
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Design of a model-driven
platform for IoT event

stream processing

Mark Alexander de la Court
M.Sc. Final Project

December 2020

Supervisors:
Dr. ir. Marten van Sinderen

Dr. Ansgar Fehnker
Samet Kaya

Formal Methods and Tools Group
Faculty of Computer Science,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands

Executive Summary

Internet of Things (IoT) is the concept of connecting any device to the internet. Companies are
increasingly adopting this concept to allow for new smart business processes and services based
on data from connected devices. However, the implementation of IoT is not without its challenges.
Transforming raw sensor data into useful information requires high-volume, real-time processing of
heterogeneous data streams. Such processing tasks include cleaning, enrichment, generalisation
and reduction of the data. The process responsible for transporting and pre-processing IoT sensor
data, such that it can be used by applications, is referred to as an integration. Programming,
deploying and managing these integrations manually is a time-intensive and difficult process. An
integration platform addresses these challenges, by offering a model-driven interface that allows
users to develop, deploy and manage integrations on a re-usable infrastructure, without the need to
know how integrations are implemented. Integration platforms have proven to be successful in other
domains, such as enterprise integration, however the current body of knowledge does not yet
describe an architecture for an integration platform in the domain of IoT. This gap in knowledge
hinders the development of IoT integration platforms.

To address this gap, this thesis proposes a novel architecture for an IoT integration platform. The
requirements for the design are established through a semi-systematic literature review and through
interviews with enterprises using IoT, which identify the challenges that organisations face during
IoT integration that need to be addressed. To form a solid foundation for the design, existing
solutions for IoT stream processing and model-driven integration development are identified using a
systematic literature review. The design builds upon these existing solutions to provide an integrated
architecture for an IoT integration platform. Key to the design is the model-driven editor, that allows
users to visually model integrations, as well as components for deployment, and management of
integrations. The integrations built using the editor are supported using dynamic embeddable
runtime that allows the execution of scalable, stateful integrations on-premise, in the cloud or on the
edge. To support implementation, this thesis also provides a comprehensive description of relevant
IoT protocols, architectures, processing frameworks and model-driven interfaces.

The design has successfully been used to develop a prototype of the platform for a Dutch
integration platform vendor seeking to implement IoT stream processing support. This prototype is
the first model-driven editor for designing embedded stream processing integrations based on Kafka
Streams. Early validation results show that end-users can successfully use this prototype to develop
integrations, and that they have a high intention to use and adopt this prototype in practice for
developing IoT integrations. Additionally, an evaluation with experts on Enterprise Architecture
shows that the design provides high architectural quality, and that it can support organisations in
developing an IoT integration platform architecture.

ii

EXECUTIVE SUMMARY iii

The findings presented contribute in several ways to existing IoT integration research and to
practice. To academic research, it provides an overview of the current body of knowledge on IoT
integration and combines this isolated knowledge into a unified architecture for an IoT integration
platform and illustrates how, by applying this architecture, IoT integration challenges can be
addressed. To practice, this research provides valuable guidelines for designing and implementing
an IoT integration platform.

Contents

Executive Summary ii

1 Introduction 1
1.1 Background . 1
1.2 Research objective . 2
1.3 Research questions . 2
1.4 Research methodology . 3
1.5 Validation case . 5
1.6 Document structure . 6

2 Problem Investigation 7
2.1 Literature Review . 7

2.1.1 Methodology . 7
2.1.2 Results . 10

2.2 Interviews . 25
2.2.1 Methodology . 25
2.2.2 Results . 26

2.3 Summary . 28
2.4 Goal . 32

3 Requirements 33
3.1 Stakeholders . 33
3.2 Goals . 34
3.3 Requirements . 35

3.3.1 Functional requirements . 35
3.3.2 Non-functional requirements . 38

4 Review of Existing Solutions 39
4.1 Methodology . 39

4.1.1 Keywords . 39
4.1.2 Inclusion and exclusion criteria . 40
4.1.3 Review protocol . 41

4.2 Results . 42
4.2.1 Kafka stream processing . 42
4.2.2 Graphical stream programming . 48

iv

Contents v

5 Design 56
5.1 Methodology . 57
5.2 Business layer . 59
5.3 Application layer . 60

5.3.1 Web UI . 61
5.3.2 Data Model . 61
5.3.3 Integration Development . 61
5.3.4 Deployment . 66
5.3.5 Management . 67
5.3.6 Schema Manager . 67
5.3.7 Runtime Applications . 68

5.4 Infrastructure layer . 68
5.4.1 Vendor Cloud . 68
5.4.2 Client Runtime Hosts . 68
5.4.3 Streaming Cloud . 69
5.4.4 Registry Cloud . 69

6 Prototype 70
6.1 Methodology . 70
6.2 System Architecture . 71

6.2.1 Business layer . 71
6.2.2 Application layer . 71
6.2.3 Infrastructure layer . 73

6.3 Plan . 74
6.4 Results . 76

6.4.1 Application design . 76
6.4.2 Operations . 77
6.4.3 Validation . 78
6.4.4 Code generation . 79
6.4.5 Generated code . 80

7 Validation 83
7.1 Methodology . 83

7.1.1 Dimensions . 83
7.1.2 Techniques . 84

7.2 Results . 87
7.2.1 Single-case mechanism experiment . 87
7.2.2 Expert opinion . 88

7.3 Conclusion . 91

8 Discussion 93
8.1 Comparison to alternatives . 93
8.2 Relating to the challenges & goals . 94

9 Conclusion 98
9.1 Research questions . 98
9.2 Limitations . 100
9.3 Future research . 101

Contents vi

9.4 Contributions . 102
9.4.1 Scientific contributions . 102
9.4.2 Practical contributions . 103

References 104

Appendices

A IoT case descriptions 116
A.1 Protocol . 116
A.2 Infrastructure Construction Company . 117
A.3 Real Estate Construction Company . 117
A.4 Consultancy firm . 119

B Model Elements 120

C Editor UI Overview 121

D User Stories 123

E Prototype Operations 125

F Validation protocols and results 127
F.1 Single-case mechanism experiment . 127

F.1.1 Single-case mechanism experiment one . 128
F.1.2 Single-case mechanism experiment two . 129
F.1.3 Single-case mechanism experiment three . 130

F.2 Expert validation . 131
F.2.1 Expert interview MDE . 132
F.2.2 Expert interview CTO . 133
F.2.3 Expert interview EA . 134

Chapter 1

Introduction

1.1 Background

The number of devices connected to the internet is rapidly growing [1], [2]. Smart lamps,
thermostats, speakers and TVs are just a few examples of the many devices increasingly used in
everyday households in an attempt to make our lives just a little bit easier, for example, by
automatically turning the lights off when you leave your house. This ever-growing ecosystem of
connected devices forms the Internet of Things, or "IoT". And this ecosystem of devices is not just
limited to applications in our homes. In fact, IoT is increasingly used by businesses to optimise their
business processes and offer new smart services. For instance, it is used in smart-logistics to track
transport vehicles, for asset management to predict maintenance issues, or in hospitals to monitor
patients. The enterprise applications of IoT appear to be countless, and this rapidly growing domain
of IoT is also referred to as ’Industrial IoT’.

But how do we make use of IoT? Obviously, an IoT sensor or device by itself has no inherent value.
A temperature sensor that just measures temperature, and then discards the value is worthless and
will provide little value to the user. Therefore, IoT devices are only as valuable as the applications
and services they enable. It is only once we connect our temperature sensor to an application that
shows us the temperature, that our sensor can truly start delivering value. The IoT ecosystems,
combined with the applications they enable, are often conceptualised as Cyber-Physical Systems
(CPS). In a CPS devices in the physical world, represented by IoT, are controlled and/or monitored
with IT systems and applications [3]. IoT can, through CPS, be used to optimise existing business
processes or to unlock completely new value propositions. Concepts such as Industry 4.0, for
example, rely on IoT and CPS to power the shift to increasingly digitized and automated daily
operations in industries [4].

The implementation of such Cyber-Physical Systems is, however, not without its challenges.
Consider our IoT temperature sensor application example; implementing this appears to be simple
enough since we just want to get the data from our sensor, and show it in our app. However, as
soon as we scale up our app into production we will run into various problems: How do we get
thousands of measurements from the IoT devices to our application in real-time? What if these
sensors are from a different brands and send completely different measurements? And how do we
deal with errors and sudden spikes in the measurements? These are just some of the challenges
we will face when implementing our application. Dealing with these ’IoT integration challenges’ is
one of the major challenges faced by companies when implementing IoT [5]–[9]. Cyber-physical

1

CHAPTER 1. INTRODUCTION 2

systems are essentially formed through tight integration of IoT data and applications. Integrating this
data is complex since it requires the transport and processing of high-volumes of data in real-time.
Additionally, IoT data is contextual, and frequently requires statefull processing (such as discarding
outliers), enrichment and other resource intensive processing operations before it can be used.
Since companies often have multiple applications with which IoT has to be integrated, integrations
are also distributed throughout the enterprise. Adding to this complexity is that IoT is a volatile
domain such that integrations are prone to changes [5].

Existing research does not yet provide a holistic approach for developing IoT integrations and
addressing these IoT integration challenges. In practice, this gap in knowledge means that users
that want to build IoT applications need to develop point-to-point integrations from the ground up,
while manually addressing the integration challenges. This makes the development of IoT
integrations a tedious and repetitive task, and the resulting integrations are hard to maintain.

1.2 Research objective

The research objective is to address the aforementioned IoT integration challenges by proposing a
design for an IoT integration platform.

Currently, integration platforms assists businesses with integrating data, services and applications
by providing a platform for users to manage, govern and model most of their business integrations.
For instance, the platform assists businesses in retrieving data from one system, then transforming
it to a specific data format, and then sending it to another system. These integrations can be
managed and developed using model-driven or low-code approaches such that no to little
programming skills are needed to design integrations. Model-driven approaches are the most
common, and allow integration development through a graphical drag-and-drop interface. Through
this approach, integration platforms are known to contribute to significant reductions in the
complexity and costs of integrations [10], [11]. Enterprise integration platforms currently described
in literature provide enterprise integration services using messaging-based event processors. With
event processing, business data events are processed one-by-one which allows for complex routing
and transformations. However, this technology is unsuitable for IoT data processing, which requires
high-throughput, low-latency, statefull processing of streams, rather than just individual events.

To the best of our knowledge, no research into the design of an integration platform with stream
processing support has been conducted. As a result, any organisation seeking to adopt an
integration platform for IoT faces multiple design challenges with regard to what requirements the
platform should have, what the architecture should be, and how the platform should be integrated
and developed. This research addresses this gap in knowledge by proposing the design of a
model-driven integration platform for IoT stream processing.

1.3 Research questions

The goals of this research are described using the design problem template proposed by Wieringa
et al. [12]. This template describes the problem context, the artifact to be designed, the requirement
and the goal for the research to aid the successful execution of the research such that the goals and
requirements of stakeholders can be achieved. The template to define the research problem in the

CHAPTER 1. INTRODUCTION 3

form of a question is defined by Wieringa as follows:

How to <(re)design an artifact>
that satisfies <requirements>

so that <stakeholder goals can be achieved>
in <problem context>?

Applying the template to this research results in the following main research problem:

How to design a model-driven integration platform
that allows the development and management of stream processing integrations

so that developers can preprocess data streams more efficiently
in IoT integration?

To address this problem, this research first provides an overview of the context, and the challenges
that are faced during IoT integration. Based on this, the requirements for the platform are defined.
Next, existing solutions are researched, specifically frameworks for stream processing and platforms
for graphical programming of event (stream) processing applications. Then, a new integrated design
is proposed based on the existing solutions. And finally, the proposed design is evaluated by
end-users and experts to evaluate the effects. Consequently, the following sub-questions can be
identified:

• Research Question 1: What are the challenges that are faced by organisations during IoT
integration?

• Research Question 2: What is the minimal set of requirements for a graphical model-driven
programming platform to allow the effortless integration of event-streams?

• Research Question 3: What are the existing designs for stream processing, and graphical
programming platforms for stream processing?

• Research Question 4: What combination of the alternative solutions would form the most
optimal design for a model-driven programming platform for distributed event stream
processing?

• Research Question 5: To what extent does the proposed design combination contribute to
stakeholder goals?

1.4 Research methodology

This research is structured per the Design Science Methodology (DSM) described by Wieringa et
al. [12]. This is an outcome oriented research paradigm that aligns with the research objective, since
an artifact is developed to address a problem in the real world. The DSM is a proven methodology for
outcome oriented research in information systems, providing formal and structured processes that
can be used to execute the research. The DSM was used in this thesis to properly structure and
guide the research to maximise the value and validity of research outcomes.

CHAPTER 1. INTRODUCTION 4

Figure 1.1: The design cycle of the Design Science Methodology, adopted from [12]

According to Wieringa, the design problem is split into two activities. The first activity is the design
of the artifact in context, which involves addressing real world design problems. The other is the
investigation of the artifact in the context, which involves the answering of knowledge questions. The
first activity, the design of the artifact, is guided by the design cycle defined by Wieringa. The phases
of the design cycle are depicted in Figure 1.1 and discussed in more detail below.

• Problem investigation The first phase is the problem investigation. The goal of this phase
is to understand the problem before design is started and before the requirements have been
established. In this research, the problem and its context are thoroughly investigated from both
a theoretical as well as a practical perspective, using a literature study and interviews with
problem owners. At the end of this phase the stakeholders and the design goals are identified.

• Treatment design During this phase, the requirements are identified and the artifact is
designed. In this research, the requirements for the design are defined in collaboration with
the stakeholders, and it is ensured that the requirements align with the problem and goal
definitions from the previous phase. Next, a literature review is conducted to review existing
and related solution designs. Finally, a novel solution design is proposed based on a
combination of the existing designs to satisfy the design requirements.

• Treatment validation In this phase, it is demonstrated that the proposed framework can
contribute to the stakeholder goals in the problem context. In this research, both a single-case
mechanism experiment as well as expert opinion are used as validation models. In the
single-case mechanism experiment the design is validated through the development of a
prototype of the design, which is then validated with end-users using test scenario’s. This
prototype allows end users to interact with the design as if it were implemented in the problem
context to confirm whether the design properly addresses end-user goals. In addition to
validation with end-users, the expert opinion validation method is used to validate the design
towards architectural goals. During the expert opinion validation, architecture experts imagine
how the artifact would interact in the problem context [12]. Based on this interaction, the
experts provide feedback on the design of the artifact.

Figure 1.2 shows which research questions, and other key activities, are applied in each phase in the
design cycle. During the execution of the design cycle, knowledge questions are faced. For instance,
questions about the problem context, or about the effects of the artifact in the problem context. Such
knowledge questions are researched using a separate methodology, such as a literature study, an
interview or experiment. Table 1.1 maps all the methodologies used in this thesis to the section that

CHAPTER 1. INTRODUCTION 5

Methodology Description Phase

DSRM 1.4 Throughout
Semi-systematic literature review 2.1.1 Problem investigation
Semi-structured interviews 2.2.1 Problem investigation
Systematic literature review 4.1 Design
TOGAF 5.1 Design
SCRUM 6.1 Validation
Single-case mechanism experiments 7.1 Validation
Expert opinion 7.1 Validation

Table 1.1: Overview of methodologies used

describes them in detail. The methodologies for stakeholder, goal and requirements analysis are not
included as they are covered by the DSRM.

Figure 1.2: The design cycle applied to this research

1.5 Validation case

The research design is validated in the context of integration platform vendor "eMagiz". This vendor
provides an integration platform as a service (iPaaS) to its customers to facilitate enterprise
integration. In addition to serving customers directly, the vendor also provides consultancy services
through an affiliated consultancy firm. This consultancy firm develops custom build applications as
well as integrations using the vendors enterprise iPaaS, according to the needs of their clients.

The vendor observes that its customers are increasingly using IoT and is seeking to add IoT
integration features to its platform to meet this demand. However, the vendor foresees significant
research efforts to realise this extension, and would consequently benefit from the results of this
thesis to accelerate the development of IoT support on the platform.

Therefore, this vendor provides an ideal problem context to validate the design. The validation will
confirm whether the proposed design can accommodate the vendor in supporting IoT integrations.
To this end, a prototype is developed as an instantiation of the design in the problem context of the
vendor. This prototype is then validated with end-users to ensure it produces the intended effects.
Additionally, the design itself is validated with the CTO of the integration platform to evaluate the
anticipated effects of the architecture on the problem context. Additionally, to ensure external

CHAPTER 1. INTRODUCTION 6

validity, the design is also validated with independent experts from the University of Twente.
Validation is discussed in more detail in Chapter 7.

1.6 Document structure

This thesis describes the research through several chapters. Chapter 2 introduces the problem
context, presents the conceptual problem framework and overviews the IoT integration challenges.
Based on these findings, Chapter 3 presents the requirements for the design to address the
problem. Chapter 4 surveys existing solutions and building on these findings, Chapter 5 presents
the solution design. Chapter 6 and Chapter 7 respectively validate the design through the
development of a prototype, and through expert and user-based validations. Next, Chapter 8 relates
the design to alternative solutions to the challenges initially identified and to the stakeholder goals.
Finally, 9 presents the conclusions to the research questions and overviews the implications and
limitations of the design.

Chapter 2

Problem Investigation

In order to design a treatment it is key that the problem to be treated is first understood [12].
Therefore, a comprehensive understanding of the problem and its context is needed in order to
justify the design and to validate it before it is implemented. This chapter provides such an overview
of the problem context, to answer research question 1. The chapter first overviews the problem
through an extensive literature review, as well as through interviews with problem owners. Finally,
this chapter provides a summary of the problem context and an overview of the challenges that are
faced during IoT integration, based on the literature review and the interviews.

2.1 Literature Review

2.1.1 Methodology

This review provides the background for the design of the model-driven integration platform through
the definition of the problem statement. To this end, several topics are addressed. First, background
is provided on IoT applications and challenges. Second, current IoT architectures are described. This
includes a description of the components and characteristics of IoT architectures, based on a review
of architectures as well as actual IoT platforms, to understand how IoT ecosystems work. Third,
an overview of (IoT) integration protocols and semantics is provided, to describe how applications
and devices can communicate with the IoT middleware. Fourth, current IoT integration practices are
described to obtain an understanding of how IoT is currently integrated with applications, and the
challenges faced during integration. And finally, integration platforms and enterprise integration in
general are described. These topics are addressed using the following research questions:

1. What are the application domains and challenges of IoT?

2. What are common reference architectures and instantiations for IoT?

3. What are the IoT communication protocols and semantics?

4. How is IoT currently integrated with applications?

5. How does an integration platform function?

Based on the answers from these questions, the problem statement as well as objectives for a
solution are derived.

A structured, semi-systematic review approach is used for this review. Snyder et al. argue that a

7

CHAPTER 2. PROBLEM INVESTIGATION 8

Figure 2.1: Literature review approach

semi-systematic approach is the most suitable approach for describing the state of knowledge and
overviewing a research area [13]. Since this research does not focus on a specific domain where
IoT is applied but rather aims to describe the state of knowledge across domains, providing a full
review of all available literature is not feasible due to the high volume of publications [14].

The methodology for the literature review is adapted from the systematic approach proposed by
Kitchenham et al. [15] and shown in figure 2.1. For this research, several systematic steps are
excluded including the exhaustive search for all literature, exhaustive back and forward reference
checking and the use of a formal data extraction protocol. Instead, generic process steps as
proposed Snyder et al. are used for data extraction and record screening [13]. First, the keywords
are defined for each of the research questions. Next, these keywords are entered into Scopus,
which is provides the largest abstract database of (peer-reviewed) literature, and the exclusion
criteria below are supplied as parameters.

• The paper must be written in English.

• The paper must be published in a scientific journal, magazine, or conference proceedings.

• The paper must be accessible. That is, it must be freely available, or available through the
University of Twente library catalogue.

• The paper must be published within the domain of computer science.

For each query, only the first 50 results, sorted by relevance, are considered, this is because further
refinement of the search query is in most cases unfeasible or not preferable. All the results are then
added to a Scopus list. This is repeated for each query, such that all the found papers can be
tracked. Papers are excluded if they were duplicates.

Next, all the found papers are reviewed based on their title and abstract. The following exclusion
criteria were used for this:

• The study title and/or abstract must be relevant to the research question.

CHAPTER 2. PROBLEM INVESTIGATION 9

• The study must not be domain-specific (except for literature on IoT applications). For instance,
an IoT architecture survey that is limited to the domain of health would be excluded.

All papers that are irrelevant based on the title and/or abstract are discarded, and the remaining
papers are read. When no relevant papers are found for a query, Google Scholar is used instead of
Scopus. Google Scholar was used exclusively in this specific scenario, as it provides more results
but generally of lower quality.

During full-text reading, papers were excluded if they did not actually fulfil the inclusion criteria, or if
they did not make any contributions compared to other included papers. If additional relevant
literature arose during the examination of a paper, for instance, referenced literature, then this was
added to the list of papers to be examined. Subsection 2.1.2 summarises the results of the literature
review.

2.1.1.1 Keywords

What are the application domains and challenges of IoT?
"Internet of Things" OR IoT challenges
"Internet of Things" OR IoT applications
"Internet of Things" OR IoT survey
The third query has been added since survey papers typically include an overview of the challenges
and applications of the surveyed technology. Because the queries are very generic, the results are
limited to papers published since 2015, to limit the number of results.

What are common reference architectures and instantiations for IoT?
"Internet of Things" OR IoT architecture OR architectures
"Internet of Things" OR IoT architecture OR architectures survey
"Internet of Things" OR IoT middleware OR platform
"Internet of Things" OR IoT middleware OR platform survey

What are the IoT communication protocols and semantics?
"Internet of Things" OR IoT protocols
"Internet of Things" OR IoT semantics

How is IoT currently integrated with applications?
"Internet of Things" OR IoT integration
"Internet of Things" OR IoT Cloud OR (Distributed Application) Integration
"Internet of Things" OR IoT iPaas OR "Integration Platform"
"Internet of Things" OR IoT Enterprise
"Internet of Things" OR IoT Mining
The first three queries yield little relevant results, therefore, the fourth query has been included in an
attempt to find overview and survey papers that may reflect on IoT application integration, and/or
address the lack of research in this area. The last query has been added to research the gap
between the IoT and applications.

How does an integration platform function?
"Integration Platform"
"Integration Platform as a Service" OR iPaaS

CHAPTER 2. PROBLEM INVESTIGATION 10

"Cloud-based integration platform"
Integration OR ESB Cloud
Enterprise Integration Patterns
In literature, integration platforms as a service are also commonly referred to as cloud-based
integration platforms or integration clouds or simply as integration platforms. ’Enterprise Integration
Pattern’ is included as a keyword, since these patterns provide background on application
integration. These patterns are independent of technology and remain to be very important for
digital integration challenges, also for IoT [16].

2.1.2 Results

2.1.2.1 IoT Application Domains

Numerous papers provide a survey of IoT applications, including for example [7], [9], [17]–[20].
However, most of the studies do not provide an analytical assessment of IoT application domains,
are dated, and do not present any clear selection or methodology for their results. Asghari et al.
confirmed this, and have recently (2019) conducted a systematic review on IoT applications [20].
They identified healthcare, environmental, smart city, commercial and industrial applications as the
most common application domains. Most of the surveys tend to agree with the domains identified by
Asghari et al. For comparison, another IoT taxonomy proposed Sethi et al. [18] agrees on most
application domains, however, Sethi identifies smart transport and entertainment as additional
top-level application domains of IoT, while Ashari groups these under other domains.

Overall, IoT has countless of use-cases over a wide number of domains, and across these domains,
IoT can be used to create value by combining digital and physical components [6]. Nonetheless, the
requirements for IoT may strongly differ per domain. For example, in connected cars, reliability and
response times are crucial while for smart farming reliability of individual sensors and response
times may be lower. Razzaque et al. have identified the properties across IoT applications [21].
They found that diversity of the applications, the classification of real-time to non-real time, the
service like nature of applications and the need for privacy and security of applications are the most
significant properties. Since the applications are diverse and complex, they stress the need to
abstract applications from the IoT devices, to ensure developers can focus on the task at hand
rather than focusing on generic tasks related to the IoT infrastructure.

2.1.2.2 IoT challenges

Many challenges with regard to IoT can be identified, from architectural to technical and
business-level challenges. From an architectural perspective, Alreshidi et al. provide a survey of the
most common challenges and how to address them [22]. These architectural challenges represent
the high-level design challenges involved with IoT. Based on a survey of 88 studies, they have
established several research themes on architecting IoT based systems, most significantly
cloud-based IoT, security and privacy, software-defined networking, agent-based systems, big data,
autonomy and adaptivity. These patterns are discussed in more detail in Section 2.1.2.3 on IoT
architecture.

Xu et al. provide an overview of challenges on a technical level [7]. Heterogeneity and integration
are highlighted as key technical challenges to overcome. Distributed, heterogeneous devices need
to be integrated, which poses technical challenges regarding connectivity, protocol integration,

CHAPTER 2. PROBLEM INVESTIGATION 11

device management and data abstraction [7], [23]. The integration of IoT into existing architectures
poses a challenge on multiple levels. IoT often needs to be integrated with traditional data and
legacy systems [6], [24]. Yet, these large amounts of data may not have much meaning unless it is
analysed and understood. Analysing and mining information from this data is a technically complex
task requiring proper infrastructure and strong data analytics skills. Security and privacy also pose
challenges during implementation. Due to the diverse and low power nature of IoT devices,
encryption is complex compared to other domains, while rather private information may be collected
by IoT devices. Furthermore, challenges that apply to most IT systems, such as availability,
performance, reliability and scalability also apply to the domain of IoT and should not be
forgotten [25].

The challenges of IoT are not limited to technical ones. Wortmann and Flüchter stress the need to
address strategic and operational challenges related to IoT [6]. Businesses need to evaluate the
threats and opportunities of IoT and they need to adapt their business models and processes
accordingly. At an operational level, IoT needs to be considered in product development, application
development, marketing and support as IoT will impact how products are developed, supported and
marketed. For example, the development of a connected washing machine will require hardware
and software developers to collaborate. Support and maintenance systems need to be adjusted as
well, for example, to support predictive maintenance. Corporate IT infrastructures need to be
adapted to be able to support the seamless connection of resources, such as IoT devices, within
and between organisations.

2.1.2.3 IoT architectures

This subsection discusses common patterns and components among IoT architectures. These IoT
(reference) architectures act as guidelines for implementing IoT systems.

Layers In their survey of IoT references architectures, Moghaddam et al. concluded that most IoT
architectures can be classified as layered architectures [26]. In a layered architecture, the
architecture is represented by several layers with different responsibilities, the number of layers can
vary depending on the architecture. The most common is the 4 layer architecture, which describes
the presence of a sensor layer, a network layer, a processing layer and an application layer.
More layers have been introduced, however most these layers have not been widely adopted and the
general consensus remains to be the four-layer architecture [6], [28]–[30]. In a survey of IoT reference
architectures and platforms, Guth et al. confirm these four layers as the common demeanour between
the reviewed middlewares [27] as visualised in Figure 2.2. An overview of these for layers is listed
below.

1. Sensor layer: This layer is also known as the perception layer. This layer is responsible for
translating physical information into data streams, or vice versa. There are many types of
sensors, or ’IoT devices’, and the requirements of these sensors depend on the applications
[31]. Examples of sensors include location sensors, motion sensors, or information sensors
embedded in traditional hardware such as industrial machines to sense the machine’s state.
Typically, sensors have little to no computation power, and limited internet access.

2. Network layer: This layer is responsible for connecting the IoT devices in the sensor layer
with upper layers [32]. This network layer often consists of local gateways, that can connect
with IoT devices over various network technologies such as Bluetooth, Zigbee, cellular or LAN.

CHAPTER 2. PROBLEM INVESTIGATION 12

Figure 2.2: IoT reference architecture [27]

Incoming data is then converted from the incoming protocol and forwarded to the internet
(TCP/IP protocol). In addition to forwarding, gateways may also perform basic operations,
such as aggregation, translation and routing of data streams, as is discussed in Paragraph
2.1.2.3.

3. Processing layer: This is the middleware layer, responsible for the aggregation of IoT data.
Features like device management and data forwarding are core functionalities of this layer.
Additionally, the middleware may abstract incoming data, by translating heterogeneous
incoming events into more generic events. Moreover, this layer may decide to perform actions
based on these events, for example, it may decide to store the event, to destroy the event, or
to generate new events. The middleware layer often exposes APIs such that applications can
consume events and data produced by the middleware. Today, in many modern
implementations, this layer is an online IoT platform, such as Amazon IoT, Google IoT, etc [26],
[33], [34]. However, the middleware can also be located on premise or hybrid in the cloud and
on-premise.

4. Application layer: The applications, data lakes, and other operations that run on IoT. These
applications can vary from simple analytics dashboards overviewing all IoT events, to complex
applications that mine information from IoT events and combine it with other information
sources.

However, not all architectures can be classified as layered architectures, Ara et al. state that while
layered architectures are the norm, other architectures are possible [19]. For example, one layer
architectures where devices connect with each other without connecting to the cloud or a central
network. Or a two-layer architecture where devices connect directly to applications in the cloud. For
the current research, the focus, however, remains on the architectures that provide some sort of
middleware layer that applications need to integrate with, as is the case for most IoT architectures. In
other cases, such as described by Ara et al., IoT devices may connect directly to applications or the
applications may be embedded in the middleware, and an integration platform may not, or can not,
provide additional value for integrations.

CHAPTER 2. PROBLEM INVESTIGATION 13

Components Several functional components of IoT middlewares can be identified. These
components give an insight into what functionalities and responsibilities the IoT middleware has. An
overview of the most significant components is given below.

• Device Management [19], [33], [35]: The device manager maintains a connection with the IoT
devices. Additionally the device manager may store device metadata in the database and set
device configurations.

• Message Broker [19], [33]: The message broker, or event bus, is responsible for event
distribution. For example, on the middleware, all gateways can publish to the message broker,
and then the middleware can process these events. All processed events will then get
published to all subscribed parties, such as external apps or other components.

• Authentication [19], [33], [35], [36]: This component covers security and access management.
Security is a major concern in IoT, the authentication component ensures that devices and users
(i.e. service consumers) are properly authenticated and have the correct right to access the
data or configure the middleware.

• (Metadata) storage [33], [35], [37]: Here, sensor data can be stored as well as metadata
about the device. For example the type of device, the unit of measurement, the location and
the relation to other devices. This metadata can be used to enrich and standardize raw data
points sent by devices to more contextual data points. Large cloud-based IoT platforms store
more than only metadata. For example, they may store all events or the so-called ’Device
Shadow’. The device shadow stores the last known state of a device, for example, the last
temperature measured by a temperature sensor.

• Rule Engine [19], [33], [35]–[37]: Rule engines allow for automated decisions based on IoT
events. For example, rules may describe threshold values for events to be stored or forwarded.
For some middlewares, Rule engine’s are complemented by machine learning algorithms.

• Abstraction & Semantics [19], [35]–[37]: Semantics represents the (contextual) knowledge or
meaning of IoT data understanding of IoT data to facilitate interoperability, and are discussed
in detail in Section 2.1.2.6. The components responsible for semantics or object abstraction
can be included at the middleware level, but they can also be deployed at the network or device
level, or both [37]. Some have conceptualised the network level as the object abstraction layer,
as gateways provide some abstraction from the device and the protocol [36]. Noura et al. state
that roughly one-fourth of all surveyed middleware frameworks provide semantic descriptions
of data [38], however Petrakis et al. [33] argue that semantics and ontologies that contribute to
a full automated understanding of messages and contexts have not yet been applied in large
scale real-world implementations and only in conceptual frameworks within a research context.

In addition to the middleware layer, lower layers also provide components needed in IoT architectures,
primarily in the network/gateway layer. Examples include configuration management and protocol
translations. Since these lower layers are below the middleware, these layers are not directly involved
in the application integration and not covered in this review. For an exhaustive overview of middleware
components, one can instead refer to Ara et al. [19].

Distribution Patterns Middlewares can have distribution patterns. An analysis of middlewares
shows that the most common designs are centralised, and distributed middlewares [26], [39]:

CHAPTER 2. PROBLEM INVESTIGATION 14

• Centralised: In centralised distribution patterns, there is a central component that represents
the processing layer. All IoT gateways and devices, as well as all IoT applications, connect
to this central component. The central component can be a cloud platform, a server, or a
fog connected to the cloud. The centralised pattern is currently the most common [26], [40].
Mineraud et al. argue that centralised, cloud-based solutions, are especially suitable for large
scale deployments of IoT [41].

• Distributed: In a distributed approach, the processing layer consists of multiple nodes that
can work individually and communicate together to achieve a common goal. Truly distributed
IoT middleware designs with no central or main nodes, are however sparse [26]. Weaker
forms, such as collaborative networks and connected intranets also feature distributed
computation, but there are still some dependencies or compromises. Moghaddam et al. argue
that approximately one-fourth of all reference architectures offer some for a distributed
design [26]. For implementations, Mineraud et al. [41] found that 5 of the 39 analysed
frameworks were decentralised or distributed and Farahzadi et al. report that 7 of the 20 IoT
middleware frameworks had support for some form of distribution [39].

Designs Middlewares can also be classified based on their design approaches. The most notable
middleware designs are service-based and event-based [21]. Middlewares are not limited to a single
design approach, and can also feature multiple design approaches. In a service-oriented architecture
(SOA), all core middleware components are service-oriented [26]. Service-oriented designs may
even conceptualise devices, gateways and internal components as services, and the functionality of
the middleware is obtained through the composition of these services. Service-oriented architectures
typically include three elements: First, service providers, which provide the services. Second, service
brokers, that manage the services and their locations. And third service consumers, which use
the services managed by the broker. Microservice-based architectures extend upon the principle
of SOA and promote the decoupling of services, requiring that each service must be able to run
independently without the need for service orchestration. Compared to SOA, microservice-based
architectures allow for greater scalability. Event-based middlewares are based on a publish/subscribe
architectural style. In such a middleware, there are several topics to which publishers can publish and
subscribers can subscribe. For example, an IoT device can send a message on a certain topic, and
then all subscribers to this topic will receive the message. A middleware can have multiple message
brokers. While most IoT architectures are SOA based, IoT solutions are increasingly moving toward
event-driven implementations [42].

Cloud Cloud-based architectures utilise the cloud for computation and storage. Moghaddam et al.
argue that over fifty percent of all IoT architectures is cloud-based [26]. IoT produces large amounts
of data, is distributed, and has limited storage and processing power. The cloud, however, provides
a centralised place capable of virtually unlimited storage and computation, that is unprecedented by
on-premise alternatives. Therefore, Botta et al. reason that the combination of cloud and IoT will be
a disruptive paradigm that will enable many new applications. In the Cloud IoT paradigm devices can
connect directly to the Cloud IoT middlewares, or cloud platforms. These cloud platforms allow for
managing IoT devices and orchestrating IoT data in the cloud, providing unlimited scaling as needed,
for example scaling of the message broker, computation, or storage. [43].

Fog / Edge The move of IoT to the cloud places a large burden on the cloud to process all IoT data,
regardless of its relevance, because IoT data is produced at such a high velocity. Therefore, some

CHAPTER 2. PROBLEM INVESTIGATION 15

propose that IoT data can best be processed as close to the edge as possible [28]. That is, data
deletion, processing and filtering can best be done close to the source device collecting the data (the
’edge’), to avoid overloading applications higher in the hierarchy with large volumes of data. Between
the cloud and the IoT devices, a fog layer can be added to facilitate this. The fog is a virtual cloud that
runs on the gateway, or between the gateway and the cloud [26]. The fog can filter the data to be sent
to the cloud and can act upon the data to control devices locally. As IoT middlewares increasingly
reside in the cloud, the fog can help to reduce the data flow to the cloud and increase performance
and response times through local computation. Edge computation requires even deeper integration
then fog integration, as it requires data processing to be integrated as close to the edge as possible,
for instance on IoT devices themselves.

2.1.2.4 IoT platforms

Numerous papers provide a survey of IoT middleware [21], [34], [39], [41], [43]–[46]. Table 2.1
provides an overview of popular middlewares discussed in these papers, both open source and
commercial, as well as some of their properties. Rather than providing a exhaustive list of all
frameworks discussed in the surveys, a representative selection has been made. This includes the
most popular open-source platforms identified by [46] et al. and for commercial platforms, the IoT
solutions from the three leading1 cloud providers, as well as the three IoT focused vendors that have
the most frequent mentions in literature.

The middlewares in the table have been reviewed on the following properties:

• API: The API of the middleware, that is how applications can integrate with the middleware.

• DM: Whether or not device management is included in the middleware.

• Rule: Whether the platform has a rule engine (logic) that allows users to trigger events or other
actions.

• Sem: This attribute reflects the abstraction / semantics support of the application.

• Protocols: The protocols the platform supports for incoming data from devices and gateways.

• Shadow: Whether the middleware maintains a digital twin, or virtual copy, of each device with
its last know state.

Most middlewares have similar components and support similar protocols. Bader et al. confirm this,
stating that most reference architectures recommend similar practices such as an MQTT broker,
HTTP REST APIs and oAuth for authentication [14]. In their survey of over 30 IoT platforms and
frameworks, Noura et al. found that all but three platforms offered a REST API, however, the
majority of these REST APIs was platform unique and relied on internal information models [38]. In
addition to a lack of uniformity in REST APIs, most platforms lack (uniform) event-based APIs.
Mineraud et al. [41] conducted a gap analysis of IoT platforms, and confirmed the limitations in data
processing and sharing. This lack of uniformity in IoT platforms hinders integration and use of
multiple platforms.

All the reviewed non-open source IoT platforms are cloud-based and offered as a service. Most of
these platforms, such as Amazon, Google, IBM and Microsoft, provide proprietary cloud services for
storage, computation and more. For open-source platforms, such services are not available, and

1Leading cloud providers as identified by Gartner . Gartner has not yet identified any leaders for IoT platforms.

https://www.gartner.com/en/documents/3947472/magic-quadrant-for-cloud-infrastructure-as-a-service-wor

CHAPTER 2. PROBLEM INVESTIGATION 16

Middleware API DM Rule Sem Protocols Twin Literature

LinkSmart (Hydra) Proprietary Yes. Yes No MQTT, REST No [21], [39], [41], [45]
Thingspeak REST No Yes Yes MQTT, REST No [40], [41], [44], [46]
OpenIoT Proprietary Yes No No CoAP, X-GSN Yes [39], [41], [46], [47]
Kura REST, P/S Can Yes Can MQTT Can [45], [46]
IoTivity (AllJoyn) REST Yes No Yes CoAP, REST Yes [46]

Google IoT (Xively) REST Yes Yes No MQTT, REST Yes [21], [34], [39], [41], [45]
Altair (Carriots) REST Yes Yes No MQTT, REST No [21], [34], [39], [41], [44]
Exosite REST Yes Yes No MQTT, REST Yes [34], [40], [41]
PTC ThingWorx REST Yes Yes Yes MQTT, REST, CoAP Yes [34], [39]
AWS IOT REST Yes Yes Can MQTT, REST Can [34]
Azure IoT REST Yes Yes Can MQTT, AMQP, REST Can [34]

Table 2.1: IoT Platforms / Middleware

one would need additional platforms for storing and processing large amounts of heterogeneous
data [48]. Examples for storage include Apache Hadoop, Druid and others. Examples for message
processing include Spark, Storm, Kafka and RabbitMQ. Such platforms often run on IaaS
technology to provide on-demand upscaling of resources when needed, OpenStack is an example
of this.

All commercial middlewares provide platform functionalities for IoT. However, some middlewares
also provide software-as-a-service applications for IoT. These can vary from analytics dashboards
to node-based programming tools and full-fledged asset management applications. From all open
source solutions, only ThingsSpeak facilitates itself as an application builder. While for the
commercial cloud platforms, almost all vendors except Google, offer some SaaS IoT applications.

Most platforms are designed primarily to connect directly to IoT devices and gateways. However,
some platforms, like Inter-IOT [47] and ThingsSpeak, support the integration of multiple
middle-wares rather than only providing integrations with devices, to promote horizontal
interoperability across middlewares.

2.1.2.5 Protocols

Multiple layers of communication can be identified, First, from IoT device to gateway, using protocols
and radio technologies like Zigbee, Bluetooth, 802.15.4 and WiFi. Second, from gateway to
middleware, most notably HTTP (REST), MQTT, AMQP, XMPP and CoAP. Event-based protocols
such as MQTT are preferred, to prevent superfluous polling. MQTT and REST are the most used
protocols [49]. And finally, from middleware to applications, most notably REST or proprietary APIs
(sometimes event-based) [34].

Dizdarevic et al., Gazis et al. and Al-Fuqaha et al. all survey of protocols for IoT [1], [49], [50]. The
protocols from these surveys are discussed below.

• HTTP REST: HTTP is the protocol that is also used for the web, providing wide compatibility
with most network infrastructures and devices. HTTP guarantees the delivery of data but this
may result in overhead in resource-constrained environments such as IoT. HTTP utilises
requests and responses, a client can send an HTTP request and the server will send a
response message. For web services, HTTP has been closely associated with REST. REST

CHAPTER 2. PROBLEM INVESTIGATION 17

defines operations such as create, post, put and get, which are mapped upon the respective
HTTP operations. REST does not describe a specific data structure or format, however for IoT
JSON is the most popular format used to present data.

• CoAp: CoAp could be considered as an alternative to HTTP for resource-constrained
environments. Like HTTP, it supports the REST architecture. CoAp is lightweight, and has less
overhead, but also less reliability, compared to HTTP. In addition to the HTTP like
request/response interaction, CoAp allows clients to observe changes, allowing
publish/subscribe like behaviour.

• MQTT: Similar to CoAp, MQTT is also designed as a lightweight messaging protocol. Because
it is very simple and lightweight, it is often the protocol of choice for IoT [49], as is also found
in Section 2.1.2.4. It allows for publish/subscribe interactions. MQTT defines three levels for
quality of service, varying from no delivery guarantee to the guarantee that the message is
delivered exactly once.

• AMQP: AMQP is another messaging protocol typically used for more power full IoT devices or
gateways. The latest version of AMQP allows both request/response and publish/subscribe
based messaging mechanisms. Compared to MQTT and CoAp, AMQP allows also
peer-to-peer publish/subscribe messaging with the broker being only optional. Additionally,
other paradigms such as broker-to-broker are supported for increased scalability. Similar to
MQTT, it provides different service levels to guarantee delivery. Overall, AMQP is one of the
heaviest protocols for IoT.

• XMPP: This is a messaging protocol initially designed for message exchange between
applications. It was designed as a request/response-based protocol, however,
publish/subscribe based messaging is possible using extensions. The protocol is quite heavy,
however, optimisations are possible through extensions.

2.1.2.6 Semantics

Figure 2.3 provides an overview of the stages of interoperability, as defined by Jara et al [51]. First,
interoperability on the network level is needed, such that all devices can connect with each other over
the internet.

Next, interoperability requires inter-operable communication over the internet employing protocols
such as MQTT, and CoAp described in Section 2.1.2.5. This also includes syntactical
interoperability to ensure that a similar format, or ’grammar’, is used such as JSON, XML or plain
text [38]. Structured data, such as JSON or XML is in practice exchanged according to a schema
specification, such as an XML schema or Avro schema. The use of schemas allows users to work
with data at the object level. This is also referred to as the Web of Things, and such syntactic
inter-operability is focused on vertically integration IoT with applications [51]. According to Jara et al.
the first challenge for syntactic interoperability is overcoming the syntactic differences between
heterogeneous IoT events [51]. This could for instance be resolved by translating heterogeneous
events into a common language through object abstraction and harmonization. This allows users to
work with data at the object level without concerns for the technical details such as the device used,
or the exact format of the data.

Common access through inter-operable protocols and formats does not imply a common
understanding since with syntactic interoperability contextual information about the meaning of the

CHAPTER 2. PROBLEM INVESTIGATION 18

Figure 2.3: From Internet of Things to the Semantic Web Of Things. [51]

data is stored informally. True semantic interoperability, allows for unambiguous interpretation of
data and relationships between data points through formal contextual descriptions of data.
According to Sheth et al. true semantic interoperability can only be achieved when a formal
description, such as an ontology, is provided that allows for a universal understanding of the data
and the relations between data [52]. IoT with support for true semantic interoperability is also
referred to as the Semantic Web of Things [38], [53].

