
 

 

 

Master Thesis 

 

Document status: final version 

 

Evaluation of hydrological models under stationary and non-
stationary conditions 

 

 

Da Li 

 

 

University of Twente 

Date: December 1, 2020 

 

 

Supervisors: 

Dr. Ir. M.J. Booij 

University of Twente, Faculty of Engineering Technology, Water Management 

Dr. M.S. Krol 

University of Twente, Faculty of Engineering Technology, Water Management 

 

 

 

 



ii 
 

 

 

Acknowledgement 

 

This research is the final work to finish my master student career in the Civil Engineering program 
at the University of Twente in Enschede. The research title is ‘Evaluation of hydrological models 
under stationary and non-stationary conditions’, and from the start to the almost end, I feel 
increasingly interested in the project and what I am doing on it. The reason I chose this project is 
from the courses I had before the thesis, the teachers (professors) are so professional in this area, 
and I am attracted by the knowledge they teach and the method they use. Gradually, I find 
learning a project which study climate change impact on runoff by hydrological models would be 
interesting. Fortunately, I found one by having a nice talk with Martijn Booij who is one of my 
supervisors for my thesis. He talked a lot about hydrological modeling, which make me firmly 
study this project. 

I am so grateful to my two supervisors (Martijn Booij and Maarten Krol), I can finish this research 
without their professional and patiently guidance. They give me a lot of suggestions in the 
completement of this research and corrects many mistakes I made and was going to made. We 
cooperate on this research for more than 11 months (including research proposal), during this 
period, we had many meetings for discussing periodic learning and during which they give me a 
lot of suggestions to do series of steps on the research. And during each meeting, we enjoyed it 
no matter we meet online or face to face. For every document I sent to them, they can give 
efficient and useful feedbacks, and even not in the meeting they answered my questions in detail 
by email even in late night, which make my study going in right direction.  

I want to thank my family for supporting me to study abroad, they gave me a lot of motivation 
and courage to finish my master’s degree. They are my strong backing. 

Finally, I learnt large amount of knowledge about hydrology because of doing this research. I 
think even in the future, I will continue to work for this area. 

 

Da Li 

University of Twente, Enschede, the Netherlands 

11/11/2020 

 

 



iii 
 

 

 

Summary 

 

Climate change impacts on river runoff are unavoidable under different periods of climatic 
conditions. Hydrological models can be used to assess climate change impacts on river runoff in 
future periods. Research has shown that both non-stationary and stationary hydrological models 
are widely used to simulate runoff under climate change impact. This study starts from the 
hypothesis which is that correlations between optimal model parameters and climatic 
characteristics may exist, and this can be used to estimate parameter values when applying non-
stationary models. The goal of this study is to determine correlations between parameters and 
climatic characteristics, compare the simulation performance of a non-stationary model with 
regression equations and a stationary model , and assess climate change impact on runoff with 
both models in future periods. 

The Genie Rural à 4 paramètres Journalier (GR4J) model is used and applied to the Chikaskia River 
Near Blackwell in Oklahoma state in the United States. The observed historical climate data, and 
GCM-RCM projected historical and future climate data in this catchment are used in this study to 
achieve the study goal. Objective function Kling-Gupta efficiency (𝐾𝐺𝐸 ) is used to compare 
simulated runoff with observed runoff. According to the sensitivity analysis, parameter 𝑋ଵ (mm) 
has the most influence on overall model output variable, while the other three parameters show 
a similar influence on the model output. All four parameters are used to determine correlations 
with climatic characteristics. Pearson correlation analysis shows that parameter 𝑋ଵ  (mm) has 
significant correlations with 4 climatic characteristics, and 𝑋ସ (d) has significant correlations with 
9 climatic characteristics. Parameter 𝑋ଶ  (mm/d) and 𝑋ଷ  (mm) have no significant correlations 
with any climatic characteristic. 

Linear regression analysis is used to establish regression equations to estimate time-varying 
values of 𝑋ଵ (mm) and 𝑋ସ (d) based on significant correlations. Hydrological reasoning is used to 
develop the relationships between parameters and climatic characteristics. The parameters with 
no significant correlations with climatic characteristics are recalibrated, and then used as fixed 
values in following simulations. In simulations with non-stationary model, consecutive 10 years 
are used as a hydrological 10-year time window in both calibration and validation periods. 
Therefore, in this study there are 20 hydrological 10-year time windows in the calibration period 
(excluding the first year as the warm-up year) and 15 hydrological 10-year time windows in the 
validation period. With the fixed parameter values, the non-stationary parameters with 
significant correlations with climatic characteristics are re-optimized for each hydrological 10-
year time window in the calibration period. In this way, the regression equations are updated, 
and this is called re-determination of regression equations. Then the validation is done with the 
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redetermined regression equations for 𝑋ଵ  (mm) and 𝑋ସ  (d) to test the robustness of the 
regression equations. To determine whether either the calibration period or the validation period 
is more suitable to determine regression equations, the reverse order is done using the period 
1972-2001 as the calibration period and the period of 1948-1971 as the validation period. In this 
study, regression equations from the sequential order calibration and validation are selected 
because the validation result is better. Then with the stationary model and non-stationary model, 
the runoff is simulated with observed inputs, GCM-RCM simulated historical inputs and two 
GCM-RCM future inputs, respectively, to compare which model is more suitable for climate 
change impact assessment. 

Validation Stationary Non-stationary 
𝐾𝐺𝐸 value 0.81 0.70 

 

Concluding, in this study case, the stationary model performs better than the non-stationary 
model when simulating runoff with observed model inputs when compared to observed runoff 
(see the table above), one problem accounting this might be due to overparameterization of the 
optimal model parameter values. However, the non-stationary model performs better than the 
stationary model when simulating runoff with GCM-RCM historical inputs when compared to 
observed runoff. In this study, two greenhouse gas emission scenarios (GHG) are used to predict 
future model inputs, GCM-RCM rcp4.5 projection and GCM-RCM rcp8.5 projection, respectively. 
Within each scenario, two future periods (period of 2045-2065 and period of 2075-2095) are used 
for climate change impact assessment on runoff. For both models, climate change impact will 
result in larger decreased runoff with GCM-RCM rcp4.5 inputs than increased runoff with GCM-
RCM rcp8.5 inputs during 2045-2065, and result in larger increased runoff with GCM-RCM rcp8.5 
inputs than decreased runoff with GCM-RCM rcp4.5 inputs during 2075-2095.  

The determination of the relationships between model parameters and climatic characteristics 
in the non-stationary model can be improved, since the  application of the regression equations 
for future conditions results for example in unrealistically high values of parameter 𝑋ସ  (d). 
Therefore, several recommendations are proposed that might assist in determining the potential 
relationships between optimal parameter values and climatic characteristics and in applying the 
non-stationary model for assessing climate change impacts on runoff in future research. For 
example, analyze the hydrological relationships between the parameters and the significant 
climatic characteristics, then test the regression equations for one specific parameter with 
different number of the climatic characteristics, after that select one regression equation with 
best performance to estimate optimal parameters in the following steps.
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Chapter 1 

Introduction 

 

For simulating runoff in catchments, stationary hydrological models are generally used, especially 
for the past. With increasing recognition of different factors influencing hydrological models, 
stationary models are not considered as robust enough to simulate catchment runoff. Non-
stationary hydrological models are introduced and used to compare simulation performance with 
stationary models. The sources of non-stationarity acting on hydrological models are from 
various aspects, this is described in section 1.1. In this study, both stationary and non-stationary 
hydrological models are going to be used and compared to test which model is more robust and 
suitable for runoff simulation for both historical and future periods. Merz et al. (2011) indicate 
that potential correlations between model parameters and climatic characteristics probably exist. 
Knoben (2013), based on the study of Merz et al. (2011), investigated the relationships between 
optimum parameters and climate variables, and important correlations between 4 HBV (The 
Hydrologiska Byrns Vattenbalansavdelning) hydrological model parameters and 5 climatic 
characteristics were obtained by using regression analysis. For testing the performance of non-
stationary model, new correlations between parameters and climatic characteristics in this study 
catchment are going to be determined and verified. And the climate change impact assessment 
on river runoff will be evaluated with taking parameter non-stationarity into the hydrological 
model. 

Chapter 1 introduces changing hydrological behavior and parameter non-stationarity, 
respectively. The problem definition presents a summary of recent research on climate change 
and describe the importance of integrating parameter non-stationarity into models for modeling 
hydrological conditions in section 1.1. Research objectives are described after introducing the 
two aspects which are related to climate change, and research questions are formulated to 
achieve the research goals in section 1.2. Section 1.3 introduces the reading guidance of the 
following chapters.  

 

1.1 Problem definition 
1.1.1 Changing hydrological behavior 

Climate change is inevitable from one time period to another one, global mean temperature 
(GMT) is one of the impact results. The global mean temperature was assessed to increase by 1.1 
℃ to 2.9 ℃  due to climate change according to the lowest greenhouse gas emission scenario 
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from 1990 to 2100. While according to the highest greenhouse gas emission scenario, the GMT 
would increase by 2.4 ℃ to 6.4 ℃ (Smith et al., 2009). Smith et al. (2009) argued that the risks of 
extreme weather events will increase dramatically, which will cause huge loss and damage of life 
and property in no matter developing countries or developed countries. In fact, changing 
hydrological behavior is caused not only due to climate change, but also due to land use (cover) 
change and anthropogenic interventions. The fifth assessment report of the IPCC (IPCC, 2014) 
points that human influence contributes a lot to climate change, which is caused by the increases 
of greenhouse gas (GHG) emissions (Woodward et al., 2014). With climate change in different 
time periods, river flow regimes could be different. Only using the stationary model sets could 
have a negative effect on the simulation of the flow regimes under effect of climate change. For 
example, the model inputs (e.g. precipitation, temperature) could be different under historic and 
future conditions, therefore the optimal parameter value sets in one model for simulation could 
be different, which could result in difference in model output when applying stationary and non-
stationary models. Xu and Singh (2004) concluded that the hydrological models taking non-
stationarity into account usually can simulate more reliable flow conditions under a changing 
climate. 

It is understandable that when applying different hydrological models, different simulated river 
discharges and trends can be found for different catchments. Some examples can be seen in 
Table 1.1.  

Table 1.1. Some examples of river flow simulation by different models for historic conditions.  

Authors Catchments Models Period for 
calibration and 
validation 

Comparison of calibration and 
validation results 

Merz et al., 
2011 

273 
catchments in 
Austria 

HBV model Calibration: 
1976 – 1981 
validation: 
1982 - 2006 

Q95 overestimated: 12%; 
Q50 overestimated: 15%; 
Q5 overestimated: 35%. 
 

Booij, 2005 Meuse basin HBV model 
(HBV-1, HBV-15 
and HBV-118) 

Calibration: 
1970 – 1984 
Validation: 
1985 – 1996 

Average discharge: small 
overestimation; 
Extreme discharge: 
underestimation. 

El-Nasr et al., 
2005 

Jeker river 
basin 

SWAT model 
and 
MIKE SHE 
model 

Calibration: 
1986 – 1988 
Validation: 
1989 - 1991 

Average daily flow: 
underestimation; 
SWAT model: underestimate the 
extreme flow and overestimate 
the minimum flow; 
MIKE SHE model: slight 
underestimate the extreme high 
flow 
 

Tian et al., 
2013 

Jinhua River 
basin 

GR4J model, 
HBV model and 

Calibration: 
1981 - 1990 

GR4J model and HBV model: 
extreme flows increase 
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Xinanjiang 
model 

Validation:  
1991 – 1995 

Xinanjiang model: 
Extreme flows decrease 

 

From Table 1.1 we can see that the validation results usually show some differences with 
calibration results. This is due to two reasons: one is that the optimal parameter sets in the 
calibration period tend to adapt to model structure and data sets used in calibration, while the 
optimal parameter sets could change when different periods for calibration are used. The other 
reason is due to the impact of factors like land use change or climate change on the model 
parameters. In this study, the impact from climate change on models is studied, which is called 
as model non-stationarity. When considering model non-stationarity, two sources exist: one is 
model structure, the other one is model parameter. The change of model structure may be 
caused by changes of catchment characteristics, which is likely related to differences between 
the growing and non-growing season for plants (Merz et al., 2011). This difference will be 
influenced by changes of temperature and also lead to a change of evapotranspiration; therefore, 
it leads to a change in runoff. In this research, the model structure relates to the processes of 
determining the length of the growing season, this is outside of the model domain.  

 

1.1.2 Parameter non-stationarity 

For different calibration periods, optimal parameter sets are different, this is likely caused by 
climate variables, because in the sub-periods the climatic characteristics may change. Merz et al. 
(2011) concluded that strong evidence exists to show there are correlations between model 
parameters and climate variables. Therefore, parameter non-stationarity will be taken into 
account to assess the impact of climate change on river flows and water resources. The methods 
to incorporate this non-stationarity into models are related to determination of model 
parameters (e.g. Coron et al. (2012) determined parameter values in each hydrological 10-year 
time window), which is that parameters are determined by climatic characteristics with the 
correlations. 

 

1.1.3 Research gap 

Although many studies have been done to predict river flows under future conditions (see, e.g. 
Booij, 2005; Tian et al., 2013), the accuracy of the predictions still needs to be verified. For the 
long-term projections, several uncertainties exist no matter from changing climate or land use 
(cover) change and anthropogenic interventions. Therefore, the stationary model parameter sets 
which are determined with GCM-RCM projections under future GHG emission scenarios are 
possible to predict future river flows with certain errors. If the correlations between parameters 
and climate variables are known, more effective parameters can be set under future conditions. 
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In Wouter Knoben’s study, regression equations between optimal parameters and climatic 
variables were determined for application in non-stationary model simulation, however, because 
of the complexity of the problem and the simplicity of the regression method, there could be a 
big part of inaccuracy in the determination of the correlations. If applying the correlations for 
simulation under future conditions, the reliability may decrease. In this research therefore, 
correlations between model parameters and climate variables will be determined for another 
study area and by using another hydrological model than used by Knoben (2013) to enhance our 
understanding of non-stationary hydrological model performance. Based on this, climate change 
impact assessment will be done to determine if a non-stationary model is more appropriate for 
assessing the impact of climate change compared with a stationary model. 

 

1.2 Research objectives and questions 

Research objectives 

Based on previous studies and knowledge on hydrological modeling and prediction, the objective 
of this research is to get correlations between model parameters and climate variables which can 
be used for predicting hydrological behavior under changing climate and evaluate the impact of 
climate change on runoff by using a hydrological model which incorporates parameter non-
stationarity, and then compare stationary and non-stationary model results. During the process, 
a stationary model which considers a stationary parameter set and a non-stationary model which 
considers parameter non-stationarity will be used, their performances will be compared, and 
then the results will be used for impact assessment of climate change. 

 

Research questions 

To achieve the research objective, the following questions are proposed. By answering the 
questions, the whole work will be guaranteed to process smoothly, and the objective will be 
completed. The questions are listed as follows: 

1. How does the non-stationary model deal with hydrological simulation incorporating 
parameter non-stationarity compared to the stationary model? 

2. Which climatic characteristics are used for determining regression equations for which model 
parameters?   

3. Which model is more robust when comparing validation results for historical simulations?  
4. What are the differences in climate change impacts on runoff simulated with the stationary 

and non-stationary model? 

 

1.3 Research scope and reading guide 
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The research is intended to increase knowledge about the functioning of hydrological models 
under changing climate conditions. The selection of the study catchment and hydrological models 
will be discussed in Chapter 2. The model used will be adapted to cope with changing climate 
variables and used for climate change impact assessments. Besides, data in the selected 
catchments will be selected and used for simulation of models. Chapter 3 introduces the 
methodology which is going to be used throughout the whole thesis, including calibration 
algorithms and objective functions, the sensitivity of different parameters to runoff, the 
calibration and validation process as well as the determination of possible correlations between 
parameters and climatic characteristics, and finally the method to execute climate change impact 
assessment will be given. Chapter 4 focuses on presenting the results based on the methodology. 
Chapter 5 will describe the discussion according to the methods and results. The process of 
chapter 2, 3, 4 and 5 can be found in Figure 1.1. Conclusions will be presented in chapter 6, and 
future research suggestions and directions will be summarized in short.   

 

 

Figure 1.1. Scope of the research. 
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Chapter 2 

Study area and data 

 

This chapter contains information on the selected study area in section 2.1 and collected data in 
section 2.2. In section 2.3, the model process and parameter functioning will be described in 
detail. 

 

2.1 Study area 

As for this research, GR4J rainfall-runoff model will be applied (discussed in section 2.3), there 
are no parameters in the model related to snowfall. Therefore, the study area will be selected in 
a non-snow area or in an area where snowfall only plays a small role in river runoff. Besides, this 
research is going to focus on the influence of parameter non-stationarity caused by climate 
change on river discharge, thus, land use change (cover) will try to be avoided in the selected 
study catchment. The approximate conditions for these two aspects can be found in Figure 2.1. 
From Figure 2.1, we can see the catchments in the mid-bottom part of the US meet these two 
requirements in general. In the MOPEX data set (the international Model Parameter Estimation 
Experiment) for all American catchments, data for 265 catchments are available 
(https://hydrology.nws.noaa.gov/pub/gcip/mopex/US_Data/), the boundaries of the 
catchments are shown in Figure 2.2, the small figure is the selected study catchment (discussed 
in the following part). 

 

(a) 
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(b) 

Figure 2.1 Spatial distribution of changes in streamflow due to land use change (LUC) (a) and climate 
change (CC) (b) of American catchments, with the historical data of 1950. (Source: Schipper, 2017). 

 
Figure 2.2 Boundaries of 265 catchments in United States (big figure), the boundary in the small figure is 
the target study area in Oklahoma state. (Source: Schipper, 2017). 

 

The catchment with ID 07152000 is used in this study, which is described as “Chikaskia River Near 
Blackwell”. The Chikaskia river is a 256-kilometer-long tributary of the Salt Fork of the Arkansas 
River in southern Kansas and northern Oklahoma in the United States, and it is also a part of the 
catchment of the Mississippi River. The river in this catchment only contains a small length near 
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Blackwell city, which has a flow discharge of 17 m3/s and an elevation of 298 m above mean sea 
level. The Chikaskia catchment has an area of 4815 km2, and the climate can be summarized as 
“Temperate - Without dry season – Hot summer” (Blazs et al., 2003). The average latitude and 
longitude are 36.8110 and -97.2770 in decimal degrees. According to the University of Maryland 
(UMD), the most important two vegetation types in this catchment are grassland and cropland 
with fractional coverage of 0.15 and 0.81, respectively (MOPEX Data). The boundary of this 
catchment can be found in Figure 2.2. 

