
Faculty of Electrical Engineering,
Mathematics & Computer Science

Thwarting File-Injection Attacks on
Searchable Encryption

via Client-side Detection

C. H. M. van den Bogaard
M.Sc. Thesis

December 2020

Supervisors:
Dr. A. Peter

Dr. Ing. F.W. Hahn
Dr. D. Bucur

Services and Cyber-Security
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Thwarting File-Injection Attacks on Searchable
Encryption via Client-side Detection

C.H.M. van den Bogaard
Faculty of Electrical Engineering, Mathematics and Computer Science

University of Twente
Enschede, The Netherlands

c.h.m.vandenbogaard@student.utwente.nl

Abstract—The concept of Searchable Encryption is a promising
solution to protect the contents of outsourced data and search
queries to the data from unauthorized access by Cloud Service
Providers and other external adversaries. Recently File Injection
Attacks have been proposed which can break query privacy. In
these attacks, the adversary sends files to the client, which are
then encrypted and stored. This adversary can break query
privacy using these injected files. Solutions to these attacks have
been proposed, such as Forward Private Searchable Encryption;
however, these SE schemes do not completely mitigate the
problem. We propose client-side detection schemes that can be
applied to all Searchable Encryption Schemes and have low
overhead. We show that we can reduce the attack success of
three attacks to 0 and for one attack to a maximum of 0.1 while
obtaining 0.99 detection accuracy for benign files. Furthermore,
we show that modifications to the first three attacks do not
improve the attack success, and for the last attack, we show
that the adversary can obtain an attack success maximum of
0.45 under the worst-case scenario while obtaining 0.80 detection
accuracy for benign files.

Index Terms—searchable encryption, file injection attacks,
detection, mitigation

I. INTRODUCTION

With the rise of cloud computing and storage, multiple
issues start to arise: Can we trust our private data on
third-party servers? To mitigate these privacy concerns, one
could encrypt its data before uploading it to the third-party
services, but that raises even more issues in terms of usability.
To search or edit the data, the user should download all
data and decrypt it before searching or editing operation.
He then would encrypt and upload the changes again.
This trivial solution does not scale well when the dataset
is large, and thus it is not the right solution to mitigate
these privacy issues. Another solution would be to have
the server decrypt the data and run the search query on the
dataset. Here, the server learns the data’s content, which leads
to a problem if the contents need to be hidden from the server.

The concept of Searchable Encryption (SE) is a promising
solution to protect outsourced data from unauthorized access
by Cloud Service Providers or other external adversaries. It
was first introduced by Song et al. [1]. An SE scheme allows
the server to search in encrypted data without learning the
plaintext data contents. For example, a user may encrypt his
email, store it at the server, and later search for this email

on the server without learning this email’s content. Much
research has been done to construct these SE schemes and
improve them in search and storage complexity. However,
all these SE schemes expose some information about the
plaintext of the underlying plaintext, which we call leakage.
Such leakage can be abused to learn the distribution of
keywords or frequency of queries on a specific keyword.

A malicious server can exploit this leakage to learn the
contents of the encrypted data (plaintext recovery) or the
plaintext keyword of the query (query recovery). Recently
proposed attacks show that it is possible to (partially) recover
the plaintext or the query leveraging this private information
[2]–[4]. The IKK attack by Islam et al. and the Count attack
by Cash et al. use statistical techniques to recover the queries
using the (partial) knowledge of the plaintext [2], [3]. These
two attacks are passive in contrast with Zhang et al., who
propose active attacks on Searchable Encryption using File
Injections, which significantly outperform the former attacks
[4]. It works by linking newly inserted documents with
previous search queries, recovering queries with a small
number of injected files. They consider both adaptive and
non-adaptive attacks, where the adaptive attacks achieve
higher recovery rates with less injected files.

To prevent these adaptive file injection attacks, Bost et
al. came up with a new SE scheme with Forward Privacy.
Forward Privacy ensures that newly inserted files can not
be linked to previous search queries [5]. Further extending
this research, multiple authors proposed other SE schemes
with Forward Privacy, which perform better in search and
storage complexity. The adaptive attack from Zhang et al.
can not be executed on Forward Private schemes; however,
the non-adaptive attack remains possible [4]. One issue with
these Forward Privacy schemes is that updates are only
unlinkable until a new search query is performed. After a
new search query, these updates are linkable again, meaning
that the adaptive file injection attacks are still possible: It
would need a query replay from the user, or the adversary
has to wait until the new search token is generated by the
client again leading to the fact that adaptive file injections
are still possible over more time. Furthermore, Forward
Privacy introduces higher search and storage complexity for

Searchable Encryption schemes.

Other research also proposed several mitigations, but the
adversary can easily circumvent these by slightly modifying
the attack. These incomplete solutions lead to an interesting
question on how to mitigate these File Injection attacks. We
reason that, while other solutions are not entirely mitigating
the problem, another solution should be proposed. Up to
now, there has been no research on the detection of File
Injection attacks. We propose client-side detection schemes
that can detect the files used in these File Injection attacks
and mitigate the attack by suppressing these injected files.
We furthermore show that modified File Injection attacks
are still not successful in evading our proposed detection
methods. We first describe Searchable Encryption schemes.
Furthermore, we describe the attacks proposed by Zhang
et al. [4]. Based on the characteristics of the attacks, we
propose new detection methods. Then, attack modifications
are proposed to determine whether the adversary can evade
the detection schemes.

