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Abstract

In this study, we propose a method to develop a planning strategy for the planning of cases
within the judiciary, within commercial law. For these cases, we schedule the hearing as well
as the preparation of the hearing and the writing of the verdict, taking into account stochastic
elements in the arrival of the cases as well as their duration. Our method is developed in an
Approximate Dynamic Programming (ADP) framework that makes use of post-decision states
and a rolling horizon. In this strategy we take into account the availability of the judges and
legal assistants, as well as the specialisms and difficulties they can handle. Besides, we schedule
one fold cases (that only need one judge) as well as multiple cases (for which three judges have
to be scheduled). The results show that we are able to find solutions within a reasonable time
for a toy-sized problem instance. Moreover, the results indicate that we are able to find better
solutions using our planning strategy compared to a myopic policy. The results have been veri-
fied using our own data and therefore, the algorithm needs to be revised when the Rechtspraak
can deliver adequate data, mainly on the duration of the preparation of a hearing and writing
of the verdict. What is more, increasing the efficiency of the implementation of the algorithm
such that larger problem instances can be solved, remains a topic for further research.

Keywords: jurisdiction, planning lawsuits, Approximate Dynamic Programming (ADP), Value
Function Approximation (VFA)
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1 Introduction

This research is carried out in the name of the Rechtspraak. In Section 1.1 we discuss the
emergence of the problem the Rechtspraak deals with as well as the scope of this research.
In Section 1.2 we discuss the current planning- and scheduling process and in Section 1.3 we
elaborate on how this report is structured.

1.1 Background

The Rechtspraak has an ongoing project called “Programma Tijdige Rechtspraak”. The objec-
tive of this project is to contribute to high customer satisfaction and access to justice. In order
to achieve this goal, the program has been divided into three sub programs, namely:

1. Backlogs: The court has been dealing with backlogs for years. The exact size of the
backlogs is unknown. Research should be done in order to determine the exact size of
these backlogs and to determine how these backlogs can be eliminated.

2. Scheduling and planning: This sub-program researches the optimal way to schedule and
plan, in order to save time.

3. Predictability: Many stakeholders in lawsuits are dissatisfied with the process in which
they were involved. This dissatisfaction mainly involves: ignorance of the lead time of the
process, lack of transparency about what happens during this lead time and the perception
that the process elapses inefficiently.

The initial idea was to implement this program three years after it was released. This would be
at the end of 2023. This planning will probably change due to the COVID-pandemid we live
in. Due to this crisis, the courts and tribunals have been closed for a while. This meant that
thousands of criminal cases are delayed [35]. This closure of the courts has led to the increase
of cases in which a hearing has to be held. On the other hand, stocks of cases that could be
finished by writing have shrunk enormously. Particularly in the latter case, it was be a challenge
to ensure that no new stocks were created in the short term during the restart.

Since the schedulers and planners at the Rechtspraak do not use a way of planning/scheduling
that is proven to be effective, different parties agree that problems can be solved by using a more
efficient way of planning. First of all, time can be saved by creating and using a more efficient
planning. Secondly, with a more accurate planning, realistic lead times can be established, which
enlarges the transparency of the process, and thereby the satisfaction of the lawsuit stakeholders.

In the project “Programma Tijdige Rechtspraak” norms have been established for the differ-
ent lead times one faces when entering into a lawsuit. Using a new planning- and scheduling
algorithm, one could review these standards in order to determine the feasibility. The prose-
cutor prefers receiving a realistic lead time communicated a priori, to receiving a short one.
In this project we limit ourselves to the Rechtbank and do not take the courts of justice into
account. Within the Rechtbank, we focus on the jurisdictions administrative law (in Dutch:
‘bestuursrecht’) and commercial law (in Dutch: ‘handelsrecht’). When testing these models, we
use the data from the courts situated in the province Overijssel as well as the court situated in
Rotterdam and Dordrecht (which together form the team Rotterdam).
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1.2 Current situation

Scheduling is defined as ‘the allocation of judges and clerks at hearings, taking into account
the allocated capacity in courtrooms’. With planning we refer to the planning of cases at these
hearings. Within administrative law these two are clearly separated. The teams within com-
mercial law allocate the clerks and judges at the same time as planning the cases. They do not
use such an initial schedule.

For the scheduling part within administrative law, one has to classify the cases according to
different components, such as:

1. Whether it is a one-fold or multiple case. A one-fold case only needs one judge, whereas
for a multiple case the dossier must be read by three judges who all need to be present at
the hearing.

2. Which team and/or specialism the hearing belongs to. Within a team, hearings can be
handled in one or more areas of law or attention, such as finance and intellectual property.
Judges can be part of more than one team.

3. Whether the case is media-sensitive. When one has to deal with media-sensitive cases, the
assigned judge has to be able to handle the additional pressure from the outside.

In administrative law a schedule is made half a year in advance, based on historical data. This
schedule states which hearings have to be handled at what time, based on the above mentioned
components. In the current situation, ‘hard to schedule’-hearings are scheduled first. The ‘hard
to schedule’-hearings involve: multiple hearings, training matters (i.e. a hearing in which a
trainee judge is involved), detention cases (i.e. a hearing about someone in pre-trial detention)
and summary proceedings. Afterwards, the other hearings are scheduled and subsequently by
planning, cases are classified onto these hearings.

For the planning part of administrative law, the judges give their impediment dates. When the
prosecutor(s) are not available on one of these days, the impediment days of the judges further
in the future will be given based on which a new date for the hearing can be established. When
the judge is not able to find a spot in his/her agenda, the case is sent back to the president of the
certain team and a new judge will be assigned to the case. In both jurisdictions -administrative
as well as commercial law- apart from the judge(s), a legal assistant (junior, average or senior,
dependent on the case) also has to be assigned to a case. It is important to make the best
possible combination of the judge(s) and legal assistant, taking into account which team they
both belong to and what their availability is.

In commercial law, the team chairman determines the qualified judges for each case. Subse-
quently, the team chairman assigns the case to a judge based on the properties of a case (given
the points above) and the available time in the agendas of the judges and legal assistants.
Subsequently, the planners determine a date and time for the hearing based on this data. An
additional property used for commercial law is the complexity of the case. This complexity can
be classified into different categories, ranging from most complex to the least complex case.

1.3 Thesis outline

In the beginning of this thesis, we have given the abbreviations we use throughout this report. In
Section 2 we give a literature review of both the planning and scheduling problem. Thereafter, in
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Section 3 we give the context analysis, containing the steps in the current planning and schedul-
ing process as well as the goal and scope of this research. In Section 4 we give the model design
of our Integer Linear Program (ILP) for commercial law. We have programmed this model in
Advanced Interactive Multidimensional Modeling System (AIMMS) and give an illustration on
the results of this model in Section 5. Then, in Section 6 we give the model formulation of the
Stochastic Dynamic Program (SDP) for commercial law. We discuss the results of the SDP in
Section 7. Finally, we give the limitations of our research as well as recommendations for further
research in Section 8 and we end with the conclusions and general recommendations in Section 9.

In Appendix A we give the original Dutch words for the law-related terms used in this report. In
Appendix B we give an overview of the ILP used for commercial law. Some of the constraints of
this ILP had to be rewritten in order to program them in AIMMS which we discuss in Appendix
C. The results of that AIMMS model are subsequently given in Appendix D. Thereafter, in
Appendix E we give the additions that have to be made to the ILP for commercial law in order to
be valid for the planning problem of administrative law. Unfortunately, due to time restrictions,
these additions have not been implemented and tested. We end with a couple of appendixes
related to our Markov Decision Process (MDP). The pseudocodes we have given in the report
in order to calculate the values for the basis functions had to be rewritten in constraints in
order to calculate them using Python’s Mixed Integer Programming (MIP)-package. Appendix
F elaborates on these constraints. Thereafter, Appendix G gives the output of the first ten
iterations (when executing 50 iterations) of the toy-sized problem. We end with the exact
availability of the judges and legal assistants we have used when increasing the state space (and
therefore dealing with a larger time horizon or more judges and legal assistants) in Appendix
H.
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2 Literature review

In this section we discuss how similar problems in literature related to planning and scheduling
are addressed. To date (this section was written in May 2020) no literature exists on the opti-
mization of planning and scheduling in the jurisdiction. In Section 2.1 we give the mathematical
model for the classic assignment problem as well as the related Resource-Constrained Project
scheduling Problem (RCPSP) and several variations. Moreover, other scheduling problem for-
mulations are given in Section 2.1. In Section 2.2 we give a short overview of similar planning
problem formulations taken from literature. Here, we focus on multi-appointment scheduling
problems. We mostly discuss similar problem statements applied in healthcare, since we see
various similarities between the two environments, such as the uncertainty in the duration of
the hearing versus the uncertainty in the duration of the treatment, the nurse versus the judge,
and the arrival of a patient versus the arrival of a case. Finally, in Section 2.3 we give a short
conclusion of the literature review.

2.1 Scheduling problem

The scheduling problem can be seen as a variation of the well-known Assignment Problem (AP):
the one-to-one problem of finding a matching between n tasks and n agents, the objective being
to minimize the total costs of the assignments [38]. The mathematical model for the General
Assignment Problem (GAP) in which each agent is assigned multiple tasks, is given in equation
(2.1). Here, xij = 1 if agent i is assigned to task j, 0 if not, cij is the cost of assigning agent
i to task j, aij is the amount of agent i’s capacity used if that agent is assigned to task j
and bi is the available capacity of agent i [57]. In our problem, n would represent the cases
that have to be divided over m courts. The standard AP deals with deterministic durations,
while we are dealing with uncertainty. Uncertainty can have two different sources, namely when
durations are not known in advance or when there is uncertainty about the presence or absence
of individual jobs. The second one is implemented in the model of Albareda-Sambola et al. [1].
In our problem however, we deal with both sources of uncertainty, where the second one does not
occur that often. In literature, the GAP is solved by different approaches: from state-of-the-art
metaheuristics to variable neighborhood search algorithms and from exact solution procedures
to simple heuristic algorithms [57].

minimize

m∑
i=1

n∑
j=1

cijxij

subject to

m∑
i=1

xij = 1, j = 1, ..., n

n∑
j=1

aijxij ≤ 1,i = 1, ...,m

xij ∈ {0, 1}

(2.1)

Multiple variations of this problem exist. We go deeper into the RCPSP by which Roland et
al. [44] have formulated the Operating Room (OR) scheduling problem. The RCPSP then
questions what date, operating room and starting time indication should be assigned to a set
of surgeries [11]. Here, both the planning over several days and the scheduling on a single
day are integrated in one model. The RCPSP can be defined as a combinatorial optimization
problem. A combinatorial optimization problem is defined by a solution space and a subset of
feasible solutions with an objective function. The RCPSP is Nondeterministic Polynomial time
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(NP)-hard, which means the first results are time-consuming to obtain. Hence, one has to treat
the problem meta-heuristically, in particular towards a Genetic Algorithm (GA) approach [44].
The RCPSP assumes each task is completed in time by applying a fixed amount of resource in
each time period, while we are dealing with stochastic activity durations [42]. The Stochastic
Resource-Constrained Project scheduling Problem (SRCPSP) is a variation on the RCPSP that
uses stochastic activity durations [16]. In Section 2.1.1 we go into detail about the SRCPSP
and in Section 2.1.2 we give variations of this as could be applied to our problem.

2.1.1 SRCPSP

For the problem definition of the SRCPSP we refer to the article by Creemers [15] in which he
minimizes the expectation makespan over a given class of policies. In contrast to the basic type
of the RCPSP, the SRCPSP has received only little attention in literature [15]. In this review
we discuss the stochastic models reviewed in the paper of Habibi et al. [27]. Generally, a project
can be described by a directed acyclic graph G = (V,E) that has a set of nodes V = {0, 1, 2, .., n}
and a set of arcs E = {(i, j)|i, j ∈ V } [14]. The nodes represent the project activities, whereas
the arcs connecting the nodes represent precedence relations [14]. In the SRCPSP the deter-
ministic durations of the RCPSP are replaced by random durations cij : (i, j) ∈ A. Here, cij is
the stochastic duration time of the activity represented by (i, j) in A [34].

Creemers et al. [45] present three different ways to handle the uncertainty in the SRCPSP:

1. Robust or proactive scheduling, in which the decision maker may try to find a schedule
that can tolerate minor deviations from the predicted values for the activity durations, for
example as proposed by Artigues et al [2]. Furthermore, Vonder et al. [52] reschedule the
remaining activities such that the sum of deviations of the new finishing times from the
original ones is minimized.

2. Reactive scheduling, which iteratively changes an initial schedule in order to adjust it to
the realizations of the underlying stochastic variables, for example as proposed by Deblaere
et al. [18].

3. Stochastic scheduling, where no initial schedule is built before the execution of the project,
for example as proposed by Raifiee et al. [42].

Creemers [15] and Creemers [14] use acyclic Phase-Type (PH) distributions to model activity
durations and to match the first two moments of the activity duration distributions [15]. Since
in most cases the true distribution of the activities is unknown, it is often assumed that the
duration of an activity follows a beta, uniform or Gaussian distribution. These distributions
only allow to match the first two moments of the true duration distribution, whereas PH distri-
butions can match almost any distribution with arbitrary precision [15].

Because the SRCPSP is known to be NP-hard, most researchers have focused on developing
heuristic solution methods. Rostami et al. [45] developed a two-phase metaheuristic that consists
of a Greedy Randomized Adaptive Search Procedure (GRASP) and a GA to find the optimal
procedure [15]. Ke and Liu [34] also used the GA to settle the SRCPSP. The aim of their
research was to maximize the probability of the total cost not exceeding the budget. They had
to find a solution under the constraint that the probability of finishing the project before the
due date should be larger than or equal to a predetermined confidence level. Apart from these
heuristic methods, Creemers et al. [14] [17] used backward SDP recursion to solve different
kinds of SRCPSPs exactly .
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2.1.2 Variations

The standard problem cannot cover all situations that may occur in practice, which is why
many researchers have developed more general project scheduling problems using the standard
RCPSP as starting point [30] [29].

A variation is the Multi-Mode Resource-Constrained Project scheduling Problem (MRCPSP).
Here, multiple modes exist and each one shows a feasible way to combine a duration and resource
request that allows to accomplish the underlying activity. This may come in handy when differ-
ent workers work at a different speed, as we also encounter at the Rechtspraak. In particular,
to implement the multi-mode extension, the following assumptions have to be made [24]:

1. The durations of the activities depend on the mode, i.e. we have Di = Dim(m ∈ Mi)
where Mi is the finite set containing execution modes;

2. To each mode m ∈Mi a cost Cim is assigned;

3. The resource consumptions rik can depend on the mode: rik = rik(m) for m ∈Mi.

Moreover, due dates can be added to the RCPSP, which can only be exceeded at some penalty
cost [30]. These due dates are important when multiple projects are planned simultaneously,
which could also be the case in our problem. Another addition to the RCPSP are the time-
switch constraints of Yang and Cheng [55]; the planning horizon is divided into cycles of work
and rest time windows in which an activity can only start in a work window. This way working
times, such as Monday through Friday, can be captured. When multiple projects have to be
scheduled, several different objectives can be used. Since every project is associated with a due
date, the minimization of weighted tardiness can be used as objective [30].

Lastly, Vanhoucke [53] has defined a set of time windows for each activity. In this set, the
objective function minimizes penalties that are caused by executing activities outside their time
windows. As we have seen in the “Programma Tijdige Rechtspraak”, not only the speed of the
process is seen as important, but the knowledge of a representative lead time is also important.
Hence, when making a schedule that not only reduces the waiting time, but also endures the
stated norms for time intervals, the clients will be more satisfied by the process.

2.1.3 Other problem formulations

In OR-scheduling and planning literature, a lot of different methodologies use a specific analysis
and solution technique [26]. Mixed integer programming, simulation and heuristic algorithms
are examples of frequently used methodologies. Furthermore, researchers can leverage the power
of Constraint Programming (CP) in order to create mathematical representations of existing
constraints in the problem [26]. By using CP, different values in the solution process can be
evaluated. When one aims at obtaining satisfactory results in a short time, heuristic methods
can be used.

Besides the RCPSP, another problem with similar constraints is the Resident Scheduling Prob-
lem (RSP). This is a special case of multi-period staff assignment problem where individuals
are assigned to a task over multiple periods of time [21]. An example of this from healthcare
is the problem of scheduling the staff to Outpatient clinic (OC)s in a physical medicine and
rehabilitation department. The scheduling of outpatient clinics addresses:

a) determining the number of OCs that are in service during the weekdays;
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b) assigning each OC to one of the senior academic staff;

c) assigning each resident to one of the OCs.

In order to solve this RSP, researches apply several techniques and methods, like MIP, CP, Goal
Programming (GP) and meta-heuristics [25].

2.2 Planning problem

When a schedule has been made, the planning problem remains to be solved. In this section
we discuss planning problem formulations with stochastic durations and multiple dependent
stages. Different methods are used to solve these problems. Linear programming methods as
well as MDPs are used in literature, where MDPs can be considered as a standard method for
planning under uncertainty [43]. Since normal linear programming methods do not incorporate
uncertainty, one needs to use an optimization algorithm that incorporates sampling of scenarios
from the scenario tree. Singh et al. [49] do this by integrating the Dantzig-Wolfe decomposition
and Homem-de-Mollo et al. [31] implement Stochastic Dual Dynamic Programming (SDDP).
Escudero et al. [19] explicitly split the problem in different stages, for which they also used
a decomposition algorithm in order to solve the problem, this time a Lagrangean-based one.
Song and Huang [50] and Halman and Nannicini [28] propose a different model to formulate
a stochastic planning problem with multiple stages. In Section 2.2.1 we examine the Multi-
Appointment Scheduling Problem in Healthcare (MASPH). In the subsequent sections we focus
on the used mathematical formulations and solvers: in Section 2.2.2 we discuss the two-stage
problem formulation and in Section 2.2.3 we discuss the Markov Decision Process problem
formulation.

2.2.1 Multi-appointment scheduling problem in healthcare

The MASPH is defined as the problem of scheduling patients who need appointments on a
subset of hospital resources by bringing together all stakeholders in the scheduling process and
subsequently optimizing on specific resources from a centralized perspective [37]. This problem
occurs in different contexts that have multi-day fixed patterns: rehabilitation, examination and
radiotherapy [48] [13]. Despite its importance, the subject of scheduling multiple (recurring)
appointments is not thoroughly studied in any of the fields; existing studies on appointment
scheduling problems mainly focus on single-stage service systems [56] [12].

Pérez et al. [41] formulate the problem of scheduling patients and resources in nuclear medicine
clinics using following three approaches:

1. Offline, where the problem is solved on a day-to-day basis and it is assumed that all requests
for the day are known in advance. This problem is modelled using Integer Programming
(IP).

2. Online, where requests arrive sequentially one at a time and scheduling decisions are made
when the requests arrive. To be able to solve this problem, the IP for offline scheduling is
modified in order to schedule procedure requests one at a time. For this modification, the
objective function now minimizes the waiting time for the patient instead of the number of
patients scheduled on a given day. The decision variables and constraints are not modified.

3. Stochastic online, in which possible future requests are taken into account. This problem
is formulated as a two-stage Stochastic Integer Program (SIP). In the first stage it is
decided when to schedule the request at hand and which resources to use. This model
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is similar to the model used for the online problem, in which, again, only the objective
function differs. This time, the objective function not only contains the waiting time for
the current patient, but also the expected value of the model’s second stage objective
function. The second stage creates the patient schedule by generating scenarios using
Monte-Carlo simulations. These scenarios are defined as groups of possible requests that
could arrive after the current patient request and that also share the preferred day for an
appointment. This problem is solved every time a request arrives at the clinic by using the
Nuclear Medicine Stochastic Online Scheduling (NMSOS) algorithm. Using this algorithm
more people can be served compared to the number that can be helped using the Fixed
Resource (FR) scheduling algorithm, especially under high demand.

2.2.2 Two-stage problem

The approach of dividing the stochastic online problem in two stages is used often to solve
MASPHs [48] [56] [20]. The first step in this method is dividing the daily service capacity of
the doctor into appointment slots and the second is to determine the number of patients that
can fit into each slot [20]. The objective is to determine a job allowance for each customer
in the first stage, so as to minimize the total expected weighted costs for customers’ waiting
times and service providers’ idle times over multiple stages [56]. The constraints of the model
can then be categorized into various subsections: resource constraints, sequencing and optional
activities, linking constraints, recurring activities, stable activity starting times and general
treatment starting time constraints [54]. Subsequently, the Sample Average Approximation
(SAA) approach can be applied in order to transform the stochastic program into a two-stage
program [56]. Because of the complexity, exact methods are rarely used in order to solve these
two-stage problems. The popular methodologies are metaheuristics and multi-agent methods
[37]. For example, Fan et al. [20] use local search to find the optimal solution since the objective
function is submodular. Zhou and Yue [56] use an L-shaped algorithm in order to solve their
two-stage model. For comprehensive information on this algorithm, we refer to their article.

2.2.3 Markov Decision Processes

Another method that is proposed in literature is the method of formulating MDPs [46] [4] [32].
The MDPs are mostly solved by Approximate Dynamic Programming (ADP) [46] [4]. Sauré
et al. [46] claim that even in the deterministic case, the size of the state space and the size
of the corresponding action sets require to approximately solve the MDP model via ADP. To
that end, Sauré et al. [46] assume that the value function can be adequately represented by
an affine approximation architecture. Once the approximation is substituted into the linear
programming formulation of the discounted MDP, an Approximate Linear Program (ALP) is
constructed. The ALP is still intractable, but because of the existence of a constraint for every
state-action pair, its dual can be solved via column generation. For the formulations of the MDP,
ADP and ALP we refer to the paper of Sauré et al. [46]. Whereas Barz and Rajaram [4] also
start with formulating an MDP and ADP, they further used techniques from ADP to derive an
upper bound. Afterwards, they simplified this upper bound problem to obtain an optimization
problem that is easily solvable and yields approximated marginal values of one unit of capacity
of the constraining resources. Finally, Barz and Rajaram [4] use heuristic methods in order to
solve the patient admission and scheduling problem.

8



2.3 Conclusion

Because of the fact that no literature on the optimization of planning and scheduling in the
jurisdiction is available, we had to search for similar problems addressed in literature. The
scheduling problem can be seen as a variation of the well-known AP, but since multiple tasks
have to be assigned to multiple people, a more extended problem description is needed. The
SRCPSP addresses a scheduling problem that uses stochastic durations. Despite this initial
problem being NP-hard, some researchers have used this problem formulation in order to for-
mulate scheduling problems similar to our problem. It could subsequently be solved by SDP or
heuristic methods (such as meta-heuristics) could be used in order to find a solution. Since this
problem formulation has not been used that often in practice, we also have investigated other
problem formulations, such as mixed integer programming in which the durations are assumed
to be deterministic.

