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Abstract	
	

Modal	description	is	a	tool	to	describe	the	dynamic	behaviour	of	a	structure.	Modal	parameters	can	
be	found	from	a	(simplified)	theoretical	spring-mass	model	or	by	measurements	taken	from	the	structure,	in	
combination	with	certain	fitting	techniques.	

	
The	modal	analysis	procedure	for	the	measurement	and	analysis	of	vibrations	in	a	damped	structure	

can	be	split	 into	two	complementing	parts:	the	theoretical	and	the	experimental	analysis.	The	theoretical	
modal	analysis	makes	a	prediction	of	the	system	based	on	a	simplified	representation	of	the	structure,	while	
the	experimental	modal	analysis	determines	the	system	by	means	of	measurements	and	modal	parameter	
estimation	of	 the	unknown	data.	 Together	 they	 provide	 an	 accurate	modal	 description	of	 the	 structure,	
showing	the	natural	frequencies	at	which	resonance	occurs	and	the	shapes	of	deformation	during	vibrations.	
The	methods	derived	during	this	research	where	checked	using	measurement	data	of	real-life	situations.	

	
Three	modal	parameter	estimation	methods	where	attempted	during	this	research.	It	was	observed	

that	 the	applicability	of	 these	methods,	with	 regard	 to	 the	accuracy,	 is	 heavily	 situation-dependent.	 The	
structure	that	is	being	measured	and	the	desired	results	of	the	modal	analysis	must	be	assessed,	after	which	
a	method	must	be	chosen	based	on	the	assessment.		
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Chapter	1 Introduction	
1.1 Assignment	description	

MECAL	 High-tech/Systems,	 designs	 and	 produces	 solutions	 for	 vibration	 problems	 in	 semiconductor	
fabrication	 plants.	 Some	 products	 are:	 stiff	 machine	 support	 frames	 or	 pedestals,	 structural	 building	
improvements,	active	vibration	isolation	pedestals	and	the	EQUALIZER	[1],	an	active	vibration	cancellation	
system	which	can	generate	a	force	that	counteracts	vibrations	on	a	floor	field.		
	
For	the	best	application	of	the	EQUALIZER,	the	system	must	be	measured	in	the	form	of	frequency	response	
functions.	 The	 frequency	 response	 functions	 are	measured	 from	one	 point	 on	 the	 structure	 to	 another,	
where	an	excitation	force	is	applied	to	the	system	and	the	amplitude	of	the	response	measured.	Division	of	
the	excitation	force	by	the	response	results	in	the	stiffness,	while	division	of	the	response	by	the	excitation	
force	results	in	the	compliance	of	the	system.		
These	measurements	are	 time-consuming	and	 it	 is	 therefore	worthwhile	 to	derive	a	method,	 capable	of	
making	predictions	for	the	frequency	response	functions	of	a	part	of	the	system.	
	
The	goal	of	this	research	is	to	be	able	to	make	a	prediction	for	the	positioning	and	the	effectiveness	of	the	
Equalizer	from	MECAL.	To	be	able	to	make	such	a	prediction,	the	frequency	response	functions	of	the	factory	
floor	must	be	measured	and	analysed.	There	are	three	ways	this	can	be	done:		

o Calculation	of	the	modal	description	of	the	system	from	the	experimental	modal	analysis.	
o Tuning	of	a	simple	finite	element	model,	according	to	the	measurement	data.	
o Measuring	the	required	frequency	response	functions	directly.	

	
The	experimental	modal	analysis	results	 in	measurement	data	of	the	frequency	response	functions,	 from	
which	 the	 modal	 description	 of	 the	 system	 can	 be	 derived.	 This	 modal	 description	 gives	 the	 dynamic	
behaviour	of	the	system,	in	a	similar	way	as	the	equations	of	motion.	While	in	theory,	this	gives	accurate	
predictions.	It	must	however	be	possible	to	derive	the	modal	description	from	the	measurement	data.	
The	tuning	of	a	simple	finite	element	model	is	on	the	other	hand	a	more	straightforward	method,	where	a	
standard	frequency	response	function	will	be	fitted	to	the	measurement	data.	
As	a	last	resort,	the	frequency	response	functions	can	be	measured	directly,	giving	the	most	accurate	results,	
but	also	being	the	most	time-consuming.		
	
These	methods	will	be	investigated	here	and	recommendations	will	be	derived	on	when	to	use	which	method.		

1.2 Research	questions	

The	research	questions	are	divided	into	main	questions	and	sub-questions:	
	

v Is	it	possible	to	use	only	the	data	from	a	single	roving	hammer	or	roving	sensor	experiment,	to	derive	
the	modal	description	of	the	systems?	

o What	are	the	steps	necessary	to	perform	a	roving	hammer/sensor	experiment?	
o Which	measurement	data	results	from	the	roving	hammer/sensor	experiment?	
o Which	 methods	 can	 be	 used	 to	 derive	 the	 modal	 description	 of	 the	 system	 using	

measurement	data?	
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v Can	the	data	from	a	single	roving	hammer	or	roving	sensor	experiment	be	used	to	make	an	accurate	
prediction	of	the	complete	vibrational	behaviour	of	the	system?	

o Which	methods	can	be	used	to	make	a	prediction	for	the	modal	parameters	of	the	system?		
o Which	system	parameters	influence	the	accuracy	of	the	prediction?	
o How	do	additional	measurements	influence	the	accuracy	of	the	prediction?	
o How	does	damping	influence	the	accuracy	of	the	prediction?	

	
v Which	method	should	be	used	in	a	certain	situation,	such	that	the	accuracy	of	the	prediction	is	as	

high	as	possible?	
o To	what	extent	can	the	methods	be	used,	such	that	the	accuracy	is	still	within	reasonable	

bounds?	

1.3 Outline	of	the	report	

Because	of	the	difficulty	of	the	modal	analysis	and	the	involved	formulas,	the	results	and	conclusions	will	be	
reported	first.	These	first	chapters	will	serve	as	a	common	thread	through	the	derivations	in	Chapter	5	to	
Chapter	8.	Having	a	result	to	work	towards	proved	to	be	an	understandable	way	of	explaining	the	modal	
analysis	described	in	this	report.		
	
In	the	next	chapters,	the	modal	analysis	will	be	explained	and	the	corresponding	equations	will	be	derived.	
It	 is	necessary	to	get	a	clear	understanding	of	each	step	 in	the	derivation,	to	be	able	to	comprehend	the	
entire	modal	analysis.	In	chronological	order,	the	following	four	steps	can	be	distinguished:	
	

	
	
The	literature	review	in	Chapter	4	contains	background	information	on	the	subject.	The	passive	and	active	
vibration	control,	modal	analysis	methods	and	on	how	to	take	accurate	measurements	will	be	explained	here.		
	
Chapter	5	describes	the	steps	and	calculations	necessary	for	the	modal	analysis	of	a	structure.	For	each	step	
a	‘simplified’	example	will	be	worked	out,	which	serves	as	an	overview	of	the	calculations	necessary.	During	
this	analysis,	kinematic	models	of	the	structure	are	derived	using	the	Newton-Euler	or	Lagrange’s	method.		
	
0	 to	Chapter	8	describe	the	methods	used	to	take	measurements	of	a	structure	and	how	to	process	 this	
measurement	 data	 to	 derive	 the	modal	 description.	 By	measuring	 the	 vibrations	 in	 the	 structure,	 after	
excitation	with	a	certain	force,	the	modal	description	of	the	system	can	be	derived.	In	combination	with	the	
theoretical	modal	analysis,	this	experimental	analysis	provides	a	far	more	accurate	description	of	the	real-
life	system	than	the	theoretical	analysis	on	its	own.		
	
The	quadrature	picking	technique,	described	in	Chapter	7,	can	then	be	used	to	derive	a	modal	description	of	
the	 structure.	 Subsequently,	 the	 frequency	 response	 of	 the	 structure	will	 be	 derived	 from	both	models,	
which	supposedly	results	in	the	same	responses.		
	
The	curve	fitting	method	described	in	Chapter	8	can	be	used	to	reconstruct	the	measurement	data,	using	
only	a	small	part	of	the	measurement	system.	Predictions	can	then	be	made	for	the	rest	of	the	frequency	
response	functions.		
	
Application	of	the	modal	analysis	on	real-life	situations	will	provide	a	clear	view	on	well	the	method	works	
and	the	accuracy	of	the	modal	analysis	method.	The	error	of	the	modal	analysis	is	described	in	Chapter	9.		

Theoretical modal analysis Experimental modal analysis Quadrature picking Modal parameter estimation
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Chapter	2 Results	
As	explained	 in	the	outline,	the	results	will	be	presented	first.	Several	experimental	modal	analyses	were	
carried	 out	 during	 this	 research.	 Chapter	 2	 and	 Chapter	 3	 discuss	 the	 results	 of	 these	 experiments.	 The	
structures	analysed	are	machine	 support	 frames.	These	 frames	were	 installed	 to	provide	a	high	 stiffness	
suspension,	as	well	as	active	cancellation	from	the	floor	vibrations.		

2.1 Roadmap	

To	get	to	the	results,	the	roadmap	of	the	modal	analysis,	Figure	2.1,	was	followed.		Each	step	in	this	roadmap	
is	also	described	in	the	corresponding	chapter	of	this	report.	The	reader	is	referred	to	Chapter	5	to	Chapter	
8	to	gain	more	insight	on	the	derivations	of	these	steps.		
	
For	each	experimental	modal	analysis,	the	mode	shapes	of	the	structure	and	the	plots	used	to	find	the	natural	
frequencies	of	the	structure	are	shown,	as	well	as	the	setup	consisting	of	the	measurement	positions.	The	
resulting	frequency	response	function	plots	of	the	estimations	and	predictions	for	the	measured	data	show	
the	measured	frequency	response	functions,	the	estimation/prediction	made	by	the	modal	analysis	and	the	
estimation/prediction	including	compensation	for	residual	effects.	The	prediction	plots	show	predictions	for	
the	unmeasured	frequency	response	functions.	To	check	these	results,	the	unmeasured	frequency	response	
functions	where	measured	and	plotted	against	the	predictions.	
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Figure	2.1:	Modal	analysis	roadmap.	

Theoretical	
modal	
analysis

Experimental
modal
analysis

Quadrature	
picking

Modal	
parameter	
estimation

Curve	fitting
-Minimise	the	mean	square	error	between	the	modal	frequency	response	
function	and	the	measurement.

Magnitude	scaling
- Scale the magnitude	of	the curve	fit	by the difference in	magnitude	of	
the lower frequencies.

Residual effects
- Optional:	additional single	mode	contributions can be added for
compensation of	residual effects.

Natural	frequency	identification
- Derive	the	average	summed	 frequency	response	function
- Derive	the	mode	indicator	functions.

Peak	picking
- Derive	the	natural	modes	from	the	imaginary	peak	magnitude
- Derive	the	damping	from	the	phase	plot.

Modal frequency response	functions
- Derive the frequency response	functions from the modal description.

Experiment	setup
- Define the measurement grid.
- Define the frequency response	functions matrix.

Vibration	measurements
- Conduct	a	roving	hammer	or	roving	sensor	experiment.
- Optional:	conduct	multiple	experiments	 to	improve	the	results.

Experimental	frequency	response	functions
- Derive	the	frequency	response	functions	in	the	form	of	the	compliance	
or	the	stiffness.
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Kinetics	&	Kinematics
- Draw	the	free-body-diagram.
- Derive	the	equations	of	motion.
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- Derive the natural frequencies by solving the eigenproblem.
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2.2 SEMICON	FAB-X	

The	measurement	positions	for	SEMICON	FAB-X	are	shown	in	Figure	2.2.	A	roving	hammer	experiment	was	
conducted	here,	where	the	frequency	response	functions	are	measured	from	each	excitation	position	to	the	
sensor	position	at	location	16	 360,240 .	Besides	the	roving	hammer	experiment,	the	following	driving	point	
measurements	where	conducted:	

o Location	8	 120,120 	
o Location	10	 360,120 	
o Location	20	 120,360 	

o Location	21	 240,360 	
o Location	22	 360,360 	
o Location	26	 120,480 	

o Location	28	 360,480 	
o Location	34	 360,600 	

	

	

	

	

	

	

Figure	2.2:	Experimental	modal	analysis	setup	for	
SEMICON	FAB-X.	

	
Figure	2.3:	Identification	of	the	natural	frequencies	of	

SEMICON	FAB-X.	
Figure	2.4:	Mode	shapes	for	SEMICON	FAB-X.	

Additionally,	 the	mode	 shape	plot	of	 Figure	2.4	 shows	 the	 steel	 frame	 (red)	 inside	 the	pedestal	 and	 the	
columns	(black)	supporting	the	pedestal.	The	measurement	positions	are	denoted	by	white	circles.	
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Figure	2.5:	Frequency	response	functions	and	the	corresponding	curve	fit	for	SEMICON	FAB-X.	
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Figure	2.6:	Driving	point	frequency	response	functions	and	the	corresponding	prediction	for	SEMICON	FAB-X.	
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2.3 SEMICON	FAB-Y	

The	measurement	positions	for	SEMICON	FAB-Y	are	shown	in	Figure	2.7.	A	roving	hammer	experiment	was	
conducted	here,	where	the	frequency	response	functions	are	measured	from	each	excitation	position	to	the	
sensor	position	at	location	14	 360,240 .	Besides	the	roving	hammer	experiment,	the	following	driving	point	
measurements	where	conducted:	

o Location	2	 120,0 	
o Location	8	 240,120 	

o Location	14	 360,240 	
o Location	20	 480,360 	

	

	

	

	

	

	

Figure	2.7:	Experimental	modal	analysis	setup	for	
SEMICON	FAB-Y.	

	
Figure	2.8:	Identification	of	the	natural	frequencies	of	

SEMICON	FAB-Y.	
Figure	2.9:	Mode	shapes	for	SEMICON	FAB-Y.	
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The	measurement	positions	are	denoted	by	white	circles	in	the	mode	shape	plot,	Figure	2.9.	The	mode	shape	
plot	shows	two	almost	identical	mode	shapes.	This	can	be	explained	as	being	a	result	of	taking	measurement	
of	a	part	of	the	system	only	and	not	the	entire	system	[2].	These	modes	may	seem	identical	for	the	top	plate	
of	the	machine	support	frame,	but	other	parts	of	the	frame	probably	differ	in	mode	shape.	
	

	 	

	 	

	 	

Figure	2.10:	Frequency	response	functions	and	the	corresponding	curve	fit	for	SEMICON	FAB-Y.	 	
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Figure	2.11:	Driving	point	frequency	response	functions	and	the	corresponding	prediction	for	SEMICON	FAB-Y.	
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2.4 SEMICON	FAB-Z	

The	measurement	positions	for	SEMICON	FAB-Z	are	shown	in	Figure	2.12.	All	frequency	response	functions	
of	the	entire	system	were	measured	during	this	experiment.	
	
The	measurement	positions	are	again	denoted	by	a	white	circle	in	the	mode	shape	plot,	Figure	2.14.	
	

	

	

	

	

Figure	2.12:	Experimental	modal	analysis	setup	for	
SEMICON	FAB-Z.	

	
Figure	2.13:	Identification	of	the	natural	frequencies	of	

SEMICON	FAB-Z.	
Figure	2.14:	Mode	shapes	for	SEMICON	FAB-Z.	
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Figure	2.15:	Frequency	response	functions	and	the	corresponding	curve	fit	for	SEMICON	FAB-Z.	
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Figure	2.16:	Frequency	response	functions	and	the	corresponding	prediction	for	SEMICON	FAB-Z.	
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Chapter	3 Conclusion	
The	 modal	 analysis	 techniques	 described	 in	 this	 report	 give	 a	 clear	 view	 on	 how	 to	 derive	 the	 modal	
parameters	of	a	system	from	the	experimental	measurements.		
	
The	theoretical	modal	analysis	shows	that	in	three	steps,	the	frequency	response	functions	of	a	structure	
can	be	derived	in	an	accurate	way.	The	first	step	in	this	process	is	the	derivation	of	the	equations	of	motion:		
	

1. 𝑴	𝒛 + 𝑪	𝒛 + 𝑲	𝒛 = 𝑭 𝑡 	
	
Both	 methods	 to	 derive	 these	 equations	 (Newton-Euler	 and	 Lagrange)	 gave	 exactly	 the	 same	 results,	
therefore	these	methods	can	be	used	to	check	the	correctness	of	one	another.		
	
The	second	step	is	solving	the	vibration	eigenproblem,	resulting	in	the	modal	description	of	the	system:		
	

2. 𝑑𝑒𝑡 𝑫 𝜔 = 0	
	
This	step	gave	additional	problems,	as	it	became	obvious	that	only	undamped	problems	can	be	solved	with	
relative	 ease,	 except	 for	 proportional	 damping,	 where	 the	 damping	 matrix	 is	 uncoupled.	 Any	 form	 of	
damping	 results	 in	 a	 fourth-order	problem,	which	 is	 impossible	 to	 solve	 analytically.	Numerical	methods	
should	be	used	to	solve	such	a	problem.	One	way	to	circumvent	this	is	by	making	use	of	quadrature	picking	
to	derive	the	modal	description.	
	
The	third	and	last	step	is	the	derivation	of	the	frequency	response	functions:	
	

3. 𝒁 _
𝑭 _

= −𝜔a	𝑴 + 𝑖𝜔	𝑪 + 𝑲 bc						and						𝒁d _
𝑸 _

= −𝜔a𝑰 + 𝑖𝜔	𝑪# + 𝑲#
bc	

	
The	frequency	response	functions	derived	from	the	equations	of	motion	and	from	the	modal	description	
both	 result	 in	exactly	 the	same	 functions,	provided	 that	 the	modal	description	of	 the	system	 is	perfectly	
available.	This	showed	that	the	theoretical	modal	analysis	indeed	results	in	the	correct	models	of	the	system.	
It	was	however	assumed	that	all	system	parameters	where	available,	which	in	a	real-life	situation	is	never	
the	case.	It	was	found	that	small	deviations	from	the	exact	system	parameters,	resulted	in	large	errors	in	the	
frequency	response	functions.	However,	scaling-by-hand	is	always	a	possibility	to	increase	the	accuracy	and	
counter	these	errors	in	system	parameters.		
	
One	useful	property	of	the	modal	frequency	response	functions	became	evident,	which	is	the	fact	that	these	
equations	uncouple	as	a	result	of	the	natural	coordinate	transformation.	The	motion	of	the	bodies	can	then	
be	described	for	each	body	individually.	
	
Experimental	modal	analysis	was	conducted	to	measure	the	vibration	behaviour	of	a	structure.	While	the	
setup	of	the	experiment	is	rather	straightforward,	care	must	be	taken	that	the	entire	system	is	measured	to	
prevent	 any	 loss	 in	 data	 in	 the	mode	 shapes	 of	 the	 structure	 and	 thus	 having	mode	 shapes	which	 look	
identical.	If	a	sensor	or	excitation	position	is	chosen	on	a	node	of	a	mode	shapes,	it	also	becomes	impossible	
to	measure	the	respective	mode.	
	
The	 quadrature	 picking	method	 derived	 next,	 gave	 an	 easy	 to	 understand	method	 to	 derive	 the	modal	
parameters	from	the	measurement	data.	
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The	quadrature	picking	method	consists	of	selecting	the	resonance	peaks	in	the	measurement	data,	where	
the	frequency	of	the	peak	is	equal	to	the	natural	frequency	of	the	system	and	the	imaginary	part	of	these	
peaks	equal	to	the	corresponding	index	in	the	corresponding	mode	vector.	The	damping	is	gained	from	either	
the	half-power	point	or	the	phase	plot.	It	was	found	that	the	mode	indicator	functions	can	give	better	insight	
in	 the	measured	resonance	peaks,	 showing	peaks	 that	might	not	be	visible	 from	the	 frequency	response	
functions	alone.	The	derivation	of	the	quadrature	picking	method	answered	the	first	research	question:	
	

v Is	it	possible	to	use	only	the	data	from	a	single	roving	hammer	or	roving	sensor	experiment,	to	derive	
the	modal	description	of	the	systems?	

	
It	is	indeed	possible	to	derive	the	modal	description	of	the	entire	system	from	a	single	roving	hammer/sensor	
experiment.	The	mode	shapes	of	the	structure	could	be	derived	from	a	single	row	or	column	of	the	frequency	
response	functions	matrix.	
	
This	method	resulted	in	a	modal	description	of	the	structure,	which	accurately	gave	the	mode	shapes	of	the	
system.	It	did	however	not	result	in	the	exact	modal	description	of	the	system,	as	was	expected	from	the	
theoretical	modal	analysis.	Only	the	imaginary	part	of	the	modal	matrix	was	found	and	the	diagonal	terms	
of	 the	 damping	matrix.	 Also,	 because	 the	 frequency	 response	 functions	 are	 summations	 of	 single	mode	
contributions,	quadrature	picking	does	not	result	in	the	‘pure’	parameters	for	a	single	mode	only,	but	rather	
parameters	 resulting	 from	a	 combination	of	modes.	When	 trying	 to	 reconstruct	 the	 frequency	 response	
functions	from	this	description,	it	was	found	that	the	functions	where	completely	off,	having	large	errors	in	
both	 the	 shape	and	magnitude.	 It	was	 therefore	necessary	 to	derive	a	method	 to	 scale	 these	 frequency	
response	functions,	namely	curve	fitting.		
	
The	 parameter	 estimation	 gave	 a	 variety	 of	 methods	 to	 derive	 the	 frequency	 response	 functions	 of	 a	
structure	from	the	experimental	modal	analysis,	of	which	three	methods	where	attempted:	

o Calculation	of	the	modal	description	of	the	system	from	the	experimental	modal	analysis.	
o Tuning	of	a	simple	finite	element	model,	according	to	the	measurement	data.	
o Measuring	the	required	frequency	response	functions	directly.	

	
It	was	quickly	found	that	this	part	of	the	modal	analysis	is	also	the	most	complex	part,	where	not	all	methods	
result	in	accurate	frequency	response	functions	and	that	there	is	no	general	method	which	can	be	used	for	
all	cases.	Each	system	must	be	analysed	individually	and	depending	on	the	expected	results	from	the	modal	
analysis,	a	modal	parameter	estimation	method	must	be	chosen,	answering	the	second	research	question:	
	

v Can	the	data	from	a	single	roving	hammer	or	roving	sensor	experiment	be	used	to	make	an	accurate	
prediction	of	the	complete	vibrational	behaviour	of	the	system?	

	
These	predictions	can	be	made,	but	the	accuracy	depends	strongly	on	the	structure	and	the	measurements	
taken.	It	was	found	that,	when	the	resonance	peaks	are	accurately	measured	and	clearly	visible,	a	single	row	
or	column	is	enough	to	make	a	prediction	for	the	frequency	response	functions	of	the	entire	system.	This	is	
a	result	from	the	definition	of	the	frequency	response	functions	matrix.		
	
The	experimental	modal	analysis	of	both	theoretical	and	real-life	situations	gave	valuable	information	about	
the	accuracy	of	 the	entire	modal	analysis	method.	The	calculation	of	 the	error	made	answered	 the	 third	
research	question:	
	

v Which	method	should	be	used	in	a	certain	situation,	such	that	the	accuracy	of	the	prediction	is	as	
high	as	possible?	
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While	 the	 mean	 square	 error	 curve	 fitting	 technique	 gave	 the	 best	 way	 of	 predicting	 any	 unmeasured	
frequency	response	functions,	the	accuracy	is	mainly	depended	on	the	optimisation	algorithm	used.	A	good	
initial	estimation,	resulting	from	the	quadrature	picking	method,	is	therefore	absolutely	necessary.	This	is	
not	always	the	case	however.	The	accuracy	could	be	increased	by	taking	into	account	more	of	the	residuals.	
These	residual	effects	could	be	compensated	for	by	addition	of	the	standard	frequency	response	function	
for	each	residual,	to	the	frequency	response	functions	of	the	structure.		
	
The	main	problem	that	occurred	during	the	modal	analysis	was	the	visibility	of	the	resonance	peaks.	If	peaks	
are	left	out	of	the	calculations,	only	a	basic	model	can	be	fit.	This	fit	might	or	might	not	give	an	accurate	
estimation,	depending	on	the	type	and	complexity	of	the	structure.		
This	complexity	of	the	system	was	also	found	to	be	a	good	indication	for	which	method	should	be	used	for	
the	modal	parameter	estimation.	The	tuning	of	a	simple	finite	element	model	seems	to	be	the	most	accurate	
estimation	method	even	if	the	damping	is	extremely	high.	This	method	should	however	only	be	used	for	the	
estimation	of	a	model	with	a	 single	 resonance	peak,	as	 complex	models	 cannot	be	 found	 this	way.	Care	
should	be	taken	that	the	frequency	response	function	found	this	way	consists	of	parameters	which	do	not	
have	to	be	equal	to	the	theoretical	system	parameters.	If	a	prediction	of	unmeasured	frequency	response	
functions	is	to	be	made,	the	mean	square	error	curve	fitting	method	should	be	used	instead.	
	
The	 prediction	 made	 by	 the	 mean	 square	 error	 curve	 fitting	 gives	 only	 an	 indication	 of	 the	 expected	
frequency	response	function.	If	these	results	are	to	be	derived	very	accurately,	it	is	better	to	take	more	time	
for	the	experimental	modal	analysis	and	measure	the	frequency	response	functions	directly.		
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Chapter	4 Literature	review	
4.1 Passive	vibration	isolation	

In	many	applications,	 it	 is	 not	only	of	 interest	 to	 study	 the	behaviour	of	 the	 system	 itself,	 such	 that	 the	
vibration	amplitude	of	the	motion	can	be	seen	and	is	within	an	acceptable	range,	but	it	is	also	demanded	
that	the	system	transmits	as	little	vibration	to	the	environment	as	possible	[3].	In	these	cases,	it	is	desired	to	
isolate	heavy	vibrations	of	a	part	of	a	system	from	the	rest	of	it.	Such	an	analysis	can	be	done	as	soon	as	the	
forced	vibration	response	of	the	system	is	calculated.	
	

	 	

Figure	4.1:	Viscously	damped	mass-spring	system	subjected	to	external	excitation	[3].	

Considering	the	viscously	damped	mass-spring	system	that	is	excited	by	an	external	force,	Figure	4.1.	The	
transmitted	force	acted	upon	the	base	is	the	sum	of	the	spring	force	and	the	viscous	damping	force:	
	

𝐹6 = 𝑘𝑥 𝑡 + 𝑐𝑥(𝑡)	
	
The	ratio	of	the	magnitude	of	the	transmitted	force	to	the	applied	force	is	known	as	the	transmissibility	and	
can	be	calculated	from:	
	

𝐹6
𝐹

=
1 + 2𝜉 𝜔𝜔?

a

1 − 𝜔
𝜔?

a a
+ 2𝜉 𝜔𝜔?

a
	

	
From	this	equation	can	be	concluded	that	the	force	transmitted	to	the	base	is	smaller	than	the	force	acting	
on	 the	 system	 when	 the	 excitation	 frequency	 is	 larger	 than	 the	 square	 root	 of	 two	 times	 the	 natural	
frequency	of	the	system.	However,	in	this	frequency	range,	increasing	the	damping	has	a	negative	influence	
on	the	vibration	isolation.	If	the	target	is	to	minimise	the	transmitted	force	for	𝜔 > 𝜔? 2,	it	is	best	to	have	
no	damping	at	all.	
	
Vibration	absorbers	

Especially	when	the	system	is	subjected	to	a	harmonic	excitation	of	constant	frequency	causing	undesirable	
vibrations,	vibration	absorbers	are	often	used	[3].	Three	types	of	vibration	absorbers	exist:	the	undamped	
(connected	 by	 springs)	 and	 damped	 (connected	 by	 dampers)	 vibration	 absorbers	 and	 the	 dynamic	
(connected	by	springs	and	dampers)	vibration	absorber,	shown	in	Figure	4.2.	
	

	 	

Figure	4.2:	Dynamic	vibration	absorber	[3].	
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The	left	figure	shows	a	machine	connected	to	the	fixed	world	by	a	spring.	The	machine	is	subjected	to	an	
external	force,	such	that	it	causes	unacceptable	vibrations	of	the	machine.	Reduction	of	these	vibrations	by	
eliminating	 the	 external	 force	 or	 changing	 the	 system	 parameters	 might	 not	 be	 possible.	 Therefore,	 a	
dynamic	vibration	absorber	can	be	connected	to	the	machine,	as	shown	in	the	right	figure.	
	
