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Abstract

Impedance control is a common form of robot control where interaction is important. A key question
posed in this thesis is how the impedance can be chosen in a structured manner given the robot’s
task and dynamics. We exploit impedance control ideas and make them optimal in time resulting
in an open­loop control action which mimics time­varying Cartesian impedance control. We utilize
energy tanks to recover passivity, in view of safety. In addition, we propose an iterative feed­forward
adaptation law to account for model variations from the nominal plant using open­loop control.
Simulation studies on a 5­DoF robot show efficacy of the methods by successfully performing an
energy­aware and task­based peg­in­hole task using open­loop control with minimal feedback.
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Chapter 1

Introduction

1.1 General introduction
Nowadays, when people talk about robotics they refer to the automated machines that run our in­
dustrialized world. However, robotics dates back to many centuries ago. One can find plenty of
examples of ancient tales and stories in which people are intrigued by automated machines and ar­
tificial intelligence. With the catalyst called the ’industrial revolution’ , development of automated
machines accelerated. Today, robotics and automated machines characterise modern society and
the manufacturability of everything. Exploding research into artificial intelligence together with
the exponential growth of more computing power indicate that robotics will most likely be a more
integral component of our future lives.
Different notions are used to refer to a robot or automated machine. Most frequently (and also used
in this thesis) are, ’robot’, ’manipulator’ or simply ’system’. In this thesis the word ’manipulator’ is
often used as a reference for an industrial robot/robotic arm. A manipulator basically ’manipulates’
theworld around him by performing tasks. (Industrial) examples are: picking and placing of objects,
welding, grinding and performing measurements Furthermore, robots are also capable of working
in environments which are dangerous to humans. In an industrial setting, those tasks are often
periodic which means that the task is performed over and over again. Robots are not only found in
industry. The field of so called ’service’ robots increases as well, where robots should also capable
be of interacting with humans.
From a technical perspective, robotics face two interesting fields. The first concerns the question,
”How do they move?”, this is the field of ’dynamics’. The second concerns the question, ”How can
we make robots move in a desired way to perform useful tasks?” , this is is the field of ’control’.
Conventional control theory roughly distinguishes two types, motion control (position/velocity)
and force/torque control. Conventional control theories do not consider control from an interaction
point of view. Many modern control techniques focus on controlling interactions, often cast in the
form of impedance or admittance control. This framework forms the basis for this thesis and will
be decomposed in the following sections.
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1.2 Previous work

1.2.1 The need for impedance control
Neville Hogan is considered to be the founding father of impedance control. His contribution was
published in a threefold paper [1–3] in 1985. To this day, the work of Hogan is used as reference
for impedance controlled applications. The general idea is that when a robot interacts with its envi­
ronment, there is a power exchange with the environment. In that case, the environment dynamics
will be part of the total system. Robust control is a type of control that deals with unknown model
variations or disturbances.
Control theory classically assumes that the nominal model of the system is a good representation of
the actual dynamics up to a certain frequency [4]. The ’robustness’ is then a measure on how much
the actual system can change from the nominal one in order to become unstable. However, when
interaction takes place, also the low frequency behaviour can change [5]. An example of this would
be when a mass interacts with an elastic element, it will create an additional mode to the (possibly
low frequency) dynamics. Because of this, control using traditional methods will not be sufficient
when interaction takes place.
In a world where robots get more integrated in daily life, the need for safe yet performance based
robotics increases. Especially in situations where robots and humans are working side by side. Ex­
amples of so called ’collaborative robots’ (also called cobots) can for example be found in industry
where a robot collaborates with the human. In this case, a robot can hand small objects or tools to
the human. For these type of situations, is not possible to put a cage around the robot. The safety
has to be programmed a priori and embedded in the control architecture of the robot. Stability is
not guaranteed when interacting robots are controlled with some traditional methods. An example
of this is given later.
To summarize, impedance control becomes useful when interaction takes place and were traditional
methods fail to maintain stability.

1.2.2 What is impedance? A port based view
Before talking about impedance ’control’, it is necessary to understand what ’impedance’ actually
is. A mechanical impedance defines the relationship between motion (position, velocity and deriva­
tives) and resulting force. This does not need to be linear. An example for a mechanical mass with
a linear impedance is given below.

Example: Impedance of a simple mass

The equation of motion for a mass is written as,
F = mv̇ (1.1)

where F is the force, m is the mass and v the velocity. The transfer function from force to
velocity can be defined by performing the Laplace transform on the former equation . This
is the impedance of the mass:

Zmass(s) = HF/V = ms . (1.2)
In this case is Z(s) the impedance notation and s the complex variable.

4



An ’impedance’ does not belong only to the mechanical domain. In all other physical domains such
as the electrical, magnetic or hydraulic domain, an impedance can be defined. In order to define
an impedance domain independently, the power conjugated variables come in to play. The power
conjugated variables are called effort and flow. They are mathematical members of dual vector
spaces. It means that effort and flow take different physical aspects dependent on the domain. For
all domains it holds that the duality between effort and flow equals the power:

P = e⊤f . (1.3)

As power is domain independent it allows to connect different physical domains on the basis of
power­ports. The main modelling approach for this is done with bond graphs. The general idea
of bond graphs is that dynamic systems can be modelled with basic elements which share analogy
between domains. The fundamentals of bond graphs plus amodelling example are given in appendix
Chapter A. If one is familiar with the power conjugated variables, an impedance is a system with an
effort­out causality [1]. The dual of the impedance is called the admittance, it has flow­out causality.
If an impedance is coupled to another system, the other system is by definition an admittance. This
is displayed in Fig. 1.1.

A B
e

f

Figure 1.1: A is called the impedance, B is called the admittance. A has effort­out causality, indi­
cated by the vertical bar in the direction away from A.

1.2.3 Basic impedance control
In classical control, two types of control can be distinguished: motion control (position/velocity)
and force/torque control. For both techniques, a reference is given in the form of a (time­varying)
position or force and the goal is to let the robot follow this reference as closely as possible. With
impedance control it is different. With impedance control, the goal is to achieve a certain impedance.
Or in other words, to achieve a certain relation between effort and flow.
The general multi­DoF equation of motion of a mechanical system is given as [6],

M(q)q̈ +C(q, q̇)q̇ + F (q, q̇)+
∂V (q)

∂q
= τ (1.4)

where M(q) is the inertia matrix, C(q, q̇) contains the Coriolis and centrifugal terms and ∂V (q)
∂q

represents the torques caused by gravity. F (q, q̇) denotes all other torques induced by the dynamics
of the robot for example friction or stiffness. τ represents all input torques and is sometimes split
up into the control torques and the external torques:

τ = τu + τe . (1.5)

In control theory, the goal is to choose the control torques τu such that the robot behaves in a desired
way. Choosing the control torques from an ’impedance control’ point of view can be either done in
joint space or in the Cartesian space. Most mathematical operators used in the sequel are explained
in appendix Section D.2.
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Joint space impedance control

The basic impedance controller in the joint space is obtained by shaping the effective potential of
the robot. An arbitrary potential energy function Vc(q) can be added to the potential of the robot by
choosing the control torques such that

τu = −∂Vc(q)

∂q
. (1.6)

By substituting this control law into the dynamics in Eq. (1.4) the following dynamics are obtained
[6]:

M(q)q̈ +C(q, q̇)q̇ + F (q, q̇)+
∂V (q) + Vc(q)

∂q
= τe . (1.7)

The question remaining is then how to choose Vc(q). In most cases one wants to compensate for
the gravity. Furthermore if a desired joint position is given by q∗ the shaped potential should have
a minimum in q∗. This is normally done by choosing a quadratic term for the potential. Together
with the gravity compensation, the chosen potential denotes

Vc(q) = −V (q) +
1

2
(q − q∗)⊤Kq(q − q∗) . (1.8)

The second term is also recognized as the potential energy of a spring­like element with spring
constant Kq. This spring will induce convergence of q to q∗. In addition, the control law can be
extended with a dissipative term which acts on the joint velocities:

τu = −∂Vc(q)

∂q
−Bq(q)q̇ . (1.9)

With this control law, a virtual spring and damper are added to the joints of the robot. The spring
has effort­out causality which means it behaves like an impedance. The goal of this impedance
controller is to let the system behave like an impedance as well. Kq and Bq will induce a certain
stiffness and damping at the interaction port [5].

Cartesian space impedance control

In most cases, the task is defined in the workspace. Therefore, it is convenient to do impedance
control in the workspace. In addition, the realisation of joint impedance at the end­effector depends
on the robots configuration which is not constant. In contrast, with Cartesian impedance control,
the end­effector impedance can be defined, which is where the task takes place. [7] describes the
implementation of such a Cartesian impedance controller. It makes use of screw theory which is
based on the Lie algebra of rigid body motion in SE(3) [8]. The fundamentals of screw theory can
be found in appendix Section B.1.
Cartesian impedance control is achieved by a virtual multi­DoF spring between the end­effector
frame and a second virtual frame [7]. This is shown graphically in Fig. 1.2. Consider a frame (Ψn)
on the end effector. Its configuration is given as the homogeneous transformation matrix,

H0
n =

(
R0

n p0,0
n

0 1

)
(1.10)
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p0,0n Ψv

Ψ0

Ψn K

Figure 1.2: A manipulator controlled with Cartesian impedance control. p0,0n represents the position
vector from Ψ0 to Ψn expressed in Ψ0

and represents a point on the configuration manifold SE(3), i.e. H0
n ∈ SE(3). R0

n ∈ SO(3) and
p0,0
n describe the orientation and position of the frame expressed in the inertial frameΨ0. Consider a

frameΨv which denotes a virtual frame corresponding to the configurationH0
v . The homogeneous

matrix between the virtual and the end­effector frame is

Hv
n = Hv

0H
0
n =

(
H0

v

)−1
H0

n =

(
Rv

n pv,v
n

0 1

)
. (1.11)

The 6­dimensional spring K ∈ R6×6 which is connected between the end­effector and the virtual
frame can be split up into the following components,

K =

(
Ko Kc

K⊤
c Kt

)
(1.12)

where Ko ∈ R3×3 refers to the rotational spring; Kt ∈ R3×3 to the translational spring and Kc ∈
R3×3 to the coupled spring (causing both rotation and translation). Then it is shown in [9, p. 168]
that the wrench exerted by the spring on the end effector is defined as,

τ̃ n = −2 as (GoR
v
n)− as (GnR

n
vp

v,v
n p̃v,v

n Rv
n)− 2 as (Gcp̃

v
nR

v
n) (1.13)

f̃n = −Rn
v as (Gnp̃

v
n)R

v
n − as (GnR

n
v p̃

v,v
n Rv

n)− 2 as (GcR
v
n) (1.14)

where the actual wrench from the spring exterted on the end­effector is the composition from the
two components:

W n =
[
τ n fn

]⊤
. (1.15)

Gγ with γ ∈ {c, o, t} is the co­stiffness and can be calculated as,

Gγ =
1

2
tr(Kγ)I3 −Kγ (1.16)

where I3 is the 3 × 3 identity matrix. Before the control law can be expressed as torques, the
wrench in Eq. (1.15) has to be transformed to the inertial frameΨ0. As the wrench is a co­vector, it
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transforms with the transpose of the Adjoint. Therefore, the Wrench expressed in the inertial frame
is defined as

(W 0)⊤ = Ad⊤Hn
0
(W n)⊤ . (1.17)

The final step is to express the resulting wrench in the joint space as the final control law are torques.
To this extent, one can use the geometric Jacobian. The Jacobian maps between the end­effector
space and the joint space. The torques can therefore be computed as

τc = J(q)⊤W 0 . (1.18)

Eq. (1.18) represents the torques caused by the 6­dimensional spring. Applying this control law to
the equation of motion from Eq. (1.4) the following dynamics are obtained:

M(q)q̈ +C(q, q̇)q̇ +G(q) = τe + J(q)⊤W 0 . (1.19)

Often, gravity compensation is applied as a good estimation of the torques caused by gravity is
known and to maintain the structure of a multi­link robot:

τc = J(q)⊤W 0 + Ĝ(q) . (1.20)

Sometimes, even an estimate of the intrinsic dynamics is embedded in the control law in order to
cancel them [5]. However, for low frequent trajectories and when the system is at rest the intrinsic
dynamics cancel and only the gravity has to be compensated. Then, the system will behave like a
spring which guarantees a stable interaction [10].
The choice of this Cartesian controller which is characterised by the multi­DOF spring can be ex­
tended with a damping term in the joint space as was done in Eq. (1.9). Damping can also be injected
through a 6­dimensional Cartesian damper which is connected between the end­effector and the vir­
tual frame (or an inertial frame) which will be explained in Section II in the paper (Chapter 3).

The desired impedance

As outlined above, the dynamics of the system can be changed to a mass­spring­damper system
either in the joint space or in the work space. Essentially it becomes non­linear as the reflected
inertia changes with the configuration. This type of system normally yields the ’desired impedance’.
The values of the spring and damper either in the joint space or in the workspace then characterises
the desired impedance. The spring and damper values do not need to be fixed. They can also vary,
either in time or in space. In the sequel, a closer look is taken on how literature deals with the choice
of the impedance parameters.

1.2.4 How is the impedance chosen?
In previous section it is shown how the basic impedance controller is implemented. In literature
one will find a comprehensive list of applications in which impedance control is used. It ranges
from applications with human­robot interaction, industrial applications such as peg­in­hole, aerial
robotics and much more. The way impedance control is implemented is in most cases very similar
to the procedures described before. A question one might ask is how the impedance parameters are
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chosen. ’Impedance parameters’ refers to theK andB either in the joint space or in the workspace,
representing stiffness and damping respectively. In the following, the procedure for selection of
impedance parameters in literature is investigated. To this purpose, an overview of is given in
Table Table 1.1. The given task is displayed together with how the impedance is chosen. ’VI’ is
short for variable impedance. In addition, it is indicated if the chosen impedance controller makes
use of a variable impedance or a fixed one.
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Source Task VI How is the impedance chosen? How does the VI vary?
[11] Co­manipulation for peg­in­hole. Yes. Task is split up into sub­tasks:

carrying and positioning. For each
sub­task a different impedance is
chosen.

In space

[12]

Trajectory following for peg­in­
hole task.
Trajectory following with obsta­
cles.

No N/A N/A

[13]

Piston insertion by teaching guid­
ance.
Wiping the table (constant force on
table).
Opening a door.

Yes

High impedance used for rotational
components, translational stiffness
is set by human.
Task is split into a carrying phase
and impedance phase. Overall
compliant behaviour to be more
safe in interaction with humans.
Potential energy shaping with a
minimum along a desired path.
The rotational stiffness was set to
zero

In space

[14] Gear assembly No N/A N/A

[15] Trajectory following Yes Minimize metabolic cost and
trajectory error.

In time

[16] Telerobotic peg­in­hole
Telerobotic throwing switch Yes Manually In space

[17] Telerobotic force minimization
Telerobotic trajectory following Yes Manually In space
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[18] Peg­in­hole assembly No Minimizing contact forces while
inserting.

N/A

[19] Aerial trajectory following and force
application.

Yes stiffness is bounded by Lyapunov
stability criterion. The desired
impedance is not treated.

In time

[20] Trajectory following in stochastic
force field.

Yes Human­like reinforcement learning
based on minimizing high
impedance gains, trajectory error and
accelerations.

Parametrized with a finite number of
parameters. These parameters vary
in time.

[21] Human following trajectory Yes The impedance is adjusted to a
variable impedance of the human.
The variable impedance of the
human is estimated using neural
networks.

In space

[22] Socket plugging Yes By human (using EMG signals) In space

[23] Pendulum balancing Yes Minimizes trajectory error while
maintaining stability to adjust
feed­forward and impedance.