Our contributions

• We show that our detection methods can reduce the attack
performance of the Hierarchical Search Attack, Binary
Search Attack, and Partial Knowledge Attack to 0 while
classifying 99% of the benign files correctly.

• We show that our detection methods can reduce the attack
performance of the Multi Token Attack to a maximum of
0.10

• We provide improved variants of the attacks that are
tailored to evade the proposed detection methods.

• We show that the attack success of the improved versions
of the Binary Search Attack, Hierarchical Search Attack,
and the Partial Knowledge Attack can be reduced to 0
while classifying 95% of the benign files correctly.

• We show that the detection obtains a maximum of 0.45
under the worst-case scenario for the improved Multi
Token Attack while classifying 95% of the benign files
correctly.

II. ATTACKS ON SEARCHABLE ENCRYPTION

A. Searchable Encryption

At a high level, a Searchable Encryption (SE) scheme
allows a client to store encrypted documents on a server such
that at a later point, the client can retrieve files containing
a certain keyword or collection of keywords. Assume a set
of keywords K = {w0, w1, . . . , wn}. The client computes a
token t corresponding to w and secret key sk and sends t to the
server. The server computes and sends back the file identifiers
containing the keyword w. While this is a high-level overview
of a general SE scheme and many variants exist, we will use
this implementation of a Searchable Encryption scheme for
this research. Table I shows an overview of the used symbols,
which will be introduced in other sections.

K Keyword universe, set of keywords
T Keyword threshold in files
sk Secret key used in SSE scheme
Fj File Fj

wi Keyword wi

ti Token ti derived using keyword w and key sk
τi Set of tokens
f(ti) Frequency of token ti in database

f∗(wi)
Estimated frequency of keyword wi given the leaked
documents

f(ti, tj) Co-frequency of token ti, tj in database

f∗(wi, wj)
Estimated co-frequency of keywords wi, wj given
the leaked documents

β Fraction of leaked files to the adversary
α Threshold value used in the detection method
ρ Dummy keyword universe fraction
r Attack success

TABLE I
OVERVIEW OF USED NOTATIONS

B. File Injection Attacks

The goal of File Injection attacks is to break query privacy,
i.e., the adversary tries to find the keyword wi matching to
some observed token ti. In these File Injection attacks, the
server, who acts as the adversary, sends files to the client,
which are then encrypted and stored. The adversary then
tries to reveal search tokens sent by the client by using these
injected files’ structure and contents. File Injections turn out
to be easy when taking Searchable Encryption applications
into account, such as a cloud-based e-mail archive. In this
case, the adversary only has to send e-mails to the client to
inject her malicious files.

1) Binary Search Attack: In the Binary Search Attack
(BSA), the server does not require knowledge about the
clients’ plaintext files and recovers all the keywords being
searched by the client with 100% accuracy. Assume keyword
universe K. The adversary injects log(|K|) files where each
file consists of 1

2 |K| keywords. The adversary generates
a set of {F1, . . . , Flog(|K|)} where Fi contains exactly the
keywords in K where the index of these keywords i-th bit is
1. The combination of files returned in response to a search
token is used to compute the keyword. A visual example
using |K| = 8 on how the keyword is determined given a
token using the malicious files is given in Figure 1.

The injected files are generated non-adaptively and are
independent of a search token. The same injected files can
be re-used to compute the keyword of an associated search
token. A keyword universe of 50000 unique keywords would
only need 16 files of 25000 keywords each. The drawback
of this attack is that the adversary needs to have knowledge
of the used keyword universe. A possibility to overcome this
limitation would be to inject all existing keywords or use
leaked or related data.

Fig. 1. Binary Search Attack with |K| = 8. Each file injected by the attacker
contains four keywords, which are shaded in the figure. If F2 is returned in
response to some token but F1 and F3 are not, the keyword corresponding
to that token is w2

2) Hierarchical-Search Attack: The Hierarchical Search
Attack (HSA) improves the aforementioned Binary Search
Attack when some keyword threshold T is defined, where
the threshold defines the maximum amount of keywords per
file. It first partitions the keyword universe into |K|T subsets.
These subsets are all injected. Then, the Binary Search Attack
is executed on two adjacent subsets for all subsets. Based
on the access pattern on one of these subsets, the adversary
learns which subset the keyword is in. Then, the adversary can
determine the exact keyword using the files generated with
the Binary Search Attack with the two adjacent subsets. The
number of injected files therefore is

|K|
T

+
1

2
∗ |K|
T
∗ log(2T) = |K|

2T
∗ (log(2T) + 2) (1)

The number of files can be reduced to fewer injections as in
each iteration, the first file generated by the Binary Search
Attack overlaps with one of the keyword universe subsets. It
is further not necessary that the last subset is injected. If it is
not in any of the other subsets, it must be in the last subset.
Therefore, the total amount of files can be found in Equation 2.

|K|
2T
∗ (log(2T) + 1)− 1 (2)

The complexity of this attack in terms of files injected is
significantly larger than the Binary Search Attack. Using the
same keyword universe of 50000 unique keywords and a
threshold of 200 keywords per file, the adversary needs to
inject approximately 1200 files. The drawback of both the
HSA and BSA is that the adversary needs knowledge of the
keyword universe she will inject. However, the attack will
always succeed if the adversary knows the keyword universe.