 

2.2 Data collection 

This section contains two types of data series that will be used in this research, historical 
observed data and future predicted data. Both data sets at least include data values of 
precipitation, potential evapotranspiration, and temperature as daily values. 

 

Historical observed data set 

This data set can be obtained from the MOPEX dataset, and the daily historical observations of 
precipitation ( 𝑃 , mm) processed in NWS hydrology Laboratory, climatological potential 
evapotranspiration ( 𝑃𝐸𝑇௖ , mm) based on NOAA Evaporation Atlas, highest and lowest 
temperature (𝑇, °Ϲ) and discharge obtained from USGS National Water Information System can 
be found during the period of 01-01-1948 to 31-12-2001 for 07152000 catchment in OK. The 
changing of climate is a process which experience a long-time length, normally considered at 
least 30 years. The total time length for this catchment is 54 years with complete data values. For 
making sure the time series is long enough, the data from the whole time series are used.  

For the data of potential evapotranspiration, the provided data series cannot be used directly as 
model inputs because they are climatological potential evapotranspiration. The daily 𝑃𝐸𝑇 values 
should be calculated with the climatological 𝑃𝐸𝑇 data. The method can be found in Appendix B 
(Schipper, 2017). 𝑃, calculated 𝑃𝐸𝑇 and 𝑇 are used as model input, runoff data is the output of 
the model, which are used for calibration and validation of the model. 

 

Historical and future dataset from GCM-RCM projections 

The historical dataset from GCM-RCM projections is used to check the accuracy of GCM-RCM 
predictions by comparing data from GCM-RCM historical projections and data from the observed 
historical period. The datasets are available from NA-CORDEX which provides detailed data 
information (Mearns et al., 2017). For example, for the historical data, the description of the 
variables in the data file can be found in Table 2.1. The future datasets are used to study the 
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climate change impact on river runoff as model inputs under future conditions. The detailed 
information of the selected data source can be found in Appendix A. 

Table 2.1 Description of variables in each dataset file. 

Climatic 
characteristics 

Scenario GCM RCM Frequency Grid Bias 
correction 

𝑃𝑟𝑒𝑐 historical CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

𝑇௠௔௫ historical CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

𝑇௠௜௡ historical CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

 

Bias-correction 

As raw data are uncorrected model output, bias-correction needs to be done to the raw data for 
simulation. In NA-CORDEX, the N-dimensional probability density function transform is adapted 
for use as a multivariate bias correction algorithm (MBCn) for climate model projections of 
multiple climate variables (Mearns et al., 2017). MBCn is a multivariate generalization of quantile 
mapping, which converts all aspects of the observed continuous multivariate distribution into the 
corresponding multivariate distribution of the variables in the climate model (Cannon, 2018). The 
datasets have been adjusted using Cannon’s MBCn algorithm against a gridded daily 
observational dataset (Daymet gridded observational datasets) (Mearns et al., 2017). The 
Daymet dataset interpolates and extrapolates GHCND (Global Historical Climatology Network 
Daily) station data using statistical methods, and this dataset covers the entire United States. 

 

Calculation of data in study catchment 

The future data are estimated with a 0.25-degree spatial resolution. Here a weighted average 
method is used to calculate data in the whole catchment, which can be expressed as: 

𝐶𝐶 =
௉భ஽భା௉మ஽మା⋯ା௉೙஽೙

௉భା௉మା⋯ା௉೙
  .....................................................................................................................  (2.1) 

Where, 𝐶𝐶 is the climatic characteristic which will be used to estimate future discharge; 𝑃௜  is the 
percentage of corresponding catchment area accounting for each lon-lat grid; 𝐷௜  is the climatic 
characteristic data in each lon-lat grid, such as 𝑃, 𝑇௠௔௫ and 𝑇௠௜௡; n is the number of lon-lat grids 
occupied by the catchment. 

With this method, the future data of precipitation, maximum and minimum temperature are 
available. For calculating potential evapotranspiration for the future period, climatological 
evapotranspiration values are needed. In observed data, there are 365 𝑃𝐸𝑇௖ data in each normal 
year but 366 𝑃𝐸𝑇௖ data in leap years. However, there are no leap years in future period from the 
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GCM-RCM rcp projections, thus, the climatological 𝑃𝐸𝑇  data in normal years are used. The 
method to calculate corrected 𝑃𝐸𝑇 data with 𝑇௠௔௫ and 𝑇௠௜௡ is the same as described above (in 
Appendix B). 

 

Figure 2.3. Shape of the target catchment 07152000. The number and the percentages indicate the grid cells and 
the ratio of the corresponding area for each grid cell.  

 

2.3 Description of model 

Model choice 

For the selection of a hydrological model in this research, firstly the parameters of the model can 
be affected by climate change, which means it is possible that the parameters could have some 
relations with different climate conditions. The parameters in the selected model should 
potentially have the relations. Secondly the model structure can be outside of domain, then the 
non-stationarity of model parameters can be focused. Thirdly the model can have a relatively 
accurate reflection when simulating a certain hydrological process, which means the model 
output has acceptable results compared to observed runoff. Although a variety of models exists, 
each has its own strengths and drawbacks. No matter physically based models, empirical models, 
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or conceptual hydrological models, they are all widely used to simulate hydrological processes in 
different river catchments. However, conceptual models generally can represent the most 
relevant hydrological processes at the catchment scale (Wheater, 2002), one specification of 
conceptual models is that the parameters do not necessarily have a physical, but a conceptual 
interpretation (Pechlivanidis et al., 2011). The correlations between parameters and climatic 
variables are conceptual but not physical relationship, therefore, in this study a conceptual model 
is used. 

GR4J (Genie Rural à 4 paramètres Journalier) rainfall-runoff hydrological model as a conceptual 
model is used in this study, which was developed by Perrin et al. (2003) based on the GR3J model 
and was proven being a solid and efficient model in hydrological modeling. GR3J rainfall-runoff 
model as an empirical model was originally proposed by Edijatno and Michel (1989) and 
improved by Nascimento (1995) and Edijatno et al. (1999). See the diagram of GR3J and GR4J in 
Figure 2.4 and parameters in Table 2.2. 

 

(a)                                                                                (b) 

Figure 2.4 Diagram of GR3J (a) and GR4J (b) rainfall-runoff model (Source: (a) Andreassian et al., 2001 and (b) Perrin 
et al., 2003). 

Table 2.2 List of parameters of the GR3J and GR4J models. 

Model Parameter Parameter signification   

GR3J 𝑋ଵ         Water exchange coefficient (mm)  
 𝑋ଶ         Capacity of the non-linear routing reservoir (mm) 

 𝑋ଷ         Unit hydrograph time base (day)  
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GR4J 𝑋ଵ         Maximum capacity of production store (mm) 

 𝑋ଶ         Groundwater exchange coefficient (mm/d) 

 𝑋ଷ         Maximum capacity of routing store (mm) 
  𝑋ସ         Time peak ordinate of hydrograph unit UH1 (day) 

 

Compared with the HBV model (Lindstrom et al., 1997), the GR4J model has a smaller number of 
parameters, therefore, theoretically less correlations between parameters and climatic 
characteristics can be addressed, and less equations need to be determined. Totally, GR4J 
rainfall-runoff model is a suitable model for this study to model the relations between 
parameters and climatic characteristics. 

 

Model description 

In the following, the calculation steps throughout the model are introduced at a given time step. 
The rainfall depth 𝑃and the potential evapotranspiration 𝑃𝐸𝑇 are the inputs to the model. The 
data can be computed by any interpolation method from available rain gauges. 

The first step is to compare 𝑃 and 𝑃𝐸𝑇 and determine either a net evapotranspiration 𝐸௡ or a 
net rainfall 𝑃௡. In the GR4J model, the interception storage is assumed as zero capacity. 𝑃௡ and 
𝐸௡ are computed with the following equations: 

If 𝑃 ≥ 𝐸, then: 

𝑃௡ = 𝑃 − 𝐸, 𝐸௡ = 0  ...........................................................................................................................  (2.2) 

otherwise: 

𝐸௡ = 𝐸 − 𝑃, 𝑃௡ = 0  ...........................................................................................................................  (2.3) 

In case 𝑃௡ is not equal to zero, 𝑃௦ as a part of 𝑃௡ will fill the production store. It can be calculated 
with the net rainfall 𝑃௡, the actual level 𝑆 in the production store and the maximum capacity of 
the store (𝑋ଵ, mm), the equation is described as: 

𝑃௦ =
௫భ(ଵିቀ
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ೣభ
ቁ

మ
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)
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)
  ......................................................................................................................  (2.4) 

In the other case, when 𝐸௡ is not zero, a part  𝐸௦ of 𝐸௡ will evaporate from the production store, 
which can be calculated with the net evapotranspiration capacity 𝐸௡ , the actual level in 
production 𝑆 (mm) and the maximum capacity of the store 𝑋ଵ  (mm). Then the water level is 
updated by eq. 2.6. The equations are written as: 

𝐸௦ =
ௌ(ଶି

ೄ
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)
  .........................................................................................................................  (2.5) 
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𝑆 = 𝑆 − 𝐸௦ + 𝑃௦   ..................................................................................................................................  (2.6) 

Noted that 𝑆 is always lower than 𝑋ଵ  (mm). The percolation 𝑃𝑒𝑟𝑐  (eq. 2.7) is taken from the 
updated water content (eq. 2.6) of the production store and added to the routing part 𝑃௥ (eq. 
2.9). 𝑃𝑒𝑟𝑐 is always lower than 𝑆. The level 𝑆 in the production store is updated as eq. 2.8: 

𝑃𝑒𝑟𝑐 = 𝑆 ൜1 − ቂ1 + (
ସ

ଽ
 

ௌ

௫భ
)ସቃ

ିଵ/ସ

ൠ  ...................................................................................................  (2.7) 

𝑆 = 𝑆 − 𝑃𝑒𝑟𝑐  ......................................................................................................................................  (2.8) 

𝑃௥ = 𝑃𝑒𝑟𝑐 + (𝑃௡ − 𝑃௦)  ......................................................................................................................  (2.9) 

𝑃௥ is divided into two flow components: one part accounts for 90% of 𝑃௥ and is routed by a unit 
hydrograph 𝑈𝐻1 with base time 𝑋ସ (d) for delayed runoff; the other part accounts for 10% of 𝑃௥ 
and streams into direct runoff by a unit hydrograph 𝑈𝐻2 with base time 2𝑋ସ. A groundwater 
exchange term 𝐹 that acts on both flow components, is then calculated as: 

𝐹 = 𝑥ଶ(
ோ

௫య
)଻/ଶ  ...................................................................................................................................  (2.10) 

where 𝑅 is the level in the routing store, 𝑋ଷ (mm) is the maximum capacity of the routing store, 
𝑋ଶ (mm/d) is the water exchange coefficient. The value of 𝑋ଶ (mm/d) can be either positive, 
negative or zero. A positive value means water imports, while a negative value means water 
exports, and zero means there is no water exchange. The higher the level in the routing store, 
the larger the exchange. Note that, 𝐹 cannot be greater than 𝑋ଶ (mm/d). In special conditions 
when the level in the routing store equals 𝑋ଷ (mm), 𝑋ଶ (mm/d) represents the maximum quantity 
of water that can be added (or released) to (from) each model flow component. 

The actual level in the routing store is updated using 𝑄9 from 𝑈𝐻1 and 𝐹: 

𝑅 = max (0; 𝑅 + 𝑄9 + 𝐹)  ..............................................................................................................  (2.11) 

The outflow 𝑄௥ from the routing store is then calculated as: 

𝑄௥ = 𝑅 ቊ1 − ൤1 + ቀ
ோ

௫య
ቁ

ସ

൨
ିଵ/ସ

ቋ ......................................................................................................  (2.12) 

𝑄௥ is always lower than 𝑅. The level in the reservoir is then reupdated as: 

𝑅 = 𝑅 − 𝑄௥  .......................................................................................................................................  (2.13) 

Noted that the level 𝑅 can never exceed the capacity 𝑋ଷ (mm) at the end of a time step. 

The output 𝑄1  from 𝑈𝐻2  is expected to have the same water exchange 𝐹 , then the flow 
component 𝑄ௗ is: 

𝑄ௗ = max (0; 𝑄ଵ + 𝐹)  ...................................................................................................................  (2.14) 

Finally, total streamflow 𝑄 is obtained as: 
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𝑄 = 𝑄௥ + 𝑄ௗ  .....................................................................................................................................  (2.15) 

Considering from the MOPEX dataset which provides data of 𝑃, 𝑃𝐸𝑇, 𝑇 and discharge 𝑄, the 
inputs of GR4J model are precipitation 𝑃 and potential evapotranspiration 𝑃𝐸𝑇, the output is 
discharge 𝑄. 

 

Parameter range 

An initial parameter set for the optimization algorithm calibrating the model parameters is 
needed. In this research, the initial parameter set, and parameter ranges follow the set from 
Perrin et al. (2003). Because the values have been obtained on a large variety of catchments (see 
Table 2.3). If the modeled parameter value is the highest or the lowest value of the parameter 
range, then the default parameter ranges can be adjusted according to simulated optimal 
parameters. 

Table 2.3. Initial four parameter values and 80% confidence intervals. 

  Median value 80% Confidence interval 

𝑋ଵ(mm) 350 100 - 1200 
𝑋ଶ(mm/d) 0  -5 to 3 
𝑋ଷ(mm) 90 20 - 300 
𝑋ସ(day) 1.7 1.1 - 2.9 
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Chapter 3 

Methodology 

 

This chapter describes methods for answering research questions and reaching the objectives in 
this study step by step. Section 3.1 describes the sensitivity of the parameters to model output 
reflected by the objective function. Section 3.2 and section 3.3 introduce the model calibration 
algorithm and validation arrangement, respectively to describe how non-stationary model 
incorporates non-stationarity compared with stationary model. In section 3.4, the methods for 
exploring the correlations and equations between parameters and climatic characteristic are 
described in detail. In the last section (3.5), the method for climate change impact assessment 
on river runoff will be introduced, which including the method of how to compare simulation 
performance of both models to determine which model is more robust under historical period, 
and the method of climate change impact assessment on rive runoff for both models under 
future periods. 

 

3.1 Sensitivity analysis 

Objective function 

An objective function is a widely used statistical method to measure model performance, which 
is calculated with modeled and observed discharge. The Nash-Sutcliffe coefficient (𝑁𝑆𝐸) (Nash 
and Sutcliffe, 1970), Mean Square Error (𝑀𝑆𝐸) and Relative Volume Error (𝑅𝑉𝐸) are the three 
criteria most widely used for calibration and validation of hydrological models. The 𝑀𝑆𝐸 value 
can be obtained by dividing 𝑀𝑆𝐸 by the variance of the observed data and subtracting the ratio 
from 1. However, in many studies, a combination of different criteria is applied, for example, Xu 
(1999, 𝑁𝑆𝐸  and 𝑅𝑉𝐸 ), Bastola et al. (2011, 𝑁𝑆𝐸  and 𝑅𝑉𝐸 ), Seibert (2003, 𝑁𝑆𝐸  and 
groundwater coefficient), Booij et al. (2011, 𝑁𝑆𝐸, 𝑅𝑉𝐸 and 𝑌); 𝑌 is calculated by the value of 
𝑁𝑆𝐸 dividing by the sum of 1 plus the absolute value of RVE (Akhtar et al., 2009). 

A criterion named Kling-Gupta efficiency (𝐾𝐺𝐸) is proposed, the 𝐾𝐺𝐸 criterion is proved to be a 
robust one for describing the statistical relation between simulated discharge and observed 
discharge (Gupta et al., 2009). Compared to 𝐾𝐺𝐸 , the 𝑀𝑆𝐸  criterion is likely to result in an 
underestimation of the variability in the flows (e.g. a larger underestimation of peak flows).  Study 
examples which use 𝐾𝐺𝐸 as objective function can be seen from e.g. Knoben et al. (2019), Pool 
et al. (2018), Franco and Bonuma (2017) and Baez-Villanueva et al. (2018). Totally, in this study, 
the objective function 𝐾𝐺𝐸 is used. 



16 
 

The equation of 𝐾𝐺𝐸 is expressed as: 

𝐾𝐺𝐸 = 1 − ඥ(𝑟 − 1)ଶ + (𝛼 − 1)ଶ + (𝛽 − 1)ଶ  ............................................................................  (3.1) 

where 𝑟  is the linear correlation between observations and simulations, 𝛼  is the ratio of the 
standard deviation of the simulated and observed discharge, and 𝛽 is a bias term calculated by 
dividing the average simulated discharge by the average observed discharge: 

𝛼 =
ఙೞ೔೘

ఙ೚್ೞ
  ...............................................................................................................................................  (3.2) 

𝛽 =
ఓೞ೔೘

ఓ೚್ೞ
  ...............................................................................................................................................  (3.3) 

where, 𝜎௦௜௠ is the standard deviation of the simulated discharge, 𝜎௢௕௦ is the standard deviation 
of the observed discharge, 𝜇௦௜௠ is the average value of simulations and 𝜇௢௕௦ is the average value 
of observations. The interval of the value of 𝐾𝐺𝐸 is [−∞, 1]. Only when the simulations are equal 
to the observations, the correlation 𝑟 is 1, 𝛼  and 𝛽  equal 1, then the value of 𝐾𝐺𝐸  equals 1, 
which means a perfect simulation of the model.  

 

Univariate sensitivity analysis 

The sensitivity of 𝐺𝑅4𝐽 model parameters in the calibration period is investigated. By doing this, 
the sensitivity of model parameters to model output and sensitivity of model output to model 
parameters can be analyzed, studying the more sensitive parameters is more meaningful because 
these parameters affect model output more when climate change impact has obvious influence 
on the values of the parameters. A univariate sensitivity analysis method is carried out. Firstly, 
the optimized parameters are calibrated within the calibration period (30 years), which are the 
values of parameters with 100% percentage. By doing this, we can see the effects of changing 
parameters around the optimal parameter set. The equations for determining the values of 
parameters and the relative change are expressed as follows: 

𝑋௡ = 𝑋௢௣௧௜௠௜௭௘ௗ ∗ 𝑃௜ ............................................................................................................................ (3.4) 

𝑋௦௖௔௟௘ௗ = (𝑋௡ − 𝑋௠௜௡)/(𝑋௠௔௫ − 𝑋௠௜௡)........................................................................................... (3.5) 

Where, 𝑋௡ is model parameter, n is a series of value sets for each parameter, 𝑋௢௣௧௜௠௜௭௘ௗ is the 
optimized parameter values within the calibration period. 𝑃௜  is used for determining parameter 
values by multiplying optimized parameters.  𝑋௠௔௫ and 𝑋௠௜௡ are the maximum and minimum 
values in 𝑋௡, respectively. The relative change values can be used for plotting figures as scaled 
values, which can make parameter ranges the same. 