In time

Table 1.1: Table gives an overview of a literature study to how the impedance is chosen on the basis of a task. VI means variable
impedance. N/A means that it is not applicable or that it is not treated

11



What can be seen from table Table 1.1 is that a variety of tasks can be considered when talking
about impedance control. Some of the applications, [11, 13, 15–17, 19–23], are using a variable
impedance. On top of that, what is noticeable from the fourth column in Table 1.1 is that the choice
of impedance whether it is variable or non­variable is different, it depends on the given task. Some
designers, [12,18], do not treat the choice of the impedance at all. In case a telerobotic application
is considered like in [16, 17, 22], the impedance is chosen manually (by human). The human is
connected to the ’master’ device which is controls the ’slave’ device. The ’slave’ is the device
which actually interacts with the environment and provides (haptic) feedback to the human. In this
case, it is clear that the impedance is chosen by the human but it is not clear ’how’ the human
chooses their impedance.
Others, [11,13], use different impedances on different stages of the task, so called sub­tasks. Finally,
some applications, [15, 20], try to mimic the human decision making on choosing the impedance.
Their method is inspired by the CNS (central nervous system) of human which is able to make a
trade­off between energetic cost and performance.
In Table 1.1, variable impedance refers to the change in impedance parameters either in space or in
time. If the impedance varies only in time, it means that the stiffness is controlled ’blindly’ without
considering the configuration of the robot. This is similar to open­loop control. If the impedance
is parametrized in space instead of time, then the impedance will depend on the configuration of
the robot. This requires a feedback loop hence, closed­loop control. Recall that in the telerobotic
cases, [16,17,22], the impedance is chosen manually (by human). In this case, it is assumed that the
human chooses their impedance based on (haptic) feedback and therefore the impedance changes
in ’space’. However, the latter statement can be bit strong as there are many more variables like
confidence and fatigue.

Human­like analogy

When discussing impedance modulation many authors make the analogy with the human body
[15, 20]. This is for a good reason; humans change their impedance all the time. Normally this
happens in the joints and is achieved by co­contraction of the muscles [24]. Humans benefit from
a modulated impedance for non­trivial task execution such as picking up objects or insertion tasks
(like putting a key in a key­hole). According to [24] humans are capable of doing this as they have
trained themselves thousands of times. For example, picking up an object such as a mug or inserting
a key is an every­day task. However, from a robotics point of view, this is highly non­trivial due to
the complex dynamics. As reported by [15] such actions are performed by an open­loop controller as
the task is ’learned’ in the past. Then, a feedback mechanism exists to account for unforeseen events
like when the object picked up is heavier than expected. However, in terms of speed and stability,
the open­loop action is beneficial over the feedback controller. A high­gain feedback controller
is less safe and more prone to stability issues. This is because the feedback sensing faces delay.
Following their exceptional performance, it is clear that humans are a perfect example of varying
their impedance on the basis of a task. Therefore when designing a (varying) impedance controller,
it might be beneficial to try to mimic the human decision making. Controller design inspired by
nature in which only some aspects are tried to be copied is also called bioinspired controller design.
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1.2.5 Stability and passivity
For isolated robots which do not interact with their environment, stability can be proven using
classical techniques such as the small gain theorem, Hurwitz or Bode stability [4]. However, for
robots which interact with their environment these classical stability criteria are not be sufficient.
As described by [25], passivity is a sufficient condition for stability, not a necessary one. Hence
passivity guarantees stability, but stability does not require passivity. Moreover, it was shown in [25]
that a non­passive system can become unstable even when interacting with passive environments.
It emphasized that passivity therefore says nothing about the performance of a system, only about
stability. Passivity basically means that a system cannot store more energy than what is provided to
it and was initially present. In mathematical terms, a system is said to be passive if there is a storage
function V : X 7→ R+, where X is the state manifold such that [26],∫ t1

t0

V̇ dt = V(x1)− V(x0) ≤
∫ t1

t0

y⊤u dt (1.21)

with state x, input u, output y and t ∈ [t0, t1] . As described before, conventional robot control is
not sufficient when a robot is interacting with the environment. In the sequel, a simple example of
a mass subjected to friction and controlled with a traditional PI controller is given. It is shown that
because the controller contains an integrator and because interaction is assumed to be a ’disturbance’
the system can become unstable while interacting.

Example: PI control

This example is taken from [5]. Consider a simple mass subjected to (viscous) friction with
positive friction coefficient b like in Fig. 2.1. The transfer function from force to position can
be written as,

HX/F =
1

ms2 + bs
(1.22)

where x is the position of the position of the mass and F are the actuator forces plus the
external forces, F = Fa + Fe. A traditional PI controller is applied,

HF/X̃ =
Kps+Ki

s
(1.23)

where x̃ is the desired position minus the real position x̃ = x∗ − x. The Routh­Hurwitz
stability creation can be applied to choose an appropriateKi value. The characteristic closed
loop polynomial of this system will be

χcl(s) = ms3 + bs2 +Kps+Ki . (1.24)

From this, the Routh table is constructed:

m Kp

b Ki

Kp − m
b
Ki

.
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The feedback system is stable if the entries of the first column have the same sign and are
nonzero. It is easy to see that this is true if and only if

Ki <
bKp

m
. (1.25)

Now consider that the mass is interacting with another mass. This would be similar to a robot
picking up an object. The the ’new’ mass of the systemwill not equalm be something bigger.
This can cause the stability condition in Eq. (1.25) to fail hence, instability of the total system.
Robust control methods will suggest to work with a safety factor for Ki to allow for some
variations in m. However, the system can always become unstable when the mass becomes
sufficiently high [5].

In earlier section, it was shown that some of the impedance controlled applications in literature
make use of a variable impedance. Regarding passivity, when a time­varying impedance is chosen,
the system is not passive by itself. This is shown in the next example for a simple 1D­mass. The
example is meant to give an impression on what a variable impedance implies, it is not a generalized
proof on passivity with different types of impedances. The same example also showcases how the
passivity is destroyed if a moving reference is used.

Example: Passivity analysis with stiffness modulation and moving reference

The equation of motion for a controlled mass is given as,

mẍ = Fa + Fext (1.26)

whereFa is the controlled actuator force andFext the external forces. Choosing an impedance
law in which the impedance parameters k and b can be time­varying functions, the equation
of motion results in a mass spring damper system,

mẍ− k(t)x̃+ b(t)ẋ = Fext (1.27)

with x̃ = x∗ − x. Where x∗ is the desired state. The storage function can be defined as

V =
1

2
mẋ2 +

1

2
k(t)x̃2 . (1.28)

To see how the energy changes over time, the time derivative is taken:

V̇ = mẋẍ+ k(t)x̃ ˙̃x+
1

2
k̇(t)x̃2 . (1.29)

From Eq. (1.27) we isolate ẍ and insert it in V̇:

V̇ = ẋFext + k(t)x̃ẋ− b(t)ẋ2 + k(t)x̃ ˙̃x+
1

2
k̇(t)x̃2 . (1.30)
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Assuming that the reference does not change in time (called regulation) : ẋ∗ = 0 and hence
˙̃x = −ẋ provides

V̇ = ẋFext − b(t)ẋ2 +
1

2
k̇(t)x̃2 . (1.31)

For a fixed impedance k̇(t) = 0. Furthermore, as bwill always be greater than zero and hence
bẋ2 > 0 the following holds:

V̇ = ẋFext − bẋ2 ≤ ẋFext . (1.32)

Integrating both sides: ∫ T

0

V̇dt = V(xT )− V(x0) ≤
∫ T

0

ẋFextdt . (1.33)

This holds the passivity criterion in (1.21), hence the system fixed impedance is passive. For
a variable impedance, obviously k̇ 6= 0 and therefore V̇ can also be written as

V̇ = ẋFext +

[
1

2
k̇(t)x̃2 − b(t)ẋ2

]
. (1.34)

The sign between the square brackets is not defined, it can be both positive and negative,
hence the system is not passive any more. The varying stiffness produces another power
port that can destroy the passivity [27]. In a final situation we can analyse the case when the
desired state varies in time while using a fixed impedance: ẋ∗ 6= 0 , k̇(t) = 0. Starting from
Eq. (1.30), we obtain

V̇ = ẋFext + [k(t)ẋ∗]− b(t)ẋ2 . (1.35)

Again, the sign between square brackets is not defined. In this case it is the the varying
reference which creates another power port. Again, it may result in failure of the passivity
condition.

The problem of passivity has been solved in an elegant and simple way using a so called energy
tank. The main idea is that the energy which the controller can use is bounded by means of a
limited supply contained in a tank. If the energy is tank is empty, no more energy can be spent
by the controller. This guarantees passivity and has been shown for a 1­DoF case in [28] and the
extension to the multi­DoF has been made in [7]. The benefit of using the energy­tank concept is
that it is easy to implement and it allows to think in a ’free’ way on how to tune the impedance
parameters without worrying about passivity. The energy tank will be used and explained further
in the next chapter.
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1.3 Problem description

1.3.1 General problem
Impedance control has been studied in detail and it is clear that different tasks require different
impedance values (refer to Section 1.2.4). For some non­trivial tasks even a variable impedance
is beneficial. A question which remains unanswered is how to structurally choose the impedance
profile on the basis of a task. In other words, there exists no unified task­based framework to define
impedance. This issue was already noticed by [29]:

”To what degree can performance metrics in interactive systems be cast into a unified framework?”

Moreover, even the choice and technique used to define the variable impedance differs across liter­
ature. It seems (refer to Table 1.1) that most recent publications working with variable impedance
are data­driven. That means that the varying impedance parameters are determined with the use of
data. Often, those data­driven techniques assume the dynamics of the system to be a ’black­box’ and
learn impedance profiles directly from sensor feedback. These techniques have the benefit that they
can cope with advanced and unstructured environments (such as a rover on Mars). They learn from
the feedback and how to adjust the impedance according to the task. However, many impedance
controlled robots operate in more structured environments (such as industrial environments), where
the characteristics of the environment are known. Therefore, the core idea put forward in this thesis
is,

The knowledge about the structure of the environment, robot dynamics and task definition can be
utilised to define ’good’ initial values for (time­varying) impedance that allow completion of the
task in nominal conditions.

1.3.2 Project scope
The scope of this thesis is to see how the impedance parameters should be changed according to
one task only. The task in this thesis will be a peg­in­hole task as it is considered to be a benchmark
for manipulative robotics. We examine a framework in which the task is optimized in nominal
conditions to perform successful task execution and to account for model variations with the aid
of feedback. Energy tanks will be used to achieve passivity of the controlled system. However,
as highly debated aspect of passivity in robotics, the energy tanks do not guarantee safety as the
amount of energy stored in the tanks can be very large, even if theoretical passivity properties are
satisfied. That is why we will also look at how to use the energy tanks for both passivity and safety.
In line with the project scope, the next research questions are formulated:

1. What is the desired time­varying impedance for a peg­in­hole task in a (semi)­structured
environment based on the task definition and a task­based metric?

2. How does the desired time­varying impedance relates to a control architecture comprising
feed­forward and feedback?
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3. What can you say about the robustness of the optimized impedance profiles under model
variations?

4. How to utilize the energy tanks in view of passivity and safety?

5. Can the results from the optimization somehow be improved with the aid of data?

6. How do the fixed impedance, task­driven impedance and data­driven impedance compare?

1.4 Contribution
This work contains three contributions:

1. The main contribution is the presentation of a control strategy comprising a task­based con­
trol action which exploits time­varying Cartesian impedance control in an optimization. The
task­based control action is supplemented by a task­free impedance controller to handle en­
vironmental uncertainties and external perturbations. A major difference with existing liter­
ature is that the time­varying impedance results in an open­loop control action rather than a
closed­loop strategy. In terms of speed and stability, the open­loop action is beneficial over a
feedback controller. A high­gain feedback controller is less safe and more prone to stability
issues due to delays in the feedback mechanism.

2. A second contribution relates to safety using the energy tanks. As being said in Section 1.3.2,
energy tanks only guarantee passivity of the controlled system, not safety. Making the tanks
more task­based by only storing the necessary amount of energy to complete a task will in­
crease safety. This contribution is in line with the conclusion from [7]:

”For this reason, in future work, it will be investigated how to make an energy­tank sys­
tem which is aware of the energy amount needed to perform a specific task, resulting in a
more efficient energy­aware controller.”

In addition, we exhibit a dynamic way of injecting energy into the energy tanks. The dynamic
energy injection is task­based and results in lower energy content in the tanks compared to
conventional input strategies. This increases safety of the controlled system.

3. A final contribution is associated with an iterative feed­forward adaptation scheme. We will
present a simple adaptation law to adapt the task­based control action to such a degree in
which it accounts for model variations from the nominal plant. The final result is successful
task execution using an energy­aware open­loop control action which accounts for variations
with minimal feedback.

1.5 Approach
Control architecture: task­based versus task­free

We shall exploit impedance control ideas and make them optimal in time resulting in an open­loop
control action which mimics a time­varying Cartesian impedance controller on the basis of a task
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performed on a nominal robot model. The final product should be a manipulator performing a non­
trivial task such as peg­in­hole. The hypothesis is that the time­varying impedance will be beneficial
over a fixed impedance on the basis of a task­basedmetric. The resulting task­based control action is
supplemented by a task­free Cartesian impedance controller to handle environmental uncertainties
and external perturbations.

Optimization

In order to find the task­based control actionwe try to come upwith ametric/objective on the basis of
a task and to formulate a non­linear problem (NLP) which minimizes this objective. The objective
will always be chosen by the designer and not considered to be the only option. However, following
the exceptional performance of humans, (explained in Section 1.2.4) we approach the objective
definition from a biomimetic perspective. Since the optimization problem is of continuous­time
nature (i.e. would require gradient descent in a functional space to be solved), we seek the solution
in a finite dimensional space. We will do this by parametrizing the stiffness with a finite set of
parameters while maintaining the continuous nature of the problem as a whole.

Energy tanks

Energy tanks will be used to recover passivity of the controlled system. The energy­tank concept
allows to freely think about varying the impedance without having to worry about passivity or
stability. However, the energy­tanks will not guarantee safety as the amount of energy to be stored
in the tanks can be very large. Therefore, we will also use the energy­tanks to recover safety.
We shall do this by using the knowledge about the task­based optimization since it will provide
information on the energy usage of the robot as a function of time in nominal conditions. The latter
can be used to store the tanks only with a limited amount of task­based energy. In addition, we use
the knowledge from the optimization to exploit a dynamic way of injecting the task­based energy
into the tanks. This will make the tank based approach more energy­aware and safe.

Model variations

After optimizing the impedance in nominal conditions, also disturbances enter the problem. There
will always be a mismatch between the nominal model used in the optimization and practical im­
plementation. As the task­based time­varying impedance will enter as an open­loop control action,
the task­free closed­loop controller will account for these modelling errors, as well as external per­
turbations. We shall study the trade­off between the necessary gains to perform a successful task
execution with model variations and energetic cost given the bounds of uncertainty. This informa­
tion will also be used to store an additional amount (on top of the task­based energy) of energy in
the tanks to account for model variations.

Iterative feed­forward adaptation

The tasks considered in this work will be appropriate for an industrial setting. In an industrial
environment, task are often carried out repeatedly. Therefore, the interplay between the task­free
and task­based controller can be utilized to adapt the task­based control action in such away that
it accounts for model variations. The result of this data­driven adaptation law results is that the
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unstructured environment also is encapsulated into the task­based feed­forward. Subsequently, the
amount of energy in the tanks can be updated corresponding to the knowledge of the controlled
action.

Procedure and validation

Themethodswill be validated though simulation studies. It also allows to bemore ’flexible’ with the
type of application without being constrained to a real­life environment. First, a proof of concept
will be conducted in which a rather simple system is used to get the main ideas for this project.
Herein, a mass subjected to nonlinear friction has to perform a positioning task. After the proof of
concept, the ideas are studied on a multi DoF manipulator performing a peg­in­hole task. Cartesian
impedance control as described in section Section 1.2.3 will be used to define the impedance control
law. Bond graphs will be used as a modelling language as it fits well with the Cartesian impedance
controller and screw theory. Furthermore, these graphs are very suitable for energy­basedmodelling
and control which are concepts used a lot in this thesis. Regarding software: 20Sim 4.8 will be used
to make the bond graph models. MATLAB 2020A together with Simulink will be used to perform
the optimization problems and do the actual control.