For the planning problem, the MASPH is discussed using solution methods applied in rehabili-
tation and radiotherapy. For the stochastic online formulation of the planning problem, dividing
the planning problem into two stages is an often used solution method. MDP is an often used
problem formulation which is mostly solved by ADP. In conclusion, the methods discussed could
be appropriate for solving the planning and scheduling problem addressed in this thesis, but
one has to make an informed decision after analyzing the context in Section 3.
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3 Context analysis

This chapter gives a more elaborate description of the processes one encounters during the
planning- and scheduling in administrative law as well as commercial law. In Section 3.1 we
elaborate on the general current planning- and scheduling process, where we elaborate on the
planning- and scheduling process per jurisdiction in Section 3.2. The process regulations, ‘Code
Zaaktoedeling’ as well as conversations with employees of the Rechtbank have been used to
create this analysis 1. In Section 3.3 we state the goal and scope of the research.

3.1 General planning- and scheduling process

Every court plans and schedules separately for each jurisdiction. In our thesis we focus on
the jurisdictions administrative law (in Dutch: ‘bestuursrecht’) and commercial law (in Dutch:
‘handelsrecht’) for the locations Rotterdam (including Rotterdam and Dordrecht) and Overijssel
(including Zwolle, Almelo and Enschede).

As for the scheduling part, some of the teams work with a scheduling program, called ‘Zitting
Rooster Planning’ (ZRP), whereas some still make their schedule by hand in Excel. Schedulers
deal with:

1. The annual plan filled with the number of expected cases expected per category;

2. The professional standards giving the employability by jurisdiction;

3. The classification of cases:

a) Whether it is one-fold or multiple case;

b) Which team the case belongs to;

c) Whether the case is media-sensitive;

d) Whether the case is a so-called ‘summary proceedings’;

e) Only in commercial law: The complexity of the hearing (expressed in the letters A,
B, C or D). For hearings of a higher complexity more time has to be scheduled, for
preparation, hearing and writing of the verdict.

4. The availability of the courtrooms. Besides unavailability of earlier scheduled hearings, one
also deals with the so-called ‘zaakverdelingsregelingen’, describing which types of hearings
can be handled at which locations.

As for the planning part, every jurisdiction has its own planning method. Planners deal with:

1. The prevent data of parties, lawyers and other litigants;

2. The duration of a hearing;

3. The classification of cases:

a) Whether it is one-fold or multiple case;

b) Which team the case belongs to;

c) Whether the case is media-sensitive;

d) Whether the case is a so-called ‘summary proceedings’;

1The process regulations as well as the ‘Code Zaaktoedeling’ can be found on the site of the Rechtspraak
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e) Only in commercial law: The complexity of the hearing (expressed in the letters A,
B, C or D). For hearings of a higher complexity more time has to be scheduled, for
preparation, hearing and writing of the verdict.

3.2 Planning- and scheduling process per jurisdiction

3.2.1 Administrative law

Administrative law deals with claims of a party appealing against government decisions, within
fields of social security, the non-award of subsidies, spatial planning and so on. If the govern-
ment organization has rejected the objection that the party raised against their decision, the
prosecutor can submit this objection to the court.

In administrative law a schedule is made half a year in advance. This schedule shows which
hearings have to be handled at what time, including the classification of hearings, which are
listed above. The schedule must then be accomplished in accordance to the following rules:

1. The hearings must be practicable within the capacity of court rooms, that has been made
available centrally;

2. Hearings must be scheduled such that the expected production for the team per year can
be met;

3. The contract durations of the workers must be taken into account such that the number
of scheduled hearings could be executed. Full-time judges are employable for hearings 40
weeks a year, which translates to one hearing a week or two small hearings per week. Part-
timers are scheduled in proportion to their contract. Legal assistants are employable for
hearings 20 weeks a year, which translates to two hearings a month. Moreover, requested
permission for vacation has to be taken into account;

4. Specific scheduling wishes could be taken into account, for example when a judge prefers
to have two smaller hearings in a week instead of one bigger hearing. Initially, preferences
such as morning or afternoon hearings or hearings on a certain day will not be granted;

5. The last restriction is created by the fact that only a certain number of hearings could be
scheduled each week.

Based on the availability of the judges and legal assistants the planning can be made, taking
into account the following points:

1. All durations (preparation hearing, hearing and writing of the verdict) have been processed
into a number of points. Subsequently, it has been decided how many points a judge and a
legal assistant have to carry out in a week. A judge has to fulfill fourteen points for hearings
a week and a legal assistant has to fulfill these points within two weeks. Part-timers have
to fulfill a certain number of points, in proportion to their contract.

2. Employees should not be scheduled for a hearing a week in advance of a big vacation. A
big vacation is defined as a vacation that lasts three weeks or longer.

3. In the week after a so-called big vacation a one-fold hearing could be scheduled, at least
three working days after returning to work, with a maximum of ten points.
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4. The availability of the workers has to be taken into account. Apart from the labels “avail-
able” and “non-available”, one can also register the so-called label free, which indicates
that one is available for a hearing if necessary. One could use this label when one has
scheduled an appointment that day that could be rescheduled if that is necessary, such as
a dentist appointment.

3.2.2 Commercial law

Commercial law deals with matters such as insurance law, personal injury and professional
liability. Not all hearings have to take place physically and hearings do not contain multiple
cases. Nowadays, when a case arrives, the team chairman assigns this case to a judge and
thereafter, it will be planned. Sometimes, legal assistants are already allocated, but most of the
time, they are only allocated after the case is planned. When the case is assigned to a judge,
the planners will look for a date for the hearing that is at least four weeks ahead (in order for
the judge to have enough preparation time) and at the latest thirteen weeks ahead (such that it
meets the standards). Furthermore, the planners adhere to the guideline that judges can only
handle two hearings a week and therefore planners do not schedule a hearing in a week that is
already filled with two hearings for a certain judge. When a planner does not see any possibility
to schedule a case, it returns it to the team chairman such that he/she can assign a new judge to
the case or he/she can determine that the judge should be able to handle more cases in a certain
week. For instance, if a week is filled with cases that are not that heavy, more than two cases
can be scheduled. When assigning a case to a judge, one has to balance the expertise of the
judge with the heaviness of the case. In addition, when assigning cases to judges, the taxability
and experience is taken into account. Since the team chairmen do not have a complete overview
of the agendas of the judges, as the planners do have, one cannot ascertain optimality of the
alignment of cases to judges. The location of the hearing is only allocated after the date and
time are established; hence we do not include any location restrictions in our research.

3.3 Goal and scope of the research

The main goal of this research is to find the optimal way to determine the moment of the hearing
in such a way that there is enough time for the preparation of the hearing and such that the
judgement can take place within the predetermined norms. In order to do this, we divide the
planning- and scheduling process into three sub processes, namely:

1. Preparation hearing: the time the judge(s)/legal assistant are working on a case in the
time between the application of lawsuit until the hearing;

2. The hearing itself;

3. Writing verdict: the time the judge(s)/legal assistant are working on with a case in the
time from the hearing until the judgement.

In all three sub-processes we are dealing with some uncertainties. First of all, the duration of the
hearing is uncertain, since one does not know exactly how long people have to be interrogated
for when a lawsuit is submitted. Furthermore, it is uncertain whether the hearing will take
place at all. Parties can decide, for instance, to resolve the problem among themselves before
the scheduled hearing has taken place. This frees up time for the judges, as they no longer have
to prepare the hearing. Parties can also decide during the hearing to enroll into mediation or
settlement, which also frees up time for the judges, as they no longer have to write the verdict.
Lastly, the durations of the different appointments -preparation of the hearing and writing of
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the verdict- contain stochastic elements.

In the prequel, the research problem is defined as the planning and scheduling problem for
administrative law and the planning problem for commercial law. Because of time restrictions,
the scheduling problem for administrative law remains a topic for further research. Because of
the fact that the literature review provides us several possible solution methods for the planning
problem of commercial law, we start with formulating an ILP using input from the different
discussed problem formulations. The ILP gives us insight into the planning problem and can
also act as a starting point for the other methods discussed above, such as the MDP. After we
have constructed the ILP, we aim to extend the model in order to fit better to reality step by
step, for example by including the aforementioned uncertainties.
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4 Integer Linear Program commercial law

In this chapter we elaborate on the ILP for commercial law. In Section 4.1 we give the for-
mulation of the ILP for commercial law, after which we give the decision variables in Section
4.2, constraints in Section 4.3 and the objective in Section 4.4. Then, we give the assump-
tions/simplifications we have made to model the problem in Section 4.5. Appendix B gives an
overview of the model for commercial law, including the parameters, variables, objective and
constraints. A few parameters and constraints have to be added in order to be valid for the
planning problem of administrative law. Appendix E gives an overview of the additions one has
to make to the model in order to be valid for administrative law (including the new parameter,
variables and constraints). Unfortunately, due to time restrictions, these additions have not
been implemented and tested.

4.1 Model formulation

Assuming deterministic durations, the model has to generate a planning proposal consisting of
assigned judge(s), a legal assistant and a starting time for each appointment. We model this
scheduling problem as an ILP that is intended for scheduling a series of appointments for one case
at a time. A Linear Program (LP) is a mathematical optimization problem in the following form
[36]: “minimize cTx subject to Ax ≥ b and x ≥ 0”, where we have the additional requirement
that x ∈ Zd in an ILP. Although this process may not produce the best overall schedules, it
enables a direct response to a case that needs to be scheduled [9]. This gives direct clarity to
the prosecutor as desired, which we have deduced from the “Programma Tijdige Rechtspraak”.
After we have constructed the ILP, we want to extend the model in order to fit better to reality
step by step. This could for example be done by including uncertainty and possible future
requests, where possible future requests can be included by transposing the offline scheduling
problem into a (stochastic) online version.

4.2 Decision variables

For each appointment, we have to decide upon which judge(s) and legal assistant are assigned
to the appointment and the starting timeslot. To model the problem, we use index a for
appointments, j for judges, l for legal assistants and t for timeslots. Hence, the decision variables
are as follows:

xajt =

{
1, if appointment a is assigned to judge j and starts at the beginning of timeslot t

0, otherwise.

yalt =


1, if appointment a is assigned to legal assistant l and starts at the beginning of time

slot t

0, otherwise.

Each day has T timeslots, where T ∈ N0. So, t = 0 is the first timeslot on day one, t = T is
the first timeslot on day two, and so on. For each appointment within a series (of preparation,
hearing and writing of the verdict) we must select the judge and legal assistant to which the case
is assigned, as well as the starting timeslot. Each case has three corresponding appointment
numbers of which one is included in the set preparation P, one in the set hearing H and one
in the set writing of the verdict W. When there are R appointments that must be scheduled,
all three sets have a cardinality of R. In the case of R appointments that have to be scheduled
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and appointment {a} ∈ P corresponds to the preparation of the same case as the hearing in
appointment {a+R} ∈ H and the preparation of writing the verdict in appointment {a+2·R} ∈
W. We denote the cardinality of a set A as |A|, with a vertical bar on each side. This same
notation is used for absolute value; the meaning depends on its context. We only create the
variables xajt and yalt if the last timeslot in which the appointment is executed is not larger
than the number of timeslots. Hence, xajt = 0 for all (a, j, t)|t+M(a, j) < |Timeslots|, where
M(a, j) is the duration of appointment a for judge j. Also, yalt = 0 for all (a, l, t)|t+N(a, l) <
|Timeslots|, where N(a, l) is the duration of appointment a for legal assistant l. A limitation
to this way of writing the decision variables could be that the preparation and writing of the
verdict could not be split up into multiple periods. An overview of the indices and sets can be
found in Table 1.

Table 1: Indices and sets ILP

Index Description Set Description

t, t̃ Timeslots P Appointments with regard to preparation of hearing
a, ã Appointments H Appointments with regard to the hearing itself

j, j̃ Judges W Appointments with regard to writing of the verdict

l, l̃ Legal assistants A All appointments
s Specialisms
d Difficulties

4.3 Constraints

4.3.1 Basic planning

Since only one assignment can be scheduled per timeslot for both judges and legal assistants,
we introduce the constraints in equation (4.1) and (4.2).∑

a

xajt ≤ 1, ∀ j, t (4.1)

∑
a

yalt ≤ 1, ∀ l, t (4.2)

We introduce parameter Maj that states the number of timeslots judge j needs to fulfill ap-
pointment a and parameter Nal that states the number of timeslots legal assistant l needs to
fulfill appointment a. Here, Maj = Nal for all a ∈ H, since the hearing has the same duration
for the judge as well as the legal assistant. If judge j is assigned to an appointment a starting
in timeslot t (and hence xajt = 1), he/she should not be scheduled in the timeslots afterwards
where he/she is still executing appointment a. This is modelled in equation (4.3). The same
holds for the legal assistant, which we model in equation (4.4).∑

ã,t̃|t<t̃≤t+Maj−1

xãjt̃ ≤ 1− xajt ∀ a, j, t (4.3)

∑
ã,t̃|t<t̃≤t+Nal−1

yãlt̃ ≤ 1− yalt ∀ a, l, t (4.4)

All scheduled appointments have to be assigned one legal assistant. We model these constraints
in a way that

∑
l yalt has to equal 1 if appointment a will be executed by legal assistant l and

starts at timeslot t (and thus yalt = 1). We model these constraints in equation (4.5). Each
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scheduled multiple case appointment has to be assigned three judges and each single appointment
has to be assigned only one judge. In order to model these constraints, we introduce the
binary parameter τa that is 1 if appointment a is a multiple case appointment and 0 otherwise.
Subsequently, these constraints are modelled in equations (4.6), (4.7) and (4.8). Equations
(4.9) and (4.10) model the constraints implicating that the hearing of a multiple case must be
scheduled at the same time for all three judges assigned to that multiple case.∑

l̃t̃

yal̃t̃ ≤ 2− yalt ∀ a, l, t (4.5)

τa ·
∑
j̃t̃

xaj̃t̃ ≤ τa · (4− xajt) ∀ a, j, t (4.6)

τa ·
∑
j̃t̃

xaj̃t̃ ≥ 3 · τa · xajt ∀ a, j, t (4.7)

(1− τa) ·
∑
j̃t̃

xaj̃t̃ ≤ (1− τa) · (2− xajt) ∀ a, j, t (4.8)

τa ·
∑
j̃

xaj̃t ≤ τa · (4− xajt) ∀ a ∈ H, j, t (4.9)

τa ·
∑
j̃

xaj̃t ≥ 3 · τa · xajt ∀ a ∈ H, j, t (4.10)

The hearing of a certain case must be handled by the same judge(s) and legal assistant as the
preparation of that hearing and the writing of the verdict corresponding to that hearing. If a
certain preparation (or hearing) is scheduled for a judge and legal assistant, the corresponding
hearing (or writing of the verdict) has to be treated by the same judge and legal assistant. These
constraints are modelled in equations (4.11)-(4.14).∑

t̃

x(a+|P|)jt̃ ≥ xajt ∀ a ∈ P, j, t (4.11)

∑
t̃

x(a+|P|)jt̃ ≥ xajt ∀ a ∈ H, j, t (4.12)

∑
t̃

y(a+|P|)lt̃ ≥ yalt ∀ a ∈ P, l, t (4.13)

∑
t̃

y(a+|P|)lt̃ ≥ yalt ∀ a ∈ H, l, t (4.14)

The timeslots scheduled for one hearing must be scheduled consecutively within the same day,
where T is the number of timeslots in a day. Since the hearing must take place at the same
time for the judges and legal assistants, we make use of xajt and Maj to model this constraint
without loss of generality. This constraint is captured in equation (4.15).

xajt · t− {xajt · t} mod T

T
=
xajt · t− xajt · {t+Maj − 1} mod T

T
∀ a ∈ H, j, t (4.15)

Besides, sequence should also be taken into account. For each case, the preparation should take
place before the hearing and the hearing should take place before writing the verdict. We let
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Ca,ã be 1 if appointment a should take place before ã and 0 otherwise. Caã is thus 1 if (a ∈ P
and ã ∈ H) or (a ∈ H and ã ∈ W). When |P| = 3, the Caã matrix thus looks as follows with a
on the y-axis and ã on the x-axis:

Caã =



1 2 3 4 5 6 7 8 9

1 0 0 0 1 0 0 0 0 0
2 0 0 0 0 1 0 0 0 0
3 0 0 0 0 0 1 0 0 0
4 0 0 0 0 0 0 1 0 0
5 0 0 0 0 0 0 0 1 0
6 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0


The constraints on the precedence relations are modelled in equations (4.16)-(4.19).∑

t̃<t

Caã · xãj̃t̃ ≤ 1− xajt ∀ a ∈ P, ã ∈ H, j, t (4.16)

∑
t̃<t

Caã · xãj̃t̃ ≤ 1− xajt ∀ a ∈ H, ã ∈ W, j, t (4.17)

∑
t̃<t

Caã · yãl̃t̃ ≤ 1− yalt ∀ a ∈ P, ã ∈ H, l, t (4.18)

∑
t̃<t

Caã · yãl̃t̃ ≤ 1− yalt ∀ a ∈ H, ã ∈ P, l, t (4.19)

4.3.2 Appointment judge(s) and legal assistant

The legal assistant, judge(s), prosecutor and defendant have to be available during the hearing.
We introduce the binary parameters BJjt, BLlt and BPat. Let BJjt be 1 if judge j is available
in timeslot t, let BLlt be 1 if legal assistant l is available in timeslot t and let BPta be 1 if the
other parties (prosecutor and defendant) corresponding to appointment a ∈ H are available in
timeslot t. Furthermore, we use the parameter Maj that states the number of timeslots that
have to be scheduled for judge j to execute appointment a ∈ H, without loss of generality. We
thus get the following constraint when modeling that the legal assistant, judge(s) and prosecutor
have to be scheduled for the hearing:

xajt · yalt ≤ BLlt̃ ·BJjt̃ ·BPat̃ ∀ a ∈ H, t ≤ t̃ ≤ t+Maj − 1

Since this constraint contains a multiplication of two binary variables, it is not linear. Because
of this, we use a modeling trick to make this constraint linear. The modeling trick works as
follows: “Computing x1 · x2 with both being binary variables corresponds to an and of x1 and
x2. This can be modelled by using a binary variable y and adding the constraints y ≤ x1, y ≤ x2
and y ≥ x1 +x2−1” [36]. By using this trick, we obtain the linear constraints given in equation
(4.20) up to and including (4.23).

qajlt ≤ xajt ∀ a ∈ H, j, l, t (4.20)
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qajlt ≤ yalt ∀ a ∈ H, j, l, t (4.21)

qajlt ≥ xajt + yalt − 1 ∀ a ∈ H, j, l, t (4.22)

qajlt ≤ BLlt̃ ·BJjt̃ ·BPat̃ ∀ a ∈ H, l, j, t ≤ t̃ ≤ t+Maj − 1 (4.23)

Since the judge(s) and legal assistant have to be available for the preparation and writing of
the verdict as well, we include the constraints in equation (4.24) and (4.25) for the judge(s) and
legal assistant, respectively.

xajt ≤ BJjt̃ ∀ a ∈ P, a ∈ W, j, t ≤ t̃ ≤ t+Maj − 1 (4.24)

yalt ≤ BLlt̃ ∀ a ∈ P, a ∈ W, l, t ≤ t̃ ≤ t+Nal − 1 (4.25)

Beyond the fact that all parties have to be available during the hearing, the hearing also has to
take place on the same timeslot for all parties. This is regulated in equation (4.26).

τa ·
∑
j

xajt + (1− τa) ·
∑
j

xajt = 3 · τa ·
∑
l

yalt + (1− τa) ·
∑
l

yalt ∀ a ∈ H, t (4.26)

Besides the availability, the specialisms are also important for scheduling the judge(s) and legal
assistant. Appointments that have a certain specialism should be allocated to a legal assistant
and judge(s) of that specialism. Each appointment also has a difficulty that determines which
legal assistant is suitable to handle that appointment. We introduce the following binary pa-
rameters: Ijs is 1 if judge j is suitable to handle cases of specialism s and Jlsd is 1 if legal
assistant l is suitable to handle cases of specialism s and difficulty d. Furthermore, we introduce
the binary parameter θads which is 1 if appointment a has difficulty d and specialism s. We give
the corresponding constraints in equation (4.27) and equation (4.28).

Ijs ·
∑
d

θads ≤ 2− xajt ∀ a, j, t, s (4.27)

Jlsd · θads ≤ 2− yalt ∀ a, l, t, s, d (4.28)

4.3.3 Distribution scheduled hours workers

Initially, we want that the work is evenly distributed over all the workers. Hence, we minimize
the difference between the maximum and minimum idle time in the available (for scheduling)
time. We therefore introduce the auxiliary variables χ and υ that give the maximum difference
between available and scheduled time, subtracted by the minimum difference, respectively for
the judges and the legal assistants. This way, the variance between the difference in available
hours and scheduled hours is minimized for both the judges and the legal assistants. These
auxiliary variables are calculated in equations (4.29)-(4.34) and added to the objective function.
The objective function is illustrated in Section 4.4.