3) Partial Knowledge Attack: For the Partial Knowledge
Attack (PKA), the knowledge of the underlying plaintext is
used to attack query privacy. In this attack, the adversary uses
leaked files to attack one observed token. The server first learns
the frequencies of tokens in the data. Let f(ti) denote the
frequency of token ti corresponding to keyword wi in the
dataset. The adversary can further generate f∗(wj), which is
the frequency of keyword wj in the known leaked plaintext.

After observing a token ti the adversary constructs a candidate
universe K ′ with 2T keywords whose estimated frequencies
are closest to f(ti). The adversary then uses the Binary Search
Attack with these 2T keywords, which results in a total of
log(2T) files. Zhang et al. report a 70% recovery rate if 20%
of the files are leaked, and a 30% recovery rate if only 1% of
the files are leaked. However, if we want to learn more tokens,
we would need to inject m ∗ log(2T) files.

4) Multitoken Attack: We can further improve the attack
to learn m tokens while injecting less than m ∗ log(2T) files
in the Multitoken Attack. The adversary tries to recover a
set τ of m tokens while minimizing the amount of injected
files. We split the set of tokens τ in τ1, τ2 where τ1 is the set
of tokens of length n where n < m, by taking the n tokens
with the highest observed frequency f(t) for all t ∈ τ . For
each token ti in τ1, we compute 2T/n keywords and add it
to the set K ′ with the estimated frequency f∗(k) nearest to
f(t) such that the total amount of keywords to be injected
is 2T . We can then execute the Binary Search Attack with
the 2T keywords and recover the n tokens in τ1. The set of
recovered tokens from τ1 is called the ground truth G.

Using G, we can recover the other tokens in τ2. We
define the function f(t, t′) to be the exact observed joint
frequency of tokens t, t′ and f∗(k, k′) as the estimated
joint frequency of two keywords k, k′ measured from the
leaked documents. To recover the tokens t′ in τ2 we add the
keywords k′ from the leaked documents to K such that if
keyword k′ corresponds to t′, then f∗(k, k′) should be close
to f(t, t′) for each of the pairs (t, k) in G. The closeness is
defined using the parameter δ. An extended description of
how this parameter is determined is enclosed in the research
by Zhang et al. [4]. However, the adversary can increase δ to
obtain higher attack success with the downside of generating
more files needed to inject.

Using the generated keyword universe K, the Hierarchical
Search Attack or the Binary Search Attack is executed.
Compared to the Binary Search Attack and the Hierarchical
Search Attack, we are using the leaked knowledge to compute
a keyword universe instead of assuming we have knowledge
of the keyword universe. Zhang et al. report a 60% recovery
rate when 50% of the plaintext is leaked, and only a total
of 40 files are injected when |K| = 5000. Furthermore, it
achieves a 100% recovery rate when the complete plaintext
is leaked while only injecting 17 files on average [4].

III. DETECTION METHODS

In the field of Searchable Encryption and File Injection
attacks, no client-side detection methods have been proposed
so far. We propose two detection techniques targeting the four
proposed File Injection attacks.

A. Security Model

Figure 2 shows an overview of the Security Model. The ad-
versary Mallory controls the Storage Provider and thus knows

Fig. 2. Overview of Security Model where the adversary Mallory tries to
break the token issued by Alice by executing the file injection attack. Alice
has a detection scheme that analyses the received files

the access pattern on files. She furthermore crafts malicious
files and sends this to Alice. Alice encrypts all received files
and sends them to the server. We propose detection schemes
on the client-side to detect these malicious files such that the
client discards these malicious files, and therefore these are
not stored on the external server.

B. Keyword Co-occurrence Detection (KCD)

Each of the four attacks generates the malicious files using
the computed keyword universe to attack the targeted tokens.
In essence, these files consist of binary combinations of the
attacked keyword universe. It is highly likely that the combi-
nation of keywords within a file makes no sense to the human
reader. Therefore, these seemingly arbitrary combinations of
keywords in files differ from the combination of keywords
in regular or benign files the client receives. We propose a
detection method that utilizes the composition of keywords. It
takes for every adjacent word pair the co-frequency f(w1, w2)
for adjacent keywords w1, w2 and averages this for the file.
Let F be a file the client receives. Then, the Keyword Co-
Frequency Score (KCS) of a received file F where |F | denotes
the amount of keywords in F is computed using Equation 3.

KCS =
1

|F |

|F |∑
i=1

f(wi, wi+1) (3)

The KCS value is compared to a threshold value determined
by computing the KCS over a set of benign files where we
take the α% smallest of these KCS values and set it as
the threshold. In the maliciously selected keywords, the pairs
of keywords are more likely to never occur or occur with
small probability; therefore, the KCS value should be low, in
contrast with benign files. We computed the averaged KCS
over sampled benign files, files generated with the HSA and
the BSA and listed them in Table II. We observe that the files
generated with the BSA are significantly smaller than the files
used in the HSA.

File Score
Benign 1.71 ∗ 10−2

BSA 1.61 ∗ 10−7

HSA 6.96 ∗ 10−3

TABLE II
AVERAGED KCS SCORES FOR GENERATED FILES

C. Variance Score Detection (VCD)

In the partial knowledge attack, a token ti derived from
keyword wi and key sk is observed, and the BSA is executed
with the 2T keywords with the closest observed frequency
known to the adversary computed from the (partial) known
documents. If the adversary has 100%, i.e., β = 1 knowledge
of the underlying plaintext, then the keywords injected will be
exact 2T keywords closest to the frequency of wi. When the
known document frequency is smaller, then the 2T injected
keywords will approximately match with the keywords closest
to the frequency of wi. In contrast with benign files, it is not
necessarily the case that all words have approximately the
same frequency.