1.6 Structure of thesis
The structure of this thesis will be as follows. Chapter 1 is the introducing chapter. It introduces
impedance control and how it is established in existing literature. Furthermore, it contains a re­
flection on literature and which questions arise due to this reflection. From this, global problem
formulation is presented together with the scope for this project. Chapter 2 will present a proof of
concept and will be a more technical chapter. Herein, the main ideas on how to tackle the questions
posed in Chapter 1 are exploited on a simple system performing a task. Chapter 3 builds upon the
work in Chapter 2 and extends to Cartesian tasks on a multi­DoFmanipulator. This chapter will also
contain most of the contribution. It is written in IEEE paper format as it is meant to be published
on the Humanoids conference in Munich 2021. Chapter 4 will be a final chapter. It reflects on the
overall work and makes suggestions for future research. The appendices provide the reader with the
necessary background in bond graphs, screw theory, modelling and mathematics. However, these
appendices will be rather minimal in their explanation. It serves in order to remind the reader on the
essentials. Therefore, it is advised to study more elaborated literature first if one starts completely
blank.
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Chapter 2

Proof of concept

2.1 Problem formulation
In this chapter, a proof of concept will be presented. This proof of concept has 1­DoF such that
complexity in terms a Jacobian and multi­body dynamics can be avoided. It is expected that the
main features of this thesis can be exploited in 1D as well. The goals of this proof of concept are to
see:

1. Can a simple system performing a task benefit from a variable impedance?

2. What is the task and what is the subsequent metric?

3. What is the control scheme regarding feed­forward and feedback?

4. Technically: how do you implement such a problem?

5. How to ensure passivity of the controlled system using the energy tank concept?

The system considered here is a (rigid) mass subjected to a nonlinear friction model, displayed in
Figure 2.1.

m

b

F

Figure 2.1: Massm subjected to friction b with external force F

The continuous time dynamics of the mass are written as,[
ẋ1

ẋ2

]
=

[
0 1
0 0

] [
x1

x2

]
+

[
0
1
m

]
F (2.1)
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where x1 is the position and x2 the velocity of the mass. F is the total force exerted on the mass
consisting of controller force Fc and friction force Fr:

F = Fc + Fr . (2.2)

An impedance controller characterized by a spring with stiffness k and damper with damping b̄ will
be used to control the system:

Fc = kx̃− b̄x2 b̄ = 2
√
km (2.3)

where x̃ = x∗ − x1 defines the position error with desired trajectory x∗. The damping parameter, b̄,
is chosen such that the system will be critically damped. This is a common choice for positioning
tasks. The characteristic of the nonlinear friction profile are given in Fig. 2.2b. It consists of a
Stribeck friction profile together with some coulomb friction [30]. The friction force is therefore a
nonlinear function b of the velocity:

Fr = b(x2) . (2.4)

2.1.1 Task and metric
The task is to follow a desired trajectory profile as in Fig. 2.2a. The performance objective is
therefore a tracking error. On top of the performance objective the mass should be aware of how
much energy it has spent to perform the task. The hypothesis is that the mass can take the friction
profile to its advantage. When the mass is accelerating, the friction profile will act in opposite
direction of the actuator force. However, when the mass wants to de­accelerate the friction will
contribute to the task. In that situation, the energy spent by the controller might be less when de­
accelerating compared to the accelerating phase. Therefore the metric chosen in this case is to
achieve a certain tracking error while minimizing the metabolic cost. The metabolic cost can be
defined as the energy spent to perform the task. This choice of metric is human­like as already
described in Section 1.2.4 . It says that the human central nervous system (CNS) tries to minimize
the energy spent on a task while taking into account the performance. This biomimetic choice of
metric also fits well within the bond graph paradigm and energy tank concept as it gives immediate
information on how much energy should be stored in the tanks, more on this in Section 2.4. As
a final note, this choice of task and metric is reasoned but certainly not the only option. Another
option could be: given a fixed amount of energy, optimize the tracking error.
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Figure 2.2: Positioning task and friction characteristics.

2.2 Optimization
After the task, robot and environment dynamics are defined, it is time to define an optimal impedance
strategy on the basis of the task.

Stiffness parametrization

Regarding the practical implementation, a smooth stiffness curve in time is preferred. However,
optimizing a function in continuous time would require gradient descent in a functional space. For
a practical implementation, we seek the solution in a finite dimensional space defined by N pa­
rameters using cubic splines. We write the set of N parameters (also called ’knots’ of the stiffness
curve) as

kknots =
[
k1 k2 . . . kN

]
(2.5)

with equal time spacing between adjacent knots. Between the knots, a cubic interpolation will be
done also a known as cubic splines [31]. In this way, the stiffness curve becomes a function of the
knots:

k = f(kknots, t) k̇(kknots, 0) = k̇(kknots, T ) (2.6)

where t ∈ [0, T ] with period time T . We choose to equate the derivative of the stiffness curve at
t = 0 and t = T to obtain a smooth stiffness curves when multiple periods are relevant (more on
this in Section 2.2.1).

From metric to objective

In the following, it is explained how the biomimetic metric translates to a mathematical objective.
It is considered that the mass is driven by an electrical motor. To simplify, it is assumed that the
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power flow to the self­inductance is negligible so that the motor only consists of a electrical resistor
with resistance R and a gyrator with torque constant kt. The metabolic cost is considered to be the
power loss in the electrical resistance plus the power spent to the mechanical domain. kt and R are
assumed to be constants so that the power lost in the electrical resistance is proportional to Fc:

Pr = i2R =
F 2
c

k2
t

R ∝ F 2
c (2.7)

where i is the current flow in the motor. The power spent to the mechanical domain is simply

Pm = Fcx2 (2.8)

The motor does not contain physical storage elements nor is the motor driver assumed to be a four­
quadrant capable driver. Therefore in order to express the metabolic cost, only the positive powers
are assumed as this is the power spent to to accomplish the task:

Emetabolic =

∫ T

0

(Pr + Pm)
+dt (2.9)

where (·)+ denotes only the positive part of the input argument. This translates to a mathematical
objective which is the weighted metabolic cost:

Jmetabolic =

∫ T

0

(µ1Pr + µ2Pm)
+dt . (2.10)

where µ1, µ2 ∈ R are weighting constants used to scale the individual power terms. Given the task,
the performance objective is to minimize a certain tracking error ε. The corresponding performance
objective is specified as the root mean square of the tracking error over the entire interval t ∈ [0, T ]:

Jerms = rms(x̃) . (2.11)

In addition, another performance objective is to minimize the maximum (absolute) position error,
emax. A maximum tracking error upto ε is allowed but will be penalized if it surpasses ε. This
translates to the following objective and is even graphically displayed in Fig. 2.3:{

Jemax = (emax − ε)2 emax ≥ ε

Jemax = 0 emax < ε
(2.12)

where

emax = |x̃|max . (2.13)

23



ε
0

emax

J
em

a
x

Figure 2.3: Jemax

The total cost function is then defined as,

J(kknots) = w1 · Jmetabolic + w2 · Jerms + w3 · Jemax︸ ︷︷ ︸
performance

. (2.14)

where w1, w2, w3 ∈ R are the weighting constants used to scale the objective terms. Subsequently,
the optimization problem can be formulated as

kknots = argmin
kknots

J(kknots)

s.t,
k+ ≥ k(kknots, t) ≥ k− ∀t
f(kknots, 0) = f(kknots, T )

. (2.15)

The latter constraint together with the equality of the derivatives in Eq. (2.6) makes a repeating k
curve continuous if a repetitive task is desired. k− and k+ denote the lower and upper stiffness
bound.

Algorithm

The optimization problem in posed in Eq. (2.15) is solved using MATLAB 2020a. fmincon with
the 'interior-point' algorithm will be used as the problem is posed as a constrained and non­
linear minimization problem. The dynamics (given by Eq. (2.1)) are solved using the ode45 solver.
In every objective evaluation the dynamics are simulated which ensures that the dynamics and min­
imization problem are solved sequentially. The main advantage of this implementation is that the
problem enters as a continuous time problem and time discretization is done by the ode45 solver
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itself. To clarify, the pseudo code has been outlined in Algorithm 1.
Algorithm 1: Pseudo code implementation for problem in equation 2.15
Result: kknots

1 initialization;
2 k = spline(kknots, t) ;
3 kknots = fmincon(J(k),nlc(k),’interior­point’) ;
4 Function J(k):
5 F (k,x) = Fc(k,x)− Fr(x) ;
6 [Tsol,Xsol] = ode45(ẋ(x, F, t));
7 J(k,Tsol,Xsol) = w1Jmetabolic + w2Jerms + w3Jemax;
8 return J ;
9 ;
10 Function nlc(k):
11 nlc(1) = k+ ≥ k ≥ k− ;
12 nlc(2) = k(0) == k(T ) ;
13 return nlc;
14 ;

2.2.1 Optimization results
The parameters which are used to solve this problem can be found in the following table,

m µ1 µ2 w1 w2 w3 ε N k+ k− k0 R kt T
[kg] [−] [−] [1/J] [1/m] [1/m] [m] [−] [N/m] [N/m] [N/m] [Ω] [Nm/A] [s]
1 1 1 3 103 2 · 104 12 · 10−4 14 2 · 103 103 103 1 1 2

where k0 is the initial guess for the spline knots in the optimization. The desired position profile,
x∗(t) contains frequency components up to 5Hz. Therefore, the bounds for the spline stiffness curve
are chosen such that the bandwidth of the system is always bigger than 5Hz. If the bandwidth is
lower than the frequency of the desired position profile, proper tracking cannot be achieved.
The results from the optimization for two periods can be seen in Fig. 2.4. This displays all forces on
the mass, the resulting stiffness curve and the state evolution. In the accelerating phase (upto 0.5s),
a larger impedance is used compared to the de­accelerating phase (from 0.5s to 1s). This is expected
as the the friction profile will help the mass to de­accelerate. Therefore, in order to minimize the
metabolic cost the controller makes use of a lower impedance when de­accelerating is desired. The
continuity constraint for multiple periods allows to ’copy’ the stiffness profile and obtain a smooth
stiffness profile for multiple cycles (in this case two). Obviously, the advantage of minimizing the
metabolic cost becomes a benefit if multiple cycles are considered as the energy ’gain’ will scale
linearly per cycle.
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Figure 2.4: Results from optimization for 2 periods. Left plot up represents the control force to­
gether with the friction force. Left plot down represents the resulting spline curve for the stiffness.
The right plot displays the state evolution.

In order to quantitatively compare the variable impedance result to a fixed impedance, ten exper­
iments are run with fixed impedances. The range of fixed impedances is the same as the bounds
given in the optimization for kknots. In Fig. 2.5 the variable and the fixed impedance are compared
on the basis of the chosen metric.
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Figure 2.5: Red filled dots represent the results for the fixed impedances with stiffness value as is
indicated in the legend. The variable impedance results are indicated with the blue markers. The
legend for the variable impedance indicates the values for w1,w2 and w3 respectively.

As can be seen from Fig. 2.5, when comparing the performance objectives versus the metabolic
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cost, the variable impedance is beneficial over the fixed impedances. The result and shape from
the upper plot and the lower plot in Figure 2.5 are similar. The solver is able to make a trade­
off between metabolic cost and positioning error (both maximum and root mean square). To also
indicate the importance of weighting, Fig. 2.5 also displays two different results for the optimization
based on two different sets of weights (w1,w2,w3). As can be seen, increasing w1 puts more weight
of the metabolic cost within the overall objective (see also Eq. (2.14)). This leads to a trade­off more
directed towards minimizing themetabolic cost. This however, is at the expense of the performance.
Fig. 2.6 displays the objective evaluations for every function evaluation from fmincon. This is
done for both set of weights which corresponds to Fig. 2.5. Clearly, how the problem is minimized
depends on the weighting. It should be emphasized that by putting more weight on the performance
objectives, the variable impedance result converges to a fixed impedance. This is also observed
from Fig. 2.5 where the variable impedance result with the lowest weight on the metabolic cost
(thus more weight on the performance objectives) term is the closest to the fixed impedance results.
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Figure 2.6: Results from optimization for two sets of weights. Left plot corresponds to the ’circle’
in Fig. 2.5 whereas the right plot corresponds to the ’plus’ in Fig. 2.5

2.3 Control strategy
The results of this conceptmodel illustrate that a simple system can benefit from a variable impedance.
Furthermore, the resulting stiffness curve is only task­based, not data­driven. The error term x̃ in
Eq. (2.3) is part of the optimization. Therefore, ’real’ data is not considered in order to learn the
desired impedance. The resulting stiffness curve is a function of time only. In order words, the stiff­
ness is blindly modulated independent on the configuration of the robot. Because of that, it makes
sense to let the resulting force from the optimization enter as an open­loop action to the robot. In
the sequel, this open­loop part is labelled as ’task­based’ control action. If the model of the robot
and environment correspond to the model used in the optimization, the task­based open­loop con­
trol action will mimic as if a time­varying impedance was implemented. The state variables are
(implicitly) part of the optimization, they define the optimal trajectories in nominal conditions, de­
noted by x∗

1 and x∗
2. Everything else, which is unforeseen by the task formulation should be covered
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by a so­called ’task­free’ controller. This ’task­free’ controller is a feedback controller and can be
implemented as a simple PD. The control action which enters the robot is a combination from a
task­based (TB) part and task­free (TF) part:

Fc = FTB + FTF = FTB + k0e+ b0ė (2.16)

where e = (x∗ − x) and ė = (ẋ∗ − ẋ). k0 and b0 are the task­free gains and can be time­invariant.
The control scheme comprising the task­based optimization and task­free compensation is given in
Fig. 2.7.

PD
∑

Robot

Optimization

Task Metric Env. model

Env.

−

+

x

x∗ FTB

FTF

Figure 2.7: ’Env.’ is short for ’environment’. Control scheme with task­based and task­free con­
troller. The optimization receives a task, metric and characteristics of the environment in order to
do an offline optimization. The dashed lines represent offline signals.

2.4 Passivity by energy tank
As indicated in Section 1.2.5, passivity can be destroyed by the creation of additional power ports
due to a varying reference or a time­varying impedance. To ensure passivity the energy tank concept
is used. The key idea is that the energy which the controller can use is bounded by means of an
energy tank. The motor draws the energy from the tank by means of a modulated transformer. If the
energy in the tank is empty, no more energy can be spent by the controller. This guarantees passivity
and has been shown for a 1­DoF case in [28] and the extension to the multi­DoF has been made
in [7]. Since for this model an electrical motor is considered, the current is set instead of the force.
Unlike [7] the tank will be represented by an electrical inductance with L = 1H. Subsequently,
the energy stored in the tank is given as H(pt) =

1
2
p2t where pt is the state of the tank. The bond

graph of the mass subjected to friction actuated with an electrical motor, connected to the tank will
be represented in Fig. 2.8.
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Figure 2.8: Bond graph representation of equation 2.1 driven by a motor connected to the energy
tank. ft the current through the tank.

Next, the rate of transformation between the tank and the actual system is determined in order to
ensure a certain Fc going into the mechanical part. The port­Hamiltonian equations for system has
to be derived. The system got two storage elements with integral causality which makes the total
system second order. The derivation of these equations can be in appendix D.1 resulting in:[

ṗt
Fc

]
=

[
−u2R −ukt
ukt 0

] [
pt
x2

]
+

[
1
0

]
Fin . (2.17)

The second line in the latter equation can be utilized to express the transmission ration as a function
of the controlled torque:

u =

{
Fc

ktpt
if H(pt) ≥ ϵ

0 otherwise
(2.18)

where ϵ is a threshold close to zero. If the energy in the tank is empty, the transformation rate has
to be 0 to decouple the controller from the system [7]. The energy spent to complete the task is
the power lost in the resistance plus the power spent to the mechanical part, see equation (2.9). In
nominal conditions (there are no perturbations) this energy is known a priori as a result from the
optimization. Therefore, one can store this amount in the tank initially by setting an initial state to
the tank. This type of energy storage is referred to as static energy injection. For every cycle, the
energy can be re­injected into the tanks (by resetting the integral of the tank). The energy in the
tank together with the forces on the mass for two nominal cycles are depicted in Fig. 2.9a.

2.4.1 Dynamic energy injection
The result from the optimization is a function of time. Therefore, it is exactly known a priori how
much energy the task­based controller will spent over time. In face of initially storing the energy at
each cycle, the energy used by the task­based controller can be dynamically added over time. This
requires another power port at the side of the tank, see Fig. 2.8. The power used in a nominal cycle
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Figure 2.9: Nominal case and perturbed case. Upper plot is the energy in the tank, lower plot are
the control and friction forces acting on the mass.

(Pcycle(t)) is calculated utilizing the integral argument of Eq. (2.9). To achieve this power by means
of an effort­source,

Fdyn(t) =
Pcycle(t)

ft
(2.19)

where Fdyn(t) is the source of effort connected to the tank. The power injected in the system will
directly be used to perform the task. For a nominal cycle, the energy in the tank remains constant,
see Fig. 2.9a. To account for any uncertainties which are compensated by the task­free controller,
a small amount of additional energy is stored in the tank. Regarding the uncertainties. In real life,
the nominal model used for the optimization will probably mismatch with the actual model. This
is not included in the task­based controller so it will be compensated by the task­free controller.
To see how this works, the ’real’ friction model is perturbed with respect to the nominal friction
model, see Fig. 2.11. For two cycles, the perturbed friction case for both the static and dynamic
energy injection is depicted in Fig. 2.9b. Notice the energy the task­free controller consumes to
compensate for the modelling error.
Another case is simulated in which the energy tank depletes completely due to a resistive element
trying to stop the mass after 0.5s. Obviously, the dynamic energy injection continuous to add energy
to the tank. To increase safety, it is chosen to completely decouple the tank from the rest if the tank is
empty for the first time. Otherwise the control stops and continuous after a while, which is assumed
to be undesired (and not safe). To illustrate what happens to the energy content in the tank and the
control forces, see Fig. 2.10.
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Figure 2.10: After 0.5s an additional resistive element acts on the mass which empties the tank.
Done for both dynamic (left) and static (right) energy injection types. Upper plot is the energy
content in the tank, lower plot are the control and friction forces acting on the mass.