 

3.2 Calibration and validation 
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Before calibration starts, warming up the model is necessary to decrease the influence of initial 
conditions and make the model reach a normal state. The warm-up period depends on initial 
conditions of the catchment (e.g. soil wetness) and input data (e.g. rainfall amount). The typical 
suggested warm-up period ranges from one to several years (Kim et al., 2018). In this study, the 
total length of data record in the catchment includes 54 years, and for each simulation the 
simulation period includes at least 10 years, therefore, the first year before each simulation is 
selected as the warm-up period. In each calibration process, the criteria ‘fminsearchbnd’ in Mat-
Lab is applied to find the optimal parameter set, and the calibrated optimal parameter set is used 
in the validation period. During both processes, the observed runoff is needed as the baseline. 

 

3.2.1 Stationary calibration and validation 

In the stationary case, all parameters are considered as fixed values. The whole historical period 
is divided into two parts, calibration period and validation period, respectively. Considering that 
this study will explore the effect of climate change on parameters, and the parameters will be 
calibrated within the calibration period, it is better to include at least 30 years when studying 
climate change impacts. Therefore, the calibration period includes the first 30 years of the total 
54 years (1948-1977), and the validation period includes the other part with 24 years (1978-2001). 

 

3.2.2 Method for dealing with parameter non-stationarity 

When considering the parameters are affected by climate change, non-stationarity in model 
parameters need to be considered. The whole response time is divided into multiple time 
windows of a certain length. For example, Knoben (2013) applied 5-year time windows from a 
total response time of 30 years in a study of non-stationary hydrological model parameters for 
the Polish Welna catchment. Coron et al. (2012) used a 10-year sliding window to test 
combinations of calibration-validation periods in a study of crash testing hydrological models in 
contrasted climate conditions in Australian catchments. The entire data set in this study is divided 
into overlapping 10-year time slices, resulting in 20 time slices with different climatic 
characteristics in the calibration period (11 years when including the warm-up year) and 15 time 
slices in the validation period. For instance, in the calibration period from 1948-1977, for the first 
calibration of the first 10-year time slice, 1948 is used as warm-up period, 1949-1958 is used for 
calibration; for the second calibration of the second 10-year time slice, 1949 is used as warm-up 
period and 1950-1959 is used for calibration.. The GR4J model is calibrated for each 10-year 
period to find optimal parameter sets for the climatic conditions during each of the 20 time 
periods.  

 

3.2.3 Correlations 
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Climatic characteristics 

A goal of this study is to find if there are potential relationships between parameters and specific 
climatic characteristics to explore the non-stationarity of parameters due to climate change, and 
then, the climatic characteristics can also be used to determine the parameter values for future 
conditions. As it is not known that which climatic characteristics are related to optimal model 
parameters, then multiple climatic variables related to model inputs are used. The applied 
climatic characteristics can be found in Table 3.1. The climatic characteristics are determined 
with data in each 10-year time period. All the calculated data are based on daily values. 

Table 3.1. Selected climatic characteristics and their meanings. 

Climatic characteristics Meaning 
𝑃 (mm) Average precipitation 

𝐴𝐸𝑇 (mm) Average actual evapotranspiration 
𝑃𝐸𝑇 (mm) Average potential evapotranspiration 

𝑇 (°Ϲ) Average temperature 
𝑃௪௘௧ (mm) Average precipitation intensity on days with 𝑃 > 0.1 mm 

𝑎𝑟 Average aridity 
𝑃௦ௗ (mm) Standard deviation of average precipitation 
𝑇௦ௗ (°Ϲ) Standard deviation of average temperature 
𝑃௦ (mm) Average precipitation in summer  

𝑇௦(°Ϲ) Average temperature in summer  
𝑃𝐸𝑇௦ (mm) Average potential evapotranspiration in summer  

𝑎𝑟௦ Aridity in summer 
𝑃௪௘௧,௦ (mm) Average precipitation intensity on days with 𝑃 > 0.1 mm in summer 

𝑃௪ (mm) Average precipitation in winter 
𝑇௪ (°Ϲ) Average temperature in winter 

𝑃𝐸𝑇௪ (mm) Average potential evapotranspiration in winter 
𝑎𝑟௪ Aridity in winter 

𝑃௪௘௧,௪ (mm) Average precipitation intensity on days with 𝑃 > 0.1 mm in winter 
 

The average temperature 𝑇 (°Ϲ) can be obtained by averaging daily maximum and minimum 
temperature. The average aridity is the average potential evapotranspiration divided by the 
average precipitation. Here the climatic variables in summer and winter are selected, because by 
comparing different seasons, summer and winter can show the changing features of different 
climatic characteristics, such as 𝑃 (mm),  𝑃𝐸𝑇 (mm) and 𝑇 (°Ϲ).  

 

Pearson correlation coefficient 

The Pearson correlation coefficient (𝑟; Davis, 2002) is used to determine the linear correlations 
between 20 optimal parameter values and climatic characteristics from 20 10-year time slices. 
Due to the uncertainty in the relationships between parameters and climate characteristics, this 
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linear approach is used firstly. The Pearson correlation coefficient can be calculated with 
covariance between two variables 𝑥 and 𝑦 dividing by their standard deviations, which can be 
expressed as: 

𝑟 =
௖௢௩ೣ,೤

ఙೣఙ೤
 ................................................................................................................................................ (3.6) 

𝑟 = 1 indicates a perfect positive correlation, while 𝑟 = -1 indicates a perfect negative correlation. 
To determine which correlations are statistically significant, the significance level of 5% (𝑝 < 0.05) 
is used as a threshold, which can be tested with Mat-Lab functions ‘ 𝑓𝑖𝑡𝑙𝑚 ’ and ‘ 𝑎𝑛𝑜𝑣𝑎 ’ 
(Dumouchel & O’Brien, 1989; Holland & Welsch, 1977; Huber, 1981; Street et al., 1988). Only for 
correlations with a significance level higher than 0.05, the relevant climatic characteristics will be 
considered. 

 

3.3 Linear regression analysis 

Regression analysis is applied here to establish which climatic characteristics are statistically 
significant to determine equations for parameter values. First, in this study, single linear 
regression is used to show the relationship between one independent climatic variable and one 
dependent parameter. Second, multiple linear regression analysis is executed to determine the 
relationship between multiple independent climatic variables and one dependent parameter, 
where the climatic variables used in the multiple linear regression analysis are the significant 
ones from the results of single linear regression analysis. The Mat-Lab functions ‘𝑓𝑖𝑡𝑙𝑚’ and 
‘𝑎𝑛𝑜𝑣𝑎’ can be used in both single and multiple linear regression analysis. The Mat-Lab functions 
‘ 𝑓𝑖𝑡𝑙𝑚 ’ creates a linear regression model by fitting to data of dependent parameters and 
independent climatic variables, and it can also provide the 𝑅ଶ value which indicates the goodness 
of fit of the regression line, the higher the 𝑅ଶ value, the better the regression model. The Mat-
Lab function ‘𝑎𝑛𝑜𝑣𝑎’ displays a summary analysis of variance table with the p-value for the 
regression model as a whole. In this study, four model parameters are the dependent variables, 
and 19 climatic characteristics are the independent variables. All four parameters are tested with 
single linear regression analysis firstly. 

 

3.3.1 Single linear regression analysis 

As it is unlikely to find a perfect relationship between a parameter and all climatic characteristics 
and therefore the optimal value of a model parameter, single linear regression analysis is applied 
firstly to screen which climatic characteristic has a statistically significant correlation with a model 
parameter by adjudging if its 𝑝 -value is lower than 0.05. For a single linear regression model, its 
equation can be expressed as: 

𝑦௥ = 𝑐଴ + 𝑐ଵ𝑥௜ ...................................................................................................................................... (3.7) 
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Where, 𝑦௥ is the dependent parameter and 𝑥௜  is the independent climatic variable, the constant 
value 𝑐଴  is the linear and pairwise interaction term with 𝑦௥ , 𝑐ଵ  is the coefficient of the 
independent climatic variable. In the case of single linear regression, the strength of the 
regression equation (𝑅ଶ) is equal to the squared value of the Pearson correlation coefficient 𝑟 
between both variables. This single regression equation also means just one climatic 
characteristic is used to estimate the optimal parameter value. However, more than one climatic 
characteristic can affect the parameter, and then it is not robust to estimate the optimal 
parameter value based on just one climatic characteristic.  

 

3.3.2 Multiple linear regression analysis 

Multiple linear regression analysis is used to create a linear regression equation for parameter 
values by combining multiple significant climatic characteristics. The equation is shown as: 

𝑦௥ = 𝑐଴ + 𝑐ଵ𝑥ଵ + 𝑐ଶ𝑥ଶ + ⋯ + 𝑐௡𝑥௡ .................................................................................................. (3.8) 

Where, 𝑦௥ is the dependent parameter and 𝑥ଵ, 𝑥ଶ,…, 𝑥௡ are the independent climatic variables 
which  have significant correlations with the parameter, and the constant value 𝑐଴ is the linear 
and pairwise interaction term, 𝑐ଵ , 𝑐ଶ ,…, 𝑐௡  are the coefficients of the independent climatic 
variable. By combining all significant climatic characteristics into one linear regression analysis 
does not mean they will contribute a regression equation with highest 𝑅ଶ value for estimating an 
optimal parameter value, because they may interact inside the regression model which can make 
some climatic characteristics non-significant for this linear equation, for instance, an individual 
climatic characteristic has a statistical significance level lower than 0.05 in the single linear 
regression, but when using this climatic characteristic in the multiple linear regression model, it 
is possible that it has a statistical significance level much higher than 0.05. In this case, this 
climatic characteristic need to be removed from the multiple regression model. The rule to 
execute this is to remove the climatic characteristic one by one starting with the highest p-value 
above 0.05 until all the remaining climatic characteristics have a statistical significance level lower 
than 0.05. Theoretically, with removing the climatic characteristics with a 𝑝-value higher than 
0.05 one by one, the goodness of fit of the regression equation (𝑅ଶ) will become higher and 
higher, this means the regression equation is becoming more robust to estimate optimal 
parameter values. 

 

3.3.3 Recalibration and revalidation 

If all parameters have their own regression equations, the parameters in the validation period 
will be calculated with the equations. To test the robustness of the regression equations, 
simulation will be done with optimized parameters by calibrating 20 hydrological blocks in the 
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calibration period and estimated parameters calculated with regression equations in the 
validation period. 

 

Recalibration 

Another condition which is possible to happen is that some parameters can be calculated with 
their own regression equations, while for other parameters no significant regression equation is 
identified. This happens to the parameters for which no significant is found with any climatic 
characteristic. In this case, these parameters remain stationary but are recalibrated to make 
them compatible with a variety of calculated values of the parameters which have regression 
equations. The recalibration period is the same as the stationary case with the first 30 years as 
calibration period. During the recalibration, the parameters with regression equations are set as 
temporary ‘fixed’ values obtained by the regression equations, and the parameters with no 
regression equations are recalibrated with parameter ranges of the 80% confidence interval. 

 

Redetermination of regression equations 

After recalibration, the parameters with no regression equations can be seen as stationary 
parameters due to no significant correlations between them and climatic characteristics. The 
reason for redetermining regression equations is that the preliminary equations are determined 
with optimized four parameters and climatic characteristics in 20 10-year time periods, in which 
the parameter values are influenced with each other during the optimization process due to the 
internal interaction of model parameters. The optimized values of parameters which have 
significant correlations with climatic characteristics may change when applying the stationary 
parameters. Therefore, the regression equations for the non-stationary parameters are 
redetermined with new parameters optimized from 20 10-year time periods. After getting the 
new optimized parameter values, the steps above are repeated to determine new regression 
equations. By doing this, indeed the parameters for the determination of regression equations 
are influenced less by fixed parameters. Theoretically, more repeated processes can lead to a 
more robust determination of equations. However, it is not possible to repeat again and again. 
The recommendation for this process in further study is given in Chapter 6. 

 

Performance of regression equations in validation period 

After the new regression equations are determined for parameters which have significant 
correlations with climatic characteristics, the non-stationary parameters in the validation period 
are calculated with the new regression equations. Comparison of the differences between 
calculated parameters by regression equations with climatic characteristics and optimized 
parameters in the validation period is done. By doing this, it can test if the regression equations 
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have good performance in estimating optimal parameter values. If the estimated parameter 
values with regression equations are close to optimized parameter values, then the regression 
equations are reliable to be applied in following simulations. 

Although the parameters and climatic characteristics are obtained with 10-year time slices, 
considering about the hydrological year in each time slice, the data in the middle year is actually 
simulated in each time slice because the estimation of parameters are based on averaged climatic 
characteristics over 10 years. For instance, the climatic characteristics are calculated from 1949-
1958, the parameters calculated by the regression equation stand for the parameters in 1953, 
therefore, the simulated output stands for the output in 1953. 

 

3.3.4 Reverse order of calibration and validation 

The steps above to determine regression equations are using the calibration period and test the 
performance of simulation using the validation period. With climate change in the whole 
historical period, however, it may happen that the regression equations obtained with data in 
the validation period perform better than the regression equations obtained with data in the 
calibration period. Therefore, the reverse order is done to test the results with 1972-2001 as the 
calibration period and 1948-1971 as the validation period. The whole process is repeated to 
determine the regression equations with the new calibration period and test the equations with 
the new validation period. Therefore, two sets of regression equations are obtained using 
sequential-order and reverse-order calibration periods. The regression equations resulting in a 
higher value of the objective function in the validation period will be selected for following 
simulations.  

 

3.4 Climate change impact assessment 

This section describes the change in climatic characteristics for observed datasets and GCM-GCM 
projected datasets (section 3.5.1). Section 3.5.2 describes the process and methods of climate 
change impact assessment, and section 3.5.3 describes how to compare the performance 
between the stationary and non-stationary model under different simulation periods. 

 

3.4.1 Change in climatic characteristics 

The observed data and GCM-RCM projections are used as inputs for both the stationary and non-
stationary model, the climatic characteristics are expected to be different under different periods, 
especially when comparing historical and predicted future data. For example, the annual average 
temperature is expected to increase. By comparing the change of climatic characteristics in 
historical and future periods, it can give an insight on how climate change influences model inputs. 
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3.4.2 Climate change impact assessment method 

Because the observed historical runoff cannot be compared directly with simulated future runoff, 
four steps are done to complete climate change impact assessment. First, observed runoff is 
compared with simulated runoff for both the stationary and non-stationary model with observed 
𝑃, 𝑃𝐸𝑇 and 𝑇 data as inputs. This can show the accuracy of both models and difference between 
both hydrological models. Second, the simulated runoff based on observed 𝑃, 𝑃𝐸𝑇 and 𝑇 data is 
compared with simulated runoff based on GCM-RCM projections for the same historical period 
from both the stationary and non-stationary model. This shows the influence of the GCM-RCM 
combination on predictions for the same hydrological model. Third, the observed runoff is 
compared with simulated runoff by both models with GCM-GCM historical projections as inputs, 
and this shows the accuracy and reliability of the selected GCM-RCM combination and the 
hydrological model. During these three steps, comparisons of the stationary and non-stationary 
model are made to judge which model is more robust to simulate runoff under future periods. 
Fourth, the simulated runoff with GCM-RCM projections for historical period as inputs is 
compared with simulated runoff with GCM-RCM projections for future periods as inputs for both 
the stationary and non-stationary model. This shows the influence of expected climate change. 

 

3.4.3 Comparison of performance by the stationary and non-stationary model 

Flow-duration-curves are used to visualize changes in frequency of simulated flows and to see 
the process from high flows to low flows from stationary and non-stationary models. Tables 
based on seasonal and annual changes of flows are made to compare the accuracy of simulations 
by both models. Although it is impossible to determine which hydrological model is more 
accurate to simulate future runoff, we can say which model is most probably to be suitable for 
simulations of future runoff by comparing model performances under historical and future 
periods. 
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Chapter 4 

Results 

 

This chapter describes the results based on the methodology. Section 4.1 shows the result of 
sensitivity between model parameter and model output. Section 4.2 shows the calibration and 
validation results in stationary model case. In section 4.3, the results of Pearson correlations, 
single and multiple regression analysis indicate which parameters have significant correlations 
with climatic characteristics, and the regression equations for model parameters with climatic 
characteristics are determined. After that, the simulation results with regression equations in 
validation period are compared to see if the regression equations for parameters perform well. 
Section 4.4 describes the climate change impact on model inputs and runoff under different 
periods, and then climate change impact assessment to seasonal flows and annual flows is done. 
The results show which model is more robust in simulating runoff in historical period, and which 
model is more suitable for future runoff simulation. 

 

4.1 Univariate sensitivity analysis 

From the figure, we can see that around the optimized values, it seems that the sensitivity 
between 𝑋ସ  and model output is more obvious than the sensitivities between other three 
parameters and model. However, this does not mean other parameters are not sensitive to 
model output, which means with impact of climate change, the changes of these parameters can 
also have an obvious influence on model output. 
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Figure 4.1. Sensitivity between parameters and model output. 

 

4.2 Stationary calibration and validation results 

The stationary model used the first 30 years as the calibration period and last 24 years as the 
validation period. The results show that the parameter value of 𝑋ଷ (mm) is lower than the default 
parameter range, to get the optimized parameter value, the lower boundary of the parameter 
range is lowered to 0.001 mm. The results from sequential and reverse calibration and validation 
periods are in Table 4.1. 

The Kling-Gupta Efficiency (𝐾𝐺𝐸) from calibration in sequential order (0.81) is a little bit worse 
than the result in reverse order (0.82). The 𝐾𝐺𝐸 value in the validation period in sequential order 
(0.79), however, is better than the 𝐾𝐺𝐸 value in reverse order (0.76). This happens mostly due 
to the change of input data influenced by climate variability from different periods. It seems that 
the sequential order is more suitable as a stationary model for comparison with a non-stationary 
model because of better validation result.  