The	equations	of	motion	of	the	combined	system	can	be	derived	as:	
	

𝑚# 0
0 𝑚k

𝑥#
𝑥k

+ 𝑐 −𝑐
−𝑐 𝑐

𝑥#
𝑥k

+ 𝑘# + 𝑘k −𝑘k
−𝑘k 𝑘k

𝑥#
𝑥k = 𝐹𝑒lm6

0
	

	
Figure	4.3	shows	the	plot	of	the	frequency	response	function	of	the	system,	for	three	values	of	the	damping	
coefficient.	This	plot	raises	a	single	question:	‘how	can	the	vibration	absorber	be	designed	such	that	the	peak	
value	of	the	curve	is	as	low	as	possible?’.		
	

	
Figure	4.3:	Magnitude	of	the	response	of	the	main	system	for	three	values	of	the	damping	coefficient.	

The	figure	shows	two	common	intersection	points	P	and	Q,	from	which	the	value	does	not	depend	on	the	
damping	coefficient.	If	the	design	parameters	are	chosen	in	such	a	way	that	one	of	the	peaks	goes	through	
one	of	the	intersections,	the	vibration	absorber	has	been	optimally	designed.	However,	the	maximum	value	
of	the	curve	would	be	further	reduced	when	the	common	points	P	and	Q	would	be	of	identical	magnitude.	
This	means	that	it	may	be	acceptable	to	have	an	increased	value	of	Q,	if	that	means	that	P	will	be	reduced.		
Because	the	intersection	points	are	independent	of	the	damping	coefficient	and	the	mass	ratio	is	set	for	the	
system,	 the	 only	 parameter	 influencing	 these	 points	 is	 the	 ratio	 of	 natural	 frequencies	𝛺k .	 The	 most	
favourable	situation	is	obtained	when	first	the	ratio	of	natural	frequencies	is	chosen	such	that	the	magnitude	
of	P	and	Q	is	equal	and	then	the	damping	factor	is	chosen	such	that	the	peak	of	the	curve	pass	through	one	
of	these	points.	
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4.2 Active	vibration	cancellation	

Active	vibration	control	 is	aimed	at	reducing	the	vibration	level	of	a	mechanical	structure	[4].	Contrary	to	
passive	methods,	like	vibration	absorbers,	shock	mounts	and	base	isolation,	active	vibration	control	is	based	
on	the	application	of	a	secondary	vibration	to	the	structure,	resulting	in	minimum	residual	vibrations.	Active	
application	of	force	in	an	equal	and	opposite	fashion	to	the	forces	imposed	by	external	vibrations	result	in	
this	secondary	vibration.	The	active	vibration	control	system	must	therefore	constantly	measure	either	the	
vibrations	in	the	structure	or	the	force	applied	by	the	external	sources.		
With	this	type	of	force	application,	a	precision	industrial	process	can	be	maintained	on	a	platform	essentially		
vibration-free.	Many	precision	industrial	processes	cannot	take	place	if	the	machinery	is	being	affected	by	
vibration.	For	example,	 the	production	of	semiconductor	wafers	 requires	 that	 the	machines	used	 for	 the	
photolithography	steps	are	used	in	an	essentially	vibration-free	environment	or	the	sub-micrometre	features	
will	be	blurred.		
	
The	typical	active	vibration	control	system	uses	several	components:		

o A	platform	suspended	by	several	active	drivers	 (that	may	use	voice	coils,	hydraulics,	pneumatics,	
piezo-electric	or	other	techniques).	

o Accelerometers	that	measure	acceleration	in	three	degrees-of-freedom.	
o An	electronic	amplifier	system	that	amplifies	and	inverts	the	signals	from	the	accelerometers.	A	PID	

controller	can	be	used	to	get	better	performance	than	a	simple	inverting	amplifier.			
o For	very	large	systems,	pneumatic	or	hydraulic	components	that	provide	the	high	drive	power	are	

required.			
	
MECAL	Equalizer	

The	Equalizer	from	MECAL	is	a	type	of	active	vibration	cancellation	system	that	is	designed	to	counteract	
vibrations,	especially	in	the	20	Hz	to	80	Hz	frequency	band.	The	Equalizer	is	capable	of	reducing	vibrations	
over	a	large	floor	area	by	a	factor	of	3	to	5.		
	
The	vibrations	on	the	machine	pedestal	can	result	from	two	sources:	external	forces	and	forces	from	the	
precision	machine	itself.	A	soft	suspension	would	provide	isolation	for	the	vibration	from	the	floor,	however	
making	the	vibrations	from	the	machine	worse.	An	active	system	will	in	this	case	help	to	achieve	a	higher	
level	of	vibration	isolation,	while	keeping	some	of	the	stiffness	of	the	pedestal.		
The	second	option	is	a	stiff	suspension,	which	results	in	the	best	isolation	of	the	vibrations	from	the	machine.	
This	does	offer	 little	to	no	 isolation	from	the	floor	vibrations	however.	The	Equalizer	designed	by	MECAL	
makes	this	system	active,	resulting	in	both	a	high	stiffness	suspension	and	active	cancellation	from	the	floor	
vibrations.	

4.3 Modal	analysis	methods	

The	 dynamic	 behaviour	 of	 structures	 can	 be	 measured	 using	 so	 called	 experimental	 modal	 analysis	
methods.	According	to	Mark	H.	Richardson	[5],	two	fundamentally	different	methods	of	modal	analysis	exist:	
the	normal	mode	method	and	the	frequency	response	function	method.	
	
Normal	mode	method	

The	objective	of	the	normal	mode	method	is	to	excite	the	natural	modes	of	the	structure,	by	means	of	a	
device	called	a	‘shaker’.	A	shaker	can	output	a	harmonic	excitation	with	a	certain	frequency.	The	frequency	
of	 the	 harmonic	 excitation	will	 be	 set	 equal	 to	 a	 natural	mode	 of	 the	 structure,	 also	 called	 the	 natural	
frequency.	The	process	of	adjusting	the	amplitude	and	frequency	of	the	shaker	to	excite	a	specific	natural	
frequency	is	called	‘modal	tuning’.		
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Once	 a	 mode	 is	 properly	 excited,	 the	 excitation	 amplitude	 of	 the	 system	 can	 then	 be	 measured	 using	
measurement	equipment	(i.e.	accelerometers),	at	many	points	on	the	structure.	This	is	called	‘modal	dwell’.	
	
A	variation	on	this	type	of	method	is	the	frequency	sweep,	where	the	harmonic	excitation	frequency	can	be	
swept	over	a	certain	range	of	frequencies.	This	method	is	used	to	find	the	natural	frequencies	of	the	structure.	
	
To	measure	the	damping	coefficient,	the	shaker	is	shut	off	to	simulate	an	impulse	response	of	the	structure	
at	the	frequency	of	the	mode.	Ideally,	the	structure	should	exhibit	a	damped	harmonic	response	at	all	points,	
with	 a	 frequency	 equal	 to	 the	 excited	 natural	 frequency.	Most	 of	 the	 time,	 this	 is	 not	 the	 case	 and	 the	
structure	will	show	a	beating	of	several	natural	modes.	The	beating	phenomenon	can	be	explained	as	a	type	
of	 interference	 between	 two	 vibrations	 with	 different	 frequencies.	When	 this	 occurs,	 amplification	 and	
damping	of	the	combined	vibration	alternate	each	other.			
	
The	are	several	problems	which	make	this	modal	analysis	difficult	and	time	consuming:	

o The	 location	of	excitation	 is	difficult	 to	predict	without	 forehand	knowledge	about	 the	modes	of	
vibration	of	the	structure.	This	is	of	importance	as	the	point	of	intersection	of	the	deformed	state	
with	the	equilibrium	state	has	zero	amplitude	and	therefore	does	not	move	during	the	vibration	of	
the	structure	at	the	corresponding	natural	mode.	If	the	shaker	is	positioned	at	such	an	intersection	
point,	it	gets	‘pushed’	up	and	down	instead	of	having	zero	amplitude.	Therefore,	changing	the	mode	
shape	at	the	corresponding	eigenfrequency.		

o It	is	extremely	difficult	to	excite	closely	coupled	modes,	one	at	a	time.	
o Since	all	the	mode	data	is	collected	during	the	modal	dwell,	the	structure	must	be	instrumented	with	

enough	accelerometers,	so	that	all	degrees	of	freedom	can	be	measured	at	once.	
	
Frequency	response	function	method	

The	 frequency	 response	 function	method	uses	 the	Fast	 Fourier	Transform	algorithm	 to	derive	 frequency	
response	functions	from	measurement	data	of	various	points	on	the	structure.		
During	the	experiment,	the	structure	is	excited	by	means	of	an	impact	force	applied	by	a	hammer	or	shaker.	
This	 is	 done	on	 a	 single	 point	 on	 the	 structure.	 The	 response	 of	 the	 structure	 can	 then	be	measured	 in	
multiple	points	on	the	structure	at	the	same	time.	This	data	about	the	response	and	the	input	force	applied	
by	the	impact	hammer	can	then	be	used	to	calculate	the	frequency	response	functions.	
	

	

	

Figure	4.4:	Excitation	of	a	beam	under	bending,	mode	shapes	and	the	imaginary	part	of	the	frequency	response	
functions	for	the	complete	system	[2].	
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Modal	 parameters	 are	 identified	 by	 performing	 further	 computations	 (i.e.	 "curve	 fitting")	 on	 this	 set	 of	
frequency	response	function	measurements.	Modal	frequencies	correspond	to	peaks	in	the	imaginary	part	
of	the	frequency	response	functions.	A	peak	should	exist	at	the	same	frequency	in	all	measurements,	except	
those	measured	at	"node"	points,	where	the	modal	amplitude	is	zero.	The	width	of	the	modal	peak	is	related	
to	the	damping	of	the	mode.	That	is,	the	wider	the	peak,	the	higher	the	modal	damping.	The	mode	shape	is	
obtained	by	assembling	the	peak	values	at	the	same	frequency	from	all	measurements.		
	
Consider	a	beam	being	excited	on	bending,	Figure	4.4.	 If	 the	excitation	of	 three	points	on	 the	beam	are	
measured,	a	total	of	nine	possible	input	to	output	frequency	response	functions	can	then	be	derived	[2].	By	
means	of	peak	picking,	the	mode	shapes	of	the	beam	can	be	derived	from	the	amplitude	of	the	peaks.	This	
can	be	done	for	each	row	or	column	of	the	matrix	individually.	Figure	4.5	shows	the	mode	shapes	derived	
from	 the	middle	 and	bottom	 rows	of	 the	 frequency	 response	 function	matrix.	 These	 figures	 show	 some	
interesting	features	of	the	frequency	response	function	matrix.	While	it	seems	to	be	possible	to	derive	the	
mode	shapes	from	a	single	row	or	column	of	the	matrix.	If	the	measurement	points	are	located	exactly	at	a	
node	 of	 the	 system,	 the	magnitude	 of	 the	 frequency	 response	 function	 becomes	 zero	 and	 it	 therefore	
becomes	impossible	to	extract	the	mode	shape.		
	

	 	

	 	

Figure	4.5:	Mode	shapes	of	a	beam	excited	on	bending,	derived	from	the	middle	and	bottom	rows	of	the	frequency	
response	function	matrix	[2].	

Another	important	note	is	that	the	magnitude	of	the	peaks	for	different	rows	or	columns	of	the	frequency	
response	function	matrix	are	not	the	same,	only	the	shape	derived	from	these	peaks	is	the	same.	Scaling	is	
required	to	find	the	exact	same	value	for	each	modal	vector	from	different	rows	or	columns.		
	
Now	can	be	concluded	that	any	row	or	any	column	of	the	frequency	response	function	matrix	can	be	used	
to	estimate	any	mode	of	the	system,	provided	that	the	reference	is	not	located	at	the	node	of	a	mode.		
The	frequency	response	function	method	has	several	advantages	over	the	normal	mode	method,	of	which	
the	biggest	advantage	is	the	ability	to	only	measure	a	single	row	or	column	of	points,	instead	of	the	complete	
floor.	This	greatly	 reduces	 the	 time	and	amount	of	measurements	needed	 for	analysis	 to	 complete.	This	
method	will	therefore	be	further	investigated.	

4.3.1 Important	considerations	

As	 a	 conclusion	of	 the	modal	 analysis	methods	 literature	 review,	 some	 important	 considerations	will	 be	
explained	here	[2].		
	
Roving	hammer/sensor	measurements	

A	roving	hammer	with	a	stationary	accelerometer	is	one	way	to	run	an	impact	test	that	is	commonly	used.	
The	other	way	an	impact	test	can	be	performed	is	by	keeping	the	impact	hammer	stationary	and	moving	the	
accelerometer.		
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Both	are	acceptable	ways	for	experimental	modal	analysis	and	because	of	reciprocity,	there	is	no	difference	
from	a	theoretical	standpoint.	Considering	the	measurements	made,	a	single	row	of	the	frequency	response	
function	matrix	will	be	 filled	 for	 the	 roving	 sensor	experiment	and	 for	 the	 roving	hammer	experiment,	a	
single	column.		
	
Driving	point	measurement	

The	measurement	where	the	response	point	and	direction	are	the	same	as	the	excitation	point	and	direction	
is	called	a	driving	point	measurement.	For	a	driving	point	measurement,	several	items	can	be	noted:		

o All	resonances	are	separated	by	anti-resonances.	
o The	phase	loses	180	degrees	of	phase	passing	over	a	resonance	and	gain	180	degrees	of	phase	

passing	over	an	anti-resonance.	
o The	peaks	in	the	imaginary	part	of	the	frequency	response	function	must	all	point	in	the	same	

direction.	
	
The	drive	point	measurement	can	be	viewed	as	a	summation	of	all	the	modes	or	as	the	contribution	due	to	
each	mode.	The	driving	point	measurements	fill	the	diagonal	of	the	frequency	response	function	matrix.	
	
Windowing	

One	 important	 problem	 that	 occurs	 during	 the	 discrete	 sampling	 of	 a	 continuous	 system	 is	 aliasing,	 as	
explained	in	chapter	4.4.	In	order	to	minimise	the	error	made	by	aliasing,	weighting	functions	called	windows	
can	 be	 applied.	 The	 most	 common	 windows	 for	 modal	 testing	 today	 are	 the	 Rectangular	 window,	 the	
Hanning	window,	 the	 Flat	 Top	window	 for	 shaker	 testing	 and	 the	 Force/Exponential	window	 for	 impact	
testing.	Without	going	into	all	the	detail,	windows	always	distort	the	peak	amplitude	measured	and	always	
give	the	appearance	of	more	damping	then	what	actually	exists	in	the	measured	frequency	response	function,	
two	 very	 important	 properties	 that	 are	 being	 estimated	 from	 the	 measured	 functions.	 It	 is	 therefore	
preferable	not	using	windows	at	all.	
To	get	around	not	using	windows	on	measured	frequency	response	functions	form	a	modal	test	is,	by	making	
sure	the	Nyquist-Shannon	sampling	theorem	is	always	satisfied.	Therefore,	the	sampling	rate	should	be	high	
enough	for	the	system	to	be	measured.	For	signals	such	as:	pseudo-random,	burst	random,	sine	chirp,	and	
digital	stepped	sine	this	requirement	is,	under	most	conditions,	always	satisfied	and	therefore	are	leakage	
free	and	do	not	require	the	use	of	a	window.	
 
Averaging	multiple	hits	

During	 the	 experimental	 modal	 analysis,	 multiple	 hits	 must	 be	 measured	 for	 each	 individual	 roving	
hammer/sensor	experiment.	Noise	and	other	disturbances	can	always	influence	a	measurement,	averaging	
multiple	hits	and	even	rejecting	certain	hits	results	in	far	more	accurate	measurements.		
A	 measure	 for	 the	 reliability	 of	 the	 measurement	 is	 the	 coherence	 spectrum	 of	 the	 measurement.	 A	
coherence	of	one	means	that	the	measurement	is	accurate	while	a	coherence	below	one	means	that	there	
is	probably	some	noise	 influencing	the	measurement.	Care	should	be	taken	however	when	analysing	the	
coherence	of	a	measurement,	as	the	coherence	can	only	be	calculated	when	multiple	measurements	were	
taken.	In	case	of	a	single	measurement,	the	coherence	is	always	equal	to	one	[2].	It	should	never	be	used	as	
an	indication	of	how	many	hits	must	be	measured	for	each	measurement.	
	
Influence	of	the	hammer	tip	

The	input	force	spectrum	exerted	on	a	structure	is	a	combination	of	the	stiffness	of	the	hammer/tip	as	well	
as	the	stiffness	of	the	structure.	Basically,	the	input	power	spectrum	is	controlled	by	the	length	of	time	of	
the	impact	pulse.	A	long	pulse	in	the	time	domain,	results	in	a	short	or	narrow	frequency	spectrum.	A	short	
pulse	in	the	time	domain,	results	in	a	wide	frequency	spectrum.	
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Figure	 4.6	 shows	 a	measurement	 where	 the	 hammer	 tip	
was	changed	for	each	measurement.	The	top	figure	shows	
the	measurement	where	a	very	soft	tip	was	used	to	excite	
the	structure,	the	middle	figure	the	measurement	where	a	
hard	tip	was	used	and	the	bottom	figure	a	measurement	for	
an	in-between	tip.		
	
As	can	be	seen	 in	 top	 figure,	a	very	 soft	 tip	 results	 in	 the	
power	 spectrum	 having	 significant	 roll-off	 at	 400	Hz.	 The	
coherence	 also	 starts	 to	 drop	 at	 this	 frequency.	 The	
problem	here	is	that	there	is	not	enough	excitation	at	higher	
frequencies	to	cause	the	structure	to	respond.	If	there	is	not	
much	input,	then	there	is	not	much	output.	For	a	hard	tip	
can	be	seen	that	the	input	power	spectrum	is	extremely	flat	
over	 all	 frequencies,	 however	 the	 coherence	 is	 not	
particularly	good	for	this	measurement. 	
	
The	following	conclusion	where	drawn	by	Job	Lansink,	as	a	
result	of	a	research	on	the	influence	of	the	hammer	tip	[6]:	

	

	

	

Figure	4.6:	Frequency	response	functions	(black),	
input	power	spectra	(blue)	and	coherence	spectra	

(red)	for	different	hammer	tips.	

o The	length	of	time	of	the	impact	pulse	increases	as	the	stiffness	of	the	hammer	tip	is	decreased.	The	
coherence	increases	for	low	frequencies	and	decreases	for	high	frequencies.	

o Increasing	the	diameter	of	the	tip	results	in	a	higher	tip	stiffness.	The	coherence	decreases	for	low	
frequencies	and	increases	for	high	frequencies.	The	stability	of	the	measurement	increases.	

o Increasing	the	thickness	of	the	tip	lowers	the	average	stiffness,	resulting	in	an	increase	of	the	impact	
pulse	time.	The	low	frequency	part	increases,	while	the	crossover	frequency	decreases.	

o A	parabolic	tip	results	in	a	coherence	which	is	favourable	for	both	high	and	low	frequencies.		
	
It	is	therefore	recommended	to	test	the	performance	of	the	hammer	tip	for	each	experiment	and	changing	
the	tip	when	necessary.	
	
Heavily	damped	systems	

According	to	Pete	Avitabile	[2],	it	is	possible	to	extract	heavily	damped	modes	from	the	frequency	response	
functions.	It	is	however	necessary	to	know	the	natural	frequency	of	the	damped	modes,	as	these	peaks	will	
be	 less	 prominent	 in	 the	 frequency	 response	 graph.	 When	 the	 natural	 frequencies	 are	 known,	 a	 good	
measurement	must	be	done,	so	that	the	damped	mode	can	be	extracted.		
	
Real	and	complex	modes	

Characteristics	of	real	modes:	
o The	mode	shape	is	described	by	a	standing	wave,	which	has	the	presence	of	a	fixed	stationary	node	

point.	
o All	points	pass	through	their	maxima,	minima	and	zero	at	the	same	instant	in	time.	
o All	points	are	either	totally	in-phase	or	out-of-phase	with	any	other	point	on	the	structure.	
o The	mode	shapes	from	the	undamped	case	are	the	same	as	the	proportionally	damped	case.	These	

mode	shapes	uncouple	the	system.	
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Characteristics	of	complex	modes:	
o The	mode	shape	is	described	by	a	traveling	wave	and	appears	to	have	a	moving	node	point	on	the	

structure.	
o All	points	do	not	pass	through	their	maxima,	minima	and	zero	at	the	same	instant	in	time.	Points	

appear	to	lag	behind	other	points.	
o The	different	DOFs	will	have	some	general	phase	relationship,	that	will	not	necessarily	be	in-phase	

or	180	degrees	out-of-phase	with	other	DOFs.		
o The	mode	shapes	from	the	undamped	case	will	not	uncouple	the	damping	matrix.	

	
Rotated	modes	

Most	often	when	modes	of	a	structure	are	very	closely	spaced,	the	mode	shapes	that	satisfy	the	system	can	
be	linear	combinations	of	each	other.	Therefore,	the	shapes	might	be	rotated	from	what	might	have	been	
expected.	The	only	 real	 requirement	 is	 that	 the	modes	of	 the	system	are	orthogonal	with	 respect	 to	 the	
system	mass	and	stiffness	matrices.	Each	of	the	modes	of	the	system	is	unique.		
	
This	 issue	occurs	with	 structures	 that	have	double	 symmetry	and	when	either	 repeated	 roots	or	pseudo	
repeated	 roots	occur.	Another	 time	 it	 can	happen	 is	when	using	different	numerical	 solution	algorithms.	
Because	the	solution	will	 typically	 iterate	to	a	set	of	solution	vectors,	 there	 is	no	reason	why	the	vectors	
should	converge	towards	a	particular	reference	coordinate	system.		
	
Anti-resonance	peaks	

The	 imaginary	 part	 of	 the	 frequency	 response	 functions	 must	 all	 have	 the	 same	 direction	 and,	 in	 this	
condition,	an	anti-resonance	exists	between	each	mode.	This	is	due	to	the	fact	that	the	magnitude	of	the	
frequency	 response	 function	of	mode	1	 and	mode	2	 is	 equal	 at	 the	anti-resonant	 frequency.	But	 at	 this	
frequency,	while	 the	magnitudes	are	equal,	 the	phase	 is	180	degrees	out	of	phase	with	each	other.	This	
implies	that	the	sum	of	mode	1	and	mode	2	are	equal	and	opposite.	Therefore,	the	function	trends	towards	
zero.		
	
Now	can	be	concluded	that	when	the	imaginary	part	of	each	mode	has	an	opposite	sign	and	the	phase	is	not	
necessarily	out	of	phase	then,	when	the	modes	add,	anti-resonance	does	not	occur.	So,	each	measurement	
can	have	anti-resonances	or	no	anti-	resonances	depending	on	the	direction	of	the	 imaginary	part	of	the	
frequency	response	function.		

4.4 Accurate	measurements	

According	to	the	‘Engineer’s	Guide	to	Accurate	Sensor	Measurements’	by	National	Instruments	[7],	accurate	
sensor	measurements	depend	on	a	few	signal	conditioning	requirements.	After	acquiring	the	data,	additional	
signal	processing	must	be	performed	in	order	to	display	the	date	 in	a	more	meaningful	format.	Vibration	
signals	are	commonly	converted	to	the	frequency	spectrum,	which	shows	how	the	signal	change	over	a	range	
of	frequencies.		
	
Signal	amplification	

The	 amplification	 of	 the	 signal	 produced	 by	 the	 accelerometer	 is	 important	 for	 the	 accuracy	 of	 the	
measurement,	because	it	is	very	susceptible	to	noise.	The	reason	for	this	is	that	the	charge	produced	by	an	
accelerometer	is	very	small,	therefore	a	low	amount	of	noise	can	heavily	influence	this	signal.	The	solution	
for	this	problem	is	to	either	choose	sensitive	accelerometer,	with	integrated	amplifier,	or	use	an	external	
amplifier	with	noise	reduction.	
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The	most	commonly	used	sensor	for	vibration	measurements	is	the	piezoelectric	accelerometer.	This	type	
of	sensor	uses	the	piezoelectric	effect	to	measure	changes	in	acceleration	by	converting	it	to	an	electrical	
charge.	 This	 conversion	 is	 possible	 because	 a	 piezoelectric	material	 will	 output	 a	 voltage	when	 is	 being	
deformed.	A	change	in	this	voltage	output	means	a	change	in	acceleration	of	the	object	the	sensor	is	attached	
to.	 Since	piezoelectric	 accelerometers	 are	high-impedance	 sources,	 a	 charge-sensitive	 amplifier	with	 low	
noise,	a	high	input	impedance,	and	a	low	output	impedance	must	be	designed.	
	
A	subclass	of	the	piezoelectric	accelerometers,	called	the	Integrated	Electronic	Piezoelectric	sensors	(IEPE),	
integrate	the	charge	amplifier	or	voltage	amplifier	close	to	the	sensor	to	ensure	better	noise	immunity	and	
more	convenient	packaging.	However,	these	sensors	require	4	–	20	mA	current	excitation	to	operate	the	
circuitry	inside	them.	
	
AC	Coupling	

Enabling	IEPE	signal	conditioning	generates	a	DC	voltage	offset	equal	to	the	product	of	the	excitation	current	
and	sensor	impedance.	The	signal	acquired	from	the	sensor	thus	consists	of	both	AC	and	DC	components.	
AC	coupling	or	capacitive	coupling	involves	using	a	capacitor	to	filter	out	the	DC	signal	component	from	a	
signal	with	both	AC	and	DC	components	[8].	AC	coupling	is	useful	because	the	DC	component	of	a	signal	acts	
as	a	voltage	offset.	Removing	it	from	the	signal	can	increase	the	resolution	of	signal	measurements	and	the	
usable	dynamic	range	of	the	channel.	When	implemented	in	software,	AC	coupling	can	remove	erroneous	
DC	data	that	invalidates	signal	processing	integration	and	measurement	results.	AC	coupling	also	attenuates	
the	long-term	DC	drift	that	sensors	have	due	to	age	and	temperature	effect.	
	
Grounding	

Improper	grounding	of	the	accelerometer	can	result	in	an	increase	in	noise.	This	is	a	direct	result	from	the	
created	ground	loops	and	can	be	countered	by	grounding	either	the	system	input	or	the	accelerometer.	If	
the	 sensor	 is	 grounded,	 it	 must	 be	 connected	 differentially.	 If	 the	 sensor	 is	 floating,	 the	 input	 of	 the	
measurement	system	should	be	connected	to	the	ground.		
	
Anti-aliasing	filters	

Aliasing	is	a	very	common	problem	which	occurs	during	the	
discrete	 sampling	 of	 a	 continuous	 system.	 This	 problem	
can	be	explained	as	having	too	few	time	instances	at	which	
a	measurement	is	taken.	
	
According	to	the	Nyquist-Shannon	sampling	theorem,	the	
highest	 frequency	 that	 can	 be	 analysed	 is	 the	 Nyquist	
frequency.	 Any	 frequency	 greater	 than	 the	 Nyquist	
frequency,	appears	as	a	frequency	between	zero	and	the	
Nyquist	 frequency	 after	 sampling.	 Without	 detailed	
knowledge	of	the	original	signal,	these	frequencies	cannot	
be	 distinguished	 from	 frequencies	 that	 actually	 lie	
between	zero	and	the	Nyquist	frequency.	

	

Figure	4.7:	Aliasing.	

	
Figure	4.7	shows	the	result	of	aliasing.	In	this	figure,	the	red	signal	is	the	original	signal	that	should	be	sampled,	
while	the	blue	signal	is	the	output	signal	after	sampling.	The	figure	clearly	shows	that	both	signals	are	very	
different.		
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Two	solutions	exist	for	the	problem	of	aliasing,	namely:	choosing	a	higher	sampling	rate,	or	making	use	of	a	
low-pass	filter.	The	sampling	rate	should	be	at	least	twice	the	Nyquist	frequency,	to	prevent	aliasing.	A	low-
pass	filter	only	lets	the	low	frequency	content	of	the	signal	go	through.	The	high	frequency	content	will	be	
blocked,	which	is	most	of	the	time	the	noise.	
	