A final remark is on the difference between the dynamic energy injection and the static energy
injection. Although the dynamic energy injection adds a bounded amount of energy over the cycle
time, it is not theoretically passive. However, anything could be made passive with a tank so adding
another tank on top which provides the dynamic energy injection could be a solution. Regarding
safety, the dynamic energy injection might be safer compared to the static injection type. This is
because the task­free controller can use less energy when the because there is simply less energy
present in the tank. Especially when the tank is initialized (at t = 0s), the amount of energy in the
tank is much higher compared to the dynamic energy injection, see again Figure 2.9.
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5

Figure 2.11: Perturbed friction

31



2.5 Conclusion
This section will conclude about the proof of concept. In Section 2.1 five goals were set for this
proof of concept. To conclude about the proof of concept, a reflection is made based on these goals.

1. Can a simple system benefit from a variable impedance?
Yes. The variable impedance is compared to an array of fixed impedances in Fig. 2.5. It was
noticeable that based on the metric chosen for this positioning task, the variable impedance
benefits over the fixed one.

2. What is the control scheme regarding feed­forward and feedback?
The optimized stiffness curve is only parametrized over time. Therefore, the resulting torques
of the optimization were set as an open­loop control action labelled as task­based. The rest,
which was unforeseen by the task was covered by a task­free feedback controller. This was
implemented a simple PD controller. One can argue that optimized task­based control action
could have been parametrized as a single variable of time, which is true. However in the cur­
rent implementation (parametrized like an impedance law) the task­based control action will
mimic a time­varying impedance in nominal conditions. In addition, if a variable impedance
actuator (VIA) was used, one has direct way to tune the physical spring and damper.

3. What is the task and what is the subsequent metric?
The mass had to follow a desired position profile as closely as possible. Following the exep­
tional performance of humans as decision makers for varying their impedance on the basis
of a task, a biomimetic metric was chosen. The corresponding metric was to minimize the
tracking error while minimizing the metabolic cost as well. Clearly, the choice of metric is
optional. Another option would have been: given a fixed amount of energy, what is the best
performance possible?

4. Technically: how do you implement such a problem?
By simulating the dynamics and solving the optimization sequentially like presented in Al­
gorithm 1. This implementation is not the only option. Another option could have been to
include the states as decision variables in the optimization and put the dynamics as a con­
straint. In that case, time discretization has to be done before the problem can be solved. The
main advantage of the current implementation is that everything enters as a continuous time
problem and the time discretization is done by ode45 itself.

5. How to ensure passivity of the controlled system using the energy tank concept?
The energy tank concept was used to recover passivity. However, the energy tanks do not
guarantee safety as the amount of energy stored in the tanks can be very large, even if theo­
retical passivity properties are satisfied . If a very large amount of energy is stored in the tank
the controller can use a lot of energy. The question is: is this very safe? If something goes
wrong (for example collision with a person), it takes considerable amount of time before the
controller switches off. As the metabolic cost was enclosed in the optimization, it provided a
direct way to initialize the tanks. This avoided excessive energy levels in the tank. The task­
based information was used to add the task­based energy in a dynamic manner. Although the
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dynamic energy injection is not theoretically passive, compared to the static strategy the over­
all energy content in the tank is lower. That is why the dynamic energy injection increased
safety.
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Energy-aware adaptive impedance control using
offline task-based optimization

Bart Gerlagh

Abstract—Impedance control is a common form of
robot control where interaction is important. A key
question posed in this paper is how the impedance can
be chosen in a structured manner given the robot’s task
and dynamics. We exploit impedance control ideas and
make them optimal in time resulting in an open-loop
control action which mimics time-varying Cartesian
impedance control. We utilize energy tanks to recover
passivity, in view of safety. In addition, we propose
an iterative feed-forward adaptation law to account for
model variations from the nominal plant using open-
loop control. Simulation studies on a 5-DoF robot show
efficacy of the methods by successfully performing an
energy-aware and task-based peg-in-hole task using
open-loop control with minimal feedback.
Index Terms—Impedance Control, Time-varying, Pas-
sivity Based Control, Optimization, Robot Safety

I. Introduction

Motion control classically focuses on minimizing a tracking
error. However, motion control is structurally unable to
deal with interactions of physical systems. When inter-
action is important, the problem is often cast into an
impedance or admittance control framework which focuses
on a relation between motion and force rather than the
minimization of a signal.
A bibliography research provides a comprehensive list of
applications in which impedance control is used. It ranges
from human-robot interaction, industrial applications such
as peg-in-hole, aerial robotics and much more. All the
applications use different impedance values (characterized
by a spring) on the basis of a specific task [1]–[13]. For
some non-trivial tasks a variable impedance is beneficial
over a fixed impedance [1]–[10]. An example of such a
non-trivial task is an assembly task such as peg in hole
where both following a position reference and exerting an
assembly force are of importance [1]. Some author make
the analogy with the human body in an attempt to copy
their decision-making [3], [7]. This is for good reason;
humans change their impedance all the time, they benefit
from a modulated impedance for non-trivial task tasks
using co-contraction of muscles [3].
A question which remains unanswered is how to struc-
turally choose the impedance profile on the basis of
a task. In other words, there exists no unified task-
based framework to define impedance [14]. Moreover, even
the techniques used to define variable impedance differ
across literature. Many approaches used to define variable
impedance are data-driven [7], [8]; treating the system
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q3
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q5

Ψv

p0,0
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K(t)

B(t)
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Ψj

Fig. 1: A manipulator controlled with Cartesian
impedance control. p0,0

n represents the position vector
from Ψ0 to Ψn expressed in Ψ0.

as a black box and learning impedance profiles directly
from sensor feedback. This is particularly the case for
robots in unstructured environments, where little informa-
tion about the task and dynamics is available. However,
many robots operate in more structured environments
(like industrial environments), where the characteristics
of the environment and robot’s dynamics are known.
Therefore, the core idea put forward in this work is that
the knowledge about the task, robot dynamics and its
environment can be utilised to define ’good’ initial values
for varying impedance that allow completion of the task
in nominal conditions.
If the task is defined in the workspace, it is convenient

and effective to do impedance control in the workspace
as well. In addition, the realisation of joint impedance at
the end-effector depends on the robots configuration which
is not constant. In contrast, with Cartesian impedance
control, the end-effector impedance can be defined, which
is where the task takes place. In this work we use the
geometrical form of Cartesian impedance control based on
the language of Lie group theory to yield a coordinate free
approach [15].
In light of the missing framework to define the impedance
on the basis of a given task, we exploit impedance control
ideas and make them optimal in time resulting in an open-
loop control action which mimics a time-varying Cartesian
impedance controller on the basis of a task. The resulting



task-based control action is supplemented by a task-free
Cartesian impedance controller to handle environmental
uncertainties and external perturbations.
The three contributions of this paper are presented is the
following list:

1) The main contribution of this work is the presenta-
tion of a control strategy comprising a task-based
control action which exploits time-varying Carte-
sian impedance control in an optimization. A major
difference with existing literature is that the time-
varying impedance results in an open-loop control
action rather than a closed-loop strategy. In terms of
speed and stability, the open-loop action is beneficial
over a feedback controller. A high-gain feedback
controller is less safe and more prone to stability
issues due to delays in the feedback mechanism.

2) A second contribution relates to safety. Energy tanks
will be used to achieve passivity of the controlled sys-
tem. However, as highly debated aspect of passivity
in robotic, the energy tanks do not guarantee safety
as the amount of energy stored in the tanks can be
very large, even if theoretical passivity properties are
satisfied [16]. Therefore, we will present an energy-
aware strategy on how to store the energy in the
tanks in order to achieve passivity and safety. We
validate efficacy of the methods by a simulation
study of a 5-DoF manipulator along a peg-in-hole
task. In addition, we exhibit a dynamic way of
injecting energy into the energy tanks. The dynamic
energy injection is task based and results in lower
energy content in the tanks compared to conven-
tional input strategies. This increases safety of the
controlled system

3) A final contribution is associated with an iterative
feed- forward adaptation scheme. We will present a
simple adaptation law to adapt the task- based con-
trol action to such a degree in which it accounts for
model variations from the nominal plant. The final
result is successful task execution using an energy-
 aware open- loop control action which accounts for
variations with minimal feedback.

In summary, we show that an optimized impedance profile
is reached by minimizing a task-based metric over the
impedance values. The impedance profiles resulting from
this optimization defines the open-loop strategy. The task-
free Cartesian impedance controller is used to account
for model variations from the nominal plant (used in
the optimization). We propose an iterative feed-forward
adaptation law which ensures that feedback compensation
for modelling errors are enclosed in the task-based feed-
forward.
The structure of this paper will be as follows. Section II
contains technical background for geometric Cartesian
impedance control on SE(3). In Section III the control
strategy is proposed. Section IV presents a case study.

The results of this case study are presented in Section V.
The work will be concluded in Section VI.

II. Background
A. Mathematical preliminaries
This paper uses screw theory as a backbone for the
proposed control strategy. It is based on the Lie algebra of
rigid body motion in SE(3) and will be used to define the
dynamics of the robot and forward kinematic map [17].
This section presents the main mathematical notations
used throughout the paper.

• Ψi: indicates a Cartesian frame i.
• Twist: twist of body i with respect to body j ex-

pressed in Ψj is written as T j,j
i =

[
ωj,j

i vj,j
i

]
. ωj,j

i

represents the rotational velocity and vj,j
i represents

the velocity of an imaginary point passing through
the origin of Ψj [17].

• Wrench: in this work, we only consider wrenches
exerted on the end-effector. W n represent the wrench
exerted on the end-effector expressed in Ψn. A sub-
script contains a generic label to indicate which com-
ponent exerts the wrench, for example, we use Ws

to indicate a wrench from a Cartesian spring, Wd

to indicate the wrench from a Cartesian damper and
We indicates the wrench from an (unknown) environ-
ment. A wrench written as, W n

s =
[
τn

s fn
s

]> de-
fines the wrench on the manipulator from a Cartesian
spring expressed in Ψn where τn

s are the rotational
forces and fn

s are the linear forces.
• Ad(): the adjoint operator of the configuration matrix

is used to change coordinates of twists and wrenches
between frames like T i,j

i = AdHi
j
T j,j

i maps the twist
expressed in Ψj to Ψi. As the wrench is a co-vector
it changes coordinates using the adjoint transpose as
(W i)> = Ad>

Hj
i

(W j)> .
• as(·): takes a square matrix and return its anti-

symmetric part.
• (̃·): defines the skew symmetric matrix of a vector.
• tr(·): defines the trace operator of a square matrix.
• ‖·‖F RO: defines the Frobenius norm of a matrix.
• In: defines the n × n identity matrix.

B. Robot dynamics
Consider the dynamics of a robot formulated in general-
ized joint coordinates as,

M(q)q̈ +C(q, q̇)q̇ + F (q, q̇) +
∂V (q)

∂q
= τu + τe (1)

where q ∈ Q are the generalized coordinates and Q is
the configuration manifold. M(q) is the inertia matrix,
C(q, q̇) contains the Coriolis and centrifugal terms and
∂V (q)

∂q represents the torques caused by gravity. F (q, q̇)
denotes all other torques induced by for example friction
or stiffness. τu are the actuator torques and τe are the
external torques.
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C. Cartesian impedance control on SE(3)
Cartesian impedance control is achieved by a virtual multi-
DoF spring between the end-effector frame and a second
virtual frame [16]. This is shown graphically in Fig. 1. Con-
sider a frame (Ψn) on the end effector. Its configuration
is given as the homogeneous transformation matrix,

H0
n =

(
R0

n p0,0
n

0 1

)
(2)

and represents a point on the configuration manifold
SE(3), i.e. H0

n ∈ SE(3). R0
n ∈ SO(3) and p0,0

n describe
the orientation and position of the frame expressed in the
inertial frame Ψ0. Consider a frame Ψv which denotes
a virtual frame corresponding to the configuration H0

v .
The homogeneous matrix between the virtual and the end-
effector frame is

Hv
n = Hv

0H
0
n =

(
H0

v

)−1
H0

n =
(

Rv
n pv,v

n

0 1

)
. (3)

The 6-dimensional spring K ∈ R6×6 connected between
the end-effector and the virtual frame can be split up into
the following components in matrix form,

K =
(

Ko Kc

K>
c Kt

)
(4)

where Ko ∈ R3×3 refers to the rotational spring, Kt ∈
R3×3 to the translational spring, Kc ∈ R3×3 to the
coupled spring (involving both rotational and translational
stiffness). The wrench exerted by the spring on the end
effector, W n

s =
[
τn

s fn
s

]> follows as [15, p. 168],

τ̃n
s = −2 as (GoR

v
n) − as (GnR

n
vp

v,v
n p̃v,v

n Rv
n)

− 2 as (Gcp̃
v
nR

v
n)

(5)

f̃n
s = −Rn

v as (Gnp̃
v
n)Rv

n − as (GnR
n
v p̃

v,v
n Rv

n)
− 2 as (GcR

v
n)

(6)

where Gγ with γ ∈ {c, o, t} denotes the co-stiffness:

Gγ = 1
2

tr(Kγ)I3 − Kγ . (7)

Damping can be injected in the robot as follows. For slowly
varying trajectories or when the virtual frame is at rest,
the damper can be connected between the inertial frame
and the end effector, as in Fig. 1. The wrench the damper
exerts on the end effector can be written as

W n
d = BT n,0

n (8)

where B ∈ R6×6 denotes the damping matrix and has
the same structure as the stiffness matrix in Eq. (4). The
resulting control law together with gravity compensation
is then written as

τc = J(q)>W 0 + Ĝ(q) . (9)

J(q) denotes the geometric Jacobian which columns are
the unit twists in inertial coordinates [15]. The wrench
from the Cartesian spring and damper on the end-effector
needs to be expressed in Ψ0:

(W 0)> = Ad>
Hn

0
(W n

s + W n
d )> . (10)

III. Control strategy

In this work we exploit the benefits of a time-varying
impedance. This section presents a control strategy com-
prising an open-loop control term optimised using time-
varying impedance, and a task-free Cartesian impedance
controller to account for model variations from the nomi-
nal plant. The control architecture is given in Fig. 2 and
will be explained in the following subsections. On top of
that, it presents how the energy tanks are used to recover
passivity of the controlled system in view of safety.



A. Control overview
As indicated in Section I, the impedance values will be
parametrized over time, independent on the configuration
of the robot. Since the resulting impedance varies only in
time (and not in space) it belongs to an open-loop control
action. It is not expedient to ’blindly’ vary the stiffness
in a feedback controller. On top of that, an open-loop
controller results in a faster response and does not face sta-
bility issues due to feedback delays. The task-based control
action will be calculated using time-varying impedance
values in the Cartesian impedance control framework. The
problem of finding the time-varying impedance values is
cast into an optimization problem utilizing the definition
of the task and a task-based objective, given the robot’s
dynamics and environment. Section III-B will go in detail
about this optimization. The optimization will not only
result in time-varying impedance profiles. The trajectory
of the end-effector is also (implicitly) part of the opti-
mization, it defines the optimal end-effector trajectory in
nominal conditions as a function of time, H0

n(t)∗. The
optimized torque profile will be labelled as ’task-based
(TB)’ control action since it depends on the definition of
a task. Everything else, which is unforeseen by the task
is labelled as ’task-free (TF)’. This task-free controller
is a feedback controller and will be implemented as a
separate Cartesian impedance controller. The control law
is then the combination from feed-forward (task-based)
and feedback (task-free):

τc(t, q, q̇) = τT B(t) + τT F (q, q̇) . (11)

The task-based control action supplemented with the task-
free impedance controller is depicted in Fig. 2. How the
task-based and task-free parts arise becomes clear in Sec-
tions III-B and III-C. The use of energy tanks to recover
passivity in view of safety will be explained in III-D.