These characteristics of the attack can be used by the
client to detect malicious files used in the partial knowledge
attack. We argue that if all keywords wi ∈ F have
approximately the same frequency f(w), then the Variance
Score (VS) given in Equation 4 is low.

V S = var({f(w)|w ∈ F}) (4)

To get an idea of these values, we computed an average VS
for a malicious file and a benign file, respectively, 1.51∗10−3
and 1.12 ∗ 10−2.

The V S value is compared to a threshold value, determined
by computing the V S over a set of benign files where
we take the α% smallest of these V S values computed
from the benign set. The optimal α value will be determined
experimentally to minimize the attack’s success and maximize
the detection method’s accuracy.

We note that computing the frequency f(wi) and co-
frequency f(wi, wj) should be done without leaking any
knowledge to the adversary. If the client would compute
these values by querying the token derived from the keyword
and, based on the query result, compute the frequency, the
adversary learns all the tokens’ access patterns in the injected
file. Computing f(wi) and f(wi, wj) without leaking the
access pattern could, for example, achieved by client-side
storage of a co-frequency matrix or the use of a secondary
encrypted index stored on the server where the co-frequency
values are updated and encrypted by the client.

IV. EXPERIMENTATION

To replicate the attack results published by Zhang et al., the
data is pre-processed in the same fashion. For this ,the Enron
dataset, which consists of 30109 emails, is used [6]. We use
the Porters stemming algorithm, and we remove stopwords.

Zhang et al. use the top 5000 keywords of the dataset in their
experiments, and we will adhere to that [4]. For validation
purposes, the Amazon dataset is used [7]. This dataset is pre-
processed in the same fashion. For the benign, files we will
use the data from the same datasets.

To determine the impact of the detection methods, we
will need to quantify the attack success. As the adversary’s
goal is to break query privacy, we will define the attack
success as the number of recovered tokens concerning the
sampled tokens. Note that the four different attacks differ
in requirements and assumptions, and therefore simulations
will be different in terms of quantification of attack success.
As we are interested in the impact of the detection method
and the evasion methods on the attack success rate, we will
define the success as r, rd, re where these values represent
the attack success using the attack without detection, with
detection, and with detection and evasion respectively.

We are also interested in the quality of the proposed
detection scheme. We define a True Positive (TP) as a
correctly classified malicious file and a True Negative (TN)
as a correctly classified benign file. We furthermore define a
False Positive (FP) as a benign file classified as malicious
and a False Negative (FN) as a malicious file classified as
benign. To assess the quality of detection schemes, we will
use recall, which defines the fraction of correctly classified
malicious files shown in Equation 5, and specificity shown in
Equation 6, which defines the fraction of correctly classified
benign files.

recall =
TP

TP + FN
(5)

specificity =
TN

TN + FP
(6)

As each of the four attacks has different assumptions to
execute the attack, we will propose four different setups
to gain insight into the attack’s feasibility with detection
schemes and evasion methods in place. For each attack, we
will define the attack success metric and how it is computed.

A. Binary Search Attack

To fully prove our proposed detection’s success, we will
simulate the worst-case scenario for this attack, i.e., the best
case for the adversary. This worst-case scenario is defined
under the assumption that the adversary has full knowledge
of K and has knowledge of each token ti. Therefore, the
adversary will execute the attack using the whole keyword
universe. The adversary generates malicious files according to
the attack specification and tries to inject them. The client will
execute the detection scheme and discards all files which are
classified as malicious. The adversary then tries to recover
the keyword wi matching the token ti for all tokens. We
will define rBSA as the fraction of successfully recovered
keywords w from K.

B. Hierarchical Search Attack

We will use the same strategy as is done in the Binary
Search Attack to report on the impact of the Hierarchical
Search Attack’s detection. Zhang et al. propose to use T = 200
[4].

C. Partial Knowledge Attack

The adversary uses leaked knowledge to attack the token
ti to find wi. To determine the proposed detection methods’
impact, we will sample 100 tokens uniformly at random and
mount the attack 100 times. rPKA is the fraction of correctly
recovered tokens. We determine a threshold value of α to
minimize the attack success and minimize the amount of in-
correctly classified benign files. The Partial Knowledge Attack
success depends on both the fraction of leaked knowledge β
and the applied detection scheme’s performance, instead of the
Binary Search Attack and Hierarchical Search Attack, where
the detection scheme only influences the attack success. We
will vary the fraction of leaked knowledge β, and the used
leaked knowledge is sampled uniformly at random from the
dataset.

D. Multitoken Attack

In the Multitoken Attack, the adversary attacks a set of
tokens while minimizing the number of files injected using
leaked files. To simulate the attack, we will use the same
parameters as is done by Zhang et al. We sample 100 to-
kens uniformly at random and set n = 10. We will define
rMTA, r

d
MTA as the amount of correctly recovered tokens

out of the attacked 100, without and with detection applied.
We will experimentally determine α and vary the fraction of
leaked files β.