Dynamic	range	

The	dynamic	range	of	a	sensor	is	the	ratio	between	the	largest	and	smallest	signals	a	device	can	measure.	
This	is	of	importance,	because	if	the	signal	is	too	small	or	too	large,	the	sensor	cannot	measure	the	signal.	
The	dynamic	range	is	a	direct	property	of	the	used	sensor	and	can	therefore	only	be	influenced	by	choosing	
a	different	sensor.	
	
Maintaining	signal	quality	

When	very	long	cables	are	used,	the	added	capacitance	in	the	cable	can	affect	the	frequency	response	of	the	
sensor	by	filtering	some	of	the	high-frequency	content.	In	addition,	noise	and	distortion	may	seep	into	the	
measurement	signal	if	there	is	insufficient	current	to	drive	the	cable	capacitance.	In	general,	cables	should	
not	be	longer	than	30	m	if	the	frequency	range	is	larger	than	10	kHz.	
	
The	 effect	 of	 long	 cables,	 can	 be	 experimentally	 determined	 by	 analysis	 of	 the	 high-frequency	 electrical	
characteristics.	The	procedure	is	as	follows:	

o Use	a	function	generator	to	supply	the	maximum	amplitude	of	the	expected	signal	into	a	unity-gain,	
low-output	impedance	amplifier	in	series	with	the	sensor.		

o Compare	the	ratio	of	the	original	signal	to	the	ratio	of	the	signal	measured	on	the	scope.	If	the	signal	
is	 attenuated,	 then	 the	 current	 used	 to	 drive	 the	 signal	must	 be	 increased	until	 a	 ratio	 of	 1:1	 is	
achieved.		

o Care	 should	 be	 taken	 not	 to	 supply	 excessive	 current	 over	 short	 cable	 runs	 or	 when	 testing	 at	
elevated	temperatures.	Any	current	not	used	by	the	cable	is	used	to	power	the	internal	electronics,	
and	creates	heat	that	might	cause	the	sensor	to	exceed	its	maximum	temperature	specification.	
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Chapter	5 Theoretical	modal	analysis	
5.1 Kinetics:	Force	and	moment	balances	

The	 first	 step	 in	 the	 modal	 analysis	 is	 the	 derivation	 of	 the	 Equations	 of	 Motion	 of	 the	 system.	 These	
equations	describe	the	motion	of	the	system,	as	a	result	of	an	input	force.	There	are	several	ways	in	which	
these	equations	can	be	derived.	The	Newton-Euler	method	and	Lagrange’s	method	are	the	two	methods	
which	are	generally	used	for	this	derivation	[3].	Both	methods	result	in	the	same	equations	of	motion	and	
can	therefore	be	used	to	check	the	derived	equations	of	motion.		
	
The	two-body	model	of	the	factory	floor,	shown	in	Figure	5.1,	will	be	derived	on	the	right-side	of	the	page,	as	
an	example	of	the	modal	analysis.	
	

	

𝑚c = 2	𝑘𝑔	
𝑚a = 1	𝑘𝑔	

𝑘c = 6	 𝑁 𝑚	
𝑘a = 3	 𝑁 𝑚	
𝑘q = 0	 𝑁 𝑚	

𝑐c = 𝑐a = 𝑐q = 0	 𝑁 ∙ 𝑠 𝑚	

Figure	5.1:	Two-body	model	of	a	floor,	problem	definition.	

5.2 Kinematics:	Equations	of	motion	

To	get	insight	into	the	problem,	a	free-body-diagram	must	
be	 drawn.	 This	 diagram	 consists	 of	 all	 bodies,	
disconnected	from	each	other	[3].	The	forces	present	must	
be	drawn	to	complete	the	problem	definition.		
	
Newton-Euler	method	

The	 applied	 forces	 can	 be	 summed	 by	 making	 use	 of	
Newton’s	 second	 law	 of	 motion.	 These	 equations	 of	
summed	forces	are	 the	 force	and	moment	balances	and	
must	be	derived	for	each	body	individually:	
	

𝛴𝑭 = 𝑚𝒛					𝑎𝑛𝑑					𝛴𝑴 = 𝐼𝜶	
	
Because	 the	 two-body	model	 only	 has	motion	 in	 the	 z-
direction,	the	moment	balances	do	not	have	to	be	derived.	

	
Dynamic	model	of	a	floor	
The	problem	solved	here	 is	the	simplified	model	of	a	
floor.	 The	 floor	 is	 divided	 into	 three	 bodies,	 each	
connected	 to	 each	 other	 by	 means	 of	 a	 spring	 and	
damper.		

	

Figure	5.2:	Free-body-diagram	floor	model.	

	
Summation	of	the	forces	on	the	first	body:	
	

𝛴𝐹c = 𝐹c − 𝑐c	𝑧c − 𝑐a	 𝑧c − 𝑧a − 𝑘c	𝑧c
− 𝑘a	 𝑧c − 𝑧a = 𝑚c	𝑧c	
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Substitution	of	Hooke’s	 law	 for	springs	and	 the	equation	
for	 viscous	 damping	 completes	 the	 moment	 and	 force	
balances:	
	

𝐹5 = 𝑘 ∙ Δ𝑧					𝑎𝑛𝑑					𝐹4 = 𝑐 ∙ Δ𝑧	
	
The	equations	of	motion	 follow	from	these	moment	and	
force	 balances.	 Rewriting	 them	 into	 the	 standard	matrix	
form:	
	

𝑴	𝒛 + 𝑪	𝒛 + 𝑲	𝒛 = 𝑭 𝑡 	
	
As	 explained	 above,	 the	 second	 method	 to	 derive	 the	
equations	 of	motion	 is	 Lagrange’s	method.	 This	method	
can	be	used	 the	check	whether	 the	equations	of	motion	
are	correct,	but	is	not	necessary	for	the	modal	analysis.	

	
Summation	of	the	forces	on	the	second	body:	
	
𝛴𝐹a = 𝐹a 𝑡 + 𝑐a	 𝑧c − 𝑧a − 𝑐q	 𝑧a − 𝑧q 		
	 +	𝑘a	 𝑧c − 𝑧a − 𝑘q	 𝑧a − 𝑧q = 𝑚a	𝑧a	
	
Rewriting	the	force	balances	in	standard	matrix	form:	
	
𝑚c 0
0 𝑚a

𝑧c
𝑧a

+
𝑐c + 𝑐a −𝑐a
−𝑐a 𝑐a + 𝑐q

𝑧c
𝑧a

		

	 + 𝑘c + 𝑘a −𝑘a
−𝑘a 𝑘a + 𝑘q

𝑧c
𝑧a = 𝐹c

𝐹a
	

		
Substitution	 of	 the	 numerical	 values	 for	 the	 mass,	
stiffness	and	damping	coefficients:	
	

2 0
0 1

𝑧c
𝑧a

+ 9 −3
−3 3

𝑧c
𝑧a = 𝐹c

𝐹a
	

	

	 					Additional	theory	

Lagrange’s	method	

The	 basis	 for	 Lagrange’s	 method	 is	 Hamilton’s	
principle:	
	

−𝛿𝑇 + 𝛿𝑉 − 𝛿𝑈

6x

6y

𝑑𝑡 = 0	

	
Where	𝛿𝑇 	is	 the	 change	 in	 kinetic	 energy	 of	 the	
system,	𝛿𝑉	the	change	in	potential	energy	and	𝛿𝑈	
the	change	 in	virtual	work	as	a	result	of	external	
forces.		
	
Lagrange’s	equation	for	a	system	with	one	degree	
of	freedom	is	then	defined	as:	
	
𝑑
𝑑𝑡

𝜕𝑇
𝜕𝑞l

−
𝜕𝑇
𝜕𝑞l

+
𝜕𝑉
𝜕𝑞l

+
𝜕ℱ
𝜕𝑞l

=
𝛿𝑊l

𝛿𝑞
, 𝑖 = 1, … , 𝑁{|7	

	
With	𝑞 	the	 generalised	 coordinate,	ℱ 	Rayleigh’s	
dissipation	function	and	}~�

}�
	the	generalised	force.	

	
The	 same	 result	 can	 be	 gained	 from	 Lagrange’s	
method:	
	

𝑇 = c
a	𝑚c	𝑧ca +

c
a	𝑚a	𝑧aa	

𝑉 = c
a	𝑘c	𝑧c

a + c
a	𝑘a 𝑧c − 𝑧a

a + c
a	𝑘q	𝑧a

a	

ℱ = c
a	𝑐c	𝑧c

a + c
a	𝑐a 𝑧c − 𝑧a

a + c
a	𝑐q	𝑧a

a	
𝛿𝑊 = 𝐹c 𝑡 	𝛿𝑧c + 𝐹a 𝑡 	𝛿𝑧a	

	
Because	this	is	a	system	with	two	degrees	of	freedom,	
Lagrange’s	equation	must	be	used	twice,	for	𝑞c = 𝑧c	
and	𝑞a = 𝑧a:	
	

𝑑
𝑑𝑡

𝜕𝑇
𝜕𝑧c

= 𝑚c	𝑧c,
𝑑
𝑑𝑡

𝜕𝑇
𝜕𝑧a

= 𝑚a	𝑧a	

𝜕𝑇
𝜕𝑧c

= 0,
𝜕𝑇
𝜕𝑧a

= 0	

𝜕𝑉
𝜕𝑧c

= 𝑘c	𝑧c + 𝑘a 𝑧c − 𝑧a ,
𝜕𝑉
𝜕𝑧a

= 𝑘q	𝑧a − 𝑘a 𝑧c − 𝑧a 	

𝜕ℱ
𝜕𝑧c

= 𝑐c	𝑧c + 𝑐a 𝑧c − 𝑧a ,
𝜕ℱ
𝜕𝑧a

= 𝑐q	𝑧a − 𝑐a 𝑧c − 𝑧a 	

𝛿𝑊c

𝛿𝑞
= 𝐹c 𝑡 ,

𝛿𝑊a

𝛿𝑞
= 𝐹a 𝑡 	

	
Substitution	 in	 Lagrange’s	 equation	 results	 in	 the	
same	equations	of	motion	as	was	obtained	from	the	
Newton-Euler	method.	
	

5.3 Vibration	eigenproblem:	Natural	frequencies	and	modes	

The	next	problem	is	the	derivation	of	the	eigenvalues	and	the	eigenvectors,	also	called	free-vibrations	natural	
mode	shapes.	The	square-root	of	the	eigenvalue	results	in	the	eigenfrequency,	or	natural	frequency	of	the	
system.	Excitation	of	the	system	in	its	natural	frequency	results	in	resonance.	The	shape	of	the	system	during	
the	vibration	is	called	the	mode	shape,	described	by	the	eigenvectors,	or	natural	modes.		
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Harmonic	oscillation	

A	 common	 assumption	 for	 spring-damper	 systems	 is	
harmonic	oscillation.	This	assumption	can	mathematically	
be	 described	 in	 the	 form	 of	 trigonometric	 functions	 or	
complex	exponentials:	
	

𝒛 𝑡 = 𝒁 cos 𝜔𝑡 − 𝛼 					𝑜𝑟					𝒛 𝑡 = 𝒁	𝑒lm6	
	
Substitution	of	these	functions	in	the	equations	of	motion	
results	in	the	eigenproblem	[9]:	
	

−𝜔a𝑴 + 𝑖𝜔	𝑪 + 𝑲 	𝒁	𝑒lm6 = 𝑭 𝑡 	
	
This	is	a	problem	of	the	form:	
	

𝑫 𝜔 	𝒁 = 𝟎	
	
In	 this	 equation	𝑫 𝜔 	is	 the	 dynamic	 matrix	 and	𝜔 	the	
natural	frequencies.		
If	 for	 now	 the	 applied	 force	 is	 assumed	 to	 be	 zero,	 the	
problem	can	be	solved	by	equating	the	determinant	of	the	
dynamic	matrix	to	zero:	
	

𝑑𝑒𝑡 𝑫 𝜔 = 0	
	
Natural	frequencies	

The	solutions	of	the	eigenproblem	are	the	eigenvalues	of	
the	system:		

𝜔ca, 𝜔aa, … , 𝜔la	
	
These	 eigenvalues	 are	 stored	 on	 the	 diagonal	 of	 the	
eigenvalue	matrix:	
	

𝑲# =
𝜔ca 0 0
0 𝜔aa 0
0 0 𝜔qa

	

	
The	 eigenvalue	 matrix	 is	 called	𝑲# 	here	 instead	 of	𝜦 ,	
which	is	how	it	is	usually	denoted	in	the	literature.	As	will	
later	be	explained,	𝑲#	is	the	modal	stiffness	matrix	of	the	
system.			
	
From	 the	 eigenvalues,	 the	 natural	 frequencies	 or	
eigenfrequencies	of	 the	 system	can	be	 calculated,	which	
are	just	the	square	roots	of	the	eigenvalues.	

	
Taking	the	derivatives	of	the	trigonometric	functions	
for	harmonic	oscillation:		
	

𝒛 𝑡 = 𝒁	𝑒lm6	
𝒛 𝑡 = 𝑖𝜔	𝒁	𝑒lm6	
𝒛 𝑡 = −𝜔a	𝒁	𝑒lm6	

	
Substitution	of	these	functions	 into	the	equations	of	
motion:	
	

−𝜔a 𝑚c 0
0 𝑚a

− 𝑖𝜔
𝑐c + 𝑐a −𝑐a
−𝑐a 𝑐a + 𝑐q

+ 𝑘c + 𝑘a −𝑘a
−𝑘a 𝑘a + 𝑘q

𝑍c
𝑍a

= 𝐹c
𝐹a

	

	
Substitution	 of	 the	 numerical	 values	 for	 the	 mass,	
stiffness	and	damping	coefficients:	
	

	 −𝜔a 2 0
0 1 + 9 −3

−3 3
𝑍c
𝑍a

= 𝐹c
𝐹a

	

	
The	 damping	 was	 assumed	 to	 be	 zero	 here.	 This	
greatly	 simplifies	 the	 derivation	 and	 is	 therefore	 a	
favourable	 assumption.	 Care	 should	 be	 taken,	
because	 this	 assumption	 is	 not	 always	 rectifiable,	
especially	not	for	factory	floors.		
	
The	dynamic	matrix	can	be	derived	as:	
	

𝑫 𝜔 = −𝜔a 2 0
0 1 + 9 −3

−3 3 	
	
Solving	 the	 eigenproblem,	 by	 equating	 the	
determinant	of	the	dynamic	matrix	to	zero:	
		

𝑑𝑒𝑡 9 − 2𝜔a −3
−3 3 − 𝜔a

= 0	

	
Resulting	in:	
	

9 − 2𝜔a 3 − 𝜔a − −3 −3 = 0	
	
Solving	this	equation	results	in	the	eigenvalues	of	the	
system:	
	

𝜔ca = 1.5, 𝜔aa = 6.0	
	
The	eigenvalue	matrix	then	becomes:	
	

𝐊� = 𝜔ca 0
0 𝜔aa

= 1.5 0
0 6.0 	

	
And	the	natural	frequencies	of	the	system:	
	

𝜔c = 1.5, 𝜔a = 6.0	
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Natural	modes	

The	derivation	of	the	natural	modes	or	mode	shapes	is	based	on	the	eigenvectors	of	the	system.	
	
Three	methods	exist	for	the	derivation	of	the	natural	modes.	The	first	method	is	the	easiest	method	when	
calculating	the	modes	by	hand.	While	the	second	method	is	more	convenient	when	making	use	of	MATLAB	
to	 calculate	 the	 eigenvectors.	 The	 third	 methods	 applies	 the	 MATLAB	 function	 eig()	 to	 solve	 the	
eigenproblem.	
	
Remark:	not	all	vibrational	damping	problems	are	solvable	this	way,	only	proportionally	damped	system.	This	
will	be	explained	during	the	natural	coordinate	transformation.	
	
First	method	
The	 first	problem	 is	based	on	 the	eigenproblem,	used	 to	
calculate	the	natural	frequencies:	
	

𝑫 𝜔 	𝒁 = 𝟎	
	
By	 back-substitution	 of	 the	 natural	 frequencies	 in	 the	
dynamic	matrix,	the	natural	modes	can	be	calculated.	This	
results	in	a	system	of	equations,	where	each	coordinate	of	
the	natural	mode	must	be	solved:	
	

−𝜔?a𝑴 + 𝑖𝜔?𝑪 + 𝑲 	𝑽? = 𝟎	
	
Scaling	 of	 the	 natural	 modes	 is	 achieved	 by	 equating	 a	
single	coordinate	to	one:	
	

𝑣l = 1	
	
This	 system	 must	 then	 be	 solved	 for	 each	 natural	
frequency	𝜔?	independently	and	results	in	a	natural	mode	
belonging	to	each	frequency:	
	

𝑽c =
𝑣cc = 1
𝑣ac
𝑣qc

, 𝑽a =
𝑣ca = 1
𝑣aa
𝑣qa

, 𝑽q =
𝑣cq = 1
𝑣aq
𝑣qq

	

	
These	vectors	form	the	columns	of	the	modal	matrix	𝑽:	
	

𝑽 =
𝑣cc 𝑣ca 𝑣cq
𝑣ac 𝑣aa 𝑣aq
𝑣qc 𝑣qa 𝑣qq

	

	
First	method	
Back	 substitution	 of	 the	 natural	 frequencies	 in	 the	
dynamic	equations	of	motion	results	in	two	separate	
equations,	one	for	each	natural	mode:	
	

9 − 2 1.5
a

−3

−3 3 − 1.5
a

𝑣cc
𝑣ac = 0

0 	

	

9 − 2 6.0
a

−3

−3 3 − 6.0
a

𝑣ca
𝑣aa = 0

0 	

	
The	natural	modes	can	then	be	calculated:	
	

𝑽c =
𝑣cc = 1
𝑣ac

= 1
2 	

	

𝑽a =
𝑣ca = 1
𝑣aa

= 1
−1 	

	
This	results	in	the	modal	matrix:	
	

𝐕 = 1 1
2 −1 	

	
To	 satisfy	 the	 orthogonality	 conditions,	 the	 matrix	
must	be	scaled:	
	

𝑽# =
1 1
2 −1

1 1
2 −1

�
∙ 2 0
0 1 ∙ 1 1

2 −1
= 0.4082 0.5774

0.8165 −0.5774 	

	
In	the	next	section,	the	orthogonality	conditions	will	be	explained.	To	be	able	to	satisfy	these	requirements,	
the	modal	matrix	must	be	scaled	according	to:	
	

𝑽#�𝑴	𝑽# = 𝟏	
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This	 can	 be	 achieved	 by	 application	 of	 the	 following	
equation:	
	

𝑽# =
𝑽

𝑽�𝑴	𝑽
	

	
Second	method	
The	second	method	is	based	on	the	dynamic	matrix	𝑫 𝜔 	
[10].	Substitution	of	the	natural	frequencies	results	in:	
	

𝑫 𝜔l =
𝑑cc 𝑑ca 𝑑cq
𝑑ac 𝑑aa 𝑑aq
𝑑qc 𝑑qa 𝑑qq

	

	
This	 matrix	 can	 then	 be	 partitioned,	 resulting	 in	 the	
equation	 for	 the	 scaled	 eigenvectors	 around	 the	 first	
coordinate:	
	

𝑽l =
1

− 𝑫�� 𝜔l bc	𝑫�k 𝜔l
	

	
Where,	
	

𝑫�k 𝜔l = 𝑑ac
𝑑qc

, 𝑫�� 𝜔l = 𝑑aa 𝑑aq
𝑑qa 𝑑qq

	

	
Finally,	 the	 natural	 modes	 can	 be	 stored	 in	 the	 modal	
matrix,	where	each	column	defines	a	natural	mode:	
	

𝑽 =
𝑣cc 𝑣ca 𝑣cq
𝑣ac 𝑣aa 𝑣aq
𝑣qc 𝑣qa 𝑣qq

	

	
Again,	 the	 matrix	 must	 be	 scaled	 to	 satisfy	 the	
orthogonality	conditions.	
	

Third	method	
The	 MATLAB	 function	 eig()	 is	 able	 to	 calculate	 the	
eigenvalues	and	eigenvectors	from	the	mass	and	stiffness	
matrices:	
	
 
[Vm,Km] = eig(K,M); 
 

	
The	 resulting	 eigenvectors	 already	 satisfy	 the	
orthogonality	conditions.	
	

	
Second	method	
Substitution	of	the	natural	frequencies	in	the	dynamic	
matrix:	
	

𝑫 𝜔c = 1.5 = 9 − 3 −3
−3 3 − 1.5 	

	

𝑫 𝜔a = 6.0 = 9 − 18 −3
−3 3 − 6 	

	
Partitioning	these	matrices:	
	

𝑫�k 𝜔c = −3, 𝑫�� 𝜔c = 3 − 1.5 = 1.5	
	

𝑫�k 𝜔a = −3, 𝑫�� 𝜔a = 3 − 6 = −3	
	
Calculation	of	the	natural	modes:	
	

𝑽c =
1

− 1.5 bc ∙ 	−3 = 1
2 	

	

𝑽a =
1

− −3 bc 	 ∙ 	−3 = 1
−1 	

	
Resulting	in	the	same	modal	matrix	as	method	1:	
	

𝑽 = 1 1
2 −1 	

	
Again,	 to	 satisfy	 the	 orthogonality	 conditions,	 the	
matrix	must	be	scaled:	
	

𝑽# =
1 1
2 −1

1 1
2 −1

�
∙ 2 0
0 1 ∙ 1 1

2 −1
= 0.4082 0.5774

0.8165 −0.5774 	

	
Third	method	
Application	of	the	MATLAB	function	eig():	
	
 
K = [9,-3;-3,3]; 
M = [2,0;0,1]; 
 
[Vm,Km] = eig(K,M); 
 

	
This	results	in	the	eigenvalues	and	eigenvectors:	
	

𝐊� = 1.5 0
0 6.0 	

	

𝑽# = −0.4082 −0.5774
−0.8165 0.5774 	

	
The	 resulting	eigenvalues	are	 therefore	equal	 for	all	
methods.	The	modal	matrix	is	minus	the	matrix	from	
methods	 1	 and	 2.	 Because	 the	 entire	 matrix	 is	
multiplied	by	minus	one,	this	is	of	no	importance.		
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Fitting	of	the	mode	shapes	

The	mode	shapes	of	the	system	can	be	derived	by	looking	at	the	natural	modes	of	the	system.	Each	natural	
mode	is	a	description	of	the	mode	shape	of	the	system,	for	the	corresponding	natural	frequency,	Figure	5.3.	
	
The	mode	shapes	can	also	be	fitted	using	MATLAB,	by	making	use	of	the	‘Shape-Preserving	Piecewise	Cubic	
Interpolation’-algorithm.	 This	 type	 of	 algorithm	 divides	 the	 data	 into	 intervals.	 On	 each	 subinterval,	 the	
polynomial	P(x)	is	a	cubic	Hermite	interpolating	polynomial	for	the	given	data	points	with	specified	slopes	at	
the	 interpolation	 points,	 Figure	 5.4.	 This	 mode	 fit	 algorithm	 is	 part	 of	 the	 QuadraturePicking	 MATLAB	
function	(Appendix	H).	In	case	of	mode	shapes	of	a	surface,	a	5th	degree	polynomial	can	be	used	as	the	best	
fit	for	the	mode	shape.	This	is	because	the	‘Shape-Preserving	Piecewise	Cubic	Interpolation’-algorithm	is	not	
available	 for	 a	 surface	 fit.	 This	mode	 fit	 algorithm	 is	 part	 of	 the	QuadraturePicking2D	MATLAB	 function	
(Appendix	I).	At	least	fifteen	measurements	are	needed	for	a	5th	degree	polynomial	fit.	If	this	is	not	the	case,	
the	‘Biharmonic	Spline	Interpolation’-algorithm	can	be	used.		
	

	 	

Figure	5.3:	Mode	shapes	of	the	two-body	system,	derived	from	the	natural	modes.	

	

Figure	5.4:	Mode	shapes	of	the	two-body	system,	calculated	by	MATLAB.	
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5.4 Frequency	response	function	models	

The	 frequency	 response	 function	model	 is	 based	 on	 the	
implementation	 of	 the	 Fast	 Fourier	 Transform	 [11].	 The	
first	step	is	therefore	the	transformation	of	the	equations	
of	motion	to	the	frequency	domain.		
The	transformation	from	the	time	domain	to	the	frequency	
domain	 is	 by	 means	 of	 the	 Laplace	 transformation.	 The	
Laplace	 transformation	 of	 a	 second	 order	 differential	
equation	 is	done	by	substitution	of	the	following	Laplace	
variables,	for	the	degrees	of	freedom:	
	

𝒛 = 𝑠a𝒁 𝑠 = −𝜔a	𝒁 𝑠 	
𝒛 = 𝑠	𝒁 𝑠 = 𝑖𝜔	𝒁 𝑠 	

𝒛 = 𝒁 𝑠 	
	
Substitution	 in	 the	 equations	 of	 motion	 of	 the	 system	
results	in:	
	

−𝜔a	𝑴	𝒁 𝑠 + 𝑖𝜔	𝑪	𝒁 𝑠 + 𝑲	𝒁 𝑠 = 𝑭 𝑠 	
	
Which	is	an	equation	of	the	form:	
	
𝑩 𝑠 	𝒁 𝑠 = 𝑭 𝑠 , 𝑤ℎ𝑒𝑟𝑒	𝑩 𝑠 = −𝜔a	𝑴 + 𝑖𝜔	𝑪 + 𝑲	
	
Where	𝒁 𝑠 	is	 the	 response	 of	 the	 system,	𝑭 𝑠 	is	 the	
applied	force	vector	and	𝑩 𝑠 	is	the	system	matrix.	
	
Frequency	 response	 functions	 from	 equations	 of	
motion	

The	 frequency	response	 function	 is	defined	as	either	 the	
response	divided	by	 the	excitation	 force	 (compliance)	or	
the	excitation	force	divided	by	the	response	(stiffness).		
Observation	 of	 the	 Laplace	 transformed	 equations	 of	
motion	shows	that:	
	

𝒁 𝑠
𝑭 𝑠

= 𝑩bc 𝑠 	 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 		

𝑭 𝑠
𝒁 𝑠

= 𝑩 𝑠 	 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 		
	

	
Laplace	transformation	of	the	equations	of	motion	for	
the	two-body	system:	
	

−𝜔a 𝑚c 0
0 𝑚a

− 𝑖𝜔
𝑐c + 𝑐a −𝑐a
−𝑐a 𝑐a + 𝑐q

+ 𝑘c + 𝑘a −𝑘a
−𝑘a 𝑘a + 𝑘q

𝑍c
𝑍a

= 𝐹c
𝐹a

	

	
Which	 is	 the	 same	 equation	 as	 the	 eigenproblem.	
Substitution	of	the	numerical:	
	

	 −𝜔a 2 0
0 1 + 9 −3

−3 3
𝑍c
𝑍a

= 𝐹c
𝐹a

	

	
The	system	matrix	can	be	derived	as:	
	

𝑩 𝑠 = −𝜔a 𝑚c 0
0 𝑚a

− 𝜔
𝑐c + 𝑐a −𝑐a
−𝑐a 𝑐a + 𝑐q

+ 𝑘c + 𝑘a −𝑘a
−𝑘a 𝑘a + 𝑘q

	

	
Substitution	 of	 the	 numerical	 values	 for	 the	 mass,	
stiffness	and	damping	coefficients:	
	

	 −𝜔a 2 0
0 1 + 9 −3

−3 3
𝑍c
𝑍a

= 𝐹c
𝐹a

	

	
Rewriting	this	equation	results	in	expressions	for	the	
compliance	and	the	stiffness	respectively:	
	

𝑍c
𝑍a

𝐹c
𝐹a

bc
= 	 −𝜔a 2 0

0 1 + 9 −3
−3 3

bc
	

	
𝑍c
𝑍a

bc 𝐹c
𝐹a

= −𝜔a 2 0
0 1 + 9 −3

−3 3 	

	
The	response	of	the	system	to	a	unit	force	can	then	be	
derived	as:	
	

𝑍c
𝑍a

= −𝜔a 2 0
0 1 + 9 −3

−3 3
bc 1

0 	

	
𝑍q
𝑍�

= −𝜔a 2 0
0 1 + 9 −3

−3 3
bc 0

1 	

	
Plots	 of	 these	 responses	 show	 the	 four	 frequency	
response	 functions	 for	 this	 system.	 These	 plots	 are	
shown	in	Figure	5.5.	
	