B. Task-based optimization
The optimal impedance is found by minimizing a task-
based objective function. Humans are great examples of
varying their impedances for different complex tasks by co-
contraction of muscles [18]. Furthermore, humans follow
the same control strategy as presented in this work: they
learn optimizing their impedances on the basis of a task by
performing the task a great number of times and apply the
’learned’ impedance profiles in an open-loop fashion rather
than in a closed-loop fashion [18]. This is because the
human sensing mechanism faces delay of ≈ 100 ms which
is prone to stability issues using a high-gain feedback
controller [18]. In addition, humans make use of feedback
to account for unforeseen changes along the task which
is analogous to the task-free controller presented in this
work [3]. Following the exceptional performance of humans
we try to find optimal impedance based on a biomimetic
metric. [3], [7] suggests that the human central nervous
system (CNS) tries to minimize the energy spent on a

task while maintaining the performance. This biomimetic
choice of metric fits well within the tank-based paradigm
as it gives immediate information on how much energy
should be stored in the tanks, more on this is Section III-D.
We start from Eq. (9) as a control law to define the task-
based control action:

τT B = J(q)>W 0 + Ĝ(q) (12)

where the applied wrench, W 0 from the geometric spring
and damper depend on the values of K and B. The general
goal of the optimization is to find an optimal time-varying
K(t)∗ and B(t)∗ by minimizing a biomimetic cost,

K(t)∗,B(t)∗ = argmin
K(t),B(t)

Jp + Jm (13)

where Jm is an objective covering the energy spent to
perform the task, and Jp is a task-based performance
objective. The performance objective can be split up into
a running cost (Jr) (integrated over the time domain) and
a final cost (Jf ) term at time t = T :

Jp =
∫ T

0
Jr(t)dt + Jf (T ) . (14)

The formulation of the cost terms will be elaborated for
the case study in Section IV-D.

C. Task-free Cartesian impedance controller
The task-free torques are calculated in a similar way to
the task-based torques without gravity compensation:

τT F = J(q)>W 0
T F . (15)

It utilizes as set point, the optimized trajectory H0
n(t)∗ as

the virtual frame. The wrench from the task-free Cartesian
spring and damper in the inertial frame is written as

(W 0
T F )> = Ad>

Hn
0

(W n
sT F

+ W n
dT F

)> . (16)

W n
sT F

is the wrench on the end-effector due to the task-
free spring calculated using Eqs. (5) and (6) and KT F as
the spring constant. The wrench induced by the task-free
damper is written as,

W n
dT F

= BT FT
n,n∗

n (17)

where

T n,n∗

n = AdHn
0

(T 0,0
n − T 0,0

n∗ ) (18)

and where T 0,0
n∗ is the optimized end-effector twist:

T̃ 0,0
n∗ = Ḣ0

n∗Hn∗

0 . (19)



D. Passivity by energy tanks
It was shown in [19] that a non-passive system can become
unstable even when interacting with passive environments.
This is why passivity is important. A system is said to be
passive if there is a storage function V : X 7→ R+, where
X is the state manifold such that [20],∫ t1

t0

V̇(x) dt = V(x1) − V(x0) ≤
∫ t1

t0

y>u dt (20)

with state x, input u, output y and t ∈ [t0, t1]. When a
variable impedance is used, passivity will be destroyed by
the creation of additional power ports. Additionally, using
a moving virtual frame (hence, Ḣ0

v 6= 0) will also create
additional power ports which again destroys passivity,
analogous to an one DoF mass1. To recover passivity
in an elegant way, the concept of an energy-tank was
introduced for multi-DoF robots in [16]. The energy-tanks
are represented by physical storage elements connected
to each joint. This ensures that each actuator can use
a bounded amount of energy which guarantees passivity
fulfilling the inequality in Eq. (20). In this work, the tanks
are modelled as an inductance with inductance L = 1 H.
The energy stored in each tank j is given as Hj(pj) = 1

2 p2
j

where pj is the state of tank. Energy can be added to the
tanks by defining an initial state for pj or by the creation of
an energy source modelled as a voltage source with voltage
Uj . Each motor can drawn energy from its corresponding
tank by means of a modulated transformer. A schematic
diagram of the manipulator, connected to each tank driven
by the motors is depicted in Fig. 3. The motor inductance
is neglected so that each motor with torque output τj ,
consists of an electrical resistor with resistance Rj and
a gyrator with torque constant kt. The port-Hamiltonian
equations for each joint j, connected to a tank can be
written as[

ṗj

τj

]
=

[
−u2

jRj −ujkt

ujkt 0

] [
pj

q̇j

]
+

[
1
0

]
Uj . (21)

The second line in Eq. (21) allows to set a desired trans-
mission ratio as a function of the controlled torque:

uj =

{
τj

ktpj
if Hj(pj) ≥ ϵ

0 otherwise
. (22)

To ensure passivity, we choose to decouple all tanks from
their corresponding joint when energy in one of the tanks
is empty. When one of the tanks empties, a large amount of
damping is applied in the joint space which is by definition
a passive action:

τc = −B̄q̇ (23)
1An one DoF mass controlled with impedance control with external

force Fe and desired state x∗. The time derivative of the storage
function is defined as V̇ = ẋFe + k(t)x̃ẋ − b(t)ẋ2 + k(t)x̃ ˙̃x + 1

2 k̇(t)x̃2

where x̃ = (x∗ − x). ẋ∗ and k̇ create additional power ports which
may destroy passivity.
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Fig. 3: Schematic multi-DoF robot with tank-subsystems

where B̄ ∈ Rn×n is a diagonal damping matrix. Further-
more, we do not allow recharging of the tanks when power
flows back from the actuator to increase safety. This avoids
the robot gaining energy from colliding with objects. The
amount of energy to be stored in the tanks at t = 0 is
then the task-based energy plus some additional task-free
energy to cope with disturbances:

pj(0) = 2 ·
√

ET Bj + ET Fj (24)

Uj(t) = 0 (25)

where ET Bj
and ET Fj

are the energy content in tank
j allocated for the task-based and task-free part respec-
tively. This type of energy injection is referred to as static.
Instead of adding all the energy at t = 0 we can choose to
dynamically add in the task-based energy over time (as it
is known a priori from optimization of the nominal case).
This will increase safety as the overall energy content in
the tanks can be minimized which ensures that the task-
free controller can use less energy than when the energy
is stored in a static way. For the purpose of dynamic
injection we use the voltage source at the side of the tank
providing a bounded amount of task-based energy (ET Bj

)
over time. The amount of energy to be stored at t = 0 is
only the task-free energy:

pj(0) = 2 ·
√

ET Fj
(26)

Uj(t) =
PT Bj

(t)
pj

(27)

where PT Bj
is the task-based power usage corresponding

to joint j. This type of energy injection is referred to as
dynamic.



E. Iterative feed-forward adaptation
The task-free feedback compensation ensures that the
robot can achieve successful task-execution under model
variations. As mentioned earlier, a high-gain feedback
controller is prone to stability issues due to time delays in
the feedback mechanism. That is why we update the task-
based control action in a way such that it also accounts
for the model variations. Many (industrial-like) tasks are
carried out sequentially. When the task is completed
successfully, on the next iteration the task-based controller
can be updated in such away to adapt the open-loop con-
troller to model variations, and diminish feedback action.
The adaptation law for the task-based torques becomes,

τ i+1
T B = τ i

T B + τ i
T F (28)

where i ∈ Z is the i-th iteration. As will be shown
later, after a small number of iterations this ensures that
the end-effector will follow H0

n∗(t) using only open-loop
control under model variations. In addition to updating
the task-based torques, the amount of energy allocated
in the tanks for the task-free controller can be decreased
as the model-variation compensation is now enclosed in
the open-loop controller. Therefore, also the energy in the
tanks assigned to the task-based and task-free part can be
updated in the next iteration according to,

Ei+1
T F = Ei

task − Ei
T B + Eε (29)

Ei+1
T B = Ei

task (30)

where ET F and ET B are the total task-free and task-based
energy levels for all joints. Etask is the total amount of
energy to complete the task and Eε is just small amount
of energy which is always present to account for minor
disturbances. In this way, the tanks become energy-aware
as only the necessary amount of energy is stored in the
tanks for successful task execution under model variations
which increases safety while recovering passivity.

IV. Case study
In this section a case study is presented in which the
efficacy of the proposed control method will be tested. The
task considered in this paper is an insertion task, similar
to peg-in-hole. The peg-in-hole task is considered to be a
benchmark for industrial robotics.

A. Modelling

L1 L2 L3 L4 L5 m1 m2 m3 m4 m5
0.14 0.16 0.13 0.08 0.04 1.4 1.6 1.3 0.8 0.4

TABLE I: Lengths are in [m], masses are in [kg]. m5
includes both the weight for the peg and the fifth arm.
Dimensions and weights are based the KUKA youBot’s
arm.

A model of a 5-DoF robotic arm is used which corresponds
to the kinematic chain in Fig. 1. The lengths and the
masses for each arm are given in Table I. The nominal
dimensions for the peg, joint friction, ground stiffness and
assembly stiffness can found in Table II. Furthermore, we
set the maximum torque output for each motor to 50 Nm.
The robots dynamics are formulated in generalized joint
coordinates as in Eq. (1). The generalized configuration
variables are defined as

q =
[

q1 q2 q3 q4 q5
]>

. (31)
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Fig. 4: Contact modelling

Fig. 4 demonstrates the dimensions and geometry of the
peg and the hole. The peg has five points which can
make contact with the environment (4 corners and middle
point). They can exchange power with the environment
through interaction ports (see Fig. 2). Consider a frame Ψj

that denotes the frame aligned with the ground at the end-
effector (see Fig. 1). If the peg is in contact with a position
on the ground outside the hole (p0,0

g ) corresponding to Ψg,
then the ground will exert a translational force on the peg,

f j
e = Kgp

j,g
n (32)

where
pj,g

n = Rj
0

(
p0,0

n − p0,0
g

)
. (33)



In Eq. (32), Kg ∈ R3×3 is the stiffness matrix of the
ground. To simulate an insertion task, a linear spring is
modelled inside the hole. This ensures that the robot has
to exert a certain force in order to reach Ψv. This linear
force is calculated in the same way as in Eq. (32) using Ka.
The resulting external wrench acting on the manipulator
is composed as W j

e =
[
0 f j

e

]
. Then wrench is defined

in the inertial frame,

(W 0
e )> = Ad>

Hj
0
(W j

e )> (34)

To finally express the torques caused by the interaction,
the geometric Jacobian is used:

τe = J(q)⊤W 0
e . (35)

The remainder of this section will relate to the optimiza-
tion problem posed in Eq. (13) applied to this case study.

B. Cartesian damping
For linear systems the damper is commonly chosen such
that the closed loop system becomes critically damped.
For general multi-DoF manipulators with nonlinear dy-
namics this is not trivial. When q̇ and the gravitational
torques are either zero or cancelled, then the end-effector
acceleration can be written as,

Ṫ 0,0
n = Λ(L(q))−1W 0 (36)

where Λ(L(q))−1 is

Λ(L(q))−1 = J(q)M(q)−1J(q)> . (37)

L(q) : Q 7→ W is the forward kinematic map from the joint
space to the workspace. Λ(L(q))−1 is called the end-point
mobility tensor [21].It describes the acceleration response
of the end-effector when the system is at rest. Λ(L(q))−1

is not positive definite by nature, it scales with J(q). The
inverse of Λ(L(q))−1 exists if and only if Λ(L(q))−1 is non-
singular. Which is true for non-singular positions and for
non-underactuated robots [21]. [22] introduces an upper
bound inertia matrix Iu, which is diagonal (and hence
positive definite). If the inverse of Λ(L(q))−1 exists then,

1
2

(T 0,0
n )>IuT

0,0
n >

1
2

(T 0,0
n )>Λ(L(q))T 0,0

n (38)

which is based on the principle of Loewner ordering [22]
where Iu = m · I6, m ∈ R. m can always be chosen
such that the inequality in Eq. (38) holds. Eq. (38) can
be written differently to circumvent the need of taking the
inverse of Λ(L(q))−1. The right hand side of this equation
represents the kinetic energy and can also be written in
joint space [22],

1
2

(T 0,0
n )>IuT

0,0
n >

1
2
q̇>M(q)q̇{

∀q ∈ Q : rank(Λ(L(q))−1) = 6
}

.
(39)

Now m can be calculated without the need of taking any
inverse. If one replaces Λ(L(q)) with the diagonal Iu then
the acceleration response is written as,

Ṫ 0,0
n = I−1

u W 0 (40)

where W 0 is the wrench applied by the spring and damper
on the end effector expressed in inertial coordinates. Con-
sider K = diag(K0,Kt) and B = diag(B0,Bt) where
Bt = bt · I3, and Kt = kt · I3. The linear force from the
spring on the end effector can then be calculated using
Eq. (6) and express it in Ψ0 using the Ad() operator [22]:

f0 = Ktp
0,v
n . (41)

The equation of motion in (40) is now decoupled in the
translational directions. Using Iu as a ’worst-case’ inertia
allows to apply control techniques used for systems with
only one DoF. Setting a desired end-effector inertia would
require an inverse of the Jacobian or the desired inertia
matrix. The translational damper is chosen such that
the system becomes critically damped in translational
direction:

bt = 2
√

ktm . (42)

This choice of the translation damper leaves a straight-
forward implementation where the translational damper
scales with the inertia at the end-effector and the trans-
lational stiffness of the Cartesian spring without the need
of taking any inverse. For that reason, the same has been
applied to the rotational damper (bo = 2

√
kom). However,

as the geometric wrench is a coordinate free approach, the
term ’critically’ damped is not adequate.

C. Cartesian stiffness parameterization
The structure of the Cartesian spring is chosen to be
diagonal where the translational spring is split up into
planar (in XY direction ) and vertical (in Z direction)
components as,

K = diag(Ko,Kp, kv) (43)

where Ko = ko · I3 and Kp = kp · I2. The distinction
between the translational spring in planar and vertical
direction is made because the end-effector has to exert
a force in vertical direction within the hole (see Fig. 4).
The Cartesian spring will be modulated over time. Since
the optimization problem posed in Eq. (13) is of infinite-
dimensional nature (i.e. would require gradient descent in
a functional space to be solved), for a practical implemen-
tation we seek the solution in a finite dimensional space
defined by N parameters defining the stiffness curve as a
B-spline [23],

kγ(t) =
N∑

i=1
αγ,iBi(t) (44)



where γ ∈ {o, p, v}. Bi(t) are the basis functions and αγ,i

are the coefficients to be solved for with equal time spacing
between adjacent coefficients. This parametrization allows
for a discretized problem formulation while the final result
will be smooth in time.