χ = max
j

[
∑
t

BJjt −
∑
at

xajt ·Maj ]−min
j

[
∑
t

BJjt −
∑
at

xajt ·Maj ]

χ = r − s (4.29)
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r ≥
∑
t

BJjt −
∑
at

xajt ·Maj ∀ j (4.30)

s ≤
∑
t

BJjt −
∑
at

xajt ·Maj ∀ j (4.31)

υ = max
l

[
∑
t

BLlt −
∑
at

yalt ·Nal]−min
l

[
∑
t

BLlt −
∑
at

yalt ·Nal]

υ = u− w (4.32)

u ≥
∑
t

BLlt −
∑
at

yalt ·Nal ∀ l (4.33)

w ≤
∑
t

BLlt −
∑
at

yalt ·Nal ∀ l (4.34)

4.3.4 Standards that must be met

Finally, there are a couple of standards that must be met. At first, the hearing (the appointment
in the set H) should take place within ε1 days of the arrival of the case. Therefore, we would like
the number of days between the last timeslot for the hearing and the timeslot of the arrival of
the case to have an upper norm. We use the variable xajt to denote the timeslot of the hearing
without loss of generality, since the hearing takes place in the same timeslots for the judge(s) as
well as the legal assistant. We let γa be the first timeslot of the day after the arrival of the case.
We then add the auxiliary variable ψa that gives the number of timeslots that the scheduled
hearing in appointment a is exceeding the standard - if it is exceeding the standard - which is
calculated in (4.35)2. In this equation we use the following notation: [z]+ which means that
the outcome is z if z is positive and 0 if z takes a negative value, thus [z]+ = max{0, z}. By
using this construction, we ensure that no value is added to the objective if the appointment is
scheduled within the norms, and the number of timeslots exceeding the norm is added to the
penalty function if the scheduled appointment is exceeding the norm. The sum of the auxiliary
variables ψa over all appointments (

∑
a ψa) is subsequently added to the objective, which is

illustrated in Section 4.4. Then, the judgement (end of writing of the verdict) has to be finished
within ε2 days from the hearing. We therefore want the number of days between the biggest
timeslot used for the writing of the verdict (over the judge(s) as well as the legal assistant)
minus the biggest timeslot used for the hearing to have an upper norm. We ensure that the
judge has a higher last timeslot for writing the verdict compared to the legal assistant in equation
(4.36). In this equation we also use [z]+ = max{0, z} for the same reasons as in equation (4.35).
Furthermore, we add the sum of the auxiliary variables ωa over all appointments (

∑
a ωa) that

gives the number of timeslots by which this norm is exceeded for scheduled appointment a to
the objective. We calculate this variable in equation (4.37) and illustrate the composition of the
objective function in Section 4.4.

ψa = [
∑
jt

xajt·{t+Maj−1}−(
∑
jt

xajt·{t+Maj−1} mod T )+T−γa−ε1·T ]+ ∀ a ∈ H, ε1 ∈ N

(4.35)

2We calculate the number of timeslots in between the two moments based on the number of days in between,
where we express the day as the first timeslot on that day. We use the same method of calculation in (4.37).
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∑
jt

xajt · {t+Maj} ≥
∑
lt

yalt · {t+Nal} ∀ a ∈ W, t (4.36)

ωa = [
∑
jt̃

x(a+|P|)jt̃ · {t̃+M(a+|P|)j − 1} − (
∑
jt̃

x(a+|P|)jt̃ · {t̃+M(a+|P|)j − 1} mod T ) + T−

(
∑
jt

xajt · {t+Maj − 1} − (
∑
jt

xajt · {t+Maj − 1} mod T ) + T )

−ε2 · T ]+ ∀ a ∈ H, ε2 ∈ N
(4.37)

4.4 Objective function

4.4.1 Initial objective function

We want to minimize the number of unscheduled cases as well as the unfair distribution of the
idle time of the judges and legal assistants. We introduce the binary variable na which is 1
if the case corresponding to appointment a ∈ P is not being scheduled and 0 otherwise. We
define a case not scheduled if at least one of the appointments corresponding to that case is not
scheduled, for either the judge j, the legal assistant l or both. The binary variable na only has
a value for a ∈ P such that it is bounded for the number of cases that have to be scheduled.
We thus have to define na as follows:∑
jt

xajt ·
∑
lt

yalt = τa · (3− 3 · na) + (1− τa) · (1− na) ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A

In order to linearize the constraint, we make use of the modelling trick that linearizes the
multiplication of a binary variable with a continuous variable. This trick works as follows: “The
multiplication of a binary variable x1 with a continuous variable x2 where 0 ≤ x2 ≤ u can be
expressed by introducing a new variable y that meets the following constraints: y ≤ ux1, y ≤ x2,
y ≥ x2 − u(1 − x1), y ≥ 0” [36]. Using this method with x1 =

∑
lt yalt and x2 =

∑
jt xajt we

obtain the constraints in (4.38)-(4.41) where ba is a non-negative variable. Furthermore, χ and
υ are defined by equations (4.29) and (4.34). The number of timeslots a hearing is exceeding
its norm is denoted by ψa for appointment a ∈ H and the number of timeslots the verdict was
completed after its established standard is denoted by ωa for appointment a ∈ H, which are
defined in equations (4.35) and (4.37). In the objective we make use of the weight factors β1, β2,
β3, β4 and β5. The objective will thus be:
min β1 ·

∑
a na + β2 · χ+ β3 · υ + β4 ·

∑
a ψa + β5 ·

∑
a ωa

ba ≤ 3 ·
∑
lt

yalt ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (4.38)

ba ≤
∑
jt

xajt ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (4.39)

ba ≥
∑
jt

xajt − 3 · (1−
∑
lt

yalt) ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (4.40)

ba = 3 · τa · (1− na) + (1− τa) · (1− na) ∀ a ∈ P (4.41)
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4.4.2 Second scenario

Since a lot of timeslots could remain unscheduled when aiming to distribute the idle time as
fairly as possible, we also introduce an alternative objective, namely:

min β1 ·
∑
a

na + β2 ·
∑
j

χj + β3 ·
∑
l

υl + β4 ·
∑
a

ψa + β5 ·
∑
a

ωa

In this objective, χj and υl are the number of timeslots judge j is available but not scheduled
and legal assistant l is available but not scheduled, respectively. In the next chapter we explore
the differences when implementing the different objective functions. The variables χj and υl are
calculated as follows:

χj =
∑
t

BJjt −
∑
at

xajt ·Maj ∀ j

υl =
∑
t

BLlt −
∑
at

yalt ·Nal ∀ l

4.5 Simplifications

In order to model the problem we have made the following simplifications:

1. The first and probably most important simplification we have made is that an appoint-
ment could not be divided into multiple appointments. This makes it hard to schedule
appointments for part-timers. When appointments need to be broken up, one has to use
another decision variable, namely: the decision variable that determines all timeslots in
which an appointment lasts, instead of the starting timeslot of the appointment. This
entails the big disadvantage that the model grows enormously because of the increase of
the number of decision variables. The model already has a lot of decision variables and
constraints and therefore we have decided that this remains a part for further research.
Besides, the model can still be used where appointments of short durations are not entered
as unavailable timeslots. Since the agendas of the judges and legal assistants will still have
free time (and the durations of preparation and writing of the verdict are still roughly
estimated) the model remains usable.

2. We assume hearings could not last longer than a day. This means that we do not include
the ‘mega cases’ (in Dutch: ‘megazaken’) into our model. These cases are very rare and
the hearings last a couple of days. Implementing these cases is very complex and since
they are very rare, we have decided to leave them out of the model.

3. We have decided to not implement the parameter of whether the case is media-sensitive
to limit the size of the model. This is because we have implemented several specialisms
and difficulties and the parameter of whether a case is media-sensitive can thus be added
as an extra specialism or difficulty.

4. Some courts have special judges for summary proceedings. We have decided not to imple-
ment this explicitly, since it can also be included as an extra specialism or difficulty.

5. Some large courts (for instance the one situated in Rotterdam) work with different teams
within a specialism. Since the model has to be valid for the smaller courts, we have decided
to not implement this explicitly. When there are different teams (that can handle different
tasks) within one specialism, those teams have to be modelled as different specialisms such
that their specialties can be included in the model.
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6. We have decided to not implement any limitations on the availability of court rooms. This
is because the planners have indicated that the availability of the court rooms do not form
a limitation in the planning. Also, most planners assign a hearing to a courtroom after it
has been planned, whereby the roster of the courtrooms does not influence the planning.

7. We have decided to not model the restrictions on long vacations, defined as vacations
of three weeks or longer. These restrictions are as follows: Employees should not be
scheduled for a hearing a week in advance of a big vacation. The week after a so-called big
vacation a one-fold hearing could be scheduled, at least three working days after return,
with an upper limit of the time those involve. We have decided not to implement the
restrictions on those long vacations, since they do not occur that often and implementing
these constraints would be very hard since those vacations could overlay multiple planning
horizons.

8. At last, we have decided to not implement the label free as mentioned earlier. This label
indicates if someone would rather not be scheduled, but is available if there is no alternative
for a hearing. In our case, one has to mark this time as available and he/she can reschedule
their own time if preparation of a hearing of writing a verdict has been scheduled.
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5 Results Integer Linear Program commercial law

In this chapter, we elaborate on the results of the developed model, programmed in AIMMS.
A clarification of how the constraints involving a nonlinear component (such as the modulo-
function) are programmed in AIMMS can be found in Appendix C. All tests have been performed
on the same system: an Intel Core i5-8265U personal computer with 8 GB of RAM and we make
use of the 4.71.1 64-bit Windows AIMMS-version, where CPLEX 12.10 is used as solver. We
have chosen to start testing our model with on a dataset generated by ourselves, based on the
available data of the cases that are handled in Almelo in 2019. The setup of this dataset can be
found in Section 5.1 where we illustrate the results in Section 5.2. As last test option we wanted
to use real-time data, which we discuss further in Section 5.3.

5.1 Validation data

Currently, durations of preparation and writing of the verdict are not tracked by the courts.
Hence, accurate predictions of these durations could not be made in order to use as input in
our model. Therefore, we have chosen to start testing our model with on a dataset generated
by ourselves, based on the available data of the cases that are handled in Almelo in 2019.

The minimum of treated cases per month in Almelo in 2019 was 77 and the maximum of the
treated cases per month in 2019 was 115. In order to carry out the work, the court of Almelo
had access to 9.4 fte of judges and 12.7 fte of legal assistants. We work with 8 full-time judges
and 12 full-time legal assistants available for hearings, since judges and legal assistants also have
other tasks such as workshops and team meetings. We are aware of the fact that legal assistants
also work part-time, but since we test our model using short time period and part-timers will
never be able to complete the preparation of a hearing, the hearing itself and the writing of the
verdict in the given time period. Therefore, we have chosen to only work with full-time legal
assistants. We also make the assumption that a judge is 2

5 of the time working on a case busy
preparing the hearing, 1

10 holding a hearing and 1
2 writing the verdict.

Based on the above assumptions we have created the following case durations:

• A judge is at least 8·36·52/12
115 ≈ 10.85 hours busy with a case.

• A judge is at most 8·36·52/12
77 ≈ 16.21 hours busy with a case.

• A legal assistant is at least 12·36·52/12
115 ≈ 16.28 hours busy with a case.

• A legal assistant is at most 12·36·52/12
77 ≈ 24.31 hours busy with a case.

Based on these case durations, we have created durations of appointments. In our dataset we
deal with 24 cases a week (based on the 77 to 115 cases the court of Almelo has dealt with
a month in 2019) of which one is a multiple case. The durations of the appointments are
determined in the following way:

• Duration preparation judge: drawing uniformly a number between 2
5 · 10.85 ≈ 4.34 and

2
5 · 16.21 = 6.48 and then round up or down this number to the closest number without
decimal places.

• Duration hearing judge: drawing uniformly a number between 1
10 · 10.85 = 1.085 and

1
10 · 16.21 = 1.621 and then round up or down this number to the closest number without
decimal places.
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• Duration writing verdict judge: drawing uniformly a number between 1
2 ·10.85 = 5.425 and

1
2 · 16.21 = 8.105 and then round up or down this number to the closest number without
decimal places.

• Duration preparation legal assistant: drawing uniformly a number between 2
5 · 16.28 =

6.512 and 2
5 · 24.31 = 9.724 and then round up or down this number to the closest number

without decimal places.

• Duration hearing legal assistant: This number is taken from the duration of the hearing
of the judge of the same appointment.

• Duration writing verdict legal assistant: drawing uniformly a number between 16.28 and
24.31 and subtract the duration of the preparation and hearing, belonging to the same
case.

Furthermore, we have used five main specialisms and four difficulties as is also dealt with in
Almelo, where each judge and legal assistant is able to handle two or three specialisms and
each legal assistant can handle all difficulties from one specialty and less from the other(s). The
legal assistants can handle different difficulties, which is decided randomly. Furthermore, we
decide randomly which judge can handle which specialism, in such a way that every specialism
is covered. We use timeslots of one hour and make a schedule for a week. Furthermore, we
assume that everyone is available all timeslots, since the model leaves no possibility to interrupt
appointments.

5.1.1 Scenario 1

We test with different values for the weight factors. When using the above described dataset,
the following ranges apply for the different parts of the objective when using the initial ob-
jective (exemplified as the first scenario):

∑
a na = {0, ..., 24}, χ = {0, ..., 35}, υ = {0, ..., 35},∑

a ψa = {0, ..., 24 · 35 · 8} and
∑
a ωa{0, .., 24 · 35 · 12}. We test how the model behaves in the

different situations. Since ε1 = 60 and ε2 = 30 in the case of commercial law, we only have
timeslots {0, .., 35} and γa = 0 ∀ a, exceeding the norms can hardly occur. Adding smaller
norms was also not an option since we only schedule for five working days and we work with
the original durations of the appointments. Therefore, we have decided to test with several
situations in which β4 and β5 are not subject to change and therefore β4 = β5 = 1 in every situ-
ation. Hence, when using this dataset, the challenge lies in scheduling as many appointments as
possible and leaving as few timeslots as possible non-scheduled. In the validation set we expand
the challenge by taking a larger time horizon such that the standards must be taken into account.

Since the model does not schedule appointments when giving too much weight on the equal
division of the working hours, we do not consider situations where β2 and β3 are so high such
that the best solution is not to schedule any appointment (e.g. β1 = 1

24 , β2 = β3 = 1
35 ). For

β1 = 1
24 and β2 = β3 = 1

100 the model does not schedule any appointment, but for β1 = 1
24 and

β2 = β3 = 1
125 we consider the case where β1 = 1

24 , β2 = β3 = 1
125 . Since we want to compare

different values for the weight factors, we also consider the situation where β1 = 1, β2 = 0, β3 =
0), the situation where β1 = 0, β2 = 1

125 , β3 = 1
125 and finally the situation where we make β2

and β3 twice as small so we obtain β1 = 1
24 , β2 = 1

350 , β3 = 1
350 .

5.1.2 Scenario 2

We test with different values of the weight factors. When using the above described dataset, the
following ranges apply for the different parts of the objective when using the alternative objective
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(exemplified as the second scenario):
∑
a na = {0, ..., 24}, χ = {0, ..., 8 · 35}, υ = {0, ..., 12 · 35},∑

a ψa = {0, ..., 24 · 35 · 8} and
∑
a ωa{0, .., 24 · 35 · 12}. We test how the model behaves in

the different situations. When giving equal weight to the β’s (in proportion to their possible
values), the model does schedule the appointments, unlike with the initial objective. Hence, the
situations we consider for testing the validation data in the second scenario are as follows:

1. All parts of the objective function are equally important. We determine the weight factors
by dividing the importance factor by the size class and hence obtain:

• β1 = 1
24 , β2 = 1

8·35 = 1
280 , β3 = 1

12·35 = 1
420 , β4 = 1 and β5 = 1

2. The number of unscheduled appointments is important, the number of unscheduled (but
available) timeslots is not:

• β1 = 1, β2 = β3 = 0, β4 = 1 and β5 = 1

3. The number of unscheduled appointments is not important, the number of unscheduled
(but available) timeslots is important:

• β1 = 0, β2 = 1
280 , β3 = 1

420 , β4 = 1 and β5 = 1

4. The number of unscheduled appointments is ten times as important as the number of
unscheduled (but available) timeslots:

• β1 = 10
24 , β2 = 1

280 , β3 = 1
420 , β4 = 1 and β5 = 1

5. The number of unscheduled (but available) timeslots is ten times as important as the
number of unscheduled appointments:

• β1 = 1
24 , β2 = 10

280 , β3 = 10
420 , β4 = 1 and β5 = 1
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Figure 1: Screenshot result tool (scenario 1) with β1, β2, β3 from situation 1

5.2 Illustration results validation data

5.2.1 Scenario 1

In this section we elaborate on some results from testing the model with the data described in
Section 5.1. The results itself are given in Appendix D. The interface of the output of the model
after running scenario 1 for 30 minutes (with β1 = 1

24 , β2 = 1
125 , β3 = 1

125 ) is shown in Figure
1. The numbers in the figure correspond to the appointment numbers and appointments of the
same color belong to the same case. We can see here that for not every case, all appointments
can be scheduled. For the case with eight judges, eight appointments is the maximum that can
be scheduled and in the case with ten judges, twelve is the maximum (when putting no weight
on the equal division of the working hours). This makes sense, since the number of workers is
not enough to handle the work. We namely have eight judges and twelve legal assistants (in the
initial case) with 35 timeslots, so judges are 8 · 35 = 280 timeslots available and legal assistants
12 · 35 = 420 timeslots, where there are between 24 · 10.85 = 260.4 and 24 · 16.21 = 389.04
timeslots for the judges needed to handle the appointments and between 24 · 16.28 = 390.72
and 24 · 24.31 = 583.44 timeslots for the legal assistants needed to handle the appointments.
Furthermore, we see that the model is able to find a solution quickly when no weight is given
on the equal distribution of timeslots, but in the other cases the optimality gap is high -around
45 percent- for every situation. This confirms that the size of the model is large and takes a
long time to solve.
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Figure 2: Screenshot result tool (scenario 2) with β1, β2, β3 from situation 1

5.2.2 Scenario 2

The interface of the output of the model after running scenario 2 for 30 minutes (with β1 =
1
24 , β2 = 1

280 , β3 = 1
420 ) is shown in Figure 2. By trial and error we have found that the model

with the second scenario is able to find reasonable solutions after ten minutes of running, instead
of thirty minutes in the case of the first scenario. Also, the model is able to find a solution when
aiming at minimizing the idle time (and not the number of unscheduled appointments). We see
here that the optimality gap increases with the size of the model. When two judges have been
added to the model, the optimality gap is in every situation more than doubled when running
for the same time. Besides, we see a small increase in the optimality gap when the judges and
legal assistants can handle (all difficulties of) all specialties instead of only one.

5.3 Illustration results test data

We also wanted to test the model on real data. Therefore, we have used the cases that Overijssel
had to schedule during the 23rd of July. Since a lot of the judges, legal assistants, prosecutors
and defendants are not available during a long time -because of the summer vacations- some of
the standards could not be achieved in any way. Furthermore, we have used timeslots of a day,
where preparation, hearing and writing of the verdict all cost one day and the available days are
all working days from August up to and including November. Since we had to use the Outlook
Calenders of the judges and legal assistants in order to extract their availability, this solution
was really dependent on how they have tracked their agendas (for instance some of the workers
do not keep track of every appointment in their Outlook agenda which gives us a misleading

27



picture of their availability). The model then still gives earlier data for the hearings, since we
could not take into account the preparation and elaboration time of the already scheduled cases
as this is not being tracked.

As we still wanted to test the model on real data we have created another dataset, based on
the hearings that have taken place, for the judges of the team situated in Almelo, in 2019. We
have inserted the appointments that had to be scheduled from January (starting with an empty
schedule), where they could also be scheduled in February and March. Thereafter, we wanted
to use the appointments of February as appointments that had to be scheduled and we have
inserted the already scheduled timeslots in February and March as unavailable. The durations
of preparation, hearing and writing of the verdict have been taken from Section 5.1. The undis-
closed agendas of judges the team in Almelo have been replaced by disclosed agendas of judges of
the team in Zwolle, since they form one team (team Overijssel) together. Furthermore, we have
used timeslots of one hour and gave the cases specialisms at random (since the specialism of a
certain case is not tracked in the agendas). The specialisms of the judges was known, but those
of the legal assistants have been determined at random. The appointments have to be handled
within the same norms as with the validation data and the assumptions on the specialisms and
difficulties also remain the same.

Unfortunately, the memory of my computer was not enough to handle all cases of January. Since
we work with partly filled agendas in the sequel, the model has to go along less possibilities and
could be able to solve problems over a larger time horizon. Besides, the decision variables with
timeslots already filled should not be generated from the beginning, which also decreases the
size of the model.
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6 Stochastic Dynamic Program commercial law

In order to take the uncertainty of the durations into account as well as involving the arrival of
future cases, we develop a SDP. In Section 6.1 we elaborate on the reasons to develop a SDP and
what such a model entails. Subsequently, in Section 6.2 we give the formulation of the SDP and
in Section 6.3 we give the solution approach. Finally, we elaborate on the -earlier mentioned-
occurrence of some scheduled appointments that will not find passage in Section 6.4.

6.1 Introduction

The ILP does not cover stochastic durations and predictions for the future. The literature re-
view has showed similarities between our problem (when including those uncertainties) and the
MASPH. When future requests are taken into account, the MASPH can be formulated as a
two-stage SIP [41]. In order to solve this model, it can be divided into two stages by the SAA
approach and heuristic methods can then be used to solve these two stages. Also, the problem
can be formulated as a MDP which can be considered as the standard method for planning
under uncertainty can be solved by Approximate Dynamic Programming [46] [4]. Since there
is more literature available on planning under uncertainty by using a MDP we have chosen to
focus on this way of modelling.

The qualifier “Markov” (for Markov Decision Processes) can be used if the underlying stochas-
tic processes is a stationary process that features the Markov property. The Markov property
is the property that the reward functions as well as the transition probabilities only depend
on the current state and the action selected by the decision maker in that state. For a more
detailed described on the Markov Decision Processes and its applications, we refer to the book
of Puterman [40].

To formulate a MDP, we introduce a set of points in time on which decisions are made, called
decision epochs. At each decision epoch, the system occupies a state and at each state, the
decision makes has to choose an action. As a result of choosing an action a ∈ As in state s at
decision epoch t [40]:

1. the decision maker receives a reward rt(s, a) and;

2. the system state at the next decision epoch is determined by the probability distribution
pt(·|s, a), where

∑
j∈S pt(j|s, a) = 1.

6.2 Formulation SDP

We use the following sets:

1. The set containing the judges: J = {1, ..., J}, where j ∈ J ;

2. The set containing the legal assistants: L = {1, ..., L}, where l ∈ L

3. The set containing the appointments: A = {1, ..., A}, where a ∈ A;

4. The set containing the type of appointments: I = {1, ..., I} where i ∈ I;

5. The set containing the timeslots: T = {1, ..., T}, where t ∈ T .
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At the end of each day or week (depending on the team), the booking agent must decide on which
timeslots to book a certain case, over an infinite horizon. We thus have to deal with a rolling
horizon. This rolling horizon approach is also preferred because the finite horizon approach may
cause unwanted and short-term focused behavior in the last periods and it ensures that the most
recent information is used [32]. To formulate the SDP we have to define the states, decisions,
direct costs, transition probabilities and the optimal value function.