	
Therefore,	taking	the	inverse	of	the	system	matrix	results	in	the	frequency	response	functions	matrix	𝑯 𝑠 	
of	the	compliance,	which	contains	the	frequency	response	functions	from	a	point	to	all	other	points	on	the	
structure:	
	

𝑯 𝑠 = 𝑩 𝑠 bc, 𝑤ℎ𝑒𝑟𝑒	𝑯 𝑠 𝑭 𝑠 = 𝒁 𝑠 	
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Figure	5.5:	Frequency	response	functions	of	the	two-body	system.	
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					Additional	theory	

The	frequency	response	functions	matrix	can	be	calculated	from	the	determinant	 𝑩 𝑠 	and	the	
conjugate	𝑩 𝑠 		of	𝑩 𝑠 :	

𝑯 𝑠 =
1

𝑩 𝑠
∙ 𝑩 𝑠 	

	
The	frequency	response	functions	matrix	can	then	be	separated	into	individual	frequency	response	
functions,	which	will	all	be	polynomials	with	the	same	denominator:	
	

𝑍c 𝑠
⋮

𝑍? 𝑠
=

ℎcc(𝑠) … ℎc�(𝑠)
⋮ ⋱ ⋮

ℎ�c(𝑠) … ℎ��(𝑠)
∙
𝐹c 𝑠
⋮

𝐹� 𝑠
	

	
Where,	

ℎ�� 𝑠 =
𝑎�	𝑠� + 𝑎c	𝑠#bc + ⋯+ 𝑎�
𝑏�	𝑠a� + 	𝑏c	𝑠a�bc + ⋯+ 𝑏a�

	

	
Frequency	 response	 functions	 from	 modal	
description	

The	derivation	of	the	frequency	response	function	model	
from	 the	 modal	 vectors	 is	 especially	 useful	 during	 the	
experimental	 modal	 analysis.	 The	 modal	 vectors	 are	
derived	by	means	of	quadrature	picking	(Chapter	7),	after	
which	 the	 frequency	 response	 functions	 can	 be	 derived	
[12]	[13].		
	
The	easiest	way	to	derive	the	modal	 frequency	response	
functions	is	by	transformation	to	natural	coordinates.	This	
transformation	 is	 mainly	 used	 to	 uncouple	 the	 system,	
which	means	that	each	body	can	move	independently.	The	
uncoupling	 of	 the	 equations	 of	 motion	 is	 achieved	 by	
means	of	the	multiplication	with	the	modal	matrix.	
	
To	 transform	 the	 equations	 of	 motion	 to	 natural	
coordinates,	 the	 following	 equation	must	 be	 substituted	
for	the	degrees	of	freedom:	
	

𝒛 = 𝑽#	𝒛#	
	
Where	 𝑽# 	is	 the	 modal	 matrix	 and	 𝒛# 	the	 natural	
coordinate	 system.	 In	 the	 literature,	𝜼 	is	 used	 for	 the	
natural	coordinates,	but	it	was	decided	to	use	𝒛#	instead.		

	
Transformation	of	the	equations	of	motion	to	natural	
coordinates	results	in:	
	
𝑚c 0
0 𝑚a

−0.41 −0.58
−0.82 0.58

𝑧#,c
𝑧#,a

	

+
𝑐c + 𝑐a −𝑐a
−𝑐a 𝑐a + 𝑐q

−0.41 −0.58
−0.82 0.58

𝑧#,c
𝑧#,a

	

+ 𝑘c + 𝑘a −𝑘a
−𝑘a 𝑘a + 𝑘q

−0.41 −0.58
−0.82 0.58

𝑧�,c
𝑧�,a = 𝐹c

𝐹a
	

	
Pre-multiplication	 of	 these	 equations	 with	 the	
transpose	 of	 the	modal	matrix	 and	 identification	 of	
the	orthogonality	conditions	results	in:	
	

1 0
0 1

𝑧#,c
𝑧#,a

+ 2.45	𝜉 0
0 4.90	𝜉

𝑧#,c
𝑧#,a

+ 1.5 0
0 6.0

𝑧�,c
𝑧�,a = 𝑄c

𝑄a
	

	
Where,	
	

𝑽#�𝑴	𝑽# = 1 0
0 1 	

	

𝑽#�𝑲	𝑽# = 1.5 0
0 6.0 	

	

𝑽#�𝑪	𝑽# = 2.45	𝜉 0
0 4.90	𝜉 	

	
𝑽#�𝑭 𝑡 = 𝑸 𝑡 	

	
	
The	results	are	the	equations	of	motion	in	natural	coordinates:	
	

𝑽#	𝑴	𝒛# + 𝑽#	𝑪	𝒛# + 𝑽#	𝑲	𝒛# = 𝑭 𝑡 	
	
Pre-multiplication	of	these	equations	of	motion	with	the	transpose	of	the	modal	matrix	results	in:	
	

𝑽#�𝑴	𝑽#	𝒛# + 𝑽#�𝑪	𝑽#	𝒛# + 𝑽#�𝑲	𝑽#	𝒛# = 𝑽#�𝑭 𝑡 	
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Two	orthogonality	conditions	can	be	identified	here:	
	

𝑴# = 𝑽#�𝑴	𝑽# = 𝟏, 𝐊� = 𝑽#�𝑲	𝑽# = 𝝎𝒏
a	

	
These	orthogonality	conditions	are	a	result	of	the	distinct	natural	modes	and	will	always	result	in	the	above	
identities.	Substitution	of	the	conditions	results	in	the	modal	equations:	
	

𝒛# + 𝑽#�𝑪	𝑽#	𝒛# + 𝐊�	𝒛# = 𝑽#�	𝑭 𝑡 	
	
There	are	still	two	factors	left,	the	damping	part	of	the	equation	and	the	applied	forces.	For	the	forces,	the	
modal	force	vector	can	be	defined:	

𝑸 𝑡 = 𝑽#�𝑭 𝑡 	
	
This	results	in:	
	

𝒛# + 𝑽#�𝑪	𝑽#	𝒛# + 𝐊�	𝒛# = 𝑸 𝑡 	
	
Remark:	until	now	 it	was	assumed	that	 the	natural	 frequencies	and	modal	matrix	are	perfectly	available.	
During	the	experimental	modal	analysis,	the	natural	frequencies	and	modal	matrix	are	derived	by	means	of	
quadrature	picking.	They	are	therefore	never	perfect	and	only	an	approximation	of	the	reality.	This	problem	
will	be	addressed	during	the	modal	parameter	estimation	(Chapter	8).	
	
Proportionally	damping	
For	the	damping,	no	general	applicable	formula	can	be	defined	however.	Only	for	a	single	special	case	this	is	
possible:	proportionally	damping.		
Because	 the	mass	and	stiffness	matrices	 in	natural	 coordinates	are	diagonal	matrices,	 the	system	 is	only	
uncoupled	 when	 the	 damping	 matrix	 is	 also	 diagonal.	 Therefore,	 the	 damping	 factor	𝑽#�𝑪	𝑽# 	can	 be	
calculated	to	find	out	whether	this	is	the	case.	The	system	is	then	called	proportionally	damped	and	can	be	
solved	using	the	above	described	techniques.	Another	way	to	find	out	whether	a	system	is	proportionally	
damped	 is	 by	 checking	 whether	 the	 damping	 matrix	 is	 a	 linear	 combination	 of	 the	 mass	 and	 stiffness	
matrices:	
	

𝑪 = 𝑎𝑴 + 𝑏𝑲	
	
Again,	this	results	in	a	diagonal	damping	matrix.	If	the	system	is	proportionally	damped,	the	damping	factor	
can	be	replaced	with	a	diagonal	matrix,	where	the	diagonal	terms	are	equal	to	2𝜉l𝜔l.	The	modal	equations	
for	a	proportionally	damped	system,	can	now	be	written	as:	
	

𝒛# + 𝑪#	𝒛# + 𝐊�	𝒛# = 𝑸 𝑡 , 𝑤ℎ𝑒𝑟𝑒	𝑪# = 𝑽#�𝑪	𝑽# = 𝟐𝝃𝝎𝒏	
	
Natural	equations	of	motion	

𝒛# + 𝑪#	𝒛# + 𝝎𝒏
a	𝒛# = 𝑸 𝑡 	 𝐺𝑒𝑛𝑒𝑟𝑎𝑙 		

𝒛# + 𝝎𝒏
a	𝒛# = 𝑸 𝑡 	 𝑈𝑛𝑑𝑎𝑚𝑝𝑒𝑑 		

𝒛# + 𝟐𝝃𝝎𝒏	𝒛# + 𝝎𝒏
a	𝒛# = 𝑸 𝑡 	 𝑃𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙𝑙𝑦	𝑑𝑎𝑚𝑝𝑒𝑑 		

	
Like	the	derivation	of	the	frequency	response	functions	from	the	equations	of	motion,	the	modal	frequency	
response	functions	can	be	derived	by	means	of	Laplace	transformation	of	the	natural	equations	of	motion:	
	

−𝜔a	𝒁# 𝑠 + 𝑖𝜔	𝑪#	𝒁# 𝑠 + 𝐊�	𝒁# 𝑠 = 𝑸 𝑠 	
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Rewriting	this	equation	results	in	the	modal	equations	of	
motion	in	natural	coordinates:	
	

−𝜔a	𝑰 + 𝑖𝜔	𝑪# + 𝑲# 	𝒁# 𝑠 = 𝑸 𝑠 	
	
Observation	 of	 the	 Laplace	 transformed	 equations	 of	
motion	shows	that:	
	
𝒁# 𝑠
𝑸 𝑠

= −𝜔a	𝑰 + 𝑖𝜔	𝑪# + 𝑲#
bc	 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒 		

𝑸 𝑠
𝒁# 𝑠

= −𝜔a	𝑰 + 𝑖𝜔	𝑪# + 𝑲# 	 𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠 		

	
To	calculate	the	response	of	the	system,	the	equation	must	
be	 reverse	 transformed	 from	 modal	 coordinates	 to	
Cartesian	coordinates:	
	

𝒁# 𝑡 = 𝑽#	 −𝜔a	𝑰 + 𝑖𝜔	𝑪# + 𝑲#
bc	

	
Second	method	

Another	method	for	the	derivation	of	the	modal	frequency	
response	 functions	 is	 based	 on	 the	 frequency	 response	
function	 model	 [14],	 derived	 from	 the	 equations	 of	
motion:	

	
𝑯 𝑠 = 𝑩 𝑠 bc, 𝑤ℎ𝑒𝑟𝑒	𝑯 𝑠 𝑭 𝑠 = 𝒁 𝑠 	

	
The	 orthogonality	 conditions	 derived	 during	 the	
transformation	 to	 natural	 coordinates	 and	 the	
approximation	for	the	modal	damping	matrix	can	then	be	
substituted.	

	
Laplace	transformation	of	the	natural	equations	of	
motion:	
	

−𝜔a 1 0
0 1 	+ 𝑖𝜔 2.45	𝜉 0

0 4.90	𝜉

+ 1.5 0
0 6.0

𝑧m,1
𝑧m,2 = 𝑄c

𝑄a
	

	
Substitution	 of	 the	 numerical	 values	 for	 the	 mass,	
stiffness	and	damping	coefficients:	
	

	 −𝜔a 1 0
0 1 	+ 1.5 0

0 6.0
𝑧m,1
𝑧m,2 = 𝑄c

𝑄a
	

	
Rewriting	this	equation	results	in	expressions	for	the	
compliance	and	the	stiffness	respectively:	
	

𝑧�,c
𝑧�,a

𝑄1
𝑄2

−1

= 	 −𝜔2 1 0
0 1 	+ 1.5 0

0 6.0
−1
	

	
𝑧m,1
𝑧m,2

bc 𝑄c
𝑄a

= −𝜔a 1 0
0 1 	+ 1.5 0

0 6.0 	

	
The	response	of	the	system	to	a	unit	force	can	then	be	
derived	as:	
	

𝑍c
𝑍a

= −0.41 −0.58
−0.82 0.58 −𝜔a 1 0

0 1 	+

1.5 0
0 6.0

bc
∙ −0.41 −0.82
−0.58 0.58

1
0 		

	
𝑍q
𝑍�

= −0.41 −0.58
−0.82 0.58 −𝜔a 1 0

0 1 	+

1.5 0
0 6.0

bc
∙ −0.41 −0.82
−0.58 0.58

0
1 		

	
Plots	 of	 these	 responses	 show	 the	 four	 frequency	
response	 functions	 for	 this	 system.	 These	 plots	 are	
shown	in	Figure	5.7.	
	

	
The	orthogonality	conditions	are	repeated	here	for	clarity:	
	

𝑴# = 𝑽#�𝑴	𝑽# = 𝟏, 𝑲# = 𝑽#�𝑲	𝑽# = 𝝎𝒏
a, 𝑪# = 𝑽#�𝑪	𝑽# = 𝟐𝝃𝝎𝒏	

	
This	results	in	an	equation	which	is	dependent	on	the	natural	modes	and	natural	frequencies:	
	

𝑩 𝑠 bc = −𝜔a	𝑽#	𝑽#� + 𝑖𝜔	𝑽#	𝑪#	𝑽#� + 𝑽#	𝑲#	𝑽#� bc
	

	
And	a	frequency	response	functions	matrix	of	the	form:	
	

𝑯 𝑠 = 𝑽# −𝜔a + 𝑖𝜔	𝑪# + 𝑲#
bc𝑽#� 	
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					Additional	theory	

Because	the	equation	is	still	rather	complex,	each	component	of	the	frequency	response	function	
can	be	written	as	a	summation:	

𝑯l§ 𝜔 =
𝑉#,l5
	 	 𝑉#,§5

	

−𝜔a + 𝐶#5
	 	𝑖𝜔 + 𝐾#5

	

ª

5«c

	

	
Where	𝜔 	is	 the	 excitation	 frequency	 and	 𝑉#,l5

	 ,	 𝑉#,§5
	 	the	 components	 of	 the	 kth	 natural	 mode.	

Which	results	in:	

𝑯l§ 𝜔 =
𝐴5	 l§

−𝜔a + 𝐶#5
	 	𝑖𝜔 + 𝐾#5

	

ª

5«c

, 𝑤ℎ𝑒𝑟𝑒	 𝐴5	 l§ = 𝑉#,l5
	 	 𝑉#,§5

	 	

	
This	 frequency	 response	 function	 can	 then	be	written	 in	matrix	 vector	 form	 (for	 two-degrees	of	
freedom):	
	

𝑯cc 𝜔c
⋮

𝑯cc 𝜔#k¬
=

−𝜔ca + 𝐶#,c	𝑖𝜔c + 𝐾#,c −𝜔ca + 𝐶#,a	𝑖𝜔c + 𝐾#,a
⋮ ⋮

−𝜔#k¬a + 𝐶#,c	𝑖𝜔#k¬ + 𝐾#,c −𝜔#k¬a + 𝐶#,a	𝑖𝜔#k¬ + 𝐾#,a

𝐴c	 cc
⋮
𝐴ª	 cc

	

5.5 Single	mode	contribution	

The	 single	 mode	 contribution	 or	 superposition	 principle	
says	 that,	 in	 case	 of	 an	 uncoupled	 system,	 a	 frequency	
response	 function	 can	 be	 defined	 as	 a	 sum	of	 individual	
frequency	response	functions	for	each	body.	This	concept	
can	 easily	 be	 derived	 from	 the	 equations	 of	 motion	 in	
frequency	response	function	form:	
	

𝑍c 𝑠
⋮

𝑍? 𝑠
=

ℎcc(𝑠) … ℎc�(𝑠)
⋮ ⋱ ⋮

ℎ�c(𝑠) … ℎ��(𝑠)
∙
𝐹c 𝑠
⋮

𝐹� 𝑠
	

	
Where	each	frequency	response	function	in	the	frequency	
response	functions	matrix	is	a	𝑁×𝑁	matrix.	This	results	in	
the	following	individual	sub-equations	for	the	responses	of	
the	system:	
	

𝑍c 𝑠 = ℎcc 𝑠 	𝐹c 𝑠 + ⋯+ ℎ�� 𝑠 	𝐹� 𝑠 		
	
Each	 response	 can	 therefore	 be	 written	 as	 a	 sum	 of	
individual	 frequency	 response	 functions	 or	 single	 mode	
contributions.	

	
Expansion	 of	 the	 response	 of	 the	 system	 to	 a	 unit	
force:	
	

𝑍c
𝑍a

= −0.41 −0.58
−0.82 0.58

−
2

3	𝜔a 0

0 −
1

6	𝜔a

−0.41
−0.82 	

	

𝑍q
𝑍�

= −0.41 −0.58
−0.82 0.58

−
2

3	𝜔a 0

0 −
1

6	𝜔a

−0.58
0.58 	

	
This	 results	 in	 four	 individual	 responses,	 from	 each	
body	to	a	force	on	a	single	body:	
	

𝑍c = 0.17 −
2

3	𝜔a + 0.48 −
1

6	𝜔a 	

𝑍a = 0.34 −
2

3	𝜔a − 0.48 −
1

6	𝜔a 	

𝑍q = 0.24 −
2

3	𝜔a − 0.34 −
1

6	𝜔a 	

𝑍� = 0.48 −
2

3	𝜔a + 0.34 −
1

6	𝜔a 	

	

	
These	contributions	correspond	to	a	natural	frequency	of	the	system	and	therefore	have	a	single	resonance	
peak.	 Because	 the	 total	 system	 is	 a	 summation	 of	 the	 single	mode	 contributions,	 the	 contributions	 are	
defined	as	standard	transfer	functions:	
	

ℎ =
1

−𝜔a + 𝐶#5
	 	𝑖𝜔 + 𝐾#5
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Figure	5.6:	Modal	frequency	response	functions	of	the	two-body	system.	
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Figure	5.7:	Single	mode	contributions	for	the	frequency	response	functions	of	the	two-body	system.	

	
	



	
	
	
	
	

Form	ID:	MEC-QF-039-v2	
Form	Issued:	September	2017	

Internship	Report	-	Robert	Giesen.docx	 Page	51	of	107	

	

Chapter	6 Experimental	modal	analysis	
6.1 Method	

The	experimental	modal	analysis	consists	of	measuring	the	vibration	response	of	a	system,	after	application	
of	an	excitation	force.	This	excitation	force	can	either	be	harmonic,	applied	by	a	shaker	or	an	impulse	applied	
by	an	excitation	device,	e.g.	a	shaker	or	an	impact	hammer.		
	
First	 the	measurement	 positions	must	 be	 defined.	 This	measurement	 grid	 defines	 the	 points	where	 the	
acceleration	sensors	are	placed	and	where	the	system	is	being	excited.	The	vibration	responses	of	the	system	
are	 the	 frequency	 response	 functions	 from	 input	 excitation	 point	 to	 output	measurement	 point.	Which	
frequency	response	functions	are	measured	depends	on	the	type	of	experiment	performed,	as	explained	in	
section	7.1.	For	a	roving	hammer	experiment,	a	single	row	of	the	matrix	is	measured,	whereas	a	column	of	
the	matrix	is	measured	in	case	of	a	roving	sensor	experiment.	A	choice	must	be	made	between	performing	
a	 roving	 hammer	 or	 roving	 sensor	 experiment.	 This	 choice	 depends	 solely	 on	which	 experiment	 is	most	
convenient	for	the	system,	as	it	will	give	the	same	results	for	both	experiments.	Multiple	acceleration	sensors	
or	shakers	can	be	used	to	perform	multiple	roving	hammer	or	sensor	experiments	respectively,	at	the	same	
time.		
	
Each	measurement	consists	of	ten	excitations	or	‘hits’	which	can	be	averaged	to	improve	the	measurement	
and	reduce	the	noise.	Even	if	the	coherence	of	the	measurement	is	equal	to	one	for	all	frequencies,	multiple	
excitation	must	be	measured	and	averaged,	as	explained	in	section	4.3.1.	
	
The	 amplitude	measured	 by	 the	 acceleration	 sensors	 and	 the	 input	 force	measured	 by	 the	 acceleration	
sensors	attached	to	the	hammer	or	the	built-in	sensors	of	 the	shaker,	are	processed	using	SpecTest.	The	
software	calculates	the	frequency	response	functions	from	these	input	and	output	signals.	

6.2 Conditions	

Experimental	setup	

The	setup	for	the	experimental	modal	analysis	is	shown	in	
Figure	6.1	 for	 the	roving	hammer	experiment	and	Figure	
6.2	for	the	roving	sensor	experiment.	These	figures	show	
the	measurement	grid	for	a	beam	being	excited	on	bending	
and	 the	 frequency	 response	 functions	 that	 are	 being	
measured.		
	
To	set	up	the	experiment,	the	measurement	grid	is	marked	
on	the	system.	The	acceleration	sensor(s)	is/are	positioned	
on	 these	 measurement	 points.	 The	 sensors,	 hammer	
and/or	shaker	are	connected	to	the	software	and	tested	to	
confirm	the	proper	working	of	the	equipment.	A	high	noise	
level	indicates	that	something	is	wrong	with	the	setup.	The	
software	 is	 turned	 on	 and	 the	 experiment	 can	 be	
conducted.	The	filenames	of	the	measurement	data	should	
contain	 the	 coordinates	 of	 both	 the	 input	 and	 output	
points,	for	easy	access	during	the	modal	analysis.	

	

Figure	6.1:	Roving	hammer	experiment	[2].	
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Measurement	equipment	

The	 following	 equipment	 is	 necessary	 to	 conduct	 the	
experimental	modal	analysis:	

o Acceleration	sensors	
o Impact	hammer	or	shaker	
o Data	acquisition	unit	
o Software	–	MECAL	SpecTest	

	
When	measuring	the	vibrations	in	a	floor,	the	covering	may	
block	 the	 output	 signal	 or	 apply	 extra	 damping	 to	 the	
system.	To	counteract	this,	a	heavy	block	with	spikes	can	
be	used	as	a	platform	on	which	 the	acceleration	sensors	
are	 attached,	 Figure	 6.3.	 The	 spikes	 go	 through	 the	
floorcovering,	 transmitting	 the	 vibrations	 directly	 to	 the	
acceleration	sensors.		

	

Figure	6.2:	Roving	sensor	experiment	[2].	

	

	 	 	

Figure	6.3:	Impact	hammer	(left),	acceleration	sensor	(middle),	steel	block	with	spikes	(right).	

	
Additional	considerations	

During	 the	 definition	 of	 the	 measurement	 positions,	 care	 must	 be	 taken	 that	 the	 measurement	 grid	
represents	the	entire	system	and	not	only	a	sub-system.	The	reason	for	this	 is,	when	analysing	the	mode	
shapes	of	the	system,	modes	may	look	identical	[2].	This	can	be	explained	as	the	mode	shapes	of	the	sub-
system	looking	identical,	but	with	different	mode	shapes	for	the	entire	system.	For	example,	if	a	machine	
support	frame	is	measured	that	has	a	top	and	bottom	plate,	only	measuring	the	top	plate	may	result	in	these	
identical	mode	shapes.	While	the	mode	shape	of	the	top	plate	 look	the	same	for	both	modes,	the	mode	
shape	of	the	bottom	plate	probably	differs.	This	mode	shape	of	the	bottom	plate	was	not	measured	however	
and	is	therefore	not	visible	during	the	modal	analysis.	
	
Another	problem	that	might	occur	when	defining	the	measurement	grid	is	that	measurement	positions	might	
be	 placed	on	 a	 node	of	 the	 system.	 These	 nodes	 are	 the	 points	where	 the	mode	 shapes	 pass	 the	 zero-
amplitude	 line.	Measurements	of	these	nodes	also	result	 in	zero	amplitude.	Most	systems	have	standard	
mode	shapes,	these	nodes	can	therefore	be	analysed	beforehand,	after	which	a	measurement	grid	can	be	
defined	accordingly.	
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Chapter	7 Quadrature	picking	
During	the	theoretical	modal	analysis,	it	was	assumed	that	the	modal	description	of	a	system	is	available,	so	
that	the	frequency	response	functions	of	the	complete	system	can	be	derived.	The	next	step	in	the	modal	
analysis	is	therefore	the	derivation	of	the	modal	description	from	the	measured	data.	To	do	this,	a	technique	
called	quadrature	picking	is	used.	This	is	a	method	used	to	find	the	natural	frequencies,	natural	modes	and	
the	damping	of	a	system	after	an	experimental	modal	analysis	was	performed	[2].	The	method	involves	first	
finding	the	resonance	peaks	of	the	measured	frequency	response	functions,	which	give	an	indication	for	the	
natural	frequencies	of	the	system.	The	imaginary	part	of	the	frequency	response	functions	can	then	be	used	
to	find	the	corresponding	natural	modes.	In	turn,	these	modes	can	be	used	to	derive	the	system’s	damping	
coefficients,	where	the	so	called	‘half-power	points’	serve	as	an	indication	for	the	magnitude	of	the	damping.		
	
The	 quadrature	 picking	 procedure	 will	 be	 explained	 by	
means	of	a	simple,	 lightly	damped,	four-body	model	of	a	
floor,	Figure	7.1.	The	first	 row	of	 the	 frequency	response	
functions	matrix	is	shown	in	Figure	7.2.	It	will	be	assumed	
that	 these	 functions	 where	 measured	 during	 an	
experimental	modal	analysis.	While	 these	are	unrealistic	
results	for	an	experimental	modal	analysis,	it	will	make	the	
explanation	 of	 the	 quadrature	 picking	 technique	 more	
clear.		
	

	

𝑚c = 𝑚a = 1.0	𝑘𝑔	
𝑚q = 𝑚� = 1.0	𝑘𝑔	

	
𝑘 = 1 ∙ 10q	 𝑁 𝑚	

	
𝑪®lF¯6 = 𝑲 ∙ 10b°	

𝑪¯JkE± = 𝑲 ∙ 3 ∙ 10bq	

Figure	7.1:	Four-body	model	of	a	floor,	problem	
definition.	

	

	

Figure	7.2:	Frequency	response	functions	of	the	four-body	system.	

m1 m2

m3 m4
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The	equations	of	motion	can	be	derived	as:	
	

𝑚c 0 0 0
0 𝑚a 0 0
0 0 𝑚q 0
0 0 0 𝑚�

𝑧c
𝑧a
𝑧q
𝑧�

+

4𝑐 −𝑐 −𝑐 0
−𝑐 4𝑐 0 −𝑐
−𝑐 0 4𝑐 −𝑐
0 −𝑐 −𝑐 4𝑐

𝑧c
𝑧a
𝑧q
𝑧�

+

4𝑘 −𝑘 −𝑘 0
−𝑘 4𝑘 0 −𝑘
−𝑘 0 4𝑘 −𝑘
0 −𝑘 −𝑘 4𝑘

𝑧c
𝑧a
𝑧q
𝑧�

=

𝐹c
𝐹a
𝐹q
𝐹�

	

7.1 Frequency	response	functions	matrix	

The	experimental	modal	analysis	results	in	measurement	data	of	the	excitation	force	and	the	vibrations,	in	
the	form	of	accelerations,	as	discussed	in	0.	From	this	data,	the	frequency	response	functions	from	input	
force	to	output	vibration	can	be	calculated.		
	
All	 frequency	 response	 functions	 will	 be	 stored	 in	 the	
frequency	response	functions	matrix,	Table	7.1.	Each	index	
of	the	matrix	corresponds	with	the	sensor	and	excitation	
positions	of	the	measurement.	The	matrix	has	dimensions	
equal	to	the	number	of	measurement	points.		
Care	 should	be	 taken	 that,	 even	 for	measurements	on	a	
plane,	 the	matrix	will	 always	 be	 2-dimensional.	 This	 is	 a	
result	 of	 the	definition	of	 the	modal	matrix,	where	each	
mode	vector	forms	a	column	of	the	matrix	and	each	index	
of	 the	 mode	 vector	 contains	 the	 data	 of	 a	 point	 in	 the	
system.	 For	 a	 single	 roving	 sensor/hammer	 experiment,	
this	 means	 that	 one	 row	 or	 column	 of	 the	 frequency	
response	functions	matrix	will	be	filled.	