Semantic knowledge in the Semantic Web of Things can be represented using informal agreements
on standards, structures and formats to be used or, typically, using ontologies [38], [52]. Ontologies
can act as a vocabulary for semantics, and they consist of objects and relationships which can be
used to describe and explain the data of an area of interest. Ontologies are typically defined using a
web ontology language such as OWL or RDF [2], OWL is preferred as it is more expressive. When
ontologies are used together with hyperlinks to create references between ontologies, this is also
referred to as Linked Data [53]. By using the use of hyperlinks, all information stored in ontologies
becomes available as a single, global, graph of structured data. The W3C Semantic Sensor
Network (SSN) ontology, as proposed by [53], is considered by the authors of the SSN as one of the
most adopted IoT ontologies [38]. The SSN is domain-independent and describes sensors,
observations, and deployments.

Ultimately, the Semantic Web of Things should lead to full interoperability of heterogeneous data,
allowing automatic matchmaking and data exchange between compatible applications (alignment).
However, the Semantic Web of Things has significant challenges that hinder adoption:

• Ontologies and (software) support for ontologies have not yet reached maturity. As described
in Section 2.1.2.4, most middlewares do not provide semantic interoperability, and if they do,
they only provide propriety data models and ontologies that do not fit the requirements of the
Semantic Web of Things. Semantic standards, such as SSN are primarily used in research
projects, such as OpenIoT [38]. Efforts have been made for the automated derivation of

CHAPTER 2. PROBLEM INVESTIGATION 19

semantic ontologies from data, and the automated alignment of ontologies [54], however, such
tools are lacking and methodologies to use them are scarce [55].

• The majority of IoT ontologies are domain-specific and do not allow for cross-domain
integration. As described by Noura et al, global ontology standard do not even exist within
domains, and even if such a standard would exist chances industry wide adoption would be
unlikely [38]. Others, including Szilagyi et al. and Rahman et al. also confirmed the
domain-specific nature of IoT surveys [56], [57].

• Ontologies are complex to use. In a recent survey of the state-of-the art of IoT semantics
and inter-operability by Rahman et al. concluded that one of the most challenging aspects of
ontologies are the high-complexity and heavy weight of the ontologies [57]. Rahman found that
it was extremely difficult to convert raw sensor data into RDF conforming to an ontology such
as SSN.

• Ontologies guarantee a common, but limited understanding. According to Venceslau et al. [55],
the use of shared ontologies solves issues with interpretation, but it may also lead to the loss
of some domain specific information that is not captured by the ontology. Therefore, only some
interoperability requirements can be addressed using Semantic Web of Things, due to the limit
in which all domain aspects can be formally represented using corresponding ontologies. This
issue especially arises with high-level ontologies such as the SSN.

Concluding, ontologies are currently primarily used within research contexts, to demonstrate domain-
specific data exchange. Real-world use of cross-domain interoperability using ontologies has many
limitations and challenges which are yet to overcome.

2.1.2.7 IoT Integration

Integration at the network level and at the middle-ware level have both been thriving topics in
research. Mineraud et al. even state that, while there are of-course always remain challenges to
overcome, there is currently an abundance of IoT middleware solutions and platforms [41]. IoT
research has, however, put less focus on the final, and crucial, integration step: the integration
between the processing layer of IoT and the applications that run on this layer [38].

The first challenge towards this integration is connecting applications with the specific APIs of the
IoT middleware/platform. As discussed in Section 2.1.2.3 modern architectures provide a service or
event broker, allowing IoT applications to integrate with IoT data. This requires developers to adapt
their applications to the specific data models used by each middleware, and since event-based APIs
are often not available or proprietary, they may need to write polling and change detection scripts to
build event-based integrations. Frequently, integrations may even be device-specific, since the
middleware does not provide harmonization of heterogeneous device data, as discussed in Section
2.1.2.4, and applications can then only access raw, device-specific, sensor data. This means that
tasks such as harmonisation and enrichment based on device metadata have to be performed on a
per-application basis as well. Additional challenges are faced when applications need to integrate
with multiple middlewares, or when applications are ported from one middleware to another since
each middleware provides its unique APIs and data models. Efforts have been made to integrate
multiple IoT middlewares into a single platform by projects such as Inter-IoT [47], which proposes an
IoT middleware-to-middleware layer that allows applications to connect with multiple middlewares
through a unified service, or the FiWare context broker, which describes a universal API and context
that middlewares can adapt [14]. Such solutions are a step forward to harmonize the APIs and data

CHAPTER 2. PROBLEM INVESTIGATION 20

models of IoT middlewares, however, the solutions do not have high adoptions in mainstream IoT
architectures, and even if adopted, a gap between the data models of the applications and the
Inter-IoT / FiWare middleware will remain. This is also referred to as the syntactic gap between the
IoT data and the applications running on IoT.

A second challenge in the integration process is related to preprocessing. IoT produces raw,
unfiltered, event data, applications which needs to be filtered, cleaned and enriched before it can be
used by applications [58]. Shen et al. label this as the difference between data and knowledge, or
the difference between primitive events and events [59]. Ma et al. label it the difference between
primitive events and semantic events [60]. While Lempert et al. define the difference as a gradient
from smart object information to business events [61]. Compared to business events, data events
are highly contextual and relatively unreliable. A data event by itself contains little information and
the interpretation depends on the context, like location and time. Business events, however, are
self-contained, more reliable, and more independent of context. IoT data, or ’data events’, need to
go through a process called mining to form meaningful information as ’business events’. The
process of mining varies from prepossessing tasks such as simple filtering, enrichment and
transformations, to complex event processing over a window of events based on business rules and
machine-learning algorithms [58]. The IoT integration is only responsible for preprocessing the data,
for example to clean the IoT data-flow from errors and meaningless or irrelevant events to improve
consistency and optimize throughput. Complex event processing is usually not considered as part
of the IoT integration itself, but rather as an application of IoT. There is a large body of literature on
tools and techniques available for mining [62], [63]. However the ability of IoT platforms to
(pre)processs data is limited [41], leaving developers to manually implement such functionality or to
integrate the data mining tools or custom processing applications. The difference between primitive
IoT data, and preprocessed data or high-level knowledge extracted from this data, is also labelled
as the abstraction gap by Janiesch et al [58].

To tackle the challenges listed above, from adapting to middleware specific APIs to preprocessing,
developers need to develop middleware-specific point-to-point integrations with their
applications [52]. These point-to-point integrations are inefficient, complex and expensive [10], [11].
This is because complex processing and mapping operations of data have to be re-developed for
each integration. In their survey of IoT literature, Botta et al. argue the same "While Cloud IoT
solutions have been already built around specific applications, little effort has been spent to derive a
common methodology to integrate Cloud and IoT systems [..] a generic and flexible platform could
be the starting point for implementing such workflows more easily." [43]. He et al. confirm the
same [64] , they found that while several solutions have been proposed, that these solutions are
typically domain-specific. They also state that there is a lack of standard architecture and guidelines
for allowing integrations between IoT and the applications utilising IoT, while increasing re-usability.

Several related papers were found that attempted to resolve the need addressed above. Two papers
present a full IoT architecture, Kutzias et al. [23] and Sarkar et al. [65]. Both acknowledge the lack of
research on IoT application integration and present an architecture that aims to address IoT
application integration concerns. However, rather than relying on existing IoT frameworks as
building blocks for IoT application integration, both present new architectures that do not extend
upon existing frameworks. This will require developers to completely re-design their IoT
infrastructure from the bottom up, which is in most cases unfeasible and has major disadvantages.
The authors acknowledge that the implementation of the architecture includes many challenges

CHAPTER 2. PROBLEM INVESTIGATION 21

related to, for example, protocol support, device management and security [23], while these
challenges have already extensively been addressed in existing IoT frameworks. The architecture
proposed by Sarkar et al. even requires the deployment of a custom daemon to every IoT device in
the ecosystem [65], which would be a major challenge and sometimes even impossible depending
on the IoT vendor. Therefore the research of Kutzias et al. and Sarkar et al would primarily be
valuable for the long term development of IoT architectures, rather than as a practical architecture
for building IoT integrations today using existing building blocks. Schel et al. suggest adding an
integration layer on top of existing data service layers [66], this approach could be applied to IoT as
well, conceptualising IoT as a data service. However, Schel et al. do not discuss the integration IoT
specifically, therefore leaving integration challenges specific to IoT, for example, the abstraction gap,
unanswered.

Overall, research does not yet seem to provide an alternative to point-to-point integrations to close
the syntactic and abstraction gaps. As a result, there are no guidelines on how to create flexible,
maintainable and re-usable integrations, and development of IoT integrations with cloud & legacy
applications remains to be a challenge [7]–[9].

2.1.2.8 Enterprise Integration

The use of software and architectural principles by business to integrate enterprise application is
referred to as Enterprise Application Integration (EAI). Before EAI, applications existed primarily as
large silo’s [10] which were connected using point-to-point integrations. However, businesses were
limited by these silo’s and fixed integrations in their ability to quickly respond to market changes and
hence newer, more flexible IT systems were needed. With EAI, concepts such as the enterprise
service bus (ESB) were introduced, which allowed more flexible integration of applications through a
centralized information broker, employing standard connectors and centrally defined integration
logic. To allow for even more flexibility, organisations increasingly adopted service-oriented
architectures (SOA) together with ESB. In SOA, business functionalities are exposed as a service,
such that they can be reused in multiple applications [67] to accelerate application development.
While for some businesses and use cases, point to point integrations are still best suited, business
with more demanding integration rely on integration platforms that can provide a full range of
integration features from ESB, to features such as API management, and business workflow
management.

As businesses moved to the cloud, new challenges arose related to the integration of cloud-based
applications. Integration platforms as a service or ’iPaaS’ aim to address the integration challenges
brought by the integration of cloud-based applications [68]. iPaaS offers EAI in a cloud-based
software suite, while also aiming to reduce the complexity that was traditionally involved with EAI by
providing services for development, execution and governance of integrations [68]. Cloud-based
integration platforms have since then evolved to support the integration of cloud, native and hybrid
applications [11]. Section 2.1.2.9 provides more detail on integration platforms. The next generation
of integration platforms is described by Gartner as the Hybrid Integration Platform (HIP) 2 yet, the
concept of HIP has only been described broadly in literature by Palanimalai [69]. A HIP extends
upon the principles of iPaaS, by providing a framework to manage integrations and applications as a
whole, including for example IoT integration, API management, governance, and lifecycle
management. Additionally, a HIP should support the integration of all kinds of data. iPaaS is

2https://www.gartner.com/smarterwithgartner/use-a-hybrid-integration-approach-to-empower-digital-transformation/

CHAPTER 2. PROBLEM INVESTIGATION 22

focused primarily on processing business events, business applications and business data [70],
however information systems integration has to reach beyond classical business enterprise
integration to support large scale enterprise information, for example, big data and IoT [68].
Research on iPaaS is, however, sparse and more recent developments have yet to be documented
in literature. An academic unified description of what a HIP entails is also missing and further
research is needed in this area.

While the technology to implement integrations is rapidly changing, the concepts of enterprise
integration remain the same over time. Hohpe and Woolf present a collection of enterprise
integration patterns that can be applied for data exchange between companies [71]. These patterns
are independent of technologies and implementations. Several strategies for integration are
identified:

• Batch data exchange: Files are moved in batches from one system to another during nighttime
when the systems are not in use. Changes are not immediately available and this approach
introduces overhead in the data exchanged.

• Shared database: By using a shared database in which multiple applications store data, all
applications have to support the same data model, which is often not possible.

• Raw data exchange: Two systems can directly exchange binary data over a network in real-
time. This approach, requires the recipient to be online, and developers are responsible for
supporting and decoding the incoming data.

• Remote procedure calls: These methods simplify the point-to-point data exchange by
providing a layer for sending complex data types. Examples of this are SOAP and REST.

• Messaging events: Messaging decouples the sender from the receiver using a
publish/subscribe-like mechanism to asynchronously transfer and transform data records.
Messaging between applications is handled by a messaging system that routes the messages
to message queues, such that messages can be exchanged even when an application is
temporarily offline. While messaging systems have limitations, especially regarding the
exchange of very large data streams, it has numerous advantages such as interoperability,
decoupling, and reliability.

Several kinds of message patterns have been identified. These patterns can be combined to create
a messaging based integration on top of a message system. An exhaustive overview of all patterns
can be found in [71]. The patterns are categorised as follows:

• Endpoint patterns: These patterns describe how an application connect to a messaging
system. Examples are event-based endpoints that push messages, or messaging gateways
that translate internal events of an application to messages. Endpoint are usually represented
as connectors, and integration platforms often offer built-in connectors from/to specific
protocols and technologies [68]. Kritikos et al. state that for example at least SOAP, REST and
the Java Message Service (JMS) should be supported [72].

• Construction patterns: These patterns describe how messages are constructed. For
example, a message may be in a request-response pattern, or as an asynchronous event
pattern. Message patterns also describe the data itself, it may contain binary data, it may
contain structured documents, or message may even be chucked. Also, metadata such as the
return address and the expiration date are described.

CHAPTER 2. PROBLEM INVESTIGATION 23

• Channel patterns: Messages are transmitted through message channels. These channels
(or pipes) connect senders to receivers. Channels can be point-to-point, ensuring that only a
single receiver receives the message, or for example, publish-subscribe based, which ensures
that all subscribers will receive the message. Channels can also be classified based on data
types, validity (collecting invalid/dead messages) and delivery guarantees.

• Routing patterns: These patterns describe the logic based on which messages are routed
towards target endpoints or channels. A message router consumes messages from one
channel and appends them to certain other channels based on certain conditions. Other
routing patterns include filters, that only pass through certain messages, and splitters and
aggregators that can split up and combine messages.

• Transformation patterns: These patterns allow for the transformation of messages to different
data formats. For example, the message translator can map messages from one format to
another. The Canonical Data Model (CDM) pattern can be used with the translator pattern,
to translate all incoming messages into a common data format, and then from the common
data format to the target data format. In complex integrations, the CDM pattern can avoid an
exponential increase in the amount of translators needed.

2.1.2.9 Integration Platforms

Serrano et al. describe an iPaas as "a suite of cloud services that enable users to create, manage
and govern integration flows connecting a wide range of applications or data sources without
installing or managing any hardware or middleware" [67]. Integration platforms allow users to create
these integration flows by providing a managed implementation of the enterprise integration
patterns previously discussed. Using these patterns (typically message-based), as well as through
pre-built connectors for common data models and sources, the user can specify the integration logic
that defines which data is exchanged with which applications and how. The integration platform will
provide a user interface that allows users to set up this functionality. Additionally, the integration
platform will allow the users to execute and deploy and manage the integrations.

Ebert et al. distinguish two kinds of iPaaS, basic platforms like Zapier and IFTTT that allow for
simple connections between built-in connectors, and iPaaS for large enterprises [10]. Integration
platforms for large enterprises allow for more complex integration use cases, including full support
for the enterprise integration patterns and on-premise application support. According to Ebert et al.,
functions of an enterprise iPaaS include:

• Process modelling functionalities to design complex data flows with logic, branches and
transformations.

• Multiple messaging mechanisms such as message queues, synchronous and asynchronous
messaging support and event/batch-based integrations.

• Both pre-built connectors as well as custom connectors, supporting a wide variety of inputs
from file-based to ESB.

Enterprise integration platforms consist of a development platform where integrations are designed,
and a runtime where integrations are executed. Both the runtime and the development platform can
have different deployment patterns. Some vendors may host both the runtime and the development
platform in the cloud, possibly supported by locally deployed connectors, others may choose to only
host the development or the runtime in the cloud and deploy the other component locally [10]. The

https://zapier.com/home
https://zapier.com/home

CHAPTER 2. PROBLEM INVESTIGATION 24

advantage of cloud-based deployments includes scalability, and maintainability, as the integration
platform vendor will take responsibility for managing the infrastructure, updates and other
maintenance.

Kleeberg et al. provide a high-level overview of iPaaS systems distinguishing several features [68]:

• Fundamental integration features: Consist of core integration features, that provide the
infrastructure such as the mappings, connectors, and routing, and additional features related
to the development, operation and governance of the integrations.

• Cloud enabling features: Support the virtualisation and execution of the fundamental
integration features as cloud services

• Service federation features: An iPaaS by itself cannot, and for complexity reasons should not,
provide all possible functionalities. Service federation reflects the ability of iPaaS to integrate
additional models possibly from other integration providers, to provide additional functionality
such as analytics and IoT.

While each integration platform will provide different functionalities, integration platforms will
generally share certain core components. Singh et al. conducted a literature review over several
integration platforms, and provides an overview of common components [73]. The integration
platforms surveyed by Singh are domain-specific, not SaaS-based, and developed on a case by
case scenario. Therefore, not all components identified by Singh are relevant for iPaaS. First, is the
data layer. This layer covers the enterprise integration patterns, such as the connectors,
transformers, filters and event busses that can be used in an integration. Next, Singh identifies the
application layer which includes, for example, the workflows that define the event processing logic.
Finally, a service or interface layer is identified, which exposes the functionalities of the integration
platform to users and external applications. The platform management tool provides an
administrator interface, while the dashboard provides the user interface in which the user can
manage and model integrations [68]. Third, this layer provides web services, such as APIs that
external applications can access.

The architectures described by Singh are typically powered by message based brokers such as
ActiveMQ and RabbitMQ. However, event based architectures are increasingly moving from
message based systems towards event streaming, powered by distributed event streaming solutions
such as Apache Kafka [74]. Messaging and streaming both share the same fundamental concept,
sending messages from publishers to subscribers, however they are fundamentally different in their
implementation and properties. Messaging follows a smart-broker/dumb-consumer principle,
pushing messages from the queues to subscribers and removing messages from the queue as
subscribers acknowledge receiving it. Streaming follows the dumb-broker/smart-consumer principle,
the broker stores an immutable log of messages that consumers can read. Stream-based brokers
support message storage, replaying messages and high-throughput while event-based brokers
provide better support for advanced message routing and different patterns such as
request-reply [75]. While scaling is also supported with messaging brokers, Bakulev argue that the
use of a streaming broker results in easier scaling and simplified processing typologies [74].
Message and streams are processed respectively by event processors and stream processors. The
scalability and persistency makes stream processing more suitable for high-volume and statefull
processing of data events, while event processing is more suitable for transforming and routing of
self-contained business events. Therefore, an integration platform should ideally support a

CHAPTER 2. PROBLEM INVESTIGATION 25

combination of both processors [75] such that either one can be used depending on the use case
and requirements of the integration. While Bakulev et al. recommend the support of event stream
processing, they only provide a conceptualisation and no guidelines or architecture on how this can
be implemented in practice. Hence this paradigm needs further research in the context of
integration platforms.

Singh et al. only covers integration platforms, and not integration platforms as a service. For a
perspective on how integration platforms can be offered as a service, one can consider the work of
Kritikos et al. They describe high-level architectural components for multi-cloud application
management platforms, which can manage the deployments of applications over multiple clouds.
Such platforms have a high similarity to integration platforms [76], as integrations could be
conceptualised as applications to be deployed and managed on the hybrid cloud. The components
identified by Kritikos are discussed below and related to iPaaS.

• Executionware, or a runtime: The runtime abstracts the integrations from the specific
infrastructure its deployed on. This runtime can be installed on-premise or in the cloud, and on
the core integration features as proposed by Kleeberg can be executed on this runtime.

• Model repository: This repository contains models of the integrations. This could be
considered an abstraction of the database identified by Singh. Runtimes can connect with this
repository to obtain the integration models.

• Upperware: The responsibility of the upperware is threefold: First, to produce a deployment
plan for the integrations. Second, to orchestrate the execution of the integration at run-time.
Third to update the deployment plan when needed, for instance when more resources are
required.

• Monitoring plane: This component allows users to manage deployed integrations and see
application measurements and logs.

• Control plane: This component coordinates the execution of different platform components
and the different models deployed on the run-times, to support the configuration of integrations.

Overall, this section has provided an overview of integration platform architectures, the available
literature on this topic is, however, scarce. Future research is needed to provide a more exhaustive
architecture of iPaaS. A lack of cross-referencing and literature on iPaaS architecture hinders
research in the field of iPaaS. Without a common ground to rely on divergence in the respective
field, in this instance iPaaS, is likely [73].

2.2 Interviews

2.2.1 Methodology

Three one-hour interviews were held with stakeholders from three companies using IoT, to identify
use cases and challenges with integrating and managing IoT. The first company is one of the top 3
largest infrastructure construction companies in the Netherlands (by revenue) which is managing
over 10 IoT projects. The second company is affiliated to the first company, and one of the largest
real estate construction companies in the Netherlands, with many running IoT projects, of which 3
major projects covered by the interview. The third company is an IT consultancy firm, primarily
active in the transport industry, but also in asset management and other sectors. The consultancy

CHAPTER 2. PROBLEM INVESTIGATION 26

firm recently took on several projects for IoT integration to be built using an integration platform, two
of these projects are covered by the interview. For the sake of anonymity, the first company will be
referred to as InfraCorp, the second company as EstateCorp and the third company as Consultancy
Firm. With InfraCorp, the interview was held with the enterprise architect and a data scientist
overseeing the IoT projects, with EstateCorp the interview was held with the enterprise architect and
the integration architect. With the Consultancy Firm, the interview was held with the consultant
responsible for the design of the two major IoT integration projects.

The interviews were conducted per the protocol in Appendix A.1. The interview is semi-structured,
allowing diversion from these questions based on the course of the interview to accommodate the
exploratory nature of these interviews.

2.2.2 Results

This section overviews the IoT challenges faced by each of the companies. A detailed description of
the projects, and the challenges, for each of the companies can be found in Appendix A.

2.2.2.1 InfraCorp

With InfraCorp, IoT is used for a large variety of projects. The projects at InfraCorp are very similar
in nature, and follow the following pattern: First data is collected, which is then processed and used
to power an application that provides decision support or predictive maintenance.

Overall, InfraCorp identified the following challenges in working with IoT:

• Connectivity: Getting access to the data, and collecting the data in a central place is a
challenge. When the data is retrieved from an external vendor, connectors need to be written
for the specific infrastructure by which the data is delivered. In case data is collected with
sensors owned by InfraCorp, this brings challenges related to the protocols to be used as well.

• Data heterogeneity: Each vendor, and each sensor has its own data format. Understanding
the data format, and translating from each data format was found to be a major and time-
intensive task.

• Quality of the data: Data can be missing, may contain error codes, or may otherwise be
invalid. This has to be identified and accounted for. It was found to be a challenge to address
these issues and ensure data quality for end-users.

• Lack of standardisation in processing: Currently for each IoT application, purpose-built
scripts are used, leading to a large diversity in the scripts and approaches that are used.
InfraCorp identified this variety in scripts as one of the most significant challenges and
stressed that standardisation would be the best approach. However, they were not able to find
any tools or methodologies to support such a standardised approach.

2.2.2.2 EstateCorp

The real-estate construction company also has a wide range of IoT projects, of which three were
highlighted during the interview. Across these three projects and throughout the organisation
EstateCorp identifies the following challenges:

CHAPTER 2. PROBLEM INVESTIGATION 27

• Finding a business case: EstateCorp claims that while there are many possibilities to apply
IoT, finding a business case to fund a project is oftentimes more difficult than actually
implementing the application. Partially, this is because high upfront investment costs.

• Investigation and interpretation: Every IoT device and API works differently, finding out how
APIs work, for example to find out all the possible outputs from an API and how to interpret
these, forms a major challenge. This does not only hold for new applications, but also for
adding new sensors and data sources to existing applications. As a result, the addition of a
new data source, such as the addition of a new new building to a building management system,
is a project by itself, as each building will use different sensors and different software for which
the IoT infrastructure must be adapted.

• Management and Responsibilities: The landscape of IoT integrations is complex. The
physical sensors and their configuration, the IoT hub, data mining tools (like SkySpark), the
digital data hub and the final applications all have a role in the IoT infrastructure. Since there is
no central place to manage the infrastructure, and since there is no clear assignment of who’s
responsible for which components, this can lead to complications when problems occur.
Sometimes, integrations break, sensors need to be replaced and/or configurations need to be
updated, and the detection and management of these issues forms a challenge.

• Reliability: Reliability of the sensors is lower than expected. 50% of all sensors have an issue
at least once a week, resulting in temporary loss of data. Reasons for this are unknown and
may be related to the sensor or the connectivity of the sensor.

• Integration with infrastructure: Integration of IoT with the current IT infrastructure posed a
challenge. Data warehouses and data processing was not suitable for data processing of IoT.
There are many solutions offered by Azure, such as Cosmos, Data warehouses, etc, which
all have their benefits and disadvantages. Selecting the appropriate technology for this while
keeping cost and compatibility in mind poses a challenge.

In addition to the above list of company wide IoT challenges, project-specific challenges related to
vendor lock-in, metadata and context are faced as well. Vendor lock-in is the result of hard-coding
integrations to specific APIs, sensors and data vendors. In some instances, application code is built
directly upon the vendor’s specific data formats. This makes swapping and adding vendors a complex
and expensive undertaking. Metadata, especially relations and hierarchies between devices and
what they measure are complex to store, manage and integrate. And finally, contextual information
about sensor data, such as the specifications, details and implicit knowledge about the data points is
often lost since it is not stored and captured explicitly.

2.2.2.3 Consultancy Firm

Finally, the consultancy firm highlights two IoT integrations built on a messaging-based integration
platform. Overall, the following challenges could be identified based on the interview:

• Data transportation: Currently, all integrations designed on the integration platform are
message-based. While messaging provides many advantages (Section 2.1.2.9) it is
sub-optimal for big data streaming, especially when all data has to be sent through a central
component such as a message bus. Alternatives approaches, such as decentralised event
streaming, are needed to provide efficient high-throughput data transportation for IoT.

CHAPTER 2. PROBLEM INVESTIGATION 28

• Transformations: Integration platforms provide excellent tooling for filtering and transforming
messages using the enterprise integration patterns. Be that as it may, these tools are very
inefficient for processing streaming IoT data. Some operations crucial for processing IoT data,
like data aggregations, are not available at all on messaging-based platforms, and other
operations, like enrichment, are complex to design. Therefore, the ability to preprocess IoT
data is limited, or even impossible on the integration platform.

• Monitoring and governance: The integration platform is currently centred on transporting
messages over a central message bus, where all monitoring and governance functionalities
reside. This makes governing and managing the IoT data integrations complex when
messages are not sent over a central component, if not impossible. Additionally, error handling
functionalities are lost as well. Potentially, these issues could be overcome as the integration
platform adopts event streaming or other functionalities that allow for decentralised
governance.

2.3 Summary

Both a literature review, and three extensive interviews were conducted to provide background to
this research, and to identify challenges with IoT integration that this research can address.

An IoT integration can be conceptualised as a series of data processing operations that process
data from a set of data sources, and deliver output to a set of destinations. The integration will
satisfy certain requirements, for instance related to what inputs it should support, what outputs it
should produce, where it should run, and what the throughput should be. Several stakeholders with
different roles are involved in the integration, such as integration developers, architects and the
support team to maintain the integration. The integration may be running continuously, or it may be
started based on a trigger, such as when data is pushed from a data-source. Each operation in an
IoT integration is linked to another operation that it either uses data from or sends data to. There are
several different operations and, based on the literature review, the following high-level operations
have been defined:

• Trigger: This operation starts the integration, and may for example be a data push or a
continuous process that keeps the integration alive.

• Data pulling: This operation is responsible for retrieving data from a data source. Data sources
can be anything from which data is retrieved.

• Data send: This operation is responsible for sending data to the target that will consume it.
Data targets can include for example applications, databases or other integrations.

• Data transformation: This includes any operation that changes the data itself. For instance,
a translation from one data format to another, enrichment of data, filtering data, or aggregating
data.

• Data routing: This describes how data can get from one operation to another, and which data
should be sent to which operations. Depending on the implementation this can implemented
using local variables that are passed from one method to another, or using more complex
techniques such as streaming databases.

CHAPTER 2. PROBLEM INVESTIGATION 29

Finished integrations can be deployed to the execution environment (IoT processing infrastructure).
Each integration may be deployed to a different environment, and a single integration can be
deployed to different environments as well for scalability. Figure 2.4 provides a visualisation of how
IoT integrations can be conceptualised.

An IoT integration is concerned with data transportation and transformation tasks. From a
data-mining perspective, this means that data preparation and pre-processing tasks, such as
cleaning, enrichment, generalisation and reduction are covered by the integration. However the data
modelling and complex event processing tasks, such as data mining and analytics are not part of
the integration, but could rather be conceptualised as applications of IoT.

Figure 2.4: IoT Integration Model

This process of specifying, developing, running and managing the IoT integrations is complex. In
the survey and the literature review, several challenges related to IoT integration have been
identified. Table 2.2 below overviews these challenges and maps them to the relevant interviews
and review results. All but two challenges could be mapped to both literature and interviews, which
suggests that both the interview and the literature review were comprehensive.

CHAPTER 2. PROBLEM INVESTIGATION 30

Challenge Literature Interview

Challenge 1: Semantics
IoT sensor data is highly contextual. Hence, before the data can be
integrated, the semantics (meaning) of the data must be
understood. Oftentimes, semantics are not explicitly specified and
are only implicitly known among the group of users responsible for
collecting it. This results in a steep learning curve before IoT data
can be used for integration.

2.1.2.6,
2.1.2.2

2.2.2.1,
2.2.2.2

Challenge 2: Heterogeneity
Each data source uses different data formats, data structures,
syntax and protocols. Supporting each of these data sources, and
overcoming the gap between the source data formats and the target
data format is a time intensive and complex process.

2.1.2.7,
2.1.2.4,
2.1.2.5

2.2.2.1,
2.2.2.2,
2.2.2.3

Challenge 3: Finding a business case
IoT has countless applications and use cases, however, monetizing
IoT them and finding a business case can be a challenge. While
this challenge is not immediately an integration challenge, the
higher integration costs supported by the other challenges do affect
the business case.

2.1.2.2 2.2.2.2

Challenge 4: Developing IoT infrastructure
IoT Infrastructures are different from traditional IT infrastructures.
Hence, developing IoT infrastructures, and consolidating both
infrastructures is a complex task with many unknowns, for which
expertise is required.

2.1.2.3 2.2.2.1

Challenge 5: Preprocessing
Extracting relevant and workable data from raw sensor data is
fundamental to use IoT. Literature shows that closing this
’abstraction gap’ between primitive data and more use-full data is a
complex task that oftentimes requires coding experts to develop
custom data processing applications. Preprocessing can be any
process that happens before the actual processing of data can
happen. For instance, the collection of data, but especially process
that increase the informative value of an event, such as enrichment
or aggregation. Therefore, preprocessing also covers Challenge 6
and 2, which also contribute to the informative value of an event, by
respectively addressing the quality and heterogeneity aspects.

2.1.2.7
2.2.2.1,
2.2.2.3

Challenge 6: Quality & Reliability
Individual IoT sensors are prone to errors, they can for example
lose connectivity or power. And even when sensors are working as
expected, they only provide a snapshot of the reality, which is not
always representative. Dealing with such invalid or missing data is a
significant challenge.

2.2.2.1,
2.2.2.2

Challenge 7: Dispersed IoT integrations
There is a lack of generic platforms and methodologies to design,
develop and implement IoT integrations. Instead, IoT integrations
require a large variety of different approaches and custom
developed problem-specific solutions, resulting in low re-usability
and large overhead.

2.1.2.7 2.2.2.1

CHAPTER 2. PROBLEM INVESTIGATION 31

Challenge 8: Central management and governance
There is a lack of a centralised approach to manage and govern
deployed IoT integrations. Due to the dispersed nature of IoT
integrations, log data and error management are dispersed as well.
This is problematic, as when applications break, this is hard to
detect and debug as each involved integration has to be reviewed.
Additionally, since there is no central overview of the IoT
infrastructure and the associated responsibilities, changes remain
undetected and common understanding about the infrastructure
and the responsibilities breaks down.

2.1.2.7 2.2.2.2

Challenge 9: IoT stream processing support for integration
platforms
Current integration platforms, as documented in literature, are
unsuitable for building and managing IoT integrations. These
messaging-based platforms, do not provide provide support for
statefull, high-throughput, low-latency event stream processing,
which is required for working with IoT data. For instance, common
tasks used in IoT data preparation like enrichment, storage, and
aggregation over a window of time are not, or poorly, supported.
Efficiently supporting such operations is vital to develop
cost-effective IoT integrations. Yet, current literature does not
describe designs for stream-processing based integration platforms,
creating a challenge for anyone seeking implement or use such a
platform.

2.1.2.9 2.2.2.3

Table 2.2: Challenges

While each challenge is self-contained, weak relations between challenges can be identified. For instance, the
challenge that integration platforms do not provide proper support for building IoT integrations contributes to
the challenge that IoT integration for pre-processing have to be custom developed using scripts. Figure 2.5
visualises the relations among challenges. All challenges contribute to the challenge that business cases for IoT
are hard to make, as all challenges increase integration costs, hence affecting the business case.

Figure 2.5: Mapping of challenges

CHAPTER 2. PROBLEM INVESTIGATION 32

The mapping suggests that Challenge 9, the lack of IoT support on integration platforms, is a key challenge.
However, since the relations are weak, resolving the challenges higher in the hierarchy does not guarantee the
resolution of all challenges lower in the hierarchy. Therefore, when addressing a challenge, it is important to
ensure that the sub-challenges are addressed as well. For instance when addressing the challenge of IoT
support for integration platforms, one should ensure IoT integrations are centralised, that one can abstract
away from infrastructure, and that there should be a workflow for developing IoT processing integrations.

The literature review shows that there is not yet a holistic approach for addressing the aforementioned
challenges. That is, literature does not provide an approach to overcome the challenges involved transporting
and transforming data from IoT data sources to IoT applications. In practice, this gap in knowledge means that
users that want to build applications on IoT, need to build point-to-point integrations with the IoT platforms from
the ground up. This includes addressing complex tasks like developing infrastructure, data transformations, and
management and transportation. This makes the development of IoT integrations a tedious and repetitive task,
and the resulting integrations are hard to maintain. The impact of this on developers and business is
tremendous, as it sets a high threshold for business to integrate IoT in their applications. Additionally, the
vendor lock-in caused by the point-to-point integrations prevents businesses to horizontally scale out IoT
applications on different IoT infrastructures.

2.4 Goal

The objective of this thesis is to improve IoT integration by addressing the aforementioned IoT integration
challenges. As suggested by the challenge mapping, addressing Challenge 9 could be the first step towards
addressing all challenges. The development of an integration platform for IoT integrations would satisfy the
need for a reusable and flexible way to develop IoT integrations, as identified in Section 2.1.2.7. Furthermore,
integration platforms have successfully addressed integration challenges in other domains than IoT. For
instance in enterprise integration, where messaging integrations and event processors are used to integrate
enterprise systems (Section 2.1.2.8). The hypothesis is that an integration platform for IoT could address the
integration challenges and could therefore increase the efficiency of IoT integration development to reduce
integration costs. However, to the best of our knowledge, no research into the design of an integration platform
for IoT has been conducted.

Based on the hypothesis, it is possible to formulate a more concrete objective: to provide a novel approach for
designing a model-driven IoT stream processing platform. The objective contains three definitions:

• The qualifier ’model-driven’ represents use of modelling in integration platforms to define processes and
data-flows rather than programming. In fact, as also described in Section 2.1.2.9, a key attribute of
integration platforms is to to allow users to develop, deploy, and manage integrations through an easy to
use graphical interface to reduce complexity.

• The term ’platform’ reflects that it is a centralised multi-tenant environment that provides services for all
phases in the integration life-cycle.

• The term ’stream processing’ follows from Section 2.1.2.9, since this is the integration pattern that is most
suitable for processing IoT.

This objective forms the foundation for the research goals formulated in Section 1.3. Based on the goal and
problem statement, the next chapter identifies the requirements for the design.

Chapter 3

Requirements

To answer research question 2 this chapter discusses the requirements for the design. To establish the
requirements, first the stakeholders are identified. This is, because stakeholders play a central role in setting
requirements and constraints for the platform. According to Wieringa, stakeholders are those who are effected
by treating the problem, and hence they form the source of the goals and constraints of the project [12]. Next,
the stakeholder goals are identified and related to the challenges from Chapter 2. These stakeholder goals
form the source of the requirements for the design [12].

3.1 Stakeholders

As with any platform based solution there are two key parties involved, the platform consumer and the platform
provider. The consumers are the integration platform clients and the provider is the integration platform vendor.
It can be that the consumer and the provider are within the same organisation, this would for instance be the
case for an internal integration platform. However typically the provider is an external organisation that provides
the platform to different clients. Both parties have stakeholders with goals for the project, which must be
identified. Alexander et al. provide a taxonomy for identifying possible stakeholders in system development
based on an onion model with several slots that can be occupied by stakeholders [77]. Depending on the
system to be implemented, only a subset of the slots is relevant.

The platform client full-fills several key slots. First. the platform clients form the normal operators, or end users,
of the platform. Several different normal operators can be identified:

• The architects, that define the requirements for integrations and that design the architecture for the
integrations.

• The developers, that actually implement the integrations as per the requirements. These developers are
often not programmers, but rather integration domain experts or consultants. Oftentimes, the architect
and the developer are the same person, however, this may vary per platform client.

• The support team, that will maintain and manage existing integrations.

Especially in smaller organisations, the two or more of the last three stakeholder roles may be full-filled by a
single end user.

The platform client also has stakeholders that full-fill the slot of functional beneficiary. These beneficiaries do
not directly use the platform, but they may for example benefit from the IoT integrations by using applications
powered by the integration platform. For instance, a building manager that has access to a dashboard where
he can see the temperature of all rooms in a building. The management of the platform client full-fills the slot of
purchaser, as this management is in charge of whether the platform should be adopted by the organisation or
not. However, during development, when there are no definitive purchasers, the vendor’s product manager
should assume this role on behalf of potential purchasers [12].

33

CHAPTER 3. REQUIREMENTS 34

The vendor also fills several slots. First, the slots of maintenance operators and developers, which are
occupied by the platform vendor development team. Next the operational support slot, which is full-filled by the
platform vendor’s support team. The slot of interfacing system is also relevant, as the proposed stream
processing integration platform should be capable of being integrated into the architecture of an existing
integration platforms. This allows vendors to provide a unified integration service across integration patterns.
The management of the vendor full-fills the role of project sponsor, as they initiate the project provide funding
for the development.

In addition to the vendor and the clients of the vendor, external stakeholders can be identified. The slot of threat
agents may be formed by hackers, that could want to breach the system. Negative stakeholders include
competitors, or vendors of substituting products. The slot of regulator is assumed by the government, which
poses regulations on data privacy and security.

Table 3.1 overviews all stakeholder slots and the stakeholders full-filling these slots. Additionally, this table
shows how close the given slot is to center of the onion model, as discussed by Alexander et al. [77], with high
involvement representing the most inner circle and low involvement representing the outer circle.

Slot Stakeholder(s) Involvement

Normal Operator
Client’s integration architects,
Client’s integration developers,
Client’s support team

High

Operational Support Vendor’s support team High
Maintenance Operator Vendor’s development team High
Functional Beneficiary Client’s IoT application users Medium
Purchaser Client’s management Medium

Interfacing System
Vendor’s enterprise integration
platform

Medium

Developer Vendor’s development team Low
Sponsor Vendor’s management Low
Threat Agent Hackers Low
Negative Stakeholders Competitors, Substitutes Low
Regulator Government Low

Table 3.1: Stakeholder

3.2 Goals

The aim of this design research is to improve the problem context, by achieving stakeholder goals. In general,
the goals of the platform vendor and the platform users are aligned, as it is the goal of the vendor to increase
the use of the platform by satisfying the goals of the user. Both parties want to maximise their profits, the user
does this by lowering integration costs through the use of the platform, the vendor does this by trying to attract
users to their platform, at the lowest possible cost.

The stakeholder goals for all stakeholders with medium to high involvement in the project have been listed in
Table 3.2, since these are most relevant for the high-level design. As becomes apparent from Table 3.2, the IoT
integration developers have to face the most challenges to reach their goals. Next are the IoT integration
architects. And finally, the other stakeholders.

CHAPTER 3. REQUIREMENTS 35

Goal Stakeholder Challenge(s)

1
To reduce IoT integration costs through
accelerating development and increasing
governance

Client’s management 3

2
To elicit requirements for, and design
architecture of, IoT integrations

Client’s architect 1, 7

3
To design an IoT infrastructure (for
integrations to be deployed on)

Client’s architect 4, 7

4
To efficiently and easily model, test and
implement IoT integrations as per the
requirements

Client’s developers 2, 5, 6, 7, 9

5
To use reliable, high quality, applications to
support their work

Client’s IoT application
users

6

6
To efficiently manage all deployed IoT
integrations from a single location

Client’s support 8

7
To provide users with an integrated and
coherent integration platform

Vendor’s enterprise
integration platform

9

8
To resolve, and reduce the number of,
operational incidents

Vendor’s support team 9

9
To develop the integration platform to deliver
the most value to its users

Vendor’s development
team

9

Table 3.2: Stakeholder goals

3.3 Requirements

This section describes the artifact requirements. To justify these requirements, they are supported by
contribution arguments as described by Wieringa et al. [12]. These arguments are predictions about how
artifacts that satisfy the requirements contribute to reaching stakeholder goals.

Requirements are classified as either functional or non-functional. If possible, requirements are operationalized
by defining measurable indicators and a norm value for these indicators. For instance, in the requirement "the
platform should be able to allow users to model data transformation X", the variable to be measured is the
presence of transformation X, which can either be present, or not. In some instances however, it may not be
possible to operationalize requirements.

Only those arguments relevant for a high-level design are identified. A range of other (non-)functional
requirements could be defined, for instance requirements for security, reliability, and usability. However, these
requirements will have limited impact on the design of the architecture as they are implementation specific.

The requirements have been validated with two experts within the problem context. In particular with a data
scientist from InfraCorp, and with the product manager from the vendor from the case, who assumes the role of
purchaser to represent the clients desires during development.

3.3.1 Functional requirements

R1 - The platform should support modelling to allow users to develop IoT stream processing
integrations
This requirement is expected to contribute to goal 4. By developing integrations using model driven

CHAPTER 3. REQUIREMENTS 36

engineering, rather than code, it is possible to lower the barrier for application development, allowing
applications to be developed even by non-programmers [78], [79]. Additionally, it is expected that integrations
become more understandable, and faster to develop by providing repetitive and complex operations as
ready-to-use model elements [79], [80]. Integrations are modelled using operations, which represent the model
elements. All operations described in Appendix B should be available as model elements.

R2 - The platform should allow the user to manage IoT integrations
This requirement is expected to contribute to goal 6 and 4. The management features for IoT integrations
should match the management features currently provided by integration platforms (Section: 2.1.2.9):

• The user should be able to deploy integrations to the runtime environment

• The user should be able to scale integrations over runtimes.

• The user should be able to manage the versions of integrations.

• The user should be able to collect metrics about the integration, such as metrics about the data volume
running through operations in the integration.

• The user should be able to collect log data from the operations in the integration.

• The user should be able to view errors in the integration.

In addition to the management functions above, that also apply to messaging, a new management function
specific to IoT processing should be introduced for managing the retention policy for the data and metadata
stored by the platform.

R3 - The platform should support stream processing, that is, the processing of high-volume,
distributed, persistent, real-time data
This requirement is expected to contribute to Goals 7 and 9. As described in 2.1.2.9 an IoT integration platform
should support event stream processing functionality to meet the requirements for use cases with
high-throughput, statefull, processing, such as IoT. Other not streaming based processing patterns, such as
messaging, offer lower processing throughput and do not support statefull processing. The interview with the
consultancy firm confirmed the previous, stressing the limitations of messaging when processing IoT data and
the need for change. To obtain the aforementioned benefits of stream processing, the platform should natively
support stream processors. That is, it should not only convert the streams to messages for processing and vice
versa, but it should be process the data stream directly from the streaming broker to allow for the real-time,
scaleable, statefull, continuous processing of data.