6.2.1 States

The state of the system, denoted s ∈ S is represented by a vector s = (xjt, ylt,Maj , Nal, θads, na)
where Maj and Nal represent the durations of appointment a for respectively judge j and legal
assistant l, θads is the binary variable that is 1 if appointment a has difficulty d and specialism s,
na is the binary variable that is 1 if appointment a could not be scheduled previously and the def-
inition of xjt and ylt is given below. The state s ∈ S is thus a large vector that can be represented
as follows: s = (x11, .., xJT , y11, .., yLT ,M11, ..,MAJ , N11, .., NAL, θ111, .., θADS , n1, .., nA).

xjt =

{
1, if judge j is available (not yet scheduled) on timeslot t

0, otherwise.

ylt =

{
1, if judge j is available (not yet scheduled) on timeslot t

0, otherwise.

6.2.2 Decisions

At the end of each day or week (depending on the team), the booking agent must decide on
which timeslots to book a certain case, that corresponds to three appointments: preparation,
hearing and writing of the verdict. We denote an action by α = (xajt, yalt) where xajt and yalt
are defined below.

xajt =

{
1, if appointment a is scheduled for judge j to start on timeslot t

0, otherwise.

yalt =

{
1, if appointment a is scheduled for legal assistant l to start on timeslot t

0, otherwise.

Of each case, three appointments have to be scheduled. The first appointment entails the
preparation of the hearing and the appointments are given in the set P, where the set P
consists of a = 1 up to and including a = |P|. The set H contains the to be scheduled hearings
and ranges from a = |P| + 1 up to and including a = 2 · |P|. Finally, the set W contains
the to be scheduled appointments for writing of the verdict and ranges from a = 2 · |P| + 1
up to and including a = 3 · |P|. The set of feasible actions compatible with the state s ∈ S,
denoted by As must satisfy the constraints below. Constraints (6.1) and (6.2) ascertain that a
new appointment can only be scheduled on a certain timeslot if the judge or legal assistant is
not yet scheduled in one of the timeslots in which the appointment takes place (where Maj is
the duration of appointment a for judge j and Nal is the duration of appointment a for legal
assistant l). These durations can be drawn from the uniform distribution as is illustrated in
Section 5.1. The constraints thereafter (including the variables and parameters) are reused from
the Mixed Integer Linear Program (MILP) and assure that the to be scheduled appointments
satisfy the necessary conditions.
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∑
ã

xãjt̃ ≤ xjt̃ − xajt ∀ a 6= ã, j, t < t̃ ≤ t+Maj − 1 (6.1)

∑
ã

yãlt̃ ≤ ylt̃ − yalt ∀ a 6= ã, l, t < t̃ ≤ t+Nal − 1 (6.2)

∑
a

xajt ≤ 1, ∀ j, t (6.3)

∑
a

yalt ≤ 1, ∀ l, t (6.4)

∑
l̃t̃

yal̃t̃ ≤ 2− yalt ∀ a, l, t (6.5)

τa ·
∑
j̃t̃

xaj̃t̃ ≤ τa · (4− xajt) ∀ a, j, t (6.6)

τa ·
∑
j̃t̃

xaj̃t̃ ≥ 3 · τa · xajt ∀ a, j, t (6.7)

(1− τa) ·
∑
j̃t̃

xaj̃t̃ ≤ (1− τa) · (2− xajt) ∀ a, j, t (6.8)

τa ·
∑
j̃

xaj̃t ≤ τa · (4− xajt) ∀ a ∈ H, j, t (6.9)

τa ·
∑
j̃

xaj̃t ≥ 3 · τa · xajt ∀ a ∈ H, j, t (6.10)

∑
t̃

x(a+|P|)jt̃ ≥ xajt ∀ a ∈ P, j, t (6.11)

∑
t̃

x(a+|P|)jt̃ ≥ xajt ∀ a ∈ H, j, t (6.12)

∑
t̃

y(a+|P|)lt̃ ≥ yalt ∀ a ∈ P, l, t (6.13)

∑
t̃

y(a+|P|)lt̃ ≥ yalt ∀ a ∈ H, l, t (6.14)

xajt · t− {xajt · t} mod T

T
=
xajt · t− xajt · {t+Maj − 1} mod T

T
∀ a ∈ H, j, t (6.15)

∑
t̃<t

Caã · xãj̃t̃ ≤ 1− xajt ∀ a ∈ P, ã ∈ H, j, t (6.16)

∑
t̃<t

Caã · xãj̃t̃ ≤ 1− xajt ∀ a ∈ H, ã ∈ W, j, t (6.17)
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∑
t̃<t

Caã · yãl̃t̃ ≤ 1− yalt ∀ a ∈ P, ã ∈ H, l, t (6.18)

∑
t̃<t

Caã · yãl̃t̃ ≤ 1− yalt ∀ a ∈ H, ã ∈ W, l, t (6.19)

qajlt ≤ xajt ∀ a ∈ H, j, l, t (6.20)

qajlt ≤ yalt ∀ a ∈ H, j, l, t (6.21)

qajlt ≥ xajt + yalt − 1 ∀ a ∈ H, j, l, t (6.22)

qajlt ≤ BLlt̃ ·BJjt̃ ·BPat̃ ∀ a ∈ H, l, j, t ≤ t̃ ≤ t+Maj − 1 (6.23)

xajt ≤ BJjt̃ ∀ a ∈ P, a ∈ W, j, t ≤ t̃ ≤ t+Maj − 1 (6.24)

yalt ≤ BLlt̃ ∀ a ∈ P, a ∈ W, l, t ≤ t̃ ≤ t+Nal − 1 (6.25)

∑
j

xajt =
∑
l

yalt ∀ a ∈ H, t (6.26)

Ijs ·
∑
d

θads ≤ 2− xajt ∀ a, j, t, s (6.27)

Jlsd · θads ≤ 2− yalt ∀ a, l, t, s, d (6.28)

ba ≤ 3 ·
∑
lt

yalt ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (6.29)

ba ≤
∑
jt

xajt ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (6.30)

ba ≥
∑
jt

xajt − 3 · (1−
∑
lt

yalt) ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (6.31)

ba = 3 · τa · (1− na) + (1− τa) · (1− na) ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (6.32)

32



6.2.3 Transition probabilities

Once actions are taken, the sources of uncertainty in the transition to the next state of the system
are the number and the durations of the incoming appointments. As a result of choosing action
α in state s ∈ S, the state of the system the next day, denoted by s′ = (x′11, .., x

′
JT , y

′
11, .., y

′
LT )

is defined by the following probability distribution, where pz is the probability of a case z that
brings along an appointment a ∈ P, a+ |P| ∈ H and a+ 2 · |P| ∈ W:

p(s′|s,α) =

{
pz, if s′ = (x′jt, y

′
lt,M

′
aj , N

′
al, θ

′
ads, τ

′
a, n
′
a) satisfies equations (6.33) and (6.34)

0, otherwise.

x′jt =

{
xj(t+T ) −

∑
a,t<t̃≤t+Maj−1 xajt̃, ∀ j, t = 0, 1, 2, .., T · (q − 1)− 1

1, ∀ j, t = q · T, .., (q − 1) · T − 1
(6.33)

y′lt =

{
yl(t+T ) −

∑
a,t<t̃≤t+Nal−1 yalt̃, ∀ l, t = 0, 1, 2, .., T · (q − 1)− 1

1, ∀ l, t = q · T, .., (q − 1) · T − 1
(6.34)

n′a = na −
∑
a∈P

ba (6.35)

pz =

A∏
a=1

P (M ′aj = mk) · P (N ′al = nk) · P (θ′ads = Θads) · P (τa = 1) (6.36)

ps(sk) = P (S = sk) =
1

N
, k = {1, .., N} (6.37)

ps(s;λ) =
e−λλs

s!
for s = 0, 1, 2, .. (6.38)

In equations (6.33) and (6.34) the new parameter q is introduced which denotes the number
of days of the rolling horizon, where q = 5 in the case of a rolling horizon of one week and T
is the number of timeslots in a day. Furthermore, each case must be scheduled for both the
judge and the legal assistant and hence the case z can be defined as a six-tuple where z =
(aj , aj+|P|, aj+2·|P|, al, al+|P|, al+2·|P|). Then, aj is the duration of the preparation belonging
to case z that has to be scheduled for the judge, aj+|P| is the duration of the hearing of the
appointment belonging to case z that has to be scheduled for the judge and aj+2·|P| is the
duration of the writing of the verdict of the appointment belonging to case z that has to be
scheduled for the judge. The fourth up to and including sixth element of the tuple z are dealing
with the same appointments, but contain possibly different durations, namely the durations
that have to be used when scheduling the appointments for the legal assistants. The probability
pz is the product of the probabilities of having a duration for a certain appointment, as shown
in equation (6.36), where the distribution of Maj is equal for each j and the distribution of Nal
is equal for each l and (m1, ..,mN ) and (n1, .., nN ) contain the values that Maj and Nal could
take, respectively. Since the durations are drawn from uniform distributions, these probabilities
can be calculated using equation (6.37), which shows the probability function of S that has
N possible values (S1, .., SN ), where the possible values are uniformly distributed. Equations
(6.33) and (6.34) define the new number of appointment slots that are booked on timeslot t as
a function of appointment slots previously booked on timeslot t + 1 plus all the new bookings
that affected that timeslot, for the judges and legal assistants, respectively. We assume that
the arriving cases follow a Poisson process. Hence, the formula of the probability mass function
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for the Poisson process -given in (6.38)- can be used to determine the number of expected case-
arrivals. Finally, we use a uniform distribution for τa: whether the case is one-fold or a multiple
case. We make the assumption that 10% of the cases arriving is a multiple case [3].

6.2.4 Direct costs

The direct costs associated with choosing action α in state s arises from two sources: the costs
of scheduling an appointment after the norm that is settled for the appointment and the costs
of not equally dividing the work over the judges and legal assistants. With the first source, we
refer to the hearings that must take place a determined number of weeks (twelve weeks in case
of commercial law) after the arrival of that certain case, of which the penalty is modelled in
equation (6.40). The verdict must be written a determined number of weeks (six weeks in case of
commercial law) after the hearing has taken place, of which the penalty is modelled in equation
(6.41). Beneath equation (6.41) the penalty for not equally dividing the work over the judges
is calculated. Here, the minimum difference between the available time and the scheduled time
for a judge is subtracted from the maximum difference in order to make the difference as small
as possible for all judges, of which the formula is given in (6.42). The same way of modelling
has been used to model the penalty for not equally dividing the work over the legal assistants,
of which the formula is given in (6.43). The final direct costs are then defined by taking the
weighted sum over the above mentioned components, where β1, β2, β3, β4 and β5 are used as
weight factors, as is shown in (6.39).

c(s,α) = β1 · c1(s,α) + β2 · c2(s,α) + β3 · c3(s,α) + β4 · c4(s,α) + β5 · c5(s,α) (6.39)

c1(s,α) =
∑
a∈H

[
∑
jt

xajt ·{t+Maj−1}−(
∑
jt

xajt ·{t+Maj−1} mod T )+T−γa−ε1 ·T ]+ (6.40)

c2(s,α) =
∑
a∈H

[
∑
jt̃

x(a+|P|)jt̃ · {t̃+M(a+|P|)j − 1} − (
∑
jt̃

x(a+|P|)jt̃ · {t̃+M(a+|P|)j − 1} mod T ) + T

−(
∑
jt

xajt · {t+Maj − 1} − (
∑
jt

xajt · {t+Maj − 1} mod T ) + T )− ε2 · T ]+

(6.41)

c3(s,α) = max
j

[
∑
t

BJjt −
∑
at

xajt ·Maj ]−min
j

[
∑
t

BJjt −
∑
at

xajt ·Maj ] (6.42)

c4(s,α) = max
l

[
∑
t

BLlt −
∑
at

yalt ·Nal]−min
l

[
∑
t

BLlt −
∑
at

yalt ·Nal] (6.43)

c5(s,α) =

A∑
a=1

na (6.44)

6.2.5 Optimal value function

The objective function minimizes the direct costs and expected future costs for this discounted
rolling horizon MDP. Since we are interested in determining the optimal stationary policy, we
write the objective function in the form of Bellman’s optimality equations as follows of the
ν-discounted costs associated with state s ∈ S:

v(s) = min
a∈A
{c(s,α) + ν

∑
s′∈S

v(s′)} ∀ s ∈ S
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6.3 Solution approach

6.3.1 Methodology

Solving the problem is a complex task since the size of the state space grows exponentially with
the number of state variables. A number of sophisticated methods for solving these problems
have been developed, called ADP [8]. Linear programming algorithms is a method that can be
used for discounted infinite-horizon MDPs and can be summarized in the following steps [8]:

1. Write the optimality equations in their linear programming form;

2. Write the value function as a linear combination of basis functions;

3. Formulate the approximate equivalent linear program;

4. Solve the approximate equivalent linear program via constraint sampling or column gen-
eration;

5. Compute approximate optimal actions.

The strategy illustrated above is useful if the state space is relatively small, but if the state space
becomes larger it becomes impossible to solve the linear program and compute the optimal ac-
tions determined with the Bellman equations due to the curse of dimensionality. Therefore, we
consider a method to reduce the problem to be able to use ADP.

The large outcome space can be handled through the post-decision state which is defined in
Definition 1. The optimality equations can then be rewritten using this post-decision state. A
complete sketch of the ADP algorithm using the post-decision state variable for finite horizons
can be found in Algorithm 1 [39]. Following standard mathematical notation, each sample path
is indexed by the Greek letter ω, where we can call pt(ω) a sample realization such that the
sequence p1(ω), p2(ω), p3(ω), ... = ωn can be referred to as the sample path. By choosing ω
at random, randomness is created. Furthermore, we define Ω as a set of all possible sample
realizations, where ω ∈ Ω. By defining Ω̂ as the set of discrete observations of ω ∈ Ω we can
talk about p(ω) being the probability that we sample ω from within the set Ω̂. Wt+1 is then
defined as the exogenous information becoming available during time interval t [39].

Definition 1. The post-decision variable is the state of the system after we have made a deci-
sion, but before any new information arrives. We denote this by the state Sat or the state-action
pair (St, at) [39].
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Algorithm 1 Forward dynamic programming using the post-decision state variable [39]

Result: Value functions (V̄ Nt )Tt=1

Step 0: Initialization

(a) Initialize V̄ 0
t , t ∈ T .

(b) Set n = 1.

(c) Initialize S1
0 .

Step 1: Choose a sample path ωn.

Step 2: Do for t = 0, 1, 2, .., T :

(a) Solve:
v̄nt = max

at∈An
t

(Ct(S
n
t , at) + V̄ n−1t (SM,a(Snt , at)); (6.45)

and:
ant = argmax

at∈An
t

(Ct(S
n
t , at) + V̄ n−1t (SM,a(Snt , at)). (6.46)

(b) If t > 0, update V̄ n−1t−1 using

V̄ nt−1(Sa,nt−1) = (1− αn−1)V̄ n−1t−1 (Sa,nt−1) + αn−1v̂
n
t . (6.47)

(c) Find the post-decision state
Sa,nt = SM,a(Snt , a

n
t ); (6.48)

and the next pre-decision state

Snt+1 = SM (Snt , a
n
t ,Wt+1(ωn)). (6.49)

Step 3: Increment n. If n ≤ N , go to step 1.

Furthermore, we define Vt(St) as the value of being in state St just before the decision a has
been made and V at (Sat ) is the value of being in state V at (Sat ) immediately after decision a. The
function SM,a(St, at) then takes us from a decision node (pre-decision state) to an outcome
node (post-decision state). The use of forward dynamic programming in combination with the
post-decision state variable avoids the need to approximate the expectation explicitly within
the optimization problem. Since the decision function “sees” the approximation of the value
function Vt(S

a
t ) directly -instead of indirectly through the approximation of the expectation- we

are able to control the structure of the value function [39]. This is especially useful when the
problem is an integer problem that requires special structure, as is the case in our problem.
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Algorithm 2 ADP with post-decision state applied to our problem

Result: Approximation of the value functions (V̄ Nd )Dd=0

Initialize V̄ 0(Sd) for all states Sd;
Set n = 1;
Choose initial state S1

0

for n = 1 to N do
Choose sample path ω̂n consisting of a number of appointments (drawn from the Poisson
distribution) with a duration, specialism and difficulty where these are drawn from a uni-
form random distribution;
for d = 0, 1, ..., D do

Solve the following under the given constraints (as an ILP):

v̂nd = max
at∈An

d

−(C(Snd , ad) + γV̄ n−1d (SM,a(Snd , ad)); (6.50)

and
and = argmax

ad∈An
d

−(C(Snd , ad) + γV̄ n−1d (SM,a(Snd , ad)); (6.51)

if d > 0 then
Update V̄ nd−1(Sa,nd−1) using

V̄ nd−1(Sa,nd−1) = (1− αn−1)V̄ n−1d−1 (Sa,nd−1) + αn−1v̂
n
d ; (6.52)

end
Find the post-decision state

Sa,nd = SM,a(Snd , a
n
d ); (6.53)

and the next pre-decision state

Snd+1 = SM (Snd , a
n
d ,Wd+1(ωn)); (6.54)

end

end

We have rewritten the algorithm from Powell [39] in order to fit to our problem (by for instance
transferring the maximization problem into a minimization problem by maximizing the negative
objective function) and obtained Algorithm 2. Here, C(snd , ad) are the direct costs (that do not
depend on d in our case) and V̄ n−1d (SM,a(Snd , at)) is the approximation of the value function
that can be found iteratively and γ represents the discounting factor. At d = 0 we look at a
horizon of four months. Since we aim on planning every week -and we make use of the rolling
horizon- at d = 1 we look again at four months, where the first week of the last time period is
cut off and one new week is added. These four months have emerged from the norm composed
by the “Programma Tijdige Rechtspraak” for a case within commercial law to go from arrival
of the case to the completion of the verdict. Please note: we have used the d in this algorithm
to refer to the length of the horizon, since the t in our state as well as the action refers to
a timeslot (of one hour, in our case). In (6.52) αn−1 is known as a “stepsize” and generally
takes values between 0 and 1. This “stepsize” aims at using observations of noisy data (v̂n) to
approximate the mean of the distribution from which the observations are being drawn. This is
needed because of the randomness in v̂n arising from the way we approximated the expectation
[39]. We have chosen to define αn as the deterministic formula 10

9+n .
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6.3.2 Value function approximation

Despite the fact that we have already found a matching algorithm for the solution method,
there is still quite a challenge ahead. We still have to design an approximation for the cost-to-
go function (V̄ nt (Sa,nt ) in Algorithm 2) that is computationally tractable and provides a good
approximation of the future cost, as a function of the current state [32] [51]. This can be done
in several ways [39]:

1. Using lookup tables (with aggregation);

2. Using parametric models;

3. Using nonparametric models.

In order to use lookup tables (with aggregation) the family of aggregation functions Gg : S →
S(g) has to be defined. Here, S(g) represents the gth level of aggregation of the state space S and
the single aggregation function G maps the disaggregate state s ∈ S = S(0) into an aggregated
space S(g). For further study of the method of aggregation, we refer to Powell [39].

There are many applications where aggregation is naturally hierarchical and each higher level
can be represented as an aggregation of the previous level. However, in most cases there is no
reason to assume the structure is hierarchical. Also, when we use value function approximation,
the issue arises that two different states may have the same behavior -due to the aggregation-
despite the fact that the states are different and should perhaps exhibit different behaviors [39].
Besides, the number of possible feature vector increases exponentially with the number of fea-
tures, which entails that look-up tables are only practical when there are very few features [51].

With parametric models we refer to regression methods such as linear regression, shrinkage
methods and support vector regression [39]. In ADP, the independent variables xi are created
using basis functions that reduce potentially large state variables into a small number of features.
Hence, instead of an independent variable xi we would have a basis function φf (S), where f ∈ F
is a feature [39]. This method has received a tremendous amount of attention in literature and
we go further into these parametric models below. However, the power of parametric models is
matched by their fundamental weakness: they are only effective if one can design an effective
parametric model which could be a frustrating art [39]. Besides, the quality of approximations
is determined by the quality of the chosen features [51]. Therefore, nonparametric models have
come into play. With nonparametric models we refer to methods that build local approximations
to functions using observations rather than depending on functional approximations such as k-
nearest neighbor and kernel regression. It is an active area of research that offers tremendous
potential, but significant hurdles remain before this approach can be widely adopted [39].

We have chosen to work with the basis functions approach, since this approximation strategy
works well when the state space and outcome space are large and they are relatively easy to
use [32]. Also, we are not dealing with a hierarchical structure which is why we will not deal
with lookup tables (using aggregation). We explain the strategy of using basis functions in
detail, after which we go further into the basis function used in the game “Tetris” and the basis
functions that can be applied to our problem.

Basis functions can be used if particular features of a state vector -that have significant impact
on the value function- can be identified. The basis functions are then created for each individual
feature that reflects the impact of the feature of the value function. Hence, the chosen features
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have to be independently separable. We thus define:

F = set of features

φf (St) = basis function for the feature f ∈ F for the state St

Thereafter, the value function approximation can be defined as in (6.55) where θnf is a weight
for each feature f ∈ F and φf (Sxt ) is the value of the particular feature f ∈ F given the post-
decision state Sxt [32]. Such a feature vector is meant to represent the most salient properties of
a given state [51]. The weight φnf is updated recursively and the iteration counter is indicated
with n [32].

V̄ nt (Sxt ) =
∑
f∈F

θnf φf (Sxt ) ∀ t ∈ T (6.55)

In order to update the estimate of the value of being in a state, we make use of linear models
because of their simplicity. For updating the value function approximations, the recursive least
squares method is an effective approach [32]. This approximate value iteration algorithm for
linear models is captured in Algorithm 3, where the derivation of the formulas (6.59)-(6.63) can
be found in Powell [39]. In this algorithm, β is the discount factor, for which we take 0.95. As
before, we need to adapt the algorithm a little as we are dealing with a minimization problem,
whereas Powell [39] is dealing with a maximization problem; we hence rewrite our minimization
problem into a maximization problem by maximizing the objective function multiplied by −1.
Furthermore, we initialize Gn by using the zero matrix for G0 and we initialize the weights θn

in the value function approximation as θ0 = 1 for all time periods. Furthermore, since we use a
stepsize rule for αn (namely αn = 10

9+n ) and λn at iteration n should be calculated as stated in
(6.58).

In the initial algorithm of Powell, he has used the matrix B which he thereafter replaces by
the matrix Gn = (Bn)−1 as the discount produced by λn was related to the choice of the
stepsize rule. We have also chosen a stepsize rule in order to calculate λn (namely αn = 10

9+n )
to reflect the nonstationarity of the observations and therefore we also make use of the matrix
Gn = (Bn)−1 instead of the matrix B.