V. RESULTS

A. Binary Search Attack

Fig. 3. Recall and specificity for different values of α for the BSA and HSA.
The subgraph shows a zoom-in

The KCD detection results on the Binary Search Attack can
be found in Figure 3. We observe that this detection works
in detecting malicious files. We see that for α ≥ 0.004 the

recall = 1.00 and therefore the rdBSA = 0.00. For values
α < 0.004, the recall proliferates from 0 to 1 for the Enron
dataset. Furthermore, the specificity for α = 0.004 is 0.994
and 0.984 for the Amazon and Enron dataset respectively. This
means that for this attack, we can mitigate it entirely while still
correctly classifying at least 99.4%, 98.4% of the benign files
for the Amazon and Enron dataset, respectively, if α ≥ 0.004.

B. Hierarchical Search Attack

The KCD detection results on the Hierarchical Search
Attack can be found in Figure 3. This detection’s specificity
with the appropriate threshold value does not change when
using another attack as the benign files do not change. We
see that recall ≥ 0.99 when α ≥ 0.01 where for this α
the specificity is 0.986 and 0.983 for Amazon and Enron,
respectively. Therefore we see that the α value needs to be
slightly higher in contrast with the Binary Search Attack to
reduce rdHSA to 0, i.e., recall ≈ 1. Conclusively, we can
mitigate this attack entirely while still correctly classifying at
least 98.6% and 98.3% of the benign files for the Amazon
and Enron dataset.

C. Partial Knowledge Attack

Fig. 4. Detection results for KCD detection where PKA and MTA are used
for both the Enron and Amazon datasets

For the Partial Knowledge Attack, the attack success
is dependent on the fraction of file leakage β and the
performance of the used detection method. We note that for
different values of β, the detection method’s recall remains
the same. Therefore it is averaged over all values of β.
Figure 4 shows the recall for different values α. For this
detection performance with α = 0.01 we were able to reduce
the attack success rdPKA when β = 1.00 from 1.00 to 0.104
for Amazon and 1.00 to 0.168 for Enron. For higher values
of α, the attack success is reduced even further. To achieve
rdPKA < 0.01, we did not find a suitable threshold, but it
should be larger than α = 0.2, which was the upper bound
in the experiments. When computing the attack success with

detection for α = 0.2 we find rdPKA of 0.017 and 0.014
where the average over the different values for β is used for
the Amazon and Enron dataset, respectively. Using this α
value comes at the cost of decreasing the specificity to 0.82
and 0.80. For α = 0.05, the attack success is reduced to
0.056 and 0.066 while still correctly classifying 95.3% and
93.4% benign files for Amazon and Enron, respectively.

We see that in comparison with the BSA and HSA, the
used threshold value, α, needs to be set higher such that we
can obtain the same recall scores, i.e., recall ≈ 1, and thus
low attack success. For example, the HSA has recall = 1.00
when α ≥ 0.01 whereas the PKA has recall = 0.87 and
recall = 0.84 when α = 0.01 for Amazon and Enron,
respectively. For example, the difference in specificity for the
HSA and PKA is 98.6% and 95.4% for the Amazon dataset.

Fig. 5. Detection results for VCD detection where we compute the recall
and specificity based on a threshold value α for both the Enron and Amazon
datasets

The performance of VCD can be found in Figure 5. We
observe a steep increase in recall starting from α = 0.01, and
the optimum threshold value is determined at α = 0.02 with
a recall value of 0.999 and 0.997 and specificity 0.979 and
0.982 for the Amazon and Enron dataset, respectively.

This method outperforms KCD for this attack. We can
mitigate PKA entirely while still correctly classifying at least
97.9% and 98.2% of the benign files for the Amazon and
Enron dataset. The downside of this detection method is that
it only applies to the PKA, while KCD is applicable for all
four attacks.

D. Multitoken Attack

Figure 4 shows the detection results for KCD for the
Multitoken Attack. Inspection on these lines show high errors
in the measurements; however, we can safely deduce that the
recall for α > 0.02 is more than 0.77 and 0.69 for Amazon and
Enron, respectively. For α = 0.02 we measured a specificity of
0.979 and 0.982 as described in Section V-C. Figure 6 shows
the attack success rMTA and rdMTA for the leaked knowledge

Fig. 6. Attack success of MTA for Amazon and Enron dataset with KCD
applied with α = 0.02 and without detection scheme

parameter β. The attack success is reduced to roughly 0.10
for every value of β. This 10% is due to the first part of
the attack where the ground truth G is determined, and these
files are not detected in KCD. We can not conclude whether
a higher value for α increases the recall. Increasing α comes
at the cost of decreasing the specificity. While these recall
values are not as promising as is determined in the other three
attacks, this detection performance should significantly impact
the attack success rdMTA. The attack success parameter r is
dependent on the leaked knowledge β and the performance
of the used detection method. However, we can conclude we
can significantly reduce the MTA to 0.10 while still correctly
classifying at least 97.9% and 98.2% of the benign files for
the Amazon and Enron dataset.

VI. IMPROVED ATTACKS

The adversary’s goal is to inject the malicious files, while
the goal of the client is to detect these files before they are
encrypted and injected. Depending on the detection technique,
the file injection attack might succeed or not. We now assume
the adversary is aware of which detection scheme is present.
We will propose several modifications for the original attacks,
which try to evade the detection schemes to increase the attack
success.

A. Keyword Threshold Change Evasion (KTCE)

As the previous evasion techniques require partial knowl-
edge, there are no evasion techniques applicable to the HSA.
We propose an evasion technique to reduce the decrease in
attack success rate by decreasing the file sizes and their
initial created |K|T subsets. To execute this evasion method, the
adversary needs to change the Keyword Threshold parameter
Tadv to be smaller than T set by the client in the setup of the
Searchable Encryption scheme. The downside of this evasion
technique is the increase in files needed to inject.