R4 - The stream processing functionality should be embeddable on a runtime
This requirement is expected to contribute to Goals 7 and 9. Embeddability reflects the ability of the stream
processing integrations to run anywhere in a dedicated, standalone, single-tenant, fashion. This is a key
requirement for integration platforms, which gives the user full control as to where the integration should be
deployed. This allows satisfying integration requirements regarding to data localization and throughput, as
integrations can be deployed on the same location as the data to reduce data transfer.

The embeddability requirement is in strong contrast to common architectures of multi-tenant stream processing
solutions, like Spark and Flink, that provide a single execution environment where all users can execute their
processing applications. These solutions then oversee the complete application lifecycle, and create and
manage the processes needed to execute the application. These solutions reduce the burden on the developer
to manage applications at the cost of flexibility. However, flexibility and control are crucial for integration
platforms to meet user requirements, for example to allow users to define deployment locations or to control
scaling. Additionally, embedded stream processing solutions contribute to simplicity in the architecture, and
benefits from the advantages of single-tenancy such as increased security and reliability. Aside from
management, embedded and non-embedded stream processing solutions deliver similar performance which is
discussed in more detail in Section 4.2.1.1.

CHAPTER 3. REQUIREMENTS 37

R5 - The frontend should be accessible using a browser
This requirement is expected to contribute to Goal 7 since as it allows users to develop and manage
integrations at any time, on any device, using a web-based interface. A native frontend introduce overhead (of
installing, updating, running software) and impose restrictions on the devices that the platform can be used on.

R6 - The platform should be able to convert integration models to executable integrations
This requirement is expected to contribute to Goal 4 as the developed integration models should be executable.
Therefore, all model elements should be convertible to executable instructions. These executable instructions
(code) should be packaged in executables together with the runtime parameters, such that they can be
deployed to a (remote) runtime environment without further configuration.

R7 - The platform should provide a runtime environment that can execute integrations
This requirement is expected to contribute to Goals 4 and 3. The runtime is twofold:

• The runtime environment should provide the software stack that integrations need to be executed, for
instance, a dependency manager and a Java runtime. The runtime environment should be agnostic of
the integrations executed on it, that is, all integrations should be able to run on all runtime environments
deployed at any location in the infrastructure. This reduces development efforts, as integration architects
re-use runtime environments for deployment.

• The software runtime environment is hosted on the computational infrastructure. The platform should
allow the user to instantiate the necessary infrastructure as needed. For instance, by requesting the
needed infrastructures (such as the cloud for hosting the runtime, and the event streaming broker) and
cloud infrastructure from an infrastructure as a service provider and installing the runtime environment
on it. By allowing the creation and management of the infrastructure through the platform, users can
quickly deploy integrations, without first needing to design, create and prepare the required infrastructure
manually.

As the software of the runtime environment is separate from the infrastructure, users do not need to use the
managed infrastructure provided by the platform, and should also be able to bring their own infrastructure and
install the runtime environment on.

R8 - The platform should support to use of schemas to manage data
This requirement is expected to contribute to Goals 4 and 5. Schemas are an important concept in integration,
as it describes how data should look, allowing modelling on a meta level rather than having to write
transformations for raw data streams. Schemas can also help to improve data quality and reduce errors, as any
data not conforming to the schema is filtered out and can be processed accordingly. All schema compliant data
can then easily be transformed, queried and filtered. The choice for Schemas for validation, rather than
ontologies is based on the conclusions from Section 2.1.2.6. At least the following schema related
functionalities should be supported:

• The user should be able to import, create and edit schemas.

• The user should be able to assign schemas to data sources

• The platform should be able to compute the new output schema of input data, when it is used in an
operation.

• The user should be able to use the input data schemas of operations to formulate schema-based queries,
filters and transformations

R9 - The platform should be able to validate integration models
This requirement is expected to contribute to Goals 4 and 9. During design-time the platform should be able to
check the validity of an integration model. A model is valid, when it fully confirms to the integration meta model.
For instance, whether all inputs and configuration options provided for an operation are valid and supported.
The validation also ensures that the type and input schema of an operation (as per R8) is supported. This
validation allows developers to quickly identify issues in their integrations without the need to completely review

CHAPTER 3. REQUIREMENTS 38

or test an integration. Additionally, validation contributes to runtime stability and reducing operational incidents
since syntactically invalid integrations cannot be deployed. This makes it less likely that edge cases cause an
incident during execution.

R10 - The platform should be user extendable
This requirement is expected to Goal 7. Some complex and specific integration use cases may not be covered
by the modelling operations in Appendix B. Therefore, the platform should allow the user to use custom
operations in integration models, for instance using custom scripts or plugins. This also contributes to Goal 6,
allowing all integrations, even custom ones, to be managed from a single platform.

3.3.2 Non-functional requirements

R11 - The platform should be extensibility
This requirement should contribute to Goal 9. The platform should be designed with extensibility in mind, such
that more integration operations can be added by the vendor’s development team as user requirements
change. One developer should be able to add an additional transformation or connector to the platform within
one two-week sprint.

R12 - The platform should be modular
This requirement should contribute to Goal 9. Modularity contributes to reducing complexity of further
development by increasing testability, extensible, reusability, stability, scalability and other benefits. A system is
modular when end-user functionalities (such as operations, or management functions) are implemented as
interchangeable components.

R13 - The platform should be scalable
This requirement should contribute to Goal 8 and Goal 5. The runtime, backend and infrastructure should be
scalable to support the concurrent development, execution and management of a large number of integrations.
Furthermore, the runtime should be horizontally scaleable, to allow the instantiation of multiple runtime
applications to increase throughput capacity linearly as needed.

Chapter 4

Review of Existing Solutions

In this section, research question 3 is addressed using a literature review to surveys existing solutions and
approaches for developing an artefact that satisfies the requirements established in Chapter 3.

4.1 Methodology

The primary purpose of this literature review is to answer Research Question 3, that seeks existing designs for
stream processing and graphical programming of stream processing integrations. This question is two-fold, as
it refers to stream processing itself as well as the visual model-based development of stream processing
integrations. These two components together can form an integrated platform that allows both the design and
execution of stream processing integrations. Therefore, to design the integrated platform, the designs of these
key components must be understood.

To this end, this review has two goals. First, to understand how embedded stream processing frameworks work
by evaluating and comparing the different available frameworks and options for stream processing. Second, to
understand how model-driven development tools for stream processing work by reviewing platforms and tools
that allow user to graphically design, or model, stream processing integrations. To understand how these
solutions work, the solutions are evaluated and compared to each other to discover the different designs,
concepts and mechanisms used in these tools, as well as their effects.

These two goals yield the following literature research questions:

• LRQ 1: What are the available methods for event stream processing?

• LRQ 2: What are existing designs for graphical model-driven development of stream processing
integrations?

The systematic literature review methodology proposed by Kitchenham et al. [15] is used to guide this literature
review. This methodology is selected since a systematic approach is the most suitable approach when surveying
existing treatments to identify all available alternatives [13], as is the case for this review.

4.1.1 Keywords

The keywords are used to search literature by metadata, specifically the title, abstract and keywords, and the
are based on a decomposition of the research question.

LRQ 1: kafka AND stream AND processing
For LRQ 1 all literature that discusses stream processing on Kafka will be considered. The choice is made to
search explicitly for solutions that support Kafka as the broker to narrow the search, as the terms ’stream’ and
’processing’ alone are not sufficiently specific. One could argue that searching for Kafka would reject stream

39

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 40

processing solutions that use other streaming message brokers, however, at the time of writing the concept of
stream processing virtually implies the use of Kafka. The current consensus is that Kafka is the standard
broker for streaming messages [81], [82], as per the definition in 3. Additionally, Yongou et al. surveyed
message brokers and found only one alternative to Kafka as a streaming broker [83], which has not even been
evaluated in the context of stream processing. Furthermore, the search is not explicitly restricted to papers that
reflect upon the embedded aspect of a stream processing solution (requirement 4) since not all papers may
discuss this particular aspect while still discussing the solution itself.

LRQ 2: (((graphical OR visual OR "model-driven") AND (stream OR "data analytics") AND (
processing OR programming) AND (flow OR query OR etl)))
For LRQ 2 the keywords are more complex to determine. Tools for visual programming of stream processing
integrations can be found under many different names, for instance under ’graphical’ and ’model based’. And
rather than ’stream processing’ one may also refer to ’big data pipelines’, ’flow-based applications’, or
’programming’ plus the name of a stream programming framework. As every possible combination of these
keywords yields a search query that is too broad, specific combinations of these keywords have been selected
as a trade-off of finding the most relevant results with the most specific query.

These keywords are used to search literature by metadata, specifically the title, abstract and keywords.

4.1.2 Inclusion and exclusion criteria

A paper is included if it is relevant for the research question at hand, that is if it matches one or more of the
following criteria:

• The paper describes a framework, or compares frameworks, for embedded stream processing compatible
with Apache Kafka.

• The paper describes a visual tool, or compares visual tools, for programming an integration.

• The paper describes a methodology for instantiating integration models into executable integrations.

Additionally, the paper should meet all of the following search criteria:

• The paper is available through the catalogue of the University of Twente or is otherwise publicly accessible.

• The paper is written in English.

• The paper is published between 2015 to 2020.

• The paper is published in the subject area of computer science or engineering

• The paper is published in a scientific journal, magazine, or conference proceedings.

However, not all results are immediately relevant. Therefore, several criteria are introduced to increase
relevance. For instance, should present domain-independent findings and should be focused on the topic at
hand. Therefore, a paper is excluded if it matches one or more of the following criteria:

• The paper only describes the application of stream processing, or the application of a visual tool, for a
specific domain (i.e. Health).

• The paper only describes stream processing in a multi-tenant setting.

• The paper only describes a visual tool for non-programming related tasks associated with integrations,
such as management, troubleshooting, etc.

• The paper only describes a stream processing platform that allows the composition of existing stream
processing applications (such as Spring Cloud Data Flow), rather than the definition of new event stream
processing applications.

• The paper is a duplicate of another paper.

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 41

4.1.3 Review protocol

First, the aforementioned keywords are entered into Scopus and the search criteria are supplied as
parameters, such as the date range. Scopus is used since it provides the largest abstract database of
(peer-reviewed) literature. According to Cavacini et al., Scopus provides the highest coverage of computer
science journal articles, while maintaining high-quality [84].

Next, all the found papers are reviewed by their title and abstract based on the in-and-exclusion criteria. All
papers that are irrelevant based on the title and/or abstract are discarded, and the remaining papers are added
to the database.

During a full-text reading, all papers in the database are read. Papers were discarded from the database if they
did not actually fulfil the inclusion criteria. Next, all references of the remaining primary studies are analysed,
first based on their title and then based on a full read, and were subsequently added to the database if they met
the criteria.

Finally, for data extraction a concept-centric approach, as proposed by Webster et al. [85], is adopted. This
approach is used to extract all concepts from the relevant papers, and map them in a matrix of the respective
literature.

Figure 4.1 provides an overview of the literature review protocol and the number of papers included/excluded in
each phase. The included papers are discussed in Section 4.2.

Figure 4.1: Literature review approach

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 42

4.2 Results

4.2.1 Kafka stream processing

There is a wide body of knowledge on stream processing frameworks. However, embedded stream processing
(in the context of Kafka) has received less attention. After excluding papers per the exclusion criteria, for
instance, papers focused solely on stream processing with clustered solutions such as Apache Spark or Flink,
15 papers remained. Through backward reference searching, 12 additional papers were added resulting in a
total of 27 papers.

17 papers provide a survey or benchmark of stream processing solutions. Of the remaining papers, 7 discuss a
single stream processing solution and 3 papers discuss a DSL or abstraction layer for stream processing. First,
each stream processing solution is described individually and next all solutions are compared.

4.2.1.1 Overview

Before discussing each individual stream processing solution. It’s important to note the difference between
Kafka, and stream processing on top of Kafka.

Kafka is an implementation of an event streaming platform, as introduced in Section 2.1.2.9. It is a distributed
platform that allows the publishing of, and subscribing to, streams of records to enable real-time stream
processing. Each record in the stream consists of a key, a value and a timestamp, and these records are
categorised into topics. These records are persisted for a fixed amount of time, regardless of whether the
message has been consumed. Only the last offset of the consumer is stored, allowing consumers to freely
consume records in any order they want. This also allows the addition and removal of consumers without
impacting other consumers. Kafka is run as a cluster that can run on one or more servers and optionally across
data-centres. For a detailed description of Kafka, please refer to Wang et al. or Shree et al. [86], [87]. While
Kafka is focused on storing and transporting records, stream processors focus on creating, consuming and
transforming records. Such processing, including consuming and producing data, always happens outside the
Kafka cluster, as seen in Figure 4.2 Instead, the processing can be done on a separate processing cluster, or
as discussed in this research, in any existing application (embedded). The tasks of connecting to the cluster
and processing the records can be supported using libraries provided by the Kafka project, such as Kafka
Streams and Kafka Connect, as well as any other Kafka compatible frameworks such as Flink, Samza and
others. The remainder of this section will focus on these frameworks.

Figure 4.2: Kafka Processing Architecture

Kafka Streams The Kafka project provides two Java APIS for stream processing on top of Kafka, the Kafka
Streams DSL and the Processor API. The processor API facilitates the connection between the source and

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 43

destination topics, and provides a low-level API with direct access to the tuples to be processed, allowing both
stateless and stateful processing. The latter is achieved by automatically creating Kafka topics that manage the
state. The Kafka Streams DSL is an abstraction on top of the Processor API which provides common high-level
data processing operations, such as flatmap, aggregate and group. Both Alaasam et al. and Fernandez-
Rodriguez et al. present a stream processing architecture based on the Kafka Streams framework [88], [89].
The Streams DSL is based on a dual streaming model of streams and tables [90]. This is because a typical
stream processing task, uses both streams and databases (tables), representing the stream of changes and
then a view of the current state respectively. Consider for example an IoT temperature sensor; one may want
to process both the stream of temperature updates, for example, to send an alert when a certain threshold
is met, and store a table with the latest known temperature for every room, such that the user can request
the current temperatures. Kafka Streams is currently managed and developed by Confluent as an Apache
project. Confluent also offers a set of Kafka-related projects outside the Kafka Project itself such as Connect, for
building producers and consumers, and ksqlDB. KsqlDB is an abstraction layer on top of Kafka Streams allowing
stream processing with SQL statements. While initially, KSQL supported embedded deployments [91] the newer
versions of KSQL (ksqlDB) are only designed to be deployed as a cluster1.

Samza Samza is a stream processing library similar to Kafka Streams and was developed at LinkedIn, which
also incubated and open-sourced Kafka. Compared to Kafka Streams, Samza is more mature and also supports
batch processing. Both Noghabi et al. and Kleppman et al. discuss the design of Samza [92], [93]. Samza, like
Kafka Streams, is tightly coupled with Kafka and both Samza and Kafka Streams can be used as lightweight
libraries embedded in microservices. However, Samza also offers support for YARN allowing optional clustered
deployments. Similar to Kafka, Samza provides two Java APIs; a low-level API with direct data access, as
well as the Samza Streams DSL that provides a set of built-in operators for common stream processing tasks.
Compared to the Kafka Streams API, the Samza Streams DSL provides still requires the definition of a dataflow
graph (topology of processors) while Kafka Streams completely abstracts away from access to the graph. The
Samza Streams DSL does conceptualise both streams and tables, and on top of the Java APIs, Samza offers
SamzaSQL for stream processing with SQL statements [94].

Esper Esper is a stream processing solution from EsperTech. The solution was developed before Kafka
was, however, it has since then evolved to support Kafka and rely on Kafka for horizontal scaling. The primary
way to process in events in Esper is using EPL, a domain-specific language extending from SQL. EPL is very
expressive, with support for many features required for complex event processing. Moreover, Java (MVEL) code
and Javascript can be used in EPL. Like Samza and Kafka Streams, Esper conceptualises both streams and
tables. İnçki et al. demonstrate how Esper can be used to create an architecture for processing streaming data
from Kafka [95].

Akka Streams The Akka Streams API is part of the Akka, which is a runtime and toolkit for the
development of concurrent applications. Akka programs are designed according to the actor model, which
involves programming message-driven microservices called ’actors’ that communicate with each other. Akka
Streams is an abstraction of Akka actors for stream processing, rather than message-based event processing.
Akka Streams provides both a high-level DSL implementing the Java Reactive Streams API, with support for
the most common stream processing operations, as well as the low-level GraphStage API. Akka does not rely
on Kafka, however, Akka provides a catalogue of adapters using the Alpakka project that allows reading from
and writing to different data sources. This way, Akka can be used to consume from, and publish to, Kafka. Lv et
al. [96] show how Akka can be used, together with Kafka to support stream processing of IoT data.

HazelCast Jet Similar to Akka, HazelCast Jet is a stream processor independent of Kafka, but able to
consume from and publish to Kafka. HazelCast Jet offers a low-level Core API, and the Pipeline API DSL on
top of the Core API. In addition to supporting embedded deployment, a client-server clustered topology is also
supported.

1https://github.com/confluentinc/ksql/issues/734 consulted 23-06-2020

https://github.com/confluentinc/ksql/issues/734

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 44

Stream Processing Framework Survey(s)

Kafka Streams [99]–[103]
Samza [104]–[113]
HazelCast Jet [101]
Spring [111]
Esper [114]
Akka Streams -
Beam -
Open-Source Clustered (either Flink or Spark) [98]–[114]
Commercial Clustered (i.e. Azure, AWS) [103], [108], [110]

Table 4.1: Surveys

Spring XD / Stream Spring Cloud Stream, formally Spring XD, provides a library for stream processing
on top of either Kafka or Kafka Streams. The latter being recommended for stream processing applications,
such that the ’stream’ and ’table’ abstractions can be used. Spring Cloud Stream has advantages compared
to Kafka Streams, as it has less boilerplate code and provides support for programming models from other
Spring projects such as Spring Integration. Spring Stream exposes whatever operations are used by the binder
in Spring, for instance with the Kafka Streams binder, it will expose Kafka Streams operations. Spring also
provides a collection of default stream applications for input, processing, and output named Cloud Stream App
Starters 2. Moreover, Spring offers Spring Cloud Data Flow to develop topologies of Spring Stream applications
and Spring App Starters.

Beam Apache Beam is a unified DSL that can execute on multiple processing platforms. From the list above,
Beam applications can run on Hazelcast Jet and Samza. Beam provides a high-level Java DSL, that supports
both bounded and unbounded collections (the equivalent of tables and streams in Kafka Streams). For input and
output, Beam provides a catalogue of adapters called Pipeline I/O to read/write from data sources and message
formats. Finally, Beam also provides another abstraction layer called BeamSQL that allows stream processing
using SQL statements in two dialects, including Calcite which also forms the foundation of SamzaSQL.

Other Two other frameworks were identified in this literature review. Meehan et al. propose S-Store for
streaming transaction-oriented processing (OLTP) on top of Kafka [97]. Balduini et al. [98] benchmark Natron,
a stream processor specifically focused on RDF web stream processing. Compared to the other frameworks,
these two frameworks remain mostly conceptual and are not offered as product-ready software. Additionally,
both frameworks are less suitable for generic stream processing tasks but instead focus on OLTP and RDF
processing. Therefore, these two frameworks will not be covered in more detail.

4.2.1.2 Survey

Table 4.1 maps each frameworks to the survey(s) it is evaluated by. The embedded stream processing
frameworks are compared based on these surveys, guided by the taxonomy for comparing stream processing
frameworks proposed by Zhao et al. [111]. Interesting to note is that on many aspects identified by Zhao; fault
tolerance, data processing and data streaming, the frameworks share many attributes:

• They executed in the JVM, and provide Java APIs for developing stream processing applications.

• They provide support for both stateless and stateful processing, for instance, processing over sliding and
tumbling windows.

• They provide exactly-once processing guarantees.

• They support parallel processing and can be scaled horizontally, by launching multiple instances.

2https://cloud.spring.io/spring-cloud-stream-app-starters/ consulted 01-06-2020

https://cloud.spring.io/spring-cloud-stream-app-starters/

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 45

Figure 4.3: Abstractions for stream processing

• They provide a high-level DSL with support for common stream processing operations, such as filtering,
mapping, and aggregating.

• They provide an API for developing custom connectors, such that developers can create interfaces with
any external data sinks or sources, regardless of the protocol or format used.

However, there are differences especially concerning data ingestion, data execution and non-functional aspects
identified by Zhao. Table 4.2 summarises these aspects in a comparison based on the following attributes:

• Dual Streaming Model: Whether or not the dual streaming model of streams and tables is supported [90].

• Batch: Whether or not processing data in batches is supported in addition to stream processing.

• Native Clustering: While all data processing frameworks can be scaled up manually, some frameworks
support clustering natively, such that jobs can be allocated automatically to available workers.

• Connectors: This value represents the number of built-in connectors that are available to connect to a
data source, examples are MQTT, JMS and Twitter.

• APIs: The APIs for programming on several levels of abstraction, this is visualised in Figure 4.3. Carbone
et al. identify three levels of abstractions for stream processing [115]:

– Dataflow: The presence of a low-level API for direct interaction with records and control over the
data flow graph.

– Functional: The presence of a high-level API that provides operations for transformations on data
streams.

– Declarative: The presence of a SQL-like language for defining integration models.

• DSL Expressiveness: Overall expressiveness of functional and declarative APIs. That is, to what degree
the API supports complex event processing operations. As per [116].

• DSL Simplicity: Overall simplicity of declarative APIs, as per [116].

• Overall ease of use: The overall judgement about the complexity of the system, specifically how easy it
is to deploy the system, develop applications and to troubleshoot. Ease of use is subjective to the specific
requirements, therefore the table maps to the surveys for further consultation about the context of the
judgements.

In addition to the differences covered by Table 4.2, stream processing platforms also have different underlying
data transportation and serialisation mechanisms. First a common communication protocol is needed to
process data. Kafka Streams, Samza and Spring Stream Kafka use Kafka as underlying communication layer,
the remaining solutions use a proprietary communication layer. In addition, to provide users with higher level
APIs, data must conform to a certain data structure such that the processor can interpret the data to invoke

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 46

Kafka Streams Samza
HazelCast
Jet

Esper
Akka
Streams

Beam
Spring Stream
Kafka

Dual Streaming Model Yes Yes No Yes No Yes Yes
Batch No Yes Yes Yes Yes Yes Yes
Native Clustering No Yes Yes Yes Enterprise N/A N/A
Connectors 50+ 5+ 20+ 5+ 50+ 50+ 50+

Dataflow API Processor API Task API Core API - GraphStage
API

- Kafka Binder

Functional API
Kafka Streams
API

Streams
API

Pipeline
API

-
Reactive
Streams

Beam DSL
Kafka Streams
Binder

Declarative API
KSQL
(Clustered)

SamzaSQL
(Calcite)

- EPL -
ZetaSQL,
CalciteSQL

-

SQL Expressiveness Low Medium N/A High N/A Medium N/A
SQL Simplicity High Medium N/A Low N/A Medium N/A
Overall ease of use High [101] High [113] High [101] - High [96] High [117] -

Table 4.2: Comparing embedded stream processing solutions

transformations on it. Incoming data should first be deserialised or ’parsed’ to such a data structure before it
can be used, and after processing the outgoing data must be serialised again for transportation. This is
visualised in Figure 4.4.

Therefore, when writing a connector, the developer must ensure that the serialised data can be transported by
connecting to the data store using the specific communication protocol supported by the store, for instance,
JMS or MQTT. Next, the developer should ensure that the data can be serialised/deserialised (SerDes). If the
format of the data is compatible with the default SerDes of the processing platform, no action is needed. For
other formats, the developer needs to define custom SerDes to support the specific data format. The default
SerDes that are supported vary per platform and are listed below.

• Samza provides support for Java primitive types, Java Serializables and JSON3.

• Kafka Streams and Spring Stream Kafka support JSON, Avro and Protobuf4.

• HazelCast Jet supports only Java Serializables5.

• Esper supports XML, Java POJO, and Avro6,

• Akka Streams supports JSON and Avro7.

• Apache Beam, provides a different approach to and will not use fixed SerDes but SerDes associated with
a collection8.

• Spring Stream Kafka natively supports JSON and Java Serializables 9.

In practice, users will seldom need to define custom connectors as they can choose from a library of pre-built
connectors that handles all protocol conversion and serialisation tasks. The exceptions being Samza and Esper
which provide a rather small ecosystem of connectors.

3https://samza.apache.org/learn/documentation/latest/api/high-level-api.html
4https://www.confluent.io/blog/kafka-connect-deep-dive-converters-serialization-explained/
5https://jet-start.sh/docs/next/api/serialization
6http://esper.espertech.com/release-6.0.1/esper-reference/html/event_representation.html
7https://doc.akka.io/docs/alpakka-kafka/current/serialization.html
8https://beam.apache.org/documentation/programming-guide/
9https://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/html/

contenttypemanagement.html

https://samza.apache.org/learn/documentation/latest/api/high-level-api.html
https://www.confluent.io/blog/kafka-connect-deep-dive-converters-serialization-explained/
https://jet-start.sh/docs/next/api/serialization
http://esper.espertech.com/release-6.0.1/esper-reference/html/event_representation.html
https://doc.akka.io/docs/alpakka-kafka/current/serialization.html
https://beam.apache.org/documentation/programming-guide/
https://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/html/contenttypemanagement.html
https://docs.spring.io/spring-cloud-stream/docs/Brooklyn.RELEASE/reference/html/contenttypemanagement.html

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 47

Figure 4.4: Serialisation for Kafka Stream processing

Kafka Streams Samza HazelCast Jet

Latency Low [99]–[102] Low [105], [106] High [101]
Throughput Medium [99], [100], [102] High [106] -
Efficiency Medium-High [100], [101] High [92] High [101]

Table 4.3: Performance of stream processing solutions

Several stream processors have also been benchmarked for performance. Specifically, Kafka Streams, Samza
and HazelCast Jet. Table 4.3 provides an overview of benchmarks for these solutions. The performance
evaluations are relative to open source clustered stream processing solutions, specifically Flink and Spark, and
overall the surveys show similar performance evaluations for both clustered and embedded stream processing.
Zhao et al. argue that performance across stream processing solutions is comparable and that the differences
in performance are only significant for specific demanding use cases [111]. Additionally, all stream processing
performance ultimately depends on the infrastructure, which is scalable, allowing users to scale-up throughput
when needed. In addition to performance, studies evaluating the energy efficiency of stream processing
platforms found embedded solutions to be equally as cost-effective as distributed solutions [98], [114]. These
studies, however, only reflect on smaller frameworks, such as Natron and Esper, therefore future further
research in this area is needed.

4.2.1.3 Conclusion

The surveys provides an overview of the key properties of embedded stream processing solutions, as well as a
taxonomy of the attributes on which the solutions differ the most. All solutions have great overall performance
and they all provide key features such as statefull processing and exactly-once processing guarantees. When
evaluating the different options it becomes apparent that there is no single best solution for stream processing.
Rather, the selection of a stream processing solution will depend on the functional and non-functional
requirements for the specific use-case and context. If one is already invested in actor-based programming
using Akka, or if one would be interested in adopting Akka for actor-based processing, Akka Streams would be
noteworthy option. Users seeking a solution that is deploy-able across different stream processing frameworks
may opt for Apache Beam. Data scientists, researchers and other users seeking an expressive query language
could opt for Esper. For users heavily invested in the Spring ecosystem, or for users seeking to use Spring

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 48

Cloud Data Flow to orchestrate stream processing applications, Spring Stream would be the preferred solution.
Overall Kafka Streams and Apache Samza are the most complete and mature stream processing solutions.
Both provide great performance, and a large ecosystem of abstractions and community support. Compared to
Kafka Streams, Samza provides embedded SQL, native support for batch processing, and more control over
data processing graphs even when using higher level APIs. Kafka however provides commercial support,
easier to use Java APIs, and a larger collection of connectors.

4.2.2 Graphical stream programming

While stream processing is an increasingly popular topic, research into graphical or model-driven programming
for stream processing is still sparse. After excluding papers per the exclusion criteria, for instance, papers
on programming for non-streaming data, 14 papers remained. Through backward reference searching, 11
additional papers were added resulting in a total of 24 papers. These 24 papers discuss a total of 13 different
solutions.

4.2.2.1 Overview

Gokalp Gokalp et al. present a stream processing platform for complex event processing [118]. Unique is the
use of Node-Red, which is a popular solution for visually programming, and executing event-driven applications.
However, only the visual programming component of Node-Red is used, the visual models are then parsed,
validated by an application manager module after which they are converted to Storm typologies that form the
distributed execution engine.

OptiqueVQS OptiqueVQS is an ontology-based approach to data stream processing, funded by the
European Union [119]–[123]. OptiqueVQS includes a visual interface for developing queries named
StreamVQS. This visual interface allows users to visually compose queries over heterogeneous data streams
using ontologies. These visual queries generate a StarQL (an ontology-based query language) query which is
then translated, using the ontologies and mappings, to several data-specific SQL queries. These SQL queries
are then executed over data streams using the ExaStream, a distributed streaming extension of the SQLite
database manager.

RheemStudio RheemStudio is a visual IDE on top of the cross-platform analytics platform Rheem [124].
RheemStudio allows visual, interactive programming and monitoring of data analytics tasks. The visual models
are translated to RheemLatin (SQL-like) queries. RheemStudio also allows users to view the physical execution
plan and to define custom operators using a high-level Java DSL, without leaving the web interface. Once
jobs are defined in RheemStudio, they can be executed using Rheem, which is a platform-independent stream
processing platform similar to Apache Beam. It can automatically allocate tasks to the most efficient underlying
processing framework for that task, for instance, Spark or Hadoop. Rheem was however excluded from the
earlier survey on stream processing frameworks since it does not provide support for Kafka, and since the
stream processing capability of Rheem is still under development [125]. RheemStudio is built using the MEAN
stack and is not yet made open-source.

aFlux aFlux is a visual node-based programming tool for IoT stream processing [126]–[130]. aFlux consist of
a frontend, similar to Node-RED with a visual designer, and a backend that can translate these visual models to
executable Akka Stream integrations. Additionally, aFlux offers extensions that allow code generation for Flink,
Spark, Pig and Hive execution. aFlux backend runs in the JVM, and the javascript-based frontend runs in the
browser.

StreamLoader StreamLoader is a streaming ETL tool [131]. The frontend allows the user to design ETL
integrations, and the backend will execute these integrations. The backend supports worker nodes that can be
used to execute the ETL integrations to allow for scalability.

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 49

Lemonade Lemonade is a platform for visual programming of data analytics and ETL tasks [132], [133]
(Surveyed by: [127]). Lemonade itself is developed using a micro-service architecture. The Citron microservice
serves the user interface that allows the visual programming of the integration model. Citron exports the visual
model as JSON to a backend component called Juicer, which is responsible for transforming the JSON definition
to Spark code. In addition to generating Python Spark code, Juicer can also deploy the job to a Spark cluster,
and measure the resources used during execution. Since the initial paper was published, Juicer has been
extended to SciKit-Learn and other Python frameworks. All backend micro-services are written in Python while
the frontend is written in VueJS.

QryGraph QryGraph provides a graphical, visual interface to big data processing on Hadoop [134] (Surveyed
by: [127]). the QryGraph interface allows users to visually create Pig Latin queries, which are SQL-like queries
for the Pig data processing platform that runs on top of Hadoop. Pig itself was not covered in the previous survey,
as it does not provide Kafka support. The interface ensures that the Pig queries are valid, and also provides
options for executing and managing Pig queries. QryGraph itself is built with the Play framework, supported by
the actor-oriented Akka library. QryGraph is a web application, and the backend runs in the JVM.

Sydow et al. Sydow et al. present a prototype of a native graph editor that allows users to visually design
stream properties, routing and tasks [135]. These visual designs can then automatically be converted to Rust
code for distributed stream processing. The tool only provides a way to model the integration on a high-level,
and the actual processing task needs to be defined textually.

Flision Flision is a prototype of a graphical user interface for designing integration models, generating Flink
source code and automated deployment of the generated Flink applications to the Flink cluster [136] (Surveyed
by [118]). Flision is designed to be general-purpose and provides users with the option to create custom
operators from within the user interface.

MEdit4CEP MEdit4CEP is a graphical editor for defining complex event processing (CEP) applications and
architecture [137], [138]. MEdit4CEP supports ModeL4CEP, which consists of a domain-specific modelling
language, and a graphical modelling language for defining complex event processing integrations. Therefore,
the purpose of MEdit4CEP is also two-fold, first to allow domain experts to define CEP domain models and
second to allow end-users to define CEP applications using these domain models. Once designed, the models
can be transformed into executable code for Esper, StreamSQL and CCL. MEdit4Cep is an Eclipse-based native
editor.

QualiMaster-IConf QualiMaster is another EU funded data processing infrastructure [139]. (Surveyed by:
[127]). The QualiMaster IConf is a native tool to graphically model big data streaming applications and to
generate Apache Storm based streaming applications based on these models. To determine the model elements
for this tool, different big data streaming applications were analysed. QualiMaster-Iconf is a Java application built
upon Eclipse.

ClowdFlows The EU funded CloudFlows platform supports the construction and execution of big data
processing and mining workflows [140]. In contrary to the previous solutions, CloudFlows attempts to be a
platform and community for sharing and executing workflows. The CloudFlows user interface is accessible
using the web browser and is backed by the CloudFlows server. This server is written in Python and contains
the data model of the available workflows and widgets (operations). Finally, there are work nodes that run a
headless version of the CloudFlows server which are designed to execute workflows. Consequently,
CloudFlows does not generate any code. Instead, workers directly parse and execute Workflows. CloudFlows
is also available as a SaaS application at cloudflows.org.

cloudflows.org

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 50

StreamPipes ClowdFlows QryGraph Lemonade aFlux Optique Flision

Code export No No SQL Python Java SQL Java
Live generation N/A N/A Yes Yes No Yes Yes
Code deployment Yes Yes Yes Yes No Yes No

Stream Processors
Flink, Spark,
Esper, Java

Prop. Pig Spark
Flink,
Spark

Prop. Flink

Validation Ontology Type Schema Schema Order Ontology None
Live validation Yes Yes Yes Yes No Yes N/A
Setup Easy Easy Medium Complex Complex Medium Complex
Custom operations Plugin Plugin Script Script Plugin Script Script
Native operations 50+ 25+ 10+ 25+ 15+ 5 7
Windowing Yes Yes No Yes Yes Yes No
CEP Yes Yes No Yes No No No

Table 4.4: Comparing graphical editors

StreamPipes StreamPipes started as a EU funded semantic stream processing platform [141]. Since 2015
(when StreamPipes was been proposed) the project has been under active development and is now an
incubating Apache software project. The focus of StreamPipes has shifted from only ontology-based
processing to also support lightweight schema-based semantics. StreamPipes provides an intuitive visual
editor for developing integrations or ’pipelines’. Users can model these pipelines using pipeline element
containers, which represent an operation, source or sink. Each pipeline element container requires a certain
input and output format, defines a certain execution logic and is implemented using a wrapper that represents
an underlying processing framework. Currently supported frameworks are Flink, Esper and running directluy
on the JVM 10. This also implies that each element in StreamPipes can only run on the frameworks for which a
wrapper is provided. After the user has developed an integration, StreamPipes will automatically invoke each
pipeline element container, this container will then submit the program to the underlying processing framework
using the wrapper. StreamPipes will arrange the messaging between the processing frameworks using a
suitable message broker, such as Kafka or JMS.

4.2.2.2 Survey

While the graphical stream programming editors discussed above share the same fundamental concept, the
ability to graphically program stream processing applications, they are each fundamentally different in their
functionality, implementation and maturity. When considering maturity, there is a striking contrast with the
stream processing platforms discussed earlier. While almost all of the discussed processing platforms were
adopted by the industry, this is seldom the case for graphical stream processing solutions. Some of the editors
discussed are only conceptual and have no public prototypes, this includes [118], [124], [131], [135]. Most tools
do have a public prototype but do not offer a stable release or a website targeted at end-users, nor are they
used outside an academic context. These tools include QualiMaster-IConf, Flision, QryGraph, aFlux and
OptiqueVQS. Only three tools do offer a website targeted at end-users, Lemonade, ClowdFlows and
StreamPipes. The last being the only framework that shows actual signs of adoption in practice with over 150
stars on Github and currently incubating as an Apache project. Overall, the literature suggests that graphical
stream programming, while actively being researched, is still an upcoming technology with low adoption rates
in practice.

For the remainder of this survey, the focus will be on the web-based editors with a public prototype or a public
release. This, since a public prototype is needed to properly evaluate the editor. These editors are StreamPipes,
ClowdFlows, QryGraph, Lemonade, aFlux, OptiqueVQS and Flision. To compare graphical editors, a concept-
centric approach is used to extract the concepts discussed for each solution [85]. Overall, the extracted concepts

10https://streampipes.apache.org/docs/docs/dev-guide-architecture/

https://streampipes.apache.org/docs/docs/dev-guide-architecture/

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 51

can be classified under different themes; code generation, extensibility, validation, and functionality. Some of
these themes are reviewed in Table 4.4 by comparing the attributes below, and all themes are discussed in detail
in the paragraphs beneath.

• Code Generation

– Code export: The source code / queries for deployment on a processing infrastructure that is
generated by the editor. In some instances, the editor does not generate code, and integration
models are directly interpreted by the stream processing framework.

– Live generation: When the code is generated live during design time or not live, for instance at
build time. Live code generation is preferable, such that the user can instantly review the generated
code.

– Code deployment: Whether the tool has a built-in mechanism to deploy the integration to the stream
processing infrastructure.

– Stream Processors: The stream processing framework(s) supported for executing the integration
models.

• Validation

– Type checking: Whether primitive type checking, order based type checking, schema-based type
checking (for complex types), or ontology-based type checking is supported. Validation is explained
in more detail in Paragraph 4.2.2.2

– Live validation: Whether validation is live during design time or during build time. Live design time
validations are preferable, as they provide instant feedback to the user regarding the validity of the
integration model.

• Functionality

– Setup: Complexity of setting up the editor before an integration can be created. ’Easy’ when a ready
to use executable or a SaaS service is provided. ’Medium’ when a Docker container or build script
was provided to run the editor. ’Complex’ when multiple manual commands and configurations were
needed to set up the tool.

– Custom operations: Whether the custom operations can be defined as custom script nodes in the
editor or as plugins. Plugin based custom operations allow for easier re-use and sharing among
users, however, custom scripts are easier for quickly implementing custom operations.

– Native Operations: The number of operations built-in, such as join, reduce, aggregate, etc. This
number does not include sink and source operations and CEP operations.

– Windowing: Whether the framework supports windowed operations

– CEP: Whether the framework supports complex event processing or data mining. For instance,
classification, regression, clustering, etc.

Code Generation The different editors provide different architectures for generating source code. Overall,
three different approaches can be identified, as depicted in Figure 4.5. This paragraph will discuss all three
approaches in detail.

Lemonade, aFlux, and Flision have a frontend that exports the visual models as JSON models, which are then
parsed and validated on the backend. The backend then uses these internal logical models to generate
executable code. Each node in the logical model provides a function that allows it to generate code for its
instantiation. How code is generated varies per implementation. Flision generates Java code directly from
hardcoded strings, as does Lemonade for Python, while aFlux relies on JavaPoet 11 which is a Java API for
generating java source files. The code generator traverses all nodes in the model to compose the executable

11https://github.com/square/javapoet

https://github.com/square/javapoet

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 52

code.

QryGraph and Optique use a single model for both the backend and the frontend, thus avoiding the need to
maintain two different models and converting between them. The model in the frontend and backend are kept
in sync using an underlying framework, such as Akka.JS. For QryGraph the actual code is generated on the
backend, while for Optique the frontend generates the SQL and sends it to the backend. In both instances,
each model node provides hardcoded instructions for generating executable SQL code and the model is
traversed to generate the code. For both GryGraph and Optique, the SQL is also available in the user interface
for users to view and manipulate, the benefit of this approach is that visual models can also be generated from
SQL queries.

StreamPipes and ClowdFlows follow two different approaches to avoid the generation of deployable code.
ClowdFlows sends the integration models directly to the executors, which can understand and execute these
models without translation or code generation. StreamPipes provide so-called ’pipeline element containers’
that provide the execution logic to the underlying processing framework based on the visual model once the
pipeline has started. This execution logic is embedded in the container, using the APIs provided by the stream
processing framework.

Figure 4.5: Approaches for code generation

Extensibility While inherent features, such as the stream processing platform used or the type of validation
supported are hard to modify and change, all frameworks are extensible in the operators they support. As
Table 4.4 shows, frameworks either allow the definition of custom operations through plugins or runtime scripts.
The built-in operators are also designed in a modular fashion such that new operations can be added when
needed. For built-in operations and plugins, the frameworks provide templates that one can use to define a
custom operation. The actual effort needed to implement a custom operator will vary per framework. In case of
StreamPipes, for example, creating a plugin is a complex process which first requires defining the ontology or
schema both on a static level and runtime level, as well as separate definitions for the model, binder, controller
and execution logic, including the execution instructions for each of the supported processing frameworks 12. In
QryGraph or aFlux custom operations are small single classes that define the execution logic and in-and-outputs
in a compact format, mapping operations to the high-level DSL. In lemonade, the definition of an operation is
more dispersed as each operation is defined in two locations, in the ’Tahiti’ module which tracks the metadata of
operation, such as the required in-and-outputs and the configuration options, and in ’Juicer’ which performs the
code generation for an operation13.

Validation Next, the editors can be classified based on their support for validatio. Optique and StreamPipes
provide the most extensive support for validation through ontology-based semantics. StreamPipes supports

12https://streampipes.apache.org/docs/docs/dev-guide-tutorial-processors/
13https://docs.lemonade.org.br/en/architecture.html

https://github.com/Starofall/QryGraph/blob/master/qrygraph/shared/src/main/scala/qrygraph/shared/nodes/DistinctNode.scala
https://github.com/mahapatra09/aflux/blob/ab3841b025e2df3ca2131dbc22466993f0d38c90/asyncFlow/java/aflux-tool-flink/src/main/java/de/tum/in/aflux/component/flink/Node04TransformationMap.java
https://streampipes.apache.org/docs/docs/dev-guide-tutorial-processors/
https://docs.lemonade.org.br/en/architecture.html

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 53

domain-specific data processors that can be specified using RDF (implemented using JSON-LD)14. These
specifications are used on the backend to validate whether the in and output of two connected operations are
compatible at design time. During runtime, only lightweight schemas (such as JSON) are used to reduce
overhead. In addition to domain-specific data processors, generic processors with weaker validation are also
supported. These generic processors can validate complex types against schema-based type definitions.
Consider for example source of location data, of the type Latitude Longitude. This would be a domain-specific
data stream, which could be processed by both a domain-specific processor accepting only longitude and
latitude, as well as a generic processor accepting complex data types consisting of two integers. Optique
supports only domain-specific nodes, that can be specified using OWL. Compared to StreamPipes, Optique
allows querying complex data structures and relations but provides limited to no support for generic operators
for data manipulation. As with StreamPipes, the ontologies are only used during design time, and actual data
processing operations are validated against regular schemas.

Schema-based validation for complex type checking are not only supported in Optique and StreamPipes, but
also in QryGraph and Lemonade. In QryGraph and Lemonade, type checking is instant and happens during
design type, this allows the user to quickly identify mismatches. Also, since schema information is available
during design time, the schemas can assist users in configuring operations. For instance, when configuring an
’average’ operation in QryGraph or Lemonade, and selecting a complex data type as input (i.e. a temperature
event with a temperature, time and location) the editor will recognise this schema and allow the user to select
the attribute that should be averaged. QryGraph provides type validation by instantly compiling Pig queries and
requesting the Pig server to return the schema output schema and any possible type errors. In StreamPipes a
different approach is used. Each operation has specific input and output interfaces, when connecting two
operations the backend verifies whether the two interfaces are compatible. Input interfaces are always static
but can be defined at any level of abstraction. For instance, they may only require specific ontology elements,
or they may accept any primitive type. For output interfaces, StreamPipes allows the output interface to change
depending on the connected input and the configuration of the operation during runtime. StreamPipes provides
several alternatives for this:

• The output interface will mirror the interface of the input data (i.e. when inputting an order object, the
output interface will be of type ’order’).

• The output interface can be fixed, for example, as a static schema. An average function may for example
always output a single float.

• The output interface may append to the input data interface. For instance, it may add a new attribute.