Table 4.1 Stationary calibration and validation results of sequential order and reverse order. In sequential order, the 
model is calibrated with data from 1948-1977 and validated with data from 1978-2001. In reverse order, the model 
is calibrated with data from 1972-2001 and validated with data from 1948-1971. 

  Sequential Reverse 
  Calibration Validation Calibration Validation 

𝐾𝐺𝐸 0.81 0.79 0.82 0.76 
 

 

4.3 Correlations for parameters in non-stationary model 
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4.3.1 Parameters and objective function 

 The 20 pairs of optimized parameters and their objective function values are plotted in Figure 
4.2. Parameter 𝑋ଶ and 𝑋ସ show a similar tendency to some extent, where their values are lowest 
in the 15th time period, while parameter 𝑋ଷ shows a opposite tendency, and the value of 𝑋ଷ 
reaches the peak value in the 15th time period. Parameter 𝑋ଵ does not experience an obvious 
changing process, but it seems that it reaches a lowest value around the 15th period, then 
increase again. The 𝐾𝐺𝐸  values generally show a tendency with increasing at first and then 
decreasing. The 𝐾𝐺𝐸 value is relatively low in the 15th time window, after that the 𝐾𝐺𝐸 values 
increase again to around 0.82. By comparing the climatic inputs between the 15th period and 
other time periods, we can find that the average precipitation in the 15th time window is relatively 
low compared to most of the other time windows (4% lower than the average precipitation 
among all 20 time windows) and hence the aridity is higher than most of other periods. This might 
be explained by that during arid periods, water is extracted from the ground rather than stored 
under and on the ground. For a rainfall event, as for the dry ground, the rainfall prefers to fill in 
the ‘empty’ soil rather than forms runoff, this could result in a runoff delay. Therefore, a lower 
𝑋ଶ  value and 𝑋ସ  value appear in the relatively driest period. Besides, the average observed 
discharge in this period is the lowest in all 10-year periods. 
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Figure 4.2 Calibration results of 20 10-year time slices. Each time slice includes 10 consecutive hydrological years. 
The upper figure shows the values of the objective function 𝐾𝐺𝐸 , the lower four figures show the optimized 
parameter sets from 20 time slices. 

 

4.3.2 Pearson correlation results 

This section gives Pearson correlation results between the four parameters and all climatic 
characteristics (Table 4.2). Correlations are considered significantly when significance level 𝑝 < 
0.05. The green cells indicate the correlations between parameters and climatic variables are at 
the 95% level and are discussed, while the white cells indicate the parameters do not show 
significant correlations with the climatic variables. 

Table 4.2. Correlation results between parameters and climatic variables calculated from 20 10-year time windows. 
Coefficients: 𝑟: Pearson correlation coefficients, 𝑝: 𝑝-value between parameters and climatic characteristics, green: 
𝑝 < 0.05 (significant at 95% level), white: 𝑝 > 0.05 (not significant at 95% level). 

 

 

𝑋ଵ: maximum capacity of production store (mm) 

Parameter 𝑋ଵ (mm) shows all positive correlations with annual 𝑃𝐸𝑇 (mm), 𝑇 (°Ϲ), 𝑇௦ௗ (°Ϲ) and 𝑇௦ 
(°Ϲ) with significance level higher than 95%.  

Parameter 𝑋ଵ (mm) means the maximum capacity of the production store in the 𝐺𝑅4𝐽 model, 
the storage in the production store depends on the replenishment of net 𝑃𝐸𝑇 and net 𝑃 to the 
store when the percolation remains the same. If we assume precipitation does not change in a 

r p r p r p r p
P (mm) -0.235 0.318 0.088 0.716 -0.144 0.549 -0.287 0.219

 AET (mm) -0.393 0.088 -0.177 0.458 0.129 0.591 -0.523 0.018
 PET (mm) 0.479 0.033 0.189 0.425 -0.124 0.601 0.576 0.008

 T (°Ϲ) 0.585 0.007 0.349 0.131 -0.276 0.240 0.698 0.001
Pwet (mm) 0.016 0.944 0.227 0.337 -0.244 0.299 -0.038 0.874

ar 0.295 0.208 -0.028 0.904 0.087 0.712 0.354 0.127
Psd (mm) -0.198 0.401 0.050 0.835 -0.121 0.613 -0.179 0.448
Tsd (°Ϲ) 0.598 0.005 0.386 0.093 -0.309 0.185 0.635 0.003
Ps (mm) -0.358 0.121 -0.107 0.655 0.121 0.613 -0.329 0.157
Ts (°Ϲ) 0.583 0.007 0.352 0.128 -0.296 0.205 0.710 0.000

PETs (mm) 0.426 0.060 0.141 0.548 -0.131 0.578 0.427 0.059
ars 0.384 0.095 0.139 0.559 -0.148 0.534 0.365 0.114

Pwet,s (mm) -0.168 0.479 0.032 0.892 -0.016 0.947 -0.199 0.401
Pw (mm) -0.402 0.079 -0.349 0.132 0.290 0.216 -0.533 0.016
Tw (°Ϲ) 0.297 0.203 0.308 0.187 -0.270 0.249 0.581 0.007

PETw (mm) 0.330 0.155 0.333 0.153 -0.298 0.205 0.547 0.013
arw 0.396 0.084 0.358 0.121 -0.307 0.189 0.555 0.011

Pwet,w (mm) -0.231 0.328 -0.199 0.402 0.147 0.538 -0.367 0.112

X4(d)

Summer 
(JJA)

Winter 
(DJF)

X1 (mm) X2 (mm/d) X3 (mm)

Annual

Climatic variables from 
10-year time winows



28 
 

period, an increased value of 𝑋ଵ (mm) means the maximum volume for storage increases, then 
more volume from the difference of 𝑃 and 𝑃𝐸𝑇 can be stored in the production store, which will 
lead to less runoff. While increased 𝑃𝐸𝑇 can also lead a decreased directly runoff. Thus, 𝑋ଵ and 
𝑃𝐸𝑇 have a significant positive correlation. When temperature 𝑇 increases, the soil normally will 
become drier and the underground water is less, which can lead to an increase of rainfall storage 
under the ground, therefore increasing 𝑇 can result in less runoff. Therefore, parameter 𝑋ଵ and 
𝑇 can have a significant positive correlation. The standard deviation of daily average temperature 
𝑇௦ௗ (°Ϲ) can be a monitor of this parameter, when 𝑇௦ௗ (°Ϲ) increases, then parameter 𝑋ଵ (mm) 
probably will also increase. The daily average temperature in summer has a significant positive 
correlation with 𝑋ଵ  (mm), while there is no significant correlation between the daily average 
temperature in winter and 𝑋ଵ (mm). This happens probably due to the sensitivity of 𝑋ଵ (mm) to 
temperature, the higher the temperature, the more sensitive 𝑋ଵ (mm) responses to temperature. 

 

𝑋ସ: unit hydrograph time base (day) 

Parameter 𝑋ସ  (d) indicates the base time for delayed runoff. Table 4.2 shows there are 9 
significant correlations between 𝑋ସ (d) and the climatic characteristics. If we take increasing 𝑃𝐸𝑇 
as an independent event, then the increased 𝑃𝐸𝑇 (mm) will lead to decreased runoff which can 
be divided into direct and delayed runoff. When the precipitation does not change, then the 
direct runoff does not change. While with the increased 𝑃𝐸𝑇 (mm), less water will store in the 
production store and the routing store firstly, and it also increases the maximum storage of the 
production store, then lead to runoff, which is called delayed runoff. Therefore, the time for this 
runoff is delayed more. Increased 𝑇 (°Ϲ) will result in a drier soil moisture, then the rainfall will 
fill in the drier soil but not a direct runoff, thus result in a delayed runoff. Therefore, daily 
temperature 𝑇 (°Ϲ) has a strong positive correlation with 𝑋ସ (d). It is very strange that the 𝐴𝐸𝑇 
(mm) has a strong negative relationship with 𝑇 (°Ϲ), it is expected that 𝐴𝐸𝑇 (mm) has a positive 
correlation with temperature 𝑇 (°Ϲ), and therefore has a positive correlation with 𝑋ସ (d). This 
might happen that this model is oversensitive to 𝐴𝐸𝑇 (mm), the optimal 𝑋ସ (d) might increase to 
dampen this effect. Results show that the standard deviation of temperature 𝑇௦ௗ (°Ϲ) might be 
an indicator to see that change of 𝑋ସ (d), when 𝑇௦ௗ (°Ϲ) increases, the value of 𝑋ସ (d) increases. 
Both average temperature in summer (𝑇௦, °Ϲ) and average temperature in winter (𝑇௪, °Ϲ) have a 
significant correlation with parameter 𝑋ସ (d), this could happen if 𝑋ସ (d) is not sensitive to high 
and low temperature. In contrast, parameter 𝑋ସ  (d) shows obvious sensitivities to the low 
magnitude of precipitation and potential evapotranspiration. The magnitude of precipitation and 
potential evapotranspiration in winter is much lower than in summer, and the correlations 
between 𝑃௪ (mm) and 𝑃𝐸𝑇௪ (mm) and 𝑋ସ (d) (negative and positive, respectively) are significant 
at 95% level. In summer with much higher 𝑃 (mm) and 𝑃𝐸𝑇 (mm), the stores maybe saturated 
at some point, the effect of increased 𝑋ସ (d) is thus diminished. While with lower 𝑃 (mm) and 
𝑃𝐸𝑇 (mm) in winter, the decreased 𝑃 (mm) and increased 𝑃𝐸𝑇 (mm) can increase the aridity, 
then could have obvious effect on extension of base time for the delayed runoff. 
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4.3.3 Single and multiple linear regression analysis 

This section firstly discusses the single linear regression relationships between model parameters 
(𝑋ଵ, mm; and 𝑋ସ, d) and each climatic characteristic that is at a 95% significance level. Then based 
on the results from single linear regression analysis, multiple linear regression analysis is done to 
see if there are regression equations using multiple climate characteristics. 

 

Single linear regression 

The single linear regression is done with 20 optimized parameter values and 20 values of climatic 
characteristics from the 20 10-year time windows. The results show the regression strength 𝑅ଶ 
of the correlation between one parameter and one climatic characteristic in Table 4.3. Every 
single climatic characteristic with 95% significance level can form an independent linear 
regression equation. The higher the 𝑅ଶ value, the better the performance of the single regression 
equation. In Table 4.3, parameter 𝑋ଵ  (mm) has four independent single linear regression 
equations?, with a regression strength varying from 𝑅ଶ = 0.19 (with 𝑃𝐸𝑇, mm) to 𝑅ଶ = 0.32 (with 
𝑇௦ௗ , °Ϲ). The rank of the regression strengths means that when using only one climatic 
characteristic to estimate the value of 𝑋ଵ (mm), then 𝑇௦ௗ (°Ϲ) can give the best estimation, while 
𝑃𝐸𝑇 (mm) can give the worst estimation. For parameter 𝑋ସ (d), there are 9 independent single 
linear correlations between climatic characteristics and 𝑋ସ (d), with regression strengths varying 
from 𝑅ଶ = 0.23 (with 𝐴𝐸𝑇, mm) to 𝑅ଶ = 0.48 (with 𝑇௦ , °Ϲ), respectively. When only using one 
climatic characteristic to estimate 𝑋ସ (d), the temperature in summer 𝑇௦ (°Ϲ) can give the best 
estimation and actual evapotranspiration 𝐴𝐸𝑇 (mm) can give the worst estimation among all 
significant climatic characteristics. 

Table 4.3. The regression strength 𝑅ଶ  of single linear regression equations? between model parameters and 
significant climatic characteristics. 

 

 

Multiple linear regression 

Parameter estimation with only one climatic characteristic usually cannot give the most accurate 
results but might do with multiple significant climatic characteristics. All significant climatic 
variables are included in the regression equation, but due to the interaction of the climatic 
variables, some climatic variables will show a higher 𝑝-value than 0.05 and are not at the 95% 
significance level anymore. In this case, these climatic variables will be removed one by one until 

R^2
Parameter AET(mm) PET(mm)  T (°Ϲ) Tsd (°Ϲ) Ts (°Ϲ) Pw (mm) Tw (°Ϲ) PETw (mm) arw

X1(mm) - 0.19 0.31 0.32 0.30 - - - -
X4(d) 0.23 0.3 0.46 0.37 0.48 0.24 0.3 0.26 0.27

Significant climatic characteristics
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all remaining climatic variables show 𝑝-values lower than 0.05 so that the regression strength 
increases to the highest value. The regression equation obtained by doing this is seen as the best 
for parameter estimation. The regression results by removing climatic variables individually is 
shown in Appendix C. 

The regression equations are expressed as: 

𝑋ଵ = 𝐶ଵ,଴ + 𝐶ଵ,ଵ ∗ 𝑇௦ௗ .......................................................................................................................... (4.1) 

𝑋ସ = 𝐶ସ,ଵ ∗ 𝑃𝐸𝑇 + 𝐶ସ,ଶ ∗ 𝑇 + 𝐶ସ,ଷ ∗ 𝑇௦ ............................................................................................. (4.2) 

Where, 𝑋ଵ  (mm) and 𝑋ସ  (d) are the model parameters and 𝐶௡  are coefficients of climatic 
variables. The values of the coefficients are shown in Table 4.4. 

Table 4.4 Coefficients in the regression equations for 𝑋ଵ and 𝑋ସ. 

Coefficients 𝐶ଵ,଴ (mm) 𝐶ଵ,ଵ (mm/°Ϲ) 𝐶ସ,ଵ (d/mm) 𝐶ସ,ଶ (d/°Ϲ) 𝐶ସ,ଷ (d/°Ϲ) 
Values -768.40 83.74 -8.39 1.34 0.57 

 

 

4.3.4 Recalibration and revalidation 

Results show that parameters 𝑋ଶ (mm/d) and 𝑋ଷ (mm) have no significant correlations with all 
climatic characteristics and they should be considered as fixed values. Therefore, they are 
recalibrated, while during recalibration, 𝑋ଵ (mm) and 𝑋ସ (d) are constant which are calculated by 
the regression equations obtained above, and 𝑋ଵ (mm) and 𝑋ସ (d) become non-stationary after 
recalibration. The recalibration period is the same as in the stationary case, which is 1948-1977 
as the recalibration period and 1978-2001 as the revalidation period. The recalibration results 
are shown in Table 4.5. The objective function 𝐾𝐺𝐸 values are 0.81 for recalibration and 0.76 for 
revalidation, respectively. 

Table 4.5 Recalibration values of 𝑋ଶ  (mm/d) and 𝑋ଷ  (mm), and calculated values of 𝑋ଵ  (mm) and 𝑋ସ  (d) during 
recalibration. 

Parameters 𝑋ଵ (mm) 𝑋ଶ (mm/d) 𝑋ଷ (mm) 𝑋ସ (d) 
Values 115.2876 -0.0283 0.0247 2.4064 

 

 

4.3.5 Redetermination of regression equations 

As parameters 𝑋ଶ (mm/d) and 𝑋ଷ (mm) are fixed values, the influence of interaction between 
parameters due to different values of 𝑋ଶ (mm/d) and 𝑋ଷ (mm) in different calibration periods 
disappears. The optimal parameter values of 𝑋ଵ (mm) and 𝑋ସ (d) in each 10-year time window 
should be updated with the fixed 𝑋ଶ (mm/d) and 𝑋ଷ (mm). According to the new optimized 𝑋ଵ 
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(mm) and 𝑋ସ (d), the new regression equations can be obtained by repeating the steps described 
above. The new equations are: 

𝑋ଵ = 𝐶ଵ,଴ + 𝐶ଵ,ଵ ∗ 𝑎𝑟௪ ......................................................................................................................... (4.3) 

𝑋ସ = 𝐶ସ,ଵ ∗ 𝑃𝐸𝑇 + 𝐶ସ,ଶ ∗ 𝑇 + 𝐶ସ,ଷ ∗ 𝑃𝐸𝑇௪  ....................................................................................... (4.4) 

The values of the coefficients are shown in Table 4.6. 

Table 4.6 Coefficients of climatic variables in new regression equations. 

New coefficients 𝐶ଵ,଴ (mm) 𝐶ଵ,ଵ (mm) 𝐶ସ,ଵ (d/mm) 𝐶ସ,ଶ (d/°Ϲ) 𝐶ସ,ଷ (d/mm) 
Values 203.24 -46.10 -6.37 1.67 2.43 

 

With the new regression equations, values of parameter 𝑋ଵ (mm) and 𝑋ସ (d) in the validation 
period can be calculated. Appendix D gives the detailed comparison of optimized parameters and 
calculated parameters in the validation period to show the robustness of the regression 
equations. With the new optimized parameters of 𝑋ଵ (mm) and 𝑋ସ (d) in the calibration period 
and calculated parameter values of 𝑋ଵ (mm) and 𝑋ସ (d) in the validation period, as well as the 
fixed 𝑋ଶ (mm/d) and 𝑋ଷ (mm), simulation for the whole period is done. The objective function 
𝐾𝐺𝐸 is 0.80 for calibration and 0.66 for validation, respectively. The overall results are shown in 
Table 4.7. 

Table 4.7 The objective function 𝐾𝐺𝐸 results for calibration and validation in different cases under sequential order 
and reverse order. Stationary case is to calibrate four parameters with the whole calibration period and validate 
with the whole validation period, non-stationary case is that the parameters 𝑋ଵ (mm) and 𝑋ସ (d) are optimized with 
fixed 𝑋ଶ (mm/d) and 𝑋ଷ (mm) in the calibration period, the parameters 𝑋ଵ (mm) and 𝑋ସ (d) are calculated with the 
regression equations in the validation period. 

 

 

4.3.6 Reverse order of calibration and validation 

The whole process including section 4.1 and section 4.2 described above to determine the 
regression equations is to use 1948-1977 as the calibration period and 1978-2001 as the 
validation period. The reverse order needs to be done to judge which order is more suitable for 
obtaining regression equations for parameters for future conditions. Under reverse order, the 
period of 1972-2001 is used as the calibration period and the period of 1948-1971 is used as the 
validation period, respectively. The whole process is repeated to determine the regression 
equations for model parameters. The results are shown in Table 4.7. In the calibration period, 
the objective function values of 𝐾𝐺𝐸 under reverse order are better than 𝐾𝐺𝐸 values under the 

Cases calibration Validation Calibration Validation
Stationary 0.81 0.79 0.82 0.76

Non-stationary 0.80 0.66 0.81 0.64

Sequential order Reverse order
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sequential order. The validation results under the reverse order, however, are worse than the 
sequential order. For GCM-RCM historical projection, the selected period for simulation should 
be as closely as possible to the observed historical validation period. Therefore, the validation 
results are considered to be more important than the calibration results. Thus, the regression 
equations obtained under the sequential order should be used in simulations for GCM-RCM 
historical and future projections. 