D. Objective
The total objective function to be minimized consists of
several element. The optimization problem will be defined
as,

Θ∗ = argmin
Θ

Jt + Jm + Jc

s.t,
k+

γ ≥ kγ(Θγ , t) ≥ k−
γ ∀t, γ

(45)

where k−
γ , k+

γ denote the lower and upper stiffness bounds.
Jt comprises the task-based performance objective, Jm

defines the metabolic cost and Jc is an objective term to
maximize compliance. Θ ∈ Rm is the collection of B-spline
coefficients for each stiffness parametrization where

Θγ =
[

αγ,1 . . . αγ,N

]
. (46)

In the following each objective term will be dissected and
motivated where w1, w2, µ1, µ2, ∈ R and W3 ∈ Rm×m are
the weighing constants, used to scale the objective terms.
1) Performance: The main objective of assembly tasks is
to insert an object into a shape which is either a ’pass’ or a
’fail’. A virtual frame is placed within the hole (see Fig. 4),
if the end-effector configuration is close enough to this
point the task is being said to succeed. This performance
is formulated as a final cost at final time T ,

Jt = w1 ‖Hv
n(T )‖2

F RO (47)

where T = min(t) s.t. ‖Hv
n(t)‖F RO < ε, otherwise T

equals the simulation time. ε ∈ R+ is a properly chosen
threshold.
2) Metabolic cost: The metabolic cost is defined as the
energy spent to perform the task. The metabolic cost is
considered to be the power loss in the electrical resistance
plus the power output to the mechanical domain. The
power lost to the electrical resistance in motor j with
motor current ij is proportional to τj :

PR,j = i2
jRj =

τ2
j

k2
t

Rj ∝ τ2
j . (48)

The power transferred to the mechanical domain is

Pm,j = τj q̇j . (49)

The motors do not contain physical storage elements nor is
the motor driver assumed to be a four-quadrant capable
driver. Therefore in order to express the metabolic cost
only the positive powers are assumed as this is the power
spent to accomplish the task. The metabolic cost is then

minΘ J
∫ T

0 ẋdt

Θ∗

J

Θ0

x0

Θ∗
x∗

Fig. 5: Schematic algorithm to solve problem posed in
equation (45) .

formulated as the sum of metabolic costs: for each motor
as,

Em =
n∑

j=1

∫ T

0
(PR,j + Pm,j)+dt (50)

where (·)+ denotes only the positive part of the input ar-
gument. The corresponding objective denotes the weighted
metabolic cost:

Jm = w2

n∑
j=1

∫ T

0
(µ1PR,j + µ2Pm,j)+dt . (51)

3) Interaction energy: Conventionally, peg-in-hole appli-
cations consider to minimize the interaction forces [11],
[13]. Instead, we choose to minimize the energy transfer
as it has more physical meaning than minimizing the
interaction forces as a signal. The interaction energy is
formulated as the integral over the absolute interaction
power at the interaction port (see Fig. 2),

Ee =
∫ T

0
|(W 0

e )>T 0,0
e |dt (52)

where W 0
e and T 0,0

e are the effort and flow at the interac-
tion port. Minimizing the interaction energy is equivalent
to minimizing the impedance or minimizing the interac-
tion velocity in the frequency domain [12]. The objective
for this part will be based on minimizing the impedance
as it is a direct optimization variable

Jc = ‖Θ‖2
W3

= Θ>W3Θ . (53)

E. Algorithm
The optimization problem in equation (45) is solved using
MATLAB 2020a. fmincon with the 'interior-point'
algorithm will be used as the problem is posed as a
constrained and non-linear minimization problem. The
dynamics are solved using the ode15s solver. In every
objective evaluation the dynamics are simulated which en-
sures that dynamics and minimization problem are solved
sequentially, as shown in Fig. 5. The state-space equations
for the system can be written in general form using Eq. (1)
as,

ẋ = f(x, t, τc(Θ)) (54)

where x =
[

q
q̇

]
. τc denotes the control law in Eq. (11).

The main advantage of this implementation is that the



problem enters as a continuous time problem and time
discretization is done by the ode solver itself. In this
case, the ode solver will use a variable time step which
is useful especially because when interaction takes place,
a smaller time step is used compared to when the robot
moves in free space. In addition, when the peg is inserted
(‖Hv

n(T )‖F RO < ε) the ode solver is stopped, which
defines the completion time T in Eqs. (47) and (51).
This allows the optimization to make a trade-off between
completion time and energetic cost.
The task is split up into two subtasks. The first subtask is
the carrying task which causes the robot to hang above the
hole. It is defined by a static virtual frame corresponding
to the configuration H0

vc
. The robot successfully reaches

this frame at time tc = min(t) s.t. ‖Hvc
n (t)‖F RO < εc.

Afterwards, the virtual point is moved to a location within
the hole corresponding to H0

vi
(see Fig. 4), this is referred

to as the insertion task. To summarize,

H0
v =

{
H0

vc
for carrying subtask

H0
vi

for insertion subtask
. (55)

Both subtasks are solved separately. The final state and
stiffness endpoints (and its derivatives) of the carrying
subtask are then provided as constraint to the insertion
subtask optimization. This ensures the combined result
remains a smooth function of time.

V. Results
To obtain the results we use the following configurations
for the virtual frame:

H0
vc

=


−1 0 0 0.2
0 1 0 0.16
0 0 −1 0
0 0 0 1

 (56)

with εc = 0.01 and

H0
vi

=


−1 0 0 0.2
0 1 0 0.16
0 0 −1 −0.05
0 0 0 1

 (57)

with ε = 0.008. The motor constant and resistance in each
motor are set to kt = 1 Nm/A and R = 1 Ω.

A. Optimization in nominal conditions
Fig. 6c displays the resulting stiffness curves from the
optimization. For the carrying phase we use: w1 = 108,
w2 = 1, W3 = (5 · 10−3) · I12. For the insertion phase we
use: w1 = 105, w2 = 10−1, W3 = (5 · 10−3) · I12. The
weights are chosen such that the metabolic cost objective
is dominant in the carrying subtask and the task related
objective is dominant in the insertion subtask. For both
subtasks holds µ1 = µ2 = 1. The initial state, x0 in the
carrying task are set to: q0 =

[
0 0 0 π/2 1

]> and
q̇0 = 0. Figs. 6a and 6b show the objective evaluations for
each subtask. The variable impedance result is compared

to a fixed (stiffness) impedance. Figs. 6e and 6f show a
comparison on the basis of the interaction energy and
metabolic. The gains for the fixed impedance are chosen to
be optimal on the basis of the same metric if only a fixed
impedance is used (i.e solving the optimization for a fixed
stiffness, Kfixed. We only make a distinction between the
rotational and translational component. This resulted in
Kfixed = diag(600 · I3, 8000 · I3).
The results are clearly interpretable:

1) Metabolic cost: within the carrying subtask, the
stiffness curves are mainly optimized on metabolic
cost, see Fig. 6a. As the difference between the
virtual frame and the end-effector configuration is
largest at time zero, excessive wrenches on the ma-
nipulator can be reduced by being more compliant at
that time. This will have the effect of reducing the
metabolic cost. Compared to the fixed impedance,
higher compliance of the time-varying impedance
in the early part of the task substantially reduces
metabolic cost.

2) Compliance: in the positioning phase, vertical trans-
lational stiffness kv will increase until 8000 N/m
which is the expected stiffness to exert the necessary
vertical force to accomplish the task2. This also
explains the major decrease in final cost in Fig. 6b as
the initial kv is not stiff enough. Rotational stiffness
k0 and planar translational stiffness, kp become more
compliant in the insertion phase as the robot only
needs to move in vertical direction. This provides a
reduction in the impedance cost term Jc.

3) Interaction energy: the fixed impedance exchanges
more energy with the environment than the variable
impedance. This is because the fixed impedance
shows some overshoot, leading to contact with the
side of the peg hole. This becomes evident looking
at the energetic exchange in Fig. 6e. The variable
impedance will only interact with the vertical spring
inside the hole itself.

B. Robust performance under parameter variation
As introduced in Section III, the task-free feedback con-
troller serves to reject unmodelled disturbances arising
from system variations and external disturbances. Let
the the nominal parameter set be denoted by ρ̂. The
’real’ parameter set ρ is defined according to a normal
distribution,

ρ ∼ N (ρ̂,Σ) (58)

where Σ is a diagonal variance matrix containing the
standard deviation for each parameter. The parameters
which are considered to vary are the viscous friction in
the joints bj , ground stiffness Kg, the stiffness within the

2The robot has to exert 63 N in vertical direction to perform
a successful task exception. Using ε as the minimal distance, the
required stiffness in vertical direction is then 63/ε = 7875 N/m.
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Fig. 6: Optimization results.

bj Kg Ka wh wp[
Nms
rad

] [
N
m

] [
N
m

]
[mm] [mm]

µ 1 diag(103, 103, 106) diag(0, 0, 300) 50 40
σ 0.15 diag(102, 102, 103) diag(0, 0, 15) 5 5

TABLE II: Parameters in ρ. To ensure the possibility of
successful task execution, wh − wp is at least 10 mm.

hole Ka , the width of the hole wh, and the width of
the peg wp. These are all parameters which are likely
to vary in an industrial setting. The parameters with
their corresponding mean µ and standard deviation σ are
given in Table II. Fig. 7 demonstrates the efficacy of the
task-free controller. It can be seen that the open-loop
controller achieves successful task execution in nominal
conditions (Σ = 0), corresponding to the blue dots in
Fig. 7. However, task-free compensation is needed when
the real dynamics starts to deviate from the nominal
model (Σ 6= 0).
To assess robust performance, we run 100 experiments
each with 200 simulations implementing the control law
Eq. (11). In each simulation ρ is sampled from its distri-
bution. Over the 100 experiments, we vary the task-free
controller gains kT F ∈ [1, 8000] N/m according to

KT F = kT F · I6

BT F = 0.1 · kT F · I6 .
(59)

We investigate the relation between the success rate, the

gains of the task-free controller and the amount of energy
which should be added to. The total task-free energy to be
stored on top of the nominal (task-based) energy is given
as

ET F = Etask − ET B (60)

where Etask denotes the total amount of energy to per-
form the task. ET B denotes the total task based energy
calculated using Eq. (50). Fig. 8 shows that when the
task-free gains increase, the success rate increases as well.
This relation flattens around kT F ≈ 2000 N/m to a 100%
success rate over 200 simulations. Fig. 8b displays the task-
free energy (calculated using Eq. (60)) to reach successful
insertion. The red positive outer edge of Fig. 8b shows
that an increase in success rate requires more task-free
energy to complete the task successfully. When the success
rate reach 100% then the task-free energy flattens as well.
on average, the task-free energy fluctuates around zero.
Fig. 8b also displays negative values which indicates that
less energy is spent on the task than optimized in the
nominal case.

C. Energy tanks, passivity and safety
For the remainder of this paper we use task-free controller
gains according to Eq. (59) with kT F = 4000 N/m. We
use Fig. 8b to store a proper amount of task-free energy
in every tank.
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Fig. 7: End-effector trajectories

For both static and dynamic energy injections we show
simulation results for the case when Σ = 0 and Σ 6= 0
in Fig. 9. Furthermore, a case in which the robots collides
with a damper causing the tanks to empty before task
completion is given in Fig. 10. In that case we look at
amount of interaction energy transformed from the kinetic
energy of the robot for both static and dynamic input
strategies.
Some key observations are made:

1) Figs. 9f to 9j show that the task-free controller will
use some of the task-free energy in the tanks when
Σ 6= 0. When Σ = 0, the control will only use task-
based energy, as is evident from Figs. 9a to 9e.

2) Comparing the static and dynamic energy injection
strategies it is clear that the energy content at t = 0
is smaller for the dynamic energy injection than for
the static one.

3) Looking at Figs. 9f to 9j, some of the energy levels
increase for t < 0.1 s. This means that the energy
used is less than the energy drawn from the tanks.
This happens as the torques provided by the task-
free controller act in opposite direction to the task-
based ones.

4) Looking at the collision case in Fig. 10. When
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(a) Success rates as a function of the task-free gains.
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(b) Total task-free energy as a function of the task-free
gains. For each gain, 200 simulations are performed. The
red shaded area represents the outer bounds of the distri-
bution. The blue shaded area shows where 50% of the data
is distributed.

Fig. 8: Effect of task-free control gains on success rate and
task-free energy

the tanks empty, damping is injected in the joint
space according to Eq. (23). As can be seen from
Fig. 10, when collision takes place, a part of the
kinetic energy (Ek) in being transformed to the
exchanged energy. As the applied damping is suf-
ficiently large(B̄ = 50 · I5) the robot will retain its
configuration after the tanks are empty. In addition,
the robot exchanges no power with the environment
when when kinetic energy goes to zero. Furthermore,
it is evident that the tanks with the dynamic input
strategy turn off almost immediately after collision.
As the energy content for the static input strategy
is higher, the tanks take longer to empty resulting in
a higher exchanged energy. That is why in terms of
safety, the dynamic input strategy has the advantage
over the static input type.

D. Iterative feed-forward adaptation
In this section we investigate the efficacy of the pro-
posed iterative feedforward scheme posed in Section III-E.
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Fig. 9: Energy levels in the tanks for both dynamic and static input types. Figs (a) to (e) represent the nominal case
when Σ = 0. Figs. (f) to (j) represent the case when Σ 6= 0 for 100 different ρ. The outer bounds of the shaded areas
represent the minimum and maximum. The solid lines represent the mean values of all samples. The horizontal dashed
line represents the amount of energy stored for the task-free controller.
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Fig. 10: Robot collides with Cartesian damper with Be =
2 · I6 at t = 0.02 s. Stat. and dyn. are short notations for
static and dynamic energy input types.
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Fig. 11: Iterative results for the energy in the tanks and
the interaction energy. Shaded areas indicate the bounds
of 100 simulations. The solid lines represent mean values.
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Fig. 12: Iterative feed-forward adaptation for both static
and dynamic energy injection, for a single sample of ρ.
Etanks denotes the energy content in all tanks over time.

Fig. 12 shows results for 7 iterations for 100 simulations
where ρ is sampled according to Eq. (58) with Σ 6= 0 in
each simulation. Fig. 11a shows the energy stored in the
tanks for every iteration. Noticeable is that the energy
allocated to the task-free controller goes to a minimum
after 4-5 iterations. The mean of the task-based energy
remains relatively constant causing the total amount of
energy in the tanks to go to zero. The iterative process for
one simulation with a sampled ρ is given in Fig. 12a. It
shows the total amount of energy in the tanks (containing
both task-free energy and task-based energy) using the
static energy injection explained in Section V-C. As a
final result we also study the dynamic energy injection3

given for one simulation in Fig. 12b. For both static and
dynamic energy injection types we see that the energy
consumption will be more and more task based after each
iteration. Especially for the dynamic energy injection in
Fig. 12b this is noticeable due to the ’flat’ energy levels

3Adding the task-based energy dynamically as described in Sec-
tion III-D. To avoid practical issues, if the output of Eq. (29) becomes
negative then Ei+1

T F = Eε (if the dynamic energy injection is applied).

after ≈ 2 iterations. The result is a task-based open-
loop control action with minimal feedback compensation
for model variations. Combining the iterative adaptation
of both task-based control action and the energy tanks
with the dynamic energy injection results in a very safe
controller. This is because the energy content in the tanks
is brought to a minimum, causing the tanks to decouple
and switch on heavy damping the joint space almost
immediately in case of an unexpected event (like the
collision in Fig. 10). Furthermore, the fact that the control
is now almost completely open-loop removes dangers of
feedback destabilization.

VI. Conclusion
In this work, a control strategy is proposed based on
time-varying impedance control. The task-based open-
loop controller is optimized to a biomimetic metric and
was shown to be beneficial over a fixed impedance based on
the same metric. To account for model variations from the
nominal plant, the task-based controller was supplemented
with a task-free Cartesian impedance controller. The gains
of this task-free controller were chosen on the basis of
the amount of uncertainty, percentage of successful task
executions and energetic cost. The information on the
energetic cost was used to store the necessary amount of
energy in the tanks to recover passivity and achieve suc-
cessful task execution under model variations. A dynamic
energy injection strategy to the tanks was proposed in
Section V. This type of energy injection was compared
to the more conventional static input type. The dynamic
energy injection resulted in lower energy levels in the tanks
(especially at t = 0). This is considered to be safer due to
the fact that the task-free controller is able to use less
energy compared to the static input type. As final result,
the controller was supplemented with an iterative feed-
forward adaptation law for repeated task execution.
In addition, the energy in the tanks was updated to store
less task-free energy in every iteration. This adaptation
resulted in an open-loop controller with which is task-
based, energy aware and accounts for model variations
with minimal feedback.
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Chapter 4

Reflection

This chapter reflects on the overall work. It concludes about the chosen control strategy and the
results on the basis of the research questions. Conclusions are made specifically for the proof of
concept in Section 2.5 and specifically for the multi DoF case in Section VI in the paper. In addition,
we look at possible improvements and future work and reflect on the contribution of this work. A
few points of discussion are made in the last section in this chapter.

4.1 Conclusion
Research questions

Six research questions were posed in Section 1.3.2. To tackle these questions, two cases were pre­
sented. Chapter 2 introduced a proof of concept in which the main ideas of the thesis were exploited
on a 1­DoF mass subjected to a nonlinear friction profile. The ideas from the proof of concept were
studied on a multi DoF situation which concerned a Cartesian peg­in­hole task. In the following, we
will reflect on the individual research questions in light of the the results and the overall approach:

1. How does the desired time­varying impedance relates to a control architecture comprising
feed­forward and feedback?
Both cases (proof of concept and multi DoF case) comprised the proposition of a control
strategy based on time­varying impedance control. The time­varying impedance resulted
in torque profiles which were applied in an open­loop way labelled as task­based control
action. Everything else, which was unforeseen by the task was labelled as ’task­free’ and
was implemented as a feedback controller.