	

Figure	7.3:	A	floor	divided	into	36	measurement	
positions.	
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Figure	7.3	shows	a	 floor	divided	 into	
36	 measurement	 positions.	 The	
frequency	 response	 functions	matrix	
has	 dimensions:	 36×36. 	If	 the	
complete	 system	 is	 to	 be	measured,	
1.296	measurements	must	 be	 done!	
This	 shows	 that	 the	 amount	 of	
measurements	 needed	 grows	
quadratic	 and	 it	 quickly	 becomes	
impossible	 to	 measure	 the	 entire	
system.		
	
Each	column	 (blue)	of	 the	 frequency	
response	functions	matrix	shows	the	
measurements	 for	 a	 constant	
excitation	 position	 (roving	 sensor),	
while	 each	 row	 (orange)	 shows	 the	
measurements	 for	a	constant	sensor	
position	(roving	hammer).	The	driving	
point	measurements	 (green)	 are	 the	
measurements	 where	 the	 response	
position	is	the	same	as	the	excitation	
position.	 These	 are	 located	 on	 the	
diagonal	 of	 the	 frequency	 response	
functions.	Table	7.1:	Frequency	response	functions	matrix	of	the	compliance.	

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

x

y
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Figure	7.4:	Visibility	of	the	resonance	peaks	for	the	lightly	damped	(left)	and	heavily	damped	(right)	cases	of	the	four-

body	model.	

7.2 Peak	picking:	Natural	frequencies	

The	 first	 step	 in	 quadrature	 picking	 is	 peak	 picking,	 where	 the	 resonance	 peaks	 are	 located	 and	 the	
corresponding	natural	frequency	derived.	For	an	undamped	system,	this	is	a	rather	straight	forward	method,	
because	the	peaks	are	clearly	visible,	Figure	7.4.	This	method	however	becomes	increasingly	difficult	as	the	
damping	of	 the	system	increases,	where	peaks	might	completely	disappear	 from	the	frequency	response	
functions.	Figure	7.4	shows	this	behaviour	for	the	heavily	damped	case	of	the	four-body	system,	where	the	
third	peak	has	almost	‘disappeared’.	Especially	for	these	damped	systems,	the	difficulty	of	peak	picking	lies	
in	the	identification	of	the	resonance	peaks.	
	
One	may	also	wonder:	‘what	happened	to	the	fourth	resonance	peak?’.	Because	this	system	consists	of	four	
bodies,	 four	 resonance	 peaks	 should	 be	 visible.	 In	 this	 case,	 the	 third	 and	 fourth	 peaks	 have	 merged,	
therefore	showing	a	single	large	peak,	with	an	anti-resonance	peak.	
	
Several	methods	for	the	identification	of	the	natural	frequencies	are	available:	

o Averaging	 the	 absolute	 value	 of	 all	 frequency	 responses	 functions	 in	 the	 frequency	 responses	
functions	matrix.	

o Averaging	the	imaginary	part	of	the	frequency	responses	functions	divided	by	the	real	part.	
o Derivation	of	a	mode	indicator	function.	

	
While	the	first	 two	functions	are	useful,	because	they	can	also	be	used	for	quadrature	picking,	 they	may	
result	in	problems	where	not	all	modes	may	be	identified	and	not	all	modes	are	genuine	modes	of	the	system	
[15].	In	that	case,	the	mode	indicator	functions	can	give	more	insight	in	the	resonance	peaks.		
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Figure	7.5:	Mode	indicator	functions	for	the	lightly	damped	(left)	and	heavily	damped	(right)	cases	of	the	four-body	

model.	

7.2.1 Identification	of	the	natural	frequencies	

The	peak	picking	starts	by	analysis	of	the	frequency	response	functions	measured	during	the	experimental	
modal	analysis.	These	frequency	response	functions	can	either	be	the	stiffness	of	the	system	 𝐹 𝑋 	or	the	
compliance	 𝑋 𝐹 .	Analysis	of	each	frequency	response	function	individually	may	result	in	resonance	peaks	
being	overlooked,	because	the	measurement	location	might	coincide	with	a	node	of	the	corresponding	mode	
shape.	It	is	therefore	necessary	to	sum	all	measurements	to	generate	a	single	average	frequency	response	
function	of	the	system:	

𝐻DEF 𝜔 = 𝐻l§ 𝜔
ª

l«c

µ

§«c

	

	
And	for	better	amplification	of	the	resonance	peaks,	the	imaginary	parts	of	the	frequency	response	functions	
can	be	divided	by	the	real	parts:	

𝐻G#/IJ 𝜔 =
𝑖𝑚𝑎𝑔 𝐻l§ 𝜔ª

l«c
µ
§«c

𝑟𝑒𝑎𝑙 𝐻l§ 𝜔ª
l«c

µ
§«c

	

	
Figure	7.5	shows	these	functions	for	the	measurement	of	the	floor.	The	peaks	of	the	function	are	indicated	
with	 red	 circles.	 It	might	 be	 possible	 that	 not	 all	 circles	 indicate	 a	 natural	 frequency	of	 the	 system.	 It	 is	
therefore	 important	 to	 carefully	 select	 the	 peaks	 of	 the	 functions	 manually	 to	 find	 the	 correct	 natural	
frequencies	of	the	system.	
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7.2.2 Mode	indicator	functions	

Several	 mode	 indicator	 functions	 exist	 [16],	 among	 these	 functions	 are	 the	 ordinary,	 multivariate	 and	
complex	mode	indicator	functions.	These	three	are	the	most	commonly	used	functions	for	modal	analysis.		
Basically,	the	mathematical	formulation	of	the	mode	indicator	function	is	that	the	real	part	of	the	frequency	
response	function	is	divided	by	the	magnitude	of	the	frequency	response	function:	
	

𝑀𝐼𝐹 𝜔 =
𝑟𝑒𝑎𝑙 𝐻l§ 𝜔 ∙ 𝐻l§ 𝜔ª

l«c

𝐻l§ 𝜔
aª

l«c

	 𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦	𝑚𝑜𝑑𝑒	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 		

𝑀𝑀𝐼𝐹 𝜔 =
𝑟𝑒𝑎𝑙 𝐻l§ 𝜔 ∙ 𝐻l§ 𝜔ª

l«c
µ
§«c

𝐻l§ 𝜔
aª

l«c
µ
§«c

	 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒	𝑚𝑜𝑑𝑒	𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 		

	
Because	the	real	part	rapidly	passes	through	zero	at	resonance,	the	mode	indicator	function	generally	tends	
to	 have	 a	 much	 more	 abrupt	 change	 across	 a	 mode.	 The	 difference	 between	 the	 ordinary	 and	 the	
multivariate	 mode	 indicator	 functions	 is	 the	 amount	 of	 measurements	 used	 for	 the	 calculation	 of	 the	
function.	For	an	ordinary	mode	indicator	function,	a	single	row	or	column	is	used,	while	for	the	multivariate	
multiple	rows	or	columns	are	used.	Of	the	indicator	functions,	the	complex	mode	indicator	function	is	the	
most	accurate.	It	is	based	on	the	single	value	decomposition	of	the	frequency	response	functions	matrix	to	
determine	 all	 the	 principal	modes	 that	 are	 observed	 in	 the	 set	 of	measurements.	 These	 complex	mode	
indicator	functions	were	not	derived	during	this	research,	further	research	on	this	subject	can	improve	the	
modal	analysis.	
	

	
Figure	7.6:	Ordinary	mode	indicator	functions	for	the	lightly	damped	(left)	and	heavily	damped	(right)	cases	of	the	

four-body	model.	
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The	mode	 indicator	 function	 for	 the	experimental	modal	analysis	of	 the	 floor	 is	shown	 in	Figure	7.6.	The	
function	is	equal	to	one	for	all	frequencies,	except	for	the	natural	frequencies	where	it	exhibits	local	minima	
or	maxima.	For	the	lightly	damped	case,	this	mode	indicator	function	shows	the	frequencies	of	all	resonance	
peaks,	including	the	fourth	peak	that	was	lost	because	of	closely	spaced	peaks.	For	the	heavily	damped	case,	
only	two	peaks	are	shown.	The	ordinary	and	multivariate	mode	indicator	functions	are	not	able	to	identify	
the	 resonance	peaks	 in	 this	 case.	 The	 complex	mode	 indicator	 function	 is	 therefore	preferred	when	 the	
system	is	heavily	damped.	
	
Making	 use	 of	 all	 identification	 functions	 ensures	 that	 no	 resonance	 peaks	 are	missed	 because	 of	 close	
spacing	or	because	of	measurements	taken	on	a	node	of	the	structure.	The	three	figures	together	identify	
the	four	natural	frequencies	of	the	system:	44.75	Hz,	63.25	Hz,	73.50	Hz	and	77.50	Hz.	
	
A	MATLAB	GUI	was	made	to	interactively	select	the	resonance	peaks	of	a	measurement.	This	program	can	
be	found	in	Appendix	M.	

7.3 Quadrature	picking:	Natural	modes	and	damping	

The	 quadrature	 picking	 method	 is	 shown	 in	 Figure	 7.7.	 This	 figure	 shows	 that,	 by	 examination	 of	 the	
resonance	peaks,	the	natural	modes	can	be	derived.	The	damping	can	be	derived	from	the	so-called	half-
power	or	bandwidth	of	the	resonance	peaks.	This	method	is	very	easy	to	apply,	but	also	comes	with	some	
limitations,	as	will	be	discussed	at	the	end	of	this	chapter.		
	

	
Figure	7.7:	Quadrature	picking.	

7.3.1 Natural	modes	

The	natural	modes	can	be	obtained	from	the	imaginary	part	of	the	frequency	response	function.	Most	articles	
analyse	the	averaged	absolute	frequency	response	function	of	the	system.	This	analysis	does	indeed	result	
in	the	natural	modes,	however	this	results	in	absolute	natural	modes,	where	negative	values	in	the	mode	
vector	are	 ignored.	Therefore,	 it	 is	better	to	take	the	 imaginary	part	of	the	averaged	frequency	response	
function.	This	results	in	the	correct	natural	modes,	while	still	maintaining	the	negative	values.	As	shown	in	
Figure	7.7,	the	natural	modes	are	just	the	magnitudes	of	the	resonance	peaks.		
	
A	surface	fit	of	the	first	four	mode	shapes	is	shown	in	Figure	7.8.	To	get	a	better	idea	of	how	these	mode	
shapes	where	constructed,	line	fits	of	the	first	two	bodies	can	be	plotted	instead,	Figure	7.9.	These	fits	show	
how	the	modes	where	derived	from	the	frequency	response	functions	shown	in	Figure	7.2.	
	
This	modal	analysis	resulted	in	resonance	peaks	that	are	clearly	visible	and	therefore	easily	indentified.	If	not	
all	resonance	peaks	can	be	accuratly	identified,	it	is	better	to	leave	them	out	of	the	modal	matrix.		
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This	can	be	done	by	adding	zeros	for	the	missing	modes:	
		

𝑽 =
𝑣cc 0 0
𝑣ac 0 0
𝑣qc 0 0

	 𝑉a	𝑎𝑛𝑑	𝑉q	𝑛𝑜𝑡	𝑣𝑖𝑠𝑖𝑏𝑙𝑒 		

	
As	a	result	of	the	way	in	which	the	single	mode	contributions	are	defined	(5.5),	these	modes	will	be	left	out	
of	the	frequency	response	functions.	This	also	means	that	the	corresponding	resonance	peaks	will	be	missing	
from	the	frequency	response	functions.		
Finally,	Figure	7.10	shows	a	so-called	waterfall	plot	of	the	mode	shapes.	This	plot	gives	extra	insight	on	how	
the	mode	shapes	are	derived	from	the	experimental	modal	analysis.		

7.3.2 Damping	matrix	

The	damping	of	each	mode	can	be	derived	from	the	bandwidth	or	half-power	of	the	resonance	peak.	The	
bandwidth	of	the	peak	is	the	intersection	with	the	line	at	 c

a
		times	the	magnitude	of	the	peak,	Figure	7.7.	𝜔k	

and	𝜔�	are	respectively	the	frequencies	of	the	left	and	right	intersections	with	the	half-power	line.	
	
For	closely	space	peaks	it	might	not	be	possible	to	find	the	intersections	with	the	half-power	line,	therefore	
it	is	also	possible	to	select	the	left	and	right	intersections	from	the	phase	diagram	of	the	averaged	frequency	
response	function.	The	left	intersection	is	then	equal	to	the	natural	frequency	minus	45°	phase	change.	The	
right	intersection	is	equal	to	the	natural	frequency	plus	45°	phase	change.	This	results	in	the	same	left	and	
right	frequencies	as	was	derived	from	the	half-power	line,	however	these	are	not	influenced	by	the	width	of	
the	peak.		
	
The	damping	coefficients	and	damping	matrix	can	be	calculated	using	the	following	formula’s:	
	

𝜉 =
𝜔� − 𝜔k
2	𝜔?

, 𝑪 =
𝜔c ∗ 𝜉c 0 0
0 ⋱ 0
0 0 𝜔# ∗ 𝜉#

	

	
And	again,	unidentifiable	resonance	peaks	can	be	left	out	of	the	calculations:	
	

𝑪 =
𝜔c ∗ 𝜉c 0 0
0 0 0
0 0 0

	 𝑉a	𝑎𝑛𝑑	𝑉q	𝑛𝑜𝑡	𝑣𝑖𝑠𝑖𝑏𝑙𝑒 		

	

Limitations	

The	quadrature	picking	method	is	a	very	comprehensible	way	of	finding	the	natural	frequencies	and	modes	
of	a	system,	however	there	are	some	limitations	[15]:		

o It	is	assumed	that	only	a	single	mode	contributes	to	the	response	of	the	system	at	a	natural	frequency.	
This	 is	generally	not	the	case,	even	when	modes	a	 largely	separated.	Each	peak	 in	the	frequency	
response	 function	 is	 therefore	 a	 combination	 of	modes.	 This	may	 result	 in	 errors	 in	 the	 derived	
system	properties.		

o Because	the	method	is	based	on	finding	the	magnitude	of	a	resonance	peak,	errors	may	occur	when	
the	measurements	of	such	peaks	are	inaccurate,	which	is	often	the	case.		

o The	derived	system	properties	can	only	contain	a	real	part.	It	is	not	possible	to	extract	the	imaginary	
part	of	the	system	properties	by	means	of	quadrature	picking.		
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Figure	7.8:	Mode	shapes	of	the	four-body	model.	
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Figure	7.9:	Quadrature	picking	the	natural	modes	of	the	first	two	bodies	of	the	four-body	model.	
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Figure	7.10:	Waterfall	plot	showing	the	contribution	of	each	frequency	response	function	to	the	natural	modes	of	the	

first	two	bodies	of	the	four-body	model.	
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Chapter	8 Modal	parameter	estimation	
Modal	parameter	estimation	is	probably	the	most	difficult	part	of	the	whole	modal	analysis.	In	Chapter	5,	it	
was	shown	that	 the	 frequency	response	 functions	derived	 from	the	modal	description	of	 the	system	can	
result	in	a	perfect	description	of	the	system.	However,	this	is	generally	not	the	case	in	a	real-life	situation	as	
the	 measurement	 data	 always	 contains	 noise	 and	 parasitic	 modes,	 where	 the	 structure	 vibrations	 in	 a	
different	direction	than	the	direction	measured.	Also,	the	quadrature	picking	method	only	finds	the	general	
shape	of	the	modal	matrix,	Table	8.1.	This	means	that	the	regenerated	modal	frequency	response	functions	
are	not	a	perfect	fit	for	the	measured	data,	as	shown	in	Figure	8.1.	When	only	measuring	the	stiffness	of	the	
system	or	the	general	shape	of	the	modes,	it	is	perfectly	fine	to	use	the	quadrature	picking	method	without	
scaling	to	derive	these	characteristics	[2].	This	was	also	shown	by	Hugo	Nauta	[17].	If	the	complete	system	is	
to	be	derived	from	the	measurement,	a	scaling	must	be	applied	however.		
	
The	 last	 step	 in	 the	 modal	 analysis	 is	 therefore	 finding	 a	 model	 which	 describes	 the	 measured	 system	
accurately	enough.	The	most	commonly	used	method	to	derive	the	scaling	of	the	system	is	by	means	of	curve	
fitting	[15],	which	is	the	most	simplistic	and	clarifying	way.	Curve	fitting	is	an	optimisation	technique,	which	
minimises	the	mean	square	error	between	the	measurement	data	and	a	fit	function	[18].	Simply	saying,	it’s	
like	drawing	a	line	through	the	measurement	data.		
The	fit	function	is	determined	by	the	measured	system.	This	function	was	derived	by	the	quadrature	picking	
method,	in	the	form	of	the	modal	description	of	the	system.	The	frequency	response	functions	matrix	derived	
from	the	modal	description	is	a	simplified	model	of	the	measurement	data.		
	

	

Figure	8.1:	Regenerated	frequency	response	functions	from	the	modal	description	for	the	first	row	of	the	four-body	
model.	



	
	
	
	
	

Form	ID:	MEC-QF-039-v2	
Form	Issued:	September	2017	

Internship	Report	-	Robert	Giesen.docx	 Page	64	of	107	

	

Three	methods	will	be	discussed	in	this	chapter:	basic	model	curve	fitting,	mean	square	optimisation	curve	
fitting	and	single	mode	contribution	scaling.	Because	these	methods	all	make	use	of	optimisation	algorithms,	
the	accuracy	of	 the	methods	also	greatly	depends	on	the	accuracy	of	 these	optimisation	algorithms.	 It	 is	
therefore	necessary	to	analyse	the	accuracy	of	the	used	algorithm,	before	it	can	be	applied	during	the	modal	
analysis.		
	
The	four-body	model	of	Figure	7.1	will	again	be	used	to	illustrate	the	modal	parameter	estimation.		
	

	 Equations	of	motion	 Quadrature	picking	

𝑽	

-0.5000	 0.5896	 -0.3904	 0.5000	 -0.1140	 -0.7071	 0	 -0.0719	

-0.5000	 -0.3904	 -0.5896	 -0.5000	 -0.1140	 0	 0	 0.0719	

-0.5000	 0.3904	 0.5896	 -0.5000	 -0.1140	 0	 0	 0.0719	

-0.5000	 -0.5896	 0.3904	 0.5000	 -0.1140	 0.7071	 0	 -0.0719	

Table	8.1:	Difference	in	modal	matrices	derived	from	the	equations	of	motion	and	by	means	of	quadrature	picking.	

8.1 Understanding	the	shape	of	the	modal	matrix	

Before	the	modal	matrix	can	be	scaled,	the	shape	of	the	matrix	must	be	understood.	This	knowledge	can	
later	be	used	to	pre-scale	the	modal	matrix,	before	curve	fitting	is	applied.	This	increases	the	accuracy	of	the	
curve	fitting	technique	and	lowers	the	error	between	the	measured	frequency	response	functions	and	the	
functions	derived	from	the	modal	description.		
	
Scaling	of	the	plus/minus	signs	

The	first	step	in	the	scaling	of	the	modal	matrix	is	to	make	
sure	the	plus/minus	signs	for	each	individual	coefficient	of	
the	 modes	 are	 correct.	 If	 this	 is	 not	 the	 case,	 anti-
resonance	peaks	might	show	up	at	the	wrong	frequencies	
in	the	frequency	response	function	plots	(4.3.1).		
	
The	scaling	can	be	done	by	looking	at	the	standard	mode	
shapes	of	the	structure,	in	this	case	a	clamped	plate.	The	
first	 four	 mode	 shapes	 are	 shown	 in	 Figure	 8.2.	 The	
theoretical	modal	matrix	has	the	following	shape:	
	

𝑽 =

− 0 + +
− − 0 −
− + 0 −
− 0 − +

	

	
Comparison	of	the	columns	with	the	corresponding	mode	
shape	shows	a	striking	similarity:		

	

Figure	8.2:	Mode	shapes	of	a	standard	surface	
model.	

o Mode	1:	all	coefficients	in	the	same	direction.	
o Mode	2	and	mode	3:	two	coefficients	zero,	two	coefficients	in	opposite	direction.	
o Mode	4:	two	coefficients	negative,	two	coefficients	positive.	
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This	means	that	the	modal	matrix	can	be	scaled	by	looking	at	the	standard	mode	shapes	of	the	structure.	
However,	there	are	some	errors:	mode	2	and	mode	3	are	swapped	and	mode	1	is	negative	instead	of	positive.	
This	means	that	this	scaling	method	can	still	result	 in	the	wrong	modal	matrix.	This	will	however	become	
evident	when	 looking	 at	 the	 anti-resonance	peaks	 of	 the	 frequency	 response	 function.	 If	 anti-resonance	
peaks	 show	up	at	 frequencies	where	anti-resonance	 is	not	 supposed	 to	happen,	 the	plus/minus-signs	of	
entire	modes	can	be	swapped	and	the	curve	fitting	can	be	retried.	
	
Normalisation	

A	vector	can	be	normalised	to	remove	any	data	about	its	length.	This	leaves	a	vector	with	a	certain	shape	
and	length	equal	to	one	(𝑛𝑜𝑟𝑚 = 1)	[19].	Removing	the	length	data	makes	it	easier	to	scale	the	shape	of	the	
modal	matrix.	Normalisation	of	a	vector	is	achieved	by	dividing	the	vector	with	its	length:	
	

𝑽 =
𝑽
𝑽
	

8.2 Basic	model	curve	fitting	

The	basic	model	curve	fitting	method	makes	use	of	the	definition	of	the	standard	modal	frequency	response	
function:	

𝐻l§ 𝜔 =
𝐴

−𝜔a + 𝐶#5
	 	𝑖𝜔 + 𝐾#5

	

ª

5«c

, 𝑤ℎ𝑒𝑟𝑒	𝐴	𝑖𝑠	𝑎	𝑠𝑐𝑎𝑙𝑖𝑛𝑔	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	

	
Because	any	frequency	response	function	can	be	written	as	a	summation	of	single	mode	contributions,	only	
the	amount	of	single	modes	will	have	to	be	derived.	Therefore,	the	natural	frequencies	of	the	system	must	
be	derived.	After	these	frequencies	are	found,	the	standard	frequency	response	function	can	be	fitted	to	the	
measurement	data,	which	is	like	drawing	a	line	through	the	data.	A	curve	fitting	tool	can	then	be	used	to	fit	
the	model,	after	which	the	mass,	damping	and	stiffness	of	the	system	can	be	found.		
	
Figure	8.3	shows	the	MATLAB	interactive	curve	fitting	tool.	This	tool	can	be	called	using	the	command:	
	
 
cftool 
 

	
The	figure	shows	a	fit	for	the	first	frequency	response	function	in	the	matrix	of	the	four-body	model,	where	
a	three-term	standard	modal	frequency	response	functions	was	fitted.	This	figure	shows	that	the	tool	is	able	
to	find	a	good	fit	for	the	data.	While	this	might	seem	like	a	decent	fit,	its	usefulness	is	limited.	The	reason	for	
this	is	that	the	found	coefficients	are	only	the	damping	and	scaling	of	the	system.	The	frequency	response	
function	 in	 system	 parameters	will	 then	 have	 to	 be	 regenerated	 from	 this	modal	 description.	 This	 does	
however	result	in	erroneous	system	matrices,	which	results	in	large	errors	when	trying	to	make	a	prediction	
for	the	unmeasured	frequency	response	functions.		
	
Another	attempt	can	be	done	by	directly	fitting	the	frequency	response	function	in	system	parameter:	
	

𝐻l§ 𝑠 =
𝐴

𝑚®	 	𝑠a + 𝑐®	 	𝑠 + 𝑘®	

ª

®«c

, 𝑤ℎ𝑒𝑟𝑒	𝐴	𝑖𝑠	𝑎	𝑠𝑐𝑎𝑙𝑖𝑛𝑔	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	
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Figure	8.3:	MATLAB	curve	fitting	tool	(cftool)	–	Modal	frequency	response	function	fit	for	the	first	FRF	of	the	four-body	

model.	

	

	
Figure	8.4:	MATLAB	curve	fitting	tool	(cftool)	–	System	parameter	frequency	response	function	fit	for	the	first	FRF	of	

the	four-body	model.	
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Figure	8.4	shows	this	type	of	fit	for	the	four-body.	While	the	curve	fitting	tool	does	find	a	solution	for	this	
problem,	it	takes	a	long	time	to	complete	and	does	not	find	a	reasonable	fit.	This	is	a	problem	that	occurs	
often	during	the	curve	fitting	of	the	measurement	data.	As	the	model	becomes	more	complex,	the	chance	
of	finding	an	accurate	fit	for	the	measurement	data	decreases	rapidly.		

8.3 Single	mode	contribution	scaling	

Because	of	the	problems	encountered	during	the	basic	model	curve	fit	another	technique	will	be	attempted,	
where	 the	 single	mode	 contributions	 of	 the	 frequency	 response	 functions	 are	 scaled.	 Each	 single	mode	
contribution	 is	 scaled	 individually,	 after	which	 they	 are	 summed	 to	 derive	 the	 total	 frequency	 response	
functions.		
	
The	scaling	can	be	applied	to	the	single	mode	contributions	by	multiplication	with	a	scaling	constant	𝐴:	
	

ℎ =
𝐴

−𝜔a + 𝐶#5
	 	𝑖𝜔 + 𝐾#5

	 	

	
The	scaling	constant	can	be	derived	from	the	difference	between	the	resonance	peak	of	the	single	mode	
contribution	and	the	corresponding	resonance	peak	of	the	measured	frequency	response	function:	
	

𝐴 =
𝐻º»µ 𝜔?
ℎ?# 𝜔?

	

	

	
Figure	8.5:	Regenerated	frequency	response	functions	from	the	scaled	single	mode	contributions	for	the	first	row	of	

the	four-body	model.	
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While	in	theory	this	method	should	work,	it	does	not	perform	well	when	applied	to	the	four-body	model,	
Figure	8.5.	It	does	result	in	a	better	fit	than	the	frequency	response	functions	derived	by	means	of	quadrature	
picking	only,	but	still	results	in	large	errors.	

8.4 Mean	square	error	curve	fitting	

The	last	method	is	the	full	error	minimisation	using	optimisation	techniques.	While	this	method	results	in	a	
scaled	 modal	 matrix,	 which	 can	 be	 used	 to	 make	 prediction	 for	 the	 unmeasured	 frequency	 response	
functions,	the	accuracy	of	the	method	greatly	depends	on	the	accuracy	of	the	optimisation	technique.	The	
accuracy	of	the	optimisation	technique	 in-turn	depends	on	the	 initial	value	for	the	modal	matrix	and	the	
bounds	placed	on	the	optimisation	function.	Because	these	bounds	are	unknown,	they	must	be	estimated	
or	guessed,	decreasing	the	accuracy	of	the	fit.		
	
The	curve	fitting	optimisation	technique	minimises	the	mean	square	error	between	the	measurement	data	
and	a	fit	function:	
	

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒	𝑓 𝜱 = 𝛦l,§,ma

l§m

	 , 𝑤ℎ𝑒𝑟𝑒	𝛦 = 𝐻#Jk_¾¿J#J?6 − 𝐻Àl6	

	
For	the	fit-function,	the	modal	description	of	the	system	derived	during	the	quadrature	picking	can	be	used.	
The	objective	function	is	a	function	of	the	modal	matrix,	this	means	that	a	value	for	the	modal	matrix	must	
be	found,	such	that	the	mean	square	error	is	minimal.	
	

	
Figure	8.6:	Regenerated	frequency	response	functions	from	the	mean	square	error	curve	fitting	for	the	first	row	of	the	

four-body	model.	
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Figure	8.6	shows	the	mean	square	error	curve	fitting	applied	to	the	four-body	model	of	the	floor.	This	figure	
shows	that	the	technique	is	no	guarantee	to	find	a	perfect	fit.	The	problem	here	is	the	missing	resonance	
peak	of	the	fourth	mode.	Another	problem	is	the	magnitude	of	the	frequency	response	functions,	which	will	
be	addressed	 in	 the	next	section.	 	Nevertheless,	 this	method	 is	 still	preferred	when	trying	 to	predict	 the	
unmeasured	frequency	response	functions,	as	the	mean	square	error	curve	fitting	technique	directly	scales	
the	modal	matrix.	This	means	that	the	unmeasured	frequency	response	functions	only	have	to	be	extracted	
from	the	corresponding	index	in	the	frequency	response	functions	matrix	(7.1).		
	
