors
surpassed other existing literature who utilized supervised
learning in RME by explicitly implementing and analyzing
the features and shrinkage parameters of the motion models.
In fact, to the authors’ knowledge, analyzing the features
and shrinkage parameters of the learning models were not
mentioned priorly in the existing literature in RME.
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3 Conclusion, Limitations and Future Recommendations

3.1 Conclusion

In this context, we developed and evaluated a novel approach to estimate the respiratory
induced motion of the liver by tracking abdominal markers placed on the human’s abdomen.
Abdominal motion tracking was chosen as a surrogate data due to its MRI compatibility,
patient’s comfort, independence (could operate in and out of the MRI), high temporal and
spacial resolution and high correlation with the liver motion. With the MRI acquired liver
motion as a motion data and abdominal tracking as a surrogate data, three supervised learning
algorithms were designed and analyzed to fit both data. Accordingly, three motion models were
developed to estimate the liver motion. The proposed approach was validated by conducting
human subject experiments. Six sessions were performed on three subjects. Furthermore, the
acquired data were processes offline and the models were designed. The results showed that
developed approach sucessfully estimated the liver motion with a good accuracy (less than
2mm).

To summarize, the objectives of this paper were to (1) choose appropriate surrogates and fitting
algorithms that fit the MR environment alongside (2) validating such approach on human
subjects. In deed, the objectives were met clearly such that it was justified earlier in this paper
that abdominal tracking was the optimal surrogate choice. Accordingly, three algorithms were
chosen and validated on human subjects throughout six sessions.

3.2 Limitations and Future Recommendations

The limitations of this context are addressed as follows:

• A low field open bore MRI was used to conducted the motion data. The MRI system
had limited spacial and temporal resolutions which limited the overall analysis and
performance of the proposed approach. As a result, the limited spacial resolution
restricted the analysis of the liver motion to the superior-inferior direction only.

• No internal fiducial markers or lesions were present during the experiments due to
the fact that the experiments were conducted on healthy subjects. As a result, motion
tracking was limited to the liver border rather than a certain motion of interest.

• Temporal synchronization was performed by acquiring the relative timestamps of the
motion and surrogate data independently due to the fact that the MRI system prevented
any input/output triggers or communication with other hardware and/or computers.

Accordingly, the following recommendations are suggested:

• Conducting the experiments on a more powerful MRI that is equipped with a relatively
higher temporal and spacial resolution. Such improvement would result in a better
estimation accuracy as well as more understanding to the fitting algorithms. Moreover,
such an improvement will result in investigating the estimation accuracy of the liver in
the other directions (inferior-posterior and lateral).

• Conducting the experiments on patients that bear implanted fiducial or hepatic lesions.

• Using a common clock or signal triggering to both MRI and and camera acquisition
which would result in improving the estimation accuracy and preventing additional
processing errors.
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Appendix [A]: Measurement Protocol

A.1 Pre Scan Preparation

• Clean Scrub trousers should be ready for the subject.

• The clothes hanger (coat stand) available in the MRI room is used to place the laptop
used for camera acquisition. The hanger is to be placed close to the MRI cage.

• Coil is placed on the MRI table

• Back, feet, elbow and head cushions are placed on the MRI table. The cushions positions
will be further adjusted during subject positioning. The back cushion is to be placed with
the thinner cross section is to the left of the MRI system as shown in figure 1.

• Tissue is placed above the back cushions.

• The MRI PC’s clock should be checked and compared to the camera’s laptop. The exact
time difference (rounded to one second) is to be noted.

• The camera is to be mounted on the tripod and ready to be positioned according to the
camera positioning in. The camera acquisition protocol should be ready and on stand by
for further adjustments.

• Subject is requested to enter the MRI cage.

A.2 Initial Subject Preparation

• Subject is asked if there are any unclear questions.