 

4.4 Climate change impact assessment 

This section describes the results of the climate change impact assessment using the stationary 
model and non-stationary model with regression equations. For each case, simulation is done by 
both models to compare the difference between their modeling performances. Section 4.4.1 
shows the climatic change impact on model inputs by comparing historical observations and 
GCM-RCM projected historical inputs and comparing GCM-RCM projected historical and future 
inputs, respectively. Section 4.4.2 shows the climate change impact assessment on runoff by four 
comparisons. Table 4.8 describes the case names and their descriptions used in the following 
analysis, we can find there are 6 30-year periods for simulation including observed historical 
period, GCM-RCM simulated historical period and GCM-RCM projected future periods. However, 
in each 30-year period, there are 21 10-year time windows which stand for 21 hydrological years. 
The data shown in the tables from section 4.4.1 to section 4.4.2 are daily data, 𝜇: the average 
value; 𝜎: the standard deviation of the daily average per year in each 21-year hydrological period. 
The units of 𝜇 and 𝜎 are the same as the units of the variables. The values in green cells means 
they are overestimated compared to the baselines (the baseline values are used for comparison 
for other results, e.g. in Table 4.9 (a), the bias (%) is calculated with (3.86 mm-2.85 mm)/2.85mm), 
while the values in red cells mean they are underestimated compared to the baselines. 

Table 4.8 Case names and their descriptions. 

 

 

Rcp8.5-2071-2100-s Simulated variables with GCM-RCM rcp8.5 inputs by stationary model for period 2071-2100
Rcp8.5-2071-2100-ns Simulated variables with GCM-RCM rcp8.5 inputs by non-stationary model for period 2071-2100

GCM-RCM hist-ns Simulated variables with GCM-RCM historical inputs by non-stationary model
Rcp4.5-2041-2070-s Simulated variables with GCM-RCM rcp4.5 inputs by stationary model for period 2041-2070
Rcp4.5-2041-2070-ns Simulated variables with GCM-RCM rcp4.5 inputs by non-stationary model for period 2041-2070
Rcp4.5-2071-2100-s Simulated variables with GCM-RCM rcp4.5 inputs by stationary model for period 2071-2100
Rcp4.5-2071-2100-ns Simulated variables with GCM-RCM rcp4.5 inputs by non-stationary model for period 2071-2100
Rcp8.5-2041-2070-s Simulated variables with GCM-RCM rcp8.5 inputs by stationary model for period 2041-2070
Rcp8.5-2041-2070-ns Simulated variables with GCM-RCM rcp8.5 inputs by non-stationary model for period 2041-2070

Case name Description of each case
Observed Observations
Simulated-s Simulated variables with observations as inputs by stationary model
Simulated-ns Simulated variables with observations as inputs by non-stationary model
GCM-RCM hist-s Simulated variables with GCM-RCM historical inputs by stationary model
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4.4.1 Climate change impact on inputs 

This section shows the climate change impact on climatic characteristics 𝑃 (mm), 𝑃𝐸𝑇 (mm) and 
𝑇 (°Ϲ) by comparing observed inputs and GCM-RCM projected historical inputs and comparing 
GCM-RCM projected historical inputs and GCM-RCM projected future inputs, respectively (Table 
4.9 and Table 4.10). The climatic inputs are determined as annual average values and seasonal 
average values for spring (March, April, May; MAM), summer (June, July, August; JJA), autumn 
(September, October, November; SON) and winter (December, January, February; DJF). 

 

Observed and GCM-RCM historical inputs 

In Table 4.9 (a), compared with observed climatic inputs, the GCM-RCM historical projection 
overestimates average spring and winter precipitation by about 35% and 86%, respectively. 
While it slightly underestimates average precipitation in summer and autumn by 2% and 2%, 
respectively. Totally, the annual average precipitation is overestimated with approximately 19% 
by the GCM-RCM historical projection compared with observed annual precipitation. In Table 4.9 
(b), the results show that 𝑃𝐸𝑇  (mm) is overestimated in spring but overestimated in other 
seasons by GCM-RCM projected historical data compared to the baseline. The annual average 
𝑃𝐸𝑇 (mm) is slightly underestimated by the GCM-RCM historical projection. In each season and 
on an annual scale, the overestimations and underestimations are relatively small. In Table 4.9 
(c), GCM-RCM projected historical average temperature in spring and winter is overestimated by 
4.76 °Ϲ and 1.94 °Ϲ respectively, but underestimated in summer and autumn by 1.44 °Ϲ and 
6.67 °Ϲ respectively compared to observed average temperature. The total annual average 
temperature is slightly underestimated in the same period, only with 0.34 °Ϲ. 

Totally, the GCM-RCM historical projection overestimates the annual precipitation but 
underestimates the annual potential evapotranspiration and average temperature compared 
with observed inputs in the same historical period from 1976-1996. 

Table 4.9 Bias of seasonal and annual climatic characteristics 𝑃 (mm), 𝑃𝐸𝑇 (mm) and 𝑇 (°Ϲ) between observed data 
and GCM-RCM projected historical data. Three sub-tables are made for: (a) average precipitation, mm; (b) average 
potential evapotranspiration, mm; and (c) average temperature, °Ϲ. 

(a) 

 

(b) 

μ σ μ σ μ σ μ σ μ σ
2.85 0.78 2.86 1.04 1.94 0.82 0.82 0.49 2.12 0.35

μ σ μ σ μ σ μ σ μ σ
3.86 1.07 2.80 1.37 1.90 0.94 1.53 0.90 2.53 0.40

35.45 37.45 -2.15 31.54 -1.74 14.71 86.11 83.42 19.10 16.29

Baseline
MAM JJA SON DJF AnnualPrecipitation P (mm)

Observed

Bias(%)
GCMRCM-hist
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(c) 

 

 

GCM-RCM projected historical and future data 

In Table 4.10 (a), for the first period of future projections for both scenarios, precipitation 
increases in spring but decreases in summer and autumn compared to the precipitation from the 
GCM-RCM historical projection. Although the precipitation from GCM-RCM rcp4.5 for 2040-2070 
decreases but from GCM-RCM rcp8.5 for 2040-2070 increases, the total annual precipitation will 
increase for both projections. While for the second period of future projections, precipitation 
from both projections decreases in spring and autumn but increases in summer and winter 
compared to seasonal precipitation from the GCM-RCM historical projection, and the total 
annual precipitation will increase for both future scenarios. A trend which can be found in both 
future scenarios is that the annual precipitation is increasing. And for both periods, GCM-RCM 
rcp8.5 projection gives higher estimation than GCM-RCM rcp4.5 projection. In Table 4.10 (b), no 
matter for the first period or for the second period in both scenarios, the changes in seasonal and 
annual 𝑃𝐸𝑇 (mm) are small, and both projections give increasing annual 𝑃𝐸𝑇 (mm) compared to 
the projected 𝑃𝐸𝑇  (mm) compared to the GCM-RCM historical projection. A trend in both 
scenarios seems that the estimation of 𝑃𝐸𝑇 (mm) is increasing from the first period to the second 
period. In Table 4.10 (c), the average temperature in each future case will increase compared to 
the average temperature from the GCM-RCM historical projection. From the first period to the 
second period for both scenarios, the average temperature increases. The GCM-RCM rcp8.5 
projection gives a higher estimation than the GCM-RCM rcp4.5 projection in both periods. 

Totally, compared to the GCM-RCM historical projection, GCM-GCM rcp4.5 and rcp8.5 
projections give decreased precipitation from 2045-2065 but increased precipitation from 2075-
2095, and increased potential evapotranspiration and average temperature for both periods. 
Notably, the GCM-RCM rcp8.5 projection gives higher estimation for precipitation and average 
temperature than the GCM-RCM rcp4.5 projection for both periods. 

Table 4.10 Differences of seasonal and annual climatic characteristics 𝑃 (mm), 𝑃𝐸𝑇 (mm) and 𝑇 (°Ϲ) between GCM-
RCM projected historical data and GCM-RCM projected future data. The GCM-RCM projected historical data are the 

μ σ μ σ μ σ μ σ μ σ
4.15 0.27 6.49 0.36 3.34 0.20 1.09 0.16 3.78 0.12

μ σ μ σ μ σ μ σ μ σ
4.17 0.15 6.38 0.52 3.33 0.22 1.06 0.09 3.75 0.19
0.37 -43.10 -1.74 47.33 -0.38 14.42 -2.55 -44.09 -0.87 56.97

Baseline
Annual

Observed

GCMRCM-hist
Bias(%)

PET (mm) MAM JJA SON DJF

μ σ μ σ μ σ μ σ μ σ
13.87 1.38 26.52 1.04 15.01 0.96 1.68 1.97 14.33 0.66

μ σ μ σ μ σ μ σ μ σ
18.63 0.97 25.08 1.88 8.34 1.01 3.62 1.34 13.99 0.82
4.76 -0.40 -1.44 0.84 -6.67 0.05 1.94 -0.64 -0.34 0.16

Annual

Observed

GCMRCM-hist
Bias(°Ϲ)

Temperature T (°Ϲ) MAM JJA SON DJF
Baseline
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baselines. Three sub-tables are made for: (a) average precipitation, mm; (b) average potential evapotranspiration, 
mm; and (c) average temperature, °Ϲ. 

(a) 

 

(b) 

 

(c) 

 

 

4.4.2 Climate change impact assessment 

This section gives the results of the climate change impact assessment with stationary and 
nonstationary models. First, simulated runoff based on observed climatic inputs is compared with 
observed runoff to determine model accuracy. Next, simulated runoff based on observed climatic 
inputs is compared with simulated runoff based on the GCM-RCM historical projection to 

μ σ μ σ μ σ μ σ μ σ
3.86 1.07 2.80 1.37 1.90 0.94 1.53 0.90 2.53 0.40

μ σ μ σ μ σ μ σ μ σ
3.96 0.87 2.54 1.17 1.38 0.53 1.39 0.46 2.32 0.37
2.46 -18.83 -9.23 -14.11 -27.70 -44.00 -9.21 -49.15 -8.19 -7.48
4.04 1.09 2.49 0.91 1.82 1.10 1.69 0.70 2.52 0.42
4.75 2.41 -11.05 -33.41 -4.63 16.69 10.51 -21.68 -0.56 4.13
3.83 1.18 3.08 0.97 1.48 0.71 1.75 0.66 2.54 0.48
-0.67 10.27 10.02 -28.86 -22.45 -25.18 15.02 -26.30 0.56 17.86
3.77 1.13 3.69 1.32 1.71 0.81 2.02 0.81 2.80 0.51
-2.47 6.13 31.58 -3.76 -10.05 -13.84 32.33 -9.24 10.78 26.42

GCM-RCM hist

rcp4.5-2041-2070
Difference(%)
rcp8.5-2041-2070

Baseline

Difference(%)
rcp4.5-2071-2100

rcp8.5-2071-2100
Difference(%)

Difference(%)

Precipitation P (mm) MAM JJA SON DJF Annual

μ σ μ σ μ σ μ σ μ σ
4.17 0.15 6.38 0.52 3.33 0.22 1.06 0.09 3.75 0.19

μ σ μ σ μ σ μ σ μ σ
4.16 0.22 6.54 0.40 3.38 0.15 1.09 0.11 3.81 0.16
-0.07 41.88 2.52 -23.40 1.39 -30.97 2.78 26.66 1.57 -13.50
4.13 0.20 6.49 0.37 3.32 0.22 1.06 0.09 3.77 0.15
-0.86 31.34 1.82 -28.44 -0.47 -1.22 0.01 4.40 0.44 -20.11
4.25 0.16 6.52 0.42 3.41 0.17 1.10 0.07 3.84 0.15
2.10 5.15 2.22 -19.86 2.45 -22.19 3.45 -23.28 2.32 -19.42
4.23 0.17 6.54 0.38 3.47 0.25 1.10 0.10 3.85 0.17
1.44 10.61 2.48 -28.05 4.26 9.87 3.23 14.62 2.64 -10.00

SON DJF AnnualMAM JJA

Difference(%)

Baseline
PET (mm)

Difference(%)

GCM-RCM hist

rcp4.5-2041-2070

rcp8.5-2071-2100

rcp8.5-2041-2070
Difference(%)
rcp4.5-2071-2100
Difference(%)

μ σ μ σ μ σ μ σ μ σ
18.63 0.97 25.08 1.88 8.34 1.01 3.62 1.34 13.99 0.82

μ σ μ σ μ σ μ σ μ σ
21.19 0.90 28.80 1.62 12.11 0.90 6.28 1.49 17.17 0.82
2.56 -0.07 3.71 -0.26 3.77 -0.11 2.66 0.15 3.18 0.00

21.94 1.18 29.95 1.48 12.64 1.20 6.28 1.28 17.78 0.87
3.31 0.21 4.87 -0.40 4.30 0.19 2.65 -0.06 3.79 0.05

21.78 1.02 29.07 1.74 12.81 1.03 6.60 1.05 17.64 0.74
3.15 0.05 3.99 -0.15 4.47 0.03 2.98 -0.29 3.65 -0.08

27.89 1.05 28.48 1.48 9.31 1.40 11.58 1.63 19.39 0.98
9.26 0.07 3.40 -0.40 0.96 0.39 7.96 0.29 5.39 0.17

T (°Ϲ) MAM JJA SON DJF Annual

GCM-RCM hist

rcp4.5-2041-2070
Difference(°Ϲ)
rcp8.5-2041-2070
Difference(°Ϲ)
rcp4.5-2071-2100

Baseline

Difference(°Ϲ)
rcp8.5-2071-2100
Difference(°Ϲ)
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determine GCM-RCM influence. After that, the observed runoff is compared with simulated 
runoff based on GCM-RCM historical projection to determine to influence of the combination of 
GCM-RCM and hydrological models. Last, simulated runoff based on the GCM-RCM historical 
projection is compared with simulated runoff based on the GCM-RCM future projections to 
assess the climate change impacts on runoff. Runoff data are determined for seasonal and annual 
statistics. Similarly, considering hydrological years in each 30-year period, tables and flow-
duration curves are made for the historical period during 1976-1996, the first future period 
during 2045-2065 and the second period during 2075-2095, respectively. 

 

Influence of hydrological models 

Table 4.11 shows the comparison results of the seasonal and annual statistics of observed runoff 
and simulated runoff based on observed inputs by stationary and nonstationary models. 
Compared to the observed runoff, simulated runoff with observed 𝑃 (mm), 𝑃𝐸𝑇 (mm) and 𝑇 (°Ϲ) 
as inputs is underestimated by both stationary and nonstationary models in both spring and 
summer, but overestimated in autumn. Although the stationary model gives an overestimated 
winter runoff and the nonstationary model gives an underestimated winter runoff, the total 
annual runoff is underestimated by both the stationary model (with 6%) and nonstationary model 
(17%). The stationary model simulates runoff closer to the observed runoff. The high standard 
deviation in winter flow by stationary model means daily runoff is less smoothy than observed 
winter daily runoff, and the much lower standard deviation in winter flow by nonstationary 
means daily runoff is much more smoothy than observed winter daily runoff. In other seasons, 
the standard deviation picks similar trend. From the view of annual flow, the annual daily runoff 
simulated by the nonstationary model is much more smoothy than the annual daily runoff 
simulated by the stationary model compared to the observed annual daily runoff.  

Table 4.11 Seasonal and annual bias between observed discharge and simulated discharge with observed climatic 
inputs by stationary and nonstationary models. The calculated observed data are the baselines.  

 

μ σ μ σ μ σ μ σ μ σ
0.51 0.45 0.31 0.28 0.28 0.34 0.17 0.13 0.32 0.18

μ σ μ σ μ σ μ σ μ σ
0.45 0.33 0.24 0.27 0.33 0.33 0.17 0.13 0.30 0.11

-11.91 -26.15 -22.92 -5.64 16.68 -5.41 3.64 3.97 -6.33 -39.69
0.41 0.32 0.22 0.26 0.31 0.31 0.11 0.10 0.26 0.10

-18.53 -29.80 -27.74 -9.01 9.35 -9.60 -36.81 -24.54 -17.06 -45.15

Annual
Baseline

Simulated-s

Observed

Bias(%)
Simulated-ns
Bias(%)

MAM JJA SON DJFQ (mm)
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Figure 4.3 Flow duration curves of observed discharge and simulated discharge by both stationary model and 
nonstationary model with observed inputs for period 1976-1996. 

Figure 4.3 shows the flow-duration curves of observed discharge and simulated discharge with 
observed inputs by both models. For the high flows, the simulated discharges by both stationary 
and nonstationary models up to an exceedance frequency of around 20% are quite close to 
observed discharges. Both models underestimate discharges with a higher exceedance frequency 
than 20% compared to observed discharges. The stationary model, however, simulates low 
discharges closer to observed low discharges than the nonstationary model.  

Totally, the stationary model and the nonstationary model do not give perfect simulations to 
observed runoff. The objection function values for this period is 0.81 for the stationary model 
and 0.70 for the nonstationary model, respectively. The stationary model performs better than 
the nonstationary model when comparing the influence of hydrological models. 

 

Influence of GCM-RCM projection 

Table 4.12 shows the comparison of the seasonal and annual discharges between simulated 
discharge based on observed data and simulated discharge based on GCM-RCM projected 
historical data for both stationary and nonstationary models. The simulated discharges with 
GCM-RCM projections as input are much larger than the simulated discharges with observed data 
when using the stationary model for all seasonal flows and this results in a larger estimation of 
approximately 83% of the annual discharge. The simulated discharges based on GCM-RCM 
projected historical data are much larger in spring, summer and winter flows but slightly larger 
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in autumn flow, and totally the annual discharge is much larger with about 78% compared to 
simulated discharges based on observed data when using the nonstationary model. Hence the 
estimations by both models for spring, summer, winter and annual flows are similar when using 
GCM-RCM historical projection as model inputs compared to using observed data as model 
inputs. Besides, simulated annual discharge by the nonstationary model results in a lower 
estimation than the stationary model. For both models, the standard deviations in four seasonal 
and annual daily runoff are much higher than the baselines, which mean the simulated daily 
runoff with GCM-RCM historical inputs by both the stationary and nonstationary model are much 
less smoothy than the simulated daily runoff with observed inputs. The high estimations of 
standard deviation in the two cases show that the annual daily runoff change from GCM-RCM 
historical projection has much less stability than the annual daily runoff change simulated based 
on observed inputs. 