The	problem	encountered	here,	where	a	resonance	peak	is	completely	missing,	is	not	something	that	will	be	
encountered	regularly	during	normal	measurements.	The	conditions	for	this	to	happen	are:	

o The	same	masses	for	all	bodies.	
o Uniform	stiffness	of	the	entire	floor.	

	
A	slight	difference	in	the	stiffness	or	the	masses	of	the	bodies,	results	in	all	resonance	peaks	being	visible	
and	a	far	better	fit	using	the	mean	square	error	curve	fitting	technique,	as	shown	in	Figure	8.7.	Therefore,	
the	mean	square	error	curve	fitting	technique	will	work	reasonably	well	in	most	cases.	
	

	

Figure	8.7:	Regenerated	frequency	response	functions	from	the	mean	square	error	curve	fitting	for	the	first	row	of	the	
four-body	model,	with	slightly	different	mass	for	each	body.	 	
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8.4.1 Scaling	of	the	magnitude	

Because	the	optimisation	technique	will	likely	find	a	local	minimum.	This	means	that	it	is	not	able	to	find	the	
correct	magnitude	of	the	modal	matrix.	This	can	easily	be	solved	by	calculating	the	difference	between	the	
low-frequency	behaviour	of	both	frequency	response	functions	and	then	apply	a	scaling	accordingly.		
By	doing	this	for	the	roving	sensor/hammer	measurements	only	and	applying	the	scaling	to	the	complete	
row	or	column	of	the	frequency	response	functions	matrix	respectively,	a	descent	prediction	for	all	other	
measurements	can	be	gained.		

8.4.2 Residual	effects	

Residual	 effects	 are	 the	 resonance	 peaks	 that	 show	 up	 in	 the	measurement	 data	 because	 of	 noise	 and	
parasitic	modes	[2].	These	effects	become	most	evident	at	high	frequencies.	To	take	these	residual	effects	
into	account,	they	must	be	added	to	the	derived	frequency	response	functions.		This	can	be	done	in	the	same	
way	the	single	mode	contributions	are	added	to	the	frequency	response	functions:	
	

𝐻¿J_lÁ¾J 𝑠 =
1

𝑠a + 𝑐	𝑠 + 𝜔?,¿J_lÁ¾Ja
	

	
For	each	resonance	peak	as	a	result	of	a	residual	effect,	the	standard	frequency	response	function	can	be	
added	to	the	derived	frequency	response	function.		

8.4.3 MATLAB	Optimisation	

The	mean	 square	 error	 optimisation	 can	 be	 performed	 by	MATLAB.	 The	minimisation	 problem	must	 be	
formulated	in	the	following	way:	
	
 
% Optimisation problem 
Options = optimoptions(@fmincon, 'Algorithm', 'interior point'); 
ObjectiveFunction = @(V) OptimisationFunction(V,AdditionalParameters); 
Problem = createOptimProblem('fmincon','x0',VModal,'objective',ObjectiveFunction,'options',Options); 
  
% Minimise the mean square error 
MS = MultiStart('Display','iter','UseParallel',true); 
GS = GlobalSearch('Display','iter'); 
[V] = run(MS,Problem,1);        % Choose: Multistart or GlobalSearch 

	
	
The	accuracy	depends	on	the	fmincon-	and	interior	point-algorithms.	Several	algorithms	where	used	here	to	
speed	up	and	improve	the	optimization,	which	will	be	explained	next.	
	
Performance	of	fmincon	

Figure	8.8	shows	the	fit	of	an	exponential	function:	
	

𝑦 = 𝑎 ∗ 𝑥 + 𝑏 ∗ 𝑥a + 𝑐 ∗ 𝑥q + 𝑑 ∗ 𝑥�	
	
The	MATLAB	 function	 fmincon	was	used	 to	estimate	 the	
coefficients	 of	 the	 exponential	 function.	 While	 the	 fit	
seems	 accurate,	 further	 comparison	 of	 the	 found	
coefficients	with	the	original	coefficients	shows	that	the	fit	
is	actually	not	that	accurate.	 	

Figure	8.8:	Simple	Exponential	function-fit	
estimated	by	fmincon.	
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	 𝒂	 𝒃	 𝒄	 𝒅	

Original	 89	 35	 102	 709	
Estimation	 10	 10	 102	 709	
	
From	 this	 can	 be	 concluded	 that,	 while	 fmincon	 might	 find	 a	 good	 fit	 for	 the	 measurement	 data,	 the	
coefficients	might	not	be	accurate.	Therefore,	in	case	of	a	modal	frequency	response	function,	the	estimated	
modal	matrix	might	not	be	equal	to	the	actual	modal	matrix	of	the	system.		
	
MultiStart	and	GlobalSearch	

If	an	optimiser	is	run	once	only,	it	is	for	this	type	of	problems	almost	certain	that	the	result	is	a	local	optimum.	
This	means	that	to	find	the	global	optimum	of	the	function,	multiple	starting	points	must	be	tried.	MATLAB	
has	 two	 algorithms	 to	 find	 the	 global	 optimum	 of	 a	 function:	 MultiStart	 and	 GlobalSearch.	 The	 main	
differences	between	GlobalSearch	and	MultiStart	are:	

o GlobalSearch	uses	a	scatter-search	mechanism	for	generating	start	points.	MultiStart	uses	uniformly	
distributed	start	points	within	bounds,	or	user-supplied	start	points.	

o GlobalSearch	analyses	start	points	and	rejects	those	points	that	are	unlikely	to	improve	the	best	local	
minimum	found	so	far.	MultiStart	runs	all	start	points	(or,	optionally,	all	start	points	that	are	feasible	
with	respect	to	bounds	or	inequality	constraints).	

o MultiStart	gives	 a	 choice	 of	 local	 solver:	fmincon,	fminunc,	lsqcurvefit,	 or	lsqnonlin.	
The	GlobalSearch	algorithm	uses	fmincon.	

o MultiStart	can	run	in	parallel,	distributing	start	points	to	multiple	processors	for	local	solution.	
	
MathWorks	provides	the	following	documentation	for	both	functions	[20]:		
	
‘MultiStart	runs	 the	 local	 solver	 specified	 in	 the	problem	structure,	 starting	 at	 the	 points	 that	 pass	
the	StartPointsToRun	filter.	If	MultiStart	is	running	in	parallel,	it	sends	start	points	to	worker	processors	one	
at	a	time,	and	the	worker	processors	run	the	local	solver.	When	the	local	solver	stops,	MultiStart	stores	the	
results	and	continues	to	the	next	step.’	
	
‘GlobalSearch	runs	the	 optimiser	 fmincon	from	 the	 start	 point	 defined	 in	 the	problem	structure.	 If	 the	 run	
converges,	GlobalSearch	records	the	start	point	and	end	point	for	the	initial	estimate	on	the	radius	of	a	basin	
of	 attraction.	 Furthermore,	GlobalSearch	records	 the	 final	 objective	 function	 value	 for	 use	 in	 the	 score	
function.	The	score	function	is	the	sum	of	the	objective	function	value	at	a	point	and	a	multiple	of	the	sum	of	
the	constraint	violations.	GlobalSearch	updates	the	multiple	during	the	run.’	
	
Parallel	computing	

Optimisation	problems	can	become	extremely	large	and	computational	intensive.	It	is	therefore	advised	to	
use	the	MATLAB	Parallel	Computing	Toolbox.	This	toolbox	is	able	to	solve	computationally	and	data	intensive	
problems	 using	 multicore	 processors,	 GPU’s	 and	 computer	 clusters.	 It	 is	 however	 not	 available	 for	 all	
optimisers.	The	parallel	computing	toolbox	can	be	called	via	the	optimisation	options:	
	
 
Options = optimoptions(@Solver, 'UseParallel', true); 
 

8.5 Other	methods	

Besides	curve	fitting,	many	other	methods	are	available	for	the	experimental	modal	analysis	of	a	system.	
Most	of	these	methods	are	far	more	complicated	and	only	available	in	advanced	FEM-software	packages.	
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Figure	8.9:	Other	methods	available	for	the	experimental	modal	analysis	of	a	system	[21].	
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Chapter	9 Error	of	the	modal	analysis	
The	modal	parameter	estimation	techniques	discussed	in	Chapter	8	all	showed	that	it	becomes	increasingly	
harder	to	find	a	fit	for	the	measurement	data,	as	the	complexity	of	the	problem	increases.	An	analysis	of	the	
error	made	can	give	a	clear	view	on	which	method	works	best	 in	a	certain	situation.	The	error	analysis	 is	
done	by	 looking	at	 increasingly	difficult	problems,	starting	with	the	very	basic	 lightly-damped	single-body	
model	of	Figure	9.1.	
	
Lightly-damped	single-body	model	

Figure	9.1	shows	the	mean	square	error	curve	fit	for	the	
lightly-damped	 single-body	model.	With	 a	 total	 error	 of	
ΕÇÈÇÉÊ = 0.0690 	and	 a	 mean	 error	 of	 Ε�ËÉ� = 1.680 ∙
10b° ,	 the	 curve	 fit	 is	 as	 expected	 very	 accurate.	 A	
magnitude	scaling	was	not	necessary	 in	 this	case,	as	 the	
MATLAB	optimisation	algorithm	already	found	the	global	
minimum	of	the	mean	square	error.		

	

𝑚c = 1.0	𝑘𝑔	
	
𝑘 = 1 ∙ 10q	 𝑁 𝑚	

	
𝑪 = 𝑲 ∙ 2 ∙ 10bq	

Figure	9.1:	lightly-damped	single-body	model,	
problem	definition.	

	

	 	

Figure	9.2:	Identification	of	the	natural	frequencies	(left),	Frequency	response	function	and	the	corresponding	curve	fit	
(right)	for	the	lightly-damped	single-body	model.	

	
Extreme-damped	single-body	model	

Next,	 the	extreme	heavily-damped	single-body	model	of	
Figure	 9.3	 will	 be	 analysed.	 The	 difference	 in	 accuracy	
between	 these	 two	 single-body	 models	 will	 show	 the	
influence	 of	 the	 damping	 on	 the	 accuracy	 of	 the	 curve	
fitting	method.	
	
The	 result	of	 the	curve	 fit	 is	 shown	 in	Figure	9.4.	 In	 this	
case,	the	ordinary	mode	indicator	function	still	shows	the	
frequency	of	the	resonance	peak.			

	

𝑚c = 1.0	𝑘𝑔	
	
𝑘 = 1 ∙ 10q	 𝑁 𝑚	

	
𝑪 = 𝑲 ∙ 2 ∙ 10bc	

Figure	9.3:	Extreme-damped	single-body	model,	
problem	definition.	
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It	 is	 important	that	this	natural	frequency	 is	found,	as	the	curve	fitting	method	would	fail	otherwise.	The	
total	 error	 of	 the	 curve	 fit	 is	ΕÇÈÇÉÊ = 0.0137	and	 the	mean	 error	Ε�ËÉ� = 3.349 ∙ 10b² .	 This	 shows,	 for	
systems	with	a	single	resonance	peak,	that	the	mean	square	error	curve	fitting	method	provides	accurate	
results,	even	for	systems	with	very	high	damping.	However,	the	natural	frequency	of	the	system	must	be	
found.		
	

	 	

Figure	9.4:	Identification	of	the	natural	frequencies	(left),	Frequency	response	function	and	the	corresponding	curve	fit	
(right)	for	the	extreme-damped	single-body	model.	

	
Lightly-damped	two-body	model	

Next,	the	two-body	models	will	be	analysed.	These	models	
will	 give	 insight	 in	 how	 the	modes	 influence	 each-other	
and	what	effect	the	increase	in	complexity	of	the	system	
has	on	the	accuracy	of	the	curve	fit.		
Because	 the	 frequency	 response	 functions	 matrix	 has	
dimensions	 2X2,	 it	 is	 also	 possible	 to	 analyse	 the	
predictions	made	by	the	method.	

	

	
	

𝑚c = 𝑚a = 1.0	𝑘𝑔	
	
𝑘 = 1 ∙ 10q	 𝑁 𝑚	

	
𝑪 = 𝑲 ∙ 2 ∙ 10bq	

Figure	9.5:	lightly-damped	two-body	model,	
problem	definition.	

	

	 	

Figure	9.6:	Identification	of	the	natural	frequencies	(left),	Frequency	response	function	and	the	corresponding	curve	fit	
(right)	for	the	lightly-damped	two-body	model.	

k2c2
m1 m2

c1 k1

F2

z1, z2

F1

c3 k3

m1

F2

z1, z2

F1

Fc2 Fk2

Fc1 Fk1

m2 Fk3Fc3



	
	
	
	
	

Form	ID:	MEC-QF-039-v2	
Form	Issued:	September	2017	

Internship	Report	-	Robert	Giesen.docx	 Page	75	of	107	

	

The	 total	error	and	mean	error	 for	 this	 case	are	ΕÇÈÇÉÊ = 0.0135	and	Ε�ËÉ� = 8.219 ∙ 10bÌ,	 respectively.	
This	shows	that,	for	the	lightly	damped	case	and	with	decent	spacing	of	the	resonance	peaks,	the	curve	fit	
again	is	very	accurate.		
	

	 	

Figure	9.7:	Frequency	response	functions	and	the	corresponding	predictions	for	the	lightly-damped	two-body	model.	

Figure	9.7	shows	the	prediction	for	an	output	from	the	second	body.		The	output	from	the	first	body	was	
used	here	to	make	these	predictions.	As	can	be	seen	from	the	figure,	the	curve	fit	is	already	far	less	accurate,	
having	 a	 total	 and	 mean	 error	 of	ΕÇÈÇÉÊ = 0.246 	and	Ε�ËÉ� = 1.504 ∙ 10b° 	for	 the	 frequency	 response	
function	 with	 the	 first	 body	 as	 input	 (left	 figure)	 and	ΕÇÈÇÉÊ = 0.334 	and	Ε�ËÉ� = 2.041 ∙ 10b° 	for	 the	
frequency	 response	 function	with	 the	 second	 body	 as	 input	 (right	 figure).	 The	 left	 figure	 also	 shows	 an	
additional	anti-resonance	peak.	With	some	magnitude	scaling,	 the	right	 frequency	response	 function	can	
become	a	decent	fit	however.	
	
From	this	can	be	concluded	that,	for	a	lightly-damped	multi-body	system	where	the	natural	frequencies	are	
visible,	the	mean	square	error	curve	fitting	results	in	a	good	curve	fit	for	the	measurement	data.		
The	predictions	made	by	the	method	are	not	that	accurate	however	and	must	only	be	used	as	an	indication	
for	the	unmeasured	frequency	response	functions.		
	
Heavily-damped	two-body	model	

The	 heavy-damped	 two-body	 model	 is	 shown	 in	 Figure	
9.8.	The	curve	fit	has	a	total	error	of	ΕÇÈÇÉÊ = 0.0434	and	
a	mean	 error	 of	Ε�ËÉ� = 2.647 ∙ 10b² .	 Surprisingly,	 the	
while	the	error	for	the	curve	fit	is	larger	than	the	lightly-
damped	 model,	 the	 error	 of	 the	 prediction	 is	 lower:	
ΕÇÈÇÉÊ = 0.211	and	Ε�ËÉ� = 1.287 ∙ 10b°.	The	phase-plot	
however,	like	the	lightly-damped	case,	is	still	off.	
	

	

	
	

𝑚c = 𝑚a = 1.0	𝑘𝑔	
	
𝑘 = 1 ∙ 10q	 𝑁 𝑚	

	
𝑪 = 𝑲 ∙ 8 ∙ 10bq	

Figure	9.8:	Heavily-damped	two-body	model,	
problem	definition.	

From	this	case	can	be	concluded,	that	the	system	with	intermediate	damping	and	clearly	visible	resonance	
peaks	is	best	when	trying	to	predict	the	unmeasured	frequency	response	functions,	by	means	of	mean	square	
error	curve	fitting.	
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Figure	9.9:	Identification	of	the	natural	frequencies	(left),	Frequency	response	function	and	the	corresponding	curve	fit	
(right)	for	the	heavily-damped	two-body	model.	

	 	

Figure	9.10:	Frequency	response	functions	and	the	corresponding	predictions	for	the	heavily-damped	two-body	model.	

	

Lightly-damped	four-body	model	

To	investigate	to	what	extent	the	curve	fitting	is	viable	for	
measured	 data,	 the	 four-body	 model	 will	 again	 be	
analysed,	Figure	9.11.	The	damping	coefficient	was	chosen	
at	 the	 critical	 point.	 This	 means	 that	 a	 slightly	 higher	
damping	coefficient	will	result	in	erroneous	curve	fits,	as	
will	be	shown	next.	
	
The	total	error	of	the	curve	fit	is	ΕÇÈÇÉÊ = 0.2750	and	the	
mean	error	Ε�ËÉ� = 4.1964 ∙ 10b².	

	

𝑚c = 𝑚a = 1.0	𝑘𝑔	
	
𝑘 = 1 ∙ 10q	 𝑁 𝑚	

	
𝑪 = 𝑲 ∙ 7 ∙ 10b°	

Figure	9.11:	Lightly-damped	four-body	model,	
problem	definition.	

As	discussed	in	chapter	8.4,	because	of	the	missing	resonance	peak,	even	for	the	lightly-damped	model	the	
curve	fit	is	not	very	accurate.	The	predictions	seem	to	show	the	same	errors	that	were	made	for	the	curve	
fit	of	the	measurement	data	and	an	error	in	the	magnitude,	Figure	9.13.	The	total	error	is	ΕÇÈÇÉÊ = 0.3596	
and	the	mean	error	Ε�ËÉ� = 5.4867 ∙ 10b².		
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Figure	9.12:	Identification	of	the	natural	frequencies	(left),	Frequency	response	function	and	the	corresponding	curve	
fit	(right)	for	the	lightly-damped	four-body	model.	

	 	

Figure	9.13:	Frequency	response	functions	and	the	corresponding	predictions	for	the	lightly-damped	four-body	model.	

	
Slightly-more-damped	four-body	model	

The	last	model	showed	the	frequency	response	functions	
for	 the	 critical	 point.	 The	 model	 discussed	 here	 has	 a	
damping	that	is	slightly	higher,	to	show	what	happens	to	
the	 curve	 fitting	method	when	 the	damping	 is	 too	high.	
The	model	is	shown	in	Figure	9.14.	
	
Figure	9.15	shows	the	curve	fit	for	the	model.	This	figure	
shows	an	extra	resonance	peak,	which	was	not	visible	in	
the	curve	fit	for	the	critical	case.		

	

𝑚c = 𝑚a = 1.0	𝑘𝑔	
	
𝑘 = 1 ∙ 10q	 𝑁 𝑚	

	
𝑪 = 𝑲 ∙ 8 ∙ 10b°	

Figure	9.14:	Slightly-more-damped	four-body	
model,	problem	definition.	

From	this	can	be	concluded	that,	in	case	the	damping	becomes	too	high	for	a	certain	system	(strange	
resonance	and	anti-resonance	peaks	start	to	show	up	in	the	curve	fit),	it	is	better	to	apply	a	basic	model	
curve	fit.	This	does	however	mean	that	a	prediction	cannot	be	accurately	made	and	more	measurements	
must	be	carried	out.		
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Figure	9.15:	Identification	of	the	natural	frequencies	(left),	Frequency	response	function	and	the	corresponding	curve	
fit	(right)	for	the	slightly-more-damped	four-body	model.	
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Chapter	10 Discussion	and	recommendations	
This	research	consisted	of	the	derivation	and	experimental	testing	of	several	modal	analysis	techniques.	The	
research	concluded	in	these	methods	being	able	derive	an	estimation	for	the	frequency	response	functions	
of	the	measurement	data,	however	these	estimations	did	not	seem	to	be	accurate	for	all	situations	and	no	
general	method	was	found.	The	accuracy	of	the	estimation	is	highly	situation-dependent.	These	conclusions	
resulted	in	two	recommendations	for	further	research:	
	

o The	mode	 indicator	 functions	 should	 be	 derived	 further,	 especially	 the	 complex	mode	 indicator	
functions.	This	is	a	direct	result	from	the	loss	in	accuracy	when	resonance	peaks	are	not	visible	in	the	
measurement	data	and	when	resonance	peaks	are	closely	spaced	together.	These	functions	can	then	
be	used	to	identify	these	peaks.	

	
o If	the	accuracy	is	extremely	important	for	the	expected	results,	more	complicated	methods	should	

be	explored	for	the	derivation	of	the	modal	description	of	the	structure.	These	methods	can	give	a	
better	initial	estimation,	which	can	then	be	used	in	combination	with	the	mean	square	error	curve	
fitting	technique	to	provide	results	with	a	higher	accuracy.		
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Appendix	A MATLAB	function	EoM	

The	EoM.m	function	uses	the	masses,	damping	coefficients	and	spring	constants	to	construct	the	system	
matrices.	
	
 
function [K,C,M,F] = EoM(k,c,m,nBodies) 
%% [K,C,M] = EoM(k,c,m,nBodies) 
% 
% Function to construct the system matrices. 
% 
% Inputs: 
%   k = stiffness vector (k1, k2, etc.). 
%   c = damping vector (c1, c2, etc.). 
%   m = mass vector (m1, m2, etc.). 
%   nBodies = the number of bodies (1, 2 or 3). 
% 
% Outputs: 
%   K = stiffness matrix. 
%   C = damping matrix. 
%   M = mass matrix. 
%   F = force matrix. 
  
% Robert Giesen, Internship MECAL, october 2 
%% 
if (nBodies == 1) 
    M = m; 
    C = c; 
    K = k; 
    F = eye(size(M)); 
else 
    M = diag(m(1:nBodies)); 
    C = diag(-c(2:nBodies),-1) + diag(c(1:nBodies)+c(2:nBodies+1)) + diag(-c(2:nBodies),1); 
    K = diag(-k(2:nBodies),-1) + diag(k(1:nBodies)+k(2:nBodies+1)) + diag(-k(2:nBodies),1); 
    F = eye(size(M)); 
end 
 

Table	11.1:	MATLAB	function	EoM.m.	
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Appendix	B MATLAB	function	FRF	

The	 FRF.m	 function	 uses	 the	 system	matrices,	modal	matrix	 and	 eigenvalues	 to	 calculate	 the	 frequency	
response	functions.	
	
 
function [HEoM,HModal] = FRF(K,C,M,F,V,Kg,f,damping) 
%% [HEoM,HModal] = FRF(K,C,M,F,V,Kg,f,damping) 
% 
% Function to calculate the frequency response functions matrix. 
% 
% Inputs: 
%   K  = Stiffness matrix 
%   C  = Damping matrix 
%   M  = Mass matrix 
%   V  = Undamped modal matrix 
%   Kg = Undamped eigenvalues 
%   f  = frequency range 
% 
% Outputs: 
%   HEoM    = Frequency response functions matrix matrix calculated from the equations of motion 
%   HModal  = Frequency repsonse functions matrix calculated from the modal description 
  
% Robert Giesen, Internship MECAL, october 2 
%% Initialisation 
s = f * 1i;                                        % Laplace parameter 
I = eye(size(M));                                  % Identity matrix 
  
% Preallocate Memory 
HEoM(1:size(V,1),1:size(V,2))   = {zeros(1,length(s))}; 
HModal(1:size(V,1),1:size(V,2)) = {zeros(1,length(s))}; 
  
%% 
for k = 1 : length(s) 
    if (strcmp(damping,'Undamped') == 1) 
        % Undamped frequency response function from equations of motion 
        D = M * s(k)^2 + K;                        % Dynamic matrix D 
        Z = D\F;                                   % (-w^2 * M + K)*Z = F => Z = inv(-w^2 * M + K)*F 
         
        % Undamped frequency response function from modal description 
        DModal = I * s(k)^2 + Kg;                  % Modal dynamic matrix 
        Eta    = DModal\(V' * F);                  % DModal * Eta = (V' * F) => Eta = DModal\(V' * F) 
        Zr     = V * Eta;                          % Zr = recalculated z 
         
    elseif (strcmp(damping,'Damped') == 1) 
        % Damped frequency response function from equations of motion 
        D = M * s(k)^2 + C * s(k) + K;             % Dynamic matrix D 
        Z = D\F;                                   % (-w^2 * M + K)*Z = F => Z = inv(-w^2 * M + K)*F 
         
        % Damped frequency response function from modal description 
        DModal = I * s(k)^2 + C * s(k) + Kg;       % Modal dynamic matrix 
        Eta = DModal\(V' * F);                     % DModal * Eta = (V' * F) => Eta = DModal\(V' * F) 
        Zr = V * Eta;                              % Zr = recalculated z 
    end 
     
    % Store data in cell-array 
    for i = 1 : size(Z,1) 
        for j = 1 : size(Z,2) 
            HEoM{i,j}(k)   = Z(i,j);     % Undamped frequency response function from equations of motion 
            HModal{i,j}(k) = Zr(i,j);    % Undamped frequency response function from modal description 
        end 
    end 
end 
 

Table	11.2:	MATLAB	function	FRF.m.	
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Appendix	C MATLAB	function	ModeShapes	

The	ModeShapes.m	function	uses	the	modal	matrix	to	define	points,	through	which	the	mode	shapes	are	
fitted.	The	script	makes	use	of	the	‘Shape-Preserving	Piecewise	Cubic	Interpolation’-algorithm,	which	defines	
intervals	between	the	points	and	fits	the	shape	for	each	interval	 individually.	This	ensures	that	the	mode	
shapes	intersect	the	points	defined	by	the	modal	matrix.		
	
 
function [] = ModeShapes(U) 
%% [] = Modeshapes(U) 
% 
% Function used to fit the modeshapes through the points defined by the 
% modal vectors.  
% 
% Inputs: 
%   U = modal matrix 
% 
% Outputs: 
%   Returns a plot of the modeshapes 
  
% Robert Giesen, Internship MECAL, october 2 
%% 
for i = 1 : size(U,2) 
    % Fitting Mode shapes (Shape-preserving piecewise cubic Hermite (pchip) interpolation) 
    ModeShape{i} = fit([-1:1:size([U(:,1)',0,0],2)]',[0;0;U(:,i);0;0],'pchipinterp'); 
                  
    % Plotting figure 
    figure(1) 
    subplot(size(U,2),1,i) 
    stem(real(U(:,i)),'color',rand(1,3)); hold on; 
    xlim([0 size(U,2)+1]) 
    plot(ModeShape{i},'k--') 
     
    legend(['Natural mode ' num2str(i)],'Mode shape') 
    ylabel('u') 
end 
 

Table	11.3:	MATLAB	function	ModeShapes.m.	
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Appendix	D MATLAB	function	GatherData	

The	GatherData.m	function	reads	the	measurement	files	and	stores	the	data	in	the	alldata	structure.	It	also	
constructs	the	frequency	response	functions	matrix,	according	to	the	definition	of	section	7.1.	
	
 
function [alldata,datamatrix] = GatherData(measurement,window) 
%% [alldata] = GatherData(measurement) 
% 
% Function used to gather the data from the measurements. 
% 
% Inputs: 
%   measurement = name of the measurement ('...') 
% 
% Outputs: 
%   Returns a structure with all measurement data and a cell-array which 
%   represents the measurement matrix. 
  