2. What is the desired time­varying impedance for a peg­in­hole task in a (semi)­structured en­
vironment based on the task definition and a task­based metric?
To find the variable impedance, a constraint optimization problemwas set­upwhich depended
on the definition of the task and a task­based metric using the knowledge of the dynam­
ics of the robot and environment. In the optimization, the impedance values (characterized
by a spring), were optimized using finite dimensional parametrization with splines. In ev­
ery objective evaluation the dynamics were simulated which ensured that the dynamics and
minimization problem were solved sequentially. This allowed that the problem entered as
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continuous time problem as time discretization was done by the ode solver itself.
The objective functions used in the optimization showed to be non convex meaning that there
are multiple local minima. That is why the choice of the weights of the objective function as
well as the initial guess for spline parameters heavily influenced the final result. In an attempt
in making the system ’critically­damped’, a diagonal upper bound inertia matrix was defined
in the multi DoF case. It left a straightforward implementation which was only valid in non­
singular configurations for non­underactuated robots. The resulting damper scaled only with
the stiffness and mass and the end­effector. Because of this choice, the damper could be left
behind in the optimization which reduced the solution space in the optimization.
For both the proof of concept and the multi DoF case, the chosen objective was based on
a biomimetic metric in an attempt to copy the exceptional performance of humans as deci­
sion makers for varying their impedance on the basis of a task (refer to Section 1.2.4). This
metric was formulated into a mathematical objective of scalar type which made the trade­off
between performance and metabolic cost.
For the proof of concept, the optimal stiffness used the friction to de­accelerate by becoming
compliant resulting in lower metabolic cost. For the multi DoF case, the task was split up
into a carrying subtask and insertion subtask. In the carrying subtask, minimization in terms
of metabolic cost was obtained by becoming compliant. In the insertion subtask only the
vertical stiffness needed to be increased which caused the planar and rotational stiffness to
become compliant.

3. What can you say about the robustness of the optimized impedance profiles under model vari­
ations?
For the multi DoF situation we investigated the robustness of the optimized impedance pro­
files under model variations. It was shown that task­free feedback compensation was needed
to perform successful task execution when the parameters in the robot dynamics and envi­
ronment started to vary. The gains of this task­free controller were chosen on the basis of
the amount of uncertainty, percentage of successful task executions and energetic cost. The
information on the energetic cost was used to store the necessary amount of energy in the
tanks to recover passivity and achieve successful task execution under model variations.

4. How to utilize the energy tanks in view of passivity and safety?
To ensure passivity of the controlled system, the energy tank concept was used. The informa­
tion on the energetic cost was utilized to store the necessary amount of energy in the tanks to
recover passivity and achieve successful task execution under model variations. In contrast
to storing all the energy in the tanks at t = 0 (referred to as static input strategy), the informa­
tion on the task­based energy consumption provided a way to dynamically store the energy
in the tanks. This dynamic energy injection strategy was safer than the static input strategy
as the overall energy content in the tanks was lower (especially at t = 0). Because of this
lower energy content, the controller was decoupled earlier than for the static input strategy.
In the multi DoF case, when one of the tanks emptied, the system was turned into a heavily
damped system which is by definition a passive action.

5. Can the results from the optimization somehow be improved with the aid of data?
In a final stage in the multi DoF situation, the task­based control action was updated to such a
degree that it was able to adapt for model variations. This data­driven adaptation law resulted
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in an open­loop control actionwhichwas task­based and energy­aware due to the optimization
while accounting for model variations with minimal feedback. Since the feedback action was
diminished and the control became more and more task­based, the energy in the tanks was
updated accordingly. This had the effect that also the energy tank systems became more task­
based. Combined with the dynamic input strategy resulted in extremely low energy contents
in the tanks which increased safety (reasoned in 4.).

6. How do the fixed impedance, task­driven impedance and data­driven impedance compare?
For both the proof of concept aswell as themulti DoF case, the optimal time­varying impedance
showed to be beneficial over an optimal fixed impedance on the basis of the chosen metric
in nominal conditions. For the proof of concept, the variable impedance resulted in a better
trade­off betweenmetabolic cost and position error compared to an array of fixed impedances.
For the multi DoF situation, the variable impedance resulted in lower exchanged energy with
the environment and lower metabolic cost. The task­based control action and corresponding
energy allocation in the tanks were updated using a data­driven protocol (refer to 5.). This
result was a lot safer (reasoned in 4.) due to limited energy in the tanks compared to the
conventional use of the tanks where all the energy is stored initially. In addition, comparing
the results from the data­driven adaptation law at iteration 0 (which is just the result from the
optimization) to the control action in iteration 6, it was shown that the data­driven approach
after 6 iterations resulted in lower exchanged energy with the environment and completed the
task with minimal feedback. In terms of speed and stability, performing the task using only
open­loop control results in a faster response and is less prone to stability issues compared to
a high­gain feedback controller.

Future work

Three recommendations regarding future work are made:

1. In this work, we used the Cartesian impedance control framework and optimized the geo­
metric spring in time. The expression for the wrench exerted on the end­effector induced by
the geometrical spring used to define the impedance law is distilled from the cubic potential
the (linear) Cartesian spring defines. However, as the Cartesian spring is virtual, one is not
restricted to the cubic form of the potential. Therefore, as a future recommendation it is ad­
vised to optimize the potential directly in the robot’s configuration space. This will directly
result in a feedback controller and it also known as potential energy shaping [26]. A major
challenge is to define a new expression for the wrench exerted on the end­effector induced by
the potential. Furthermore, optimizing the potential directly on a functional space requires a
new type of optimization than what was used in this thesis. A possible solution may lie in
the use of neural networks. They are commonly known as ’universal function approximates’
and might provide a better solution than discretizing the problem using splines.

2. A second recommendation concerns the embedding of ’sensing’ in the impedance choice. To
clarify, an example can be given following the human analogy: if a human has to perform a
task in the dark (when there is no vision), the human will be compliant to ensure he will not
damage anything. This can be cast into an optimization framework to choose the impedance
not only task­based but also on the basis of the amount of knowledge or structuredness of
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the environment. This can be similar to a Kalman­filter1 only then applied to impedance and
interaction.

3. A final recommendation concerns safety . In this work, safety was increased by minimizing
the energy content in the tanks to perform successful task execution. However, safety has
not been assessed in terms maximum power or energy transfer. Therefore, to make a human­
friendly extension to the control strategy, safety regarding exchanged power and energy can
be embedded in the optimization. Commonly used criteria used in the automotive industry are
the Head Impact Power [32] and the Head Injury Criteria [33]. These concepts have already
been used as a safety layer utilizing modulated impedance in [7] and can might be utilized to
make the human­friendly extension to this work.

Contribution

This work contains three contributions, already listed in Section 1.4 and are being looked at here
from a more conclusive point of view:

1. The first contribution relates to the presentation of the control strategy where a distinction
has been made between from what is task­based and what is task­free. The control strategy
provides an overall framework to implement a task­based time­varying impedance controller
and how to deal with model variations. One of the major differences with the existing litera­
ture is that the time­varying impedance is optimized a priori according to a task and that the
resulting torques from the impedance framework enter as an open­loop control action rather
than a closed­loop controller. The main advantage of performing open­loop control instead
of high­gain feedback control is that it has a faster dynamic response and it less prone to
stability issues due to time delays. The methodology has been applied to a single mass and
a 5­DoF robot. However, the same approach and thinking process in defining a task­based
impedance can be applied to other robots in (semi­)structured environments as well.

2. The second contribution relates to the use of energy tanks. Energy tanks were initially in­
troduced to recover passivity. The result from the optimization was used to store the energy
tanks only with the necessary amount of energy to complete the task successfully. On top
of that, a dynamic energy injection was proposed which provided the necessary amount of
energy over time resulting in lower energy contents in the tanks. A lower energy content in­
creases safety since the controller will decouple sooner after which a large amount of damping
in the joints was applied (resulting in lower exchanged energy in case of collision).

3. A final contribution relates to the iterative feed­forward law. The iterative adaptation of the
controller and the corresponding energy allocation for the tanks resulted in successful task
execution by using open­loop control with minimal feedback. As the information of the
model uncertainties were enclosed in the task­based control action, the energy content in the
tanks could be minimized as well resulting in an even safer task execution.

1Used in signal processing and data­fitting. The Kalman gain matrix describes a trade­off between the measurement
and the state estimate.
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4.2 Discussion
Two points of discussion are made:

1. The optimization problems posed in this work were solved using MATLAB 2020a using
fmincon with the interior-point algorithm. However, the project scope was not focused
on optimization alone. Therefore, the quality of the optimization has not been assessed. In
addition, no account has been taken on how the optimization problems were posed with re­
gard to convergence. Including the state­variables in the optimization as solution variables
(and providing the dynamics as a constraint) might increase convergence as it increases the
overall flexibility of the problem. Solving the problem with direct collocation in a symbolic
framework like CasADi which implements algorithmic differentiation to calculate the gradi­
ent and IPOPT as a large scale solver, might increase converge of the problem as well [34].
However, the main problem with optimizing interactions is that the dynamics often switch
(robot can move in free space and robot interacts). Switching dynamics results in nonlinear­
ities in the objective which makes it difficult to get a proper convergence as the objective is
not continuously differentiable.

2. A second point of discussion relates to the proposition of the dynamic input strategy for the
energy tanks. The strategy was presented as a safety extension of the energy tanks. However,
as the dynamic input strategy requires a power source at the side of the tank, the system
might not be theoretically passive any more. Obviously, everything can be made passive
with an energy so introducing another tank which provides the dynamic input might resolve
this issue. However, the main point of discussion here is that starting from ’passivity as
must’ does not guarantee safety. Increasing safety resulted in destruction of the passivity
criterion. If one wants to recover passivity again, safety might be decreased due to higher
energy contents. This results in a circular reasoning which induces the question whether
starting from ’passivity as must’ needs to be relaxed.
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Appendix A

Bond graphs

This chapter will explain the fundamentals of bond graphs. However, for a more complete guide,
please refer to [35].

A.1 Bonds and power ports
The fundamentals on bond graphs rely on connecting standard elements through ’bonds’. Each bond
represents a power exchange and is connected between ’power ports’. The direction of the bond
represent in which way the power flow is positively defined. An example is given in the following
figure where there is one bond connected between two power ports.

A B
e

f

Figure A.1: System with two elements, A and B. Positive power flow is in the direction of B. This
means that if the power is positive, power flows from A to B. A and B both have 1 power port.
As A and B are connected, they form a new system call it C. The vertical bar indicates that A has
effort­out causality.

Talking about ’power’ is useful because it does not belong to one domain specifically. It means
that different physical domains (like mechanical, electrical, hydraulic etc.) can be connected on the
basis of a power exchange. A simple example can be to model a mechanical system driven by an
electrical motor. Moreover, the idea of power can be extended to a set of basic elements from which
more complex systems can be modelled. More on this in the next section.
In it’s most general form, power is a duality pairing between ’effort’ and ’flow’. They are mathe­
matical members of dual vector spaces. Effort and flow take different physical aspects dependent
on the domain. In the mechanical domain for example, they represent ’force’ and ’velocity’ whereas
in the electrical domain they represent ’voltage’ and ’current’. For all domains hold that the duality
between effort and flow equals the power:

P = e⊤f . (A.1)
Regarding the modelling language, it is necessary to understand in which direction effort and flow
are positively defined. For a mechanical mass for example, one wants to know in which direction
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the force is exerted independent on the direction of the power. This is solved with a vertical bar
notation on the bond. An example is again given in figure A.1. The vertical bar denotes that the
effort is positively defined in the direction to system B. More formally, A has ’effort­out causality’.

A.2 Standard elements
As being said in the latter section, there is an analogy on the basis of power between physical
systems with different domains. This idea is extended to a list of standard elements from which
more complex systems can be modelled. This list of basic elements results from different ’types’
or ’groups’ of elements. These types together with the corresponding element(s) are elaborated in
the following. For each element the corresponding ’constitutive­relation’ is given. This relation
tells how the element outputs an effort or flow based on the input. In addition, for each element a
corresponding mechanical and electrical example is given.

Storage elements

Storage elements can store potential energy or kinetic energy. Potential energy is stored in C­
type elements . Kinetic energy is stored I­type elements. The following figure represent the
bond graph representation of these elements. Notice the causality for each element, this is their
’preferred/integral’­causality. Differential causality is not desired as it requires future information.

C
C

e

f

(a) Effort out causality, e = e0 +
1
C

∫
fdt

mechanical: spring, electrical: capacitor

I
I

e

f

(b) Effort in causality, f = f0 +
1
I

∫
edt

mechanical: inertia, electrical: self inductance

Figure A.2: Storage elements

Dissipative elements

Dissipative elements turn energy into thermal energy. They do not have a prefered causaility as
they cannot store energy. The bond graph representation is given below.

R
R

e

f

Figure A.3: e = Rf
mechanical: damper, electrical: resistor

Two port elements

Two ports elements have two power ports. They are mostly used to transform the energy from one
domain to another. Therefore they have two power ports, one for each domain. Most regularly
used two port elements are the transformer and gyrator (there are more two­port elements, but they
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will not be elaborated here). The TF­element transforms flow to flow and effort to effort whereas
a GY­element transforms flow to effort and effort to flow.

TF
n

e1

f1

e2

f2

(a) e2 = ne1, f1 = nf2
mechanical: gear box, electrical: electrical trans­
former

GY
r

e1

f1

e2

f2

(b) e2 = rf1 , f2 = re1
mechanical: gyroscope, electrical: electrical gyrator

Figure A.4: Two port elements

Power supply elements

Power supply elements are able to supply energy to the system. There are two possibilities. Either
with a Se­element which sets an effort. Or by setting a flow with a Sf­element.

Se
ein

ein

f

(a) e = ein
mechanical: force, electrical: voltage

Sf
fin

e

fin

(b) f = fin
mechanical: velocity, electrical: current

Figure A.5: Power supply elements

Junctions

Junctions are able to distribute energy over other elements. There are two types. The 1­junction
shares the flow between connecting bonds. Due to power continuity, the effort is than distributed
over the bonds. Power continuity is that the incoming power equals outgoing power, in the following
junction examples hold:

P1 = P2 + P3 . (A.2)

0
e1

f1

e2

f2

e 3 f 3

(a) e1 = e2 = e3, f1 = f1 + f3

1
e1

f1

e2

f2

e 3 f 3

(b) f1 = f2 = f3, e1 = e2 + e3

Figure A.6: Junctions
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Example: Bongraph modelling of second order systems

The equation of motion for a standard mass­spring­damper system can be written as,

mẍ+ bẋ+ kx = Fin (A.3)

wherem is themass, b the damper coefficient and k the stiffness of the spring. x is the position
of the mass and Fin represents all forces acting on this mass. Now consider the equation of
motion for a standard RLC­circuit with resistance Re, self inductance L and capacitance Ce.
Also consider an input voltage Uin and electrical charge q. The equation of motion can be
written as

Lq̈ +Req̇ +
1

Ce

q = Uin . (A.4)

The similarity between equation A.3 and A.4 is obvious. Both are second order differential
equations but are written in different physical domains. Using bond graphs, both equations
can be represented by the same model.
The bond graph model for representing A.3 and/or A.4 is given in figure A.7. Each bond
represents a power flow according to equation A.1. What can be seen is that all elements
are connected to a 1­junction. This is because all elements share the same flow which the
junction represents.

1
q̇ or ẋ

C Ce or 1
k

SeUin or Fin R Re or b

I L orm

Figure A.7: Bond graph representation of equation A.4 and/or A.3
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Appendix B

Screw theory

B.1 Twists and wrenches
Screw theory is based on the Lie algebra of rigid body motion in SE(3) [8]. [8] is used as the main
reference in this chapter. The Lie algebra is the space tangent to the identity of a Lie group SE(3).
The lie algebra carries interesting mathematical properties which can be used to model multi­body
systems, like robots.
First consider the configuration of a body i with respect to a body j like in Fig. B.1 where Ψi

denotes the Cartesian frame i. The configuration is a combination of an orientation and a position.
The orientation is indicated by Rj

i ∈ SO(3) which is the rotation matrix from body i with respect
to body j. The position is indicated by pj,j

i ∈ R3 which is the position from body i with respect to
body j expressed in Ψj .

Ψi Ψj

Hj
i

Figure B.1: Two bodies i and j together with their body­fixed frames.