B. Optimal Keyword Co-occurrence Matching Evasion
(OKCME)

KCD works by computing the probability of two adjacent
keywords appearing together in the known corpus. In the case
of malicious files, this is less likely to happen, and therefore
this can be used to distinguish benign and malicious files.
Furthermore, the HSA subdivides the keyword universe into
smaller keyword universes, and the BSA is executed on these
smaller universes. The adversary should aim to generate word
pairs such that the KCS is maximized for the whole keyword
universe, and therefore, the likelihood of having a higher
KCS for the individual malicious files is higher.

To obtain the optimal keyword co-occurrence matching,
the adversary wants to generate the keyword universe K such
that KCS is maximized using the leaked knowledge to the
adversary.

max(
1

|K|

|K|∑
i=1

f∗(wi, wi+1)) (7)

To achieve this she generates a complete Graph G(V,E)
where the vertices represent the keywords in K following the
mapping y(vi) = wi and the edges between vertices (vi, vj)
are edges with weight f∗(y(wi), y(wj)). She wants to achieve
the maximum weight matching of two vertices where each
vertex can only be present in one pair of two vertices. To
achieve this, the Blossom algorithm by Edmonds et al. [8] is
used. The algorithm runs in high computation time derived in
Equation 8.

O(|E||V |2) = O(| |K| ∗ |K| − 1

2
|K|2) ⊆ O(|K|4) (8)

The algorithm’s result is a set of word pairs such that Equa-
tion 7 is satisfied. This altered keyword universe is then used
in the attacks.

C. Keyword Co-occurrence Dummy Keyword Evasion
(KCDKE)

To evade the KCD, the adversary can insert dummy key-
words in the keyword universe to increase the KCS, with the
downside of increasing the number of malicious files needed to
inject. We define a set of dummy keywords Kd and fraction ρ
such that |Kd| = ρ∗|K|. Then, for each keyword wi in K, the
adversary computes the co-occurrence of every other keyword
wj in the leaked knowledge, and takes the |Kd| keyword
pairs (wi, wj) such that she obtains the maximum increase
of the KCS given K and ρ and she adds the keywords with
the highest KCS to the keyword universe K. This keyword
universe is then used in the attack. In this evasion method,
there is a trade-off between an increase in attack success, given
a detection method, and an increase in malicious files needed
to inject. For the PKA, these keywords are not added but
substituted with the ρ∗ |K| keywords in the attacked keyword
universe K with the keywords with the frequency f(t) not
closest to the attacked token t, as the attack uses the BSA with
2 ∗ T keywords which is the maximum when some keyword
threshold T is set.

D. Variance Score Dummy Keyword Evasion (VSDEE)

As is described in the previous section for OKCME for
the PKA, the adversary substitutes dummy keywords with
potential keywords to evade the variance score detection
method. She achieves this by increasing the variance of the
injected files. We define a set of dummy keywords Kd and
fraction ρ such that |Kd| = ρ ∗ |K|. The adversary substitutes
the |Kd| keywords with the highest difference in frequency
f∗(w) − f(t) for each keyword w with the keywords in K
that have the lowest probability of matching with attacked
token t. In this case, there is a trade-off between removing
potential candidates, thus lowering the attack success and
evading the VCD.

VII. IMPROVED ATTACK RESULTS

We will apply these improved attacks and report on the
impact of the results.

A. Hierarchical Search Attack

Fig. 7. KTCE technique applied to KCD for HSA with multiple values for
α

We will use the KTCE with different values for T to observe
the impact of the detection and evasion on rdHSA, as reHSA.
Again, rHSA in this attack is always 1.0 as if the keyword
matching with some token is in the attacked Keyword Universe
K it always is recovered correctly. After modifying the attack
with the KTCE technique, we observe the impact on the recall
of the used detection method with the used threshold value of
α. We see that for α = 0.01 the recall decreases to 0.959
and 0.91 and thus resulting in 0.015 and 0.041 attack rate for
Amazon and Enron dataset respectively when Tadv = 10. The
downside is that the amount of files that need to be injected is
1750, in contrast with 141 when Tadv = 200. Figure 7 shows
the attack success for different values of Tadv with different
values for α. We see that when Tadv is smaller, we achieve
higher success rates, but this comes at the cost of more files
needed to be injected. We can achieve reHSA < 0.01 for both
the datasets with α ≥ 0.03. We can safely conclude that KCD

completely mitigates the BSA and HSA even when KTCE is
applied while still achieving 0.986 and 0.983 specificity for
Amazon and Enron.

B. Partial Knowledge Attack

We will modify the PKA with OKCME, KCDKE, and
VSDEE techniques to evade the KCD and VCD schemes and
report on the impact on the attack success rePKA

Fig. 8. Attack success for PKA with KCD applied for β = 0.1, β = 0.5, β =
1, KCDKE applied with ρ = 0.5 and OKCME applied. The dotted lines
represent rPKA given β for Amazon Dataset

Fig. 9. Attack success for PKA with KCD applied for β = 0.1, β = 0.5, β =
1, KCDKE applied with ρ = 0.5 and OKCME applied. The dotted lines
represent rPKA given β for Enron Dataset