Table 4.12 Seasonal and annual discharge difference between simulated discharge based on observations and 
simulated discharge based on GCM-RCM historical projection for both stationary and nonstationary models. The 
simulated discharges based on observations by both stationary and nonstationary models are the baselines. 

 

 

μ σ μ σ μ σ μ σ μ σ
0.45 0.33 0.24 0.27 0.33 0.33 0.17 0.13 0.30 0.11
0.93 0.45 0.45 0.47 0.33 0.36 0.46 0.35 0.54 0.19

106.51 34.34 88.76 75.57 1.62 8.99 164.76 165.79 82.60 74.02

μ σ μ σ μ σ μ σ μ σ
0.41 0.32 0.22 0.26 0.31 0.31 0.11 0.10 0.26 0.10
0.87 0.44 0.41 0.44 0.30 0.34 0.29 0.31 0.47 0.18

110.52 37.90 82.59 71.56 -3.10 9.10 174.98 230.46 78.04 81.46
GCMRCM-hist-ns

SON DJF Annual

Simulated-s

Baseline

Baseline

Simulated-ns

Difference(%)

GCMRCM-hist-s
Difference(%)
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Figure 4.4 Flow duration curves of simulated discharge by stationary and nonstationary model with observed inputs 
and GCM-RCM historical inputs for period 1976-1996. 

Figure 4.4 shows the flow-duration curves of simulated discharge with observed data as inputs 
and with GCM-RCM historical projection as inputs by both models. A general trend we can find 
from this figure is that simulated discharges based on observed inputs have a closer change 
tendency from high flows to low flows with the change of exceedance frequency, while the 
simulated discharges based on GCM-RCM historical inputs have a closer change tendency from 
high to low flows with the change of exceedance frequency. When comparing the performance 
of the two models with the same input source, observed data inputs or GCM-RCM historical 
inputs, simulated discharges of the nonstationary model are lower than simulated discharges of 
the stationary model. 

In conclusion, from Table 4.12 and Figure 4.4, the simulated discharges based on GCM-RCM 
historical inputs are much larger than simulated discharges based on observed inputs for both 
models. The GCM-RCM historical projection seems unsatisfactory to execute runoff simulation. 
For the future projections, the same GCM-RCM combination is used, thus the simulated 
discharges based on GCM-RCM future inputs are not that robust.  

 

Influence of combination of GCM-RCM projection and hydrological model 

Table 4.13 shows that the GCM-RCM historical projection gives overestimations of discharges in 
all seasons and for annual flows compared to the observed flows for both models. The simulated 
discharges with the stationary model show a larger overestimation than simulated discharges 
with the nonstationary model for all seasonal and annual flows. The nonstationary model with 
GCM-RCM historical inputs performs better than the stationary model with GCM-RCM historical 
inputs. The standard deviation shows that the simulated annual discharge change from 
nonstationary model is more smoothy than the simulated annual discharge from stationary 
model, this might be resulted by which the standard deviations of daily runoff in all four seasons 
by the nonstationary are smaller than the standard deviations of daily runoff by the stationary 
model. 

Table 4.13 Bias of seasonal and annual discharges between simulated discharges with stationary and nonstationary 
model based on GCM-RCM historical projection and observed discharges. The observed discharges are the baseline. 

 

μ σ μ σ μ σ μ σ μ σ
0.51 0.45 0.31 0.28 0.28 0.34 0.17 0.13 0.32 0.18

μ σ μ σ μ σ μ σ μ σ
0.93 0.45 0.45 0.47 0.33 0.36 0.46 0.35 0.54 0.19

81.92 -0.79 45.50 65.66 18.57 3.10 174.38 176.36 71.05 4.94
0.87 0.44 0.41 0.44 0.30 0.34 0.29 0.31 0.47 0.18

71.50 -3.20 31.93 56.10 5.96 -1.37 73.76 149.36 47.66 -0.47
GCMRCM-hist-ns
Bias(%)

Annual

Observed

GCMRCM-hist-s
Bias(%)

Discharge Q (mm) MAM JJA SON DJF
Baseline



40 
 

 

Figure 4.5 Flow duration curves of observed discharge and simulated discharge by both stationary model and 
nonstationary model with GCM-RCM historical inputs for period 1976-1996. 

Figure 4.5 shows the flow duration curves of observed discharge and simulated discharge based 
on GCM-RCM historical projection with both stationary and nonstationary models. The flow 
duration curves of simulated discharges by both models show large differences compared to the 
flow duration curve of observed discharges. The simulated discharges by the stationary model 
up to an exceedance frequency of 40% are higher than observed discharges and are lower than 
observed discharges above an exceedance frequency of 40%. While the simulated discharges by 
the nonstationary model up to an exceedance frequency of about 35% are higher than observed 
discharges, and above an exceedance frequency of 35% are lower than observed discharges. This 
figure seems to suggest a balanced over- and underestimation of discharge with GCM-RCM 
driven inputs compared to observed discharge. However, the average observed daily discharge 
is about 18 m3/s, while the average simulated daily discharges by the stationary and 
nonstationary model are approximately 30 m3/s and 26 m3/s, respectively. 

Totally, both models with GCM-RCM historical projection as inputs simulate much higher annual 
runoff than observed runoff. The nonstationary model with an annual runoff overestimation of 
48%, however, performs better than the stationary model with an annual overestimation of 71% 
compared to observed annual runoff when comparing the influence of a combination of GCM-
RCM projection and the hydrological model. 
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The period of 2045-2065 

In Table 4.14, for the simulations with the stationary model, the simulated discharges based on 
the GCM-RCM rcp4.5 projection show increases in summer, autumn and winter flows but a 
decrease in spring flow, which result in an increase in annual flows compared to the simulated 
discharges based on GCM-RCM historical projection. While the simulated discharges based on 
the GCM-RCM rcp8.5 projection show increases in spring, autumn and winter flows but a 
decrease in summer flows, which result in an increase in annual flows as well compared to the 
baseline. According to the absolute value of the annual discharge changes, the GCM-RCM rcp8.5 
projection projects a smaller annual discharge change than the GCM-RCM rcp4.5 projection 
compared to GCM-RCM historical projection. For simulations with the nonstationary model, the 
simulated discharges based on the GCM-RCM rcp4.5 projection increase in summer, autumn and 
winter but decrease in spring, from which a decrease with 19% in annual flow is shown when 
comparing to simulated discharges based on GCM-RCM historical projection. While the simulated 
discharges based on the GCM-RCM rcp8.5 projection decrease in summer and winter but 
increase in spring and autumn, and an increase with about 6% in annual flow is shown when 
comparing to simulated discharges based on GMC-RCM historical projection. 

For simulation with stationary and nonstationary model, the simulated annual runoff increases 
based on the GCM-RCM rcp8.5 projection but decreases based on GCM-RCM rcp4.5 projection. 
When using the same input source (GCM-RCM rcp4.5 or rcp8.5 projection), the nonstationary 
model gives a lower annual change than the stationary model. 

Table 4.14 Seasonal and annual difference of simulated discharges with GCM-RCM historical projection as inputs 
and simulated discharges with GCM-RCM rcp4.5 and rcp8.5 projections as inputs for the period of 2045-2065 with 
stationary and nonstationary model. The baselines are simulated discharges based on GCM-RCM historical inputs by 
stationary and nonstationary model, respectively. 

 

μ σ μ σ μ σ μ σ μ σ
0.93 0.45 0.45 0.47 0.33 0.36 0.46 0.35 0.54 0.19

μ σ μ σ μ σ μ σ μ σ
0.96 0.45 0.28 0.32 0.15 0.17 0.39 0.27 0.44 0.17
3.21 1.26 -38.82 -31.23 -53.89 -52.80 -15.64 -22.45 -18.24 -14.33
1.16 0.51 0.28 0.32 0.39 0.53 0.50 0.33 0.58 0.17

25.44 13.18 -38.98 -31.55 17.14 49.19 8.30 -4.05 7.08 -12.13

μ σ μ σ μ σ μ σ μ σ
0.87 0.44 0.41 0.44 0.30 0.34 0.29 0.31 0.47 0.18

μ σ μ σ μ σ μ σ μ σ
0.88 0.43 0.28 0.32 0.10 0.14 0.25 0.24 0.38 0.16
1.11 -0.40 -32.58 -26.84 -65.38 -59.13 -13.42 -22.74 -19.02 -15.28
1.13 0.48 0.25 0.29 0.33 0.47 0.27 0.29 0.50 0.16

29.77 10.29 -38.35 -35.64 11.39 39.00 -5.55 -8.85 6.45 -11.78

Q (mm) MAM JJA SON DJF Annual

Difference(%)
rcp8.5-2041-2070-s
Difference(%)

GCM-RCM hist-ns

GCM-RCM hist-s

rcp4.5-2041-2070-s

Difference(%)
rcp8.5-2041-2070-ns
Difference(%)

rcp4.5-2041-2070-ns

Baseline

Baseline
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Figure 4.6 Flow duration curves of (a): simulated discharge by stationary model with GCM-RCM historical inputs and 
with GCM-RCM rcp4.5 and rcp8.5 inputs for period 2045-2065; (b): simulated discharge by nonstationary model with 
GCM-RCM historical inputs and with GCM-RCM rcp4.5 and rcp8.5 inputs for period 2045-2065. 

In Figure 4.6 (a), for the simulations with the stationary model, the flow duration curves of 
simulated discharges based on three input sources are close to each other. The simulated 
discharges based on the GCM-RCM rcp8.5 projection seems to have a smaller change to 
simulated discharge based on GCM-RCM historical projection, up to an exceedance frequency of 
only 5% are higher than simulated discharges based on GCM-RCM historical inputs, and above 
exceedance frequency of 5% are lower than simulated discharges based on GCM-RCM historical 
inputs. While the flow duration curve of simulated discharges based on the GCM-RCM rcp4.5 
projection is always lower than the other two flow duration curves. The average simulated 
discharge with GCM-RCM historical driven inputs is about 30 m3/s, while the average simulated 
discharges with GCM-RCM rcp4.5 and rcp8.5 driven inputs are 25 m3/s and 32 m3/s, respectively. 
This indicates that although up to about 95% of exceedance frequency the simulated discharges 
with GCM-RCM rcp8.5 are higher than simulated discharge with GCM-RCM historical inputs, the 
average daily discharge with GCM-RCM rcp8.5 is still lower than the average daily discharge with 
GCM-RCM historical inputs due to lower simulated high flows. In Figure 4.6 (b), for the 
simulations with the nonstationary model, the model with GCM-RCM rcp8.5 inputs simulates 
larger change in average flow (28 m3/s) but with GCM-RCM rcp4.5 inputs simulates smaller 
change in average flow (21 m3/s) compared to the average flow (26 m3/s) with GCM-RCM 
historical inputs.  

From Table 4.14 and Figure 4.6, for the period of 2045-2065, the nonstationary model simulates 
a lower runoff than the stationary one under each future scenario. For both stationary and 
nonstationary models, the simulated discharge with the GCM-RCM rcp4.5 projection as inputs 
shows a larger decrease in annual discharge and the simulated discharge with the GCM-RCM 
rcp8.5 projection as inputs shows a small increase in annual discharge compared to simulated 
discharge with GCM-RCM historical projection as inputs. Therefore, climate change has a large 
negative impact on runoff when predicting with the GCM-RCM rcp4.5 projection and has a small 
positive impact on runoff when predicting with the GCM-RCM rcp8.5 projection for the period of 
2045-2065. 

 

The period of 2075-2095 

In Table 4.15 (a), for simulations with the stationary model, the simulated discharges with GCM-
RCM rcp4.5 and rcp8.5 projections increase in spring, summer and winter but only decrease in 
autumn compared to simulated discharges with GCM-RCM historical inputs. The annual runoff 
simulated by the stationary model with GCM-RCM rcp4.5 inputs decreases but the annual runoff 
simulated with GCM-RCM rcp8.5 inputs increases greatly compared to the annual runoff 
simulated with GCM-RCM historical inputs. This happens mostly due to the less runoff from GCM-
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RCM rcp4.5 than runoff from GCM-RCM rcp8.5 in all seasonal flows. For the simulations with the 
nonstationary model, especially for the annual runoff, the model with GCM-RCM rcp4.5 inputs 
simulates a decrease while the model with GCM-RCM rcp8.5 inputs shows a large increase 
compared to the baseline. No matter for stationary model or for nonstationary model, the annual 
runoff increases greatly with GCM-RCM rcp8.5 inputs and decreases slightly with GCM-RCM 
rcp4.5 inputs compared to the annual runoff with GCM-RCM historical inputs. 

Table 4.15 Seasonal and annual difference of simulated discharges with GCM-RCM historical projection as inputs 
and simulated discharges with GCM-RCM rcp4.5 and rcp8.5 projections as inputs for the period of 2075-2095 with 
stationary and nonstationary model. The baselines are simulated discharges based on GCM-RCM historical inputs by 
stationary and nonstationary model, respectively. 

 

 

μ σ μ σ μ σ μ σ μ σ
0.93 0.45 0.45 0.47 0.33 0.36 0.46 0.35 0.54 0.19

μ σ μ σ μ σ μ σ μ σ
0.94 0.56 0.47 0.39 0.21 0.33 0.51 0.34 0.53 0.20
1.72 24.50 3.21 -17.11 -37.37 -6.77 10.22 -3.64 -2.15 4.75
0.94 0.57 0.62 0.43 0.30 0.35 0.69 0.41 0.64 0.23
2.05 26.63 36.58 -9.47 -8.36 -2.56 49.42 18.13 17.58 16.80

μ σ μ σ μ σ μ σ μ σ
0.87 0.44 0.41 0.44 0.30 0.34 0.29 0.31 0.47 0.18

μ σ μ σ μ σ μ σ μ σ
0.92 0.55 0.44 0.38 0.18 0.30 0.28 0.25 0.46 0.19
4.95 26.62 7.47 -14.58 -40.23 -13.12 -2.74 -18.94 -2.79 4.36
0.92 0.52 0.55 0.38 0.27 0.31 0.44 0.32 0.55 0.22
5.14 18.31 33.87 -14.40 -7.43 -7.45 50.51 2.31 16.43 18.13

Difference(%)
rcp8.5-2071-2100-s
Difference(%)

GCM-RCM hist-ns

rcp4.5-2071-2100-ns
Difference(%)
rcp8.5-2071-2100-ns
Difference(%)

Baseline

Q (mm) MAM JJA SON DJF Annual
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(a) 

 

(b) 

Figure 4.7 Flow duration curves of (a): simulated discharge by stationary model with GCM-RCM historical inputs and 
with GCM-RCM rcp4.5 and rcp8.5 inputs for period 2075-2095 and (b): simulated discharge by nonstationary model 
with GCM-RCM historical inputs and with GCM-RCM rcp4.5 and rcp8.5 inputs for period 2075-2095. 

In Figure 4.7 (a), for simulations with the stationary model, the model with GCM-RCM rcp4.5 
inputs simulates a smaller negative change in average flow (about 30 m3/s) while the model with 
GCM-RCM8.5 simulates a larger positive change in average flow (about 36 m3/s) compared to the 
average flow (about 30 m3/s) simulated with GCM-RCM historical inputs. The simulated 
discharges with GCM-RCM rcp4.5 inputs with higher exceedance frequency than about 80% are 
higher than simulated discharges with GCM-RCM historical inputs while simulated discharges 
with GCM-RCM rcp8.5 inputs with higher exceedance frequency than about 95% are higher than 
simulated discharges with GCM-RCM historical inputs, this can be reflected by the values of the 
average annual flows. In Figure 4.7 (b), for simulations with nonstationary model, flow duration 
curves show that the simulated discharge with GCM-RCM rcp4.5 inputs has a smaller change in 
annual flow (25 m3/s) and the simulated discharge with GCM-RCM8.5 inputs has a larger change 
in annual flow (about 30 m3/s) compared to the annual flow (26 m3/s) simulated with GCM-RCM 
historical inputs.  

In conclusion, with inputs from each future scenario, the nonstationary model simulates less 
annual runoff than the stationary model. Climate change has a small negative impact on annual 
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runoff when predicting with GCM-RCM rcp4.5 projections and has a large positive impact on 
annual runoff when predicting with GCM-RCM rcp8.5 projections for the period of 2075-2095. 
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Chapter 5 

Discussion 

 

5.1 Regression equations 

5.1.1 Sensitivity analysis 

In this study, the univariate sensitivity analysis shows that the sensitivities between all four 
parameters and model output are similar around the optimized point where all four parameters 
are optimized at the same time for the whole calibration period. We assume that climate change 
impact on climatic characteristics can affect the optimal parameter values for hydrological 
models, which further influence the model output. Theoretically, due to the similar sensitivity of 
four parameters, every parameter should pick up significant correlations with several climatic 
characteristics. Based on the results of Pearson and single linear analysis, there are no significant 
correlations between parameter 𝑋ଶ  (mm/d) or 𝑋ଷ  (mm) and any climatic characteristics, this 
seems unnormal. Besides, the optimal parameter values of 𝑋ଷ (mm) are extremely low in each 
calibration, and they are out of the 80% confidence interval of the parameter range.  

However, it is thought to be not so perfect when only executing univariate sensitivity analysis to 
analyze sensitivity of model parameters (e.g. Tillaart, 2010). Other methods for sensitivity 
analysis may lead to different results, such as the Sobol’s method (Pappenberger et al., 2008) and 
identifiability analysis (e.g. Abebe et al., 2010), etc. Comparing the results of different sensitivity 
analysis methods is subjective and time consuming. Therefore, univariate sensitivity analysis is 
used. But for further study, other methods can be executed to compare the results. 