• Screening and Eligibility checklist is to be signed. A copy of the checklist should be
printed before hand in case the subject did not provide it. Subject will be informed that
he/she might hear some noise during the 9-minute scan.

• Any metallic/Ferrous material is to be removed by the subjects and the investigators who
will enter the MRI cage.

• Subject will put on the scrub trousers. Male subjects will remain topless and female
subjects will put on a sport (non-metallic) bra.

A.3 Subject Positioning and MRI Acquisition

• Subject positioned in supine motion with head is to the left of the MRI system (as shown
in figure 1).

• Coil #17 from Esaote is placed (internal height and width dimensions are 288 mm and
470 mm respectively).

• First level subject positioning:

– Subject to be adjusted for initial placement such that the armpits are approximately
touching the coil.

• Second level of subject positioning:

– Using the localizer of the MRI system in transverse plane, the subject is positioned
in the lateral direction until the spine is in the middle of the coronal plane.
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Head and elbow cushions Back cushions

Feet cushions

Coil#18

Figure 1: Subject Positioning
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Figure 2: Expected MR Liver Image: Sagittal Plane

– Using the localizer of the MRI system in coronal plane, the subject is positioned
in the superior inferior direction until the liver and lung are observed. A brighter
anatomy during exhalation indicates the liver while a darker anatomy during
inhalation indicates the lung.

• Third level of subject positioning:

– The investigators will perform a second localizer sequence on the MRI system’s
software in sagittal plane such that the liver is clearly seen in sagittal view and the
liver is in the middle of the superior inferior view of the acquired image. At this step
the images should be expected to be as shown in figure 2.

• A predefined sequence will be performed. The MRI sequence is a 0o 2DHYCES, sagittal
plane, slice thickness = 15 mm, repetition time = 7, echo time = 3.5, speedup =
150, encoding direction = H-F, acquired resolution = 1.8 mm x 1.8 mm, reconstructed
resolution = 1.5 mm x 1.5 mm, flip angle = 40, field of view = 38x38, temporal resolution
approximately 1 fps, and slice location is approximately 60-70 mm outside the coil center
(first start with 60 mm, if the liver’s upper boundary is not clearly visible, increase
the location to 65 mm and if still not visible increase the location to 70 mm) and
approximately 45 mm outside the spinal center.

AT THIS STEP MRI ACQUISITION IS ON STANDBY
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Figure 3: Marker Positioning

A.4 Marker Positioning

• 2 cm diameter markers are chosen during this study as shown in the left of figure 3. A
double face sticker tape is used to stick the marker on the subject’s body.

• As shown in the right of figure 3, two markers are going to be placed. Both markers are
going to be placed approximately 5 cm to the right of the subject’s umbilicus. The first
marker is coinciding horizontally to the subject’s umbilicus while the second marker is to
be placed approximately 4-8 cm above the first marker. The second marker should also
be approximately 4 cm from the used coil.

A.5 Camera Positioning and Acquisition

• The camera’s depth (relative to the patientâĂŹs position) is placed at the MRI cage’s door
approximately 2 m deep from the center of the MR system as shown in figure 4.

• The camera’s vertical position is approximately placed 1.48 m from the floor’s ground.
The camera’s horizontal position is to be placed such that the tripod (fully extended) is
touching the MRI cage’s door (fully opened).

• The final orientation should be parallel to the subject’s sagittal plane facing the markers.

• Predefined video acquisition parameters are chosen (brightness, gain, saturation,
exposure, fps, special resolution, region of interest, etc.).