1) KCD: We will apply the KCD detection on the PKA
and modify the PKA with OKCME and KCDKE. Figure 8
and Figure 9 show the attack success without detection, with
KCD using the threshold α = 0.05 and with the OKCME and
KCDKE modifications applied for the Amazon dataset and
the Enron dataset, respectively. For KCDKE, we have chosen
to use ρ = 0.5 as this gives the highest increase in rePKA.
The dotted lines represent the attack success without detection
schemes in place for β = 0.1, β = 0.5 and β = 1.0. rdPKA

is reduced to a maximum of 0.10 for α = 0.02 and β =

0.5. After applying the improved attacks, we find an increase
in attack success. We find that OKCME only has a minimal
increase of rePKA for all threshold values. It only increases
rePKA with a maximum 0.02. For KCDKE, see that for α =
0.02 and β = 0.5, the adversary can achieve success rates
of 0.36 and 0.40 for Amazon and Enron. We can conclude
that using KCDKE for PKA benefits the adversary in evading
KCD; however, the adversary can not completely evade this
detection scheme. Increasing α helps in reducing rePKA, for
β = 0.5 the client is able to reduce rePKA from 0.36 and
0.40 to 0.15 and 0.30 by increasing α = 0.02 to α = 0.20.
This comes at the cost of decreasing the specificity to 0.81
versus 0.98. Conclusively, the adversary can partially evade
the detection scheme by using ρ = 0.5.

Fig. 10. Attack success for PKA with VCD applied for β = 0.1, β =
0.5, β = 1 and VSDEE applied with ρ = 0.2. The dotted lines represent
rPKA given β.

2) VCD: In Section V-C we have shown that for α > 0.02
we obtain a recall of 0.999 and 0.997 for Amazon and Enron
respectively using VCD. This means that rdPKA is reduced to
0. Figure 10 shows the results after modifying the PKA with
VSDEE for different α values. The experiments have shown
that ρ = 0.2 maximizes rePKA. Therefore, other ρ values are
omitted. Furthermore, rdPKA is as this is 0 for α > 0.02.
Figure 10 shows the attack success rpka without detection and
rdpka with VCD applied. Furthermore, VSDEE is applied. We
observe that for the initial threshold value of α = 0.02, this
detection scheme is evaded when the optimal fraction value
ρ = 0.2 from the adversary perspective is chosen. However,
when using a higher α value, this attack modification has
no significant impact on the attack success and is reduced to
repka < 0.02. Therefore, we can conclude that the VCD works
in mitigating the attack even with the VSDEE modification
applied while keeping a specificity of 0.950 and 0.949 for
Amazon and Enron.

C. Multitoken Attack

The MTA is modified with OKCME and KCDKE to evade
the KCD. We use ρ = 0.5 as this gives the best results from
the adversary perspective for the values 0 < ρ ≤ 1. For the

Fig. 11. Attack success for MTA without detection for the Amazon dataset,
with KCD applied and OKCME and KCDKE applied with ρ = 0.5. Straight
dotted lines represent rMTA when no detection method is applied

Fig. 12. Attack success for MTA without detection for the Enron dataset,
with KCD applied and OKCME and KCDKE applied with ρ = 0.5. Straight
dotted lines represent rMTA when no detection method is applied

OKCME modification, we see that this has not much impact
on the attack success. Closer inspection shows that OKCME
increases the attack success by 0.015 on average. KCDKE
has a significant impact, and reMTA is, in all cases, larger than
rdMTA. For the Amazon dataset for β = 0.5 and α = 0.02
we see that applying KCDKE increases rdMTA from 0.091 to
0.33. For β = 1.0 this increases from 0.097 to 0.956 which
is nearly the same as rMTA. Increasing α for β = 1.0 does
decrease reMTA to 0.42 but comes at the cost of decreasing the
specificity from 0.98 to 0.81. We note that reMTA is high for
β = 1.0 as closer inspection on β = 0.1 and β = 0.5 shows
that from α > 0.1 reMTA is roughly equal to rdMTA for the
Amazon dataset. This is not the case for the Enron dataset,
and the threshold needs to be set to α = 0.2 to reduce to
approximately rdMTA. The downside of using OKCME with
ρ = 0.5 is that the amount of malicious files is doubled
on average. The amount of files is doubled instead of the
smaller increase of 50% due to the generation of the Keyword
Universe after selecting the ground truth G. If the amount of

correctly recovered tokens in the ground truth is smaller due
to the detection method’s impact, then the keyword universe
injected in the second stage of the attack is larger.

VIII. CONCLUSION

Our paper shows that file-injection attacks can be success-
fully mitigated using the KCD or VCD on the client-side. For
the four attacks proposed by Zhang et al. [4], we managed
to reduce the attack success to 0.0 for the HSA and BSA,
therefore completely mitigating the attacks while keeping at
least 0.98 specificity. For the PKA, we managed to mitigate
the attack to a maximum of 0.02 while keeping at least
0.95 specificity even with attack modifications in place by
using VCD. We managed to reduce the attack success to a
maximum of 0.10 while keeping at least 0.98 specificity for
the MTA. However, when modifying the attack, the adversary
can increase attack success. Under the assumption that the
adversary has full knowledge, i.e., β = 1.0, we could only
reduce the attack success to 0.38 and 0.70 for the Amazon
and Enron dataset, respectively. When the adversary has less
knowledge, we can reduce the modified MTA’s attack success
to a maximum of 0.11 and 0.22 for β = 0.1 and β = 0.5
while keeping 0.90 specificity. The downside of the attack
modification from the adversary perspective is that the amount
of files that need to be injected is approximately doubled.