 

5.1.2 Regression equations 

Based on the results of determining the correlations between the climatic characteristics and 
parameters, it is reasonable to abandon insignificant climatic characteristics and pick up 
statistically significant climatic characteristics to determine regression equations for optimal 
model parameter values. As both parameters 𝑋ଵ (mm) and 𝑋ସ (d) have more than one significant 
climatic characteristics, multiple linear regression analysis is more suitable for determine 
regression equations although it might happen that only one climatic characteristic is included in 
one equation. The method for drawing the regression equations for both parameters is described 
in Chapter 3. However, it might be overparameterized because all significant climatic 
characteristics are put together at the beginning. But a fact is that the regression strength 𝑅ଶ 
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increases with the decrease of number of climatic characteristics in the equation, the regression 
equations are selected with highest value of regression strength. The difference of the method 
for determining regression equations from Knoben’s method is that Knoben tested variety of 
regression equations including different number of significant climatic characteristics (see, 
Knoben, 2013). The regression equation with the highest value of objective function in the 
validation period is used for estimating that parameter value. However, that method in Knoben’s 
study might not result in best goodness-of-fit regression equation because for specific regression 
equation, it might neglect some climatic characteristics which are important for determining the 
best regression equations for optimal parameter values. But in the other hand, with Knoben’s 
method, overparameterization might be avoided to some extent.  

A big challenge to determine the final regression equations is to redetermine regression 
equations based on the preliminary ones. The method is described in Chapter 3. There is a 
delicate relationship between the recalibrated 𝑋ଶ  (mm/d) and 𝑋ଷ  (mm) and new regression 
equations for parameters 𝑋ଵ  (mm) or 𝑋ସ  (d). The new regression equations seem still to be 
influenced by recalibrated parameters because during recalibration, the previous regression 
equations were still used to determine the temporary fixed parameters. But we cannot repeat 
the steps to determine new regression equations again and again, and then reduce the influence 
of fixed parameters. Better methods to determine regression equations need to be studied in 
further study. In recommendation, there are some methods which can determine the regression 
equations for optimal parameter values. 

Still, even with the new regression equations, the validation performance is still not good enough 
with relatively low 𝐾𝐺𝐸 values. Therefore, it seems that the regression equations are not that 
robust to estimate parameter values in the validation period, and not that robust to connect 
model parameter values with climatic characteristics. 

 

5.2 Climate change impact assessment 

Which model is more robust for simulation 

When determining the influence of the hydrological model, simulated discharges by both models 
with observations as inputs are compared with observed discharges. Results show that the 
stationary model performs better than nonstationary model, with a better 𝐾𝐺𝐸  value (0.81 
compared to 0.70). However, as the climatic characteristics are expected to influence the 
parameter values with climate change impacts, the nonstationary model is expected to give a 
better simulation than the stationary model. When determining the influence of combination of 
GCM-RCM projection and hydrological model, the nonstationary model shows better simulation 
than stationary model, with closer seasonal and annual flows compared to observed flows, this 
seems to meet expectation. 
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Difference of climate change impact on runoff in different future periods 

An interesting result is that in the future period of 2045-2065, climate change has more impact 
on runoff predicted with GCM-RCM rcp4.5 than with GCM-RCM rcp8.5. While in the future period 
of 2075-2095, climate change has more impact on runoff predicted with GCM-RCM rcp8.5 than 
with GCM-RCM rcp4.5. This tendency also suits for 𝑃 and 𝑃𝐸𝑇, but climate change has more 
impact on 𝑇 when predicting with rcp8.5 than with rcp4.5 for both periods. It is not clear whether 
the change of inputs 𝑃 and 𝑃𝐸𝑇 affect output more than the change of input 𝑇 in modeling only 
based on the results described above. However, it seems interesting to execute further study to 
verify if this is correct. 

Totally, the conclusion seems that for different study catchments with different datasets, it is to 
be tested and considered that either stationary model or non-stationary model is robust for 
simulation under historical and future conditions. In this study, the climate change impacts on 
runoff are different with different models even under the same period, but it is still not good 
prediction with either of models. The climate change impact assessment on future runoff with a 
specific hydrological model seems reliable only when the model simulates runoff with small bias 
compared to historical observed runoff. 
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Chapter 6 

Conclusions and recommendations 

 

6.1 Conclusions 

Firstly, this study aims to establish relationships between model parameters and climatic 
characteristics and quantify how the relationships perform during validation. Secondly, with the 
results, the objective is to assess whether either the stationary model or non-stationary model 
can give better runoff simulations in historical period, and then assess climate change impact on 
runoff in future periods with both models. 

Pearson correlations between optimized four parameters and 18 climatic characteristics have 
been assessed, firstly. With single linear regression analysis, significant correlations between 
model parameters and climatic characteristics are determined. Results show that there are no 
significant correlations between parameters 𝑋ଶ  (mm/d) and 𝑋ଷ  (mm) and any climatic 
characteristics. Parameter 𝑋ଵ  (mm) has significant correlations with 4 climatic characteristics, 
while parameter 𝑋ସ (d) has significant correlations with 9 climatic characteristics with different 
single linear regression strength 𝑅ଶ . Based on significant climatic characteristics, multiple 
regression equations are determined for 𝑋ଵ (mm) and 𝑋ସ (d).  

The reverse order for calibration and validation is done to determine which period is more 
suitable to establish regression equations and then assess climate change impact. The results 
show that with sequential order of calibration and validation, the determined regression 
equations can result in higher 𝐾𝐺𝐸 values (0.80 for calibration and 0.66 for validation) than with 
reverse order (0.81 for calibration and 0.64 for validation). Therefore, hydrological simulations 
incorporating parameter non-stationarity with the regression equations for parameters 𝑋ଵ (mm) 
and 𝑋ସ  (d) from the sequential order of calibration and validation are done in assessing 
simulation performance by non-stationary model. 

Due to the bias in GCM-RCM historical projection and differences in GCM-RCM future projections 
of precipitation, temperature and calculated potential evapotranspiration compared to 
observations and GCM-RCM historical inputs, respectively, the regression equations for 
parameters 𝑋ଵ (mm) and 𝑋ସ (d) perform unsatisfactory due to the low values of the objective 
function. Both parameter values of 𝑋ଵ (mm) and 𝑋ସ (d) show an increasing tendency, especially 
for 𝑋ସ (d). 

Under each simulation period either historical period or future periods, the simulated average 
discharge by non-stationary model is lower than the simulated average discharge by stationary 
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model. With observed inputs, the simulated extreme high flows simulated by the stationary 
model are similar than by the non-stationary model, With GCM-RCM projected inputs from both 
historical and future periods, the simulated extreme high flows simulated by the stationary 
model are much higher (up to 54%) than the extreme high flows simulated by the non-stationary 
model. From the results, it does indicate that non-stationarity in models may have huge effects 
on climate change impacts while at the same time time-window calibration does show that 
optimal parameter values do vary in time in somewhat hydro-climatically interpretable ways. 

Comparing the influence of hydrological models, the stationary model with observed inputs 
performs better than the nonstationary model with observed inputs compared to observed 
discharge and simulates higher seasonal and annual flow than the nonstationary model. Both 
models underestimate annual flow compared to observed annual flow. When comparing the 
influence of GCM-RCM historical projection, both models show that simulated discharges with 
GCM-RCM historical projection as inputs are much higher than simulated discharges with 
observations as inputs in spring, summer, winter and annually. This is mostly due to the higher 
estimation of precipitation and lower estimation of potential evapotranspiration from GCM-RCM 
historical projection than observed precipitation and calculated potential evapotranspiration. 
When comparing the influence of GCM-RCM combinations and hydrological models, the 
nonstationary model seems to perform better than the stationary model with a closer estimation 
of annual flow compared to observed annual flow. However, both models overestimate annual 
flows compared to observed annual flow. Totally, non-stationary model incorporating regression 
equations for optimal  parameters is more accurate when applying the GR4J hydrological model 
in runoff simulation with GCM-RCM historical projection, and more recommended for climate 
change impact assessment on runoff when using the same GCM-RCM combination with future 
projections.  

In both future periods, both models show decreased annual flows with GCM-RCM rcp4.5 
projection as inputs and increased annual flows with GCM-RCM rcp8.5 projection as inputs. In 
the first period for 2045-2065, however, stationary and non-stationary model simulates higher 
discharges (7% and 6%, respectively) with GCM-RCM rcp8.5 projection and lower discharges (18% 
and 19%, respectively) with GCM-RCM rcp4.5 projection than discharges with GCM-RCM 
historical projection. Therefore, climate change impact will result in a large decrease in runoff 
with GCM-RCM rcp4.5 projection and a small increase in annual runoff with GCM-RCM rcp8.5 
projection compared to the annual runoff with GCM-RCM historical projection. While in the 
second period for 2075-2095, stationary and non-stationary model simulates lower discharges 
(2% and 3%, respectively) with GCM-RCM rcp4.5 projection and higher discharges (18% and 16%, 
respectively) with GCM-RCM rcp8.5 projection than discharges simulated with GCM-RCM 
historical projection. Therefore, climate change impact will result in a small decrease in annual 
runoff change with GCM-RCM rcp4.5 projection and a large increase in annual runoff change with 
GCM-RCM rcp8.5 projection than the annual runoff with GCM-RCM historical projection.  
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6.2 Recommendations 

For further research to study relationship between model parameters and climatic characteristics 
and assess climate change impacts on runoff with stationary and non-stationary models, the 
following recommendations are proposed: 

1. This study only uses one objective function to show model performance compared with 
observed runoff. However, different objective functions will lead to different comparison 
results, and therefore maybe different conclusions. Therefore, using combination of 
objective functions may avoid the domain of results by one objective function. For 
example, compare the results of values of objective functions 𝑁𝑆  and 𝑅𝑉𝐸  in the 
validation period, the optimal 𝑁𝑆 value is 1, and he optimal 𝑅𝑉𝐸 value is 0.  

2. In this study, the GR4J rainfall-runoff model with four parameters is used. In the 
determination of the regression equations, parameters 𝑋ଶ  (mm/d) and 𝑋ଷ  (mm) have 
fixed values. This eliminates interactions between fixed parameters and non-stationary 
parameters, and this seems unwise. Because the optimal parameter values are expected 
to change in different simulation periods within the non-stationary model, even for the 
parameters which cannot be determined with significant climatic characteristics. 
Therefore, taking 𝑋ଶ (mm/d) and 𝑋ଷ (mm) as stable values will affect the optimization of 
𝑋ଵ (mm) and 𝑋ସ (d) due to interactions of parameters. Besides, other relationships for the 
fixed parameters may exist, for example, relationships between ‘fixed’ parameters and 
‘non-stationary’ parameters. In further study, it is recommended to explore the potential 
relationships between the ‘fixed’ parameters (if there are) and ‘non-stationary’ 
parameters and apply the relationships in the determination of ‘non-stationary’ 
parameter values. 

3. In the process of determining regression equations, recalibration is done to redetermine 
the equation set. As discussed in section 5.1.2, the influence from fixed parameters 
cannot be eliminated completely in determine new regression equation set. The first 
recommendation is to repeat the steps described in methodology to reduce the influence 
of fixed parameters in determination of equations. The second recommendation is to use 
the firstly determined regression equations, as optimal parameters change in each 
simulation period, the determined equations are just from the non-stationary optimal 
parameters. Recalibration is for making parameters with no significant correlations (so 
called fixed parameters) compatible with parameters with significant correlations (so 
called non-stationary parameters). The results from the second recommendation is the 
first regression equations obtained in section 4.3.3. The third recommendation is to use 
the calibrated results in stationary case as the stable parameter values. For example, in 
this study, the values of 𝑋ଶ (mm/d) and 𝑋ଷ (mm) are fixed values obtained in stationary 
calibration, then only 𝑋ଵ (mm) and 𝑋ସ (d) are calibrated in each 10-year time window. 
Then the optimized parameters are used to determine regression equation set. Besides, 
in this study, the regression equations use all significant climatic characteristics at the 
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beginning, however, this may result in overparameterization. Therefore, it is 
recommended to analyze the hydrological relations between the significant climatic 
characteristics and the parameters at first, then test the regression equations determined 
with the hydrologically significant climatic characteristics for optimal parameters to see 
which one has the highest value of regression strength 𝑅ଶ , this may avoid the 
overparameterization to some extent. 

4. In the results of climate change impact assessment, we found that for both models, 
climate change has more impacts on runoff when predicting with GCM-RCM rcp4.5 than 
with GCM-RCM rcp8.5 in the future period of 2045-2065, but has more impacts on runoff 
when predicting with GCM-RCM rcp8.5 than with GCM-RCM rcp4.5  in the future period 
of 2075-2095. A similar trend is found in the climate change impacts on 𝑃 and 𝑃𝐸𝑇, but 
climate change has more impact on 𝑇 for both future periods from GCM-RCM rcp4.5 and 
rcp8.5. Therefore, it is recommended to do further study to explore if the change of 𝑃 
and 𝑃𝐸𝑇 as model inputs affect output more than the change of 𝑇 as model inputs. 

5. This study has selected the gridded solution ‘22i’ for calculating model inputs for this 
catchment. The alternative selections may be the gridded solution ‘11i’ or ‘44i’. However, 
for large catchment, the gridded solution ‘44i’ is not recommended due to lack of precise. 
It is certain that using gridded solution ‘11i’ can lead to more precise calculating but need 
more work and time. Therefore, gridded solution ‘11i’ is recommended in further study 
when using catchments scale like this catchment or larger catchment scales. 
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Appendices 

 

Appendix A 

Historical and future datasets 

 

Historical dataset 

‘prec. hist. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’; 

‘tmax. hist. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’; 

‘tmin. hist. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’. 

Where, ‘prec’, ‘tmax’ and ‘tmin’ mean ‘precipitation’, ‘maximum temperature’ and ‘minimum 
temperature’, respectively. ‘Hist’ means historical scenario running from 1950 – 2001. ‘CanESM2’ 
and ‘CanRCM4’ stand for GCM and RCM, respectively. All data are simulated as daily results. 
‘NAM-22i’ indicates 0.22°/25km native rotated-pole grids. The ‘i’ suffix indicates that the data 
has been interpolated to a common quarter lat-lon grid. As raw data are uncorrected model 
output, ‘mbcn-Daymet’ has been bias-corrected using cannon’s MBCn algorithm against Daymet 
gridded observational datasets (Mearns et al., 2017). Notably, for this GCM-RCM projection, the 
calendar has 365 days in each year. The description of different variables in each dataset file is in 
Table A.1. 

Table A.1 Description of variables in each dataset file. 

Climatic 
characteristics 

Scenario GCM RCM Frequency Grid Bias 
correction 

Prec historical CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

Tmax historical CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

Tmin historical CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

Prec Rcp4.5 CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

Tmax Rcp4.5 CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

Tmin Rcp4.5 CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 
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Prec Rcp8.5 CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

Tmax Rcp8.5 CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

Tmin Rcp8.5 CanESM2 CanRCM4 Day NAM-22i mbcn-
Daymet 

 

Future input data predictions 

Future data of different climatic characteristics in North American catchments are available, 
based on the results of combinations of Global and Regional Climate Models with rcp4.5 and 
rcp8.5 scenarios (GCM and RCM, respectively). The source is also from NA-CORDEX (Mearns et 
al., 2017). The selected data source is: 

‘prec. rcp4.5. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’;  

‘tmax. rcp4.5. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’; 

‘tmin. rcp4.5. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’; 

‘prec. rcp8.5. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’;  

‘tmax. rcp8.5. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’; 

‘tmin. rcp8.5. CanESM2. CanRCM4. day. NAM-22i. mbcn-Daymet’. 

Where, ‘rcp’ means future scenario running from 2006 – 2100. For this future scenario, the 
calendar has 365 days in each year. The description of variables in each dataset file can be found 
in Table 2.1. 
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Appendix B 

Potential evapotranspiration calculation 

 

The provided potential evapotranspiration data in MOPEX is climatological values, which cannot 
be used directly for simulation. This appendix provides a method to obtain corrected potential 
evapotranspiration for model simulation. The equation of Hargreaves (Hargreaves & Samani, 
1985) can be used to estimate daily 𝑃𝐸𝑇. This equation is used because it only requires the 
minimum and maximum temperature. Equation 2 is used to correct the estimated 𝑃𝐸𝑇 values. 
The equations are as follows: 

𝑃𝐸𝑇ௗ,௘௦௧ = 0.408 ∗ 0.0023𝑅𝐴(
𝑇௠௔௫ + 𝑇௠௜௡

2
+ 17.8)ඥ𝑇௠௔௫ − 𝑇௠௜௡ 

𝑃𝐸𝑇ௗ,௖௢௥௥ = 𝑃𝐸𝑇ௗ,௘௦௧ ∗
𝑃𝐸𝑇௠ ௔௩௚,௖௟

𝑃𝐸𝑇௠ ௔௩௚,௘௦௧
 

Where 𝑃𝐸𝑇ௗ,௘௦௧  is the daily estimated potential evapotranspiration in mm d-1, 𝑅𝐴  is the 
extraterrestrial radiation in MJ m-2 d-1, 𝑇௠௔௫ is the maximum daily temperature in degrees Celsius 
and 𝑇௠௜௡  is the minimum daily temperature in degrees Celsius. The factor 0.408 is added to 
convert the unit from MJ m-2 d-1 to mm d-1. 

The climatological monthly average 𝑃𝐸𝑇 (𝑃𝐸𝑇௠ ௔௩௚,௖௟) data is needed to correct the obtained 
𝑃𝐸𝑇ௗ,௘௦௧ (Schaake et al., 2006). A correction factor for each month will be calculated by dividing 
monthly average potential evapotranspiration (climatological values) by the monthly average, 
obtained from the estimated potential evapotranspiration (𝑃𝐸𝑇௠ ௔௩௚,௘௦௧). This factor is used to 
multiply it with 𝑃𝐸𝑇ௗ,௘௦௧. And then the corrected daily potential evapotranspiration 𝑃𝐸𝑇ௗ,௖௢௥௥ is 
obtained. 