AT THIS STEP CAMERA ACQUISITION IS ON STANDBY

A.6 Final Steps

• Initial image is taken for calibration by using a large checkerboard with known
dimensions

• Subject is requested to breath normally from the mouth and try not to move during the
scan

• Camera acquisition start

• MRI acquisition start

• 9 minutes scan is performed

AT THIS STEP THE SCAN IS COMPLETE
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1.48m

2m

camera cable

2m
1.48m

2m

Figure 4: Camera Positioning

A.7 Post Scan

• MRI and Camera data are stored

• Camera is removed from the door

• Markers removed from Subject

• Subject leaves the MRI cage

• Subject changes his/her clothes and leaves the MR room
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Appendix [B]: Subject Consent Form: 

Respiratory Motion Estimation with Abdominal Motion as a Surrogate 
Robotics and Mechatronics Lab, University of Twente                                                                        June, 2017 
 
Dear Sir or Madam, 
 
You are asked to take part in a medical-scientific study. Participation is voluntary and it requires your written 
consent. You have received this letter because you are an eligible candidate for this study. Before you decide 
whether you want to participate in this study, you will be given an explanation about what the study involves. A 
member of our research team will also talk to you about taking part in this research study. Please read this 
information carefully and ask the investigator(s) for an explanation if you have any questions. All the contact 
details and the involved investigators are mentioned at the end of this document. You may also discuss it with 
your partner, friends or family. 
 

Brief Background Information 
Currently, imaging techniques are advancing widely in the medical field, such as in image-guided interventions 
and diagnosis. Among the available imaging techniques, magnetic resonance imaging (MRI) offers the highest 
soft tissue contrast, and this helps detecting small lesions (such as tumors) at an early stage. However, during 
percutaneous interventions (biopsy or ablation), MRI does not offer real-time image-guidance and thus the 
exact real time motion of the tumor is unknown. This will result in inaccurate targeting in case of percutaneous 
interventions and radio-therapy, and misdiagnosis in case of biopsy. In the same context, respiratory-induced 
motion is another major issue that results in inaccurate targeting and misdiagnosis. Several organs get 
affected by respiration especially the organs that are in the abdominal regions (lungs, diaphragm, liver, kidney, 
etc.).  

For an accurate diagnosis and treatment, the exact motion of the organ of interest has to be known. One of the 
approaches used to compensate for respiratory motion is Respiratory Motion Estimation (RME) which depends 
on estimating the internal motion of the organ of interest by measuring external signals so called “surrogates”. 
Surrogate signals should have a strong correlation with the exact organ motion (motion data). Furthermore, a 
learning-based fitting algorithm is designed in order to estimate a mathematical motion model between the 
surrogates and the motion data. The choice of the surrogate data, the learning algorithm and the motion data 
depends crucially on the application that they are utilized in. RME is under huge development by many 
research labs, institutions and industries worldwide and the results obtained are promising. 

Purpose of this study 
As shown in figure 1, we are doing this research to determine if we can estimate the internal organ motion 
(motion data) due to respiration by measuring an external surrogate signal (surrogate data). In this study, the 
organ or motion is the liver and the surrogate signal is chosen to be the human’s chest motion. The human 
chest will be tracked by small sized markers and measured using an industrial camera. The motion of the liver 
will be measured by acquiring MR images. The two acquired data will be processed offline and a fitting 
algorithm will be designed to estimate a mathematical motion model such that based solely on tracking the 
external markers in real-time, the liver motion is estimated.  

As a result, the aim of this study is to acquire MRI images of the liver motion due to respiration alongside with 
external markers placed on the human’s chest in order to first investigate the correlation between such data. 
The main focus is to investigate the feasibility of using such surrogate signals for estimating the liver motion 
and explore feasibility of the designed mathematical models. 
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Subject:   S[   ]  

[Filled by investigator] 
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Appendix [C]: Preliminary Experiments

C.1 Introduction

Before conducting the human subject experiments, multiple preliminary experiments were
conducted and are presented in this appendix. The experiments included the following:

• MRI: Various sessions were conducted in the MRI room at the University of Twente to
determine the optimal MRI sequence in addition to determining the subject positioning.

• Camera: Firstly, the camera was selected based upon defined specifications.
Additionally, multiple sessions were conducted in and out of the MRI room to determine
the optimal camera acquisition protocol and camera position.