IX. RELATED WORK

The first attacks on Searchable Encryption were proposed
by Islam et Al. and Cash et al. The IKK attack by Islam
et al. and the Count attack by Cash et al. use statistical
techniques to recover queries using the (partial) knowledge
of the plaintext [3] [2]. Zhang et al. further improved the
attacks on Searchable Encryption using File Injection attacks,
which out-performs the former attacks significantly [4].

Zhang et al. proposed several possible countermeasures
to thwart these File Injection Attacks [4]. The injected
files by Zhang et al. will look like semantically incorrect
documents with mostly unrelated keywords. The client can
easily filter these documents by closely inspecting the injected
files. However, the attacker can make these injected files look
semantically correct by adding keywords. Uchimoto et al.
propose a method of generating semantically correct text from
a given set of keywords based on n-grams from leaked files
[9]. Adding keywords will result in extra overhead for the file
injection, but it does not make it impossible. This possibility,
however, is not experimentally proven for detection in File
Injection attacks. This approach differs from our approach as
we detect the already stemmed and pre-processed files and
only use the combination of keywords in the keyword universe.

Zhang et al. further propose Batching Updates [4]. Initially,
the assumption is made that the server knows whether its File
is injected or not and which file maps to which encrypted
File: She injects it and finds an encrypted file uploaded by
the server. This is a reasonable assumption, but this can be

circumvented by applying batching updates. In this method,
the client waits for a batch of B documents before inserting
them into the server, meaning that if the server injects one
File before it is batched, the injected File is one out of B
possibilities. The server can circumvent this by injecting
B files before other files arrive or inject the same File
multiple times to determine the injected File. Again this does
not prevent the attack but generates more overhead for the
attacker. This countermeasure is not experimentally tested
and is left for further research.

Bost et al. proposed Forward Privacy to thwart adaptive
File Injection attacks [5]. Forward Private schemes ensure
that the server does not learn that the updated document
matches a previously queried keyword. Forward Privacy does
not completely mitigate the attack as passive File Injection
Attacks such as the Binary Search Attack and the Hierarchical
Search Attack remain possible. Furthermore, adaptive File
Injection attacks remain possible if the client generates a new
search token. Therefore, Forward Privacy does not necessarily
imply total mitigation of the File Injection attack by Zhang
et al. It makes it harder or more time-consuming as the
adversary needs to receive an updated search token.

The file injection attack by Zhang mainly relies on the
leakage of the access pattern. The only known solutions to
hide the access pattern are SE schemes based on Oblivious
ram (ORAM). ORAM schemes induce large bandwidth
overhead and massive storage complexity. Naveed et al.
show that the use of ORAM for SSE is unrealistic [10].
They show that due to the massive storage complexity and
the communication performance, this approach worse than
the trivial approach of streaming all of the outsourced data
for each query. These limitations emphasize the need for
mitigation for the File Injection Attacks, which have low
complexity and bandwidth overhead.

A method of mitigating file injection attack on SE schemes
was proposed by Liu et al. [11]. They propose a method
where a new file is generated and sent to the server alongside
the possibly maliciously injected File each time the client
receives a file. This self-injected file is generated by taking
the same amount of keywords with no intersection with the
received File and, when encrypted, has the same size. The
chosen keywords combined have no semantic correctness,
and thus the client can see which files were self-injected.
The server sees two injected files of the same size and can
not distinguish the maliciously injected File, and therefore
it breaks the access pattern. However, we reason that the
adversary can inject the same File twice and thus bypass
this countermeasure, as the access pattern of a search token
on those same malicious injected files would always be
consistent, but its access pattern over those self-injected
files would be various. This can be suppressed by ignoring
repeated emails and only adding unique emails to the index.
However, the adversary can change one or more keywords

and still distinguish his malicious File from the self-injected
files.

REFERENCES

[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proceedings of the 2000th IEEE Symposium on
Security and Privacy. S&P 2000. IEEE, 2000, pp. 44–55.

[2] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern disclosure
on searchable encryption: Ramification, attack and mitigation,” in NDSS,
2012.

[3] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse attacks
against searchable encryption,” in Proceedings of the 22nd ACM SIGSAC
conference on computer and communications security. ACM, 2015, pp.
668–679.

[4] Y. Zhang, J. Katz, and C. Papamanthou, “All your queries are belong
to us: The power of file-injection attacks on searchable encryption,” in
Proceedings of the 25th USENIX Security Symposium (USENIX Security
16), 2016, pp. 707–720.

[5] R. Bost, “ oϕoς: Forward secure searchable encryption,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2016, pp. 1143–1154.

[6] Enron dataset. https://www.cs.cmu.edu/enron/.
[7] Amazon industrial and scientific review dataset.
[8] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of Mathe-

matics, vol. 17, p. 449–467, 1965.
[9] K. Uchimoto, H. Isahara, and S. Sekine, “Text generation from key-

words,” in Proceedings of the 19th international conference on Compu-
tational linguistics-Volume 1. Association for Computational Linguis-
tics, 2002, pp. 1–7.

[10] M. Naveed, “The fallacy of composition of oblivious ram and searchable
encryption,” IACR Cryptol. ePrint Arch., vol. 2015, p. 668, 2015.

[11] H. Liu, B. Wang, N. Niu, S. Wilson, and X. Wei, “Vaccine:: Obfuscating
access pattern against file-injection attacks,” in 2019 IEEE Conference
on Communications and Network Security (CNS). IEEE, 2019, pp. 1–9.