• The output interface may use a subset of the input data interface. For instance, it may remove a few
attributes.

• The output interface may be a transformation of the input data interface. For instance, it may always
rename certain attributes.

• The output interface follows other custom logic that is defined during runtime.

In Lemonade, the editor (Citron) requests metadata, such as the interface, for each operator from the metadata
storage (Tahiti) and then verifies whether all connected operators use compatible interfaces for their in and
outputs. Lemonade’s documentation does not reveal how such interfaces are implemented, yet based on the
described functionality it presumably uses a similar mechanism as StreamPipes.

The editors with the weakest support for validation are ClowdFlows, aFlux and Flision. ClowsFlows provides
primitive type checking only, but does not support complex types. For instance, it can ensure that an ’average’
operator receives an int input, but it cannot validate that a ’customer’ object transformer, in fact, receives an
object of the type ’customer’ as input. aFlux performs order based type checking, for instance, a node can
specify that it must be used before or after a certain another type of node. This may, for example, be useful to
ensure that a location filter can only be used with a location data source, however, it limits flexibility as it only

14https://streampipes.apache.org/docs/docs/dev-guide-architecture/

https://streampipes.apache.org/docs/docs/dev-guide-architecture/

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 54

enforces specific combinations of operators. Flision provides no support for validation at all, and will only detect
issues at runtime.

Functionality For an initial impression of the functionality of an editor, one can consider the user interface,
Each editor provides a unique different user interface, shown in Appendix C. Nonetheless, all editor UIs share a
few key components:

• A palette, or catalogue, of available operators. Usually, these operators are grouped. Most editors group
operators based on whether it is a sink, a source, or a processor. However, ClowdFlows and Lemonade
also group processors based on the kind of processing (i.e. Table-based, CEP, or primitive). aFlux and
QryGraph group operators based on the underlying framework that provides the operators, such as Flink
or Spark.

• A canvas where users can drop operators from the palette, and connect them by dragging lines between
them.

• A toolbar with actions that affect the integration as a whole, i.e. the ability to save the model, undo actions
or to deploy the model.

• An options pane that allows the configuration of an operator. In Lemonade, QryGraph, Optique and aFlux,
the option pane becomes immediately visible when selecting an operator, while in the other editors the
options are only revealed when double-clicking or right-clicking an operator in a separate window.

All editors also provide an interface for viewing output. This can vary from a simple console which shows the
log with runtime errors (Flision, aFlux, ClowdFlows) or an advanced UI with widget-based dashboards for
monitoring the integration (StreamPipes, ClowdFlows and Lemonade).

Some tools provide only a single screen from which all the editor features can be used, such as aFlux, Optique,
and Flision. The other editors are multi-screen and provide other screens for management and configuration.
For example, screens to manage the created integrations, to configure deployment settings or to manage
custom operators and data sources/sinks.

The amount of screens depends on the scope of the application. The scope varies from basic tools to design
integration models to full platforms for managing the integrations. The platforms, StreamPipes, CloudFlows and
Lemonade, are designed as standalone end-products, that aim to support the complete life-cycle of a stream
processing application from creation, to deployment and management, and these tools provide a rich catalogue
of operations to model with. The remainder of the editors are primarily tools to support the user in the design
phase. Since these tools do not provide management functionalities they allow for more control and freedom,
but they require more expertise from the user. Both kinds of editors, therefore, target different users; the
platforms target end-users with specific use cases, primarily big data analysis and preparation. The tools focus
more on assisting professional developers in creating multi-purpose data integrations, providing the essential
design functionalities while leaving developers with the freedom to manage the integration and the and define
specific operators as they choose.

4.2.2.3 Conclusion

As indicated at the beginning of this survey, visual stream programming is a domain that is still actively
researched, and little to no mature solutions are available. StreamPipes is the most mature solution of all
alternatives, yet it is still an incubating Apache project. Additionally, it is not a suitable solution if one is seeking
to export code for self-management and deployment. This is especially problematic if one needs to cover a
wide number of use-cases that are not all covered by StreamPipes. In these situations, custom integrations can
only be managed outside StreamPipes, while StreamPipes integrations can only be managed within
StreamPipes, scattering the management of integrations. While the other solutions do provide code export
functionality, none provide Java code generation along with schema-based validation to ensure the validity of
the generated integration, which would be a key property to satisfy the requirements. Additionally, none of the

CHAPTER 4. REVIEW OF EXISTING SOLUTIONS 55

solutions supported embedded processing except for StreamPipes, which provides a proprietary embeddable
Java executor.

While none of the surveyed solutions satisfies the requirements, this review provides a comprehensive
overview of the mechanisms and concepts used in the surveyed solutions which can be re-used in the design
of a novel solution. For instance, the survey shows that there are several approaches to code generation, from
using different models for the visual models and the logical models together with node-based code generation,
to using a single shared model that can directly be executed by the processing framework. There are also
various approaches towards validation, from simple fixed order and type based validation to dynamic ontology
and schema based validation with dependencies between the input and the output of an operation. The survey
shows that these design decisions with regard to the different approaches for code generation and validation
significantly impact the extendability of a solution. Finally, a difference in scope between the editors is
observed, from solutions that target end-users by providing full life-cycle management and a rich catalogue of
operations, to tools that target developers. These tools focus on the design-stage, stimulating the development
of custom operations and self-management. The identified concepts and design choices can be used to
support the development of new editors, for instance to discover and evaluate design alternatives.

Chapter 5

Design

This chapter addresses research question 4 by proposing a new design for a platform that allows users to model
and manage IoT event streams processing integrations. The goal of these integrations is to connect IoT data
sources with IoT applications (Chapter 2). Figure 5.1 overviews the design from an end-user perspective. This
first section discusses the methodology used to guide the design. The remaining sections discuss the design
itself.

Figure 5.1: Design overview

56

CHAPTER 5. DESIGN 57

Figure 5.2: Design phases of the TOGAF ADM1

5.1 Methodology

The TOGAF Architecture Development Method (ADM) as discussed by Iacob et al. is used to guide the
design [142]. The ADM provides an approach towards the design, planning, implementation and governance of
enterprise architecture. According to Gils et al. such an architecture is "a formal description of a system, or a
detailed plan of the system at component level to guide its implementation. [143]. The term ’enterprise’ reflects
the broad scope of the ADM, as it is suited to guide the architecture design of virtually any IT-system used in an
enterprise [143]. The ADM provides three phases, the strategy and motivation phase, the design phase and
the implementation and migration phase. In this chapter, only the design phase is used, as the strategy and
motivation phase is already covered by the DSM in Chapter 3. The implementation and migration phase is
covered by Chapter 6 and 7 as the design is applied to the problem context.
The ADM guides the design for four primary domains, the business domain, the data domain, the application
domain and the technology domain. The business domain defines the business process that are supported by
the architecture. The data domain describes the structure of the organisations logical data. The application
domain provides provides an overview of all the systems, their interactions, and how they are exposed to the
business domain. The technology domain describes the technological infrastructure that supports the
deployment of integrations. An architecture can be described from the perspective of any of these domains
using the ArchiMate specification.

ArchiMate is a modelling language for architectures that is integrated with TOGAF. ArchiMate provides a
layered view on architecture, that maps onto the domains of TOGAF. The business domain is represented by
the business layer, the application and data domains are represented by the application layer and the
technology domain is represented by the technology layer. The higher layers rely on the services and
interfaces provided by lower layers. The design phase of TOGAF, with the corresponding layers in ArchiMate, is
highlighted in Figure 5.2.

The ArchiMate 3.1 notation will be used to visualise designs when possible, and other tools will be used
throughout the design phases of the ADM to provide more detail when necessary. For instance textual
descriptions, UML diagrams, and interface designs will be used to provide further clarification. This is, since
ArchiMate is designed to provide a holistic overview of an architecture, while other notations may be more
suitable to describe low-level designs [143]. While the design of an architecture is always involves a creative
process, key decisions will be supported by the requirements and the literature review to ensure traceability.
Table 5.1 traces all requirements to the architectural elements that realise them.

1Adapted from ArchiMate 3.1 spec, retrieved 23/07/2020 from https://pubs.opengroup.org/architecture/
archimate3-doc/apdxd.html

https://pubs.opengroup.org/architecture/archimate3-doc/apdxd.html
https://pubs.opengroup.org/architecture/archimate3-doc/apdxd.html

CHAPTER 5. DESIGN 58

Figure 5.3: Layered Architecture

CHAPTER 5. DESIGN 59

Requirement Architectural element(s)
R1 5.3.3.2, 5.2
R2 5.3.5, 5.2
R3 5.4.3
R4 5.4.2, 5.3.7
R5 5.3.1
R6 5.3.3.4, 5.3.3.1
R7 5.3.7
R8 5.3.6
R9 5.3.3.3
R10 5.3.3.1
R11 5.3.3.1
R12 5.3
R13 5.4, 5.3.7

Table 5.1: Requirement tracing

5.2 Business layer

Figure 5.3 overviews all layers of the design on a high-level. The yellow top layer represents the business layer.
The middle blue layer represents the application layer, and the bottom green layer represents the infrastructure
layer. Figure 5.4 shows the business layer in more detail, as well as its interaction with the application layer
interfaces and services. The three top swimlanes represent the three normal operators of the system (Section
3.1); the Architect, the Developer and the Support team.

During the Specify Integration process, the Architect will identify the need for the integration, and create a
Specification for the integration that describes all the information needed by the Developer to actually design
the integration. For instance, it includes the schemas of the inputs and outputs of the integration, as well as any
information needed to understand these schemas, for instance the semantic value of ambiguous fields.
Additionally, the Specification includes all the information needed to connect to the data sources and sinks. The
Specification also includes a deployment description of the integration, such as the processors that should be
designed, and the location to which they must be deployed as well as the expected throughput they will be
facing. The Specify Integration process can (but does not have to) be supported by the system, depending on
the implementation. Therefore, this is the only business process that is not depicted as being realized by the
application layer. The Specification that the Architect produces is passed on to the Developer for
implementation.

The Developer will actually design and deploy the integration during the Develop Integration process. This
process consists of three sub-processes. The first is the Enter Schemas process during which the Developer
will enter the schemas of the data sources and sinks into the system. This process of defining and manage the
schemas is realised by the Web UI, through which the Developer interacts with the Schema Manager. Once
the schemas have been entered, they will be passed on to the Design Integration process such that they can
be used with operations and transformations. This Design integration process is a complex activity in which the
Developer will define the connection to the data sources and sinks and will define the operations to be
performed on the data stream. The design process is supported by the Editor Interface, which is embedded in
the Web UI. All changes of the Integration Model are processed by the Integration Development component
which also generates the Integration Executables of the Integration Model. Once the design is complete, the
Integration Model is passed on to the Deploy Integration process. During deployment, the Developer defines
the deployment parameters such as the version of the integration, after which the Integration Executables are
deployed to the runtime. The Develop Integration process is iterative and the Developer may return to any of

CHAPTER 5. DESIGN 60

Figure 5.4: Business Activity Diagram

the previous activities to iterate upon the integration and re-deploy it.

After the integration is deployed, the Support team will start the Manage Integration process. Management is
primarily concerned with monitoring the deployed integration, for instance, monitoring errors, resource usage,
and throughput statistics to find any anomalies. To ensure separation of concerns, the Support team will not
interfere with the integration when any anomalies are found but rather contact the Developer to make any
changes to ensure that any modifications are properly designed and tested. Only basic operations, such as
restarting the integration or making more resources available, can be executed within the Manage Integration
process.

5.3 Application layer

The application layer has been designed in a modular fashion, and has three key components. The Web UI,
which is a frontend component, the Vendor Backend which supports the frontend, and the Runtime Applications,
that represent the running integrations developed and deployed by the Integration Developers. The Vendor
Backend is the most complex component, which has three modules; the Integration Development component,
the Integration Management component and the Schema Manager. The sections below will describe the design
choices for each of these components in detail, as well as the data model of the application layer.

Figure 5.5 provides an overview of all models discussed in this section. Central are the Integration Models, which
are the models representing the integration, created by the Developers using the Editor. The metamodel of
these Integration Models, that describes what an Integration Model should look like, is formed by the Integration
Meta-Model (part of the Data Model) and the Operation Definitions. The Integration Meta-Model is general
metamodel for the integration, while the Operation Definitions complements this metamodel by describing all
possible operations that can be used in the Integration Model. The Operation Definitions are developed by
the vendor, extending from the Operation Parent Model. During code generation, the Integration Model is
translated to Integration Executables as is explained in section 5.3.3.4. This executable integration can be
deployed (instantiated) as Runtime Applications that can process incoming data. All of the models are also
discussed in more detail in the sections below.

CHAPTER 5. DESIGN 61

Figure 5.5: Model overview

5.3.1 Web UI

The users always interacts with the system through the Web UI application component. The Web UI
component acts as a user interface for the deployment, management and schema services. For instance,
consider the deployment function. The Web UI may show a web page with a ’deploy’ button, as the user
presses this button, the UI will call the Deploy service and adjust the UI based on its response.

Additionally, the Web UI hosts the Editor Interface. The Editor Interface is a standalone user interface that is
tightly integrated with the Editor backend, this interface for instance includes the model editor and the
catalogue of operations that the user can select and configure.

5.3.2 Data Model

The Data Model of the system describes the data objects used at the application level. It contains the
Integration Meta-Model, as well as the integration executable (ExecutableIntegration object) and the used
schemas (Schema object). A detailed version of the data model is shown in Figure 5.6. The Integration
Meta-Model is based on the conceptual integration model proposed in Chapter 2 in Figure 2.4. Central in this
model is the Integration object. Each Integration has a set of Operations, which will be instances of
vendor-defined Operations as defined in the Operation Definitions (Section 5.3.3.1).

Each Operation has a location on the canvas and a name. Moreover, each Operation has one or more
Connections to other operations. Additionally, each Operation has a set of Configuration Options, which may
be re-used across operations. Next, each Operation can access 0 or more schemas for use in the the in and/or
output format. These Schema objects are stored in the Schema Registry, and consist of the schema definition
or a type. Finally, each Operation can optionally use one or more ConfigurationValues. Such a values for
example store, or refer to, runtime variables to be used across operations.

Each Integration also has an ExecutableIntegration, that is the generated code to execute the integration.
Actual implementations of this data model can have more classes, for instance for analytics, management,
versioning and deployment, however, since these classes are implementation specific they have not been
included in Figure 5.6.

5.3.3 Integration Development

The integration development module consists of three functions, Editor, Validation and Code Generation as well
as the Operation Definitions component that defines all the operations that can be used in the Editor.

CHAPTER 5. DESIGN 62

Figure 5.6: Data Model

5.3.3.1 Operation Definitions

The Operation Definitions component is an application component that contains all the operations that are
supported by the Editor. The component is shared by all functions. For each Operation, the component defines
1) the behavior and options in the Editor, 2) the in-and-output for each Operation and 3) the code to be
generated. The use of a common shared model containing all operations is a design pattern discussed in
Paragraph 4.2.2.2 and promotes extendability and simplicity, as a single definition is used rather than
definitions that are dispersed throughout the system.

Each operation in the definition should extend from an abstract Operation in the Operation Parent Model
depicted in Figure 5.7. Central in the diagram are the abstract Operation classes (in italic). Each Operation in
the Operation Definitions will extend from such an abstract operation. All operations have a name, and they
have should implement a method that returns the code for the Operation based on its inputs and configuration
options. The Operation Parent Model distinguishes three kinds of operations; data retrieval operations
(’Source’ either pull or push based), data output operations (’Sink’), and transforming data (’InOutOperation’).
These three operations are based on the IoT integration model defined Chapter 2 (Figure 2.4). An Operation
can inherit from either one of these operations.

Each of these operations can implement input and/or output requirements. They may specify a certain kind of
in/output, such as a table or a stream. For instance, an average operation may require a stream input, and a
table output type. The IOType variations are based on the dual Stream / Table model discussed in Section
4.2.1.2. In addition to a type, they can specify the format of the input and output. The InputFormat is always
fixed, based on a schema that defines which inputs are supported, while the output format of an operation can
dynamically depend on the input that is provided during design time. Each operation that produces outputs
should be able to compute its output given its inputs and configuration options, or return null when the inputs
are not supported. There are several patterns defined for computing the output type. For instance, the
AppendToInput pattern describes how an output format mirrors the input, and adds a new attribute to it. All the
alternatives have been adopted from StreamPipes, and are discussed in 4.2.2.2.

Additionally, each Operation can define a set of ConfigurationOptions. Several different kinds of options are
identified such as a string input, float input and boolean input, as well as a dropdown value or an option that

CHAPTER 5. DESIGN 63

Figure 5.7: Operation Parent Model

CHAPTER 5. DESIGN 64

allows the Integration Developer to select an attribute of the input data.

To ensure the validity of the model, it has been ensured that the model is able to represent all operations
defined in Appendix B. Consider for example the ’aggregate’ operation which can perform an aggregation over
a window of time, such as the average value of a certain attribute, and store the latest aggregated value for
each key as a variable in a table. This operation would be defined in the Operation Definitions component, and
would conform to the provided parent class diagram. The operation would inherit from ’InOutOperation’ as it
requires an input and produces an output, the ConfigurationOptions would be the attribute that should be
aggregated and an enum for the kind of aggregation (for instance ’sum’ or ’max’). The generateCode function
would return the code that would be able to perform an aggregation, based on the configuration as per the
configuration options. The operation would also have an InputFormat of type WindowIOType, as an
aggregation requires a windowed stream over which is to aggregate. The InputFormat should be of type float,
such that any schema containing a float attribute is allowed. The OutputFormat would be type Table. The
OutputFormat would be fixed, since the operation always outputs a float.

The design does not specify which operations should be included in the Operation Definitions. It is
recommended that at least the operations from Appendix B are considered. Additionally, for the sink and
source nodes, it is recommended to implement connectors compatible with the typical IoT interfaces defined in
Section 2.1.2. In some instances, the Integration Developer may want to perform a custom operation that is not
included in the operation definitions. To account for this, the vendor should also add a generic Operation to the
Integration Definitions which accepts any input, and any output. As ConfigurationOption the operation could
have a text input that allows the user to enter custom code. The generateCode() method of this generic
Operation could simply return this custom code. This is just one example, the vendor could also allow the user
to define operations in a custom DSL, and then translate that DSL to executable Java code in the
generateCode() function.

5.3.3.2 Editor

Integration Developers can Design Integrations using the Editor Interface. The Editor Interface is a user
interface for visually editing the integration model, this user interface can be implemented using a web-based
diagramming tool. The nodes available for modelling, that is, the operations and configurations options that the
user can use, are retrieved from the Operation Definitions component by the Editor function which serves as a
backend for the Editor Interface. The Integration Model itself is synchronised between the Editor Interface and
the Editor function. The model is first loaded from the Editor into the Editor Interface after initialisation. Any
edits made to the model in the Editor Interface are synchronised to the Editor backend for validation, where the
model is persisted. As discussed in the review (Paragraph 4.2.2.2) one can either adopt a visual model for the
frontend and a separate logical model for the backend and translate between the two, or one can use a single
unified model. The proposed design implements the latter using a serialiseable model that can be
synchronised between the backend and the frontend, which simplifies the architecture and promotes
extendability.

After committing the changes, the Editor will trigger the Validation and Code Generation functions respectively.
These components are described in more detail in the sections below. After these functions are finished, the
results are passed on by the Editor to the Editor Interface such that the Integration Developers can see the
validity of their designs, and get input-based configuration recommendations.

The Editor sequence diagram in Figure 5.8 visualises how the Editor Interface integrates with functions in the
Integration Development Component through the Editor backend.

CHAPTER 5. DESIGN 65

Figure 5.8: Editor sequence diagram

5.3.3.3 Validation

Any edits made in the Editor trigger the Validation function. As discussed in the review, three approaches exist
towards validation to ensure validity of the model; primitive type checking, complex (schema based) type
checking and and full ontology based semantics. The reference design will cover both primitive and complex
type checking. Ontology based semantics are not included, however the design does not prohibit this so during
implementations one can opt to include this. The choice not to include ontology based semantics is based on
the findings in Section 2.1.2.6. Two key aspects form this decision, the domain-specificness of ontologies and
the low maturity of ontologies in IoT. Ontology based interoperability has the highest payoff in predictable,
domain specific environments, such that semantic operations can be developed and used to increase ease of
use and validity of the operations. The proposed design is, however, to be used for data preparation across
domains. The cost of identifying ontologies and developing domain-specific processors would most likely not
out-weight the benefits. Furthermore, the use of ontologies for specifying IoT semantics is still in its infancy, is
complex and difficult to use, and is predominantly applied in research contexts only.

The validation design is based the design discussed in Section 4.2.2.2; The Validation function will traverse all
the Operation nodes in the Integration Model, starting with the data source node that marks the start of the
graph. The Validation will compute the output of each node, based on its input and the output-format
transformation of the node. When the output format has been determined, based on the input, theValidation

CHAPTER 5. DESIGN 66

function will ensure that all inputs connected to this output are compatible. The Validation function will then
proceed to the next node, which can now be validated as its input has been determined, until all nodes are
validated. The Validation function will pass any validation errors back to the Editor, such that Integration
Developers will receive design-time feedback on the validity of the integration. Additionally, the derived inputs
of each operator connected an output to an will be passed on to the Editor for such that recommendations for
the configuration can be made depending on the input. For instance, when connecting a ’Average’ operator to a
temperate data source, this allows the Integration Developer to select which attribute of the input to aggregate.

5.3.3.4 Code Generation

The approach for code generation is heavily influenced by the API for which code is generated. As discussed in
the review (Section 4.1) one can generally identify three API levels, a low level data flow API, a functional API
and a declarative API. The survey shows that the declarative APIs, while easy to use, generally offer low
expressively rendering them insufficient to cover all data integration use-cases. More suitable are the data flow
APIs and the functional APIs. The functional APIs expose comprehensive, high-level, operations for data
processing, while the low-level APIs provide direct access to the data and do not provide high-level operations.
Therefore, the functional APIs are the most suitable for code generation, as operations in the model can be
directly mapped to the method of the functional API.

After the model has been validated, the Code Generation function is triggered. Several approaches towards
code generation exist. For instance, using languages facilitating model to code transformations such as Eclipse
QVT and ATL (Atlas Transformation Language) [144]. However, none of the approaches towards code
generation surveyed in Section 4.2.2 adopted such a language for model to code transformations. Presumably
because, according to David et al. [145] such approaches are targeted at generating structural code rather than
logical code for stream processing. Additionally, defining a single model for code transformation is complex,
because this will depend on the specific frameworks and languages used during implementation. Instead, most
graphical editors rely on a distributed node-based approach towards code generation (Paragraph 4.2.2.2). With
such approaches, an code generation component traverses all nodes and requests each node to generate its
own code. A similar approach is adopted for the Code Generation function. It first generates the boilerplate
code common for all applications, such as the code to boot the Runtime Application and to connect to a Kafka
cluster. Next the Code Generation function will traverse all nodes, and request each node in the integration
model to return its executable code based on its configuration. Therefore, most of the logic with regard to code
generation is stored per-node in the Operation Definitions. Oftentimes, a very basic approach is used for this,
where static code is filled with the operations configuration variables and. When the code for all nodes has
been collected, the Code Generation function embeds the operations code into the boilerplate code and
ensures its validity. An example of such an approach is given with the prototype in Chapter 6.

5.3.4 Deployment

The Deployment function is accessed through the Deploy Service. Before any integration can be deployed, the
Runtime Environment must be started on a Client Runtime Host after which it will connect to the Vendor
Backend through the Runtime Interface. If a Runtime Environment is running, deployment instructions can be
sent from the Deployment function to the Runtime Environment where integration should be deployed. The
deployment instructions should contain all the information that the runtime needs to run the integration, such as
the version, runtime parameters and the resources required. Based on the deployment instructions, the
Runtime Environment will connect to the backend to retrieve the Integration Executable from the Code
Generation component. This is a continuous process, such that at any point in time the runtime can retrieve the
latest Integration Executable based on its deployment instructions, for example to automatically receive
bugfixes, without the need to re-deploy the integration. Deployed integrations (Runtime Applications) will send
metrics to the Management. Overall, the deployment process is visualised in Figure 5.9. Depending on the
implementation, the Deployment function could also take on additional responsibilities such as version

CHAPTER 5. DESIGN 67

Figure 5.9: Deployment sequence diagram

management and migrations. The architecture for the Deployment and Management functions, as well as the
runtime are based on the architecture of integration platforms as discussed in Section 2.1.2.8.

5.3.5 Management

The Management component is concerned with supporting management tasks, such as monitoring the deployed
integration by collecting metrics. The scope of the metrics collected will vary per implementation, as described
in Paragraph 4.2.2.2. Examples of metrics include; (error) logs, runtime metrics and data metrics. Logs are
warnings and outputs produced by the infrastructure and processors. Runtime metrics include statistics about
the runtime applications, such as throughput, resource usage and processing time. Logging and runtime metrics
are key metrics that should be implemented to allow the Support team to review the integration for any unhanded
errors and unexpected events, and to ensure that the integration is properly scaled. Finally, data metrics are less
essential, and are more analytical in nature, giving insights in the data that is passed through the integration.
For instance, to observe what kind of data is most frequently processed. In addition to collecting metrics, the
Management function allows the Support team to perform basic interventions, such as the ability to restart or
redeploy integrations.

5.3.6 Schema Manager

The Schema Manager allows the Integration Developer to maintain a register of all data formats used by data
sources, data sinks and data operations. These data formats are used to deserialise serialised data into data
structures that can be understood by the processor, as described in detail in Section 4.2.1.2. Developers will
store the data schemas in the registry, and during design, the Developers can reference to a schema stored in
the registry for the in/output of an operation. Behind the scenes, the Schema Manager stores all schemas in
the Schema Registry, and shares only a reference of the schema to the Editor such that the integration can
obtain the schema from the registry during runtime. The Schema Registry is discussed in more detail in
Section 5.4.

The exact functionality of the Schema Manager can vary per implementation. Existing integration platforms

CHAPTER 5. DESIGN 68

often already provide a schema management functionality. Such vendors may opt to automatically generate
Kafka-compatible schemas from their existing schema manager and store them in the registry.

5.3.7 Runtime Applications

The Runtime Application is a running instance of the Integration Model, which is instantiated during
deployment. Therefore, there are many Runtime Applications running at the same time, one for each running
integration on the integration platform. Additionally, there may be multiple instances per Runtime Application to
provide scaling. All stream processing frameworks discussed in the review support horizontal scaling, simply
by launching multiple instances of the Runtime Application.

The Runtime Application may run as a standalone application, however, it may also run embedded in another
application. Most integration platform vendors already have an existing runtime applications in charge of
executing message integration flows, and the stream processing applications can run embedded as part of the
existing runtime applications.

5.4 Infrastructure layer

5.4.1 Vendor Cloud

The Vendor Cloud hosts the Vendor Backend applications. Additionally, it provides a database for storing
persistent data of the vendor backend, such as integration models, metrics, and user information, and other
metadata. Typically, the vendor cloud is hosted by an Infrastructure as a Service (IaaS) provider, which allows
dynamic scaling of the infrastructure depending on the number of integrations that need to be supported.

5.4.2 Client Runtime Hosts

The Client Runtime Hosts support the execution of Runtime Applications. Each client can have multiple hosts,
such as on-premise hosts and cloud based hosts, and each host serves a Runtime Environment to which
Runtime Applications can be deployed. This Runtime Environment provides:

• An execution environment that allows the execution of Runtime Applications regardless of the underlying
infrastructure. This allows on-premise deployments, as well as cloud-based deployments and hybrid
combinations of both.

• A mechanism for remotely managing the runtime, including the ability to submit integrations to the runtime,
start them, and collect metrics. The layered architecture depicts this as the Runtime Interface.

• A dependency manager, that can fetch any dependencies needed and facilitate the re-use of
dependencies among Runtime Applications.

How the Runtime Environment is implemented will vary per implementation. An example of this is OSGI, which
is a standard for running software modules on Java runtimes, which can be used to re-use services among
Runtime Applications and to remotely control the deployment of Runtime Applications within the OSGI
execution environment [1].

The design describes the use of a single runtime per host, which runs all Runtime Applications. This choice
was made to allow the sharing of resources and to reduce overhead compared to containerised approaches
such as Docker [146]. Since all Runtime Applications require identical runtime environments and share
resources, full containerisation would bring little advantage. Additionally, most of the benefits of
containerisation approaches, such as dependency management and clustering support, are available also with
non-containerised runtime solutions such as OSGI frameworks.

Like Runtime Applications, the Runtime Environment can easily be scaled. By adding more Runtime Hosts and

CHAPTER 5. DESIGN 69

launching the Runtime Environment on these hosts, or by vertically scaling the capacity of a single Runtime
Hosts, more Runtime Applications can be deployed to facilitate the horizontal scaling of Runtime Applications.

5.4.3 Streaming Cloud

The Streaming Cloud hosts the streaming infrastructure. Therefore, this cloud provides the Kafka cluster used
by all Runtime Applications. The cluster consists of various brokers, and the cluster can be scaled indefinitely
by adding or removing brokers. The vendor may host the cluster, but one may also opt to use a hosted Kafka
as a service provider. Regardless of how Kafka is hosted, clients can connect to any broker in the cluster
and use the Kafka discovery protocol to obtain metadata of the cluster to find out to which broker to connect
for which topic. Consumers and producers can then open a connection to this broker to exchange data. This
process of discovering and connecting to a broker is usually handled by the stream processing framework, all of
the processing frameworks discussed in Section 4.2.1.1 support this. Note that the only applications that must
exchange data with Kafka are the Runtime Applications. Optionally, the backend could also connect to Kafka,
for instance to create / manage topics, to read topics for configuration suggestions on design-time, or to collect
metrics about the cluster in Management. This is however optional and depends on the implementation, as
alternative approaches, such as runtime topic creation, are available.

5.4.4 Registry Cloud

The Registry Cloud hosts the Schema Registry. The use of a Schema Registry is common with Kafka, but not
mandatory. An alternative to the use of a registry is to distribute the schemas with the executables. At first sight,
this may seem like an attractive approach since changing schemas will require changes to the processors and
consumers as well. However, as schemas change, this would requiring the schemas used by all producers and
consumers at the same time. A Schema Registry allows multiple versions of a record to be in flight, and can
deserialise each record with the right schema while ensuring compatibility between the schema of the recipient
and the sender. Other benefits of a Schema Registry include automated translation from schema formats and
decoupling the code bases and the schema management.

Chapter 6

Prototype

In this chapter, the development of the prototype in the problem context is described. This prototype is used
to validate the design with end-users in Chapter 7 and therefore the problem context is that of the vendor with
whom the design is validated described in Section 1.5. To this end, the design is applied to the architecture,
requirements and technologies of the vendor. The resulting prototype is a novel model-driven interface for
generating Java Kafka Streams stream processing integrations.

6.1 Methodology

Wieringa describes the use of a prototype for single-case mechanism experiments, as are used in this research
for validation [12]. However, Wieringa does not describe how such a prototype should be developed, therefore,
a separate methodology is used to guide this phase. Specifically, an Agile methodology is used to guide the
development of the prototype.

For the development of the prototype, the Scrum methodology is used. Scrum is an Agile methodology to
effectively and flexibly develop artifacts, most often applied in software engineering. Core to Scrum is the
Scrum Team, which consists of the Product Owner, the Development Team and the Scrum Master. The
Product Owner represents the stakeholders and specifies and prioritises the requirements in the form of user
stories on a list named ’the backlog’. The Development Team is responsible for developing the artifact in
iterations. Each iteration is named a ’Sprint’ and the Development Team plans items from the backlog into
Sprints. At the end of each Sprint, there should be a working increment of the artifact. The Scrum master
ensures that the Scrum rules are being followed, and is responsible for supporting the team in doing so.

Guiding the development of the prototype using this Agile methodology allows for continuous feedback on the
design choices made through constant validation. This reduces the cost of change, and increases the chance
of success as any possible design flaws can be established early on in the project. Other benefits include an
increase in transparency by continuously managing expectations, a reduction of risk by identifying and
responding to risks early on in the project and flexibility in development allowing the requirements to change
when needed [147]. Overall, the use of the Agile methodology ensures that the resulting product meets the
stakeholder goals.

For this project a lightweight version of Scrum is used. In the first phase, the Discovery phase, the design is
translated to a high level system architecture. The results of this phase are discussed in Section 6.2. Next, in
Sprint zero the system architecture is divided up into stories and designs, and these stories are assigned to
Sprints based on their priority for the prototype. The stories are validated by the Product Owner from the
vendor. This results in the minimal scope for the prototype, limiting the prototype to certain architecture
components and requirements of the overall design. Items from the backlog are implemented in 1 week
Sprints, and at the end of each Sprint the results are presented to the Product Owner and to the vendor’s

70

CHAPTER 6. PROTOTYPE 71

Development Team. The results of Sprint zero are discussed in section 6.3.

6.2 System Architecture

The first step towards building the prototype is a applying the design to the problem context. That is, showing
how the design could be implemented in the context of the vendor, by applying the design to the vendors
eMagiz iPaaS platform.

Some architectural components of the design, such as the Vendor Backend and the Integration Management,
already exist in the current architecture of the vendor to support the messaging integrations and would need
only minor adjustments support stream processing functionalities. Most architectural components, however,
would need significant changes, or do not exist in the current architecture. These components are marked in
green in Figure 6.1. Additionally, Figure 6.1 shows the specific technologies used to realise some of the
components.

6.2.1 Business layer

The Business layer has the same number of process steps regardless of the type of integration that is built,
be it a messaging integration or a stream processing integration. The differences are within the process steps
themselves. During the specification phase, the Architect needs to determine whether stream processing or
messaging technology is more suitable to support the integration. Next, during the Design Integration phase,
the Developer needs to be familiar with the stream processing patterns, such as tables, streams, topics and
aggregation, to design the integration. Also during Manage Integration and Deploy Integration, knowledge
about stream processing is needed to estimate the required deployment parameters and to recognise stream
processing specific errors and problems. Therefore, proper training is needed to allow existing end users to built
stream processing integrations. This is in addition to a proper user interface which supports users throughout
the development and management of an integration.

6.2.2 Application layer

As discussed in Chapter 5, the end users interact with the system through the Web UI. With the exception of
the Stream Editor Interface, the user interface is highly similar for both stream processing and messaging. The
user can use the existing schema management functionality, the CDM, to manage schemas for stream
processing. Behind the scenes, the Vendor Backend can then convert the schemas for stream processing to
the required format and submit them to the Schema Registry. For Deployment, only the deployment
parameters will be different, for instance to specify Kafka related parameters, while the remainder of the UI will
be similar. The same holds for Integration Management, while the reported information will be different as it
may contain Kafka specific metrics and logs, the UI will otherwise be similar. Therefore, both Deployment and
Management will be handled by the vendor’s existing components for this.

The most significant changes in the Application layer are made in the Editor Interface and the underlying
Integration Development component. The current Editor Interface and its backend are designed by the vendor
for the development of messaging integrations. Although there are similarities between stream processing and
messaging, the current UI and backend do not support all stream processing specific concepts such as
table-stream duality, aggregations, joins, topics and more. Therefore, either a new Stream Editor Interface is
needed or the existing Editor Interface needs to be extended to support the development of stream processing
integrations. Such extension would include the ability to model nodes with multiple in/outputs, to model the
difference between streams and tables, and to extend configuration options with UIs for specifying stream
specific operations such as joins and aggregations. The Stream Editor Interface is embedded or integrated into
the vendors Web UI. Next, a backend component is needed that can support the UI, and trigger Validation and
Code Generation. Both Code Generation and Validation need to be re-implemented as the vendor’s current

CHAPTER 6. PROTOTYPE 72

Figure 6.1: Design applied to the vendor’s current architecture

CHAPTER 6. PROTOTYPE 73

Figure 6.2: Typical Model Driven Architecture

architecture does not support the generation of Java code and complex type checking. Additionally, a new
shared Operation Definition is needed to define stream processing operations and the validation logic and code
generation instructions per operation. To determine the operations that should be included in the definition, the
operations from Appendix B can be considered, as well as the findings of Section 2.1.2 which describes the
specific protocols and formats to support in IO nodes.

Finally a stream processing framework needs to be adopted within the Runtime Applications. For this Spring
Cloud Stream Kafka Streams is used. This decision is based on the results from Section 4.2.1.2 as the vendor
currently relies heavily on the Spring ecosystem, using Spring Boot and Spring Integration to power all their
runtime applications. As Spring Cloud Stream Kafka Streams relies on Kafka Streams, this framework
combines the reliability and functionalities of Kafka Streams with the ecosystem of Spring.

Consider Figure 6.2 to get an overview of what decisions in the transformation are guided by the design, and
which decisions have been made specifically for this prototype. The design provides guidelines, but no concrete
implementation, for the transformation process, and the input metamodel and the transformation mapping. The
output metamodel is not described by the design, and depends on the stream processing framework that is used
in the implementation. For this prototype, the framework is Kafka Streams and therefore the output metamodel
is the Kafka Streams Java DSL. The input metamodel and the transformation mapping are both covered by
the operation definition, as is described in Section 6.4.2. This is conform the guidelines of the design (Section
5.3.3.1) that specifies that the definitions should provide both the meta-model as well as the transformation
definition (code generation logic). The transformation language is Typescript, since this is the language used for
developing the prototype and defining the input metamodel.

6.2.3 Infrastructure layer

In the Infrastructure layer, two key components should be added to the existing architecture. A Schema Registry,
to host the schemas for the runtime stream processing applications and a Kafka cluster to provide the streaming
infrastructure that the runtime applications need to communicate. Additionally, the System Architecture shows

CHAPTER 6. PROTOTYPE 74

Figure 6.3: Prototype Wireframe

that the vendor’s client runtime is implemented using Apache Karaf, which is an OSGI implementation that can
be used to host Java applications, such as stream processing applications. The backend itself is hosted using
Amazon Web Services.

6.3 Plan

Scope Given the timeframe and scope of this research, it is not feasible to cover the whole design with the
prototype. Therefore, a minimum viable prototype (MVP) is developed that is able to showcase key aspects
of the design for validation and demonstration purposes. It has been decided together with the product owner
that the prototype should cover at least R1 and R6 to demonstrate the designs ability to facility the graphical
design of stream processing integrations. Requirements R3, R4 and R5 are also covered since the prototype
will generate code for consuming from Kafka using an embedded processor, and since the editor runs in the
browser. The remainder of the requirements are not, or only partially, covered by the prototype. For instance, the
prototype assumes that the data conforms to some schema that is familiar to the user, but it does not provide
any explicit frontend or backend support for schemas as per R8. Overall, only the Stream Editor Interface,
Operation Definitions, Validation and Code Generation elements of the design are implemented in the prototype.
Additionally, the prototype will feature Integration Models, Integration Executables (the generated code) and a
component in the runtime to support the execution of Integration Executables. All components covered by the
prototype are highlighted in dark green in Figure 6.1. Again, given the scope, only the essential functionalities
are implemented for each component. For instance, the Operation Definitions in the prototype covers only
a subset of the operations and options that would be present in a production implementation, the Validation
component will only perform type validation, and the Code Generation will only produce executable statements
rather than executable applications.

CHAPTER 6. PROTOTYPE 75

User stories A full breakdown of all functionalities supported by the prototype is provided in Appendix D in
the form of user stories. These user stories are created based on the design, the scope of the prototype, and
on the (semi)fictional use cases listed below. All user stories have been assigned an expected workload and
a sprint based on their dependencies. The total workload of all user stories amounts to 183 hours. Since the
recommended time for the development of a prototype is set at one month by the external supervisors of this
thesis, the expected workload matches the recommended workload. The UI related user stories are shown in
Figure 6.3, which provides a mock-up of the prototype UI. This wireframe is based on the findings in Paragraph
4.2.2.2.

Use cases To provide context to the user stories, two use-cases, one fictional and one semi-fictional, are
defined. The semi-fictional use case is based on a use case from the consultancy firm in Interview A.4. Both
use cases describes the skills and goals of the persona of the Integration Developer used in the user stories.
Additionally, both use cases provides tangible examples and context to the operations defined in the user
stories.

Use case 1: An integration developer seeks to develop a stream processing integration for stream of
temperature measurement data. This stream of measurements is produced by a set of temperature sensors
with different locations that continuously produce measurements containing the measured temperature, and
the ID of the current location of the sensor. The goal of the integration to be developed is to process this raw
stream of incoming events, and to create an alert when the average temperature over a period of time exceeds
a threshold value, for a certain location. These alerts are picked up by a dashboard application from an output
topic. To achieve this goal, the developer would like to read the data from the topic, transform it into a generic
data format (such that support for other input formats could be added in the future). Then, he would like to
group the measurements by location, and compute the average temperature for each location for a certain
period of time. Next, he would like to enrich the data by replacing the location ID with the actual location
information data, such as the name of the location, stored on a lookup topic. Finally, he would like to send a
stream of alerts to an output topic for each average measurement that exceeds a threshold value. The
developer creating the integration is familiar with the concepts of stream processing and integration in general,
such as schema based data transformation, however, he has no knowledge of Java or other functional
programming languages. Therefore, he would like to design the integration visually using a model-driven
interface to generate the executable code that he can embed in a runtime application.

Use case 2: An integration developer seeks to develop a stream processing integration for a stream of RFID
sensor measurements. These RFID sensors are located in package delivery vans that contain packages with
RFID tags. When the driver of the van reaches a delivery address, he will open the door and remove the
package from the van. Each time a door is opened or closed the RFID sensor will scan all the tags inside the
van and send their IDs, as well as the latest GPS location, as a stream of updates. Using this stream of
information, one can determine which packages (RFID tags) are removed from the van at which locations by
tracking the last known location of each RFID tag. However, since the sensors are not 100% reliable, it can
happen that a tag is not scanned by the sensor while it is still in the van. Therefore, the goal of the integration is
not only to track the last known location for each of the tags, but also track the update history and a list of all
location updates to allow applications to determine the reliability of the measurements. To achieve this goal, the
developer would like to read the data from the topic, and store the location update event time in data storage,
then he would like to flat map the location update into a new record for each RFID tag. Next, he would like to
group the updates by the RFID tag, and track both the last location for each tag, as well as aggregate a list of
all location update times for each tag. Finally, he would like to join both aggregates into a single record for each
RFID tag and write it to a data storage. The developer has the same experience and skills as the developer
from use case 1.

After prototype completion, the integrations for both of the use-cases were successfully implemented using
prototype. Mock data producers were used to simulate the production of IoT data as described in the use case.

CHAPTER 6. PROTOTYPE 76

The deployed integrations then consumed the input data, processed it, and produced output data as described
in the use case.

Technologies The prototype is designed as a standalone product. That is, it is not integrated into the
vendors currently architecture. This choice was made, as the vendors current architecture is complex, and
extending it would be beyond the scope of the prototype. Therefore, the prototype is not bound to the vendor’s
technology stack and any technology can be used to implement the prototype. The only restriction is that, as
per the requirements, the prototype should generate executable code compatible with Spring Stream Kafka
Streams. The Web UI is based on Spring Flo1, which is a framework by Spring to develop model-driven
web-applications. This framework provides a UI for dragging nodes onto a canvas, and connecting them, to
create a model. Additionally, Spring Flo provides APIs for validating and parsing the model and it provides an
API for defining the supported nodes. For the runtime processing, Spring Stream Kafka Streams is used, which
essentially means that Kafka Streams statements are generated, which can be embedded in a Spring Stream
Kafka Streams application to bind to the cluster. As discussed in Section 4.2.1.2 (de)serialisation needs to be
supported to perform operations on the records data structures. Typically, in Kafka Streams this is implemented
by (de)serialising from/to Java Object classes. However, for this prototype such an approach is not only
infeasible, since the schemas of the data are unknown, but it would also be cumbersome since generating the
code to transform JSON Objects is significantly less complex than generating the source and target Java
Object classes, and then generating logic to transform between these objects. Therefore, this prototype will
query JSON objects directly using JsonPath2. JsonPath can query JSON Serialized data structures directly,
without the need for parsing JSON into native data structures. The queries to read attributes from the data can
be inferred by the user based on a schema of the data. In addition to querying data from JSON, JsonPath also
allows for basic data manipulation for instance by renaming, adding or removing attributes. For advanced
JSON transformations, JSLT is used 3 which allows users to define complex transformations from and to any
JSON schema.