• Marker Design and Locations: Three experiments were conducted (two outside and one
inside the MRI room) to determine the optimal marker locations. The results of these
experiments were mentioned in the paper. Prior to these experiments, the markers were
designed and 3D printed.

• Fitting Algorithm (mock setup): A mock setup was designed by setting up a Lego©
mechanism to mimic the breathing motion. The mock setup was used to test the overall
framework before conducting any MRI Experiment.

• Dry Run: A final dry run experiment was conducted on one of the authors to test the
entire human subject experiment before recruiting volunteers for the experiment.

During all the preliminary MRI sessions, only the principle investigators (authors of the paper)
and the MRI investigators of the University of Twente participated. No subjects were included.

C.2 MRI Acquisition

Prior selecting the MRI sequence, the following specifications were required (from highest to
lowest priority):

1. Temporal Resolution: As mentioned in the paper, the minimum temporal resolution to
capture the respiratory induced motion was at 1 fps. Thus the MRI sequence should
acquire MRI frames greater than or equal that update rate. Note that a higher update rate
will result in a lower spacial resolution and image quality.

2. Spacial Resolution: The spacial resolution should be at least 10% of the superior-inferior
motion of the liver. As stated by Langen et al., the average liver motion was 8.0 mm - 25.0
mm [7]. Thus, the spacial resolution of the acquired MRI frames should be 0.8 mm - 2.5
mm. Note that a higher spacial resolution will result in a lower temporal resolution.

3. Contrast and Signal-to-Noise ratio (SNR): The MRI sequence should acquire frames at
high contrast and low SNR in order to efficiently detect the edge of the liver using
image segmentation. Note that improving the image quality will reduce the temporal
resolution.

In the same context, during these preliminary sessions, anatomical planes were also chosen.
Since the superior-inferior motion in the liver is more dominant (one order of magnitude
higher) than the other motions (anterior-posterior and lateral), either a sagittal or coronal were
chosen. It was impossible at the required temporal and spacial resolution to acquire 3D motion
at the MRI system. Thus, only one plane was selected (which was the sagittal plane). The final
MRI sequence was mentioned in Appendix [A]. The chosen sequence was the most optimal
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sequence according to the previous specifications. Fig. C.5 presents different frames acquired
at during the MRI sequence selection procedures. The figure is arranged chronologically such
that the final selected sequence is at the fourth row of the figure. Consequently, after selecting
the MRI sequence, subject positioning (as Mentioned in Appendix [A]) was adjusted.

C.3 Camera Acquisition

In order to select an well-suited camera for the Respiratory Motion Estimation (RME)
framework, the following specifications were required (from highest to lowest priority):

1. Temporal Resolution: The temporal resolution shall be greater than or equal to twice the
breathing frequency. The update rate shall also be high enough to acquire and compute
the estimated motion. Thus, the temporal resolution was selected as greater than or
equal 10 fps.

2. Spacial Resolution: The spacial resolution should be chosen to be at least 10% of the
smallest chest motion. During selecting the optimal marker locations, the mean chest
motion was 3 mm - 10 mm in the anterior-posterior direction and 1.5 mm - 3 mm in the
superior posterior direction. Thus, the spacial resolution was initially chosen to be 0.15
mm.

3. Region of Interest: The region of interest shall be wide enough (horizontally) to allow
for tracking the markers (5 cm apart) with a 2 cm margin on each side to allow for the
respiratory induced marker superior-inferior motion. Furthermore, the region of interest
should be high enough (vertically) to allow for the respiratory induced marker anterior-
posterior motion. As shown in Fig. C.6, the required field of view was initially chosen to
be 300 mm × 200 mm (width × height) to allow for placing five markers.

4. Pixels: for a 300 mm × 200 mm region of interest of a 0.15 mm resolution, a camera of
greater than or equal to 2.67 mega-pixel (MP) should be chosen.