39



Algorithm 3 Approximate value iteration using a linear model [39]

Result: Approximation of the value functions (V̄ )N

Initialize V̄ 0, G0, θ0 and S1;
for n = 1 to N do

Solve:
v̂n = max

a∈A
(C(Sn, a) + β

∑
f

θn−1f φf (SM,a(Sn, a))) (6.56)

and:
an = argmax

a∈A
(C(Sn, a) + β

∑
f

θn−1f φf (SM,a(Sn, a))); (6.57)

Update the value function recursively using equations (6.59) - (6.63) to obtain θn.

λn = αn−1 ·
1− αn
αn

(6.58)

γn = λn + (φn)T (Gn−1)−1φn (6.59)

Gn = λnG
n−1 + φn(φn)T (6.60)

V̄s(θ
n−1) =

∑
f

θn−1f φf (SM,a(Sn, an)) (6.61)

ε̂n = V̄s(θ
n−1)− v̂n (6.62)

θn = θn−1 − 1

γn
(Gn)−1φnε̂n (6.63)

Choose a sample Wn+1 = W (ωn+1) and determine the next stage using some policy such
as:

Sn = SM (Sn+1, an,Wn+1)

end

We have encountered a few flaws in this algorithm and have therefore adjusted it by a few
points. At first, we have left out the “+(φn)T (Gn−1)−1φn” for n = 1 in (6.59) since one needs
the inverse of Gn−1 and one simply cannot take the inverse of G0 as G0 is defined as the zero
matrix by Powell [39]. For the same reason, we have left out the “– 1

γn (Gn−1)−1φnε̂n” in (6.63).

Also, we have defined φn as a row vector instead of a column vector (as it is defined in [39]) since
the matrix dimensions would otherwise not agree, for instance in (6.60) where φn(φn)T should
give a n by n matrix in order to obtain a correct formula. Likewise, because of these matrix
dimensions, we have taken the transpose of (Gn)−1φn in (6.63). Powell [39] defines the matrix
G as (Bn)−1 and when implementing this definition in the original expression for θn (including
matrix B) we obtain the following formula for θn:

θn = θn−1 − 1

γn
(Gn−1)−1φnε̂n

Hence, we implement this formula in our approximate value iteration instead of the one he has
provided in the algorithm. After having implemented the algorithm this way, we obtained a
singular matrix Gn for n ≥ 1 and we have found that there are a few assumptions that should
hold in order for this algorithm to work successfully. These can be found in Assumption 1 and
2, where we denote the states by i = 1, .., n, the transition probabilities by pij , i, j = 1, .., n, ik
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the state at time k and φ is the n× s matrix that has as rows the feature vectors φ(i), i = 1, .., n
[5]. We elaborate on these assumptions below.

Assumption 1 (Steady-state probabilities). The Markov chain has steady-state probabilities
ξ1, ..., ξn, which are positive, i.e. for all i = 1, .., n:

lim
N→∞

1

N

N∑
k=1

P (ik = j|i0 = i) = ξj > 0, j = 1, .., n

Assumption 2 (Rank φ). The matrix φ has rank s.

The system has a unique solution under conditions that can be somewhat restrictive, for instance
the assumption that the Markov chain corresponding to the optimal policy has a unique steady-
state distribution with positive components, that the projection norm involves this distribution
and that φ has linearly independent columns [6]. Because of this rank assumption on φ, the
inverse of Gn exists for sufficiently large n. As a practical matter, it is common to add a small
positive multiple of the identity matrix to Gn to ensure its matrix exists [5]. We have therefore
implemented this method in order to obtain an invertible matrix Gn for n ≥ 1, where we choose
10−6 as small positive number by which we multiply the identity matrix. We give the full
algorithm, including these updates, in Algorithm 4.
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Algorithm 4 Approximate value iteration using a linear model – revised

Result: Approximation of the value functions (V̄ )N

Initialize V̄ 0, G0, θ0 and S1;
for n = 1 to N do

Solve:
v̂n = max

a∈A
−(C(Sn, a) + β

∑
f

θn−1f φf (SM,a(Sn, a))) (6.64)

and:
an = argmax

a∈A
−(C(Sn, a) + β

∑
f

θn−1f φf (SM,a(Sn, a))); (6.65)

Update the value function recursively using equations (6.66) - (6.73) to obtain θn.

λn = αn−1 ·
1− αn
αn

(6.66)

γ1 = λ1 (6.67)

γn = λn + (φn)T (Gn−1)−1φn ∀ n > 1 (6.68)

Gn = λnG
n−1 + φn(φn)T + 10−61 (6.69)

V̄s(θ
n−1) =

∑
f

θn−1f φf (SM,a(Sn, an)) (6.70)

ε̂n = V̄s(θ
n−1)− v̂n (6.71)

θ1 = θ0 (6.72)

θn = θn−1 − 1

γn
((Gn−1)−1φn)T ε̂n ∀ n > 1 (6.73)

Choose a sample Wn+1 = W (ωn+1) and determine the next stage using some policy such
as:

Sn+1 = SM (Sn, an,Wn+1)

end

We will now gain more insight into basis functions by considering the features used in solving
the well-known game Tetris by ADP. Solving Tetris by ADP has been well studied in literature
and shows similarities with our problem; in both situations, an object (falling brick or appoint-
ment) needs to be placed in a party filled board (already fallen bricks or already scheduled
appointments). However, Tetris is a worst-case scenario for the evaluation of automatic control
systems in some sense, since humans excel at Tetris [51]. We briefly describe the problem; we
refer to [23] for a more detailed description on the game.

A state s in Tetris consists of two components: the description of the board b and the type of the
falling piece p. All controllers rely on an evaluation function that gives value to each possible
action at a given state. Then, the controller chooses the action with the highest value that
encodes the rotation and translation applied to the falling piece [10]. Since the total number of
states is large in Tetris (about m2hw where m is the number of different shapes of falling objects,
and h and w are the height and width of the grid, respectively [7]) the evaluation function f is
usually defined as a linear combination of a set of features φ1, .., φK . The evaluation function
fk(·) = φk(·)θk specifies the performance by the parameter vector θ. The features used for a
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state-action pair (s, a) may depend on the description of the board b′ resulted from taking action
a in state s [23].

In 1996, Bertsekas and Tsisiklis have introduced 22 features that are often used in solving Tetris
by ADP with success [47] [10] [33] [22]. For example, Bertsekas and Ioffe [7] have used these
features to generate policies that averaged 3183 points a game, which is comparable to an expert
human player. The 22 basis functions are [10]:

• Ten basis functions φ0, .., φ9 mapping the state to the height hk of each of the team
columns;

• Nine basis functions φ10, .., φ18, each mapping the state to the absolute difference between
the heights of successive columns: |hk+1 − hk|, k = {1, .., 9};

• One basis function φ19 that maps state to the maximum column height: maxk hk;

• One basis function, φ20 that maps state to the number of ‘holes’ in the wall;

• One basis function, φ21 that is equal to one at every state.

Scherrer et al. [47] also give the Dellacherie-Thiery (D-T) features which consist of the six
features of Dellacherie plus three additional features proposed by Thiery and Scherrer and a
constant offset feature. The best policies reported in literature have been learned using the D-T
features, i.e. [47]:

• The landing height of the falling piece;

• The row transitions;

• The number of board wells;

• The hole depth;

• The number of rows with holes;

• The pattern diversity feature.

We have gained more insight into possible basis functions, but the assumption that we have
a good set of basis functions remains critical, and hard to verify [39]. Hence, also when one
has a good understanding of the problem, he or she can only hope to do well by choosing the
basis functions carefully so that the linear model has a chance of representing the true value
function correctly. By using the above analysis and available experience and intuition about the
underlying MDP, we have come up with the following basis functions:

1. The amount of free time periods consisting of one loose block: one single free timeslot.
Since we have assumed that the minimum time needed for preparation is four timeslots,
empty consecutive timeslots of one, two or three hours can only be filled with hearings
and therefore we want to minimize the number of those loose blocks consisting of one,
two or three timeslots (by introducing the first three features). The first basis function
is calculated per worker (judge and legal assistant) since we are dealing with a relatively
small amount of workers compared to the number of specialisms. When there are more
workers, it makes sense to calculate these basis functions per specialism and difficulty.
We would then get S + S ·D outcomes for this basis function, where S is the amount of
specialisms and D is the amount of difficulties. The pseudocode to calculate the values
of the first basis function is given in Algorithm 5 where k = 1; where we use datasets of
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judges one up to and including J in order to get φ1,1 up to and including φ1,J . In order
to obtain φ1,J+1, .., φ1,J+L the datasets of legal assistants one up to and including L are
inserted in Algorithm 6.

Algorithm 5 Basis function φk : φk,1, .., φk,J for k = {1, 2, 3}
Result: φk;
runlength = []
counter = 0
Import vector xjt
for t ∈ T do

if xjt == 0 then
counter = counter + 1

end
if xjt == 1 then

runlength.append(counter)
counter = 0

end

end
φk = runlength.count(k)

Algorithm 6 Basis function φk : φk,J+1, .., φJ+L for k = {1, 2, 3}
Result: φk for k = {1, 2, 3};
runlength = []
counter = 0
Import vector ylt
for t ∈ T do

if ylt == 0 then
counter = counter + 1

end
if ylt == 1 then

runlength.append(counter)
counter = 0

end

end
φk = runlength.count(k)

2. The amount of two consecutive free timeslots in the schedule. The pseudocode to calculate
the values of this basis function is given in Algorithm 5 and 6 where k = 2; where we again
use the dataset of judges one up to and including J in order to get φ2,1 up to and including
φ2,J and the dataset of legal assistant one up to and including legal assistant L in order
to get φ2,J+1 up to and including φ2,J+L.

3. The amount of three consecutive free timeslots in the schedule. The pseudocode to calcu-
late the value of this basis function is given in Algorithm 5 and 6 where k = 3; where we
again use the dataset of judges one up to and including J in order to get φ3,1 up to and
including φ3,J and the dataset of legal assistant one up to and including legal assistant L
in order to get φ3,J+1 up to and including φ3,J+L.

4. The number of consecutive nonscheduled time periods. Since more appointments can be
scheduled in the lengthier consecutive free time periods, we aim at minimizing the amount

44



of those consecutive free time periods (since more of those time periods implies that the
separate time periods are smaller). The pseudocode to calculate the value of this basis
function for the judges one up to and including J (the values φ4,1, .., φ4,J) is given in
Algorithm 7. In order to calculate φ4,J+1, ..φ4,J+L the data of the legal assistant one up
to and including legal assistant L is inserted in an algorithm similar to Algorithm 7, but
then applied for the legal assistants instead of the judges. Hence, it is adjusted in a similar
manner as Algorithm 5 is adjusted to Algorithm 6.

Algorithm 7 Basis function φ4 : φ4,1, .., φ4,J

Result: φ4;
runlength = []
counter = 0
Import vector xjt
for t ∈ T do

if xjt == 0 then
counter = counter + 1

end
if xjt == 1 then

runlength.append(counter)
counter = 0

end

end

φ4 =
∑|T |
k=1 runlength.count(k)

5. The first moment when six consecutive timeslots are available. Since we need maximal six
timeslots for scheduling a preparation, every case needs a preparation and since we want to
schedule cases as early as possible, we aim at having the first moment with six consecutive
timeslots as nearby as possible. The pseudocode to calculate the values of this basis
function for φ5,1, ., φ5,J is given in Algorithm 8. Again, an algorithm similar to Algorithm
8 but applied to the data of legal assistants is used in order to obtain φ5,J+1, .., φ5,J+L.

Algorithm 8 Basis function φ5: φ5,1, .., φ5,J

Result: φ5;
counter = 0
Import vector xjt
for t ∈ T do

if xjt == 0 then
counter = counter + 1
if counter == 6 then

φ5 = t - 5
break

end

end
if xjt == 1 then

counter = 0
end

end

6. All free timeslots that fall before free timeslots of length greater or equal to four timeslots.
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Since a preparation has to take place before the hearing, consecutive free time periods of
one two or three timeslots cannot be used if there is no place to schedule the preparation
beforehand. The pseudocode to calculate the value of this basis function is given in
Algorithm 9. Again, an algorithm similar to Algorithm 9 but applied to the data of legal
assistants is used in order to obtain φ6,J+1, .., φ6,J+L.

Algorithm 9 Basis function φ6 : φ6,1, .., φ6,J

Result: φ6;
runlength = []
counter = 0
Import vector xjt
for t ∈ T do

if xjt == 0 then
counter = counter + 1
if counter == 4 then

break
end

end
if xjt == 1 then

runlength.append(counter)
counter = 0

end

end

φ6 =
∑|T |
t=1runlength.count(t)

7. The number of timeslots in which a judge and legal assistant of the same specialism are
available. Since we need both a judge and a legal assistant to be available at the same
time for a one-fold hearing, we aim at having as much as possible moments on which both
are available. In order to calculate the values of this feature, the dataset has to be split
up per specialism and Algorithm 10 could then be executed for each of the specialisms.

Algorithm 10 Basis function φ7 : φ7,1, ..φ7,S

Result: φ7;
runlength = []
counter = 0
Import vector xjt and ylt
for t ∈ T do

if xjt = 0 or ylt = 0 then
counter = counter + 1

end
else

runlength.append(counter)
counter = 0

end

end

φ7 =
∑|T |
k=1 runlength.count(k)

8. The first timeslot on which a judge and legal assistant of the same specialism are available
for two consecutive timeslots. Since we want to schedule hearings as early as possible
and we need a judge and legal assistant for a (one-fold) hearing that lasts maximal two

46



timeslots, we aim at having the first two timeslots on which both a judge and a legal
assistant of the same specialism are available as nearby as possible. In order to calculate
the values of this feature, the dataset has to be split up per specialism and Algorithm 11
could then then executed for each of the specialisms.

Algorithm 11 Basis function φ8 : φ8,1, .., φ8,S

Result: φ8;
counter = 0
Import vector xjt and ylt
for t ∈ T do

if xjt = 0 or ylt = 0 then
counter = counter + 1
if counter == 2 then

φ8 = t
break

end

end
else

counter = 0
end

end

9. Apart from the above sets of features, we also introduce a constant offset feature. Scherrer
et al. [47] found that some features plus the constant offset achieved the best performance
in Tetris. Also, Hulshof et al. [32] claim that in case there is no independent constant in
the set of predictors F in a linear regression model, the model is forced to go through the
origin and in order to prevent bias resulting therefrom, a constant term should be added
as one of the elements in F . Hence, we introduce φ9 = 1 for every state.

Basis functions themselves do not have to be linear [8], but since these basis functions have to
be implemented in the objective function of the ILP in the Python MIP-package, they have to
be rewritten into linear constraints. We show how we have addressed this in Appendix F.

Since the basis functions had to be rewritten into linear constraints, we could not implement all
the basis functions we originally had in mind. A basis function that could be a good addition to
the model is the number of consecutive free timeslots of length ≥ 5. Since these time periods can
be used to scheduled a preparation, hearing and a verdict, we aim at maximizing the number
of those free time periods. Hence, we want to minimize the negative amount of consecutive
free timeslots of length ≥ 5. The pseudocode to calculate the value of this feature is given in
Algorithm 12. Again, an algorithm similar to Algorithm 12 but applied to the data of legal
assistants is used in order to obtain φ7,J+1, .., φ7,J+L. Since one needs a lot of constraints
in order to implement this basis function (which we show in Appendix F in the ILP -which
could slow down the model enormously- we have decided to let the implementation of this basis
function be a topic for further research.

47



Algorithm 12 Basis function φ10 : φ10,1, .., φ10,L

Result: φ10;
runlength = []
counter = 0
Import vector xjt
for t ∈ T do

if xjt == 0 then
counter = counter + 1

end
if xjt == 1 then

runlength.append(counter)
counter = 0

end

end

φ10 = −
∑|T |
t=5 runlength.count(t)

6.4 Uncertainty about the continuation of appointments

As earlier mentioned, some scheduled appointments will not take place. By this we refer to,
for example, hearings (and the corresponding appointment for writing of the verdict) that are
canceled because the involved parties have reached a solution together before that time. Also,
parties can agree on a settlement during the hearing (in Dutch: “schikking”), causing cancel-
lation of the corresponding appointment for the writing of the verdict. In our model, we did
not include this uncertainty. One could include this uncertainty by freeing up some timeslots
in which preparation or writing of the verdict is scheduled. For this, the information is needed
which appointments are scheduled when for which judge and legal assistant instead of only that
there is an appointment scheduled for a judge and legal assistant. This is needed because oth-
erwise timeslots in which hearings are scheduled, can be released, what is not aimed for. Then,
xajt and yalt should be included in the state instead of xjt and ylt that ensure an even more
enormous state space. Therefore, we have decided to not include this uncertainty in the model
itself. This remains a topic for further research. Though, we did think of a way of including this
uncertainty when using the model. One could for instance insert more available timeslots for a
judge or a legal assistant than that he/she is actually available, since they will get rid of some
scheduled timeslots eventually. The newly added timeslots should involve moments on which
hearings could never take place, such as evenings, causing that hearings will never be scheduled
in these new timeslots.
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7 Results Stochastic Dynamic Program commercial law

This chapter elaborates on the results of the developed model, programmed in Python. All tests
have been performed on the same system: an Intel Core i5-8265U personal computer with 8 GB
of RAM and we have used Python 3 in the Google Colab environment. Section 7.1 discusses
the (convergence) performance of the ADP algorithm using a toy-sized problem, after which we
compare the performance of our model with the performance using a myopic policy in Section
7.2. We end with testing the model using larger instances in Section 7.3.

7.1 Validating ADP algorithm

Several strategies exist for deciding if the ADP algorithm functions appropriate. These strategies
consist of the following [39]:

1. Plotting the objective function over the iterations;

2. Evaluating one or more performance statistics over the iterations;

3. Subjectively evaluating the behavior of the system after the algorithm has completed.

The problem has a large state and action space. Because of this, we use a toy-sized problem
to find out whether the ADP algorithm functions appropriately using the strategies mentioned
above. We use the following input in order to create the toy-sized problem:

• On average, one case arrives (following the Poisson process);

• We use an optimality gap of 0.05 and a maximum run time of the ILP of three minutes. If
the ILP is not able to find a feasible solution in this time, it searches for a new sample path
and run the algorithm again. Here, we call a solution feasible if it satisfies the constraints.
In addition, its objective value must be within the boundaries of the optimality gap, which
we have initialized at five percent;

• We use two judges and two legal assistants;

• We work with one specialism and one difficulty. Naturally, both judges and legal assistants
are able to handle this specialism and difficulty.

• We start with a horizon of one week, which can move up two days. This makes the
total amount of timeslots 49. Of these 49 timeslots, nine or ten timeslots were assigned
unavailable. This was divided in a random manner. Furthermore, we make the assumption
that the other parties (prosecutor and defendant) are always available. Since we use this
small time horizon, the time one appointment exceeding the norm is left out of the objective
function. In the objective function, c3 and c4 are multiplied by 1

#timeslots since it has a
larger size class than the number of not-scheduled appointments, which we multiply by
one. The exact availability that was used is as follows, where 1 defines a timeslot in which
a judge j or legal assistant l is available and 0 unavailable, and the availability for the
different judges and legal assistants is separated by the brackets:

Availability_judges =

[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
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Availability_legalassistants =

[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

We started with all basis functions and a small amount of iterations (n = 50). We have observed
that the algorithm cannot find a solution when the non-available timeslots are more scattered.
This is probably caused by the small horizon in which the appointments could be scheduled.
Moreover, using this algorithm, the incoming appointments of a certain iteration should be
scheduled in the same time horizon. This results in a greater difficulty during scheduling, if
the non-available timeslots are more scattered. Appendix G shows the output of the first ten
iterations of the algorithm when using the input given above. We observe that the algorithm
is able to give a feasible solution most of the time. In the first iteration, no appointments
arrive, whereas they could have when cases arrive with an average of one. In the second iter-
ation, one case arrives for which it is optimal to not schedule this in the first horizon (t = 1).
We see that the algorithm then continues to t = 2 and t = 3 where it schedules the appoint-
ments in the correct order and the hearing on the same time for the judge and the legal assistant.

We then tested a couple of instances, described in Table 2. Since this study only includes one
specialism, basis function 7 and 8 will never be used and we research the differences when ex-
and including the constant factor (instance 1 versus instance 2). Furthermore, we have made
use of a maximum time of finding a solution for the ILP of 180 seconds and a gap of 0.05. We
have drawn up some more test instances (instance 3 up to and including instance 7) in order to
test the influence of these chosen parameters.

Table 2: Test instances toy-sized problem

Instance Used basis functions Optimality gap Maximum duration 1 ILP
1 1 up to and including 6 0.05 180
2 All (1 up to and including 6 + 9) 0.05 180
3 All (1 up to and including 6 + 9) 0 180
4 All (1 up to and including 6 + 9) 0.1 180
5 All (1 up to and including 6 + 9) 0.5 180
6 All (1 up to and including 6 + 9) 0.05 60
7 All (1 up to and including 6 + 9) 0.05 300

We have set up a few experiments for the first two instances, varying the number of iterations.
These experiments, including their run times, are stated in Table 3 (for instance 1) and Table
4 (for instance 2). These run times give an indication, but can slightly differ when using the
same input, since the algorithm makes use of Poisson arrivals with an average of one. Hence,
there are iterations where more than one case arrives, due to the randomness of the Poisson
distribution.
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Table 3: Experiments toy-sized problem (instance 1)

Experiment Number of iterations Run time
1.1 50 562 seconds (≈ 9 minutes)
1.2 100 1, 190 seconds (≈ 20 minutes)
1.3 250 2, 637 seconds (≈ 44 minutes)
1.4 500 5, 852 seconds (≈ 98 minutes)

Table 4: Experiments toy-sized problem (instance 2)

Experiment Number of iterations Run time
2.1 50 510 seconds (≈ 9 minutes)
2.2 100 1, 022 seconds (≈ 17 minutes)
2.3 250 2, 881 seconds (≈ 48 minutes)
2.4 500 5, 868 seconds (≈ 98 minutes)

We can thus conclude that the algorithm is able to find solutions within an acceptable time; it
takes around 1.5 hours to execute 500 iterations. From the results we conclude that 50 iterations
is not enough for the algorithm to converge. For example, Figure 3 shows the progress of the
value for θ1 for the different workers when using all basis functions, for 50 as well as 500 itera-
tions. The algorithm has not converged for n = 50, but for 250 iterations, the values seem to
become more stable. The values still progress afterwards, but since one needs to make a tradeoff
between the run time and the convergence we state that the algorithm is enough stabilised after
250 iterations. Besides, Figure 7b shows the (relative) stabilization of the objective function at
250 iterations.