% Robert Giesen, Internship MECAL, october 2 
%% Read data 
file_list = dir([measurement,'*.mat']); 
  
for k = 1 : length(file_list) 
    fl(k,:) = file_list(k).name; 
end 
  
fl = sortrows(fl,[2,3]); 
  
%% Store data 
for k = 1 : size(fl,1) 
    data = load(fl(k,:)); alldata(k).meas = data.StiffGlob.meas; 
     
    FixedSensorPosition     = str2num(fl(k,strfind(fl(k,:),'sf(')+3)); 
    ColocatedSensorPosition = str2num(fl(k,strfind(fl(k,:),'sc(')+3)); 
    HammerPosition          = str2num(fl(k,strfind(fl(k,:),'ha(')+3)); 
     
    % Store all data in structure 
    alldata(k).FixedSensorPosition     = FixedSensorPosition; 
    alldata(k).ColocatedSensorPosition = ColocatedSensorPosition; 
    alldata(k).HammerPosition          = HammerPosition; 
  
    % Calculate the sample rate 
    dt= alldata(k).meas(1).t(2) - alldata(k).meas(1).t(1); 
     
    for i = 1 : size(alldata(k).meas,2) 
        Hamt(:,i) = alldata(k).meas(i).Hamt; 
        zt(:,i)   = alldata(k).meas(i).zt; 
        yt(:,i)   = alldata(k).meas(i).yt; 
    end 
     
    % FixedSensor (yt) 
    [alldata(k).ytStiffness.f, alldata(k).ytStiffness.H,... 
        alldata(k).ytStiffness.AbsH, alldata(k).ytStiffness.Phase,... 
        alldata(k).ytStiffness.Coh]  = HAvgAndCoh(Hamt, yt, 1/dt, window); 
     
    [alldata(k).ytCompliance.f, alldata(k).ytCompliance.H,... 
        alldata(k).ytCompliance.AbsH, alldata(k).ytCompliance.Phase,... 
        alldata(k).ytCompliance.Coh] = HAvgAndCoh(yt, Hamt, 1/dt, window); 
     
    % Imaginary and real parts of the stiffness 
    alldata(k).ytStiffness.ImagH = imag( alldata(k).ytStiffness.H ); 
    alldata(k).ytStiffness.RealH = real( alldata(k).ytStiffness.H ); 
     
    % Imaginary and real parts of the compliance 
    alldata(k).ytCompliance.ImagH = imag( alldata(k).ytCompliance.H ); 
    alldata(k).ytCompliance.RealH = real( alldata(k).ytCompliance.H ); 
     
    % ColocatedSensor (zt) 
    [alldata(k).ztStiffness.f, alldata(k).ztStiffness.H,... 
        alldata(k).ztStiffness.AbsH, alldata(k).ztStiffness.Phase,... 
        alldata(k).ztStiffness.Coh]  = HAvgAndCoh(Hamt, zt, 1/dt, window); 
     
    [alldata(k).ztCompliance.f, alldata(k).ztCompliance.H,... 
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        alldata(k).ztCompliance.AbsH, alldata(k).ztCompliance.Phase,... 
        alldata(k).ztCompliance.Coh] = HAvgAndCoh(zt, Hamt, 1/dt, window); 
 
    % Imaginary and real parts of the stiffness 
    alldata(k).ztStiffness.ImagH = imag( alldata(k).ztStiffness.H ); 
    alldata(k).ztStiffness.RealH = real( alldata(k).ztStiffness.H ); 
     
    % Imaginary and real parts of the compliance 
    alldata(k).ztCompliance.ImagH = imag( alldata(k).ztCompliance.H ); 
    alldata(k).ztCompliance.RealH = real( alldata(k).ztCompliance.H ); 
end 
  
%% Build the frequency response functions matrix 
for k = 1 : size(fl,1) 
    FixedSensor      = alldata(k); 
    FixedSensor      = rmfield(FixedSensor,{'ztStiffness','ztCompliance'}); 
    FixedSensor.meas = rmfield(FixedSensor.meas,{'t','Senst','xt','zt','Hamf','Sensf','Dynf'}); 
  
    ColocatedSensor      = alldata(k); 
    ColocatedSensor      = rmfield(ColocatedSensor,{'ytStiffness','ytCompliance'}); 
    ColocatedSensor.meas = rmfield(ColocatedSensor.meas,{'t','Senst','xt','yt','Hamf','Sensf','Dynf'}); 
     
    % Store in correct cell datamatrix 
    datamatrix{FixedSensor.FixedSensorPosition,FixedSensor.HammerPosition}             = FixedSensor; 
    datamatrix{ColocatedSensor.ColocatedSensorPosition,ColocatedSensor.HammerPosition} = 
ColocatedSensor; 
end 
 

Table	11.4:	MATLAB	function	GatherData.m.	
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Appendix	E MATLAB	function	HAvgAndCoh	

The	HAvgAndCoh.m	 function	 uses	 the	measurement	 data	 to	 calculate	 the	 frequency	 response	 functions	
(stiffness/compliance)	and	the	coherence.	This	function	file	was	written	by	Servaas	Bank.	
	
 
%% function [f H AbsH Phase Coh] = HAvgAndCoh(hammer_data, sensor_data, unit, fs, window) 
  
% calculates the average frequency response function Y(f)/X(f) and coherence 
% 
% Inputs: 
%   y_data(n,4) = array with data  
%   x_data(n,4) = array with measured sensor data  
%   fs = samplerate 
%   window = FFT window (0 = none, 1 = hanning) 
% 
% Outputs: 
%   f(n) = frequency vector (f> 0) 
%   AvgH(n) = average compliance in [m/N] vector 
%   Coh(n) = coherence vector 
%  
% sban, sept 2007 
% aangepast voor spectest zodat m middelingen ipv 4 toegestaan zijn 
% unit toegevoegd 
% 
  
% sban this one more general voor overdracht. march 2010 
  
function [f H AbsH Phase Coh] = HAvgAndCoh(y_data, x_data, fs,window) 
  
%% check some things 
  
%check data range 
[n m] = size(y_data); 
% if ~(m ==4)    
%       disp('fft_spectrum > data is not of format[n,4]'); 
% end 
  
% also check on power of 2 
  
%% calculate individual fft's & average 
ft_y = zeros (n/2,m); 
ft_x = zeros (n/2,m); 
for i = 1:m 
    [f ft_y(:,i)] = fft_cspectrum(y_data(:,i), fs, window); 
    [f ft_x(:,i)] = fft_cspectrum(x_data(:,i), fs, window); 
    %ft_sens(:,i) = ft_sens(:,i).*((2*pi*f).^unit); 
end 
f(1); 
AVG = ( sum(ft_y,2)./ sum(ft_x,2))  ; 
H = AVG; 
AbsH = abs(AVG); 
Phase = angle(AVG)*180/pi; 
  
%% calculate coherence 
  
part1 = sum(ft_x.*conj(ft_y) ,2); 
part2 = sum( ft_y.*conj(ft_y) , 2); 
part3 = sum( ft_y.*conj(ft_x) , 2); 
part4 = sum(ft_x.*conj(ft_x) ,2); 
  
nom = part1 .* part3; 
denom = part2 .* part4; 
Coh = nom ./ denom; 
  
%% End of function 
 

Table	11.5:	MATLAB	function	HAvgAndCoh.m.	
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Appendix	F MATLAB	function	fft_cspectrum	

The	 fft_cspectrum.m	 function	calculates	 the	complex	Fourier	 spectrum.	This	 function	 file	was	written	by	
Servaas	Bank.	
	
 
%% function [f cspect] = fft_cspectrum(data, fs, window) 
% calculates the complex fourierspectrum of data for 
% freq's > 0 
% for amplitude spectrum see fft_spectrum.m 
% sban sept 2007 
% sban added correction for offset and linear drift 
  
function [f cspect] = fft_cspectrum(data, fs,window) 
  
%% check some things 
  
%check data range 
[n m] = size(data); 
if ~(m ==1)    
      disp('fft_spectrum > data is not of format [n,1]'); 
end 
  
% also check on power of 2 
b = log(n)/log(2); 
if round(b) ~= b 
    disp('fft_spectrum > N is not a power of 2'); 
end 
  
%% correction for offset and linear drift only when window is applied 
if window ==1 
    x = 1:n;x = x'; 
    p = polyfit(x,data,1);  % fit to function y =p(1)*x+p(2) 
    data = data-polyval(p,x); 
end 
  
%% make the freq vector 
nyfreq = fs/2; 
df = nyfreq /(n/2); 
f = [df:df:nyfreq]';     % do not use freq = 0 
  
  
%% apply window to the data 
if window ==1                       % hanning window  
     t = [0: 2*pi/(n-1):2*pi]'; 
    data = data .* (0.5-0.5*cos(t)); 
    % mark the following ! 
    % for corect amplitude's apply factor *2 on amplitudes 
    % for correct power estimation (eg psd conversion) 
    % apply *sqrt(8/3) on amplitude (or 8/3 on psd) 
    % this is left to the user! 
end 
  
%% Now the fft 
fft_raw = fft(data); 
cspect = fft_raw(2:n/2+1)*2/n; 
 
% % SBAN jan 2008 
 

Table	11.6:	MATLAB	function	fft_cspectrum.m.	
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Appendix	G MATLAB	function	ModalFRF	

The	ModalFRF.m	function	calculates	the	frequency	response	functions	from	the	modal	description	of	the	
measured	system.	
	
 
function [alldata] = ModalFRF(alldata,ModesRange,PlotFigures) 
%% [alldata] = ModalFRF(alldata,ModesRange,PlotFigures) 
% 
% Function to derive the frequency response functions from the modal matrix 
% 
% Inputs: 
%   alldata     = structure with measurement data (use Gather_data m-function). 
%   ModesRange  = Range of modes for which the modeshapes have to be determined. 
%   PlotFigures = 1 if figures have to be plotted = 0 if no figures have to be plotted 
% 
% Outputs: 
%   Returns the alldata structure with the calculated frequency response functions. 
%  
  
% Robert Giesen, Internship MECAL, october 2 
%% Calculate the frequency response functions from the modal matrix 
f(1,:) = alldata(1).ytCompliance.f; 
fn     = alldata(1).ytOmega; 
V      = alldata(1).V * 1i; 
  
% Calculation of the damping coefficient Xi (changed during later calculations) 
for i = 1 : length(ModesRange) 
    for k = 1 : size(alldata,2) 
        Omega(i,i) = alldata(1).ytOmega(ModesRange(i)); 
        Omega1    = Omega(i,i) - 1/2 * alldata(k).ytPeaksWidth(ModesRange(i)); 
        Omega2    = Omega(i,i) + 1/2 * alldata(k).ytPeaksWidth(ModesRange(i)); 
         
        % Take the mean value of the damping coefficient from all measurements 
        Xi(k,i) = sum((Omega2 - Omega1)/(2 * Omega(i,i)),1)./6; 
    end 
end 
  
f = alldata(1).ytCompliance.f;      % Frequency range 
V = alldata(1).V;                   % Derived modal matrix 
S = f * 1i;                         % Laplace parameter 
I = eye(size(V));                   % Identity matrix 
F = speye(size(V));                 % Force matrix 
  
for n = 1 : size(alldata,2) 
    for k = 1 : length(s) 
        DModal = I * s(k)^2 + (2 * Xi * Omega) * s(k) + Omega.^2;       % Modal dynamic matrix 
        Eta = DModal\(V' * F);          % DModal * Eta = (V' * F) => Eta = DModal\(V' * F) 
        Zr = V * Eta;                   % Zr = recalculated z 
         
        % Store data in cell-array 
        HModal(k,:)  = Zr(2,:);         % For 2nd row of measurement matrix 
    end 
end 
  
%% Plot figures? 
if (PlotFigures == 1) 
%% Plotting frequency response functions 
range = 1 : 200;    % Frequency range 
  
for k = 1 : size(alldata,2) 
    f     = alldata(k).ytCompliance.f(range); 
    AbsH  = alldata(k).ytCompliance.AbsH(range); 
    Omega = alldata(1).ytOmega; 
    Omegaplot(1,:) = Omega(ModesRange); 
    Omegaplot(2,:) = Omega(ModesRange); 
     
    figure(110) 
    pl(k) = subplot(3,3,k); 
    loglog(f,abs(HModal(range,k)),'r','LineWidth',0.8); hold on; grid on; 
    loglog(f,AbsH,'b','LineWidth',0.8); 
    plot(Omegaplot,[1e-20,1e0],'--k'); 
    xlabel('Frequency (Hz)'); ylabel('Compliance (m/N)'); 
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    xlim([1 200]); linkaxes(pl,'x');     
    title(['Measured and derived frequency response functions (point ',num2str(k),')']) 
 
    % Create legend on the bottom row 
    hSub = subplot(3,3,7:9); plot(1,1,'b',1,1,'r','LineWidth',0.8); 
    hLegend = legend('Measured frequency response function','Modal frequency response function',... 
                                                                                'Location','northwest'); 
    set(hLegend, 'position', get(hSub, 'position')); set(hSub,'Visible','off') 
end 
end 
 

Table	11.7:	MATLAB	function	ModalFRF.m.	
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Appendix	H MATLAB	function	
QuadraturePicking	

The	QuadraturePicking.m	function	applies	the	quadrature	picking	method	and	plots	the	mode	shapes	in	1D	
and	the	waterfall	plot	in	3D.	
	
 
function [alldata] = QuadraturePicking(alldata,ModesRange,PlotFigures) 
%% [alldata] = QuadraturePicking(alldata,ModesRange,PlotFigures) 
% 
% Function used to calculate the natural frequencies and mode shapes by means of the quadrature picking 
% method. 
% 
% Inputs: 
%   alldata     = structure with measurement data (use Gather_data m-function). 
%   ModesRange  = Range of modes for which the modeshapes have to be determined. 
%   PlotFigures = 1 if figures have to be plotted = 0 if no figures have to be plotted 
% 
% Outputs: 
%   Returns the alldata structure with the calculated natural frequencies and mode shapes. 
%  
  
% Robert Giesen, Internship MECAL, october 2 
%% Find the local maxima 
for k = 1 : size(alldata,2) 
    ImagH(k,:) = alldata(k).ytCompliance.ImagH; 
    RealH(k,:) = alldata(k).ytCompliance.RealH; 
    AbsH(k,:)  = alldata(k).ytCompliance.AbsH; 
    Coh(k,:)   = alldata(k).ytCompliance.Coh; 
    f(k,:)     = alldata(k).ytCompliance.f; 
end 
  
sumImagReal = (sum(abs(ImagH.*Coh),1)./sum(abs(RealH.*Coh),1)); 
sumAbs      = sum(AbsH,1); 
  
MIF = sum(RealH.*AbsH,1) ./ sum(AbsH.^2,1); 
  
[sumiPeaksMag, sumiPeaksLoc]     = findpeaks(sumImagReal,'MinPeakProminence',1); 
[sumAbsPeaksMag, sumAbsPeaksLoc] = findpeaks(sumAbs,'MinPeakProminence',0.5e-7); 
  
% Find peaks of the absolute frequency response functions 
for k = 1 : size(alldata,2) 
    [alldata(k).ytPeaksMag, alldata(k).ytPeaksLoc, alldata(k).ytPeaksWidth] = findpeaks(AbsH(k,:)); 
end 
  
%% Natural frequencies 
alldata(1).ytOmega = f(1,sumAbsPeaksLoc); 
  
%% Natural modes 
for i = 1 : length(ModesRange) 
    for k = 1 : size(alldata,2) 
        alldata(1).V(k,i)    = alldata(k).ytCompliance.ImagH(sumAbsPeaksLoc(ModesRange(i))); 
        alldata(1).AbsV(k,i) = alldata(k).ytCompliance.AbsH(sumAbsPeaksLoc(ModesRange(i))); 
    end 
end 
  
%% Fitting the mode shapes 
for i = 1 : length(ModesRange) 
    % Fitting Mode shapes (Shape-preserving piecewise cubic Hermite (pchip) interpolation) 
    ModeShape{i}    = fit([-1:1:size([alldata(1).V(:,1)',0,0],2)]',[0;0;alldata(1).V(:,i);0;0],... 
                                                                                         'pchipinterp'); 
     
    AbsModeShape{i} = fit([-1:1:size([alldata(1).AbsV(:,1)',0,0],2)]',[0;0;alldata(1).AbsV(:,i);0;0],... 
                                                                                         'pchipinterp'); 
     
    % Evaluate the mode shape 
    zAbsModeShape{i} = feval(AbsModeShape{i},[-1:0.01:size([alldata(1).AbsV(1,:),0,0],2)]); 
end 
  
%% Plot figures? 
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if (PlotFigures == 1) 
 
%% Plotting mode indicator function 
range = 1 : 200;    % Frequency range 
figure(200) 
semilogy(f(1,range),abs(MIF(range)),'k','Linewidth',0.8); hold on; grid on; 
loglog(f(1,[13, 25, 35, 62, 70, 79, 107, 115, 139]),abs(MIF([13, 25, 35, 62, 70, 79, 107, 115, 
139])),'or','MarkerSize',5) 
xlabel('Frequency (Hz)'); ylabel('MIF') 
xlim([1 50]) 
title('Ordinary mode indicator function') 
     
%% Plotting local maxima 
figure(1) 
pl1 = subplot(2,1,1); 
semilogx(f(1,range),sumImagReal(range),'k','Linewidth',0.8); hold on; grid on; 
semilogx(f(1,sumiPeaksLoc),sumiPeaksMag,'or','MarkerSize',5) 
xlabel('Frequency (Hz)'); ylabel('Compliance (m/N)') 
xlim([1 50]) 
title('Imaginary/Real part of the summed frequency response function') 
  
pl2 = subplot(2,1,2); 
loglog(f(1,range),sumAbs(range),'k','Linewidth',0.8); hold on; grid on; 
loglog(f(1,sumAbsPeaksLoc),sumAbsPeaksMag,'or','MarkerSize',5) 
xlabel('Frequency (Hz)'); ylabel('Compliance (m/N)') 
xlim([1 50]); linkaxes([pl1, pl2],'x') 
title('Absolute value of the summed frequency response function') 
  
%% Plotting natural modes (2D) 
for i = 1 : length(ModesRange) 
    for k = 1 : size(alldata,2) 
        f        = alldata(k).ytCompliance.f(range); 
        fn       = alldata(1).ytOmega(ModesRange(i)); 
        AbsH     = alldata(k).ytCompliance.AbsH(range); 
        Modes    = alldata(1).V(k,i); 
        AbsModes = alldata(1).AbsV(k,i); 
         
        figure(2+i) 
        subplot(3,size(alldata,2),k) 
        loglog(f,AbsH,'b','LineWidth',0.8); hold on; grid on; 
        stem(fn,AbsModes,'r'); 
        xlim([1 100]); ylim([1e-9 1e-5]) 
        if (k == 2) | (k == 5) 
            xlabel('Frequency (Hz)') 
        end 
        if (k == 1) 
            ylabel('Compliance (m/N)') 
        end 
        title('|H(f)|') 
         
        subplot(3,size(alldata,2),size(alldata,2)+1:2*size(alldata,2)) 
        stem(k,AbsModes,'r'); hold on; grid on; 
        xlim([0 size(alldata,2)+1]) 
         
        subplot(3,size(alldata,2),2*size(alldata,2)+1:3*size(alldata,2)) 
        stem(k,Modes,'r'); hold on; grid on; 
        xlim([0 size(alldata,2)+1]) 
    end 
    subplot(3,size(alldata,2),size(alldata,2)+1:2*size(alldata,2)) 
    plot(AbsModeShape{i},'--k') 
    ylabel('Compliance (m/N)') 
    title(['|H(f)| mode shapes (Omega = ',num2str(fn),')']) 
     
    subplot(3,size(alldata,2),2*size(alldata,2)+1:3*size(alldata,2)) 
    plot(ModeShape{i},'--k') 
    xlabel('Measurement location'); ylabel('Compliance (m/N)') 
    title(['imag(H(f)) mode shapes (Omega = ',num2str(fn),')']) 
end 
  
%% Plotting natural modes (3D) 
for i = 1 : length(ModesRange) 
    for k = 1 : size(alldata,2) 
        f                                = alldata(k).ytCompliance.f(sumAbsPeaksLoc(ModesRange(1))... 
                                                                -10:sumAbsPeaksLoc(ModesRange(end))+10); 
        fn(1:length(ModesRange))         = alldata(1).ytOmega(ModesRange); 
        AbsH                             = alldata(k).ytCompliance.AbsH(sumAbsPeaksLoc(ModesRange(1))... 
                                                                -10:sumAbsPeaksLoc(ModesRange(end))+10); 
        AbsModes(:,1:length(ModesRange)) = alldata(1).AbsV(k,i); 
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        figure(100) 
        plot3(k*ones(length(f)+2,1),[f(1);f;f(end)],[1e-8;AbsH;1e-8],'LineWidth',1); hold on; grid on; 
        fill3(k*ones(length(f)*2,1),[f;flip(f)],[AbsH;1e-8*ones(length(AbsH),1)],'w','EdgeColor',... 
                                                                                'none','FaceAlpha',0.9); 
    end 
    xModeShape = -1:0.01:size([alldata(1).V(1,:),0,0],2); 
    figure(100) 
    plot3(xModeShape,fn(i)*ones(size(xModeShape,2)),zAbsModeShape{i},'k','LineWidth',1); 
    fill3(xModeShape,fn(i)*ones(size(xModeShape,2)),zAbsModeShape{i},'w','EdgeColor','none',... 
                                                                                       'FaceAlpha',0.9); 
    xlim([0 7]); ylim([f(1),f(end)]); 
    xlabel('Measurement position'); ylabel('Frequency (Hz)'); zlabel('Compliance (m/N)') 
    title('|H(f)| mode shapes') 
end 
end 
 

Table	11.8:	MATLAB	function	QuadraturePicking.m.	
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Appendix	I MATLAB	function	
QuadraturePicking2D	

The	QuadraturePicking2D.m	 function	 applies	 the	 quadrature	 picking	method	 on	 the	measurements	 of	 a	
plane	and	plots	the	mode	shapes	in	2D.	
	
 
function [alldata] = QuadraturePicking2D(alldata,x,y,PickPeaks,PlotFigures) 
%% [alldata] = QuadraturePicking2D(alldata,x,y,PickPeaks,PlotFigures) 
% 
% Script used to calculate the natural frequencies and mode shapes by means of the quadrature picking   
% method. 
% 
% Inputs: 
%   alldata     = Structure with measurement data (use Gather_data m-function). 
%   PickPeaks   = Vector with numbers of the natural frequency peaks. 
%   PlotFigures = 1 if figures have to be plotted = 0 if no figures have to be plotted. 
% 
% Outputs: 
%   Returns the alldata structure with the calculated natural frequencies and mode shapes. 
%  
  
% Robert Giesen, Internship MECAL, october 
%% Preallocate Memory 
ImagH = zeros(size(alldata,2),length(alldata(1).meas(1).f)); 
RealH = zeros(size(alldata,2),length(alldata(1).meas(1).f)); 
AbsH  = zeros(size(alldata,2),length(alldata(1).meas(1).f)); 
Coh   = zeros(size(alldata,2),length(alldata(1).meas(1).f)); 
f     = zeros(size(alldata,2),length(alldata(1).meas(1).f)); 
  
V     = zeros(size(alldata,2),length(PickPeaks)); 
AbsV  = zeros(size(alldata,2),length(PickPeaks)); 
  
X     = zeros(size(alldata,2),length(PickPeaks)); 
Y     = zeros(size(alldata,2),length(PickPeaks)); 
Z     = zeros(size(alldata,2),length(PickPeaks)); 
AbsZ  = zeros(size(alldata,2),length(PickPeaks)); 
  
Zmesh(1:length(PickPeaks))          = {zeros(length(y),length(x))}; 
AbsZmesh(1:length(PickPeaks))       = {zeros(length(y),length(x))}; 
ModeShape(1:length(PickPeaks),1)    = {[]}; 
AbsModeShape(1:length(PickPeaks),1) = {[]}; 
  
alldata(1).ztC = zeros(size(alldata,2),size(alldata,2)); 
  
%% Find the local maxima 
for k = 1 : size(alldata,2) 
    ImagH(k,:) = alldata(k).ztCompliance.ImagH; 
    RealH(k,:) = alldata(k).ztCompliance.RealH; 
    AbsH(k,:)  = alldata(k).ztCompliance.AbsH; 
    Coh(k,:)   = alldata(k).ztCompliance.Coh; 
    f(k,:)     = alldata(k).ztCompliance.f; 
end 
  
% Global curve fitting 
SumImagReal = (sum(abs(ImagH.*Coh),1)./sum(abs(RealH.*Coh),1)); 
SumAbs      = sum(AbsH,1); 
  
% Find the peaks of the summed frequency response function 
[~, SumAbsPeaksLoc, SumAbsPeaksWidth] = findpeaks(SumAbs,'WidthReference','halfheight',... 
                                                                               'MinPeakProminence',1.0); 
  
% Find the peaks of the absolute frequency response functions for each measurement 
for k = 1 : size(alldata,2) 
    [alldata(k).ztPeaksMag, alldata(k).ztPeaksLoc, alldata(k).ztPeaksWidth] = findpeaks(AbsH(k,:)); 
end 
  
%% Natural frequencies 
% Natural frequencies Omega 
alldata(1).ztOmega  = f(1,SumAbsPeaksLoc); 
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% Eigenvalue matrix Lambda     
alldata(1).ztLambda = diag(f(1,SumAbsPeaksLoc).^2); 
  
%% Natural modes 
% Calculate the natural modes for the defined natural frequencies 
for i = 1 : size(alldata,2) 
    for k = 1 : size(alldata,2) 
        V(k,i)    = alldata(k).ztCompliance.ImagH(SumAbsPeaksLoc(i)); 
        AbsV(k,i) = alldata(k).ztCompliance.AbsH(SumAbsPeaksLoc(i)); 
    end 
end 
  
% Store data 
alldata(1).V    = V; 
alldata(1).AbsV = AbsV; 
  
%% Fitting the mode shapes 
% Define mesh for surface fits 
[Xmesh,Ymesh] = meshgrid(x,y); 
  
for i = 1 : length(PickPeaks) 
    % Define coordinates 
    for k = 1 : size(alldata,2) 
        xpos = alldata(k).HammerPosition(1); 
        ypos = alldata(k).HammerPosition(2); 
         
        X(k,i)    = x(xpos); 
        Y(k,i)    = y(ypos); 
        Z(k,i)    = alldata(1).V(k,PickPeaks(i)); 
        AbsZ(k,i) = alldata(1).AbsV(k,PickPeaks(i)); 
         
        Zmesh{i}(ypos,xpos)    = Z(k,i); 
        AbsZmesh{i}(ypos,xpos) = AbsZ(k,i); 
    end 
     
    % Fitting Mode shapes (5th degree polynomial) 
    ModeShape{i}    = fit([X(:,i),Y(:,i)],Z(:,i),'poly55'); 
    AbsModeShape{i} = fit([X(:,i),Y(:,i)],AbsZ(:,i),'poly55'); 
end 
  
%% Damping coefficient 
for i = 1 : size(alldata,2) 
    % Calculate the damping from the intersections with the PeaksMag/sqrt(2) lines 
    % PeaksWidth = 50% height, sqrt(2) = 70% height, approximation -> *(2/sqrt(2)) 
    Omega1 = alldata(1).ztOmega(i) - 1/2 * SumAbsPeaksWidth(i) * (2/sqrt(2)); 
    Omega2 = alldata(1).ztOmega(i) + 1/2 * SumAbsPeaksWidth(i) * (2/sqrt(2)); 
    Xi     = (Omega2 - Omega1) / (2 * alldata(1).ztOmega(i)); 
     
    % Modal damping matrix 
    alldata(1).ztC(i,i) = alldata(1).ztOmega(i)*Xi;     % sigma = xi * omega_n 
end 
  
%% Plot figures? 
if (PlotFigures == 1) 
%% Plotting local maxima 
figure(1) 
pl1 = subplot(2,1,1); 
findpeaks(SumImagReal,f(1,:),'WidthReference','halfheight','MinPeakProminence',0.2,'Annotate','extents') 
xlabel('Frequency (Hz)'); ylabel('Compliance (m/N)') 
title('Weighted Imaginary/Real part of the summed frequency response function') 
  
pl2 = subplot(2,1,2); 
findpeaks(SumAbs,f(1,:),'WidthReference','halfheight','MinPeakProminence',1.0,'Annotate','peaks'); 
xlabel('Frequency (Hz)'); ylabel('Compliance (m/N)') 
set(pl2,'YScale','log'); linkaxes([pl1,pl2],'x'); xlim([1 1e3]) 
title('Absolute value of the summed frequency response function') 
  
%% Plotting natural modes (2D) 
for i = 1 : length(PickPeaks) 
    fn = alldata(1).ztOmega(PickPeaks(i)); 
     
    figure(2+i)     
    sp1 = subplot(2,3,1); 
    surf(Xmesh,Ymesh,Zmesh{i}); hold on; 
    stem3(X(:,i),Y(:,i),Z(:,i),'k'); 
    xlabel('x (m)') 
    ylabel('y (m)') 
    zlabel('Compliance (m/N)') 
    title(['imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(fn),')']) 
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    sp2 = subplot(2,3,2); 
 
    cp1 = plot(ModeShape{i}); view(2) 
    xlabel('x (m)'); ylabel('y (m)') 
    title(['imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(fn),')']) 
     
    sp3 = subplot(2,3,3); 
    plot(ModeShape{i}); hold on; 
    stem3(X(:,i),Y(:,i),Z(:,i),'k'); 
    xlabel('x (m)'); ylabel('y (m)'); zlabel('Compliance (m/N)') 
    title(['Fitting of imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(fn),')']) 
     
    sp4 = subplot(2,3,4); 
    surf(Xmesh,Ymesh,AbsZmesh{i}); hold on; 
    stem3(X(:,i),Y(:,i),AbsZ(:,i),'k'); 
    xlabel('x (m)'); ylabel('y (m)'); zlabel('Compliance (m/N)') 
    title(['|H(f)| mode shape ', num2str(i),' (Omega = ',num2str(fn),')']) 
     
    sp5 = subplot(2,3,5); 
    cp2 = plot(AbsModeShape{i}); view(2) 
    xlabel('x (m)'); ylabel('y (m)') 
    title(['imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(fn),')']) 
     
    sp6 = subplot(2,3,6); 
    plot(AbsModeShape{i}); hold on; 
    stem3(X(:,i),Y(:,i),AbsZ(:,i),'k'); 
    xlabel('x (m)'); ylabel('y (m)'); zlabel('Compliance (m/N)') 
    title(['Fitting of |H(f)| mode shape ', num2str(i),' (Omega = ',num2str(fn),')']) 
     
    daspect(sp1, [1,1,1]); 
    set([cp1,cp2],'linestyle','none'); set(sp1,'XLim',[min(x),max(x)],'YLim',[min(y),max(y)]) 
    linkprop([sp1,sp2,sp3,sp4,sp5,sp6],'DataAspectRatio'); 
    linkprop([sp1,sp2,sp3,sp4,sp5,sp6],'XLim'); 
    linkprop([sp1,sp2,sp3,sp4,sp5,sp6],'YLim'); 
end 
end 
 

Table	11.9:	MATLAB	function	QuadraturePicking2D.m.	
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Appendix	J MATLAB	script	Curve	fitting	–	
Single	mode	contribution	scaling	

The	single	mode	contribution	scaling	script	is	used	as	a	way	of	curve	fitting,	as	explained	in	section	8.3.	
	