The development environment consists of the Intellij IDEA integrated development environment, which is used
to develop and deploy the Editor, and the Confluent platform. The Editor, as it based on Spring Flo is written in
Javascript and deployed using NPM (Node Package Manager) as a web application. The runtime applications
are written in Java and use Spring Boot to be executed. Finally, the Kafka cluster that the runtime applications
connect to is based on the Confluent Platform. Confluent Platform was selected, as it is an easy to deploy local
Kafka cluster with a built-in interface for managing statistics, logs, topics and more. There is no actual
dependency on the Confluent Platform, and the runtime applications would also work with any other Kafka
installation.

6.4 Results

6.4.1 Application design

The prototype is designed as an Angular.js application. Angular.js is a popular web application development
framework to build client-side JavaScript applications. Most Angular applications, such as this prototype, are
developed TypeScript, which is compiled to JavaScript at build-time. The application relies on the Angular
Spring Flo directives for all graphing functionalities. Spring Flo in turn uses Joint.js for rendering the graphs,
and provides a wrapper that can be used to easily embed the graphical editor, define model elements, and
retrieve model instantiations in an application.

The main function of the prototype is to embed the Spring Flo editor. This editor provides the UI for the palette
and the canvas to drag operations on, and connect them. Beyond the UI of the Spring Flo diagram editor, the

1https://github.com/spring-projects/spring-flo consulted 07-07-2020
2https://github.com/json-path/JsonPath consulted 07-07-2020
3https://github.com/schibsted/jslt consulted 07-07-2020

https://github.com/spring-projects/spring-flo
https://github.com/json-path/JsonPath
https://github.com/schibsted/jslt

CHAPTER 6. PROTOTYPE 77

Figure 6.4: Stream Editor Interface

UI contains logic for showing a configuration dialog to set the operation properties based on the operation
properties. It also contains a code viewer based on CodeMirror, which shows the generated code with
highlighting. Additionally, the UI contains logic for importing and exporting integration models. The export
functionality exports all operations and links on the canvas to a JSON file, and upon importing the import
functionality programmatically iterates over all objects in the JSON file to re-create the graph using the Spring
Flo Render service. The prototype extends Spring Flo using a Metamodel extension for the operation
definitions and code generation, and an Editor extension for the validation. Each of these extensions are
discussed in detail in the remaining sections. These extension functions are triggered directly from the UI,
since there is no Editor backend component in the prototype implementation as there is no need to commit the
integration model to a server.

6.4.2 Operations

The operations available to the user are defined in the Metamodel definition, which represent the ’Operation
Definitions’ application component. This allows operations the be defined in a centralised location, and in a
modular fashion.

Each operation has the following attributes:

• A name, which allows users to identify the operation.

• A group, which defines the kind of operation. For instance, whether it is a source, a sink, or an input-output
operation.

• A list of configuration options. Each configuration option has:

– A title, which allows users to identify a configuration option.

– A description, which allows users to understand what the option does.

– A default value, which is used if the user does not provide a value.

– A requirement, which indicates if the option is required or not.

– A value type, which is either String, Number, Enum, Code, or Boolean.

CHAPTER 6. PROTOTYPE 78

• An output type, which is a logical definition that allows the operation to compute its output, depending on
its inputs and its configuration options. The operation will return null, if it can not provide an output based
on its inputs or properties.

• A literal, which is the code to execute the operation. Similar to the output type, this is based on a logical
definition that generates the code based on the inputs and the properties.

This single definition is used throughout the application. The editor UI uses this to the operations in the palette,
and to dynamically generate a UI for the configuration options, see for instance Figure 6.5. The code generation
uses these definitions to generate code, and the validation uses the output types to validate the connections
between operations. Appendix E provides an overview of all the operations included in the prototype.

Figure 6.5: Example of operation configuration options

6.4.3 Validation

The first task of the validation component is to retrieve a sorted list of all instantiated operations. This sorted list
is based on the dependency graph between operations, and each operation on the list is at a lower position
that any of its inputs. To obtain this list, a small algorithm is developed. First, all the source nodes (operations
without input) are added to the the list. Next, for all non-source nodes, the algorithm will select a random node
of which all inputs are already on the sorted list and add it to the end of the list. This is repeated until all nodes
are added to the sorted list.

Now that the sorted list has been created, the validation component will iterate over the list and compute the
output for each operation based on its inputs and configuration, using the logical definition provided by the
operation definition. The validation component will then push the computed output back to the UI, if the output
can not be computed a validation error is pushed to the UI instead. Figure 6.6 shows how the output types and
validation errors are shown to the user, if a KTable (read-table) is provided to the group operation, a
KGroupedTable is the output, if a KStream (read-stream) is provided, KGroupedStream is the output, if a
KGroupedStream is provided to the group operation, an error is given since this type is not supported as input
for the group operation.

In addition to type validation, the validation component also validates whether all required fields have been met,
and whether an appropriate number of inputs is used with the operation. All operations require exactly 1 input,
with the exception of multi-operations (such as left-join) which support two inputs and sources which support
zero inputs. Import to remark is that there is no schema or semantic based validation, due to the limited scope
of the prototype. However, such a functionality could be implemented similar to the type validation.

CHAPTER 6. PROTOTYPE 79

Figure 6.6: Type validation

6.4.4 Code generation

The code generation component will re-use the methods from Validation used to created a sorted list of
operations, and to compute the output type for each operation.

The first step of the code generation is to generate the processing function itself. This function does is
described in more detail in subsection 6.4.5. In this step, the read-table and read-stream nodes are translated
to input parameters of the processing function. Additionally, Annotations are added to the method for
write-stream operations. After the function has been created, statements will be generated for each processing
node. First, the variable declaration is generated, based on the output type for the operation. Next, the variable
literal is generated based on the logic for generating literals embedded in the processor. Finally, the full
statement is added to the method body.

After all the statements have been generated and added to the body, the application will continue to generate
the Annotations, the Binder, the YML configuration file. For each write-stream operation, an annotation is
created to link the output topic to the YML file. Next, the Binder is generated for each read-table and
read-stream operation, and finally, the YML file is generated for all read-stream, read-table and write-stream.
Finally, if there are any read-store or write-store operations, a StateStore binder is generated to connect with
the store.

Code generation is live and instantaneous, this means that as soon as any edit to the integration model is
made this is immediately reflected in the code which is shown in the Stream Editor Interface. Figure 6.7
provides an annotated example of the code that is generated for a simple integration that reads a stream,
checks whether the record matches a certain criterion (’value’ field is higher than 5) and then outputs the
filtered stream to an output topic.

(a) Model

CHAPTER 6. PROTOTYPE 80

(b) Generated code

Figure 6.7: Code generation example

6.4.5 Generated code

6.4.5.1 Kafka Streams

Kafka Streams is introduced from a high-level perspective Section 4.2.1.1. In this section, the technical details
of Kafka Streams will be discussed. Overall, Kafka Streams is a API for processing incoming streams of
key-value records. Core to Kafka Streams is the concept of a KStream, a topic can be read as a KStream and
then operations can be applied to create a new, modified, KStream from a source KStream. An example of
such a high-level operation is filter(), when calling filter() on a KStream with a specific condition, Kafka Streams
will create a new KStream will only those records that match the filter condition. Similar to filter() there are
many other stateless operations, such as map() that allows to transform one record into another record, that
work on a per-record basis.

In addition to stateless operations, Kafka Streams also offers State-full operations, for instance one can create
a KTable from a KStream, that tracks the latest value for each key. Such a KTable can then for instance be used
for joining KStreams, or for detecting changes. Essentially, a KTable could be conceptualised as an indefinite
aggregation of a KStream. In addition to KTable aggregations, Kafka also offers other built-in aggregations,
such as count() that simply counts the number of records for a key, but also custom aggregations that allow the
user to specify how an aggregate value should be computed based on a current state, and a new incoming
object. Each of these statefull operations uses a state store. Such a state store is created automatically for
some operations, such as count and KTable creations, but can be created and managed manually as well.

CHAPTER 6. PROTOTYPE 81

Contrary to a KTable, that is only a view a of a KStream, a state store is a true database-like service, that
allows storing and retrieving values based on their keys. While state stores are always used for local
processing, they can be persisted in Kafka using a changelog stream for fault tolerance, and state stores can
also be made public such that the entire application state can be queried store4. KTable’s for instance are by
default internal, and therefore they can not be accessed as a key-value store. While this is not an issue for
native KTable operations such as joins due to grouping of keys, it may be problematic when one needs to
retrieve individual keys from a KTable. To address this, one can explicitly materialize a KTable to make it
accessible as a read-only, key-value store.

Kafka Streams uses various subtypes of KStream and KTable, to reflect certain attributes or restrictions over
the object. For instance a GroupedKStream, or a WindowedKStream, to represent groupings and windows of
time. Such subtypes may be required for certain operations, such as rolling aggregations or joins, and APIs are
provided to instantiate these sub-types, such as the .window() and groupByKey().

In addition to the data container, such as a KStream, one should provide the key and the value type. This is on
a per-operation basis, and holds also for the state stores. As discussed in Section 4.2.1.2, Kafka itself only
stores raw bytes. However, these raw bytes are unsuitable for processing and should be translated to more
meaningful data-types such as Integers, Strings, and Java Objects. When reading a stream, the user should
define the key and value types, as well as the SerDes (serializers and deserializers) for those types. During
processing, Kafka Streams will infer the new key and value types based on the operation. When writing back to
a topic, or when using public statestores, the user should provide the SerDes for the key and value types.

With typical Kafka Streams use-cases, users will obtain Java Objects from a stream, manipulate these objects,
and then write Java Objects back to Kafka. This approach requires an initial upfront investment of creating the
Java Object classes, the schemas and SerDes for these objects, but it results in compatibility guarantees and
ease of development, as it is easier for developers to write code to manipulate typed Java Objects rather than
un-typed JSON objects. However, as discussed in Paragraph 6.3 the prototype will instead work directly with
JSON Objects, as schema information is not available and generating Java Objects would result in significant
overhead.

6.4.5.2 Spring Stream Kafka Streams

Developing a Kafka Streams application requires significant boilerplate code to initialize streams and tables
from topics, and to set up state stores and interactive query services. Additionally, as with any Java application,
Kafka Streams applications are complex to run and configure. The Spring framework offers a wrapper around
Kafka Streams to address these concerns, and facilitate the development of Kafka Streams applications.

Spring Stream Kafka Streams conceptualises the development of Kafka Streams processors as developing
simple Java functions. Each processor function can have one or more inputs, for instance a KStream or KTable.
Spring Stream will bind the input variables to actual Kafka topics using given properties such as the SerDes.
Developers can configure the binder properties in a separate configuration file, rather than having to hardcode
these properties in their code. In the body of this function, users can use any of the Kafka Streams APIs to
implement stream processing functions. In addition to binding input Streams and Tables, Spring Stream can
also bind to state stores and query services. And finally, Spring Stream Kafka Streams also provides benefits
of Spring Boot, allowing users to easily run their stream processing applications.

4https://docs.confluent.io/current/streams/developer-guide/interactive-queries.html consulted 01-08-
2020

https://docs.confluent.io/current/streams/developer-guide/interactive-queries.html

CHAPTER 6. PROTOTYPE 82

6.4.5.3 Runtime Scalibility

A key requirement for stream processing integrations is that they should be scaleable, to support large
amounts of throughput. Horizontal scalability is guaranteed through the use of Kafka Streams 5. Given that the
Kafka Streams DSL is used as documented, Kafka Streams guarantees fault-tolerance and scalability for the
integration for any stream processing application using the framework. This means that processor instances
can be added or removed at any time to change the stream processing capacity without any data loss or
downtime. Kafka will automatically distribute incoming records across all instances and for statefull operations,
processors work together using shared state environments to maintain a collaborative, fault-tolerant state using
intermediate topics for statefull operations.

Behind the scenes, Kafka uses partitioning to ensure an even distribution of data and to efficiently execute
statefull operations. By default, partitions are randomised, however, some operations require coordinated
partitioning. For instance aggregations require partitioning based on the key, and it is up to the developer to
ensure that the keys are properly distributed to allow for efficient scaling. Additionally, scaling requires the
proper use of state stores to and partitioning in custom operations, this can however be enforced through
proper code generation following the recommended coding practices of the Kafka Project. Throughout the
prototype, it has been ensured that only valid DSL and Processor code is generated, such that the scalability
features of Kafka Streams can be utilised. However, for certain operations it is up to the end user to use them
properly ensure scalability. For instance, with the grouping operation, the user should to group by attributes that
are evenly distributed such that the records can be evenly distributed among all the processor nodes, rather
than all records being processed by one node 6.

5https://www.confluent.io/blog/elastic-scaling-in-kafka-streams/ consulted 03-08-2020
6https://blog.newrelic.com/engineering/effective-strategies-kafka-topic-partitioning/

https://www.confluent.io/blog/elastic-scaling-in-kafka-streams/
https://blog.newrelic.com/engineering/effective-strategies-kafka-topic-partitioning/

Chapter 7

Validation

This chapter describes the validation process for this research. During the validation, models of the artifact are
validated in a model of the problem context to produce predictions about what the effects of the artifact would
be when it would be implemented in the actual problem context. This chapter first overviews a methodology for
validation, then the observed effects and finally concludes with the mechanisms and conclusions with regard to
the effects of the validation. Together with the discussion in Chapter 8 this chapter addresses research question
5.

7.1 Methodology

7.1.1 Dimensions

A key part of validation is to determine the dimensions on which the design should be validated. For conceptual
models, such as the design presented in this thesis, many dimensions can be identified for evaluation. For
instance, Nelson et al. identified over 20 different quality attributes for conceptual models [148], such as
maintainability, usefulness, semantic quality, and more. Naturally, it is impossible to identify and target all
dimensions. Overall, two key different aspects should be addressed; does the proposed platform really work?
And can the design help organisations to build such a platform?

To evaluate the first aspect, the prototype is evaluated using the Technology Acceptance Model (TAM) from
Davis [149]. The TAM is a widely used framework to evaluate new information systems from the perspective of
end-users. The TAM provides insight into three key questions: Would end users actually use the system? How
usefull do end-users perceive the system to be? And do end-users consider the system to be easy to use?
Therefore, applying the TAM will help to assess whether the concepts demonstrated in the design provide value
to end-users when they are designing IoT integrations.

To validate the second aspect, the architecture is validated using architectural quality attributes. Timm et
al. [150] conducted a structured literature review to survey the quality principles of Enterprise Architecture and
applied it to a case study using ArchiMate. They found validity, relevance, economic efficiency, clarity,
systematic model structure, and comparability to be the most important principles. However, Timm notes that
the use of Archimate ensures that the quality principles for systematic model structure and comparability are
properly supported. Therefore, given that the architecture is valid, these principles do not need validation.

The dimension of validity is defined by Timm as the degree to which the model matches the reality [150]. This
principle, especially from the perspective of semantic correctness, is complex to evaluate for external experts
since they must trace the validity of the model to the concepts presented in the thesis, rather than to an existing
implementation of an architecture. Instead, semantic correctness of the design has been ensured by providing
traceability throughout the design chapter. Syntactical correctness is also not considered explicitly, since the

83

CHAPTER 7. VALIDATION 84

model has been designed according to the latest ArchiMate 3.1 specification using the ArchiMate tool which
automatically checks for syntax errors 1. Therefore, the dimension of validity will not be considered explicitly.
However, during the validation, the experts can still provide feedback on any possible syntax or semantic
issues if they emerge when reviewing the design for clarity and usability.

The dimension of relevance is best evaluated by practitioners. That is, it is best evaluated by the architects
within the problem context that are implementing the architecture. With relevance, the validation focuses
especially on usefullness and completeness vs. conciseness. Usefulness reflects that the model is relevant
and beneficial for the participant, while completeness v.s. conciseness evaluates whether the model contains
all sufficient information while also not providing too much information.

The dimension of clarity reflects the ability of stakeholders to comprehend the model. Comprehensibility is key
since practitioners need to be able to understand the architecture to adapt, implement and review it.

The dimension of economic efficiency primarily reflects the cost-effectiveness of the modelling process itself
and Timm states that the modelling should have a clear purpose and aim to ensure its cost-effectiveness. The
quality attribute of this dimension that best aligns with the research goal is flexibility. Flexibility reflects the
ability of the model to adapt to environmental changes. This includes for example the ability to apply to model
in different, but similar contexts, such as in different organisations with IoT integration needs. Therefore, this
attribute reflects how flexible the model is, to be re-used in different contents. This is also referred to as the
external validity of the model.

7.1.2 Techniques

To obtain the value for each of the aforementioned dimensions, two different validation methods are used:
single-case mechanism experiment and expert opinion. Figure 7.1 provides an overview of the dimensions,
and the methods, artifacts and end users used to validate the dimension. Both methods evaluate the effects
that the artifacts produce in the problem context.

For validating the dimensions from the TAM, single-case mechanism experiments are used. According to
Wieringa, such experimental case studies can be used in validation research to evaluate the cause and effect
behaviour of the object of study, or more simply put, for testing the prototype [12]. To evaluate architectural
quality dimensions from Timm et al., the expert opinion validation method, as described by Wieringa, is
used [12]. During expert opinion validation, the experts will imagine how the artifact will interact with the
problem context. For instance, experts are asked to predict the benefits and disadvantages of the design for
end-users. For some architectural quality attributes the interaction is less relevant and these attributes are
measured directly. For instance, experts are asked to evaluate the comprehensibility of the design directly,
rather than evaluating the effect of the comprehensibility of the design.

Validation methods that warrant a direct comparison to the effects caused by alternative solutions are not
employed during this research. For the expert opinion, a comparison to other reference architecture for
model-driven stream processing tools is unfeasible, since these are non-existent (Section 8.1). The same holds
for the single-case-mechanism experiment since the prototype is designed to enable new use-cases that
participants cannot, or hardly, complete using their existing methods and tools. Future research could employ
statistical difference-making experiments to evaluate the performance of instantiations of the design (such as
the prototype) to similar tools, such as identified during the literature review. However, such a performance
comparison is beyond the scope of the current research.

The remainder of this chapter will detail how the validation methods are applied in this research. For both
methods, a semi-structured interview is used as an instrument to measure the effects. To reduce confounds,

1Archi User Guide retrieved 17-09-2020 from archimatetool.com

https://www.archimatetool.com/downloads/Archi%20User%20Guide.pdf

CHAPTER 7. VALIDATION 85

Quality attribute Method
Artifact
validated

Participants

Intention to Use [149] Single-case
mechanism
experiment

Prototype End-usersPerceived Ease of Use [149]
Perceived Usefulness [149]
Usefulness (Relevance) [150]

Expert opinion Architecture EA Experts
Completeness vs. Conciseness [150]
Comprehensibility [150]
Flexibility [150]

Table 7.1: Evaluation method per quality attribute

each dimension is observed using multiple questions, both open and closed. To account for socially desirable
remarks or inability of the expert to attribute the effects to the mechanisms, measures are put in place to
explicitly survey for disadvantages, points for improvements and for the mechanisms causing the effects.

7.1.2.1 Single-case mechanism experiment

During the single-case mechanism experiment, the prototype is validated with three participants that full-fill the
slot of a normal operator. This validation consists of a hands-on session with the prototype, during which each
participant will implement three integration use-cases using the prototype.

All participants (Male) have experience with developing messaging-based system integrations. Two
participants have over 5 years of experience building integrations, and one participant has 2 years of
experience. Additionally, all participants have some familiarity with the concepts IoT and event streaming, the
participants had no previous experience event stream processing, or building actual stream processing
integrations. Some familiarity with these concepts is important since the normal operators of the system will
also need some familiarity with these concepts to understand the use cases and implement them. Validating
the prototype with users that are not familiar with IoT use cases or the concept of event streaming would lead to
sub-optimal results as the users may not be able to relate to, and understand, the use cases.

The validation protocol for the prototype validation is as follows:

• Introduction (10 minutes): During the introduction, the participant is introduced with the concepts of
event stream processing. This introduction compares event stream processing to messaging, and then
introduces some of the operations (’blocks’) available to the participant. For each of these operations, it is
explained what the operation does, what inputs it supports, and what output it will produce.

• Example demo (10 minutes): During this activity, the prototype is explained and demoed. This demo
ensures that the participant knows how to use the prototype and that he has a basic understanding of
what the prototype is capable of.

• Hands-on with use cases (30-60 minutes): During this hands-on session, the user uses the prototype
on his laptop to address an event stream processing use case. Each use case consists of a context
description, describing why processing is needed, as well as a description of the input and expected
output formats of the stream. The following use cases are implemented by the participants:

– Enrichment - During this IoT use case, the participant is asked to enrich a stream of IoT data by
joining the stream with a table on a specific ID.

– Aggregation - During this IoT use case, the participant is asked to perform an aggregation over a
stream of data to retrieve the average value of the stream of IoT data grouped by a certain attribute,
over a window of time.

CHAPTER 7. VALIDATION 86

– Transform & Filter - During this IoT use case, the participant is asked to clean a stream of IoT data
by filtering irrelevant data, and transforming from the input data format into a stream of alerts with
a fixed schema. This use case could be implemented with both stream processing and messaging
and could therefore be used to isolate the effects of the editor from the effects of the streaming
pattern.

• Feedback session (20 minutes): During the feedback, the experience of the participant with the
prototype is obtained using a structured interview, as per the protocol and questionnaire in Appendix F.1.
As was explained in Chapter 6, the prototype covers the requirements of one of the key stakeholders; the
integration developer. Therefore, this validation focuses on confirming whether the requirements and
goals for this stakeholder have been met. More specifically, R1 and Goal 4. The interview questionnaire
has several different questions to assess whether or not these requirements are met. First, the
questionnaire assesses whether the participant was able to use the prototype to implement the use
cases, and whether or not this would have been possible using alternative approaches such as
messaging and manually coding the integrations. Next, the questionnaire assesses the three key
dimensions of the Technology Acceptance Model; the intention to use, the perceived usefulness and the
perceived ease of use of the proposed design. Moreover, the questionnaire evaluates how these ratings
are supported by the design, by assessing why the participant would recommend the prototype, and why
the participant believes that the prototype would, or would not, contribute to IoT use-cases. Finally, the
questionnaire provides room for general thoughts on the prototype.

7.1.2.2 Expert opinion

During the expert validation, the design is validated with three different experts. One expert (Male) is a CTO
of an integration platform, seeking to extend the platform with IoT stream processing support. This CTO has
over 20 years of experience in software architecture within the problem context. The second expert (Male)
is an associate professor, with over 25 years of experience in architecture for distributed systems and model-
driven engineering. And the third expert (Female) is a professor with expertise in Enterprise Architecture, and
a contributor to the Archimate specification with more than 15 years of experience in the field of enterprise
architecture. This validation consists of an introduction to the problem context, a presentation of the design, and
a feedback session. The full validation protocol for the prototype validation is as follows:

• Introduction (10 minutes): During the introduction, the expert is introduced to the problem context and
the requirements of the design. The problem context describes the problem context as observed in
Chapter 2. That is the challenges that practitioners encounter when manually developing integrations.
This is to ensure the stakeholder can imagine the use of the design in the proper context.

• Design (20 minutes): During this activity, the design is shown to the expert. To this end, all the designs
of Chapter 5 are shown as slides alongside a verbal explanation of the design, based on the explanations
in the Chapter.

• Feedback session (20 minutes): During the feedback session, the expert is asked to imagine the
prototype being applied in the problem context. Some experts can apply this to their own problem
context, and other experts may use the problem context sketched in the introduction. The feedback is
obtained using a structured interview, as per the questionnaire described in Appendix F.2. Three generic
questions are used to determine the expertise and background of the expert. Next, the overall
anticipated effects of the artifact in the problem context are evaluated. The questionnaire addresses
positive effects, negative effects and asks the expert what he or she would add, remove or change in the
design. Finally, all of the architectural quality dimensions are evaluated. Each of the dimensions is
validated using at least one scalar question, and one open question for elaboration.

CHAPTER 7. VALIDATION 87

7.2 Results

7.2.1 Single-case mechanism experiment

All the results are discussed in Appendix F.2. Table 7.2 provides some of the overall findings per participant.

Participant 1 Participant 2 Participant 3

Cases
completed

3/3 3/3 3/3

Ease of use 4/5 3.67/5 4/5
Usefulness 5/5 4/5 4.25/5
Challenges • Understanding the

operations
• Understanding the

operations
• Understanding

streaming concepts
• Syntax issues

• Understanding the
operations

• Understanding
streaming concepts

Feedback + Instant type validation
+ Categorisation of operations

in input, output, etc
+ Input quantity of operations

is visualised
+ Operation options are

visualised
+ Overall intuitive and easy to

use
- Learning curve for operation

dependencies (I/O
compatibility)

- Learning curve for what
operations do and what
output they produce

- Formulating queries and
transformations is complex

- Blocks could be suggested to
the user based on current
flow

+ Editor works fluently
and the interface is
clear

+ Applications and
options appear to
be endless

+ All operations
relevant for stream
processing appear
to be there

- Look and feel could
be improved

+ Editor is clear
+ Editor is in line with

how consultants
current model
messaging based
integrations

+ Simple operations
that allow you to
build complete
integrations

+ Complete as-is
- Frequent

combinations of
operations could be
made available to
the user as
composite
operations

Would
recommend

5/5 4/5 4/5

Table 7.2: Key results per participant

All use cases could be completed by the participants in the given time-span, using the available information.
With respect to the completion of the use-cases in the prototype, this section will first discuss the challenges
faced, then how the participants evaluate prototype compared to alternative solutions, then the evaluations
from the TAM and finally perceived ability of the prototype to support IoT use-cases.

Overall, the three kinds of challenges were identified while implementing the use cases:

• Understanding the operations: Understanding what an operation requires as an input, what it does with
that input, how to configure it, and what it outputs.

• Understanding streaming concepts: Understanding that processing happens over a stream of key-value
pairs, and that therefore processing can be statefull and either over individual records as well as groups
of records.

CHAPTER 7. VALIDATION 88

• Syntax issues: Schema-related issues related to querying data, or ensuring the correct output format.

The first challenge was the most common and was faced by all three participants during the first two use cases.
One participant also noted this challenge for the third (messaging) use case, while the remaining participant did
not experience any challenges here. The second challenge was noted by two of the participants, during the
first use case, and for one of these participants also in the second use case. The third challenge was noted by
one participant, who noted that querying data was complex since mistakes could be made easily as the editor
did not provide any validation towards the schema.

When asked whether the use-cases could also be completed using any other methods or tools, all participants
indicated that they would have been able to build all use cases in messaging. However, they all agreed that for
stream processing use-cases (case 1 and 2) it would be significantly more complex to do this in messaging and
that workarounds would be needed, such as writing all data to a database. One participant quantified that it
would take between 5 and 10 times longer to complete these use cases in messaging-based tooling compared
to the prototype. Another participant also noted in addition to the integration taking longer to be built, he would
also expect poor performance for messaging due to the overhead and mediocre scalability. Overall, all
participants agreed that the messaging pattern was simply not suitable for the first two use cases, except for
one participant in one use case. All of the participants did recognise that use case 3 would have been equally
possible with messaging, as with stream. processing. One participant also noted that it would be technically
possible to build the integrations as a standalone application, using no/low-code development platform Mendix,
however, he also stated that this would involve workarounds as well and that this would be a sub-optimal
solution with quite some drawbacks.

All participants agreed that the prototype was easy to use, with an average rating of 4 out of 5. Usefulness was
rated at least 4 out of 5 by the participant, with one participant even rating it a full 5 out 5. As expected per the
TAM, they also showed a high-intention to use the framework during their work, as well as recommending it to
colleagues. In their motivation for using it or to recommend it to colleagues, users pointed out that they would
prefer to use the prototype due to the better support for use-cases where streaming patterns are preferred over
messaging patterns. For instance with high-throughput processing (participant 1 & 3), use-cases involving
retention (participant 1), use-cases for publish/subscribe (participant 1 & 3), use cases for aggregation
(participant 1) or when reading/writing from streams (participant 2).

All of the participants agreed that the system would increase the ability of their organisation to support IoT
use-cases. Participant 3 called IoT "a textbook example" of stream processing, and that the features showed in
the prototype definitely have value for supporting IoT. Participant 1 said that the prototype would make it
significantly easier to "unlock customer data and put it to use" because the stream processing functionalities
offered by the prototype are much more suitable for dealing with such integrations than the current messaging
toolset.

Finally, the survey concludes with the overall positive feedback, as well as points for improvement. These
results are listed per participant in Table 7.2. Another finding of both participants 1 and 3 was is that they
appreciated how easy it was to build an integration using simple operations, compared to the overhead that is
currently involved with developing messaging-based integration. While they still would prefer the existing
messaging-based platform for complex messaging use cases, they would prefer and recommend the prototype
for simple messaging operations (such as use case 3) due to how quick it was to use.

7.2.2 Expert opinion

All the results are discussed in Appendix F.2. Table 7.3 provides some of the overall findings per participant.

CHAPTER 7. VALIDATION 89

Participant 1 Participant 2 Participant 3

Expertise Model-driven
engineering

Integration Platforms Enterprise Architecture

Comprehensive 4/5 4/5 5/5
Conciseness 3/5 5/5 4/5
Usefulness 5/5 4.67/5 4.33/5
Comprehensible 4/5 5/5 4/5
Flexibility 4/5 4/5 4/5
Feedback + Offers integration

development at the
level of the user

+ Meets specific user
requirements

+ Design is complete
and generally
applicable

+ Right choices in
functionality,
methodology and
generalisation

+ Comprehensive for
practitioners

- Archimate design
not separated from
meta-modelling
design

+ Can be used as a
supplement to
implement event-stream
processing in existing
architecture

+ Properly applies the
concept of MDE

+ Provides architectural
directions to support
architectural decisions

+ Re-usable among
practitioners seeking to
implement a solution for
building integrations

- Dependency of
integration on
deployment and runtime
could be reduced.

+ Editor is clear
+ Facilitates data

management
+ Facilitates

operationalisation of
business processes
based on IoT

+ Facilitates IoT
integrations in an
architecture

+ Flexible, allowing
adaptable integrations

+ Architecture is complete
as-is

- Requires expertise in
data integration from
end-users

- Prototype does not yet
cover the full design

- Code generation design
is complex for
non-technical people

Remarks • Only practice will
show whether all
design choices are
correct

• Problem domain is
complex, which
inevitably impacts
overall conciseness

• As a consequence of
conciseness, work
remains for actual
implementation

• Prototype could be
made more accessible
for non-experts.

• The design could use
further validation with
real-life implementations

Would
recommend

5/5 4/5 4/5

Table 7.3: Key results per participant

With the advantages, the CTO, EA, and MDE expert stressed the proper application of MDE onto the domain of
stream processing as one of the major benefits of the design. That is, the design properly applies this concept
to allow domain-users to build integrations, without the need to concern for how integrations are coded, built
and deployed. The EA expert extends on this by comparing the integration model to a business process model,
where each operation in the model represents the business rules in the process. This allows users to actively
implement business processes to act upon real-time data streams. Both the EA expert and the MDE expert list
the flexibility of the design as a benefit. The MDE expert states that the development of the prototype inevitably
involved some design decisions that exclude specific requirements, the architecture itself is generic and can be
adjusted to the specific use cases of the practitioners. Additionally, the CTO stresses the ability of the design to

CHAPTER 7. VALIDATION 90

identify architectural components that need to be added or changed, by breaking down the total solution of
event stream processing into sub-problems that can be analysed and compared to an existing platform. The
CTO also states a high degree of alignment between their current architecture and the proposed design. He
argues that the design can be used as a supplement to the current architecture, to assist him in adding event
stream processing support to the platform. Also the EA expert and MDE expert acknowledge the value of the
design to help practitioners add event stream processing support to their platform.

Concerning the disadvantages, the MDE expert states that they will show during validation in practice with
more real-life use cases. He states that making design decisions, either in the design or the prototype,
inevitably impact the requirements that you can satisfy and that only validation across a broad range of use
cases can determine what the limitations are. Also, the EA expert stresses the need to implement the design in
the problem context. The CTO reported the design deploying integrations as a disadvantage. The initial design
described how integrations are only pushed to the runtime on deployment, while the CTO suggested that only
deployment instructions should be pushed, allowing the runtime to fetch the actual integration as needed. The
CTO argued that this change reduces the dependency of the integration on the deployment process, this allows
the runtime to keep its integrations up to date without the need for re-deployment or model changes. The EA
expert also states the required expertise of the end-user as a limitation. The prototype currently targets
integration experts, excluding novice users without technical experience (i.e. a Farmer that uses IoT), resulting
in a learning curve.

With regard to suggested changes, none of the experts had any substantial suggestions. The MDE expert
states that the right choices appear to have been made in the functionality, methodology and generalisation
and that no changes appear to be needed. The CTO also did not propose any changes. The EA expert also did
not propose any changes to the design but did suggest to adapt the prototype to increase usability towards
non-technical people as the prototype matures.

All participants rated comprehensiveness high, with a 4 or 5, and had no further remarks on how to improve
comprehensiveness. The CTO stated that there was an excellent balance between comprehensiveness and
conciseness, rating conciseness with a 5 out of 5. The EA expert and the MDE expert rated conciseness lower
with a 4 and a 3 respectively. Both argued that, for a software development project, the conciseness was as
expected but that the overall conciseness is inevitably sub-optimal due to the complexity of the problem
domain. According to the MDE expert, the problem domain requires an exhaustive design with many facets, for
instance covering all phases in the lifecycle as well as all the layers in the architecture.

Usefulness was rated with a 4 or higher by all participants. The CTO stated that, unless someone would
provide a very good reason not too, he would certainly implement the design. As a suggestion to improve
usefulness, the EA expert would recommend expanding the scope of the prototype to fully reflect the design,
since such a prototype would be able to better demonstrate and sell the design to practitioners. The CTO noted
that implementing the design would still take some effort due to the high-level nature of the design, but also
acknowledged that this was an unavoidable side-effect of conciseness.

The CTO rated comprehensibility with a 5 out of 5, while the EA expert and MDE experts rated it a 4 out of 5.
The EA expert stated that the code generation component of the prototype was complex to understand due to
the non-technical nature of the EA domain the expert was operating in, but that the design itself was very
comprehensible. The MDE expert stated that the Archimate model could be separated from the
code-generation / metamodelling parts of the design. This, since the typical projects the expert was involved in
only featured the code generation approach with a clear distinction between the metamodels, the mapping and
other MDE elements of the design. However, the expert acknowledged that it would be hard to present this
design as such since Archimate is selected as a primary view and since the combination of both views is tough.

Finally, all experts rated the flexibility of the design with a 4 out of 5. All agreed that the design would be

CHAPTER 7. VALIDATION 91

re-usable among those practitioners seeking to implement a platform for building integrations, making the
design less suitable for practitioners seeking to build just a few integrations. The CTO noted that the concepts
presented in the design are re-usable, independent to their specific product and platform. The EA expert even
concluded that this design would be suitable for any business seeking to implement a large range of
integrations.

7.3 Conclusion

This section first discusses the conclusions from the end-user perspective, then from the expert perspective and
finally overview is presented based on both perspectives.

End-users The single-case mechanism experiments show a high intention to use, a high perceived ease of
use, and a high perceived usefulness of the design. Users attributed this to the intuitive and simple
model-driven design of the prototype, that allowed them to build complex integrations in less time. This
efficiency increase holds especially for stream processing integrations. Participant 1 quantified even that it
would up to 10 times longer to build the same integration using a messaging-based solution. And two
participants even indicated they would even prefer the design for messaging-based integrations. Additionally,
completeness of the set of operations and the type validation were also reported as mechanisms contributing
to the high intention to use.

Some minor challenges were identified during the use-cases. All participants found it initially challenging to
understand what the operation exactly did and what input they required. This is as expected since the
prototype does not provide any extensive help tooling or documentation about the operations other than the
provided introduction. In production implementations, this challenge could be alleviated using proper
documentation for each of the operations, as well as a built-in help tool that shows the expect in- and outputs.
In addition to understanding the operations, two users initially found it challenging to understand some of the
concepts involved in stream processing. Again, this would be as expected for users without previous
experience in stream processing, and this could be addressed using proper training. Moreover, both challenges
could also be addressed through experience, as all users were eventually able to complete all use-cases within
20 minutes. Suggestions primarily included low-level feedback, such as improvements to the overall look and
feel, adding documentation for operations, adding composite/recommended operations, and including
schema-based validation. Fortunately, these suggestions do not expose any faulty design assumptions in the
prototype but are rather valid suggestions to further refine the prototype or to take into account for production
implementations. This holds especially for the suggestion on schema-based validation. This attribute is
covered extensively design to allow for easier schema-based queries, validation, and transformations, but could
not be included in the prototype due to the set scope and time-frame.

Experts The validation indicates that the design has a high architectural quality, which can be attributed to
the high ratings for key attributes of the design such as usefulness, flexibility and comprehensibility and the
good balance of comprehensiveness v.s. conciseness. The non-practitioners noted a slightly lower rating for
comprehensibility and conciseness than the practitioner, which can be attributed to the high complexity of the
problem domain and the contrast with the experts’ typical research projects. Nevertheless, all of the experts
found the overall comprehensibility and conciseness of the design to be more than sufficient. The high
usefulness can be primarily attributed to the application of MDE. All participants acknowledged the value of
MDE in the problem domain, and all found that MDE was properly used within the design to address the user
requirements. Furthermore, participants valued the designs for its ability to assist practitioners in implementing
such a model-driven platform for stream processing. Participants attributed this to the high level of architectural
guidance and support provided by the design. The CTO stated that the design allows the identification of
components that need to be changed, by breaking down to the total solution into sub-problems that can be
analysed and compared to a current platform. Finally, flexibility is also rated high, with all experts concluding
high-re-usability for any practitioner seeking to build a platform for stream processing integrations.

CHAPTER 7. VALIDATION 92

There was no substantive feedback related to the design choices, with one exception. The initial design
described deployment in one step, sending the integration executable directly to the runtime. However, CTO
suggested a two-step approach towards deployment to reduce dependency on the deployment process for
runtime updates. With this approach only deployment instructions should be sent to the runtime, allowing the
runtime should retrieve the integration executable from the backend. Based on this feedback, the initial
deployment design has been adapted into the current design described in Section 5.3.4. The remaining
feedback by the EA and MDE experts concerned the maturity of the prototype (to cover a larger part of the
design and to be more accessible) and further validation of the design by implementing it in the problem
context. Both are valid suggestions for future research, however, they are beyond the scope of this thesis.

Overview Overall, the results from the single-case mechanism experiment and the expert opinion are
positive as would be expected by the concise use of proven methodologies and the close involvement of
stakeholders throughout the design and development process. Furthermore, the validation results were
consistent among participants, demonstrating low variability. The list below overviews the key findings from
both validation methods:

• The design is rated high for perceived usefulness. End-users found the platform to be very usefull to build
stream processing integrations due to its complete set of stream processing operations and easy to use
model-driven interface. Experts found the design to be very useful in supporting practitioners to integrate
such a platform in their architecture, as a result of the architectural directions, and detailed architectural
breakdowns of the platform components provided by the design.

• As a consequence of this high usefulness, end-users showed a high intention to use the design during
their work and to recommend the design to colleagues. Experts and practitioners showed a high intention
to adopt the design or to recommend the design to practitioners.

• Key architectural quality attributes, such as the comprehensibility, flexibility and conciseness of the design
are rated high by experts, indicating good architectural quality of the design, and good re-usability among
practitioners.

• No key issues in the design or prototype were identified, indicating that no fundamentally incorrect design
choices were made. However, one substantive suggestion for the deployment process was made, after
which the specific design for this process was improved.

• Both the experts and the practitioners noted a modest learning curve for end-users, which was attributed
to the low maturity of the prototype. While the learning curve was small the experts did note opportunities
to decrease it. For instance, through increase accessibility and adding documentation or help tooling in
future revisions of the prototype.

• The experts agreed that further validation of the design, through implementing the design in practice,
would be a crucial next step. This includes expanding the scope of the prototype to cover the complete
design, and increasing the overall maturity of the prototype. This would allow for a better demonstration
of the design towards practitioners, validating the design itself, and for supporting practitioners in low-level
design choices through the examples in the prototype implementation.

Chapter 8

Discussion

This chapter evaluates the contributions of the design by comparing the design to alternative solutions and by
relating the design to the challenges identified during the problem investigation.

8.1 Comparison to alternatives

This section provides a comparison of the design presented in this thesis and existing solutions for stream
processing platform development. In particular, the prototype and the design are compared to StreamPipes,
aFlux and QryGraph which are alternative solutions found during the literature review. StreamPipes was found
to be the overall best solution for stream processing currently available. aFlux was found to be the best of all
solutions for generating Java code. Lemonade was found to have the best approach for generating code while
also providing schema-level validation. Section 4.2.2.2 details how StreamPipes, aFlux and Lemonade compare
to all identified alternatives.

Tool
Deploy &
manage

Validation
support

Code
generation

Embeddable Framework

StreamPipes Yes Ontology No Yes1 Flink, Spark, JVM
Lemonade Yes Schema Yes, build-time No Spark
aFlux No Order Yes, build-time No Flink, Spark
Prototype No Type Yes, instantly Yes Kafka Streams

Proposed Design Yes Schema Yes Yes Any

Table 8.1: Comparison

The most striking difference between the proposed approach and the available alternative solutions is the level
of abstraction. While the proposed design can be used as a reference to build a stream processing platform,
such as the prototype, current research only provides concrete implementations. None of the surveyed
approaches offer a reference design, which is essential for complex use-cases. For instance, given that it
meets your requirements, StreamPipes offers a ready to use, integration product. However, if you seek to
implement an integrated stream processing solution, an off the shelf product like StreamPipes is hard to adapt
or integrate. The proposed design targets platform architects seeking support for designing an integration
platform. The design allows these practitioners to design a platform for their specific needs, and integrate it
within their enterprise architecture. For instance, to add stream processing capabilities to an existing
integration platform to allow for centralised management of all integrations patterns. The lack of reference
designs in the domain of integration in general, and the need for further research in this area, was established
earlier in Section 2.1.2.9. Solutions like aFlux do allow for further integration and customisation since these
solutions only cover the design phase and allow for freedom regarding the implementation of the management

1Scaleability in JVM mode is unknown

93

CHAPTER 8. DISCUSSION 94

and deployment of integrations. However, since no reference design is provided on how to implement these
processes, this still leaves the associated challenges for practitioners unaddressed.

Table 8.1 provides a comparison between the proposed design and the aforementioned alternatives. However,
a comparison between the alternatives identified and the conceptual design does not always hold since
concrete implementations inevitably involve design choices imposing restraints. Therefore, the table overviews
both the proposed design as well as the prototype, as an implementation of the design in the problem context,
to allow for a fairer comparison to alternative solutions. The table compares the designs based on the following
attributes:

• Validation: The proposed design provides a detailed approach towards supporting schema-level
validation as well as type-level validation. The prototype demonstrates the feasibility of this approach, by
showing how types can be computed dynamically in a dependency tree, which can also be applied to
schemas. While other tools do provide semantic support, such as Lemonade and StreamPipes,
semantic support is still rare among the solutions and even absent for tools that generate Java code
and/or embeddable processors. Ontology level semantics, such as found in StreamPipes, are not
required by the design, because the costs for implementing ontology-level semantics are not expected to
outweigh the benefits anticipated in the problem context (Section 5.3.3.3).

• Embeddability: Virtually all of the solutions generate code to be executed on a large multi-tenant cluster
and do not support the development of embeddable integrations (as per R4). While the difference between
generating embeddable code and non-embeddable code may seem trivial, this has a vast impact on the
life-cycle of the integration since embeddability implies that the platform needs different tools for managing,
scaling and deploying integrations.

• Deploy & Manage: Integration deployment and management is covered only by the more mature
platforms, such as StreamPipes and Lemonade. Since deployment and management were identified as
key challenges in Chapter 2, the presence of these functionalities is an important requirement to
consider when comparing alternative solutions. However, most of the tools identified focus only on code
generation, such as aFlux, and do not cover the deployment or the management.