For applying the equation of Hargreaves (Hargreaves & Samani, 1985), it is needed to calculated 
the extraterrestrial radiation (𝑅𝐴) in MJ m-2 d-1, which is a parameter indicating the intensity of 
the solar irradiation directly outside the earth’s atmosphere (Allen et al., 1998): 

𝑅𝐴 =
𝐺௦௖

𝜋
𝑑௥ ∗ 𝜔௦ 𝑠𝑖𝑛𝜙 𝑠𝑖𝑛𝛿 + 𝑐𝑜𝑠𝜙 𝑐𝑜𝑠𝛿 𝑠𝑖𝑛𝜔௦ 

Where the inverse relative distance earth-sun (𝑑௥) and the sunset hour angle (𝜔௦) are calculated 
by: 

𝑑௥ = 1 + 0.033 cos (
2𝜋

365
𝑛) 
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𝜔௦ = 𝑐𝑜𝑠ିଵ(−𝑡𝑎𝑛𝛿 𝑡𝑎𝑛𝜙) 

And 𝐺௦௖  is the solar constant, which is 118.1 MJ m-2 d-1. The declination (𝛿 in radians), the angel 
between the sun and the earth’s equator is calculated by the following equation (Spencer, 1971): 

𝛿 = 0.006918 − 0.399912 𝑐𝑜𝑠𝐵 + 0.070257 𝑠𝑖𝑛𝐵 − 0.006758 𝑐𝑜𝑠2𝐵 + 0.000907 𝑠𝑖𝑛2𝐵

− 0.002697 𝑐𝑜𝑠3𝐵 + 0.001480 𝑠𝑖𝑛3𝐵 

Where: 

𝐵 = (𝑛 − 1)
360

365
 

at the nth day of the year. The number 365 indicates the number of days in a year, so days in a 
leap year will be calculated by making use of 366 instead of 365 (for historical data, for future 
data, it is always 365). This also holds for equation of 𝑑௥. For latitudes (𝐿) in decimal degrees, the 
next equation will be used for translating to radials: 

𝜙 = 𝐿 ∗
𝜋

180
 

Where 𝜙 is latitude in radials, which makes it applicable for substituting in equations of 𝑅𝐴 and 
𝜔௦, respectively. 
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Appendix C 

Multiple linear regression analysis 

 

This appendix describes the determination process of multiple linear regression, this regression 
uses model parameter values obtained by calibrating all four parameters in each of 20 10-year 
time windows. The values of the optimized parameter values can be found in Table C.1. 

 

Table C.1 Optimized parameter values for each of 20 10-year time windows. 

10-year time window Xଵ (mm) Xଶ (mm/d) Xଷ (mm) Xସ (d) 
1949-1958 133.64 -0.00 0.00 2.61 
1950-1959 123.80 -0.00 0.00 2.66 
1951-1960 113.68 -0.00 0.00 2.72 
1952-1961 141.37 -0.01 0.01 2.60 
1953-1962 143.25 -0.00 0.00 2.60 
1954-1963 149.99 -0.00 0.00 2.81 
1955-1964 124.79 -0.05 0.05 2.50 
1956-1965 123.39 -0.00 0.00 2.50 
1957-1966 124.44 -0.01 0.00 2.50 
1958-1967 130.90 -0.00 0.00 2.43 
1959-1968 110.65 -0.00 0.00 2.47 
1960-1969 101.26 -0.09 0.12 2.38 
1961-1970 99.27 -0.35 0.78 2.23 
1962-1971 111.05 -0.45 1.06 2.14 
1963-1972 101.01 -0.87 2.26 2.08 
1964-1973 96.40 -0.50 1.09 2.22 
1965-1974 107.68 -0.29 0.52 2.28 
1966-1975 104.69 -0.29 0.58 2.30 
1967-1976 110.37 -0.22 0.38 2.29 
1968-1977 125.76 -0.07 0.08 2.32 

 

Regression equation for 𝑋ଵ (mm) 

With Mat-Lab functions ‘ 𝑓𝑖𝑡𝑙𝑚 ’ and ‘ 𝑎𝑛𝑜𝑣𝑎 ’, the table including each significant climatic 
characteristic and their relevant significance levels (𝑝-value) can be obtained, the regression 
strength 𝑅ଶ is also available for adjudging if the regression equation becomes better by deleting 
‘insignificant’ variables one by one. The results are shown as follows from Table C.2. 
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Table C.2 (a) to Table C.2 (e) show the process of determining regression equation for model 
parameter 𝑋ଵ (mm). Table C.2 (a) shows the all the significant climatic variables in the regression 
equation with the regression strength 𝑅ଶ = 0.35. Obviously, due to the interactions of climatic 
characteristics, the climatic characteristics with the coefficients are no significant at 95% level 
anymore. The solution should be deleting one climatic variable with the highest 𝑝-value in the 
regression equation by Mat-Lab fuction ‘𝑟𝑒𝑚𝑜𝑣𝑒𝑇𝑒𝑟𝑚𝑠’. Therefore, the climatic variable with 
coefficient 𝐶ଶ is removed according to Table C.2 (a). Then Table C.2 (b) is obtained. The regression 
strength 𝑅ଶ  of the regression equation with 4 coefficients increases 0.02 comparing with the 
regression equation with 5 coefficients. Next, the climatic variable with coefficient 𝐶ଵ is removed, 
the result is shown in Table C.2 (c). The regression strength 𝑅ଶ becomes 0.39 when the regression 
equation includes 3 coefficients. Last, the climatic variable with coefficient 𝐶ସ is removed, the 
regression equation for 𝑋ଵ (mm) is obtained with all included climatic variables having 𝑝-values 
less than 0.05, the results are shown in Table C.2 (d). To verify if this is the best regression 
equation, the constant 𝐶଴  is removed, the results are shown in Table C.2 (e), the regression 
strength 𝑅ଶ decreases a lot with a value 0.01. Therefore, the final regression equation for 𝑋ଵ (mm) 
is determined by Table C.2 (d) with the highest regression strength 𝑅ଶ = 0.40. The regression 
equation is expressed as: 

𝑋ଵ =  −768.40 + 83.74 ∗ 𝑇௦ௗ 

Table C.2 Determination process of multiple linear regression equation for parameter 𝑋ଵ (mm) from (a) to (e). 𝐶௡ 
are the coefficients of significant climatic variables, 𝑝-value shows the significance level of each climatic variable in 
the regression equation, and 𝑅ଶ shows the regression strength of the regression equation. 

(a) 

  Coefficients p-value R^2 
𝐶଴ -402.41 0.56 0.35 
𝐶ଵ -376.01 0.35   
𝐶ଶ 54.96 0.49   
𝐶ଷ 33.36 0.44   
𝐶ସ 30.77 0.28   

 

(b) 

  Coefficients p-value R^2 
𝐶଴ -765.63 0.09 0.37 
𝐶ଵ -152.79 0.52   
𝐶ଷ 53.38 0.10   
𝐶ସ 34.23 0.21   

 

(c) 

  Coefficients p-value R^2 
𝐶଴ -965.31 0.00 0.39 
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𝐶ଷ 56.13 0.08   
𝐶ସ 18.49 0.10   

 

(d) 

  Coefficients p-value R^2 
𝐶଴ -768.40 0.01 0.40 
𝐶ଷ 83.74 0.01   

 

(e) 

  coefficients p-value R^2 
𝐶ଷ 11.23 0.00 0.01 

 

 

Regression equation for 𝑋ସ (d) 

Table C.3 (a) to Table C. (i) show the process of determination of multiple linear regression 
equation for 𝑋ସ (d) with Mat-Lab functions ‘𝑓𝑖𝑡𝑙𝑚’ and ‘𝑎𝑛𝑜𝑣𝑎’. The first result including all 
significant climatic characteristics and the regression strength 𝑅ଶ is shown in Table C.3 (a). The 
climatic variable with coefficient 𝐶଺ has the highest 𝑝-value, thus this climatic variable should be 
removed first. Table C.3 (b) shows the results with 9 coefficients and their 𝑝 -values, the 
regression strength increases to 0.56, which means the new regression equation performs better 
than the regression equation with all significant climatic variables. Next, according to Table C.3 
(b), the climatic variables with coefficients 𝐶଻, 𝐶଼, 𝐶ଽ, 𝐶ସ, 𝐶଴ and 𝐶ଵare removed, respectively. To 
compare if the regression equation has the best goodness of fit, the climatic variable with 
coefficient 𝐶ହ  is removed although its 𝑝 -value is lower than 0.05. The result show that the 
regression strength 𝑅ଶ  = 0.55 which is much lower than 𝑅ଶ  =0.64 resulted from regression 
equation with 3 climatic variables. Therefore, the final regression equation for parameter 𝑋ସ (d) 
is shown as: 

𝑋ସ =  −8.39 ∗ 𝑃𝐸𝑇 + 1.34 ∗ 𝑇 + 0.57 ∗ 𝑇௦ 

Table C.3 Determination process of multiple linear regression equation for parameter 𝑋ସ (d) from (a) to 
(i). 𝐶௡ are the coefficients of significant climatic variables, 𝑝-value shows the significance level of each 
climatic variable in the regression equation, and 𝑅ଶ  shows the regression strength of the regression 
equation. 

(a) 

  Coefficients p-value R^2 
𝐶଴ 8.95 0.78 0.52 
𝐶ଵ -2.18 0.39   
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(b) 

  Coefficients p-value R^2 
𝐶଴ 10.78 0.68 0.56 
𝐶ଵ -2.25 0.34   
𝐶ଶ -11.53 0.13   
𝐶ଷ 1.27 0.22   
𝐶ସ 0.80 0.32   
𝐶ହ 0.38 0.50   
𝐶଻ -0.18 0.73   
𝐶଼ 3.56 0.72   
𝐶ଽ -0.34 0.67   

 

(c) 

  Coefficients p-value R^2 
𝐶଴ 13.96 0.55 0.59 
𝐶ଵ -2.15 0.34   
𝐶ଶ -11.38 0.12   
𝐶ଷ 1.13 0.21   
𝐶ସ 0.72 0.32   
𝐶ହ 0.43 0.40   
𝐶଼ 0.81 0.89   
𝐶ଽ -0.16 0.78   

 

(d) 

  Coefficients p-value R^2 
𝐶଴ 16.72 0.19 0.62 
𝐶ଵ -2.38 0.11   
𝐶ଶ -12.09 0.02   
𝐶ଷ 1.15 0.18   
𝐶ସ 0.65 0.21   
𝐶ହ 0.49 0.09   
𝐶ଽ -0.09 0.73   

𝐶ଶ -11.19 0.20   
𝐶ଷ 1.27 0.24   
𝐶ସ 0.86 0.40   
𝐶ହ 0.34 0.61   
𝐶଺ 0.37 0.92   
𝐶଻ -0.20 0.73   
𝐶଼ 3.85 0.72   
𝐶ଽ -0.22 0.88   
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(e) 

  Coefficients p-value R^2 
𝐶଴ 15.75 0.19 0.65 
𝐶ଵ -2.16 0.09   
𝐶ଶ -11.65 0.02   
𝐶ଷ 1.05 0.17   
𝐶ସ 0.63 0.21   
𝐶ହ 0.50 0.07   

 

(f) 

  Coefficients p-value R^2 
𝐶଴ 14.04 0.24 0.63 
𝐶ଵ -1.29 0.22   
𝐶ଶ -12.53 0.01   
𝐶ଷ 1.64 0.01   
𝐶ହ 0.56 0.05   

 

(g) 

  Coefficients p-value R^2 
𝐶ଵ -0.15 0.71 0.62 
𝐶ଶ -7.92 0.00   
𝐶ଷ 1.27 0.02   
𝐶ହ 0.56 0.05   

 

(h) 

  Coefficients p-value R^2 
𝐶ଶ -8.39 0.00 0.64 
𝐶ଷ 1.34 0.01   
𝐶ହ 0.57 0.04   

 

(i) 

  Coefficients p-value R^2 
𝐶ଶ -6.58 0.00 0.55 
𝐶ଷ 1.91 0.00   
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Appendix D  

Comparison of optimized parameters and calculated parameters with the 
regression equations 

 

After the regression equations for 𝑋ଵ (mm) and 𝑋ସ (d) is determined, the parameter values of 𝑋ଵ 
(mm) and 𝑋ସ (d) in the validation period should be calculated to execute simulation and see the 
performance of simulation with the regression equations. The results show that the values of 
objective function 𝐾𝐺𝐸 are 0.80 for calibration and 0.66 for validation. Besides, the comparison 
between optimized parameter values and calculated parameter values with the determined 
regression equations can be done to verify the accuracy of the regression equations both for 
calibration and validation (in Table D.1 and Figure D.1). 

Table D.1 The optimized and calculated parameter values with the regression equations for 𝑋ଵ (mm) and 𝑋ସ (d), (a) 
includes the results from the calibration period and (b) includes the results from the validation period. 

(a) 

10-year time windows 
in calibration period 

Optimized Calculated 
𝑋ଵ(mm) 𝑋ସ(d) 𝑋ଵ(mm) 𝑋ସ(d) 

1949-1958 97.23 2.66 104.19 2.73 
1950-1959 112.69 2.68 119.13 2.66 
1951-1960 107.65 2.70 119.84 2.64 
1952-1961 146.84 2.59 125.94 2.56 
1953-1962 148.76 2.59 125.25 2.61 
1954-1963 141.36 2.58 126.30 2.48 
1955-1964 135.70 2.48 127.52 2.42 
1956-1965 126.16 2.49 136.80 2.47 
1957-1966 125.75 2.49 134.55 2.46 
1958-1967 122.62 2.45 133.00 2.38 
1959-1968 115.65 2.46 136.53 2.30 
1960-1969 109.42 2.36 124.75 2.37 
1961-1970 115.45 2.22 128.23 2.35 
1962-1971 139.15 2.10 125.21 2.38 
1963-1972 160.96 2.00 136.34 2.25 
1964-1973 146.05 2.15 139.62 2.28 
1965-1974 145.01 2.23 146.49 2.21 
1966-1975 130.28 2.27 137.79 2.19 
1967-1976 136.99 2.25 137.08 2.18 
1968-1977 141.34 2.29 140.50 2.16 
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(b) 

10-year time windows 
in validation period 

Optimized Calculated 
𝑋ଵ(mm) 𝑋ସ(d) 𝑋ଵ(mm) 𝑋ସ(d) 

1978-1987 93.30 2.44 153.91 2.08 
1979-1988 90.30 2.44 151.10 2.26 
1980-1989 90.78 2.44 152.24 2.42 
1981-1990 88.09 2.45 151.25 2.56 
1982-1991 86.27 2.44 152.68 2.61 
1983-1992 89.01 2.40 155.22 2.73 
1984-1993 71.78 2.44 153.86 2.81 
1985-1994 77.17 2.43 144.09 2.93 
1986-1995 74.67 2.38 144.30 3.01 
1987-1996 73.77 2.39 138.91 2.79 
1988-1997 81.74 2.40 142.03 2.73 
1989-1998 96.16 2.45 145.79 2.92 
1990-1999 76.96 2.45 147.18 3.08 
1991-2000 74.85 2.46 155.24 2.86 
1992-2001 64.59 2.48 152.52 2.81 

 

From Figure D.1 (a), for parameter 𝑋ଵ (mm), the optimized values are close to calculated values 
with regression equation, the points are around the standard line in the calibration period. But 
the values show huge difference between the two sets, and the points are far from the standard 
line in the validation period. The values of Pearson correlation are 0.57 for calibration and 0.19 
for validation. From the results, the regression equation does not show a good accuracy for 
estimation of parameter 𝑋ଵ (mm).  

In Figure D.1 (b), for parameter 𝑋ସ (d), the optimized parameter values show high similarity to 
the calculated values with the regression equation, and the points are around the standard line 
in the calibration period. But in the validation period, some of the points are close to the standard 
line, the others are not which show huge difference. The values of Pearson correlation are 0.83 
for calibration and -0.09 for validation which means the two sets of data almost do not show any 
correlations.  

Although the regression equations for parameter 𝑋ଵ (mm) and 𝑋ସ (d) do not perform well and 
show a bad accuracy. However, the regression equations are the ‘best’ ones determined with the 
available data, and they are still used for simulations for GCM-RCM historical and future 
projections. One reason resulting in this could be from the data source, another reason could be 
from the optimized parameter values which are calibrated with fixed parameter 𝑋ଶ (mm/d) and 
𝑋ଷ (mm) which can also be influence by climate change and change with a small amplitude. In 
this study, however, this stationary setting for parameter 𝑋ଶ (mm/d) and 𝑋ଷ (mm) removes the 
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interaction of parameters during calibration. Therefore, the optimized parameters for 𝑋ଵ (mm) 
and 𝑋ସ (d) can be influenced.   
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(b) 

Figure D.1 Comparison of optimized and calculated parameter 𝑋ଵ (mm) and 𝑋ସ (d) with the determined regression 
equations for the calibration period (a) and the validation period (b). The grey points mean the parameter values in 
the calibration period, the blue points mean the parameter values in the validation period, the red line is the 
standard line 𝑦 = 𝑥. 
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Appendix E 

Water balance analysis for each simulation period 

 

water balance results allow an examination of the hydrological cycle for a period of time, and the 
purpose of the water balance is to describe the various ways in which the water supply is 
expended. 

Table E.1 gives the annual average of precipitation (P, mm), potential evapotranspiration (𝑃𝐸𝑇, 
mm), discharge (Q, mm) and the rainfall coefficients for each case. The discharge accounts for a 
small part of precipitation even for the largest coefficient 0.23, which means the small bias in 
precipitation may lead to large discharge bias. Comparing GCM-RCM historical projection and 
GCM-RCM rcp4.5 or rcp8.5 projection, both annual 𝑃 (mm) and annual 𝑃𝐸𝑇 (mm) increase from 
historical period to the first period, then to the second period. But the discharges have different 
changing conditions which resulted from not only 𝑃 (mm) and 𝑃𝐸𝑇 (mm), but also 𝑇 (°Ϲ) and 
model parameter sets. The comparison of the variables can also be found in Figure 4.9. 

Table E.1 Values of water balance variables for observed and simulation cases. 

 

P(mm) PET(mm) Q(mm) Q/P(-)
775.82 1382.01 115.95 0.149
775.82 1382.01 108.62 0.140
775.82 1382.01 96.17 0.124
923.38 1368.97 198.20 0.215
923.38 1368.97 171.10 0.185
847.72 1390.39 162.06 0.191
847.72 1390.39 138.56 0.163
928.53 1400.78 193.95 0.209
928.53 1400.78 166.33 0.179
918.18 1374.94 212.24 0.231
918.18 1374.94 182.14 0.198

1022.96 1405.05 233.05 0.228
1022.96 1405.05 199.21 0.195

Rcp4.5-2071-2100-ns
Rcp8.5-2041-2070-s
Rcp8.5-2041-2070-ns
Rcp8.5-2071-2100-s
Rcp8.5-2071-2100-ns

Water balance variables

Observed
Cases

Simulated-s
Simulated-ns
GCM-RCM hist-s
GCM-RCM hist-ns
Rcp4.5-2041-2070-s
Rcp4.5-2041-2070-ns
Rcp4.5-2071-2100-s
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Figure E.1 Comparison between water balance variables for each case. 
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