Figure 7b shows that the algorithm still oscillates when using up to 500 iterations. This is
caused by the fact that in every iteration, a new sample path is generated using Poisson arrivals
with an average of one. This means that two or more cases can arrive in one iteration (which we
also see in Appendix G) that cannot all be scheduled in this short time horizon. Having some
non-scheduled appointments subsequently contributes to the (variance of the) objective function.

From Figures 3-6 we conclude that the values for θ1 up to and including θ4 continue to develop
during the execution of the algorithm, where most of the alterations happen in the beginning (up
to 100 iterations). The values for the scalars θ5 and θ6 stayed 1 during all iterations. The fifth
basis function plots the first moment when six consecutive timeslots are available, which does
not change using this toy-sized problem instance with a small time horizon and a small amount
of judges or legal assistants. The same applies to the sixth basis function that represents the
number of free timeslots that fall before free timeslots of length ≥ 4. Furthermore, the algorithm
gives the fourth basis function -that represents the number of consecutive nonscheduled time
periods- the highest weight.
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(a) n = 50 (experiment 2.1) (b) n = 500 (experiment 2.4)

Figure 3: Progress of the values for θ1 (when using all basis functions)

(a) n = 50 (experiment 2.1) (b) n = 500 (experiment 2.4)

Figure 4: Progress of the values for θ2 (when using all basis functions)

(a) n = 50 (experiment 2.1) (b) n = 500 (experiment 2.4)

Figure 5: Progress of the values for θ3 (when using all basis functions)
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(a) n = 50 (experiment 2.1) (b) n = 500 (experiment 2.4)

Figure 6: Progress of the values for θ4 (when using all basis functions)

(a) n = 50 (experiment 2.1) (b) n = 500 (experiment 2.4)

Figure 7: Progress of objective value (when using all basis functions)

Moreover, we can conclude that adding the constant term does not always lead to a better
objective. Figure 8 shows that the model including the constant term starts stabilizing sooner
than the model without the constant term, but ultimately the objective does not differ signifi-
cantly. The small difference in the objective value cannot be explained by a small scalar value
for this constant basis function. On the contrary, Figure 9 shows that the scalar of the constant
basis function was relatively high compared to the other scalars. The small differences in the
objective function can be explained by the other scalars: the scalars of the other basis functions
were higher for the instance in which the constant basis function was not used, compared to
the case where the constant basis function was used. The model including the constant term
takes longer to run, which can be seen when comparing Table 3 with Table 4. Because of the
mathematical correctness -since the model without constant term is forced to go through the
origin- we do not leave this constant term out of the model despite its possible disabilities.
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(a) Excluding constant term (experiment 1.4) (b) Including constant term (experiment 2.4)

Figure 8: Progress of the objective value (n = 500)

Figure 9: Progress of the constant factor (experiment 2.4)

In this study we have also experimented with instances 3 up to and including 7, using 250
iterations. From Table 5 we can conclude that changing the optimality gap does not significantly
change the run time (when comparing instances 3, 4 and 5). Figure 10 shows the progress of
the objective value for instance 2, 3 and 5, which does not show many differences. From this,
we can conclude that the algorithm is able to find the optimal solution within the three minutes
we gave the algorithm as maximum duration to execute one ILP. Furthermore, changing the
maximum duration to one or five minutes (having an optimality gap of 0.05) does not lead to
a change in the run time. Figure 11 shows the progress of the objective for three situations: a
maximum duration of 60 seconds per ILP, a maximum duration of 180 seconds per ILP and a
maximum duration of 300 seconds per ILP. This confirms that the maximum duration of 180
seconds used initially -for solving one ILP- is enough.

Table 5: Run times toy-sized problem (instance 3 up to and including 7, n = 250)

Instance Run time
3 2, 801 seconds (≈ 48 minutes)
4 2, 677 seconds (≈ 45 minutes)
5 2, 733 seconds (≈ 46 minutes)
6 2, 451 seconds (≈ 41 minutes)
7 2, 468 seconds (≈ 41 minutes)
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(a) Optimality gap = 0.05 (instance 2) (b) Optimality gap = 0 (instance 3)

(c) Optimality gap = 0.5 (instance 5)

Figure 10: Progress of the objective value (with different optimality gaps, n = 250)
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(a) Max. duration = 180 seconds (instance 2) (b) Max. duration = 60 seconds (instance 6)

(c) Max. duration = 300 seconds (instance 7)

Figure 11: Progress of the objective value (with different max. durations for solving one ILP,
n = 250)

7.2 Comparison myopic policy

Now we have concluded that the ADP-algorithm works properly, we still have to compare the
outcomes with the planning strategy used nowadays. The planning strategy used nowadays can
be described as a myopic policy: a policy that minimizes the appointment starting times. In
our model however, we prefer all appointments to be scheduled. Hence, we have implemented
our SDP-model, only changing the objective into the following:

c(s, α) = 1000− (36 ·
∑
a

ca +
∑
a,t,j

xajt · t+
∑
a,l,t

yalt · t)

We have chosen to multiply the variable that represents the number of not-scheduled appoint-
ments with 36 as our initial time horizon includes 35 timeslots (causing that

∑
a,j,t xajt · t and∑

a,l,t yalt ·t cannot be greater than 35). Furthermore, we want that (slightly) more weight is put
on not scheduling appointments compared to the appointment time. We use the parameters of
instance 1 and 2 from Section 7.1, with n = 500. Since we make use of a self-learning algorithm,
we create two situations: one using the initial scalars (all ones) and one using the final scalars
(determined by the algorithm). Hence, we test with the two instances, described in Table 6.

Table 6: Test instances toy-sized problem – myopic policy

Instance Used data Used scalars
8 From instance 2 Section 7.1 All ones
9 From instance 2 Section 7.1 By the algorithm determined weights
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Table 7 shows the run times of these new instances. From this, we conclude that the myopic
policy requires less running time; the model only needs around two thirds of the running time
compared to the model using the original objective function. This can be explained by the fact
that the used scalars are determined beforehand and hence need not be updated every iteration.

Figure 12a and 12b show the initial objective values -using the objective value function of our
SDP- when using the myopic policy for instance 8. Figure 12c shows the initial objective values
when using a myopic policy for instance 9. Using all ones as scalars naturally gives higher
objective values, since the basis functions multiplied with their scalars (in total multiplied with
−1) is part of our objective function. We also see that the objective oscillates around the same
level for all iterations, which is the case as we are not using a self-learning algorithm anymore.
This shows that it is not required to execute more iterations when the weights have already
been identified (only in order to adequately compare the run times).

When using the scalars as determined by the ADP-algorithm (instance 9), after 250 iterations,
the objective function oscillates between 700 and 800 using our planning strategy and between
650 and 750 using the myopic strategy. These differences are clearly visible in Figure 13, where
the objective using our planning strategy is plotted in Figure 13a and using the myopic planning
strategy in Figure 13b. Since we are dealing with a maximization problem, we conclude that
using our planning strategy gives better results than using a myopic planning strategy.

Table 7: Run times myopic policy (instance 8 and 9, n = 500)

Instance Run time
8 3, 619 seconds (≈ 60 minutes)
9 4, 313 seconds (≈ 72 minutes)
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(a) Using all ones for the scalars (y-axis ranging
from 965 to 1000)

(b) Using all ones for the scalars (y-axis ranging
from 650 to 1000, similar to Figure 12c)

(c) Using the scalars determined by the ADP-
algorithm

Figure 12: Progress of the objective value using a myopic strategy (instance 8 and 9, n = 500)

(a) Using our planning strategy
(b) Using the myopic policy (with scalars deter-
mined by the ADP algorithm)

Figure 13: Progress of the objective value our strategy vs. myopic (n = 500)

7.3 Enlarging the state space

The toy-sized problem we have tested with is smaller than the real-life sized problem. The
real-life test data we wanted to use for this case is based on the data from 2019 by the team
“commercial law” in Almelo and includes the following:

• A larger time horizon is used, in which multiple cases could be scheduled. The horizon
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should include at least 20 weeks. This is the horizon one case could occupy, looking at the
established norms. The judges and legal assistants are less available in the beginning of
the horizon and are becoming increasingly available towards the end of the horizon.

• This test instance includes eight judges and ten legal assistants.

• We would like to use of 27 specialisms and four difficulties, as coincides with the size of
clustering in Overijssel. On average, the judges can handle seven specialisms and legal
assistants can handle six specialisms. These are both divided randomly, in a way in which
every specialism is covered.
Note: When testing the ILP we have used five specialisms. It has become clear, however,
that these specialisms are further divided into 27 so-called “knowledge areas” we wanted
to take along these 27 knowledge areas. Therefore, these 27 knowledge areas are also
included to simulate a real-life situation as closely as possible.

• On average, sixteen cases (a week) arrive of which ten percent consists of a multiple case.

As we are dealing with an ILP, the run time grows exponentially with the size of the state space.
Therefore, we have run the algorithm with a horizon of five weeks instead of the 20 that one
case would entail. Of these five weeks, the first week is part of the initial time horizon and the
other timeslots can be filled using the rolling horizon. The exact input for the availability can
be found in Appendix H. The algorithm is in this case not able to run for 200 or 250 iterations
at once, because that would use more RAM than available. Therefore, the algorithm ran for 100
iterations -this took the algorithm 14, 913 seconds: around the four hours- and after that, this
was repeated using the values that were just found for the weights as initial weight factor (what
took the algorithm 10, 718 seconds: around the three hours). Figure 14 shows the progress of
θ1, θ2, θ3 and θ4 for the first 100 iterations. Figure 15 shows the progress of θ1, θ2, θ3 and θ4
when executing the second 100 iterations, using the scalars found in the first 100 iterations (at
the end of Figure 14) as initial scalars. Figure 15 shows that the scalars are (almost) stabilised
at the end and hence, the algorithm also performs well for a larger time horizon. We also see
that the weights are higher and more spread out over the different employees compared to the
smaller time horizon. This higher weight is caused by an increase of the values for the fourth,
fifth and sixth feature, due to more available timeslots of four or longer after each other, later on
in the additional time horizon. Since the values of the first three basis functions stay almost the
same, the other functions get relatively more influence. This gets compensated by an increase
in the weights of the first three basis functions. Moreover, Figure 17 confirms that one needs
to run more than the 100 iterations for the algorithm to be stabilised as the objective value is
not stabilised after the 100 iterations. The method of running the algorithm multiple times to
determine the weights can be used in real-life in order to determine the weights for each team,
as the planning must be made per team and the teams differ in size and formation. Thereafter,
the algorithm only needs to be executed for a few iterations in order to determine the planning
strategy. Finally, Figure 17 shows that our planning strategy gives better results (as we are
dealing with a maximization problem) than the myopic policy.

We have also tried to run the algorithm for the full 20 weeks with the found scalars. Because of
the fact that the scalars then do not need to be updated anymore, one could reason that running
the ADP-algorithm would take up less memory. On the other side, when the state space will be
increased, executing one ILP -for which we use the Python MIP-package- will use more memory
as the values for φ need to be determined over all possible timeslots. After experimenting with
different time horizons and leaving the rest of the input the same as for the toy-sized problem,
we can conclude that the model is able to solve instances with a time horizon up to 80 days
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(i.e. 560 timeslots or around the eleven weeks) of which one week (i.e. 35 timeslots) is part
of the initial time horizon. When expanding this horizon with one week, we encountered the
memory issues. This problem could be solved by using a device with more RAM or examining
ways in order to shrink the state space. Furthermore, as we make use of the MIP-package, other
implementations can be examined that possibly need less memory to solve one ILP.

(a) θ1 (b) θ2

(c) θ3 (d) θ4

Figure 14: Progress of the values for θ1, θ2, θ3 and θ4 when using a larger time horizon (n = 100)
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(a) θ1 (b) θ2

(c) θ3 (d) θ4

Figure 15: Progress of the values for θ1, θ2, θ3 and θ4 when using a larger time horizon with
updated initial scalars (n = 100)

(a) Using our planning strategy
(b) Using our planning strategy (with updated ini-
tial scalars)

Figure 16: Progress of the objective value (executing the algorithm two times for n = 100)
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(a) Using our planning strategy
(b) Using the myopic policy (with scalars deter-
mined by the ADP algorithm)

Figure 17: Progress of the objective value (n = 100)

When having eight judges and ten legal assistants (the used availability is given in Appendix H
where the rest of the used input is the same as for the toy-sized problem), the model could not
run for 200 or 250 iterations at once, because of the already mentioned memory issues. In order
to solve this problem, we have executed the algorithm twice for 100 iterations in order to obtain
stabilised values for the scalars. It took the solver 17, 213 seconds (approximately five hours)
to run the first 100 iterations and 20, 734 seconds (approximately six hours) to run the second
100 iterations. One would thus need around eleven hours in order to obtain the values for θ,
which is more then eleven times as long as one needs for the toy-sized problem (with two judges
and two legal assistants). Part of this increased run time can be explained by the fact that the
algorithm has to update a lot more values for θ. For example, Figure 18 shows the progress of
the values for θ1, θ2 and θ4 for both the judges as well as the legal assistants (where n = 100).
For the fourth basis function, every θ is updated for every iteration. Not all values for θ1 and
θ2 were updated every iteration, but the values of θ3, θ4 and θ5 were (often) not updated at all.
Moreover, we are now working with a larger state and action space.

Because of the exponentially increasing running time when increasing the state space, we have
tested with six specialisms (instead of the 27 knowledge areas used in Overijssel) and four
difficulties as this coincides with the size of the clustering in Rotterdam. Here, the judges and
legal assistants could handle four out of six specialisms and the legal assistants could handle three
out of four difficulties. When using the toy-sized problem with the addition of these specialisms
and difficulties, it took the model 3, 641 seconds (≈ 61 minutes) to run 250 instances, which
took the algorithm without specialisms approximately 48 minutes. When enlarging the time
horizon as well as adding the specialisms compared to the toy-sized problem, it took the model
eight hours in order to execute 50 iterations. Since the problem is too big to run 100 or more
iterations at once, one would need to execute the algorithm four times for 50 iterations in order
to initialize the weights for this larger instance. Hence, in total one needs 32 hours in order
to initialize the weights for such a large instance, which is why we have not experimented with
problems that big.
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(a) θ1 judges (b) θ1 legal assistants

(c) θ2 judges (d) θ2 legal assistants

(e) θ4 judges (f) θ4 legal assistants

Figure 18: Progress of the values for θ1, θ2 and θ4 for the judges and the legal assistants
(n = 100)

We have also researched the influence of having two cases arrive instead of one as well as
having ten percent of the cases arriving a multiple case, separately. The remainder of the input
used is similar to the input for our toy-sized problem. The addition of multiple cases did -in
contrast- not lead to larger running instances nor memory problems. At last, we have run the
instance where on average two cases arrived instead of one. It took our model 41, 439 seconds
(approximately 12.5 hours) to solve this problem, using 50 iterations. Comparing this to the run
time of the problem with one case arriving for 50 iterations (which took approximately 2 hours)
we conclude that the run time grows enormously when more appointments arrive. Since more
appointments arrive within the same time horizon, the algorithm was not able to find a solution
in more iterations, which causes the execution of some iterations multiple times, ensuring this
long running time.
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8 Limitations and further research

Our problem statement and model have certain limitations that provide directions for future
research. Section 8.1 discusses these limitations. Subsequently, we give the recommendations
for further research in Section 8.2.

8.1 Limitations

To begin with, we have looked at the planning of subpoenas (in Dutch: ‘dagvaardigingen’)
within the courts, where summary proceedings (in Dutch: ‘kort gedingen’) have to be scheduled
within the same team. Subpoenas concern formal written orders issued by a court that requires
a person to appear in court and testify, or produce documents. Summary proceedings concern
such procedures without the formalities for the speedy disposition of a case. For the summary
proceedings, other norms apply which we did not take into account. Furthermore, we have made
some simplifications when building the ILP, which we discussed in Section 4.5 and also apply
to our MDP.

Secondly, we did not take into account the uncertainties that could occur after the planning
has been created. These uncertainties refer to the fact that cases may be cancelled any time
during the process. For example, before the hearing, parties may already have reached a solu-
tion together, causing the hearing to be cancelled. In this case, a verdict does not need to be
written. Another reason for cancelling is that parties could agree on a settlement during the
hearing. Again, no verdict is written here. The models do not include these uncertainties; we
have further elaborated on this limitation in Section 6.4.

Thirdly, some decisions that were made in the modeling phase, were made without knowing
its direct consequences. For instance, we had to choose what the decision variable would be:
the starting time of an appointment or the time one is working on the appointment. We have
chosen the decision variable that decides on the starting time. This decision was made because
the problem at hand is relatively big and otherwise, the decision space would grow enormously.
Choosing this decision variable does limit the model, since an appointment can then only take
place in sequence and the duration cannot be cut up. Using the same reasoning, we have decided
not to implement the appointment type in the state of the MDP. At last, we could not take
into account the penalty for scheduling after the established norms, since we could not solve
problems of such a large time horizon.

8.2 Further research

When continuing this research, data has to be obtained such that the durations of the appoint-
ments (to be scheduled) are based on real-life data of appointment durations. Therefore, this
remains a topic of further research. This includes data regarding durations of preparing a hear-
ing and writing the verdict. Moreover, data has to be obtained relating to the arrivals of cases:
historical data on when cases of certain specialisms and difficulties have arrived. Only when this
data is available, one can test whether such a planning method (as proposed in this research)
yields benefits in practice. Below we present a more detailed list with the required data:

• The duration of the preparation of a case (in minutes or hours) per specialism, difficulty
and judge or legal assistant. This way, one can compose a distribution for each judge
and legal assistant. This can then be used in order to schedule the preparation of a new
incoming appointment for the corresponding judge or legal assistant;
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• The duration of the writing of the verdict of a case. For the writing of the verdict, a
distribution will have to be drawn up, using the same parameters as for the preparation
of the case;

• The distribution of the duration of the preparation of a hearing and the writing of the
verdict for the different judges dealing with a multiple case. When dealing with a multiple
case, one judge is the main person responsible and has to spend more time preparing the
case and writing the verdict. Data has to be collected in order to determine this division.
Since this data was not available during our research, we made the assumption that the
distribution of the duration of multiple cases is for each judge similar to the distribution
of the duration for one-fold cases;

• The exact date and time of incoming appointments, kept up per specialism and difficulty.
This way, a distribution can be drawn for the arrival of cases;

• The amount (and type) of cases that did not yield a hearing or a writing of the verdict
over a horizon of a couple of months. Nowadays, this is not tracked precisely. Some of
the cases that did not yield a hearing or writing of the verdict could be tracked, but the
specialism and difficulty of these cases is not tracked anywhere. When one keeps track of
this, for instance for a few months, one can forecast the uncertainty of the hearing and
writing of the verdict and this uncertainty could then be integrated in the model.

Furthermore, the basis functions are constructed based on the assumptions regarding the du-
rations of appointments and must therefore be reconsidered when these durations are specified
by real-life data. This also creates a ground for further research. For instance, when the prepa-
ration of a hearing appears to last at least three hours (instead of the four hours we used) the
third basis function does not add value anymore.

Another recommendation is to investigate the input and output used for the planning, for the
different jurisdictions as well as the different teams (situated on a certain location). We have
identified a lot of differences as well as similarities between the different jurisdictions and differ-
ent courts of which the courts were not aware of. For example, the team situated in Rotterdam
makes use of six specialisations, whereas Overijssel makes use of 27 so-called knowledge areas.
Furthermore, some members of the team of administrative law were unaware of the fact that
the teams of commercial law do not use an initial schedule. These differences and similarities
have not been mapped. Considering the fact that almost everyone stays within their own team
at the Rechtspraak, we recommend to map these differences and similarities. When these dif-
ferences and similarities have been mapped, one can specify the modifications that have to be
made to the basic model in order for the model to be valid for other teams and/or jurisdictions.
Furthermore, this can also work the other way around: teams can adapt their planning strategy
in order to use the model.

We have also concluded that the real-life sized problems contain a large state and action space
and require a lot of memory to solve. Therefore we recommend to research ways in order to
shrink the size of the state and/or action space, for instance by cutting the problem into smaller
problems, such as one for each specialism, and solving them separately. We have seen that
the solver consumes notably more memory for solving a problem including different specialisms
compared to solving the same problem without these specialisms. Hence, cutting the problem
into smaller problems based on specialisms and solving them separately could be a valid (first)
step in order to solve larger problem instances.
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Another topic for further research concerns the current set-up of the ADP algorithm. This set-
up could be improved. First of all, the current set-up of the ADP algorithm is single pass, which
means that at each step forward in time in the algorithm, the value function approximations are
updated [32]. The ADP can also be used with a double pass approach, in which the algorithm
first simulates observations and computes decisions for all time periods in one iteration, before
updating the value function approximations. This double pass approach may lead to a faster
convergence of the ADP algorithm and therefore remains a topic for further research. At last,
when using this algorithm, all appointments arriving in a certain iteration have to be scheduled
in the same horizon. When continuing research, one could investigate whether it is possible
to adapt the algorithm in order to be able to schedule different appointments belonging to the
same case in different horizons (so for example the preparation in t = 1 and the hearing in t = 2).

Apart from the possible improvements of our MDP one could also analyze the other solution
methods, such as transforming the stochastic program into a two-stage problem which can then
be solved using the SAA approach, as proposed in literature and discussed in Section 2. Likewise,
one could research whether methods other than ADP for solving the MDP could be appropriate
for this problem instance. One could then think of heuristic methods or using ALP, which are
other possible methods proposed in literature in order to solve MDPs.
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9 Conclusions and recommendations

The aim of this research was to compose an efficient planning and scheduling strategy for the
teams commercial and administrative law. Commercial law uses a different strategy than admin-
istrative law: in administrative law, the schedulers make an initial schedule in which hearings
should take place, whereas commercial law starts planning without initial schedule. This differ-
ence arises from the fact that hearings within commercial law take around 1.5 hours and could
therefore be planned per case, whereas hearings within administrative law last a shorter time
(for instance, the treatment of one case could take only ten minutes) and have to be bundled
in one hearing. This research focuses on commercial law and the created model needs to be
adjusted or extended in order to be valid for administrative law; we give a first draft of the ex-
tensions that are (at least) needed for administrative law in Appendix E. Since we have focused
on commercial law, we have focused on optimizing the planning strategy, not dealing with the
composition of an initial schedule. To do this, we started with an ILP in order to properly select
the variables and constraints that are needed in order to solve this problem. After program-
ming this ILP in AIMMS, there is still an optimality gap of around 45 percent after running
the algorithm for half an hour, with a horizon of only two weeks. This differs from real life,
where one is dealing with a timespan of around 20 weeks to cover one case from arrival of the
case to completion of the verdict. Since this ILP does not deal with appointments that arrive
in the future, we constructed an MDP, making use of the already drafted constraints of the ILP.