• Code Generation: Most platforms offer code-generation features, with the exception of StreamPipes.
Streampipes instead produces logical models that are interpreted during runtime. This makes the
architecture of Streampipes significantly more complex, due to the need for runtime wrappers that need
to support all operations in the logical model as discussed in Section 5.3.3.4. Of the alternatives, most
approaches offer code generation on build-time. The prototype offers live code generation and live model
validation, to allow users to instantly review the validity of the model, as well as the code produced.

Overall, the proposed design offers the first architectural reference for practitioners seeking to implement an
integration platform for stream processing. This design describes all the key functionalities found across other
platforms such as deployment, management, schema-level validation, code generation, embeddability and live
code-generation. All of which are crucial requirements for integration providers, as well as practitioners seeking
to implement single-tenant integration solutions. The prototype demonstrates the ability of the design to be
implemented within a problem context. Even with its limited scope, the prototype is able to provide a novel
combination of features not found in current solutions, with code generation for embeddable stream processing
applications in combination with type level validation. Additionally, it is the first model-driven tool for developing
Kafka Streams applications.

8.2 Relating to the challenges & goals

In Chapter 2 and 3, the challenges and the goals stakeholders face with regard to IoT integration were
identified. These challenges represent the issues in the problem context that makes it more difficult for
stakeholders to reach their goals. Based on these challenges and goals, as set of requirements was
established for the design which, to mitigate the challenges and contribute to stakeholder goals. Chapter 5
showed that the design meets these requirements, by tracing all the requirements to architectural elements. In

CHAPTER 8. DISCUSSION 95

this section it is shown that, by addressing these requirements, the design contributes to resolving the
challenges faced by stakeholders.

Table 8.2 provides an overview of all challenges identified and explains how the thesis contributes, either
directly or indirectly, to mitigate these challenges. Furthermore, table provides references to the sections that
explain in more detail how this challenge is addressed. Finally table shows the goals that are contributed to by
resolving the challenges.

Challenge How it is addressed in the proposed design Reference Goal(s)

Challenge 1
Semantics

Indirectly addressed : To account for semantics, a specification
process is described in the business layer of the design. Yet, full
ontology-level semantics are not covered due to the low maturity
and high costs of ontologies within the problem context
(Paragraph 4.2.2.2). The literature review provides a
comprehensive body of literature on the current state of IoT
semantics to support future research on this topic.

5.3.3.3, 5.2 2

Challenge 2
Heterogeneity

Directly addressed : The design documents the use of schemas
to manage the data formats of different data sources and the use
of processing operations to overcome these schema differences.
The validation shows that end-users are able to use the
prototype to create data mappings to overcome heterogeneity.

5.3.3.1,
7.2.1

4

Challenge 3
Finding a
business case

Indirectly addressed : The design contributes to IoT business
cases through lowering development and management costs of
IoT integrations. During validation all participants agreed that
the prototype made it easier and faster to develop IoT stream
processing integrations. Furthermore, experts noted that the
design could also allow for new business cases as it allows
companies to easily operationalize their business processes as
integration models and unlock data throughout the organisation
to act on this data in real-time data. Furthermore, unlike
traditional implementations, these models can easily be
changed as requirement change.

7.2.2, 7.2.1 1

Challenge 4
Developing
IoT
infrastructure

Directly addressed : During validation, experts agreed that the
design provides great architectural support in practitioners
seeking to setup a platform for IoT infrastructure. Additionally,
experts agreed that the model-driven approach allows end-users
to deploy integrations without the need to concern for
implementation level details, such as the infrastructure

5.3.7, 7.2.2 3

Challenge 5
Pre-
processing

Directly addressed : End-users appreciated the ability of the
prototype to build complex stream processing integrations using
simple operations. None of the participants involved in the
validation were programmers or had previous experience in
building IoT stream processing integrations, nevertheless, they
were able to use the prototype for complex processing
integrations including enrichment, aggregation and filtering.

7.2.1 4

CHAPTER 8. DISCUSSION 96

Challenge 6
Quality &
Reliability

Indirectly addressed : The design describes the use of re-usable
data processing operations to overcome quality and reliability
issues. This is demonstrated in the prototype, which provides a
wide range of operations to check for and overcome, data quality
issues to ensure reliability. For instance, filters to filter for errors
or data format mismatches and aggregation operations to obtain
average windowed measurements or detect outliers and
anomalies in data streams. Both example use-cases in Section
6.3 show how the prototype can be used to handle low-quality or
unreliable measurements from IoT devices.

5.3.3.1, 6.3 4, 5

Challenge 7
Dispersed IoT
integrations

Directly addressed : All integrations developed using
model-driven development interface are represented in the
same language, and rely on a common software stack and
infrastructure for execution. The operations available to the user
can be extended by the platform vendor as needed to support
any kind of integration. Both the expert validation, as well as the
validation with end-users confirm the high re-usability of the
platform for different use-cases and integration scenarios across
contexts.

7.3 2, 3, 4

Challenge 8
Central
management
and
governance

Directly addressed : The design features a unique combination
of embedded event stream processing combined with
centralised management. This allows flexible deployment to any
infrastructure, while also providing centralised management of
all integrations. Furthermore, the design can be used to extend
existing integration (management) platforms with event stream
processing support to allow for centralised management across
integration patterns.

5.3.5 6

Challenge 9
IoT stream
processing
support for
integration
platforms

Directly addressed : The design provides guidance to
practitioners on implementing a model-driven stream processing
platform. Validation with architectural experts confirms the
usefullness of the design for providing IoT stream processing
support on integration platforms. Also, end-users perceived that
the design would contribute to their ability to model IoT
integrations on an integration platform

7.2.2, 7.2.1
4, 7, 8,
9

Table 8.2: Challenges

The table shows that the design contributes to addressing all key challenges in IoT integration. Six challenges
are directly addressed by this thesis, as is confirmed through validation with both architectural experts and
end-users. Some challenges are indirectly addressed, the semantic challenges, the business challenges and
the data quality challenges. While the challenges are not fully mitigated, the design does provide a first step
towards addressing these three remaining challenges by identifying them, and by providing practitioners with
an overview of the tools, designs and methodologies available to mitigate them.

Using the validation sessions and the contributions listed in Table 8.2 is possible to qualitatively support that
stakeholder goals are addressed. Based on the number of challenges listed for a goal, taking into account the
impact of the challenge and whether it is directly addressed, it is possible to determine to which degree the
goal has been addressed. Optimally supported are the the goals of the platforms’ end-users, which are the
clients developers, architects and support teams, since the proposed design directly mitigates multiple
challenges related to IoT integration development, infrastructure development, deployment and management
(Goals 3, 4, 6). The contributions towards these goals have also been validated in Chapter 7. The integration

CHAPTER 8. DISCUSSION 97

specification goal (Goal 2), is supported through mitigating Challenge 7 by providing a uniform approach for
developing integrations. However semantic challenges during the specification process are only indirectly
addressed (Challenge 1). The goal of the platform clients’ management team to reduce integration costs and
increasing efficiency (Goal 1) is indirectly supported through the mitigation of the other integration challenges.
For instance by making it easier to develop integrations and setup infrastructure, development time and the
skills needed for development are reduced, which in turn contributes to cost reductions. Further research, for
instance comparative experiments with alternate solutions could be employed in future research to quantify the
anticipated cost reductions and efficiency increase. The same holds for the overall reliability and quality of IoT
integrations (Goal 5) which is indirectly addressed through Challenge 6. Finally, key goals include those of the
platform vendor (Goal 7, 8, 9). The vendor is directly supported in their goals of delivering customer value and
offering a complete and integrated platform, by addressing the challenge associated with implementing a
stream processing based integration platform. This is also shown in Chapter 7 during validation. The goal of
reducing operational incidents is indirectly addressed, through the increase of integration quality and reliability,
and as typical streaming integrations (currently implemented using other patterns) can be migrated to stream
processing to reduce integration complexity.

Overall, this section shows how key integration challenges are addressed in this thesis and how, by resolving
these challenges, the design contributes to achieving stakeholder goals.

Chapter 9

Conclusion

This chapter addresses the findings of this research. The first section discusses the answers to each of the
research questions. Then, the limitations of this research are discussed, as well as opportunities for future
research. And finally, the contributions of this research are discussed.

9.1 Research questions

The goal of this research is to address the following main research question:

How to design a model-driven integration platform
that allows the development and management of stream processing integrations

so that developers can preprocess data streams more efficiently
in IoT integration?

To answer this question several sub-questions have been formulated and answered. This section provides a
concise summary is for each of these questions.

1: What are the challenges that are faced by organisations during IoT integration?
An IoT integration is conceptualised as a series of data processing operations that process data from a set of
data sources, and that deliver output to a set of destinations. Based on a literature review as well as expert
interviews, nine challenges with IoT integration were identified. These include challenges related to the nature
of the IoT data such as high heterogeneity, low data quality, and ambiguous semantic attributes of the data.
Next are development related challenges, such as a the complexity of programming processors, setting up the
processing infrastructure, and dispersion in the technologies and methods used for development. Finally, there
are high-level challenges such as with defining the business case for IoT, the decentralised management for
IoT integrations, and the lack of integration platform support for streaming IoT. Overall, the challenges indicate
the need for a reusable unified approach towards IoT integration, which research currently does not provide.
This gap in knowledge means that the development of integrations remains to be a complex, tedious and
repetitive task. A model-driven integration platform for IoT stream processing is hypothesised as a solution to
this problem. Chapter 2 overviews the problem context in detail.

2: What is the minimal set of requirements for a model-driven programming platform to allow the
effortless integration of event-streams?
The minimal requirements for the platform should address the challenges for IoT integration previously
identified. Additionally, the requirements should support stakeholder goals. Stakeholders include the platform
vendors’ development and support teams, which are implementing and supporting the platform, and the
management of (potential) customers of the platform, that should be convinced that the platform provides
value. The most important stakeholders are the end-users of the platform or ’normal operators’. The platform
should allow these end-users to develop, deploy and manage the integration without the need for any

98

CHAPTER 9. CONCLUSION 99

programming, and without the need to know the technical details such as the underlying architecture.
Furthermore, the platform should provide stream processing functionalities, which supports the statefull,
high-throughput, low-latency processing capabilities needed for processing IoT data. These stream processing
integrations should be embeddable such that they can be deployed to any infrastructure. To ensure the quality
of the integrations, the platform should support schema-based validation of the integrations. Finally,
requirements are presented concerning extensibility, modularity, and scalability to ensure that the platform can
be easily adapted and integrated according to the specific needs of the client and the vendor and to ensure that
the platform supports scalable integrations for processing high-volumes of realtime IoT data. Chapter 3
overviews the stakeholders, goals and requirements in detail.

3: What are the existing designs for stream processing, and graphical programming platforms for
stream processing?
Through a systematic literature review, a comprehensive overview of all solutions for embedded stream
processing and graphical programming platforms, and their designs, is provided. For embedded stream
processing solutions, the study first identifies a taxonomy of the key attributes by which alternatives can be
evaluated. Designs vary with respect to data ingestion, data execution and non-functional aspects. When
comparing the identified frameworks, Kafka Streams and Apache Samza are found to be the most complete
and mature stream processing solutions. Both provide great performance, and offer a complete set of
functionalities and declarative APIs. The survey also provides a taxonomy of attributes for evaluating graphical
stream processing platforms. The designs vary with respect to code generation models, validation and
life-cycle support. Solutions can support code exported based on a logic model derived from the integration
model, or the integration models can be directly interpreted by the runtime. In case of the former, the solutions
differ in the underlying stream processing frameworks that they support. For validation, different designs
include primitive type checking, order based type checking, schema-based type checking (for complex types),
and ontology-based type checking. Additionally, validation can be static, or dynamic based on dependencies
between the input and the output of an operation. When comparing the identified graphical editors, the results
show that the overall maturity of the alternatives is low and that none of the solutions match the requirements
identified earlier. Of all identified solutions, the incubating Apache StreamPipes project is the most complete.
Chapter 4 discusses the results in detail.

4: What combination of the alternative solutions would form the most optimal design for a
model-driven programming platform for distributed event stream processing?
A novel design for a model-driven stream processing platform is proposed, based on the identified existing
designs. The integrated design describes the platform from three perspectives. First, from the business
perspective, the design shows how end-users interact with the platform, from specifying an integration, to
developing it, deploying it and managing it. Then, from the application perspective, the design describes the
key application components such as the model-driven editor, the model validation and code generation
functions, management and deployment components, and the data models used. Finally, from the
infrastructure perspective, the design describes the infrastructure required for running the platform and the
integrations. For the latter a dynamic, embeddable runtime is described that can run scalable, stateful stream
processing integrations on-premise or in the cloud. Chapter 5 provides a complete architectural breakdown of
the design.

5: To what extent does the proposed design combination contribute to stakeholder goals?
The design contributes to stakeholder goals by supporting platform architects in developing a platform that
mitigates the integration challenges end-users face. From an architectural perspective, evaluation with
enterprise architecture experts shows that the design provides high architectural quality and that it supports
platform architects in developing an IoT integration platform architecture. Experts attributed this to the high
comprehensibility, flexibility, conciseness and comprehensiveness of the design. From a practical perspective,
the validation shows that the implemented design supports end-users in the problem context with developing
integrations. A prototype of the platform was developed for a Dutch integration platform vendor and this

CHAPTER 9. CONCLUSION 100

prototype was successfully used by end-users to implement IoT stream processing use cases. The validation
shows that the end-users have a high intention to use and recommend the prototype for developing IoT stream
processing integrations, which they attributed to the easy to use model-driven interface and the complete set
event-stream processing operations. Chapter 7 provides a detailed description of the validation results. Overall,
all but three of the integration challenges identified through research question 1 are directly mitigated by the
design and the remaining challenges, with respect to integration costs, integration quality and semantics, are
indirectly addressed. By resolving these challenges, the findings contribute to achieving stakeholder goals,
including cost reductions, increased integration reliability, and reduced integration development and
management efforts. Chapter 8 discusses how each of the integration challenges is addressed in the design
and how this contributes to stakeholder goals.

Concluding remarks
Through the research outlined above, the main research question can be answered. This thesis shows how to
design a model-driven integration platform that allows the development and management of stream processing
integrations so that developers can preprocess data streams more efficiently in IoT integration. This is done
through two main findings:

First, to show that the design allows for efficient IoT integration development, this thesis describes what the IoT
integration challenges are, and how these challenges are addressed by implementing the proposed
architecture. Specifically, the proposed design enables a reduction of IoT integration efforts, and ultimately
integration costs, through an easy to use model-driven interface and a re-usable, embeddable infrastructure for
scaleable, statefull stream processing. The design has been validated through the development of a prototype
as an instantiation of the design in the problem context. Validation with end-users shows that the design
successfully supports users with developing IoT stream processing integrations, without programming skills or
prior knowledge about stream processing.

Second, to assist platform architects with designing and implementing the platform, a detailed architectural
design and a breakdown of the components to be implemented is provided. The architectural quality of the
design has been confirmed through validation sessions with enterprise architecture experts. Additionally, this
thesis provides system-level implementation support through an exhaustive review of relevant technologies,
frameworks, and architectures in the IoT domain and designs for stream processing and graphical code
generation.

9.2 Limitations

Naturally, this thesis is subject to several limitations. Three dimensions for limitation are identified, namely the
lack of existing research on this topic, validation limitations due to time constraints, and validation limitations
and due to the sample.

First, concerning the lack of existing research. As was identified in Chapter 2 existing research on integration
platforms is sparse, resulting in several gaps of knowledge. Consequently, the identification the integration
platform architecture had to be made based on limited information, which may not reflect the actual diversity of
the architectures in practice, limiting the external validity of this research. This lack of cross-referencing and
literature on integration platform architecture hinders research in this area and without a common ground to
rely on divergence in the respective field is likely. The same limitation holds for architectures of graphical
model-driven stream programming platforms. While plentifully research is available on low-level components
and implementations of model-driven stream programming solutions, research overviewing the architecture of
such solutions is limited.

Second are the limitations in the time available for validation. Since time is limiting factor for validation in any
research, compromises are unavoidable to accommodate the available time-frame. Compromises in this

CHAPTER 9. CONCLUSION 101

research include limiting the number of dimensions that are validated, performing qualitative validation rather
than quantitative validation, and limiting the number of participants during validation, and performing the
validation in an artificial setting rather than implementing the design in practice. These compromises are
discussed in more detail in Section 7.1. An effort has been made to validate the design and the prototype to the
best possible extent given the scope of this research, which includes the development of a prototype and
validation with three different experts and three end-users. With regard to the prototype validation, one
limitation is that the prototype only covers a part of the design. This implies that only the design process (which
is the most important process) could be validated with end-users, while deployment and management
scenarios could not be covered by end-users and were only validated through experts opinion validation. The
motivation for the scope of the prototype is discussed in Section 6.3. Overall, further validation with a more
mature prototype, on a wider range of (quantitative) dimensions would increase the internal validity of this
research, strengthening the inferences of the effects.

Finally, there is a bias with respect to the sample. Specifically, in participant selection and sample size, which
relate to the external validity of this research. With respect to the participant selection, the prototype has been
validated exclusively with participants from the same organisation that have experience with the same tools for
modelling integrations. However, the sample within the organisation was diverse, since each of the participants
worked on vastly different projects for different clients. The sample bias also applies to the expert validation
sample. This sample includes one expert from the problem context and two external experts from the
University of Twente that are familiar with the problem context. Ideally, however, the sample should contain
more experts from different problem contexts. This is however difficult to achieve, considering the low
availability of such experts. For instance, there is only 1 major integration platform provider in the Netherlands.
With regard to the sample size, The total sample size for the validation is intentionally set at 6 participants
(three experts, and three end-users). This is because each validation session is very time consuming and
cannot be automated using, for example, surveys. Rather, intensive one-on-one sessions are required for both
expert validation as well as end-user validation with developers. Since experts and developer time is very
valuable, and since validation sessions are time-consuming, only a limited number of validation sessions can
be held. As holds for all research, more extensive validation sessions, with more experts and end-users across
a broader range of contexts would increase the external validity of this research. The selection bias only
applies to the validation, the interview sessions conducted in Chapter 2 were conducted with a diverse sample
to ensure a proper representation of the problem context.

9.3 Future research

This research brings several new opportunities for future research on IoT integration. First, future research
could increase the internal and external validity of the findings through additional validations. Several research
opportunities for further validation have been identified:

• The experts agreed that further validation of the design by implementing the design in practice would
be a crucial next step (Section 7.2.2). This includes expanding the scope of the prototype to cover the
complete design, and increasing the overall maturity of the prototype. This would not only allow for
increased validation of the design, but it would also allow for a better demonstration of the capabilities of
the design,

• The prototype, as well as the design, could be validated on more dimensions, such as all the quality
attributes identified by Nelson et al. [148]. Furthermore, these validation sessions could be held with a
broader range of end-users and architectural experts from different organisations to obtain further insights
into the applicability and generalisability of the findings.

• The design could be experimentally evaluated to obtain quantitative insights about the efficiency, the
costs, and the performance of the design when implemented, as suggested in Section 7.1. The current
research does not employ quantitative comparisons, as it would be out of scope due to the time-consuming
nature of such experiments. However, these methods could be used in future research to substantiate

CHAPTER 9. CONCLUSION 102

and quantify the anticipated cost reductions and performance increase. When comparing the design to
other stream processing based integration tools, one challenge would be the identification of alternative
designs, considering the novelty of this approach and the lack of alternative architectures to compare with
(Section 7.1, Section 8.1).

Second, the findings allow for future research on integration platforms in a general sense. Chapter 2 explains
the need for further research into integration platforms, to avoid divergence in the field and consolidate
knowledge. Research on integration platforms is sparse, and the few literature that is available focuses on
messaging-based integrations. Future research could strengthen the body of knowledge on integration
platforms by providing a unified design of an integration platform across integration patterns. Such ’hybrid’
integration platforms are already available in practice, however, they have yet to be documented in research
(Section 2.1.2.8). The current research provides the first step towards a hybrid description of integration
platforms, by providing the first description of the architecture from a streaming perspective to cover IoT use
cases. Similarly, the findings can also support future research into the architectures of model-driven
programming platforms. While implementations for such platforms are extensively described in literature, there
is a lack of research from an architectural perspective (Chapter 4).

In conclusion, as a result of this research, several novel research opportunities arise that could further
strengthen the body of knowledge on integration platforms and model-driven programming platforms for stream
processing to support IoT integration.

9.4 Contributions

This thesis presents the first architecture of a model-driven IoT stream processing platform to facilitate IoT
integration. This section discusses both the scientific and practical contributions of the findings.

9.4.1 Scientific contributions

First, this research contributes an exhaustive analysis of the problem context (Chapter 2. Surveys address both
architectures of IoT from a high-level viewpoint, as well as IoT platforms and middleware implementations. This
provides researchers with an overview of the different architectural patterns and components in IoT
architecture from both a practical and a theoretical viewpoint. Additionally, IoT integration is covered through a
survey of the protocols, semantics and integration practices of IoT, contributing to a comprehensive view on the
IoT integration domain. Furthermore, integration is addressed in general by providing an overview of different
approaches towards enterprise integration and the architecture of integration platforms. Overall, the analysis of
the problem context forms a solid foundation for any researcher in the domain of IoT integration, as this
research provides a thorough definition of IoT integration, and a description of IoT integration challenges to be
addressed.

Based on the results of the problem investigation, a gap of knowledge regarding model-driven approaches
towards the integration of IoT with applications has been identified, which prevents flexible and dynamic
integrations. This research addresses this gap by proposing a design for a model-driven platform for IoT
stream processing. Existing model-driven platforms for (IoT) stream processing are oftentimes immature and
incomplete (Section 4.2.2). Moreover, existing literature does not describe integration platforms from an
architectural point of view. This leads to isolated knowledge and divergence in the field of model-driven
development of IoT integrations. The proposed research proposes a comprehensive architecture of an IoT
integration platform (Chapter 5), as well as an initial prototype (Chapter 6). This design provides a foundation
for further research into IoT integration platforms, as well as research into hybrid integration platforms that
provide integration capabilities across integration patterns (such as IoT). Researchers could, for example,
research the applicability of the design in different contexts, or adapt it to different patterns, to evaluate and
extend the ability of the design to function across context and domains (Section 9.3).

CHAPTER 9. CONCLUSION 103

9.4.2 Practical contributions

Currently, developers have to overcome many challenges when developing IoT stream processing integrations
(Section 2.3). These integrations are complex and time-intensive to develop, deploy and maintain. Research
into model-driven platforms for IoT integration development that could address these issues is still immature
and the few platforms that are available do not live up to the requirements for a true integration platform
(Section 4.2.2). Organisations seeking to implement an integration platform for IoT, or that want to extend their
integration platform with IoT stream processing support will find that no academic guidelines nor reference
architectures have been presented to assist them with this.

The proposed design addresses these concerns, and assists organisations in implementing an integration
platform for IoT. First, the design provides platform architects in the organisation with the requirements for the
platform. Next, the design provides architectural directions on how to implement the platform and a full
architectural breakdown of the components to be implemented (Chapter 5). In addition to providing
architectural support, this thesis also provides guidance for implementation. First, through an extensive
description of the problem context that allows platform architects to understand the protocols, semantics and
middleware involved in IoT (Chapter 2). Second, through a survey of IoT stream processing frameworks and
model-driven programming platforms (Chapter 4) which supports the platform architects in evaluating
implementation-level mechanisms and frameworks. And third, through the description of a prototype which
provides a tangible example of the platform that architects can refer to for practical guidelines on how to
implement the design (Chapter 6).

Once the design is implemented, the resulting platform allows users to easily model IoT stream processing
integrations and deploy them on a re-usable infrastructure. The platform assists users in overcoming key
challenges in IoT data processing through a model-driven interface that allows users to rapidly create complex
IoT integrations using a set of simple operations. Compared to manually developed integrations, integrations
created and deployed through the platform are also easier to maintain and manage, hence contributing to a
decrease in maintenance and management efforts for IoT integrations [10], [11]. Through this, the design
fosters innovation by lowering the bar for IoT integration. For instance, by enabling organisations to easily
unlock IoT data to support their business processes or offer novel smart products, applications or services.

Bibliography

[1] V. Gazis, M. Gortz, M. Huber, A. Leonardi, K. Mathioudakis, A. Wiesmaier, F. Zeiger, and
E. Vasilomanolakis, “A survey of technologies for the internet of things,” in 2015 International Wireless
Communications and Mobile Computing Conference (IWCMC). Dubrovnik, Croatia: IEEE, Aug. 2015,
pp. 1090–1095. [Online]. Available: http://ieeexplore.ieee.org/document/7289234/

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context Aware Computing for The Internet
of Things: A Survey,” IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014,
arXiv: 1305.0982. [Online]. Available: http://arxiv.org/abs/1305.0982

[3] R. R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-physical systems: the next computing revolution,”
in Proceedings of the 47th Design Automation Conference on - DAC ’10. Anaheim, California: ACM
Press, 2010, p. 731. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1837274.1837461

[4] N. Jazdi, “Cyber physical systems in the context of Industry 4.0,” in 2014 IEEE International Conference
on Automation, Quality and Testing, Robotics. Cluj-Napoca, Romania: IEEE, May 2014, pp. 1–4.
[Online]. Available: http://ieeexplore.ieee.org/document/6857843/

[5] P. J. Mosterman and J. Zander, “Cyber-physical systems challenges: a needs analysis for collaborating
embedded software systems,” Software & Systems Modeling, vol. 15, no. 1, pp. 5–16, Feb. 2016.
[Online]. Available: https://doi.org/10.1007/s10270-015-0469-x

[6] F. Wortmann and K. Flüchter, “Internet of Things - Technology and Value Added,” Business &
Information Systems Engineering, vol. 57, no. 3, pp. 221–224, Jun. 2015. [Online]. Available:
https://doi.org/10.1007/s12599-015-0383-3

[7] L. D. Xu, W. He, and S. Li, “Internet of Things in Industries: A Survey,” IEEE Transactions
on Industrial Informatics, vol. 10, no. 4, pp. 2233–2243, Nov. 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6714496/

[8] M. Chiang and T. Zhang, “Fog and IoT: An Overview of Research Opportunities,” IEEE
Internet of Things Journal, vol. 3, no. 6, pp. 854–864, Dec. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7498684/

[9] A. Chowdhury and S. A Raut, “Benefits, Challenges, and Opportunities in Adoption of Industrial IoT,”
International Journal of Computational Intelligence & IoT, vol. 2, no. 4, p. 7, Mar. 2019. [Online]. Available:
https://papers.ssrn.com/abstract=3361586

[10] N. Ebert, K. Weber, and S. Koruna, “Integration Platform as a Service,” Business & Information
Systems Engineering, vol. 59, no. 5, pp. 375–379, Oct. 2017. [Online]. Available: http:
//link.springer.com/10.1007/s12599-017-0486-0

[11] R. C. Pathak and P. Khandelwal, “A Model for Hybrid Cloud Integration: With a Case Study for
IT Service Management (ITSM),” in 2017 IEEE International Conference on Cloud Computing in
Emerging Markets (CCEM). Bangalore, India: IEEE, Nov. 2017, pp. 113–118. [Online]. Available:
http://ieeexplore.ieee.org/document/8332564/

[12] R. J. Wieringa, Design Science Methodology for Information Systems and Software Engineering. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014. [Online]. Available: http://link.springer.com/10.1007/
978-3-662-43839-8

104

http://ieeexplore.ieee.org/document/7289234/
http://arxiv.org/abs/1305.0982
http://portal.acm.org/citation.cfm?doid=1837274.1837461
http://ieeexplore.ieee.org/document/6857843/
https://doi.org/10.1007/s10270-015-0469-x
https://doi.org/10.1007/s12599-015-0383-3
http://ieeexplore.ieee.org/document/6714496/
http://ieeexplore.ieee.org/document/7498684/
https://papers.ssrn.com/abstract=3361586
http://link.springer.com/10.1007/s12599-017-0486-0
http://link.springer.com/10.1007/s12599-017-0486-0
http://ieeexplore.ieee.org/document/8332564/
http://link.springer.com/10.1007/978-3-662-43839-8
http://link.springer.com/10.1007/978-3-662-43839-8

BIBLIOGRAPHY 105

[13] H. Snyder, “Literature review as a research methodology: An overview and guidelines,”
Journal of Business Research, vol. 104, pp. 333–339, Nov. 2019. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S0148296319304564

[14] S. R. Bader, M. Maleshkova, and S. Lohmann, “Structuring Reference Architectures for the
Industrial Internet of Things,” Future Internet, vol. 11, no. 7, p. 151, Jul. 2019. [Online]. Available:
https://www.mdpi.com/1999-5903/11/7/151

[15] B. A. Kitchenham, “Guidelines for performing Systematic Literature Reviews in Software Engineering,”
Software Engineering Group Keele University, Keele, UK, Tech. Rep., 2007, event-place: Lund, Sweden.

[16] O. Zimmermann, C. Pautasso, G. Hohpe, and B. Woolf, “A Decade of Enterprise Integration Patterns: A
Conversation with the Authors,” IEEE Software, vol. 33, no. 1, pp. 13–19, Jan. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7368007/

[17] S. H. Shah and I. Yaqoob, “A survey: Internet of Things (IOT) technologies, applications and challenges,”
in 2016 IEEE Smart Energy Grid Engineering (SEGE). Oshawa, ON, Canada: IEEE, Aug. 2016, pp.
381–385. [Online]. Available: http://ieeexplore.ieee.org/document/7589556/

[18] P. Sethi and S. R. Sarangi, “Internet of Things: Architectures, Protocols, and Applications,”
Journal of Electrical and Computer Engineering, vol. 2017, pp. 1–25, 2017. [Online]. Available:
https://www.hindawi.com/journals/jece/2017/9324035/

[19] T. Ara, P. Gajkumar Shah, and M. Prabhakar, “Internet of Things Architecture and Applications: A
Survey,” Indian Journal of Science and Technology, vol. 9, no. 45, Dec. 2016. [Online]. Available:
http://www.indjst.org/index.php/indjst/article/view/106507

[20] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of Things applications: A
systematic review,” Computer Networks, vol. 148, pp. 241–261, Jan. 2019. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1389128618305127

[21] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middleware for internet of things: a survey,”
IEEE Internet of things journal, vol. 3, no. 1, pp. 70–95, 2015.

[22] A. Alreshidi and A. Ahmad, “Architecting Software for the Internet of Thing Based Systems,” Future
Internet, vol. 11, no. 7, p. 153, Jul. 2019. [Online]. Available: https://www.mdpi.com/1999-5903/11/7/153

[23] D. Kutzias, J. Falkner, and H. Kett, “On the Complexity of Cloud and IoT Integration: Architectures,
Challenges and Solution Approaches:,” in Proceedings of the 4th International Conference on Internet
of Things, Big Data and Security. Heraklion, Crete, Greece: SCITEPRESS - Science and Technology
Publications, 2019, pp. 376–384. [Online]. Available: http://www.scitepress.org/DigitalLibrary/Link.aspx?
doi=10.5220/0007750403760384

[24] Y. Cao, Y. Chen, and B. Jiang, “A Study on Self-adaptive Heterogeneous Data Integration Systems,” in
Research and Practical Issues of Enterprise Information Systems II Volume 1, L. D. Xu, A. M. Tjoa,
and S. S. Chaudhry, Eds. Boston, MA: Springer US, 2008, vol. 254, pp. 65–74. [Online]. Available:
http://link.springer.com/10.1007/978-0-387-75902-9_7

[25] B. N. Silva, M. Khan, and K. Han, “Internet of Things: A Comprehensive Review of Enabling
Technologies, Architecture, and Challenges,” IETE Technical Review, vol. 35, no. 2, pp. 205–220, Mar.
2018. [Online]. Available: https://www.tandfonline.com/doi/full/10.1080/02564602.2016.1276416

[26] M. T. Moghaddam and H. Muccini, “IoT Architectural Styles: A Systematic Mapping Study,” in Software
Architecture, C. E. Cuesta, D. Garlan, and J. Pérez, Eds. Cham: Springer International Publishing,
2018, vol. 11048, pp. 68–85. [Online]. Available: http://link.springer.com/10.1007/978-3-030-00761-4_5

[27] J. Guth, U. Breitenbucher, M. Falkenthal, F. Leymann, and L. Reinfurt, “Comparison of IoT
platform architectures: A field study based on a reference architecture,” in 2016 Cloudification
of the Internet of Things (CIoT). Paris, France: IEEE, Nov. 2016, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/document/7872918/

[28] T. Bradicich, “Exploring the Four Stages of an Industrial IoT
Solution,” Nov. 2016. [Online]. Available: https://community.hpe.com/t5/IoT-at-the-Edge/
Exploring-the-Four-Stages-of-an-Industrial-IoT-Solution/ba-p/6917607

https://linkinghub.elsevier.com/retrieve/pii/S0148296319304564
https://linkinghub.elsevier.com/retrieve/pii/S0148296319304564
https://www.mdpi.com/1999-5903/11/7/151
http://ieeexplore.ieee.org/document/7368007/
http://ieeexplore.ieee.org/document/7589556/
https://www.hindawi.com/journals/jece/2017/9324035/
http://www.indjst.org/index.php/indjst/article/view/106507
https://linkinghub.elsevier.com/retrieve/pii/S1389128618305127
https://www.mdpi.com/1999-5903/11/7/153
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007750403760384
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007750403760384
http://link.springer.com/10.1007/978-0-387-75902-9_7
https://www.tandfonline.com/doi/full/10.1080/02564602.2016.1276416
http://link.springer.com/10.1007/978-3-030-00761-4_5
http://ieeexplore.ieee.org/document/7872918/
https://community.hpe.com/t5/IoT-at-the-Edge/Exploring-the-Four-Stages-of-an-Industrial-IoT-Solution/ba-p/6917607
https://community.hpe.com/t5/IoT-at-the-Edge/Exploring-the-Four-Stages-of-an-Industrial-IoT-Solution/ba-p/6917607

BIBLIOGRAPHY 106

[29] A. Tiwary, M. Mahato, A. Chidar, M. K. Chandrol, M. Shrivastava, and M. Tripathi, “Internet of Things
(IoT): Research, architectures and applications,” International Journal on Future Revolution in Computer
Science & Communication Engineering, vol. 4, no. 3, pp. 23–27, 2018.

[30] P. Tuwanut and S. Kraijak, “A survey on IoT architectures, protocols, applications, security,
privacy, real-world implementation and future trends,” in 11th International Conference on
Wireless Communications, Networking and Mobile Computing (WiCOM 2015). Shanghai, China:
Institution of Engineering and Technology, 2015, pp. 6 .–6 . [Online]. Available: https:
//digital-library.theiet.org/content/conferences/10.1049/cp.2015.0714

[31] M. Burhan, R. Rehman, B. Khan, and B.-S. Kim, “IoT Elements, Layered Architectures and Security
Issues: A Comprehensive Survey,” Sensors, vol. 18, no. 9, p. 2796, Aug. 2018. [Online]. Available:
http://www.mdpi.com/1424-8220/18/9/2796

[32] Q. Zhu, R. Wang, Q. Chen, Y. Liu, and W. Qin, “IOT Gateway: BridgingWireless Sensor
Networks into Internet of Things,” in 2010 IEEE/IFIP International Conference on Embedded and
Ubiquitous Computing. Hong Kong, China: IEEE, Dec. 2010, pp. 347–352. [Online]. Available:
http://ieeexplore.ieee.org/document/5703542/

[33] E. G. Petrakis, S. Sotiriadis, T. Soultanopoulos, P. T. Renta, R. Buyya, and N. Bessis, “Internet
of Things as a Service (iTaaS): Challenges and solutions for management of sensor data on
the cloud and the fog,” Internet of Things, vol. 3-4, pp. 156–174, Oct. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S2542660518300350

[34] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms for massive IoT,” in 2018 IEEE
International Conference on Future IoT Technologies (Future IoT). Eger: IEEE, Jan. 2018, pp. 1–8.
[Online]. Available: http://ieeexplore.ieee.org/document/8325598/

[35] Soma Bandyopadhyay, Munmun Sengupta, Souvik Maiti, and Subhajit Dutta, “Role Of Middleware
For Internet Of Things: A Study,” International Journal of Computer Science & Engineering Survey,
vol. 2, no. 3, pp. 94–105, Aug. 2011. [Online]. Available: http://www.airccse.org/journal/ijcses/papers/
0811cses07.pdf

[36] D. Navani, S. Jain, and M. S. Nehra, “The Internet of Things (IoT): A Study of Architectural
Elements,” in 2017 13th International Conference on Signal-Image Technology & Internet-
Based Systems (SITIS). Jaipur, India: IEEE, Dec. 2017, pp. 473–478. [Online]. Available:
http://ieeexplore.ieee.org/document/8334789/

[37] Y.-H. Lee and S. Nair, “A Smart Gateway Framework for IOT Services,” in 2016 IEEE International
Conference on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart
Data (SmartData). Chengdu, China: IEEE, Dec. 2016, pp. 107–114. [Online]. Available:
http://ieeexplore.ieee.org/document/7917072/

[38] M. Noura, M. Atiquzzaman, and M. Gaedke, “Interoperability in Internet of Things: Taxonomies and
Open Challenges,” Mobile Networks and Applications, vol. 24, no. 3, pp. 796–809, Jun. 2019. [Online].
Available: http://link.springer.com/10.1007/s11036-018-1089-9

[39] A. Farahzadi, P. Shams, J. Rezazadeh, and R. Farahbakhsh, “Middleware technologies for cloud of
things: a survey,” Digital Communications and Networks, vol. 4, no. 3, pp. 176–188, Aug. 2018. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S2352864817301268

[40] M. Zdravković, M. Trajanović, J. Sarraipa, R. Jardim-Gonçalves, M. Lezoche, A. Aubry, and H. Panetto,
“Survey of Internet-of-Things platforms,” in ICIST. Kopaonik, Serbia: HAL, Feb. 2016, p. 6.

[41] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of Internet-of-Things platforms,”
Computer Communications, vol. 89-90, pp. 5–16, Sep. 2016, arXiv: 1502.01181. [Online]. Available:
http://arxiv.org/abs/1502.01181

[42] C. Badii, P. Bellini, A. Difino, P. Nesi, G. Pantaleo, and M. Paolucci, “MicroServices Suite
for Smart City Applications,” Sensors, vol. 19, no. 21, p. 4798, Nov. 2019. [Online]. Available:
https://www.mdpi.com/1424-8220/19/21/4798

https://digital-library.theiet.org/content/conferences/10.1049/cp.2015.0714
https://digital-library.theiet.org/content/conferences/10.1049/cp.2015.0714
http://www.mdpi.com/1424-8220/18/9/2796
http://ieeexplore.ieee.org/document/5703542/
https://linkinghub.elsevier.com/retrieve/pii/S2542660518300350
http://ieeexplore.ieee.org/document/8325598/
http://www.airccse.org/journal/ijcses/papers/0811cses07.pdf
http://www.airccse.org/journal/ijcses/papers/0811cses07.pdf
http://ieeexplore.ieee.org/document/8334789/
http://ieeexplore.ieee.org/document/7917072/
http://link.springer.com/10.1007/s11036-018-1089-9
https://linkinghub.elsevier.com/retrieve/pii/S2352864817301268
http://arxiv.org/abs/1502.01181
https://www.mdpi.com/1424-8220/19/21/4798

BIBLIOGRAPHY 107

[43] A. Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration of Cloud computing and Internet of
Things: A survey,” Future Generation Computer Systems, vol. 56, pp. 684–700, Mar. 2016. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015

[44] K. J. Singh and D. S. Kapoor, “Create Your Own Internet of Things: A survey of IoT platforms.”
IEEE Consumer Electronics Magazine, vol. 6, no. 2, pp. 57–68, Apr. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7879392/

[45] A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, “Network Protocols, Schemes, and Mechanisms for
Internet of Things (IoT): Features, Open Challenges, and Trends,” Wireless Communications and Mobile
Computing, vol. 2018, pp. 1–24, Sep. 2018. [Online]. Available: https://www.hindawi.com/journals/wcmc/
2018/5349894/

[46] Y. Li, “An Integrated Platform for the Internet of Things Based on an Open Source Ecosystem,” Future
Internet, vol. 10, no. 11, p. 105, Oct. 2018. [Online]. Available: http://www.mdpi.com/1999-5903/10/11/105

[47] G. Fortino, C. Savaglio, C. E. Palau, J. S. de Puga, M. Ganzha, M. Paprzycki, M. Montesinos, A. Liotta,
and M. Llop, “Towards Multi-layer Interoperability of Heterogeneous IoT Platforms: The INTER-IoT
Approach,” in Integration, Interconnection, and Interoperability of IoT Systems, R. Gravina, C. E. Palau,
M. Manso, A. Liotta, and G. Fortino, Eds. Cham: Springer International Publishing, 2018, pp. 199–232.
[Online]. Available: http://link.springer.com/10.1007/978-3-319-61300-0_10

[48] M. Díaz, C. Martín, and B. Rubio, “State-of-the-art, challenges, and open issues in the integration of
Internet of things and cloud computing,” Journal of Network and Computer applications, vol. 67, pp. 99–
117, 2016.

[49] J. Dizdarevic, F. Carpio, A. Jukan, and X. Masip-Bruin, “Survey of Communication Protocols for Internet-
of-Things and Related Challenges of Fog and Cloud Computing Integration,” ACM Computing Surveys,
vol. 51, no. 6, pp. 1–29, Jan. 2019, arXiv: 1804.01747. [Online]. Available: http://arxiv.org/abs/1804.01747

[50] A. Al-Fuqaha, A. Khreishah, M. Guizani, A. Rayes, and M. Mohammadi, “Toward better horizontal
integration among IoT services,” IEEE Communications Magazine, vol. 53, no. 9, pp. 72–79, 2015.

[51] A. J. Jara, A. C. Olivieri, Y. Bocchi, M. Jung, W. Kastner, and A. F. Skarmeta, “Semantic Web of
Things: an analysis of the application semantics for the IoT moving towards the IoT convergence,”
International Journal of Web and Grid Services, vol. 10, no. 2/3, p. 244, 2014. [Online]. Available:
http://www.inderscience.com/link.php?id=60260

[52] A. Sheth, “Internet of Things to Smart IoT Through Semantic, Cognitive, and Perceptual
Computing,” IEEE Intelligent Systems, vol. 31, no. 2, pp. 108–112, Mar. 2016. [Online]. Available:
http://ieeexplore.ieee.org/document/7435181/

[53] M. Compton, P. Barnaghi, L. Bermudez, R. García-Castro, O. Corcho, S. Cox, J. Graybeal, M. Hauswirth,
C. Henson, A. Herzog, V. Huang, K. Janowicz, W. D. Kelsey, D. Le Phuoc, L. Lefort, M. Leggieri,
H. Neuhaus, A. Nikolov, K. Page, A. Passant, A. Sheth, and K. Taylor, “The SSN ontology of the W3C
semantic sensor network incubator group,” Journal of Web Semantics, vol. 17, pp. 25–32, Dec. 2012.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1570826812000571

[54] K. Kotis and A. Katasonov, “Semantic Interoperability on the Internet of Things: The Semantic Smart
Gateway Framework,” International Journal of Distributed Systems and Technologies, vol. 4, no. 3, pp.
47–69, Jul. 2013. [Online]. Available: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/
jdst.2013070104

[55] A. Venceslau, R. Andrade, V. Vidal, T. Nogueira, and V. Pequeno, “IoT Semantic Interoperability:
A Systematic Mapping Study:,” in Proceedings of the 21st International Conference on Enterprise
Information Systems. Heraklion, Crete, Greece: SCITEPRESS - Science and Technology Publications,
2019, pp. 535–544. [Online]. Available: http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/
0007732605350544

[56] I. Szilagyi and P. Wira, “Ontologies and Semantic Web for the Internet of Things - a survey,” in IECON
2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society. Florence, Italy: IEEE, Oct.
2016, pp. 6949–6954. [Online]. Available: http://ieeexplore.ieee.org/document/7793744/

https://linkinghub.elsevier.com/retrieve/pii/S0167739X15003015
http://ieeexplore.ieee.org/document/7879392/
https://www.hindawi.com/journals/wcmc/2018/5349894/
https://www.hindawi.com/journals/wcmc/2018/5349894/
http://www.mdpi.com/1999-5903/10/11/105
http://link.springer.com/10.1007/978-3-319-61300-0_10
http://arxiv.org/abs/1804.01747
http://www.inderscience.com/link.php?id=60260
http://ieeexplore.ieee.org/document/7435181/
https://linkinghub.elsevier.com/retrieve/pii/S1570826812000571
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdst.2013070104
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jdst.2013070104
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007732605350544
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0007732605350544
http://ieeexplore.ieee.org/document/7793744/

BIBLIOGRAPHY 108

[57] H. Rahman and M. I. Hussain, “A comprehensive survey on semantic interoperability for Internet
of Things: State-of-the-art and research challenges,” Transactions on Emerging Telecommunications
Technologies, Feb. 2020. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3902

[58] C. Janiesch, A. Koschmider, M. Mecella, B. Weber, A. Burattin, C. Di Ciccio, A. Gal, U. Kannengiesser,
F. Mannhardt, J. Mendling, A. Oberweis, M. Reichert, S. Rinderle-Ma, W. Song, J. Su, V. Torres,
M. Weidlich, M. Weske, and L. Zhang, “The Internet-of-Things Meets Business Process Management:
Mutual Benefits and Challenges,” arXiv:1709.03628 [cs], Sep. 2017, arXiv: 1709.03628. [Online].
Available: http://arxiv.org/abs/1709.03628

[59] Shen Bin, Liu Yuan, and Wang Xiaoyi, “Research on data mining models for the internet of things,” in
2010 International Conference on Image Analysis and Signal Processing. Zhejiang, China: IEEE, 2010,
pp. 127–132. [Online]. Available: http://ieeexplore.ieee.org/document/5476146/

[60] M. Ma, P. Wang, and C.-H. Chu, “Data Management for Internet of Things: Challenges, Approaches and
Opportunities,” in 2013 IEEE International Conference on Green Computing and Communications and
IEEE Internet of Things and IEEE Cyber, Physical and Social Computing. Beijing, China: IEEE, Aug.
2013, pp. 1144–1151. [Online]. Available: http://ieeexplore.ieee.org/document/6682212/

[61] S. Lempert and A. Pflaum, “Towards a Reference Architecture for an Integration Platform for Diverse Smart
Object Technologies,” in Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft fur
Informatik (GI), vol. 6, Feb. 2011, p. 14.