The configuration matrix,Hj
i is written as

Hj
i =

(
Rj

i pj,j
i

0 1

)
. (B.1)

The configuration matrix is a continuous and smooth group in SE(3). This also means that it is
continously differentiable in time. The right sided and left sided transformation are members of
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se(3) written respectively as

T̃ j,j
i = Ḣj

iH
i
j (B.2)

T̃ i,j
i = H i

jḢ
j
i (B.3)

where T i,j
i is also known as the twist of body i with respect to body j expressed in Ψi. The conve­

nience comes with the fact that the members of se(3) are always written in a standard form,

T̃ j,j
i =

(
ω̃j,j

i vj,j
i

0 0

)
(B.4)

where ω̃j,j
i ∈ so(3) and vj,j

i ∈ R3. The (̃•) operator is described in appendix D.2. The twist itself
can now be written as,

T j,j
i =

[
ωj,j

i vj,j
i

]
(B.5)

The twist is a generalized velocity that means that ωj,j
i represents the rotational velocity and vj,j

i

represents the velocity of an imaginary point passing through the origin of Ψj [8]. Together then
can be visualized like a screw. The dual of twists are known as wrenches. In this work, only the
wrench on the end­effector is of interest. Therefore, we only write the frame in which the wrench
is expressed. Therefore, consider a wrench expressed in Ψj to be written asW j . As they are dual
of members in se(3), wrenches are members of se∗(3) and written as,

(W j)⊤ =
[
τ j,f j

]⊤
. (B.6)

where τ j ∈ R3 is the rotational force (or torques) on body j and f j ∈ R3 is the linear force on body
j. The usefulness of using screw theory in terms of modelling becomes clear in the next section.

B.2 Rigid body modelling
In this work a model of a 5­DoF robotic arm is made. In order to this, screw theory and bond graphs
can be used as a modelling language. Furthermore, one can also write the Euler Lagrange equations
directly without the use of bond graphs. Both methods will be explained in this section.

B.2.1 Multi body dynamics bond graphs
For modelling rigid bodies using screw theory and bond graphs, we use the theory used for UAV
modelling and control described in [36]. Assume an inertial frame, Ψ0 and a frame fixed to body i,
Ψi. The equation of motion for rigid body i can then be written as,

I iṪ i,0
i = − adT

T i,0
i
(P i)⊤ + (W i)⊤ (B.7)

where I i ∈ R6×6
+ is the inertia matrix from body i. P i is the momentum screw is called the mo­

mentum screw equal to

(P i)⊤ = I iT i,0
i . (B.8)
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If Ψi is chosen in the center of gravity, the inertia matrix becomes diagonal and can be written as,

I i =

(
diag(Jxi, Jy

i, Jz
i) 0

0 miI3

)
(B.9)

where Jα, α = {x, y, z} is the moment of inertia around α. mi is the linear mass of body i. T i,0
i

refers to the twist of body i with respect to Ψ0, expressed in Ψi. The first right hand side term in
equation (B.7) represents the gyroscopic effects. W i is the wrench acting on body i. The general
rigid body bond graph representation which corresponds to equation (B.7) can be found in figure
B.2.

1 T i,0
i

I I iMGYadT i,0
i

Se W i

P i

Figure B.2: Bond graph representation of a rigid body

Connecting rigid­bodies is done by means of joints. A useful property resulting from screw theory
is that two twists on a rigid body are equal if they are expressed in the same frame. To clarify,
assume that Ψi and Ψj are frames on the same rigid body then,

T 0,0
i = T 0,0

j (B.10)

This allows to constraint two rigid bodies by comparing their twists in the same frame without
transforming to a joint location. The joint itself is than modelled as a series of springs and damper
in the constraint direction. An example: consider two rigid bodies. In order to compare the two
twists, one has to make the transformation to the same frame (an inertial frame is the easiest). Then,
the twist difference T 0,j

i is transformed to frame in the joint Ψl using

H l
0 = H l

i(H
0
i )

−1 . (B.11)

In Ψl a series of springs and dampers are applied in the constraint direction. The free DOF is
obviously not constraint by the damper and spring. This translates to the bond graph representation
in figure B.3.
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MTF AdHl
0

1 T 0,0
j1T 0,0

i

1
T l,j
i

0

RC TF
n

1
q̇

H0
i

Figure B.3: bond graph representation of a joint

Figure B.4: Constraint between body i and body j. The free DOF is isolated by means of a trans­
former.

The free DOF can be isolated by using an unconventional 1 × 6 transformation matrix such that
it is possible transform the 6­dimensional twist to a 1­dimensional velocity. To the free DOF, also
actuators can be applied.

B.2.2 Euler Lagrange equations
Instead of making the model using bond graphs, one can also choose to write the Euler Lagrange
equations directly. Recall Eq. (1.4) which represents the equation of motion for a robot with nDoF:

M(q)q̈ +C(q, q̇)q̇ + F (q, q̇)+
∂V (q)

∂q
= τ . (B.12)

Using methods described in [37], it is easy to find formulations for the different terms. The potential
energy of the robot can be written as the sum of the potentials of the individual links:

V (q) =
n∑

i=1

Vi(q) . (B.13)

The potential of body i can be written as,

Vi(q) = migp
0,0
i,z (B.14)

wheremi is the mass of link, g the free­fall acceleration and p0,0i,z the z component of the position of
body i with respect to the inertial frame. The gravity compensation is then the derivative of V (q)
with respect to q:

G(q) =
∂V (q)

∂q
. (B.15)

The mass matrix can be written as sum of the individual components corresponding to each link,

M(q) =
n∑

i=1

Mi(q) (B.16)
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where each individual mass matrix components for body i is written as

Mi(q) = J⊤
i Ad⊤Hi

0
I iAdHi

0
Ji . (B.17)

Ji denotes the partly filled geometric Jacobian,

Ji =
[
T̂1 T̂2 · · · T̂i 0

]
(B.18)

where

T̂i = T̂ 0,i−1
i (B.19)

are the unit twists of each joint. The Coriolis term can be written as [38],

C(q, q̇)q̇ = Ṁ(q, q̇)q̇ − 1

2

∂

∂q
(q̇⊤M(q)q̇) (B.20)

Another and more usual approach to calculate the components of C is to use the Christoffels sym­
bols [38].
A final note is on the implementation of the equations. The dynamics are found symbolically using
the MATLAB symbolic toolbox. In each consecutive step, the simplify() command is used in
order to reduce the enormous lengths of the expressions. However, MATHEMATICA might be a
more suitable software environment to work with symbolic expressions like these.

B.2.3 Modelling 5­DoF robot
The two modelling techniques are evaluated on the 5­DoF robot arm used in this work. The combi­
nation of bond graphs together with screw theory is powerful as it allows to model rigid multi body
dynamics in a fast and convenient way. Furthermore, the modelling language fits well within the
energy paradigm used in this work. However, a major drawback is that the number of states of the
model increases dramatically with the number of bodies and joints. This is because each body and
joint contains at least 6 states (only counting storage elements). In the proposed optimization, the
dynamics are simulated in every objective evaluation. Therefore, the speed in which the dynamics
are solved becomes of importance. Instead, writing the Euler Lagrange equations directly allows to
solve only for the generalized coordinates which increases the solving speed of the dynamics. That
is why we use the Euler Lagrange equations as model in the optimization.

Kinematics

This section provides how the forward kinematics are formulated on the 5­DoF robot corresponding
to Fig. 1 in the paper. The theory described in [8] will be used to formulate the equations. Consider
the generalized coordinates to be written as

q =
[
q1 q2 q3 q4 q5

]⊤
. (B.21)

Instead of writing the unit twists directly in Ψ0, the unit­twists are first written in Ψi−1 and moved
to the inertial frame after that,

T̂ 0,i−1
i = AdH0

i−1
T̂ i−1,i−1
i (B.22)

66



Where T̂ i−1,i−1
i can be written as,

T̂ i−1,i−1
i =

[
ωi−1,i−1

i ri−1,i−1
i ∧ ωi−1,i−1

i

]⊤
=

[
ωi−1,i−1

i r̃i−1,i−1
i ωi−1,i−1

i

]⊤ (B.23)

where ωi−1,i−1
i and ri−1,i−1

i describe the rotation and position­vector of joint i with respect to joint
i− 1. For this 5­DoF robot the unit twists are composed using,

ω0,0
1 =

[
0 0 1

]⊤
ω1,1

2 =
[
0 1 0

]⊤
ω2,2

3 =
[
0 1 0

]⊤
ω3,3

4 =
[
0 1 0

]⊤
ω4,4

5 =
[
0 0 1

]⊤
(B.24)

and

r0,0
1 =

[
0 0 0

]⊤
r1,1
2 =

[
0 0 L1

]⊤
r2,2
3 =

[
0 0 L2

]⊤
r3,3
4 =

[
0 0 L3

]⊤
r4,4
5 =

[
0 0 L4

]⊤
(B.25)

To express the configuration of end effector, Brockett’s formula can be used where the unit twists
are evaluated at q = 0,

H0
n(q) =

n∏
i=1

(
e
˜̂
Ti(q=0)qi

)
H0

n(0) (B.26)

where H0
n(0) is the initial configuration of the end­effector. e

˜̂
Ti(q=0)qi is the exponential map and

can be calculated using Rodriguez formula. Or using directly the matrix exponential function in
MATLAB, expm().

20Sim model

The model is also being made in 20Sim using the technique described in Section B.2.1. The overall
structure is given in Fig. B.5.
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Figure B.5: 20sim model for the 5­DoF robot. The ’arm’ and ’joint’ subblocks corresponds to the bond graph structures in Figures B.2
and B.3 respectively.
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Appendix C

Notes on geometry

C.1 The end­point mobility tensor
The following definition for the end­point mobility tensor is taken from [39]. M(q) represents the
mass matrix in the joint space. It is positive definite and symmetric. To construct the kinetic energy,
it takes two vectors and produces a scalar:

Ek =
1

2
q̇⊤M(q)q̇ . (C.1)

For example,
q̇⊤M(q)q̇ = 1 (C.2)

represents an ellipsoid at the configuration q. As M(q) is positive definite the inverse of M(q)
will contract the co­vector of q̇ to a scalar:

τ⊤M(q)−1τ = 1 . (C.3)
Is also an ellipsoid on the configuration of τ . Using the Jacobian we can map the wrench in the
workspace to the torques in the joint space:

τ = J(q)⊤W 0 . (C.4)
Substituting equations will result in

(W n)⊤(J(q)M(q)−1J(q)⊤)W n = 1 . (C.5)

The end­point mobility tensor1 is then defined as the part between brackets of the latter equation:

Λ−1 = J(q)M(q)−1J(q)⊤ . (C.6)
To see whatΛ−1 implies, we deriveΛ−1 in another way. At rest, the joint positions and correspond­
ing velocities are zero (or fully compensated gravity and zero joint velocity). In this situation, the
equation of motion in the joint space (Eq. (1.4)) results in

M(q)q̈ = τ . (C.7)
1This term was initially introduced by Hogan(1984) in [40].
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Isolating q̈ and multiply both sides of the equation with J(q) results in

Ṫ 0,0
n = J(q)q̈ = J(q)M(q)−1τ . (C.8)

By substituting equation (C.4) the acceleration response in the end­effector is defined as

Ṫ 0,0
n = J(q)M−1(q)J(q)⊤︸ ︷︷ ︸

Λ−1

W 0 . (C.9)

Equation (C.9) describes the acceleration response at the end­effector when the manipulator is at
rest. Because Λ−1 is weighted by the Jacobian, it can have rank deficiency. For under­actuated
robots or when the robot is in a singular position, a wrench at the end­effector will not provide
a velocity twist at the end­effector (like in the joint space). The inverse of Lambda is symmetric
but semi positive definite, unlikeM(q). If Λ−1 is full rank, then the inverse exists and Λ can be
calculated.

C.2 Cartesian damping
The ’critically’ damped approach for multi­DoF systems was presented in Section IV­B in the paper.
As indicated, the critically damped approach only works if Λ−1 is invertible or in other words: for
non­singular configurations and non­underactuated robots. In addition, the diagonalization of the
equation of motion is in theory only valid when the gravitational, Coriolis and friction forces of
the robot are cancelled. In this section we study the effect of cancelling the Coriolis terms on the
’critically’ damped statement. Fig. C.1 shows two graphs in which the entries of the position vector
belonging the configuration of the end­effector (p0,0

n ) are plotted. The robot is controlled with a
Cartesian impedance controller using a fixed spring value and scaling the damper together with the
inertia and the stiffness as explained in Section IV­B in the paper. A fixed virtual frame is used
corresponding to,

H0
v =


−1 0 0 0.2
0 1 0 0.16
0 0 −1 0
0 0 0 1

 . (C.10)

The initial joint positions are given as q =
[
0 0 0 π/2 1

]
. This initial configuration corre­

sponds to initial robot configuration in Fig. 7 in the paper.
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(a) C(q, q̇) is not cancelled
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0.5

(b) C(q, q̇) is cancelled

Figure C.1: Entries of p0,0
n =

[
x y z

]⊤ usingK = diag(750 · I3, 3000 · I3, )

Comparing both figures, we see that when C(q, q̇) is cancelled the position components do not
overshoot their corresponding reference (’critically damped’). When C(q, q̇) is not cancelled, the
x position will overshoot at ≈ 0.1s. Furthermore, a ’drop’ in x position is noticed for both figures.
When we study the initial configuration of the robot (again, see Fig. 7 in the paper). Then the ’drop’
in x position can be explained due to the rotation at the end­effector. All in all, the Coriolis terms
have an effect on the dynamics and thus on the position vector of the end­effector.
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Appendix D

Mathematical background

D.1 Derivations
In the following, the port­Hamiltonian equation is derived as given in Eq. (2.17). The labelling of
effort and flow variables correspond to the bond graph in Fig. D.1.
First derive the state space equation:

ḟ2 =
1

L
e2

=
1

L
[e1 − e4]

=
1

L
[e1 − ue5]

=
1

L
[e1 − u [e6 + e7]]

=
1

L
[e1 − u [Rf6 + ktf8]]

=
1

L
[e1 − u [Ruf2 + ktf8]]

(D.1)

ḟ3 =
1

m
e3

=
1

m
[e8 − e9]

=
1

m
[ktf7 − b(x2)]

=
1

m
[ktf5 − b(x2)]

=
1

m
[ktuf4 − b(x2)]

=
1

m
[ktuf2 − b(x2)]

(D.2)

Substitution of L = 1H, f2 = ft = pt, e1 = Fdyn, f8 = x2, Fc = e8 = e3 + e9 = mḟ3 + b(x2)
results in

ṗt = Fdyn − u2Rpt − uktx2 (D.3)
Fc = ktupt . (D.4)
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Figure D.1: Bond graph representation of equation 2.1 driven by a motor connected to the energy
tank. It is the inertia of the tank, ft the current through the tank.

D.2 Operators
• The as(·) operator,
Every square matrix can be decomposed into a symmetric part and a anti symmetric part:

A =
1

2
(A+A⊤)︸ ︷︷ ︸
symmetric

+
1

2
(A−A⊤)︸ ︷︷ ︸

anti−symmetric

. (D.5)

as(A) represents the anti­symmetric part of input argumentA. A has to be a square matrix.

• The Ad(·) operator,
TheAdjoint operator is introduced to translate twists and wrenches from one frame to another.
An example, to translate the twist expressed in Ψb to the twist expressed in Ψa:

T a,c
d = AdHa

b
T b,c
d =

(
Ra

b 0
p̃a,a
b Ra

b Ra
b

)
T b,c
d . (D.6)

As the wrench is a co­vector and the dual of the twist, it transforms with the transpose of the
Adjoint. Therefore:

(W a)⊤ = Ad⊤Hb
a
(W b)⊤ . (D.7)

• The ad(·) operator,
The adT operator of input twist T is defined as,

adT =

(
ω̃ 0
ṽ ω̃

)
(D.8)

where the twist is defined as T =
[
ω v

]
and (̃·) is the skew­symmetric operator.
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• The tr(·) operator,
The trace operator takes a square matrix and produces the sum of its diagonal elements,

tr(A) =
n∑

i=0

aii (D.9)

whereA is a n× n square matrix and aij are the entries ofA.

• The (̃·) operator,
The tilde operator defines the skew symmetric matrix of input vector x,

x̃ =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (D.10)

where x = [ x1 x2 x3 ]⊤. The skew symmetric matrix has the property that

x̃ = −x̃⊤ . (D.11)

• The ‖·‖FRO operator,
The Frobenius norm is the square root of the sum of all absolute entries of a matrix,

‖B‖FRO =

√√√√ n∑
i=1

m∑
j=1

|bij|2 (D.12)

whereB is a n×m matrix and bij are the entries ofB.

• The ‖·‖1 operator,
The 1­norm of a vector x with length n is defined as the sum of absolute entries in x:

‖x‖1 =
n∑

i=1

|xi| . (D.13)

• The ‖·‖2 operator,
The 2­norm of a vector x with length n is defined as the root square from the sum of the
square absolute entries in x:

‖x‖2 =

√√√√ n∑
i=1

|xi|2 . (D.14)
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