As a result, the chosen camera was an mvBlueFox3-1031 color camera (H×V pixels =
2048×1536, sensor size = 1/2.3 inch, frame rate = 21 fps, USB3 interface, external input output
(I/O)). Consequently, after camera selection, multiple sessions were conducted to optimize
the camera location and acquisition. The camera was positioned out of the MRI cage while
facing the subject’s sagittal plane. Thus, the door of the MRI had to be open for the camera
to track the markers. MRI scans were performed with the MRI door closed and opened and
no observable difference in the quality of the images acquired from the MRI was noticed.
As a result, the door was kept half-closed to give a narrow gap for the camera to track the
markers. Camera acquisition was performed on a standard laptop equipped with an Intel(R)
Core(TM) i5-4200 2.30 GHz and 8.00 GB RAM. During acquisition the laptop faced a significant
challenge of memory usage such that the laptop used to shut down only after five minutes of
acquisition (at the mentioned specifications above). As a result, in order to reduce the memory
usage, a narrower region of interest was chosen to allow for tracking only two markers (thus
the acquired region of interest was 200 mm wide × 150 mm high) which reduced the memory
usage to the half.
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Figure C.5: MRI Acquisition: the figure illustrates the series of MRI sessions conducted to optimize the
contrast and quality of the acquired liver frames. The figures are arranged chronologically such that the

last row represents the chosen sequence. The figure is inverted for ink saving.
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Figure C.6: Camera Acquisition: Region of Interest (ROI)

C.4 Mock Setup

To test the correspondence models prior the human subject’s experiments, a mock up
experiment was conducted by setting up a Lego© mechanism to mimic the breathing
mechanics of the rib cage and the diaphragm. The mechanism was operated manually
and tracked using a high definition (HD-1080p) web camera (Logitech C992 pro) at 30 fps. As
shown in Fig. C.7, The right marker corresponds to the liver SI motion while the left marker
corresponds to the chest AP and SI motions. The two markers were acquired for 150 seconds
and the acquired data were split into 100 seconds for training and 50 seconds for testing.
Likewise, the performance measure (MAE) was calculated to evaluate the estimation. As
explained in the paper, the chosen correspondence models were MVR, Ridge and Lasso. The
selected feature was a linear fit of one marker (Type 1 in the paper). The shrinkage parameters
where 0.01 and 0.1 for Ridge and Lasso respectively.

The results of the mock setup are presented in Fig. C.8 and Table C.1. As shown in C.8, the
three models managed to estimate the actual mimicked liver motion. There was no observed
difference between the three models. However, as presented in Table C.1, MVR outperformed
ridge and Lasso. Such results were expected since only one marker was used (thus no over-
fitting to the data). Thus, shrinkage methods were not required in the presented setup. Note
that the main outcome of this setup was to utilize such correspondence models and test them
before the human subject experiments.

Table C.1: Evaluation Results: MAE and standard deviation σ of the estimated liver SI motion using
MVR, Ridge and Lasso.

MVR Ridge Lasso

MAE MAE MAE

0.0378 0.0462 0.0401
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Figure C.7: Mock Setup: The figure illustrated the Lego mechanism of the mock setup. The set up
mimics the motion of the liver and the ribcage due to respiration.

Figure C.8: Mock Setup: the figure represents the estimated value of the mimicked liver motion (Ŷ )
compared to the true values (Y ) for the three developed correspondence models. The MAE of the

presented graphs are summarized in Table C.1.
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Appendix [D]: Recruitment

The subjects were first recruited by handing out flyers (as shown in Fig. D.9) to students
and employees from the University of Twente. After eligible candidates were selected, the
consent form (Appendix [B]) was sent either as a hard copy to the volunteers or via email.
The three volunteers agreed in participating and thus were invited to the MRI. The sessions
were conducted during two consecutive days. The first subject came in the first day while the
second and the third subject came the second day.
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Figure D.9: Recruitment Flyer
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