[62] C.-W. Tsai, C.-F. Lai, M.-C. Chiang, and L. T. Yang, “Data Mining for Internet of Things: A Survey,”
IEEE Communications Surveys & Tutorials, vol. 16, no. 1, pp. 77–97, 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6674155/

[63] M. O. Gokalp, K. Kayabay, M. A. Akyol, P. E. Eren, and A. Kocyigit, “Big Data for Industry 4.0: A
Conceptual Framework,” in 2016 International Conference on Computational Science and Computational
Intelligence (CSCI). Las Vegas, NV, USA: IEEE, Dec. 2016, pp. 431–434. [Online]. Available:
http://ieeexplore.ieee.org/document/7881381/

[64] W. He and L. D. Xu, “Integration of Distributed Enterprise Applications: A Survey,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 1, pp. 35–42, Feb. 2014. [Online]. Available:
http://ieeexplore.ieee.org/document/6165353/

[65] C. Sarkar, S. N. A. U. Nambi, R. V. Prasad, and A. Rahim, “A scalable distributed architecture towards
unifying IoT applications,” in 2014 IEEE World Forum on Internet of Things (WF-IoT). Seoul, Korea
(South): IEEE, Mar. 2014, pp. 508–513. [Online]. Available: http://ieeexplore.ieee.org/document/6803220/

[66] D. Schel, C. Henkel, D. Stock, O. Meyer, G. Rauhöft, P. Einberger, M. Stöhr, M. A. Daxer, and
J. Seidelmann, “Manufacturing Service Bus: An Implementation,” Procedia CIRP, vol. 67, pp. 179–184,
2018. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S221282711731140X

[67] N. Serrano, J. Hernantes, and G. Gallardo, “Service-Oriented Architecture and Legacy Systems,” IEEE
Software, vol. 31, no. 5, pp. 15–19, Sep. 2014. [Online]. Available: https://ieeexplore.ieee.org/document/
6898686/

[68] M. Kleeberg, H. Kirchner, and C. Zirpins, “Information Systems Integration in the Cloud:
Scenarios, Challenges and Technology Trends,” in Future Business Software, G. Brunetti,
T. Feld, L. Heuser, J. Schnitter, and C. Webel, Eds., 2014, pp. 39–54. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-04144-5_4

[69] S. Palanimalai and I. Paramasivam, “An enterprise oriented view on the cloud integration approaches -
hybrid cloud and big data,” Procedia Computer Science, vol. 50, pp. 163–168, 2015.

[70] L. González and R. Ruggia, “A reference architecture for integration platforms supporting cross-
organizational collaboration,” in Proceedings of the 17th International Conference on Information
Integration and Web-based Applications &Services - iiWAS ’15. Brussels, Belgium: ACM Press, 2015,
pp. 1–4. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2837185.2843854

https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3902
http://arxiv.org/abs/1709.03628
http://ieeexplore.ieee.org/document/5476146/
http://ieeexplore.ieee.org/document/6682212/
http://ieeexplore.ieee.org/document/6674155/
http://ieeexplore.ieee.org/document/7881381/
http://ieeexplore.ieee.org/document/6165353/
http://ieeexplore.ieee.org/document/6803220/
https://linkinghub.elsevier.com/retrieve/pii/S221282711731140X
https://ieeexplore.ieee.org/document/6898686/
https://ieeexplore.ieee.org/document/6898686/
http://link.springer.com/10.1007/978-3-319-04144-5_4
http://dl.acm.org/citation.cfm?doid=2837185.2843854

BIBLIOGRAPHY 109

[71] G. Hohpe, “Enterprise Integration Patterns,” in Proceedings of the 9th Conference on Pattern Language
of Programs, Monticello, Illinois, Jul. 2002, p. 36.

[72] K. Kritikos, P. Skrzypek, and M. Różańska, “Towards an Integration Methodology for Multi-Cloud
Application Management Platforms,” in Proceedings of the 12th IEEE/ACM International Conference on
Utility and Cloud Computing Companion - UCC ’19 Companion. Auckland, New Zealand: ACM Press,
2019, pp. 21–28. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3368235.3368833

[73] P. M. Singh, M. Van Sinderen, and R. Wieringa, “Reference Architecture for Integration Platforms,” in 2017
IEEE 21st International Enterprise Distributed Object Computing Conference (EDOC). Quebec City,
QC: IEEE, Oct. 2017, pp. 113–122. [Online]. Available: http://ieeexplore.ieee.org/document/8089870/

[74] A. Bakulev and M. Bakuleva, “Moving Enterprise Integration Middleware toward the Distributed Stream
Processing Architecture,” in 2019 8th Mediterranean Conference on Embedded Computing (MECO).
Budva, Montenegro: IEEE, Jun. 2019, pp. 1–4. [Online]. Available: https://ieeexplore.ieee.org/document/
8760002/

[75] P. Dobbelaere and K. S. Esmaili, “Kafka versus RabbitMQ: A comparative study of two industry reference
publish/subscribe implementations: Industry Paper,” in Proceedings of the 11th ACM International
Conference on Distributed and Event-based Systems - DEBS ’17. Barcelona, Spain: ACM Press, 2017,
pp. 227–238. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3093742.3093908

[76] R. Yasrab, “Platform-as-a-Service (PaaS): The Next Hype of Cloud Computing,” ArXiv, vol.
abs/1804.10811, p. 21, 2018.

[77] I. F. Alexander, “A Taxonomy of Stakeholders: Human Roles in System Development,” International
Journal of Technology and Human Interaction (IJTHI), vol. 1, no. 1, pp. 23–59, Jan. 2005. [Online].
Available: https://ideas.repec.org/a/igg/jthi00/v1y2005i1p23-59.html

[78] N. Cunniff and R. P. Taylor, “Graphical vs. Textual Representation: An Empirical Study of Novices’ Program
Comprehension,” in Empirical Studies of Programmers: Second Workshop. USA: Ablex Publishing Corp.,
1987, pp. 114–131.

[79] K. N. Whitley, L. R. Novick, and D. Fisher, “Evidence in favor of visual representation for
the dataflow paradigm: An experiment testing LabVIEW’s comprehensibility,” International Journal
of Human-Computer Studies, vol. 64, no. 4, pp. 281–303, Apr. 2006. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1071581905001163

[80] J. P. Morrison, Flow-based programming: a new approach to application development, 2nd ed. Unionville,
Ont.: J. P. Morrison, 2011, oCLC: 816295591.

[81] B. R. Hiraman, C. Viresh M., and K. Abhijeet C., “A Study of Apache Kafka in Big Data Stream Processing,”
in 2018 International Conference on Information , Communication, Engineering and Technology (ICICET).
Pune: IEEE, Aug. 2018, pp. 1–3. [Online]. Available: https://ieeexplore.ieee.org/document/8533771/

[82] H. Wu, Z. Shang, and K. Wolter, “Performance Prediction for the Apache Kafka Messaging System,”
in 2019 IEEE 21st International Conference on High Performance Computing and Communications;
IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS). Zhangjiajie, China: IEEE, Aug. 2019, pp. 154–161. [Online].
Available: https://ieeexplore.ieee.org/document/8855525/

[83] J. Yongguo, L. Qiang, Q. Changshuai, S. Jian, and L. Qianqian, “Message-oriented Middleware: A
Review,” in 2019 5th International Conference on Big Data Computing and Communications (BIGCOM).
QingDao, China: IEEE, Aug. 2019, pp. 88–97. [Online]. Available: https://ieeexplore.ieee.org/document/
8905013/

[84] A. Cavacini, “What is the best database for computer science journal articles?” Scientometrics, vol. 102,
no. 3, pp. 2059–2071, Mar. 2015. [Online]. Available: http://link.springer.com/10.1007/s11192-014-1506-1

[85] J. Webster and R. T. Watson, “Analyzing the Past to Prepare for the Future: Writing a Literature Review,”
MIS Quarterly, vol. 26, no. 2, pp. xiii–xxiii, 2002. [Online]. Available: http://www.jstor.org/stable/4132319

http://dl.acm.org/citation.cfm?doid=3368235.3368833
http://ieeexplore.ieee.org/document/8089870/
https://ieeexplore.ieee.org/document/8760002/
https://ieeexplore.ieee.org/document/8760002/
http://dl.acm.org/citation.cfm?doid=3093742.3093908
https://ideas.repec.org/a/igg/jthi00/v1y2005i1p23-59.html
https://linkinghub.elsevier.com/retrieve/pii/S1071581905001163
https://ieeexplore.ieee.org/document/8533771/
https://ieeexplore.ieee.org/document/8855525/
https://ieeexplore.ieee.org/document/8905013/
https://ieeexplore.ieee.org/document/8905013/
http://link.springer.com/10.1007/s11192-014-1506-1
http://www.jstor.org/stable/4132319

BIBLIOGRAPHY 110

[86] G. Wang, J. Koshy, S. Subramanian, K. Paramasivam, M. Zadeh, N. Narkhede, J. Rao, J. Kreps,
and J. Stein, “Building a replicated logging system with apache kafka,” in Proceedings of the VLDB
Endowment, vol. 8. Seoul: Association for Computing Machinery, 2015, pp. 1654–1655, iSSN: 21508097
Issue: 12. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84953887655&doi=
10.14778%2f2824032.2824063&partnerID=40&md5=2835d2557f80a1ba6f352881b039958c

[87] R. Shree, T. Choudhury, S. C. Gupta, and P. Kumar, “KAFKA: The Modern Platform for Data Management
and Analysis in Big Data Domain,” p. 5, 2017.

[88] A. Alaasam, G. Radchenko, and A. Tchernykh, “Stateful stream processing for digital twins: Microservice-
based kafka stream dsl,” in SIBIRCON 2019 - International Multi-Conference on Engineering, Computer
and Information Sciences, Proceedings. Institute of Electrical and Electronics Engineers Inc., 2019, pp.
804–809. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079071242&doi=
10.1109%2fSIBIRCON48586.2019.8958367&partnerID=40&md5=5f0481758f430edccf7567e0415b8f25

[89] J. Fernández-Rodríguez, J. Álvarez García, J. Arias Fisteus, M. Luaces, and
V. Corcoba Magaña, “Benchmarking real-time vehicle data streaming models for a
smart city,” Information Systems, vol. 72, pp. 62–76, 2017, publisher: Elsevier Ltd.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030771090&doi=10.1016%
2fj.is.2017.09.002&partnerID=40&md5=a8e8561f91eb20efdad76a7297f98266

[90] M. Sax, G. Wang, M. Weidlich, and J.-C. Freytag, “Streams and tables: Two sides of the same coin,”
in ACM International Conference Proceeding Series. Association for Computing Machinery, 2018.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055838860&doi=10.1145%
2f3242153.3242155&partnerID=40&md5=54de5d55e5ccae9e6411d0a7ae665916

[91] H. Jafarpour, R. Desai, and D. Guy, “KSQL: Streaming SQL engine for Apache Kafka,”
in Advances in Database Technology - EDBT, K. Z. Reinwald B., Binnig C., Ed.,
vol. 2019-March. OpenProceedings.org, 2019, pp. 524–533, iSSN: 23672005. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064933207&doi=10.5441%2f002%
2fedbt.2019.48&partnerID=40&md5=65298a191bcf6406ad06512c6cc22a9d

[92] S. Noghabi, K. Paramasivamy, Y. Pany, N. Rameshy, J. Bringhursty, I. Gupta, and R. Campbell, “Samza:
Stateful scalable stream processing at linkedin,” in Proceedings of the VLDB Endowment, S. K. Boncz P.,
Ed., vol. 10. Association for Computing Machinery, 2017, pp. 1634–1645, iSSN: 21508097 Issue: 12.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036620015&partnerID=40&
md5=77d785062bc8cd88d18e101ea9e96dce

[93] M. Kleppmann and J. Kreps, “Kafka, Samza and the Unix Philosophy of Distributed Data,” in IEEE Data
Engineering Bulletin, vol. 38, Dec. 2015, pp. 4–14.

[94] M. Pathirage, J. Hyde, Y. Pan, and B. Plale, “SamzaSQL: Scalable Fast Data Management
with Streaming SQL,” in 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). Chicago, IL, USA: IEEE, May 2016, pp. 1627–1636. [Online]. Available:
http://ieeexplore.ieee.org/document/7530060/

[95] K. İnçki and M. Aktaş, “Improving Awareness in Ambient-Assisted Living
Systems: Consolidated Data Stream Processing,” Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST,
vol. 187, pp. 89–94, 2016, iSBN: 9783319512334 Publisher: Springer Verlag.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011263979&doi=10.1007%
2f978-3-319-51234-1_14&partnerID=40&md5=955cb0f94d3c581809017667885f6879

[96] H. Lv, X. Ge, H. Zhu, C. Wang, Z. Yuan, and Y. Zhu, “Design and implementation of reactive
distributed internet of things platform based on actor model,” in Proceedings of 2019 IEEE 3rd
Information Technology, Networking, Electronic and Automation Control Conference, ITNEC 2019,
X. B, Ed. Institute of Electrical and Electronics Engineers Inc., 2019, pp. 1993–1996. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067870421&doi=10.1109%2fITNEC.
2019.8729169&partnerID=40&md5=e62e0900449055ca7577973a2d56f51b

https://www.scopus.com/inward/record.uri?eid=2-s2.0-84953887655&doi=10.14778%2f2824032.2824063&partnerID=40&md5=2835d2557f80a1ba6f352881b039958c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84953887655&doi=10.14778%2f2824032.2824063&partnerID=40&md5=2835d2557f80a1ba6f352881b039958c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079071242&doi=10.1109%2fSIBIRCON48586.2019.8958367&partnerID=40&md5=5f0481758f430edccf7567e0415b8f25
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079071242&doi=10.1109%2fSIBIRCON48586.2019.8958367&partnerID=40&md5=5f0481758f430edccf7567e0415b8f25
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030771090&doi=10.1016%2fj.is.2017.09.002&partnerID=40&md5=a8e8561f91eb20efdad76a7297f98266
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85030771090&doi=10.1016%2fj.is.2017.09.002&partnerID=40&md5=a8e8561f91eb20efdad76a7297f98266
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055838860&doi=10.1145%2f3242153.3242155&partnerID=40&md5=54de5d55e5ccae9e6411d0a7ae665916
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85055838860&doi=10.1145%2f3242153.3242155&partnerID=40&md5=54de5d55e5ccae9e6411d0a7ae665916
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064933207&doi=10.5441%2f002%2fedbt.2019.48&partnerID=40&md5=65298a191bcf6406ad06512c6cc22a9d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85064933207&doi=10.5441%2f002%2fedbt.2019.48&partnerID=40&md5=65298a191bcf6406ad06512c6cc22a9d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036620015&partnerID=40&md5=77d785062bc8cd88d18e101ea9e96dce
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85036620015&partnerID=40&md5=77d785062bc8cd88d18e101ea9e96dce
http://ieeexplore.ieee.org/document/7530060/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011263979&doi=10.1007%2f978-3-319-51234-1_14&partnerID=40&md5=955cb0f94d3c581809017667885f6879
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85011263979&doi=10.1007%2f978-3-319-51234-1_14&partnerID=40&md5=955cb0f94d3c581809017667885f6879
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067870421&doi=10.1109%2fITNEC.2019.8729169&partnerID=40&md5=e62e0900449055ca7577973a2d56f51b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85067870421&doi=10.1109%2fITNEC.2019.8729169&partnerID=40&md5=e62e0900449055ca7577973a2d56f51b

BIBLIOGRAPHY 111

[97] J. Meehan, N. Tatbul, and J. Du, “Data ingestion for the connected world,” in CIDR 2017 - 8th Biennial
Conference on Innovative Data Systems Research. Conference on Innovative Data Systems Research
(CIDR), 2017. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084013925&
partnerID=40&md5=c9ee0872f74d3231f14512f12f3d3483

[98] M. Balduini, S. Pasupathipillai, and E. D. Valle, “Cost-Aware Streaming Data Analysis: Distributed
vs Single-Thread,” in Proceedings of the 12th ACM International Conference on Distributed and
Event-based Systems. Hamilton New Zealand: ACM, Jun. 2018, pp. 160–170. [Online]. Available:
https://dl.acm.org/doi/10.1145/3210284.3210294

[99] R. Bansod, S. Kadarkar, R. Virk, M. Raval, R. Rashinkar, and M. Nambiar,
“High Performance Distributed In-Memory Architectures for Trade Surveillance System,”
in Proceedings - 17th International Symposium on Parallel and Distributed Computing,
ISPDC 2018. Institute of Electrical and Electronics Engineers Inc., 2018, pp. 101–108.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053865726&doi=10.1109%
2fISPDC2018.2018.00023&partnerID=40&md5=cb647b3efe66c88ba2c4ec2eac2ca875

[100] C. Barba-González, A. Nebro, A. Benítez-Hidalgo, J. García-Nieto, and J. Aldana-Montes, “On
the design of a framework integrating an optimization engine with streaming technologies,” Future
Generation Computer Systems, vol. 107, pp. 538–550, 2020, publisher: Elsevier B.V. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079616944&doi=10.1016%2fj.future.
2020.02.020&partnerID=40&md5=247cda66bcb18d9022b1061693bb090f

[101] E. Shahverdi, A. Awad, and S. Sakr, “Big stream processing systems: An experimental
evaluation,” in Proceedings - 2019 IEEE 35th International Conference on Data Engineering
Workshops, ICDEW 2019. Institute of Electrical and Electronics Engineers Inc., 2019, pp. 53–60.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069216125&doi=10.1109%
2fICDEW.2019.00-35&partnerID=40&md5=1d4cecac6147c94f034a6f919266e193

[102] G. Van Dongen and D. Van Den Poel, “Evaluation of Stream Processing Frameworks,” IEEE Transactions
on Parallel and Distributed Systems, vol. 31, no. 8, pp. 1845–1858, 2020, publisher: IEEE Computer
Society. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082884278&doi=
10.1109%2fTPDS.2020.2978480&partnerID=40&md5=26b022034b6e88f7451b2a6f5952b215

[103] H. Isah, T. Abughofa, S. Mahfuz, D. Ajerla, F. Zulkernine, and S. Khan, “A
survey of distributed data stream processing frameworks,” IEEE Access, vol. 7, pp.
154 300–154 316, 2019, publisher: Institute of Electrical and Electronics Engineers Inc.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077809554&doi=10.1109%
2fACCESS.2019.2946884&partnerID=40&md5=ddaf12ada663531aec42d33dd266b8c0

[104] F. Gurcan and M. Berigel, “Real-Time Processing of Big Data Streams: Lifecycle, Tools, Tasks,
and Challenges,” in ISMSIT 2018 - 2nd International Symposium on Multidisciplinary Studies and
Innovative Technologies, Proceedings. Institute of Electrical and Electronics Engineers Inc., 2018.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060774920&doi=10.1109%
2fISMSIT.2018.8567061&partnerID=40&md5=adc075547ba2208440ed3d7528659e4e

[105] V. Gurusamy, School of IT, Madurai Kamaraj University, Madurai, India, S. Kannan, School of IT, Madurai
Kamaraj University, Madurai, India, K. Nandhini, and Technical Support Engineer, Concentrix India Pvt
Ltd, Chennai, India, “The Real Time Big Data Processing Framework Advantages and Limitations,”
International Journal of Computer Sciences and Engineering, vol. 5, no. 12, pp. 305–312, Dec. 2017.
[Online]. Available: http://www.ijcseonline.org/full_paper_view.php?paper_id=1621

[106] G. Hesse and M. Lorenz, “Conceptual Survey on Data Stream Processing Systems,” in 2015 IEEE 21st
International Conference on Parallel and Distributed Systems (ICPADS). Melbourne, VIC: IEEE, Dec.
2015, pp. 797–802. [Online]. Available: http://ieeexplore.ieee.org/document/7384369/

[107] G. J. Chen, S. Yilmaz, J. L. Wiener, S. Iyer, A. Jaiswal, R. Lei, N. Simha, W. Wang, K. Wilfong,
and T. Williamson, “Realtime Data Processing at Facebook,” in Proceedings of the 2016 International
Conference on Management of Data - SIGMOD ’16. San Francisco, California, USA: ACM Press, 2016,
pp. 1087–1098. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2882903.2904441

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084013925&partnerID=40&md5=c9ee0872f74d3231f14512f12f3d3483
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85084013925&partnerID=40&md5=c9ee0872f74d3231f14512f12f3d3483
https://dl.acm.org/doi/10.1145/3210284.3210294
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053865726&doi=10.1109%2fISPDC2018.2018.00023&partnerID=40&md5=cb647b3efe66c88ba2c4ec2eac2ca875
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85053865726&doi=10.1109%2fISPDC2018.2018.00023&partnerID=40&md5=cb647b3efe66c88ba2c4ec2eac2ca875
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079616944&doi=10.1016%2fj.future.2020.02.020&partnerID=40&md5=247cda66bcb18d9022b1061693bb090f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85079616944&doi=10.1016%2fj.future.2020.02.020&partnerID=40&md5=247cda66bcb18d9022b1061693bb090f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069216125&doi=10.1109%2fICDEW.2019.00-35&partnerID=40&md5=1d4cecac6147c94f034a6f919266e193
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85069216125&doi=10.1109%2fICDEW.2019.00-35&partnerID=40&md5=1d4cecac6147c94f034a6f919266e193
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082884278&doi=10.1109%2fTPDS.2020.2978480&partnerID=40&md5=26b022034b6e88f7451b2a6f5952b215
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85082884278&doi=10.1109%2fTPDS.2020.2978480&partnerID=40&md5=26b022034b6e88f7451b2a6f5952b215
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077809554&doi=10.1109%2fACCESS.2019.2946884&partnerID=40&md5=ddaf12ada663531aec42d33dd266b8c0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077809554&doi=10.1109%2fACCESS.2019.2946884&partnerID=40&md5=ddaf12ada663531aec42d33dd266b8c0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060774920&doi=10.1109%2fISMSIT.2018.8567061&partnerID=40&md5=adc075547ba2208440ed3d7528659e4e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85060774920&doi=10.1109%2fISMSIT.2018.8567061&partnerID=40&md5=adc075547ba2208440ed3d7528659e4e
http://www.ijcseonline.org/full_paper_view.php?paper_id=1621
http://ieeexplore.ieee.org/document/7384369/
http://dl.acm.org/citation.cfm?doid=2882903.2904441

BIBLIOGRAPHY 112

[108] M. Dias de Assunção, A. da Silva Veith, and R. Buyya, “Distributed data stream processing
and edge computing: A survey on resource elasticity and future directions,” Journal of
Network and Computer Applications, vol. 103, pp. 1–17, Feb. 2018. [Online]. Available: https:
//linkinghub.elsevier.com/retrieve/pii/S1084804517303971

[109] M. Gehring, M. Charfuelan, and V. Markl, “A Comparison of Distributed Stream Processing Systems
for Time Series Analysis,” 2019, iSBN: 9783885796848 Publisher: Gesellschaft für Informatik, Bonn.
[Online]. Available: http://dl.gi.de/handle/20.500.12116/21808

[110] T. Kolajo, O. Daramola, and A. Adebiyi, “Big data stream analysis: a systematic literature
review,” Journal of Big Data, vol. 6, no. 1, p. 47, Dec. 2019. [Online]. Available: https:
//journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0210-7

[111] X. Zhao, S. Garg, C. Queiroz, and R. Buyya, “A Taxonomy and Survey of Stream Processing Systems,”
in Software Architecture for Big Data and the Cloud. Elsevier, 2017, pp. 183–206. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/B9780128054673000119

[112] Q.-C. To, J. Soto, and V. Markl, “A survey of state management in big data processing
systems,” The VLDB Journal, vol. 27, no. 6, pp. 847–872, Dec. 2018. [Online]. Available:
http://link.springer.com/10.1007/s00778-018-0514-9

[113] S. Qian, G. Wu, J. Huang, and T. Das, “Benchmarking modern distributed streaming platforms,” in 2016
IEEE International Conference on Industrial Technology (ICIT). Taipei, Taiwan: IEEE, Mar. 2016, pp.
592–598. [Online]. Available: http://ieeexplore.ieee.org/document/7474816/

[114] M. Dayarathna and S. Perera, “Recent Advancements in Event Processing,” ACM Computing Surveys,
vol. 51, no. 2, pp. 1–36, Jun. 2018. [Online]. Available: https://dl.acm.org/doi/10.1145/3170432

[115] P. Carbone, G. E. Gévay, G. Hermann, A. Katsifodimos, J. Soto, V. Markl, and S. Haridi, “Large-Scale
Data Stream Processing Systems,” in Handbook of Big Data Technologies, A. Y. Zomaya and
S. Sakr, Eds. Cham: Springer International Publishing, 2017, pp. 219–260. [Online]. Available:
https://doi.org/10.1007/978-3-319-49340-4_7

[116] R. Tommasini, S. Sakr, E. D. Valle, and H. Jafarpour, “Declarative Languages for Big Streaming Data,”
2020, version Number: 1 type: dataset. [Online]. Available: https://openproceedings.org/2020/conf/edbt/
paper_T1.pdf

[117] G. Hesse, C. Matthies, K. Glass, J. Huegle, and M. Uflacker, “Quantitative Impact Evaluation of an
Abstraction Layer for Data Stream Processing Systems,” in 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). Dallas, TX, USA: IEEE, Jul. 2019, pp. 1381–1392. [Online].
Available: https://ieeexplore.ieee.org/document/8884832/

[118] M. Gökalp, A. Koçyiğit, and P. Eren, “A visual programming framework for
distributed Internet of Things centric complex event processing,” Computers and
Electrical Engineering, vol. 74, pp. 581–604, 2019, publisher: Elsevier Ltd.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042022936&doi=10.1016%
2fj.compeleceng.2018.02.007&partnerID=40&md5=319d8165205ae09a8a3da64ebabb580d

[119] C.-H. Jin, Z.-M. Liu, M.-H. Wu, and J. Ying, “FastFlow: Efficient Scalable Model-Driven Framework for
Processing Massive Mobile Stream Data,” Mobile Information Systems, vol. 2015, 2015, publisher: IOS
Press. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84935831498&doi=10.
1155%2f2015%2f818307&partnerID=40&md5=57f4e1a13f6d121cfc95c8b744d4572e

[120] A. Soylu, M. Giese, R. Schlatte, E. Jimenez-Ruiz, O. Ozcep, and S. Brandt, “Domain
experts surfing on stream sensor data over ontologies,” in CEUR Workshop Proceedings, S. T.
Bikakis A., Meditskos G., Ed., vol. 1588. CEUR-WS, 2016, pp. 11–20, iSSN: 16130073.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84977530378&partnerID=40&
md5=0ab8095c7ba16e8be98a97b2a7393196

[121] A. Soylu, M. Giese, E. Jimenez-Ruiz, G. Vega-Gorgojo, and I. Horrocks, “Experiencing OptiqueVQS:
a multi-paradigm and ontology-based visual query system for end users,” Universal Access

https://linkinghub.elsevier.com/retrieve/pii/S1084804517303971
https://linkinghub.elsevier.com/retrieve/pii/S1084804517303971
http://dl.gi.de/handle/20.500.12116/21808
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0210-7
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-019-0210-7
https://linkinghub.elsevier.com/retrieve/pii/B9780128054673000119
http://link.springer.com/10.1007/s00778-018-0514-9
http://ieeexplore.ieee.org/document/7474816/
https://dl.acm.org/doi/10.1145/3170432
https://doi.org/10.1007/978-3-319-49340-4_7
https://openproceedings.org/2020/conf/edbt/paper_T1.pdf
https://openproceedings.org/2020/conf/edbt/paper_T1.pdf
https://ieeexplore.ieee.org/document/8884832/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042022936&doi=10.1016%2fj.compeleceng.2018.02.007&partnerID=40&md5=319d8165205ae09a8a3da64ebabb580d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042022936&doi=10.1016%2fj.compeleceng.2018.02.007&partnerID=40&md5=319d8165205ae09a8a3da64ebabb580d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84935831498&doi=10.1155%2f2015%2f818307&partnerID=40&md5=57f4e1a13f6d121cfc95c8b744d4572e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84935831498&doi=10.1155%2f2015%2f818307&partnerID=40&md5=57f4e1a13f6d121cfc95c8b744d4572e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84977530378&partnerID=40&md5=0ab8095c7ba16e8be98a97b2a7393196
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84977530378&partnerID=40&md5=0ab8095c7ba16e8be98a97b2a7393196

BIBLIOGRAPHY 113

in the Information Society, vol. 15, no. 1, pp. 129–152, Mar. 2016. [Online]. Available:
http://link.springer.com/10.1007/s10209-015-0404-5

[122] A. Soylu, M. Giese, E. Jimenez-Ruiz, E. Kharlamov, D. Zheleznyakov, and I. Horrocks, “Ontology-
based end-user visual query formulation: Why, what, who, how, and which?” Universal
Access in the Information Society, vol. 16, no. 2, pp. 435–467, Jun. 2017. [Online]. Available:
http://link.springer.com/10.1007/s10209-016-0465-0

[123] A. Soylu, M. Giese, R. Schlatte, E. Jimenez-Ruiz, E. Kharlamov, O. Ozcep, C. Neuenstadt, and
S. Brandt, “Querying industrial stream-temporal data: AnÂ ontology-based visual approach,” Journal of
Ambient Intelligence and Smart Environments, vol. 9, no. 1, pp. 77–95, 2017, publisher: IOS Press.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010078916&doi=10.3233%
2fAIS-160415&partnerID=40&md5=1c0af2d037f8881d77b77207ff76ef08

[124] J. Lucas, Y. Idris, B. Contreras-Rojas, J.-A. Quiane-Ruiz, and S. Chawla, “Rheemstudio: Cross-platform
data analytics made easy,” in Proceedings - IEEE 34th International Conference on Data Engineering,
ICDE 2018. Institute of Electrical and Electronics Engineers Inc., 2018, pp. 1553–1556. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057098362&doi=10.1109%2fICDE.
2018.00179&partnerID=40&md5=0d471e60979bb0bf848cf2925de1a6c2

[125] S. Chawla, B. Contreras-Rojas, Z. Kaoudi, S. Kruse, and J.-A. Quiané-Ruiz, “Building your Cross-Platform
Application with RHEEM,” arXiv:1805.11723 [cs], May 2018, arXiv: 1805.11723. [Online]. Available:
http://arxiv.org/abs/1805.11723

[126] T. Mahapatra and C. Prehofer, “aFlux: Graphical flow-based data analytics,” Software Impacts, vol. 2, p.
100007, Nov. 2019. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S2665963819300077

[127] T. Mahapatra, I. Gerostathopoulos, C. Prehofer, and S. Gore, “Graphical spark programming in IoT
mashup tools,” in 2018 5th International Conference on Internet of Things: Systems, Management and
Security, IoTSMS 2018. Institute of Electrical and Electronics Engineers Inc., 2018, pp. 163–170.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059982001&doi=10.1109%
2fIoTSMS.2018.8554665&partnerID=40&md5=ca819ab090aa8a7a4261a934d0e9c35e

[128] T. Mahapatra and C. Prehofer, “Graphical Flow-based Spark Programming,”
Journal of Big Data, vol. 7, no. 1, 2020, publisher: Springer.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077578119&doi=10.1186%
2fs40537-019-0273-5&partnerID=40&md5=64a2e11f4e8d79d2eed1ae95b3444b3b

[129] T. Mahapatra, C. Prehofer, I. Gerostathopoulos, and I. Varsamidakis, “Stream analytics in IoT mashup
tools,” in Proceedings of IEEE Symposium on Visual Languages and Human-Centric Computing,
VL/HCC, E. G. Kelleher C., Ed., vol. 2018-October. IEEE Computer Society, 2018, pp. 227–231, iSSN:
19436092. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056899799&
doi=10.1109%2fVLHCC.2018.8506548&partnerID=40&md5=760a12d2abe6b8111cfae436c4dd6fb7

[130] T. Mahapatra, I. Gerostathopoulos, F. A. Fernández Moreno, and C. Prehofer, “Designing flink pipelines
in IoT mashup tools,” in 4th Norwegian Big Data Symposium, NOBIDS 2018, ser. CEUR Workshop
Proceedings, vol. 2316. CEUR Workshop Proceedings, 2018, pp. 41–53.

[131] M. Mesiti, L. Ferrari, S. Valtolina, G. Licari, G. Galliani, M. Dao, and K. Zettsu,
“StreamLoader: An event-driven ETL system for the on-line processing of heterogeneous
sensor data,” in Advances in Database Technology - EDBT, P. E. Manolescu I., Ed.,
vol. 2016-March. OpenProceedings.org, 2016, pp. 628–631, iSSN: 23672005. [Online].
Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013442005&doi=10.5441%2f002%
2fedbt.2016.65&partnerID=40&md5=581cd8c6e29d936cce2f8fbaf86ed4b2

[132] W. Santos, L. Carvalho, G. Avelar, A. Silva, L. Ponce, D. Guedes, and W. Meira,
“Lemonade: A scalable and efficient spark-based platform for data analytics,” in Proceedings
- 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGRID 2017. Institute of Electrical and Electronics Engineers Inc., 2017, pp. 745–748.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027453978&doi=10.1109%
2fCCGRID.2017.142&partnerID=40&md5=940d984388927acec75a0e94bb195143

http://link.springer.com/10.1007/s10209-015-0404-5
http://link.springer.com/10.1007/s10209-016-0465-0
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010078916&doi=10.3233%2fAIS-160415&partnerID=40&md5=1c0af2d037f8881d77b77207ff76ef08
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010078916&doi=10.3233%2fAIS-160415&partnerID=40&md5=1c0af2d037f8881d77b77207ff76ef08
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057098362&doi=10.1109%2fICDE.2018.00179&partnerID=40&md5=0d471e60979bb0bf848cf2925de1a6c2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85057098362&doi=10.1109%2fICDE.2018.00179&partnerID=40&md5=0d471e60979bb0bf848cf2925de1a6c2
http://arxiv.org/abs/1805.11723
https://linkinghub.elsevier.com/retrieve/pii/S2665963819300077
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059982001&doi=10.1109%2fIoTSMS.2018.8554665&partnerID=40&md5=ca819ab090aa8a7a4261a934d0e9c35e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059982001&doi=10.1109%2fIoTSMS.2018.8554665&partnerID=40&md5=ca819ab090aa8a7a4261a934d0e9c35e
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077578119&doi=10.1186%2fs40537-019-0273-5&partnerID=40&md5=64a2e11f4e8d79d2eed1ae95b3444b3b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077578119&doi=10.1186%2fs40537-019-0273-5&partnerID=40&md5=64a2e11f4e8d79d2eed1ae95b3444b3b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056899799&doi=10.1109%2fVLHCC.2018.8506548&partnerID=40&md5=760a12d2abe6b8111cfae436c4dd6fb7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85056899799&doi=10.1109%2fVLHCC.2018.8506548&partnerID=40&md5=760a12d2abe6b8111cfae436c4dd6fb7
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013442005&doi=10.5441%2f002%2fedbt.2016.65&partnerID=40&md5=581cd8c6e29d936cce2f8fbaf86ed4b2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85013442005&doi=10.5441%2f002%2fedbt.2016.65&partnerID=40&md5=581cd8c6e29d936cce2f8fbaf86ed4b2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027453978&doi=10.1109%2fCCGRID.2017.142&partnerID=40&md5=940d984388927acec75a0e94bb195143
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85027453978&doi=10.1109%2fCCGRID.2017.142&partnerID=40&md5=940d984388927acec75a0e94bb195143

BIBLIOGRAPHY 114

[133] W. d. Santos, G. P. Avelar, M. H. Ribeiro, D. Guedes, and W. Meira, “Scalable and efficient data analytics
and mining with lemonade,” Proceedings of the VLDB Endowment, vol. 11, no. 12, pp. 2070–2073, Aug.
2018. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3229863.3275599

[134] S. Schmid, I. Gerostathopoulos, and C. Prehofer, “QryGraph: A graphical tool for Big Data analytics,”
in 2016 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2016 - Conference
Proceedings. Institute of Electrical and Electronics Engineers Inc., Oct. 2016, pp. 4028–4033.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015796998&doi=10.1109%
2fSMC.2016.7844863&partnerID=40&md5=97f02052980593e1da07217b62ab336d

[135] S. Sydow, M. Nabelsee, H. Parzyjegla, and P. Herber, “A Safe and User-Friendly Graphical
Programming Model for Parallel Stream Processing,” in Proceedings - 26th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, PDP 2018, L. P. Kotenko I.,
Merelli I., Ed. Institute of Electrical and Electronics Engineers Inc., 2018, pp. 239–243.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048795324&doi=10.1109%
2fPDP2018.2018.00040&partnerID=40&md5=21be5dd0f00bf398e0e5c5a767458fe9

[136] L. Thamsen, T. Renner, M. Byfeld, M. Paeschke, D. Schroder, and F. Bohm, “Visually programming
dataflows for distributed data analytics,” in Proceedings - 2016 IEEE International Conference on Big
Data, Big Data 2016, K. G. Ak R., Ed. Institute of Electrical and Electronics Engineers Inc., 2016, pp.
2276–2285. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015155718&
doi=10.1109%2fBigData.2016.7840860&partnerID=40&md5=51061eac2a61a6478764ac56bb706a20

[137] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “MEdit4CEP: A model-driven solution for real-time
decision making in SOA 2.0,” Knowledge-Based Systems, vol. 89, pp. 97–112, Nov. 2015. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0950705115002397

[138] ——, “ModeL4CEP: Graphical domain-specific modeling languages for CEP domains and event
patterns,” Expert Systems with Applications, vol. 42, no. 21, pp. 8095–8110, Nov. 2015. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S0957417415004479

[139] H. Eichelberger, C. Qin, and K. Schmid, “Experiences with the Model-based Generation of Big Data
Pipelines,” in Datenbanksysteme für Business, Technologie und Web (BTW 2017), Stuttgart, Germany,
Mar. 2017, p. 8.

[140] J. Kranjc, R. Orač, V. Podpečan, N. Lavrač, and M. Robnik-Šikonja, “ClowdFlows: Online workflows
for distributed big data mining,” Future Generation Computer Systems, vol. 68, pp. 38–58, Mar. 2017.
[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0167739X16302709

[141] D. Riemer, F. Kaulfersch, R. Hutmacher, and L. Stojanovic, “StreamPipes: solving the challenge with
semantic stream processing pipelines,” in Proceedings of the 9th ACM International Conference on
Distributed Event-Based Systems - DEBS ’15. Oslo, Norway: ACM Press, 2015, pp. 330–331. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2675743.2776765

[142] M. E. Iacob, H. Jonkers, D. Quartel, H. Franken, and H. van den Berg, Delivering Enterprise Architecture
with TOGAF\circledR and ARCHIMATE\circledR. BIZZdesign, 2012.

[143] B. Gils and S. Dijks, The practice of enterprise architecture. s.l: BiZZdesign Academy, 2015, oCLC:
1141024623.

[144] T. Górski, “Model-Driven Development in implementing integration flows,” Applied Computer Science,
vol. 9, pp. 66–82, 2015.

[145] I. Dávid, I. Ráth, and D. Varró, “Foundations for Streaming Model Transformations by Complex Event
Processing,” Software & Systems Modeling, vol. 17, no. 1, pp. 135–162, Feb. 2018. [Online]. Available:
http://link.springer.com/10.1007/s10270-016-0533-1

[146] F. Houacine, S. Bouzefrane, and A. Adjaz, “Service architecture for multi-environment mobile cloud
services,” International Journal of High Performance Computing and Networking, vol. 9, no. 4, p. 342,
2016. [Online]. Available: http://www.inderscience.com/link.php?id=77830

http://dl.acm.org/citation.cfm?doid=3229863.3275599
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015796998&doi=10.1109%2fSMC.2016.7844863&partnerID=40&md5=97f02052980593e1da07217b62ab336d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015796998&doi=10.1109%2fSMC.2016.7844863&partnerID=40&md5=97f02052980593e1da07217b62ab336d
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048795324&doi=10.1109%2fPDP2018.2018.00040&partnerID=40&md5=21be5dd0f00bf398e0e5c5a767458fe9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85048795324&doi=10.1109%2fPDP2018.2018.00040&partnerID=40&md5=21be5dd0f00bf398e0e5c5a767458fe9
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015155718&doi=10.1109%2fBigData.2016.7840860&partnerID=40&md5=51061eac2a61a6478764ac56bb706a20
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85015155718&doi=10.1109%2fBigData.2016.7840860&partnerID=40&md5=51061eac2a61a6478764ac56bb706a20
https://linkinghub.elsevier.com/retrieve/pii/S0950705115002397
https://linkinghub.elsevier.com/retrieve/pii/S0957417415004479
https://linkinghub.elsevier.com/retrieve/pii/S0167739X16302709
http://dl.acm.org/citation.cfm?doid=2675743.2776765
http://link.springer.com/10.1007/s10270-016-0533-1
http://www.inderscience.com/link.php?id=77830

BIBLIOGRAPHY 115

[147] K. Schwaber, “Scrum development process,” in Business object design and implementation. Springer,
1997, pp. 117–134.

[148] H. J. Nelson, G. Poels, M. Genero, and M. Piattini, “A conceptual modeling quality framework,”
Software Quality Journal, vol. 20, no. 1, pp. 201–228, Mar. 2012. [Online]. Available: http:
//link.springer.com/10.1007/s11219-011-9136-9

[149] F. D. Davis, “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information
Technology,” MIS Quarterly, vol. 13, no. 3, p. 319, Sep. 1989. [Online]. Available: https:
//www.jstor.org/stable/249008?origin=crossref

[150] F. Timm, S. Hacks, F. Thiede, and D. Hintzpeter, “Towards a Quality Framework for Enterprise Architecture
Models,” EMISA Forum, vol. 38, pp. 31–32, 2017.

[151] C. Boyce and P. Neale, “Conducting in-depth interviews: A guide for designing and conducting in-depth
interviews for evaluation input. Pathfinder International,” Watertown, MA: Pathfinder International, 2006.