Our MDP incorporates uncertainty in two key processes, namely the arrival of the cases and
the duration of the appointments. We present an ADP approach using post-decision states and
a rolling horizon. This ADP approach can be used to solve a toy-sized problem instance in
a reasonable time. The results of using our planning strategy compared to the myopic policy
indicate that the ADP performs better than the myopic policy for the toy-sized problem as well
as when enlarging the time horizon.

During the research some memory problems arose when inserting large problem instances. In
this thesis we have presented different ways in order to deal with these memory issues, such as
executing the algorithm twice. Here, the scalars found in the first execution are used as initial
scalars when running the algorithm a second time. We have shown that using this method has
led to stabilized values of θ as well as better results, compared to when using a myopic policy.
Besides, when the final scalars have been determined, the algorithm only needs a few iterations
in order to solve the problem, as the algorithm is not self-learning anymore.

The real-life sized instance presented in this thesis is developed based on data of the teams
situated in Rotterdam and Overijssel. As a result, the instances used are of comparable network
structure and size of other courts in the Netherlands. Our study incorporates two courts, but
only small adjustments are needed for the model to be workable in commercial law teams of
other courts. Moreover, the developed model is generic as the objective function can be adopted
when different courts would use different norms, or when they have another aim when planning
the different cases. For the different jurisdictions, constraints might have to be removed or
added, but the principle of the algorithm, scheduling three appointments per case -taking into
account the uncertainty in arrival of cases and duration of appointments- can be extended to
the other jurisdictions.

Section 8 has stated some limitations of the model and includes possibilities for further research.
Further research mainly involves acquiring data: data on the durations of different appointments
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as well as the arrivals of cases and the uncertainty when cases are scheduled. Reducing the state
space is also an important topic for further research. When this data is available and the state
space has been reduced, one can revise the algorithm based on the data and test the algorithm
for real-life problem instances. Another possibility includes expanding the algorithm such that
appointments arriving in the same iteration could be scheduled spread out over different time
horizons.

We end with a few recommendations regarding the organisation of such a project within the
Rechtspraak. We think that the project team needs to make clear what they would like to achieve
with such a project. We have looked for similar problem instances in healthcare, covering offline,
online as well as stochastic online solvers. When continuing research with a clearer view of how
the Rechtspraak is willing to use such a solver, one can search for more specified literature.
Furthermore, it would really help if there is one person who knows what data is available and
where this is available. When the Rechtspraak obtains an overview of the available data and
releases the indicated required data, one only has to take a few steps in order to test this model
on real-life data. As the required steps are described in this thesis, one solely has to follow these
steps in order to research the real-life profit such a model can entail. All in all, we have laid
a good foundation for a working model, offering promising perspectives for continuation and
implementation of this research.
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Appendices

A Glossary Dutch terms

Since most of the law-related terms in this thesis have been translated from Dutch, this appendix
gives an overview of these terms as well as the original Dutch terms.

English term (translated) Dutch term (original)
Appealing Beroepschrift indienen
Administrative law Bestuursrecht
Commercial law Handelsrecht
Court Zaak
Courtroom Zittingszaal
Courts of justice Gerechtshoven
Defendant Gedaagde
Hearing Zitting
Judge Rechter
Judgement Uitspraak
Jurisdiction Rechtsgebied
Lawyer Advocaat
Prosecutor Eiser
Settlement Schikking
Subpoena Dagvaardiging
Summary proceedings Kort geding (handelsrecht)/ voorlopige voorzieningen (bestuursrecht)
Team chairman Teamvoorzitter
Training matters Opleidingszaken
Verdict Vonnis
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B Overview Integer Linear Program commercial law

This Appendix covers the ILP-model made for the commercial law planning problem. In this
appendix we start with an overview of the binary variables in Table 8 and the integer variables
in Table 9. We give an overview of the binary parameters in Table 10 and the integer parameters
in Table 11. Thereafter, we give the whole ILP: the objective and its constraints.

Table 8: Binary variables ILP

xajt
1 if appointment a is assigned to judge(s) j and starts at (the

beginning of) timeslot t

yalt
1 if appointment a is assigned to legal assistant l and starts at

(the beginning of) timeslot t

qajlt
1 if appointment a is assigned to judge(s) j, legal assistant l and

starts at (the beginning of) timeslot t
na 1 if appointment a is not scheduled

ba

1 if one of the appointments a ∈ P, a+ |P| ∈ H or a+ 2 · |P|
cannot be scheduled for either a legal assistant and one judge

(for a one-fold case) or three judges (for a multiple case)

Table 9: Integer variables ILP

χ
The maximum difference in available and scheduled hours for the
judges minus the minimum difference in available and scheduled

hours for the judges

υ
The maximum difference in available and scheduled hours for the

legal assistants minus the minimum difference in available and
scheduled hours for the legal assistants

Table 10: Binary parameters ILP

τa 1 if appointment a is a multiple case
BJjt 1 if judge j is available in timeslot t
BLlt 1 if legal assistant l is available in timeslot t
BPt 1 if the prosecutor is available in timeslot t
Caã 1 if appointment a should take place before ã
Ijs 1 if judge j can handle cases of specialism s

Jlsd
1 if legal assistant l can handle cases of specialism s and

difficulty d
θads 1 if appointment a has difficulty d and belongs to specialism s
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Table 11: Integer parameters ILP

Maj
The duration of appointment a (in number of timeslots) for

judge j

Nal
The duration of appointment a (in number of timeslots) for legal

assistant l
T The number of timeslots in each day

γa
First timeslot of the day after arrival of the case belonging to

appointment a

ε1
Upper limit (norm in days) of having a hearing, after

announcement of the case
ε2 Upper limit (norm in days) of judgement, after the hearing

min β1 ·
∑
a na + β2 · χ+ β3 · υ + β4 ·

∑
a ψa + β5 ·

∑
a ωa

s.t.

∑
a

xajt ≤ 1, ∀ j, t (B.1)

∑
a

yalt ≤ 1, ∀ l, t (B.2)

∑
ã,t̃|t<t̃≤t+Maj−1

xãjt̃ ≤ 1− xajt ∀ a, j, t (B.3)

∑
ã,t̃|t<t̃≤t+Nal−1

yãlt̃ ≤ 1− yalt ∀ a, l, t (B.4)

∑
l̃t̃

yal̃t̃ ≤ 2− yalt ∀ a, l, t (B.5)

τa ·
∑
j̃t̃

xaj̃t̃ ≤ τa · (4− xajt) ∀ a, j, t (B.6)

τa ·
∑
j̃t̃

xaj̃t̃ ≥ 3 · τa · xajt ∀ a, j, t (B.7)

(1− τa) ·
∑
j̃t̃

xaj̃t̃ ≤ (1− τa) · (2− xajt) ∀ a, j, t (B.8)

τa ·
∑
j̃

xaj̃t ≤ τa · (4− xajt) ∀ a ∈ H, j, t (B.9)

τa ·
∑
j̃

xaj̃t ≥ 3 · τa · xajt ∀ a ∈ H, j, t (B.10)

∑
t̃

x(a+|P|)jt̃ ≥ xajt ∀ a ∈ P, j, t (B.11)

∑
t̃

x(a+|P|)jt̃ ≥ xajt ∀ a ∈ H, j, t (B.12)

75



∑
t̃

y(a+|P|)lt̃ ≥ yalt ∀ a ∈ P, l, t (B.13)

∑
t̃

y(a+|P|)lt̃ ≥ yalt ∀ a ∈ H, l, t (B.14)

xajt · t− {xajt · t} mod T

T
=
xajt · t− xajt · {t+Maj − 1} mod T

T
∀ a ∈ H, j, t (B.15)

∑
t̃<t

Caã · xãj̃t̃ ≤ 1− xajt ∀ a ∈ P, ã ∈ H, ã, j, t (B.16)

∑
t̃<t

Caã · xãj̃t̃ ≤ 1− xajt ∀ a ∈ H, ã ∈ W, ã, j, t (B.17)

∑
t̃<t

Caã · yãl̃t̃ ≤ 1− yalt ∀ a ∈ P, ã ∈ H, ã, l, t (B.18)

∑
t̃<t

Caã · yãl̃t̃ ≤ 1− yalt ∀ a ∈ H, ã ∈ W, ã, l, t (B.19)

qajlt ≤ xajt ∀ a ∈ H, j, l, t (B.20)

qajlt ≤ yalt ∀ a ∈ H, j, l, t (B.21)

qajlt ≥ xajt + yalt − 1 ∀ a ∈ H, j, l, t (B.22)

qajlt ≤ BLlt̃ ·BJjt̃ ·BPat̃ ∀ a ∈ H, l, j, t ≤ t̃ ≤ t+Maj − 1 (B.23)

xajt ≤ BJjt̃ ∀ a ∈ P, a ∈ W, j, t ≤ t̃ ≤ t+Maj − 1 (B.24)

yalt ≤ BLlt̃ ∀ a ∈ P, a ∈ W, l, t ≤ t̃ ≤ t+Nal − 1 (B.25)

∑
j

xajt =
∑
l

yalt ∀ a ∈ H, t (B.26)

Ijs ·
∑
d

θads ≤ 2− xajt ∀ a, j, t, s (B.27)

Jlsd · θads ≤ 2− yalt ∀ a, l, t, s, d (B.28)

χ = r − s (B.29)

r ≥
∑
t

BJjt −
∑
at

xajt ·Maj ∀ j (B.30)
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s ≤
∑
t

BJjt −
∑
at

xajt ·Maj ∀ j (B.31)

υ = u− w (B.32)

u ≥
∑
t

BLlt −
∑
at

yalt ·Nal ∀ l (B.33)

w ≤
∑
t

BLlt −
∑
at

yalt ·Nal ∀ l (B.34)

ψa = [
∑
jt

xajt·{t+Maj−1}−(
∑
jt

xajt·{t+Maj−1} mod T )+T−γa−ε1·T ]+ ∀ a ∈ H, ε1 ∈ N

(B.35)∑
jt

xajt · {t+Maj} ≥
∑
lt

yalt · {t+Nal} ∀ a ∈ W, t (B.36)

ωa = [
∑
jt̃

x(a+|P|)jt̃ · {t̃+M(a+|P|)j − 1} − (
∑
jt̃

x(a+|P|)jt̃ · {t̃+M(a+|P|)j − 1} mod T ) + T−

(
∑
jt

xajt · {t+Maj − 1} − (
∑
jt

xajt · {t+Maj − 1} mod T ) + T )

−ε2 · T ]+ ∀ a ∈ H, ε2 ∈ N
(B.37)

ba ≤ 3 ·
∑
lt

yalt ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (B.38)

ba ≤
∑
jt

xajt ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (B.39)

ba ≥
∑
jt

xajt − 3 · (1−
∑
lt

yalt) ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (B.40)

ba = 3 · τa · (1− na) + (1− τa) · (1− na) ∀ a ∈ A, a+ |P| ∈ A, a+ 2 · |P| ∈ A (B.41)
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C AIMMS-model commercial law

In this appendix we elaborate on how we have implemented the constraints in AIMMS as de-
scribed in Section 4.1 containing a modulo or maximization function. These constraints have
been adjusted in order to keep the model linear. This is about the constraints in equation (4.15),
(4.35) and (4.37) from Section 4.1.

We have reformulated the modulo function as follows: Suppose we have mod (x, y) with y inte-
ger. Then, mod (x, y) can be linearized by adding the variable r ≥ 0 (where r = mod (x, y)),
z being a new integer variable and introducing the following constraints:

x = z · y + r

r ≤ y − 1

We have reformulated the maximization function as follows: Suppose we have z = [h]+ and one
wants to add z to the minimization objective, then make the free variable y, where y is defined
similar to h, and the nonnegative variable q. Then, q has to be added to the objective and the
following constraint has to be added to the model: q ≥ y.

In order to implement equation (4.15) linearly, we have introduced the integer variables HM1ajt
and HM2ajt and the nonnegative variables rajt and s1ajt. Furthermore, we have introduced
the constraints (C.1) until (C.5) in order to model the equation (4.15) in AIMMS.

xajt · t = HM1ajt · T + rajt ∀ a ∈ H, j, t (C.1)

rajt ≤ T − 1 ∀ a ∈ H, j, t (C.2)

xajt · t− rajt
T

=
xajt · t− s1ajt

T
∀ a ∈ H, j, t (C.3)

xajt · (t+Maj − 1) = HM2ajt · T + s1ajt ∀ a ∈ H, j, t (C.4)

s1ajt ≤ T − 1 ∀ a ∈ H, j, t (C.5)

In order to implement equation (4.35) linearly -so without the maximization and the modulo
function- we have introduced the free variable Standards1a, the integer variable HMS1a and
the nonnegative variables w1a and vnewa. Furthermore, we have introduced constraints (C.6),
(C.7), (C.7), (C.9) and have added

∑
a vnewa in the objective function in AIMMS in order to

add
∑
a ψa as ψa is defined in equation (4.35).

Standards1a =
∑
jt

xajt · {t+Maj − 1} − w1a + T − γa − ε1 · T ∀ a ∈ H, ε1 ∈ N (C.6)

vnewa ≥ Standards1a ∀ a ∈ H (C.7)

∑
jt

xajt · (t+Maj − 1) = HMS1a · T + w1a ∀ a ∈ H (C.8)
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w1a ≤ T − 1 ∀ a ∈ H (C.9)

In order to implement equation (4.37) linearly -so without the maximization and the modulo
function- we have introduced the free variable Standards3a, the integer variable HMS3Deel1a,t̃
and HMS3Deel2at and the nonnegative variables vnew2a, w3Deel1a,t̃ and w3Deel2at. Further-
more, we have introduced the constraints (C.10), (C.11), (C.12), (C.13), (C.14) and (C.15) and
have added

∑
a vnew2a in the objective function in AIMMS in order to add

∑
a ωa as ωa is

defined in equation (4.37).

Standards3a =
∑
jt̃

[x(a+|H|)jt̃ · (t̃+M(a+|H|)j − 1)]−
∑
t̃

[w3Deel1a,t̃] + T

−
∑
jt

[xajt · (t+Maj − 1)]−
∑
t

[w3Deel2at] + T − ε2 · T ∀ a ∈ H (C.10)

vnew2a ≥ Standards3a ∀ a ∈ H (C.11)

∑
j

x(a+|H|)jt̃ · (t̃+M(a+|H|)j − 1) = HMS3Deel1at̃ · T + w3Deel1at̃ ∀ a ∈ H, t̃ (C.12)

w3Deel1t ≤ T − 1 ∀ a, t (C.13)

∑
j

xajt · (t+Maj − 1) = HMS3Deel2at · T + w3Deel2at ∀ a ∈ H, t (C.14)

w3Deel2at ≤ T − 1 ∀ a, t (C.15)
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D Results Integer Linear Program commercial law

In this appendix we give the results of the different tests, where we give the results of the tests
on the validation data. In the different tests we have not changed the values of β4 and β5:
β4 = β5 = 1 in every situation.

D.1 Scenario 1

Table 12: Results after 30 minutes of running (with 8 judges and 12 legal assistants)

β1 β2 β3 Optimality gap
∑

a na χ υ
1
24

1
125

1
125 45.83 % 21 4 2

1 0 0 0.00 % (within 317 sec) 16 22 35
0 1

125
1

125 n/a 24 0 0
1
24

1
350

1
350 49.25 % 22 3 21

Table 13: Results after 30 minutes of running (with 10 judges and 12 legal assistants)

β1 β2 β3 Optimality gap
∑

a na χ υ
1
24

1
125

1
125 47.20 % 21 4 5

1 0 0 14.29 % 14 21 9
0 1

125
1

125 n/a 24 0 0
1
24

1
350

1
350 41.60 % 20 3 5

Table 14: Results after 30 minutes of running (with 8 judges and 12 legal assistants where the
judges and legal assistant can handle (all difficulties of) all specialties)

β1 β2 β3 Optimality gap
∑

a na χ υ
1
24

1
125

1
125 50.00 % 24 0 0

1 0 0 0.00 % (within 145.75 sec.) 16 1 18
0 1

125
1

125 n/a 24 0 0
1
24

1
350

1
350 49.25 % 22 3 21

D.2 Scenario 2

Note: In the first situation in Table 15, the model is still in the presolving phase after ten
minutes. Therefore, the model was not able to provide a solution after ten minutes of running.

Table 15: Results after 10 minutes of running (with 8 judges and 12 legal assistants)

β1 β2 β3 Optimality gap
∑

a na

∑
j χj

∑
l υl

1
24

1
280

1
420 10.67 % 20 64 111

1 0 0 6.25 % 16 159 282
0 1

280
1

420 31.78 % 24 71 74
10
24

1
280

1
420 9.08 % 17 88 159

1
24

10
280

10
420 24.67 % 23 70 94
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Table 16: Results after 10 minutes of running (with 10 judges and 12 legal assistants)

β1 β2 β3 Optimality gap
∑

a na

∑
j χj

∑
l υl

1
24

1
280

1
420 n/a n/a n/a n/a

1 0 0 25.00 % 16 243 270
0 1

280
1

420 83.99 % 24 169 259
10
24

1
280

1
420 79.52 % 24 196 259

1
24

10
280

10
420 80.38 % 24 196 259

Table 17: Results after 10 minutes of running (with 8 judges and 12 legal assistants where the
judges and legal assistants can handle (all difficulties of) all specialties)

β1 β2 β3 Optimality gap
∑

a na

∑
j χj

∑
l υl

1
24

1
280

1
420 10.13 % 20 62 109

1 0 0 27.55 % 19 212 331
0 1

280
1

420 39.20 % 23 69 99
10
24

1
280

1
420 1.28 % 16 79 158

1
24

10
280

10
420 30.54 % 23 68 94
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E Additions for Integer Linear Program administrative
law

In this appendix we go further into the adjustments and additions that have to be made to the
ILP for commercial law in order to be valid for the planning problem of administrative law. We
explain the parameters and constraints that have to be added in Section E.1. An overview of the
additions to model for commercial law, including the new parameter, variables and constraints
is given in Section E.2. Unfortunately, due to time restrictions, these additions have not been
implemented and tested.

E.1 Explanation additions ILP administrative law

For administrative law, one hearing contains different cases of the same specialism, with the
same judge(s) and legal assistant. Hence, we must adjust the model of commercial law in order
to fit to the procedure of administrative law. In the model for administrative law, we introduce
the new index h for hearings and the new decision variable zaht, which we define as follows:

zaht =

{
1, if appointment a ∈ H is assigned to hearing h starting at timeslot t

0, otherwise

Each appointment that entails a hearing has to be scheduled within a hearing, which we model
in equation (E.1). Furthermore, zaht should start at the same timeslot already defined in xalt
for a ∈ H, where we use xalt without loss of generality. We model this in equation (E.2).∑

ht

zaht = 1 ∀ a ∈ H (E.1)

zaht ≤ xalt ∀ a ∈ H, h, l, t (E.2)

Furthermore, each hearing must be handled by the same judge(s) and legal assistant and can
only contain cases of the same specialism. To model the constraints that each hearing must
contain cases of the same specialism, we introduce the binary auxiliary variable ẑhs that is 1
if hearing h contains cases of specialism s. The constraints are modelled in equations (E.3)
and (E.4). The constraints that each hearing should be handled by the same judge(s) and legal
assistant are then as follows:∑

jt

xajt · zaht ≤ 3 · τa + (1− τa) ∀ a ∈ H, h

∑
lt

yalt · zaht ≤ 1 ∀ a ∈ H, h

Since these constraints contain multiplications of two binary variables, they are not linear. We
employ the earlier used modeling trick to make the multiplication of two binary variable linear
by introducing the binary auxiliary variables rahjt and sahlt. The obtained linear constraints
are given in equation (E.5) up to and including (E.12).

ẑhs ≤
∑
d

θads ·
∑
t

zaht ∀ a ∈ H, h, s (E.3)

∑
s

ẑhs = 1 ∀ h (E.4)
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rahjt ≤ xajt ∀ a ∈ H, h, j, t (E.5)

rahjt ≤ zaht ∀ a ∈ H, h, j, t (E.6)

rahjt ≥ xajt + zaht − 1 ∀ a ∈ H, h, j, t (E.7)∑
jt

rahjt ≤ 3 · τa + (1− τa) ∀ a ∈ H, h (E.8)

sahlt ≤ yalt ∀ a ∈ H, h, l, t (E.9)

sahlt ≤ zaht ∀ a ∈ H, h, l, t (E.10)

sahlt ≥ yalt + zaht − 1 ∀ a ∈ H, h, l, t (E.11)∑
lt

sahlt ≤ 1 ∀ a ∈ H, h (E.12)

A maximum of four hearings can be scheduled a day per pair of judge(s) and legal assistant. In
order to model this constraint, we let Tµ be the set of timeslots t within a day µ. We thus want
the following: ∑

h

xajt · zaht ≤ 4 ∀ a ∈ H, j, t ∈ Tµ∑
h

yalt · zaht ≤ 4 ∀ a ∈ H, l, t ∈ Tµ

In order to make these constraints linear, we make use of the earlier introduced auxiliary binary
variables rahjt and sahlt and model the constraints in equations (E.13) and (E.14).∑

h

rahjt ≤ 4 ∀ a ∈ H, j, t ∈ Tµ (E.13)

∑
h

sahlt ≤ 4 ∀ a ∈ H, l, t ∈ Tµ (E.14)

E.2 Overview additions ILP administrative law

We give an overview of the added variables in Table 18 and the added parameter in Table 19.
Furthermore, we have added the set Tµ that gives all timeslots t within day µ. Afterwards, we
give the added constraints in order to obtain the model for administrative law. The objective
has not been changed.