[152] V. Charpenay, S. Kabisch, D. Anicic, and H. Kosch, “An ontology design pattern for IoT device tagging
systems,” in 2015 5th International Conference on the Internet of Things (IOT). Seoul, South Korea:
IEEE, Oct. 2015, pp. 138–145. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=7356558

[153] F. F. Reichheld, “The One Number You Need to Grow,” Harvard business review, vol. 81, pp. 46–54, 124,
Jun. 2003.

http://link.springer.com/10.1007/s11219-011-9136-9
http://link.springer.com/10.1007/s11219-011-9136-9
https://www.jstor.org/stable/249008?origin=crossref
https://www.jstor.org/stable/249008?origin=crossref
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7356558
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7356558

Appendix A

IoT case descriptions

A.1 Protocol

The interview protocol has been adopted from Boyce et al. [151]. At the start of the interview, the interviewer
introduces himself and states the purpose of the interview, which is to obtain an insight into the challenges
companies face when integrating IoT, and to use this information for research into improving IoT integration.
Next, it is stated that the interview will take 1 hour, and that all responses are kept confidential such that any
information included in the report will not identify the respondent. Once the respondent has agreed to this, and
has no further questions, the interview is started.

First, two questions are asked to provide context to the answers of the respondent:

• Could you briefly describe what your organisation does?

• Could you describe your role in the organisation?

Second, the main questions are discussed. Since the interview is semi-structured, the interviewer is free to
follow up with new questions not listed below, or to go through the list in a different order depending on the
progress of the interview.

• What are your organisations current use cases for IoT?

• What is your vision for future use cases of IoT in your organisation?

• What is the process for retrieving, processing and using IoT data?

– How is IoT data ingested?

– How and when is IoT data stored?

– How is IoT data processed? Processing includes for instance the cleaning, enrichment or
harmonization of data.

– How is the processed IoT data used?

– How is the IoT integration, from integration to the usage, implemented?

– What infrastructure is used for this?

– What tools and software are used in this processs?

• From a software perspective, what challenges does your organisation face when implementing IoT use
cases?

After the interview has been completed, the interviewee is provided with a brief overview of his answers and is
asked whether he/she has anything to add or clarify, after which the interview is concluded.

116

APPENDIX A. IOT CASE DESCRIPTIONS 117

A.2 Infrastructure Construction Company

The primary applications of IoT for InfraCorp are decision support and predictive maintenance for
infrastructural maintenance. An example includes the analysis of a water pump to see whether it pumped the
appropriate amount of water in a certain period. If any deviations are found compared to the expectation, faults
can be predicted and/or detected, and an issue can be created. The vision of InfraCorp is to further increase
the use of IoT, to do more predictive maintenance, and hence reduce maintenance costs and increase
customer satisfaction.

Most IoT projects within InfraCorp follow a three-step process; first, the raw data is collected and stored, then it
is transformed to structured and harmonised data, and finally, the data is used to power a dashboard.

In the first step, data from technical systems, such as SCADA systems is collected. Oftentimes, this data is
provided by partners who are responsible for collecting this data. This data is very heterogeneous and sparse
and external tables with metadata, such as a mapping from device IDs to device properties, are provided to
make more sense from the data. Data collection is a challenge by itself, as it may be provided over various
channels such as FTP, cloud push or even physically on a hard drive. The volume of incoming data is very
high, with up to 100.000 data points per day for a single application, which all have to be processed. In most
instances, scripts are used to assess the incoming data to decide whether it should be processed further or
whether it should be rejected.

Next, this raw data is to be translated into more useful data. This includes operations like aggregation over
various time spans and enriching the data based on the metadata tables, as well as external sources such as
weather data. The operations and the complexity of these operations vary per project. For all applications, a
uniform table is established based on common properties of the raw data, and all data is to be translated to
meet this format. All operations are defined in custom scripts, that are created on a per-project basis. All data
is finally stored in an SQL database.

Finally, the data is used in applications. For typical projects, this is a PowerBI based dashboard, that shows
visualisations based on queries on the database from the previous step. In the past, Mendix was also used as
it allowed for immediate feedback, for example reacting on an incoming event immediately, which is not
possible in PowerBI. However, instead of using Mendix, PowerBI is now the preferred option and
complemented by event handling logic in Azure that can send emails/alerts.

There are however a few projects that do not follow the above process steps. For example, on one project, the
IoT data is rated within the SCADA system, and when anomalies are detected the SCADA system will send out
a ticket with a priority, location and a measurement value. An iPaas platform will accept these tickets and will
have (partial) access to the SCADA system database. Then, the iPaaS will direct the tickets to an asset
management system through an ETL pipeline. In another project, the data needed was not available, and
InfraCorp had place sensors and put in place a full IoT infrastructure, which brought challenges regarding
implementing and managing IoT data, as well as challenges related to the protocols to be used. Finally, an IoT
related project was mentioned in which traffic cameras are to be used to recognise road damage. This brings a
whole different range of challenges related to algorithm development, but also to the selection of tools for
deployment and testing. For instance, the need for a scalable infrastructure powered by Kubernetes to process
the large image/video files produced by the cameras was mentioned as a challenge.

A.3 Real Estate Construction Company

EstateCorp has various large IoT projects running. Three projects were highlighted during the interview, a
smart facility management solution, a smart home energy solution, and a smart portal.

APPENDIX A. IOT CASE DESCRIPTIONS 118

The smart facility management solution is mainly concerned with workspace occupation. Sensors in the
building can detect which workspaces are being used, and this information can be used to efficiently use and
manage the workspaces in the building. An application has been developed that can show heatmaps with
workspace occupation, as well as historical data on workplace usage. The smart facility management solution
is to be included in the smart portal. This smart portal will not only show workspace occupation but also
temperatures, energy uses and other comfort data. All this data is collected by the local facility management
solution, this data is retrieved by a cloud-based solution named SkySpark. SkySpark is an analytics and data
management application for the domain of facility management. It is an implementation of the HayStack API
which provides simplified semantics in the domain of building automation, using semantic labels or ’tags’ [152].
SkySpark is able to support the derivation of meaning from data, by labelling data with tags. This data is
extracted from the SkySpark API and exposed in an internal digital data hub (DDH) built in Azure. This DDH
has various layers, from raw data to customer data, and provides a common data model. APIs and applications
that EstateCorp uses, also non-IoT applications are connected to this DDH. Once an app is connected to the
DDH, such as the smart portal it can access all data available in the digital data hub. The smart portal is a
low-code application built with the Mendix platform.

The last project is the smart home energy solution. This is a housing project in which new apartments are
realised with IoT sensors to measure water and electricity use. The goal of these sensors is to give tenants
more insight into their energy and water usage, such that EstateCorp can deliver more value to its customers
and so that it can gain experience with IoT. The sensor data is collected and owned by an external IoT supplier,
and EstateCorp gets access to this data. Using a REST API, the data is retrieved from the IoT supplier and
stored in an Azure data warehouse using Azure Data Factory. For some data sources, such as for water
monitoring, custom connectors had to be built to support the decoding of data. This raw data is implicitly
uniform since a single kind of sensor is used per sensor type, i.e. the same water sensor is used for all water
measurements. However, while the sensor data itself is not complex, sensor metadata such as the location of a
sensor and the scope of what it measures (i.e. a building, room, or an apartment) does bring complexities.
Once the raw data is stored, this data is then filtered, enriched and transformed for dimensional storage, this is
done using python Azure functions. Views can be created of this dimensional data, which can then be used in
PowerBI for visualisations. Tenants can then see these visualisations. In addition to seeing their own usage,
they can also compare their usage with similar apartments.

The smart home energy solution, while seemingly trivial, brings many challenges. One major challenge
identified is related to the reliability of the sensors. Data may temporarily be missing, and in this case, data
needs to be mocked up which brings challenges. A sensor may become unreliable or send error messages,
and this needs to be detected and handled. And someone needs to be held responsible for monitoring the
sensors and maintaining them. Another issue is vendor lock-in, EstateCorp confirms that their current
infrastructure depends on the specific data formats used by the data provider, leading to vendor lock-in. If the
application would need to support a different vendor or different IoT devices, a significant part of the
architecture would need to be rewritten. Another challenge is related to storing metadata. Metadata, such the
hierarchy of devices and the relations to what these devices measure, is complex and hard to capture, store
and manage. And finally, a challenge was brought up related to the context and meaning of the data. Currently,
the only the involved developers knows exactly what data points mean, and why they have that value. In other
words, correctly interpreting the data requires implicit, contextual, knowledge. While this information could be
documented, it is often not, and there is no central location for this information to be stored and managed.

In addition to the above applications, other applications included the use of SkySpark for zero energy housing.
In such contracts, self-sustaining houses are built and EstateCorp responsible for the energy supply of the
home. In the case that equipment is malfunctioning, or more energy is needed than expected, EstateCorp will
be responsible for the costs. Therefore, EstateCorp uses SkySpark to predict maintenance and energy usage
to pro-actively avoid such costs. The same principle is applied on other projects, as projects move to
service-based contracts, companies like EstateCorp are forced to move to smarter solutions to predict

APPENDIX A. IOT CASE DESCRIPTIONS 119

maintenance, increase their value propositions, and reduce costs. Another application of IoT during
construction is the use of the gyroscope in construction workers smartphones to detect when workers fall and
send alerts to support in such an event.

A.4 Consultancy firm

The consultancy firm designs tailored made IT systems for their clients using Mendix. In addition to these
tailor-made IT systems, they also design IT integrations for their clients using an affiliated integration platform.
These integrations are designed using the eMagiz iPaaS platform. Two IoT integration projects have been
identified, one project for the Dutch ministry of infrastructure and another project designed for InfraCorp.

The project designed for the ministry of infrastructure is described as a simple integration. In this integration,
data is pushed from the IoT data source of the ministry of infrastructure as JSON messages to the endpoints of
the integration platform. There are three different data streams for three different kinds of data, however, they
are all treated similarly. After checking whether the push is properly authenticated, the data is then forwarded
as-is to the Azure Event hub using the available APIs. In Azure, the data can then be stored and analysed.
Unlike traditional integrations that the firm designs, messages are handled and forwarded completely in the
connector in the DMZ (the demilitarised zone that connects internal systems with the internet) and messages
are not forwarded over the central message bus to reduce the message load. However, as a side-effect, single
the iPaaS assumes all messages are sent over the message bus, no monitoring and error handling is available.
That is, there are no statistics about how the specific integration, making this integration complex to manage
and to govern.

The second project is from InfraCorp, and was briefly mentioned in the interview with InfraCorp as the project in
which a SCADA system had to be integrated with an incident management system. The consulting firm is
responsible for designing this integration using the integration platform, however, the project is yet to be
implemented. The integration is twofold and consists of a stream of raw data that has to be sent to the Azure
Event hub as well as a stream of incidents that has to be sent to the incident management system. The stream
of raw data needs to be collected in order to perform analytics over the data stream to allow for predictive
maintenance, rather than only capturing incidents that have already happened, as is the case for the incident
stream. To access the data the connector of the integration platform is deployed on-premise near the SCADA
system. This connector has partial database access to retrieve both the low-level measurement data as well as
the high-level incident data. Several challenges are involved with this integration, especially for the lower-level
data. First, the retrieval of large amounts of low-level data from the database is complex as traditional database
queries may be insufficient to detect changes, and alternatives such as a delta service (comparing the new
data-set with a cached copy) may be unfeasible or inefficient. Next, the transportation of the data poses a
challenge, sending messages over the message bus as is typically done for integrations is not feasible as the
terabytes of raw data would congest the message bus. Sending messages from the connector directly to Azure
is the preferred alternative, however, this will pose concerns on the governance as with the project for the
ministry of infrastructure. The final challenge that is faced is related to the transformation of data. The data
stream will need to be aggregated, transformed and filtered to reduce the amount of data that needs to be
transported. In addition to this, InfraCorp expects that the data needs to be transformed to a generic data
model, such that all the data in the Azure Hub conforms to the same format. This is to ensure that the data
processing applications developed on Azure can work with a single data format, and will not need the be
changed for each data stream. Most of these operations, such as aggregation, transformations, and filtering
are currently not available or very inefficient for large data-sets since the XML transformations available on the
integration platform are relatively resource-intensive.

Appendix B

Model Elements

Element Description

Data Object

This object can represent any data such as continuously streaming
data, a set of stored data or a single data entry. Operations can
consume and produce this data, and data objects are used as
inputs and outputs of operations.

Trigger
A trigger can trigger an operation based on a certain event.
Example: Start an operation when a 5 minute window ends

Input Connector
An output connector can connect to a data producer, and read data.
Example: Connect to a database and continuously stream new
entries

Output Connector
An output connector can connect to a data consumer such as an
application or a database and write data to it.
Example: Stream data to a messaging system

Filter

A filter is an operation that can check whether data conforms to
certain conditions, such as a data schema, and can discard data if
this is not the case.
Example: Confirm whether input data conforms to a certain schema
or throw an error

Select
A select can be used to retrieve data matching certain constraints
from a set of data.
Example: Get all values higher than X

Aggregate
Aggregation can be used to perform an operation over a set of data
Example: Get the sum, count, or average of the data

Join
The user should be able to merge two data sources.
Example: Enrich data by joining metadata

Translate
Translate can be used to map one data structure to another data
structure.
Example: Convert from one data schema to another

Windowing
Windowing can be used to get data over a certain period of time.
Example: Get all data from from 5 days ago until now

Table B.1: Model elements

120

Appendix C

Editor UI Overview

(a) aFlux (b) ClowdFlows

(c) Flision (d) Lemonade

(e) OptiqueVQS (f) qryGraph

121

APPENDIX C. EDITOR UI OVERVIEW 122

(g) StreamPipes

Appendix D

User Stories

Title User Story
Story
Points

Sprint

List
operations

As an integration developer, I want see a list of all operations
available to me so that I can easily select the operations to use.

3 Hours 2

Drag
operations

As an integration developer, I want to be able to drag operations
from the list to a location on the canvas so that I can easily visualise
my model on the canvas and add operations to the model.

2 Hours 2

Connect
operations

As an integration developer, I want be able to connect the input and
the output of operations so that I am able to visualise and model the
data flow between operations.

3 Hours 2

Configure
operations

As an integration developer, I want to be able to view and edit the
configuration options of each operation so that I am able to specify
how an operation should function.

8 Hours 2

Generate
code

As an integration developer, I want to be able to generate Spring
Stream Kafka Streams statements of my integration so that I am
able to execute the integration. This covers the infrastructure for
code generation, the time needed to create code generation logic
for each specific operation is specified below

30 Hours 1

Application
template

As an integration developer, I want an application template that I
can put my Spring Stream Kafka Streams statements into so that I
am able to create a runtime application for my application.

10 Hours 1

Type
checking

As an integration developer, I want the system to provide me with
feedback about whether operations are type compatible into so that
I am able to quickly correct mistakes in my integration design, for
instance when I provide a stream when a table is required as input.

10 Hours 4

Import &
Export

As an integration developer, I want the system to allow me to export
integration models and to import them, so that I am able to save my
work and resume editing at a later point in time.

8 Hours 4

Operations

Read
As an integration developer, I want to be able to read data streams
or tables from a topic so that I can use it as an input for my
integration.

16 Hours 2

Write
As an integration developer, I want to be able to write data streams
to a topic so that external applications can consume the data
produced by my integration.

16 Hours 3

123

APPENDIX D. USER STORIES 124

Transform
As an integration developer, I want to be able to perform
transformations from one schema to another so that I can overcome
differences in data structures.

13 Hours 2

Flatmap
As an integration developer, I want to be able to perform flatmap
from a schema to multiple messages so that I can split a record in
multiple different.

2 Hours 4

Store
variable

As an integration developer, I want to be able to read values from
compute aggregates from streams and store them such that I can
reference them later on.

16 Hours 4

Read
variable

As an integration developer, I want to be able to read variables such
that I can use them for comparisons in filters and for key based
joins.

8 Hours 4

Re-key
As an integration developer, I want to be able to set keys of a record
and change the value of a record based on the key, such that I can
perform key-based joins, aggregations and groups.

2 Hours 4

Group
As an integration developer, I want to be able to group data streams
by an attribute so that I can perform further computations, such as
an aggregation, on a per group basis.

8 Hours 3

Aggregate
As an integration developer, I want be able to aggregate an attribute
of a data stream over a window of time so that I can use aggregated
values, such as the average value.

8 Hours 4

Filter
As an integration developer, I want filter based on certain attributes
so that I can discard redundant or irrelevant records from the data
stream.

2 Hours 4

Suppress
As an integration developer, I want suppress changes until a certain
window of time expires so that I can use this as a trigger to perform
actions only when all data in the window has been collected.

2 Hours 4

Join
As an integration developer, I want be able to join streams and
tables so that I can enrich streams with additional information.

16 Hours 3

Estimated Total 183 Hours

Table D.1: User Stories

Appendix E

Prototype Operations

Operation Description Implementation

Read Stream Read a topic as a stream. Binder

Read Table
Read a topic as a table, the table will then reflect the latest
value for each key.

Binder

Left-join
Left-join a stream or table, with a table on the right. If the table
on the right contains the given key, the object for this key will be
appended to the object for the key on the left.

leftJoin()

Store-join
Similar to a left-join, but joining with a key-value store rather
than a table.

mapValues()

Merge
Merge two streams into a single stream that contains the
records of both input streams.

merge()

Filter

Create a new stream/table that of record values that match a
given condition. This implementation allows users to compare
Strings or integers to a constant or to a value stored in state
store.

filter()

Transform Apply a JSLT transformation to the input values. mapValues()

Transform-if
Apply one of two JSLT transformation to the input values
depending on whether a certain condition holds.

mapValues()

Re-key
The functionality of this operation is threefold, one can set the
key based on the object, add the key to the object, or set the
key to null.

map() /
mapValues()

Flatmap
Map an array object in a record to an array of records with one
object. In Enterprise Integration Patterns [71] this is referred to
as a ’splitter’.

flatMap()

Group
Groups (partitions) records based on their key, or on their
value. This is a prerequisite for aggregating.

group() /
groupByKey()

Window
Window a stream of records. Kafka offers a selection of
windows, of which the Sliding and Hopping windows are
covered by the prototype.

windowedBy()

Aggregate

Combine a set of records into a single record. The current
implementation offers computing the average, count, maximum
and total value of records. Aggregations can be running
indefinitely onto a table, or they can produce an output stream
of aggregations over a window.

aggregate(),
map() /
mapValues()

125

APPENDIX E. PROTOTYPE OPERATIONS 126

To-table

Converts a stream into a table, the table will then reflect the
latest value for each key. Optionally, changes can be
suppressed for a certain period of time, such that operations
downstream are called in batches, for instance when a final
value has been reached.

toTable(),
suppress()

To-stream Outputs the change-log of a table as a stream. toStream()

Read-store Read a value from a key-value store for a select key.
StateStore,
QueryService

Write-store
Write a value to a key-value store for a select key. Also
supports running aggregations, to continuously write an
aggregated value to the store.

transform(),
StateStore,
QueryService

Write-stream Write a stream to a topic. to()

Write-table
Materialising a table to a state store. This continuously stores
the latest values for each key in the state store, making it
accessible for reading.

toStream(),
toTable()

Constant Define a string or an integer constant to be used in a condition. String, int

Table E.1: Prototype Operations

Appendix F

Validation protocols and results

F.1 Single-case mechanism experiment

The interview protocol has been adopted from Boyce et al. [151]. At the start of the validation session, the
interviewer introduces himself and states the purpose of the interview, which is to obtain feedback about the
prototype of the design, and to use this information for research for evaluating the effects of this design. Next,
the participant is informed that the session will take 1 hour, and that participation is completely voluntary and
can be stopped at any time. Furthermore, it is stated that all responses are fully anonymous. Once the
participant has agreed to this, and has no further questions, the validation session is started. First, the
participant is shown a slideshow that introduces the prototype, followed by three use-cases that the participant
should implement using the prototype.

Once these activities are completed, the interview is started as per the questionnaire below.

Background & Expertise

1 Could you briefly describe what your function is? Open
2 Could you describe how long you have been working in this function? Open

Results per case study

3 Could you complete the case within 20 minutes? Toggle
4 If any, what challenges did you encounter while implementing the case? Open

5
Are you aware of other methods or tools through which you could have designed this
integration? How do these compare to the system?

Open

Overall intention of use

6 To which extent would you consider using the system during your own work? Open
7 Would you recommend using the system to your colleagues? (Adapted from [153]) Scale
8 With respect to question 7, why / why not? Open

Perceived Ease of Use (Adapted from [149])

9
I would find it easy to learn how to use the system (for developing IoT / streaming
integrations)

Scale

10 I would find the system easy to use (for developing IoT / streaming integrations) Scale
11 I would find it easy to get the prototype to do what I want it to do Scale

Perceived Usefulness (Adapted from [149])

127

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 128

12
Using the system to build integrations would enable me to build IoT / streaming
integrations much quicker

Scale

13
Using the system to build integrations would make it easier to build IoT / streaming
integrations

Scale

14
Using the system to build integrations would increase my effectiveness (in creating IoT /
streaming integrations)

Scale

15 I would find the system to be useful (for developing IoT / streaming integrations) Scale

General questions

16
Do you expect the system to contribute to the ability to support IoT use cases within the
organisation? Why?

Open

17 In your professional opinion, what do you like about the system? Open
18 In your professional opinion, what improvements would you make to the system? Open

Table F.1: Single-case mechanism experiment questionnaire

After the interview has been completed, the interviewee is provided with a brief overview of his answers and is
asked whether he/she has anything to add or clarify, after which the interview is concluded.

F.1.1 Single-case mechanism experiment one

Question 1 Consultant Integration Developer
Question 2 5 Years
Question 3.1 Yes
Question 4.1 A hint was needed to remind that joins are key-based. Therefore, the realisation that the input
stream needed to be re-keyed was the most challenging.
Question 5.1 The only alternative that comes to mind is using the eMagiz flow editor. Other methods such as
coding, would not be suitable for me. Using the flow editor to build this integration would be significantly more
complex, especially querying the database/table that contains the enrichment information as the requests and
responses for this for each record need to be added to eMagiz using the 5 layer model. Potentially, doing this
with messaging would take 2 to 5 times as long as it would be when the concept of event streaming would be
used.
Question 3.2 Yes
Question 4.2 Most challenging is understanding what the output of an aggregation is. You would need to be
aware of what this operation does exactly and how its output is formatted. Normally, a transformation should be
used to transform the output of the aggregate to the specific format, but for this case, the output of aggregate
already meets the expected output. Additionally, it was a challenge to realise that grouping the input is required
for aggregation. However, the modeller indicates when an input is invalid, so this helped to figure out that another
type of operation was needed to create the desired input for an aggregation.
Question 5.2 As for the first use case, it would be possible in eMagiz flow editor, but it would be significantly more
complex. In this instance, because aggregation is not at all possible using the default patterns, a workaround
would be needed. For instance, adding a database and then writing all values to that database only to retrieve
those values later to perform an aggregate. This would take significantly longer, up to 5 or 10 times as long, to
implement.
Question 3.3 Yes
Question 4.3 There were no significant challenges with this case.
Question 5.3 This can be done in messaging as well. The time needed to implement this would be comparable
for the eMagiz flow editor with messaging, as for the prototype with event streaming.
Question 6 Until recently, there was only the option to use messaging during work. Therefore, the question of
’which pattern, messaging or streaming, should I use?’ was not there. If the prototype were to be incorporated
into eMagiz, you would be able to ask this question for every integration. Especially in use cases with high data

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 129

volume that have to be processed and used differently throughout the landscape, streaming will be relevant.
Additionally, any use-case involving retention would be relevant. And finally, in use cases where producers
and consumers can work independently from each other, for instance a consumer that would only need a daily
summary rather than a continuous stream of data.
Question 7 5/5
Question 8 Given that event streaming is suitable for the integration. It is ideal that operations such as filtering,
aggregation and transformation are much easier to use than with other patterns. This allows for quicker and
more reliable integration development. This allows developers to unlock more customer data, and to use eMagiz
for more use cases.
Question 9 - 11 4/5, 4/5, 4/5
Question 12 - 15 5/5, 5/5, 5/5, 5/5
Question Question 16 Definitely. First, many of our customers are in logistics and there is a wide range of
use cases and opportunities for IoT there. I would expect the system to contribute to this, because it makes it
significantly easier to unlock customer data and put it to use. If we look at existing methods within Cape and
eMagiz, such as messaging, then its definitely more complex and less reliable to correctly build such integrations.
This is, because you go beyond what messaging is designed to do. You are building a custom solution that does
not fit within the pattern of messaging. As a result, you can get memory issues, configuration issues, and
poor scalability. The editor (prototype) makes it possible for business consultants to model event streaming
processors, which is a way better pattern for dealing with such integrations.
Question 17

• Instant errors about compatibility issues between blocks

• Categorisation of blocks in the palette, so that you know what blocks to start with, what blocks you end
with, and what blocks to use in-between.

• The blocks inputs are visualised, such that it intuitively becomes apparent how many inputs to use.

• The options of each blocks are visualised, and placeholders are given, such that you know what each
block is capable of.

• Editor Interface is overall easy to use and works intuitively as expected.

Question 18

• There is a learning curve to understand what blocks can be linked with each other. For instance, to
understand that joining requires grouping.

• There is a learning curve to understand what a block does. For instance, what output does a block produce
exactly and in what format? Documentation or a help tool could solve this.

• The notation for queries is complex. You could instead generate the query based on the schema. For
instance, allow users to visually select attributes of the schema and generate the query accordingly.

• Similar to the notation for queries, the notation for transformations is complex. A visual aid for this, i.e. to
drag lines between the input and output schema, would be preferable.

• To accelerate development, one could suggest blocks based on the process flow. For instance, suggests
the block that the user could used based on the current output.

F.1.2 Single-case mechanism experiment two

Question 1 Integration Developer
Question 2 2 Years
Question 3.1 Yes
Question 4.1 Most challenging is understanding what the blocks do and how they work. For instance, for the
Re-Key block, you must understand that the ’attribute’ property is the path that you want to read from the stream
and write to the key.
Question 5.1 It would have been possible to do this with the messaging pattern, but it would take significantly
longer. Even if we assume that we can load the dataset to be used for enrichment into memory, we still need

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 130

to go through the full lifecycle of adding the database and mapping and transforming the data before it can be
used for enrichment. For large datasets, it will be especially complex to perform this use case in eMagiz, and
one will face performance issues. Since I am investigating event streaming within the organisation, I have less
experience with messaging and a bias towards event streaming, however I would still assume that using the
prototype would always be faster for this use case, regardless of whether the user is experienced or not.
Question 3.2 Yes
Question 4.2 As for with the first use case, the challenge is primarily in understand what the blocks do and how
to use them. In this particular case, the realising that grouping was needed before aggregating was the primary
challenge. A second challenge was with creating the query, the editor does not validate the query and therefore
this allows you to make schema-related mistakes without the editor informing you that a mistake has been made.
Question 5.2 This could possibly be done using messaging with a custom expression. The prototype would be
preferable compared to messaging.
Question 3.3 Yes
Question 4.3 As with the second and first use case, the challenge is primarily understanding which blocks are
needed and how to use them.
Question 5.3 This would definitely be possible. Would be slightly faster compared to messaging due to the
overhead the messaging brings, i.e. having to add all the systems, map the data formats, and go through the
complete lifecycle for all systems.
Question 6 I think it’s not a choice of using either the current flow editor, or the concepts of editor of the
prototype. Instead, the new concepts could be brought to the existing editor to allow all use cases from within
a single editor. Overall, I would use the new concepts (from the prototype) primarily when reading from, and
writing to, streams.
Question 7 5/5
Question 8 While streams and messages may have a lot of overlap, they work slightly different and in most
streaming cases the messaging flow editor won’t do and the concepts of streaming processing are needed.
Question 9 - 11 4/5, 4/5, 3/5
Question 12 - 15 3/5, 4/5, 4/5, 5/5
Question 16 Yes, a new editor supporting the concepts of streaming will unlock many new use cases. The same
holds for IoT, just as it holds for other streaming use cases.
Question 17 The editor works fluently and the interface is clear. The options and applications appear to be
endless. All the operations that are relevant for streaming appear to be included.
Question 18 The editor look and feel could be improved. For instance, to access the configuration options of a
block, you need to click the block, and then select the gear icon. Such actions could be smoother.
General feedback on the validation process itself: I feel like the introduction and the use cases could be better
attuned to each other. For instance, to show examples that can be directly applied in the use case.

F.1.3 Single-case mechanism experiment three

Question 1 Consultant Integration Developer
Question 2 5 Years
Question 3.1 Yes
Question 4.1 Most challenging was the join object, how does it combine the two values and how do I add the
object from the table to the stream. Concept of ’keys’ and how they are part of a record, had to be became
apparent but was quickly obvious. Overall, the case was very feasible, and once you are aware of what the
blocks do it is reasonably obvious how to build the integration. This applies to all cases.
Question 5.1 This use case would be have been possible in messaging, but it would have been more complex.
When the table to join on is static, a translation table could be used. However for large, dynamic, lists I would
need to use a database since its the only way to be able to aggregate data from two sources. Therefore,
whether I would use messaging or streaming depends on the use case. In this specific casus, I would have
selected streaming because of the high load. However, for a small stream and table, or when complex
transformations need to happen, I would use messaging.
Question 3.2 Yes

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 131

Question 4.2 The most complex part is realizing that you need to blocks to perform what seems like one
operation. Specifically, the group and the window, which could conceptually be one block. But again, this would
depend on the use case, as in this case it would be possible with one block, but in some use cases this may not
be the case. However, as with the previous case, once you know what the blocks do, this is not an issue. Using
multiple blocks is just a minor improvement, and combined blocks could be a part of a future revision.
Question 5.2 This case requires saving and persistent data, which is possible in messaging with workarounds
but it is not something that messaging is very suitable for. You could also do this with a Mendix app, with
scheduled events, data retrieval, etc. However, this is sub-optimal, since a Mendix app is not a tool for
integration but rather for building standalone apps. Overall, this is not a easy use case for messaging. And this
holds for all uses cases where data has to be persisted. Given that it is as-easy to do it with streaming as in this
prototype, streaming would definitely be the preferred alternative. This holds for all use cases where data is to
be persisted.
Question 3.3 Yes
Question 4.3 With this use case, I was more accustomed the editor and to the concept of stream processing
and I had a reasonable idea of how to approach this. Possible the experience from the previous use cases
helped, as I found this to be the easiest use case.
Question 5.3 This would be very easy to implement in messaging. Which pattern, messaging or streaming,
would have my preference depends on the use case, and I have no overall preference. But it would be almost
just as easy to do this in messaging as in the prototype.
Question 6 Again, this would very much depend on the use case. I would recommend this for typical event
streaming use-cases, that is use cases with high-load, low complexity, or when you want end-systems to
actively retrieve messages, such as in situations where the end-systems are often unreachable.
Question 7 4/5
Question 8 The system consists of simple components that aren’t to complex. And it is a manageable number
of operations that do what you would expect them to do. The way you work in the prototype is close to the way
we are currently working, so I would expect each consultant to be able to quickly adopt this, given that there is
some documentation to explain what each block does exactly.
Question 9 - 11 4/5, 4/5, 4/5
Question 12 - 15 4/5, 4/5, 4/5, 5/5
Question 16 IoT is textbook example of streaming, so I would say definitely. Especially because currently the
platform features offered to consultants, such as messaging, are not ideal for IoT use cases. If the final
implementation is as easy to use as the prototype, I would definitely see the value of this for supporting IoT.
Question 17 The prototype is clear, and in line with how consultants currently model integrations. The editor
provides simple blocks, which allow you to quickly build functional integrations. Complete as-is.
Question 18 I would say that frequent combinations of blocks could be made available as composite blocks.
This would make the consultants work easier and faster.

F.2 Expert validation

The interview protocol has been adopted from Boyce et al. [151]. At the start of the validation session, the
interviewer introduces himself and states the purpose of the interview, which is to obtain feedback about the
design quality of a novel IoT integration platform, and to use this information for improving and validating this
design. Next, the participant is informed that the session will take 1 hour, and that participation is completely
voluntary and can be stopped at any time. Furthermore, the participants are informed that all responses are
fully anonymised. When full anonymity was not possible, for instance when experts would be traceable based
on the their function and institution, participants were explicitly asked whether they would consent to be
identifiable this way. Once the participant has agreed to all of the above, and has no further questions, the
validation session is started with a presentation of the design.

Once the design is presented, the interview is started as per the questionnaire below.

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 132

Background & Expertise

1 Could you briefly describe what your function is? Open

2
Could you describe what your expertise is in this function, and for how long you are
experienced in this field?

Open

General

3
Problem owners only - Could you describe to which degree the design aligns with your
current architecture?

Open

4 Could you describe, in your opinion, the explicit advantages of the design? Open
5 Could you describe, in your opinion, any disadvantages of the design? Open
6 Is there anything that you would add, remove, or change in the design? If so, what? Open

Comprehensiveness vs conciseness [150]

7 To what extent would you consider the design to be comprehensive (complete)? Scale
8 To what extent would you consider the design to be concise (compact)? Scale

9
Would you make changes to the design to increase comprehensiveness or conciseness?
If so, what changes would you make?

Open

Usefulness [150]

10
To what extent do you think the design would be usefull to practitioners to implement a
platform for model-driven IoT / streaming integrations?

Scale

11
To what extent would the design make it easier for practitioners to implement a platform for
model-driven IoT / streaming integrations?

Scale

12

Problem owners only - What is the likelihood that you would use this design in your
organisation?
Non-problem owners only - What is the likelihood that you would recommend the design to
practitioners?

Scale

13 With respect to question 12, why would/wouldn’t you do this? Open
14 Do you see any opportunities for improving the usefullness of the design? If so, how? Open

Comprehensibility [150]

15 To what extent were you able to understand the design? Scale
16 Could the comprehensibility of the design be increased? If so, how? Open

Flexibility [150]

17
To which degree do you think the design could be (re)used across different organisations
and users?

Scale

18
Could the design be improved to increase flexibility, such that it can accommodate a wider
range of contexts? If so, how?

Open

Table F.2: Expert questionnaire

After the interview has been completed, the interviewee is provided with a brief overview of his answers and is
asked whether he/she has anything to add or clarify, after which the interview is concluded.

F.2.1 Expert interview MDE

Question 1 Associate professor at the University of Twente
Question 2 Over 20 years experience in architecture for distributed systems, service oriented architecture and
model driven engineering.

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 133

Question 3 N/A
Question 4 With the proposed design, you offer an interface that is at the level of the user, and meets the specific
requirements of the user. Therefore, end users do not need to concern about how the integration is actually build,
deployed and coded. The presented design appears to be complete and seems generally applicable. However,
only practice will show whether the design actually meets user requirements. The prototype already makes
some design decisions to exclude specific requirements, however since the architecture is generic it can be
adjusted to the specific use cases of the practitioners.
Question 5 As with the previous answers, all disadvantages are in potential and practice will show whether they
are true disadvantages. Every time you make a design decision, for instance by setting a certain meta-model for
the integration, it could be that this is in disagreement with the some user requirements. Therefore, the design
choices made may be limitations. This is unavoidable, at a certain point in time, design choices have to be
made. Even though the design is abstract, you have to make design decisions that impose limits since you are
developing a prototype, even if the prototype can be translated to fit different contexts.
Question 6 Based on the designs I reviewed, I have no remarks for now. It appears that the right choices
have been made in the functionality, methodology, and generalisation. However, again, only practice will show
whether changes are needed.
Question 7 4/5
Question 8 3/5
Question 9 I would consider the design to be very comprehensive. On conciseness, it would depend on the
perspective. From the perspective of the user (practitioner) it is concise. However, the design is inevitably not
very concise in its totality, since the problem domain is complex. This requires an exhaustive design with many
facets, for instance you have the three phases in the lifecycles, and the layered architecture with the three levels.
Therefore, not being concise is almost unavoidable in its totality, but relative from the perspective of the user it
may be concise.
Question 10 5/5
Question 11 5/5
Question 12 5/5
Question 13 This a typical problem context where MDE can be applied, so if practitioners want to offer this to
their users this design would be usefull.
Question 14 No, actually not. But again, practice will show.
Question 15 4/5
Question 16 The Archimate and the metamodelling parts of the design could be separated better, with more
structure. This is because I am typically involved in MDE projects that have a very clear distinction between the
metamodels, the mapping and the other MDE elements of the design. However, I can related to the fact that it
is hard to present the design as such, because the Archimate view is selected as the primary view. The MDE
view is different, and more technical, and the combination between both views is tough.
Question 17 4/5
Question 18 Great re-usability, since this is a repetitive process that will be similar across contexts and can
therefore be widely applied. I would see no immediate points for improvements, but again once this design is
deployed to the problem context you will see how flexibility can be improved.
Overall, great application of MDE.

F.2.2 Expert interview CTO

Question 1 CTO of an enterprise integration platform
Question 2 Over 20 years of experience in enterprise integration, responsible for translating business
requirements of the platform into technical requirements for the platforms architecture.
Question 3 The main features align with our current architecture. The design can be used as a supplement to
our current architecture, to implement the event-streaming pattern. For use cases for event-stream processing,
where inputs do not match outputs, we want to allow users to perform processing operations on the stream.
Currently, we do this with event processors, but we would like to add stream processing to that so we can serve
different use-cases. The design shown can assist us with this.

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 134

Question 4 The design fits the same model that we currently offer to users, but with a different technical
implementation that allows us to serve different use cases. The design allows me to identify what components
in our architecture would need to be changed. For instance, the changes needed in the runtime, and in the
editor. The architecture breaks down the total solution for event-stream processing into sub-problems that can
be analysed and compared to the current platform piece-by-piece. For users, the user experience remains the
same. The power of our current platform is that we do not attempt to compete with technical tools. Rather, we
offer a model-driven approach that is easier to use. It may be limited in some aspects, but we are able to reach
different target users with this. And this is also reflected in the proposed design.
Question 5 The specific process in the design for deploying an executable integration to the runtime is different
in our current platform than in the compared design. Sending an executable to the runtime creates a
dependency on deployment, and the integration on the runtime. In our current platform, we only tell the runtime
which integration to run, the runtime then fetches the integration and can re-fetch the integration and its
dependencies at any time when we push updates to the platform so the runtime can keep itself up-to-date
without the need to re-deploy.
Question 6 No, I do not not think so.
Question 7 4/5
Question 8 5/5
Question 9 Comprehensiveness: The design provides sufficient information to decide what we want and can
do. Conciseness: The design is uncluttered, there is no unnecessary information. But there is also not to little
information such that I’m missing something. There appears to be a good balance between
comprehensiveness and conciseness.
Question 10 5/5
Question 11 4/5
Question 12 5/5
Question 13 On usefullness, the design provides a lot of support on the architectural direction to take. As a
consequence of the conciseness of the design, a lot of work remains when actually implementing the
architecture, however, this is unavoidable. I would use it, unless some would provide me with a good argument
not to. The architecture seems to align, and it seems to do something that we want. One challenge is perhaps
the business case, and finding users that want to use this.
Question 14 Questions are mainly with the implementation of the architecture. How big is the difference
between implementations for stream processing and event processing (messaging). Because event-processing
is not part of the design, its up to the user to discover the difference between the two. However, I would not
expect such a comparison to be part of the design.
Question 15 5/5
Question 16 I got it
Question 17 4/5
Question 18 The design is a tool to build integrations with. You probably do not want to use this design if you
are building just a few integrations. However, companies that are in the same business as we are could
definitely use this. The design does not contain many elements specific to our product and platform, and the
concepts presented are re-usable. Therefore, I’d say that the design is definitely re-usable in the ’niche’ of
practitioners seeking to implement a re-usable solution for building integrations.
General feedback: I liked how when you showed the design within our organisation that our people were
inspired and how questions were raised about what the difference really is between event processing and
stream processing, changing the way people think.

F.2.3 Expert interview EA

Question 1 Professor at the University of Twente
Question 2 15 years of experience in Enterprise Architecture. And additionally in business-process
management, and model-driven software development.
Question 3 N/A
Question 4 We can consider both functional advantages, such as advantages of using the design for the user

APPENDIX F. VALIDATION PROTOCOLS AND RESULTS 135

and the organisation, and non-functional advantages. One functional advantage in any case data
management. The platform allows for data management by easily allowing filtering, and other operations.
These operations represent business rules, that originate from the operational business process. The design
essentially allows allows the instantiating of this business process, creating an actionable process upon the
data flow. This allows the active, dynamic, application of the business process, rather than retroactively
applying it on a full data set. Since there are currently a lot of data flows, it is attractive (from a performance
perspective) to act upon real-time data streams. From a non-functional perspective, the design allows an easy
way to facilitate IoT integrations in your architecture. I think, in its core, that the design is also flexible, and allow
you to easily adapt to different IoT devices and data streams.
Question 5 The design still requires expertise in data integration to be used. It is not like any novice
inexperienced user would be able to use this. There is a learning curve to learn how to transform streaming
data using the design. In conclusion, it is not for novices or people that have no technical experience.
Question 6 Not necessarily, however in a more mature and professional prototype I would suggest changes to
the user interface to make it more accessible. The platform is currently focused towards more technical
experts, such as developers and model-driven consultants. While I would be able to build an integration using
the prototype, while I am not able to write code, you are not explicitly targeting business process developers.
Question 7 5/5
Question 8 4/5
Question 9 Conciseness is what I would expect from a software development project. There are many details,
such as the sequence diagrams. This is nice to have, but I would prefer this in an appendix. But this may also
be due to my background.
Question 10 5/5
Question 11 4/5
Question 12 4/5
Question 13 I would rate it a 4/5 because it is not a finished, since the design is not fully reflected in the
prototype. One you have a full-fledged prototype, you are better able to demonstrate and sell the design to
practitioners.
Question 14 Consider the technology readiness levels, that describe the level of readiness of a product from
an idea to a commercial product on a scale of 1 to 5. The design is currently at a level 3 to 4. You are designing
the platform, but you are still in the process of validating the design in practice and taking it into product. I
would say the next key step is to validate the design with real-life data streams such that the performance of the
design can be observed in reality to make the step towards an actual product.
Question 15 4/5
Question 16 I could not understand a few details, because I am not very technical. However, I was able to
understand the design in general. The code generation section (of the prototype) was the most complex, but I
was able to fully understand the remainder of the design.
Question 17 4/5
Question 18 These tools are very suitable for organisations already involved in smart-industry and technical
innovation. Consider for instance any business involved in smart-logistics, and hospitals using smart/IoT
devices. For businesses that do not use such devices, this design would be less use-full. Therefore, the only
limitation I see for flexibility is the attributes of the organisation using it. Any innovative company seeking to
actively seeking to innovate could adapt this.

	Executive Summary
	Introduction
	Background
	Research objective
	Research questions
	Research methodology
	Validation case
	Document structure

	Problem Investigation
	Literature Review
	Methodology
	Results

	Interviews
	Methodology
	Results

	Summary
	Goal

	Requirements
	Stakeholders
	Goals
	Requirements
	Functional requirements
	Non-functional requirements

	Review of Existing Solutions
	Methodology
	Keywords
	Inclusion and exclusion criteria
	Review protocol

	Results
	Kafka stream processing
	Graphical stream programming

	Design
	Methodology
	Business layer
	Application layer
	Web UI
	Data Model
	Integration Development
	Deployment
	Management
	Schema Manager
	Runtime Applications

	Infrastructure layer
	Vendor Cloud
	Client Runtime Hosts
	Streaming Cloud
	Registry Cloud

	Prototype
	Methodology
	System Architecture
	Business layer
	Application layer
	Infrastructure layer

	Plan
	Results
	Application design
	Operations
	Validation
	Code generation
	Generated code

	Validation
	Methodology
	Dimensions
	Techniques

	Results
	Single-case mechanism experiment
	Expert opinion

	Conclusion

	Discussion
	Comparison to alternatives
	Relating to the challenges & goals

	Conclusion
	Research questions
	Limitations
	Future research
	Contributions
	Scientific contributions
	Practical contributions

	References
	IoT case descriptions
	Protocol
	Infrastructure Construction Company
	Real Estate Construction Company
	Consultancy firm

	Model Elements
	Editor UI Overview
	User Stories
	Prototype Operations
	Validation protocols and results
	Single-case mechanism experiment
	Single-case mechanism experiment one
	Single-case mechanism experiment two
	Single-case mechanism experiment three

	Expert validation
	Expert interview MDE
	Expert interview CTO
	Expert interview EA