Table 18: Added binary variables for ILP commercial law

zaht
1 if appointment a ∈ H is assigned to hearing h and starts at

(the beginning of) timeslot t

rahjt
1 if appointment a is assigned to hearing h, judge j and starts at

(the beginning of) timeslot t

sahlt
1 if appointment a is assigned to hearing h, legal assistant l and

starts at (the beginning of) timeslot t
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Table 19: Added binary parameter for ILP administrative law

ẑhs 1 if hearing h contains cases of specialism s

The constraints that have to be added to the model for commercial law, in order to obtain the
model for administrative law are stated below.∑

ht

zaht = 1 ∀ a ∈ H (E.15)

zaht ≤ xalt ∀ a ∈ H, h, l, t (E.16)

ẑhs ≤
∑
d

θads ·
∑
t

zaht ∀ a ∈ H, h, s (E.17)

∑
s

ẑhs = 1 ∀ h (E.18)

rahjt ≤ xajt ∀ a ∈ H, h, j, t (E.19)

rahjt ≤ zaht ∀ a ∈ H, h, j, t (E.20)

rahjt ≥ xajt + zaht − 1 ∀ a ∈ H, h, j, t (E.21)

∑
jt

rahjt ≤ 3 · τa + (1− τa) ∀ a ∈ H, h (E.22)

sahlt ≤ yalt ∀ a ∈ H, h, l, t (E.23)

sahlt ≤ zaht ∀ a ∈ H, h, l, t (E.24)

sahlt ≥ yalt + zaht − 1 ∀ a ∈ H, h, l, t (E.25)

∑
lt

sahlt ≤ 1 ∀ a ∈ H, h (E.26)

∑
h

rahjt ≤ 4 ∀ a ∈ H, j, t ∈ Tµ (E.27)

∑
h

sahlt ≤ 4 ∀ a ∈ H, l, t ∈ Tµ (E.28)
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F Calculation basis functions in ILP-form

In this appendix we elaborate on how we have implemented the basis functions in Python,
making use of the MIP-package. We make use of these two modelling tricks:

1. You can model (y = x1) OR (y = x2) OR .. OR (y = xn) linearly by using the following
constraints:

y ≥ xi ∀ i = {1, .., n}

y ≤
∑
i

xi

2. You can model (y = x1) AND (y = x2) AND .. AND (y = xn) linearly by using the
following constraints:

y ≤ xi ∀ i = {1, .., n}

y ≥ [
∑
i

xi]− n+ 1

For basis function 1 up to and including 8 we show how we can calculate the value of the basis
function per judge, where the value of these basis functions per legal assistants can be calculated
similarly: replacing only xjt by ylt and φkj by φkl for k = 1, .., 8. We show the added variables
and constraints per basis function:

1. In the first basis function, we calculate the amount of free time periods consisting of
one loose block (e.g. 1 single free timeslot). We introduce the variable ajt such that
φ1j =

∑
t ajt where:

ajt =

{
1, if xj(t−1) = 0 and xjt = 1 and xj(t+1) = 0

0, otherwise.

We thus have the following constraint:
“IF (xjt = 1) AND (xj(t−1) = 0) AND (xj(t+1) = 0) THEN ajt = 1”. We model this
linearly by introducing constraints (F.1)-(F.5) and add

∑
j φ1j to the objective (in our

ILP in Python).
ajt ≤ xjt ∀ j, t (F.1)

ajt ≤ 1− xj(t−1) ∀ j, t (F.2)

ajt ≤ 1− xj(t+1) ∀ j, t (F.3)

ajt ≥ xjt − xj(t−1) − xj(t+1) ∀ j, t (F.4)

φ1j =
∑
t

ajt ∀ j (F.5)

2. In the second basis function, we calculate the amount of 2 consecutive free timeslots in
the schedule. We therefore introduce the variable bjt such that φ2j =

∑
t bjt where:

bjt =

{
1, if xj(t−1) = 0 and xjt = 1 and xj(t+1) = 1 and xj(t+2) = 0

0, otherwise.

We thus have the following constraint:
“IF (xjt = 1) AND (xj(t+1) = 1) AND (xj(t−1) = 0) AND (xj(t+2) = 0) THEN bjt = 1”.
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We model this linearly by introducing constraints (F.6)-(F.11) and add
∑
j φ2j to the

objective (in our ILP in Python).

bjt ≤ xjt ∀ j, t (F.6)

bjt ≤ xj(t+1) ∀ j, t (F.7)

bjt ≤ 1− xj(t−1) ∀ j, t (F.8)

bjt ≤ 1− xj(t+2) ∀ j, t (F.9)

bjt ≥ xjt + xj(t+1) − xj(t−1) − xj(t+2) − 1 ∀ j, t (F.10)

φ2j =
∑
t

bjt ∀ j, t (F.11)

3. In the third basis function, we calculate the amount of 3 consecutive free timeslots in the
schedule. We introduce the variable cjt such that φ3j =

∑
t cjt where:

cjt =

{
1, if xj(t−1) = 0 and xjt = 1 and xj(t+1) = 1 and xj(t+2) = 1 and xj(t+3) = 0

0, otherwise.

We thus get the following constraint:
“IF (xjt = 1) AND (xj(t+1) = 1) AND (xj(t+2) = 1) AND (xj(t−1) = 0) AND (xj(t+3) = 0)
THEN cjt = 1”. We model this linearly by introducing constraints (F.12)-(F.18) and add∑
j φ3j to the objective (in our ILP in Python).

cjt ≤ xjt ∀ j, t (F.12)

cjt ≤ xj(t+1) ∀ j, t (F.13)

cjt ≤ xj(t+2) ∀ j, t (F.14)

cjt ≤ 1− xj(t−1) ∀ j, t (F.15)

cjt ≤ 1− xj(t+3) ∀ j, t (F.16)

cjt ≥ xjt + xj(t+1) + xj(t+2) − xj(t−1) − xj(t−3) − 2 ∀ j, t (F.17)

φ3j =
∑
t

cjt ∀ j (F.18)

4. In the fourth basis function, we calculate the number of consecutive nonscheduled time
periods. This can also be seen as the number of times a free timeslot follows a scheduled
timeslot, per judge (or legal assistant). We thus introduce the variable djt where such that
φ4j =

∑
t djt where:

djt =

{
1, if xjt = 0 and xj(t+1) = 1

0, otherwise.

We thus have the following constraint:
“IF (xjt = 0) AND (xj(t+1) = 1) THEN djt = 1.” We model this linearly by introducing
constraints (F.19)-(F.22) and add

∑
j φ4j to the objective (in our ILP in Python).

djt ≤ xj(t+1) ∀ j, t (F.19)

djt ≤ 1− xjt ∀ j, t (F.20)

djt ≥ xj(t+1) − xjt ∀ j, t (F.21)

φ4j =
∑
t

djt ∀ j (F.22)
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5. In the fifth basis function, we calculate the first moment when 6 consecutive timeslots are
available. In order to do this, we first introduce the binary variable fjt that is 1 if there
have been 6 consecutive free timeslots on timeslot t. In order to do this, we use the same
manner as for basis function 1, 2 and 3 and obtain constraints (F.23)-(F.30).

fjt ≤ xjt ∀ j, t (F.23)

fjt ≤ xj(t+1) ∀ j, t (F.24)

fjt ≤ xj(t+2) ∀ j, t (F.25)

fjt ≤ xj(t+3) ∀ j, t (F.26)

fjt ≤ xj(t+4) ∀ j, t (F.27)

fjt ≤ xj(t+5) ∀ j, t (F.28)

fjt ≤ 1− xj(t−1) ∀ j, t (F.29)

fjt ≥ xjt + xj(t+1) + xj(t+2) + xj(t+3) + xj(t+4) + xj(t+5) − xj(t−1) − 5 ∀ j, t (F.30)

We then introduce a new binary variable gjt that is 1 if timeslot t is the first timeslot
in which judge j has six consecutive available timeslots. We let gjt be 1 if fjt = 1 and
fjp = 0 where p < t. We then use the following constraint in order to calculate gjt:

gjt ≥ fjt · (1− fjp) ∀ p < t, j

Since this constraint contains a multiplication of two binary variables, we introduce the
new binary variable qjt in order to model fjt · (1 − fjp) and implement (F.31)-(F.36) in
our model in Python and we add φ5j to the objective (of our ILP in Python).

qjt ≤ fjt ∀ j, t (F.31)

qjt ≤ (1− fjp) ∀ j, p < t (F.32)

qjt ≥ fjt + (1− fjp)− 1 ∀ j, p < t (F.33)

gjt ≥ qjt ∀ j, t (F.34)

gjt ≤ 1− fjp ∀ j, p < t (F.35)

φ5j =
∑
t

gjt · t ∀ j (F.36)

6. In the sixth basis function, we calculate the number of free timeslots that fall before free
timeslots of length ≥ 4. In the same manner as for φ5 we calculate the first timeslot in
which four consecutive free timeslots take place, by introducing the binary variable hjt that
is 1 if t is a timeslot on which judge j has 4 consecutive free timeslots, kjt is an auxiliary
variable in order to linearize the multiplication of binary variables hjt and (1−hjp) where
p < t and the binary variable mjt that is 1 if t is the first timeslot on which judge j has
4 consecutive free timeslots. In order to model these variables, we introduce equations
(F.37)- (F.46). We calculate the first timeslot on which judge j has 4 consecutive free
timeslots by

∑
tmjt · t and introduce equation (F.48) in order to calculate φ6j .

hjt ≤ xjt ∀ j, t (F.37)

hjt ≤ xj(t+1) ∀ j, t (F.38)
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hjt ≤ xj(t+2) ∀ j, t (F.39)

hjt ≤ xj(t+3) ∀ j, t (F.40)

hjt ≤ 1− xj(t−1) ∀ j, t (F.41)

hjt ≥ xjt + xj(t+1) + xj(t+2) + xj(t+3) − xj(t−1) − 3 ∀ j, t (F.42)

kjt ≤ hjt ∀ j, t (F.43)

kjt ≤ (1− hjp) ∀ j, p < t (F.44)

kjt ≥ hjt + (1− hjp)− 1 ∀ j, p < t (F.45)

mjt ≥ kjt ∀ j, t (F.46)

mjt ≤ 1− hjp ∀ j, p < t (F.47)

φ6j =

∑
tmjt·t∑
t=0

ajt + bjt + cjt ∀ j (F.48)

7. In the seventh basis function, we calculate the number of timeslots in which a judge and
legal assistant of the same specialism are available. We introduce the variable nst such
that φ7s =

∑
t nst where:

nst =

{
1, if xjt = 1 for at least one j of specialism s and ylt = 1 for at least one l of specialism s

0, otherwise.

We thus want to have the following: for certain s and t: IF (
∑
j xjt · Ijs ≥ 1) AND

(
∑
l ylt ·

∑
d Jlsd ≥ 1) for certain s and t THEN nst = 1. This can be rewritten in a set of

linear constraints using all the constraints below, where we introduce the binary variables
n̂st that is 1 if

∑
j xjt · Ijs ≥ 1 and ñst that is 1 if

∑
l ylt ·

∑
d Jlsd ≥ 1.

In order to calculate n̂st we rewrite the IF-THEN constraint into the following OR-
constraint:

∑
j xjt · Ijs ≥ 1 OR n̂st = 1. This OR-constraint can then be rewritten

into (F.49) and (F.50) where y is a binary variable and M1 is sufficiently large.∑
j

xjt · Ijs ≥ 1−M1 · y ∀ s, t (F.49)

n̂st = 1− y ∀ s, t (F.50)

In order to calculate ñst we rewrite the IF-THEN constraint into the following OR-
constraint:

∑
l ylt ·

∑
d Jlsd ≥ 1 OR ñst = 1. This OR-constraint can then be rewritten

into (F.51) and (F.52) where 1 is a binary variable and M12 is sufficiently large.∑
l

ylt ·
∑
d

Jlsd ≥ 1−M2 · q ∀ s, t (F.51)

ñst = 1− q ∀ s, t (F.52)

Then, in order to calculate nst we end by adding (F.53) - (F.53) to our linear model.

nst ≤ ñst ∀ s, t (F.53)

nst ≤ n̂st ∀ s, t (F.54)

nst ≥ n̂st + ñst − 1 ∀ s, t (F.55)
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8. In the eighth basis function, we calculate the first timeslot on which a judge and legal
assistant of the same specialism are available for two consecutive timeslots. We should
thus find the first timeslot t (per specialism s) for which nst = 1 for two consecutive
timeslots. In order to do this, we first introduce the binary variable zst that is 1 if there
have been 2 consecutive timeslots where nst = 1.

zst ≤ nst ∀ s, t (F.56)

zst ≤ ns(t+1) ∀ s, t (F.57)

zst ≤ 1− ns(t−1) ∀ s, t (F.58)

zst ≥ nst + ns(t+1) − ns(t−1) − 1 ∀ s, t (F.59)

We introduce a new binary variable wst that is 1 if timeslot t is the first timeslot in which
zst = 1. We thus get:
IF (zst = 1) AND (zsp = 0) for p < t, THEN wst = 1. This can be modeled using the
following constraint:

wst ≥ zst · (1− zsp) ∀ s, p < t

Since this constraint contains a multiplication of two binary variables, we introduce the
new binary variable ust in order to model zst · (1 − zsp) and implement (F.60)-(F.65) in
our model in Python and we add φ9s to the objective (of our ILP in Python).

ust ≤ zst ∀ s, t (F.60)

ust ≤ (1− zsp) ∀ s, p < t (F.61)

ust ≥ zst + (1− zsp)− 1 ∀ s, p < t (F.62)

wst ≥ ust ∀ s, t (F.63)

ust ≤ 1− zsp ∀ s, p < t (F.64)

φ8s =
∑
t

wst · t ∀ s (F.65)

9. The ninth basis function is the constant offset feature. Hence, we have φ9 = 1 for every
state.

In the tenth basis function, we calculate the number of consecutive free timeslots of length ≥ 5.
We therefore introduce a function wkj that calculates the amount of free time periods consisting
of k blocks, similar to as what is done in order to calculate φ1j , φ2j and φ3j . We then calculate
φ10j by using (F.66) where M is a large number. Since the number of constraints increases
enormously by increasing M , we have chosen not to implement this basis function yet. If time
allows, we can experiment with different values for M .

φ10j =

M∑
k=5

vkj ∀ j (F.66)
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G Output MDP toy-sized problem (n=50)

In this appendix we give the output of the first 10 iterations of the MDP using the following
input:

• On average, one case arrives (following the Poisson process).

• We make use of an optimality gap of 0.05 and a maximum run time of the ILP of three
minutes.

• We make use of 2 judges and 2 legal assistants.

• We make use of 1 specialism and 1 difficulty. Obviously, both judges and legal assistants
can handle the specialism and difficulty.

• We start with a horizon of one week, that can move up two days (which makes the total
amount of timeslots 49). The used availability is as follows:

Availability_judges =

[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

Availability_legalassistants =

[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

• We make use of 50 iterations.

The output is then as follows:
Note: The appointment numbers corresponding to one cases are here modeled as consecutive
numbers (so e.g. appointment numbers 0, 1 and 2 belong to the first arriving case, whereas in
our model the appointment numbers 0, |P|, 2 · |P| belong to the first arriving case).

Iteration n: 1

Iteration n: 2

Iteration t: 1

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 8]

Appointment durations for the legal assistants: [7, 2, 14]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 8]

Appointment durations for the legal assistants: [7, 2, 14]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled
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Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 3

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 8]

Appointment durations for the legal assistants: [7, 2, 14]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 7

Appointment 1 judge 1 timeslot 16

Appointment 2 judge 1 timeslot 18

Appointment 0 legal assistant 1 timeslot 6

Appointment 1 legal assistant 1 timeslot 16

Appointment 2 legal assistant 1 timeslot 18

Objective value = 989.6142857142858

Iteration n: 3

Iteration t: 1

Appointment numbers: {0, 1, 2, 3, 4, 5}

Appointment durations for the judges: [6, 2, 8, 6, 2, 7]

Appointment durations for the legal assistants: [10, 2, 13, 7, 2, 11]

OptimizationStatus.OPTIMAL

Appointment 3 judge 0 timeslot 2

Appointment 4 judge 0 timeslot 12

Appointment 5 judge 0 timeslot 21

Appointment 3 legal assistant 0 timeslot 1

Appointment 4 legal assistant 0 timeslot 12

Appointment 5 legal assistant 0 timeslot 17

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 7]

Appointment durations for the legal assistants: [7, 2, 11]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 0

Appointment 1 judge 1 timeslot 18

Appointment 2 judge 1 timeslot 23

Appointment 0 legal assistant 1 timeslot 11

Appointment 1 legal assistant 1 timeslot 18

Appointment 2 legal assistant 1 timeslot 23

Objective value = 961.5295455486684

Iteration n: 4

Iteration t: 1

Appointment numbers: {0, 1, 2, 3, 4, 5}

Appointment durations for the judges: [7, 2, 6, 7, 2, 8]

Appointment durations for the legal assistants: [9, 2, 9, 8, 2, 10]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled
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Appointment 2 is not scheduled

Appointment 3 is not scheduled

Appointment 4 is not scheduled

Appointment 5 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2, 3, 4, 5}

Appointment durations for the judges: [7, 2, 6, 7, 2, 8]

Appointment durations for the legal assistants: [9, 2, 9, 8, 2, 10]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 11

Appointment 1 judge 1 timeslot 18

Appointment 2 judge 1 timeslot 23

Appointment 0 legal assistant 1 timeslot 9

Appointment 1 legal assistant 1 timeslot 18

Appointment 2 legal assistant 1 timeslot 23

Appointment 3 is not scheduled

Appointment 4 is not scheduled

Appointment 5 is not scheduled

Iteration t: 3

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [7, 2, 8]

Appointment durations for the legal assistants: [8, 2, 10]

OptimizationStatus.INFEASIBLE

NO FEASIBLE SOLUTION IN ITERATION 4!!!

Iteration n: 4

Iteration t: 1

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 7]

Appointment durations for the legal assistants: [9, 2, 10]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 7]

Appointment durations for the legal assistants: [9, 2, 10]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 0

Appointment 1 judge 1 timeslot 18

Appointment 2 judge 1 timeslot 23

Appointment 0 legal assistant 1 timeslot 9

Appointment 1 legal assistant 1 timeslot 18

Appointment 2 legal assistant 1 timeslot 23

Objective value = 987.3204671436191

Iteration n: 5

Iteration n: 6

Iteration t: 1

Appointment numbers: {0, 1, 2}
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Appointment durations for the judges: [7, 2, 8]

Appointment durations for the legal assistants: [7, 2, 15]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [7, 2, 8]

Appointment durations for the legal assistants: [7, 2, 15]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 3

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [7, 2, 8]

Appointment durations for the legal assistants: [7, 2, 15]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 6

Appointment 1 judge 1 timeslot 16

Appointment 2 judge 1 timeslot 18

Appointment 0 legal assistant 1 timeslot 6

Appointment 1 legal assistant 1 timeslot 16

Appointment 2 legal assistant 1 timeslot 18

Objective value = 942.7612030874521

Iteration n: 7

Iteration t: 1

Appointment numbers: {0, 1, 2, 3, 4, 5}

Appointment durations for the judges: [6, 2, 7, 7, 2, 7]

Appointment durations for the legal assistants: [7, 2, 9, 9, 2, 11]

OptimizationStatus.OPTIMAL

Appointment 0 judge 0 timeslot 2

Appointment 1 judge 0 timeslot 17

Appointment 2 judge 0 timeslot 19

Appointment 0 legal assistant 0 timeslot 1

Appointment 1 legal assistant 0 timeslot 17

Appointment 2 legal assistant 0 timeslot 19

Appointment 3 is not scheduled

Appointment 4 is not scheduled

Appointment 5 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [7, 2, 7]

Appointment durations for the legal assistants: [9, 2, 11]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 11

Appointment 1 judge 1 timeslot 18

Appointment 2 judge 1 timeslot 23
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Appointment 0 legal assistant 1 timeslot 9

Appointment 1 legal assistant 1 timeslot 18

Appointment 2 legal assistant 1 timeslot 23

Objective value = 928.8911046424823

Iteration n: 8

Iteration t: 1

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 6]

Appointment durations for the legal assistants: [8, 2, 13]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 6]

Appointment durations for the legal assistants: [8, 2, 13]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 3

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 6]

Appointment durations for the legal assistants: [8, 2, 13]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 7

Appointment 1 judge 1 timeslot 16

Appointment 2 judge 1 timeslot 18

Appointment 0 legal assistant 1 timeslot 5

Appointment 1 legal assistant 1 timeslot 16

Appointment 2 legal assistant 1 timeslot 18

Objective value = 939.0382454401264

Iteration n: 9

Iteration t: 1

Appointment numbers: {0, 1, 2, 3, 4, 5}

Appointment durations for the judges: [6, 2, 8, 5, 2, 6]

Appointment durations for the legal assistants: [7, 2, 9, 9, 2, 8]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 7

Appointment 1 judge 1 timeslot 17

Appointment 2 judge 1 timeslot 19

Appointment 0 legal assistant 0 timeslot 1

Appointment 1 legal assistant 0 timeslot 17

Appointment 2 legal assistant 0 timeslot 19

Appointment 3 is not scheduled

Appointment 4 is not scheduled

Appointment 5 is not scheduled

Iteration t: 2
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Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [5, 2, 6]

Appointment durations for the legal assistants: [9, 2, 8]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 3

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [5, 2, 6]

Appointment durations for the legal assistants: [9, 2, 8]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Objective value = 916.3531957670531

Iteration n: 10

Iteration t: 1

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 7]

Appointment durations for the legal assistants: [10, 2, 10]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 2

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 7]

Appointment durations for the legal assistants: [10, 2, 10]

OptimizationStatus.OPTIMAL

Appointment 0 is not scheduled

Appointment 1 is not scheduled

Appointment 2 is not scheduled

Iteration t: 3

Appointment numbers: {0, 1, 2}

Appointment durations for the judges: [6, 2, 7]

Appointment durations for the legal assistants: [10, 2, 10]

OptimizationStatus.OPTIMAL

Appointment 0 judge 1 timeslot 7

Appointment 1 judge 1 timeslot 16

Appointment 2 judge 1 timeslot 18

Appointment 0 legal assistant 1 timeslot 3

Appointment 1 legal assistant 1 timeslot 16

Appointment 2 legal assistant 1 timeslot 18

Objective value = 923.03446927044
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H Input MDP test data (enlarging state space)

In this appendix we show the availability used when testing with larger state spaces. When
enlarging the horizon, but still using two judges and two legal assistants, we used the following
availability:

Availability_judges =

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,

1, 1, 1, 1, 1, 1, 1, 0,0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1,

1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

Availability_legalassistants =

[[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,

0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1]]

When using the same horizon as for the toy-sized problem, but using eight judges and ten legal
assistants, we used the following availability:

Availability_judges =

[[1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
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1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]

Availability_legalassistants =

[[1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0,

0, 1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1,

1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 0, 0, 0, 0,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1],

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ,

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
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