 
%% Single mode contribution scaling 
 
% Calculate the multiplication constants to place the single mode contributions on the resonance peaks 
for counter = 1 : 4; 
    A(counter) = abs(HEoM(1,SumAbsPeaksLoc(counter))) / abs(Zr{1,counter}(SumAbsPeaksLoc(counter))); 
end 
 
for k = 1 : length(s) 
    for i = 1 : size(M,1) 
        for j = 1 : size(VPicking,1) 
            % Modal dynamic matrix 
            DModal   = I(i,i) * s(k)^2 + CModal(i,i) * s(k) + Lambda(i,i); 
             
            % Apply scaling 
            VTranspose = VPicking'; 
            VTranspose(1,2) = VTranspose(1,2) * A(1); 
            VTranspose(2,2) = VTranspose(2,2) * A(2); 
            VTranspose(3,2) = VTranspose(3,2) * A(3); 
            VTranspose(4,2) = VTranspose(4,2) * A(4); 
             
            % DModal * Eta = (V' * F) => Eta = DModal\(V' * F) 
            Eta(i,k) = DModal\(VTranspose(i,2)); 
             
            % Zr = V11 * Eta1 + V12 * Eta2 + V13 * Eta1 + V13 * Eta1 
            Zr{j,i}(k)  = VPicking(j,i) * Eta(i,k); 
        end 
    end 
end 
  
for k = 1 : length(s) 
    for i = 1 : size(Zr,1) 
        HPickingStep1(i,k) = Zr{i,1}(k) + Zr{i,2}(k) + Zr{i,3}(k) + Zr{i,4}(k); 
    end 
end 
  
%% Shifting the frequency response function 
VPicking(1,:) = VPicking(1,:) * (HEoM(1,1)/HPickingStep1(1,1)); 
VPicking(2,:) = VPicking(2,:) * (HEoM(2,1)/HPickingStep1(2,1)); 
VPicking(3,:) = VPicking(3,:) * (HEoM(3,1)/HPickingStep1(3,1)); 
VPicking(4,:) = VPicking(4,:) * (HEoM(4,1)/HPickingStep1(4,1)); 
  
for k = 1 : length(s) 
    for i = 1 : size(M,1) 
        for j = 1 : size(VPicking,1) 
            % Modal dynamic matrix 
            DModal   = I(i,i) * s(k)^2 + CModal(i,i) * s(k) + Lambda(i,i); 
             
            % DModal * Eta = (V' * F) => Eta = DModal\(V' * F) 
            Eta(i,k) = DModal\(VTranspose(i,2)); 
             
            % Zr = V11 * Eta1 + V12 * Eta2 + V13 * Eta1 + V13 * Eta1 
            Zr{j,i}(k)  = VPicking(j,i) * Eta(i,k);  
        end 
    end 
end 
  
for k = 1 : length(s) 
    for i = 1 : size(Zr,1) 
        HPickingStep2(i,k) = Zr{i,1}(k) + Zr{i,2}(k) + Zr{i,3}(k) + Zr{i,4}(k); 
    end 
end 
 

Table	11.10:	MATLAB	script	Curve	fitting	–	Single	mode	contribution	scaling.	
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Appendix	K MATLAB	script	Curve	fitting	–	mean	
square	error	optimisation	

The	mean	square	error	optimisation	script	is	used	for	curve	fitting,	to	minimise	the	mean	square	error,	as	
explained	in	section	8.4.	
	
 
%% Curve fitting - Mean square error 
  
% Normalisation 
V = V/norm(V); 
  
% Weight factor 
W(1,1:length(f)) = 1; 
W(1,10:50)       = 10; 
W(1,50:end)      = 5; 
  
% Optimisation problem 
Options = optimoptions(@fmincon, 'Algorithm', 'interior-
point','MaxIterations',5500,'MaxFunctionEvaluations',5500); 
ObjectiveFunction = @(V) OptimisationFunction2(SensorLoc,f,C,Lambda,H,W,V); 
Problem = createOptimProblem('fmincon','x0',V,'objective',ObjectiveFunction,'options',Options); 
  
% Minimise the mean square error 
MS  = MultiStart('Display','iter','UseParallel',true); 
GS  = GlobalSearch('Display','iter'); 
[V] = run(MS,Problem,1);        % Choose: Multistart or GlobalSearch 
  
% Normalisation 
V = V/norm(V); 
VModal = V; 
  
% Regenerate the frequency response function 
s = f * 1i;                     % Laplace parameter 
F = eye(36);                    % Force matrix 
I = eye(36);                    % Identity matrix 
  
HModal(size(I,1),size(I,2),length(f)) = 0; 
  
for k = 1 : length(s) 
    DModal = I * s(k)^2 + C * s(k) + Lambda;    % Modal dynamic matrix 
    Eta    = DModal\(V' * F);                   % DModal * Eta = (V' * F) => Eta = DModal\(V' * F) 
     
    % Calculate the modal frequency response functions 
    HModal(:,:,k) = V * Eta; 
end 
 
%% Shifting the frequency response function 
for l = 1 : length(x)*length(y) 
    A(1:36,l) = mean(abs(H(SensorLoc,l,2:20)) ./ abs(HModal(SensorLoc,l,2:20))); 
end 
 
for i = 1 : size(HModal,1) 
    for j = 1 : size(HModal,2) 
        HModal(i,j,:) = HModal(i,j,:).*A(i,j); 
    end 
end 
 

Table	11.11:	MATLAB	script	Curve	fitting	–	mean	square	error	optimisation.	
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%% Optimisation function 
function ObjectiveFunction = OptimisationFunction3(SensorLoc,f,C,Lambda,H,W,V) 
% Normalisation 
V = V/norm(V); 
  
s = f * 1i;         % Laplace parameter 
F = eye(36);        % Force matrix 
I = eye(36);        % Identity matrix 
  
HModal(size(I,1),size(I,2),length(f)) = 0; 
  
% Calculate the modal frequency response functions with scaled damping 
for k = 1 : length(s) 
    DModal     = (I * s(k)^2 + C * s(k) + Lambda);    % Modal dynamic matrix 
    Eta        = DModal\(V' * F);                     % DModal * Eta = (V' * F) => Eta = DModal\(V' * F) 
     
    % Calculate the modal frequency response functions 
    % Changing the model by adding an extra zero to the frequency response functions 
    HModal(:,:,k) = V * Eta * s(k); 
end 
  
% Calculate the error 
for c = 1 
    Error(c,:) = reshape(abs(H(SensorLoc,c,:)),1,length(s),[])...  
        - reshape(abs(HModal(SensorLoc,c,:)),1,length(s),[]); 
end 
  
% Minimise the error 
ObjectiveFunction = sum(sum(sum( W .* Error.^2 ))); 
end 
 

Table	11.12:	MATLAB	script	Curve	fitting	–	Optimisation	function	
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Appendix	L MATLAB	script	Compensation	
residues	

The	residue	compensation	script	is	used	to	improve	the	curve	fit	by	addition	of	extra	residues,	as	explained	
in	section	8.4.2.	
	
 
%% Compensation residues 
ResiduesPeaks = 2*Peaks(end):10:150; 
C(2:length(ResiduesPeaks)+1,2:length(ResiduesPeaks)+1) = diag(20*C(1,1)*ones(1,length(ResiduesPeaks))); 
  
for l = 1 : length(x)*length(y) 
    for k = 1 : length(ResiduesPeaks) 
        B(1:36,l,k) = ( abs(mean(H(SensorLoc,l,ResiduesPeaks(k)-2:ResiduesPeaks(k)+2)))... 
            - abs(mean(HModal(SensorLoc,l,ResiduesPeaks(k)-2:ResiduesPeaks(k)+2))) )... 
            * abs( s(ResiduesPeaks(k))^2 + C(k+1,k+1) * s(ResiduesPeaks(k)) + f(ResiduesPeaks(k))^2 ); 
    end 
end 
  
HModalResidues = HModal; 
  
for i = 1 : size(HModal,1) 
    for j = 1 : size(HModal,2) 
        for k = 1 : length(ResiduesPeaks) 
            HModalResidues(i,j,Peaks(end):end) = HModalResidues(i,j,Peaks(end):end)... 
                + reshape( B(i,j,k)./( s(Peaks(end):end).^2 + C(k+1,k+1) * s(Peaks(end):end)... 
                + f(ResiduesPeaks(k))^2 ), 1,1,length(s(Peaks(end):end))); 
        end 
    end 
end 
 

Table	11.13:	MATLAB	script	Compensation	residues.	
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Appendix	M MATLAB	GUI	-	QuadraturePicking	

Figure	11.1	shows	a	preview	of	the	quadrature	picking	GUI.	This	program	can	be	used	to	interactively	select	
the	resonance	peaks	of	a	measurement,	after	which	the	program	calculates	the	mode	shapes	corresponding	
with	the	selected	natural	frequencies.	
	

	
Figure	11.1:	Preview	of	the	quadrature	picking	GUI.	

	
Instructions	

o First	 enter	 the	 path	 where	 the	 measurement	 data	 is	 located	 in	 the	 textbox.	 The	 name	 of	 the	
measurement	data	should	have	the	following	format:	

§ ‘MeasurementName_sf(x,y)_ha(x,y).mat’	
Where	sf(x,y)	is	the	position	of	the	fixed	sensor	and	ha(x,y)	the	excitation	position.	As	an	example,	
the	measurement	data	used	here	has	the	following	name:	

§ ‘Measurement2_sf(9,6)_ha(1,1).mat’	
o Next	press	calculate.	The	program	will	generate	a	plot	of	the	averaged	absolute	frequency	response	

function.		
o Select	all	resonance	peaks	for	which	mode	shapes	should	be	calculated.	This	is	done	by	selecting	the	

peak	from	the	list	and	pressing	select.	The	peak	frequency	is	moved	to	the	list	on	the	right.	To	remove	
peaks,	select	the	peak	from	the	right	list	and	press	remove.	

o Press	Mode	 shapes	 to	 generate	 the	mode	 shape	 plots.	 These	 plots	 consist	 of	 the	mode	 shapes	
derived	 from	 the	modal	matrix,	 a	 5th	 degree	 polynomial	 fit	 of	 the	mode	 shapes	 and	 a	 top	 view	
contour	plot.		
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%% Robert Giesen, Internship MECAL 
function varargout = QuadraturePicking(varargin) 
% QUADRATUREPICKING MATLAB code for QuadraturePicking.fig 
%      QUADRATUREPICKING, by itself, creates a new QUADRATUREPICKING or raises the existing 
%      singleton*. 
% 
%      H = QUADRATUREPICKING returns the handle to a new QUADRATUREPICKING or the handle to 
%      the existing singleton*. 
% 
%      QUADRATUREPICKING('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in QUADRATUREPICKING.M with the given input arguments. 
% 
%      QUADRATUREPICKING('Property','Value',...) creates a new QUADRATUREPICKING or raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before QuadraturePicking_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to QuadraturePicking_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
  
% Edit the above text to modify the response to help QuadraturePicking 
  
% Last Modified by GUIDE v2.5 15-Nov-2017 13:28:27 
  
%% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
    'gui_Singleton',  gui_Singleton, ... 
    'gui_OpeningFcn', @QuadraturePicking_OpeningFcn, ... 
    'gui_OutputFcn',  @QuadraturePicking_OutputFcn, ... 
    'gui_LayoutFcn',  [] , ... 
    'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
  
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
  
%% --- Executes just before QuadraturePicking is made visible. 
function QuadraturePicking_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to QuadraturePicking (see VARARGIN) 
  
% Choose default command line output for QuadraturePicking 
handles.output = hObject; 
  
% Update handles structure 
guidata(hObject, handles); 
  
% UIWAIT makes QuadraturePicking wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
  
%% --- Outputs from this function are returned to the command line. 
function varargout = QuadraturePicking_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Get default command line output from handles structure 
varargout{1} = handles.output; 
  
function DataPath_Callback(hObject, eventdata, handles) 
% hObject    handle to DataPath (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: get(hObject,'String') returns contents of DataPath as text 
%        str2double(get(hObject,'String')) returns contents of DataPath as a double 
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%% --- Executes during object creation, after setting all properties. 
function DataPath_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to DataPath (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% --- Executes during object creation, after setting all properties. 
function PeakList_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to PeakList (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% --- Executes during object creation, after setting all properties. 
function SelectedPeaks_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to SelectedPeaks (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
  
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
%% --- Executes on button press in Calculate (Calculate). 
function Calculate_Callback(hObject, eventdata, handles) 
% hObject    handle to Calculate (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%% Clear previous calculations 
clc; cla(handles.Peaks); set(handles.PeakList,'String',[]); %set(handles.SelectedPeaks,'String',[]); 
  
%% Initialisation 
MeasurementPath = get(handles.DataPath,'String'); 
  
x = [0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35]; 
y = [0.1 0.2 0.25 0.35 0.4 0.55 0.6]; 
  
window = 0; 
  
% Define the points and range which have to be averaged 
SuperPoints = [2 2; 2 6; 5 2; 5 6; 8 2; 8 6]; 
  
%% 1. Gathering data 
handles = GatherData_Callback(hObject, eventdata, handles, MeasurementPath, window); 
  
%% 2. Peak picking 
handles = PeakPicking_Callback(hObject, eventdata, handles, SuperPoints); 
 
%% --- Executes on button press in ModeShapes. 
function ModeShapes_Callback(hObject, eventdata, handles) 
% hObject    handle to ModeShapes (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%% Clear previous calculations 
clc; 
  
%% Initialisation 
x = [0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35]; 
y = [0.1 0.2 0.25 0.35 0.4 0.55 0.6]; 
 
% Define the points and range which have to be averaged 
SuperPoints = [2 2; 2 6; 5 2; 5 6; 8 2; 8 6]; 
  
% Resulting peaks from the peak picking 
AllSelectedPeaks = get(handles.SelectedPeaks,'string'); 
SumAbsPeaksLoc   = handles.alldata(1).ztCompliance.SumAbsPeaksLoc; 
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for i = 1 : size(AllSelectedPeaks,1) 
    PickPeaks(i,:) = 
SumAbsPeaksLoc(str2double(AllSelectedPeaks{i,:}((strfind(AllSelectedPeaks{i,:},'Peak 
')+5):(strfind(AllSelectedPeaks{i,:},',')-1)))); 
end 
 
% Sorting the found peaks 
PickPeaks = sort(PickPeaks); 
  
%% 2. Quadrature picking 
handles = QuadraturePicking_Callback(hObject, eventdata, handles, SuperPoints, PickPeaks, x, y); 
 
%% --- Executes on selection change in PeakList. 
function PeakList_Callback(hObject, eventdata, handles) 
% hObject    handle to PeakList (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = cellstr(get(hObject,'String')) returns PeakList contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from PeakList 
%% Initialisation 
% Get selected peak 
PeakList = get(hObject,'string'); 
CurrentPeak = PeakList{get(hObject,'value')}; 
CurrentPeakNumber = str2double(CurrentPeak((strfind(CurrentPeak,'Peak ')+5):(strfind(CurrentPeak,',')... 
                                                                                                  -1))); 
  
%% Set visibility of the selected peak 
set(handles.PeakPickingPlot,'Xdata',handles.PeakPickingPlotx,'Ydata',handles.PeakPickingPlotx,'visible',
'off') 
set(handles.PeakPickingPlot,'Xdata',handles.PeakPickingPlotx(CurrentPeakNumber),'Ydata',... 
                                             handles.PeakPickingPloty(CurrentPeakNumber),'visible','on') 
  
%% --- Executes on selection change in SelectedPeaks. 
function SelectedPeaks_Callback(hObject, eventdata, handles) 
% hObject    handle to SelectedPeaks (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
  
% Hints: contents = cellstr(get(hObject,'String')) returns SelectedPeaks contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from SelectedPeaks 
  
%% --- Executes on button press in Select. 
function Select_Callback(hObject, eventdata, handles) 
% hObject    handle to Select (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%% Initialisation 
handles = guidata(hObject); 
  
f = handles.alldata(1).ztCompliance.f; 
SumAbsPeaksMag = handles.alldata(1).ztCompliance.SumAbsPeaksMag; 
SumAbsPeaksLoc = handles.alldata(1).ztCompliance.SumAbsPeaksLoc; 
  
% Get selected peak 
PeakList = get(handles.PeakList,'string'); 
CurrentPeak = PeakList{get(handles.PeakList,'value')}; 
  
%% Add to list of selected peaks 
AllSelectedPeaks = get(handles.SelectedPeaks,'string'); 
  
if (isempty(AllSelectedPeaks) == 1) 
    set(handles.SelectedPeaks,'String',{CurrentPeak}) 
else 
    set(handles.SelectedPeaks,'String',{AllSelectedPeaks{:},CurrentPeak}) 
end 
 
%% Plot selected peak 
AllSelectedPeaks = get(handles.SelectedPeaks,'string'); 
  
% Define the peaks to plot 
for i = 1 : length(AllSelectedPeaks) 
    PlotSelectedPeaks(i) = str2double(AllSelectedPeaks{i}((strfind(AllSelectedPeaks{i},... 
                                                     'Peak ')+5):(strfind(AllSelectedPeaks{i},',')-1))); 
end 
  
axes(handles.Peaks) 
 
handles.PeaksPlot = loglog(f(SumAbsPeaksLoc(PlotSelectedPeaks)),SumAbsPeaksMag(PlotSelectedPeaks),... 
                                                                                   'ob','MarkerSize',6); 

	



	
	
	
	
	

Form	ID:	MEC-QF-039-v2	
Form	Issued:	September	2017	

Internship	Report	-	Robert	Giesen.docx	 Page	104	of	107	

	

  
guidata(hObject,handles) 
 
%% --- Executes on button press in Remove. 
function Remove_Callback(hObject, eventdata, handles) 
% hObject    handle to Remove (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%% Initilisation 
AllSelectedPeaks = get(handles.SelectedPeaks,'string'); 
  
%% Remove selected peak from list 
for i = 1 : get(handles.SelectedPeaks,'value')-1 
    NewAllSelectedPeaks{i} = AllSelectedPeaks{i}; 
end 
for i = get(handles.SelectedPeaks,'value')+1 : size(AllSelectedPeaks,1) 
    NewAllSelectedPeaks{i-1} = AllSelectedPeaks{i}; 
end 
  
set(handles.SelectedPeaks,'String',NewAllSelectedPeaks); 
  
%% --- GatherData 
function handles = GatherData_Callback(hObject, eventdata, handles, MeasurementPath, window) 
%% Initialisation 
handles = guidata(hObject); 
  
%% Read data 
file_list = dir([MeasurementPath,'*.mat']); 
  
for k = 1 : length(file_list) 
    fl(k,:) = file_list(k).name; 
end 
  
fl = sortrows(fl,[2,3]); 
  
%% Store data 
for k = 1 : size(fl,1) 
    data = load([MeasurementPath fl(k,:)]); handles.alldata(k).meas = data.StiffGlob.meas; 
     
    FixedSensorPosition = [str2num(fl(k,strfind(fl(k,:),'sf(')+3)), 
str2num(fl(k,strfind(fl(k,:),'sf(')+5))]; 
    HammerPosition      = [str2num(fl(k,strfind(fl(k,:),'ha(')+3)), 
str2num(fl(k,strfind(fl(k,:),'ha(')+5))]; 
     
    % Store all data in structure 
    handles.alldata(k).FixedSensorPosition = FixedSensorPosition; 
    handles.alldata(k).HammerPosition      = HammerPosition; 
  
    % Calculate the sample rate 
    dt = handles.alldata(k).meas(1).t(2) - handles.alldata(k).meas(1).t(1); 
     
    for i = 1 : size(handles.alldata(k).meas,2) 
        Hamt(:,i) = handles.alldata(k).meas(i).Hamt; 
        zt(:,i)   = handles.alldata(k).meas(i).zt; 
        yt(:,i)   = handles.alldata(k).meas(i).yt; 
    end 
     
    % FixedSensor (yt) 
    [handles.alldata(k).ytStiffness.f, handles.alldata(k).ytStiffness.H, 
handles.alldata(k).ytStiffness.AbsH, handles.alldata(k).ytStiffness.Phase,... 
        handles.alldata(k).ytStiffness.Coh] = HAvgAndCoh(Hamt, yt, 1/dt, window); 
     
    [handles.alldata(k).ytCompliance.f, handles.alldata(k).ytCompliance.H, 
 
handles.alldata(k).ytCompliance.AbsH, handles.alldata(k).ytCompliance.Phase,... 
        handles.alldata(k).ytCompliance.Coh] = HAvgAndCoh(yt, Hamt, 1/dt, window); 
 
    % Imaginary and real parts of the stiffness 
    handles.alldata(k).ytStiffness.ImagH = imag( handles.alldata(k).ytStiffness.H ); 
 
handles.alldata(k).ytStiffness.RealH = real( handles.alldata(k).ytStiffness.H ); 
     
    % Imaginary and real parts of the compliance 
    handles.alldata(k).ytCompliance.ImagH = imag( handles.alldata(k).ytCompliance.H ); 
    handles.alldata(k).ytCompliance.RealH = real( handles.alldata(k).ytCompliance.H ); 
     
    % ColocatedSensor (zt) 
    [handles.alldata(k).ztStiffness.f, handles.alldata(k).ztStiffness.H, 
handles.alldata(k).ztStiffness.AbsH, handles.alldata(k).ztStiffness.Phase,... 
        handles.alldata(k).ztStiffness.Coh]  = HAvgAndCoh(Hamt, zt, 1/dt, window); 
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    [handles.alldata(k).ztCompliance.f, handles.alldata(k).ztCompliance.H, 
handles.alldata(k).ztCompliance.AbsH, handles.alldata(k).ztCompliance.Phase,... 
        handles.alldata(k).ztCompliance.Coh] = HAvgAndCoh(zt, Hamt, 1/dt, window); 
     
    % Imaginary and real parts of the stiffness 
    handles.alldata(k).ztStiffness.ImagH = imag( handles.alldata(k).ztStiffness.H ); 
    handles.alldata(k).ztStiffness.RealH = real( handles.alldata(k).ztStiffness.H ); 
     
    % Imaginary and real parts of the compliance 
    handles.alldata(k).ztCompliance.ImagH = imag( handles.alldata(k).ztCompliance.H ); 
    handles.alldata(k).ztCompliance.RealH = real( handles.alldata(k).ztCompliance.H ); 
end 
  
guidata(hObject,handles) 
  
%% --- PeakPicking 
function handles = PeakPicking_Callback(hObject, eventdata, handles, SuperPoints) 
%% Initialisation 
handles = guidata(hObject); 
  
DataSize = size(handles.alldata,2); 
  
for k = 1 : DataSize 
    ImagH(k,:)          = handles.alldata(k).ztCompliance.ImagH; 
    RealH(k,:)          = handles.alldata(k).ztCompliance.RealH; 
    H(k,:)              = handles.alldata(k).ztCompliance.H; 
    AbsH(k,:)           = handles.alldata(k).ztCompliance.AbsH; 
    HammerPosition(k,:) = handles.alldata(k).HammerPosition; 
end 
  
f = handles.alldata(1).ztCompliance.f; 
  
% Preallocate Memory 
AveragingSet(1:size(SuperPoints,1),1) = {[]}; 
SuperPointsIndex = []; 
  
%% Calculate average frequency response function for all measurements 
% Global curve fitting 
SumImagReal = (sum(abs(ImagH),1)./sum(abs(RealH),1)); 
SumAbs      = sum(AbsH,1); 
  
%% Find the local maxima 
[SumAbsPeaksMag, SumAbsPeaksLoc, SumAbsPeaksWidth] = findpeaks(SumAbs,'WidthReference','halfheight'); 
  
%% Return data to figure 
axes(handles.Peaks) 
loglog(f,SumAbs,'k','Linewidth',0.8); hold on; grid on; 
PeakPickingPlot = loglog(f(SumAbsPeaksLoc),SumAbsPeaksMag,'or','MarkerSize',6,'visible','off'); 
xlabel('Frequency (Hz)'); ylabel('Compliance (m/N)') 
title('Absolute value of the summed frequency response function') 
  
%% Return data to listbox 
for i = 1 : length(SumAbsPeaksLoc) 
    Frequentie = num2str(round(f(SumAbsPeaksLoc(i)))); 
    PeakList(i,1) = strcat({'Peak '},num2str(i),{', '},Frequentie,{' Hz'}); 
end 
set(handles.PeakList,'String',PeakList) 
  
%% Store data 
handles.alldata(1).ztCompliance.SumAbs           = SumAbs; 
handles.alldata(1).ztCompliance.SumImagReal      = SumImagReal; 
handles.alldata(1).ztCompliance.SumAbsPeaksMag   = SumAbsPeaksMag; 
handles.alldata(1).ztCompliance.SumAbsPeaksLoc   = SumAbsPeaksLoc; 
handles.alldata(1).ztCompliance.SumAbsPeaksWidth = SumAbsPeaksWidth; 
handles.SuperPointsIndex = SuperPointsIndex; 
handles.PeakPickingPlot  = PeakPickingPlot; 
handles.PeakPickingPlotx = get(PeakPickingPlot, 'Xdata'); 
handles.PeakPickingPloty = get(PeakPickingPlot, 'Ydata'); 
 
guidata(hObject,handles) 
 
%% --- QuadraturePicking 
function handles = QuadraturePicking_Callback(hObject, eventdata, handles, SuperPoints, PickPeaks, x, y) 
%% Initialisation 
handles = guidata(hObject); 
  
DataSize = size(handles.alldata,2); 
  
for k = 1 : DataSize 
    ImagH(k,:)          = handles.alldata(k).ztCompliance.ImagH; 
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    AbsH(k,:)           = handles.alldata(k).ztCompliance.AbsH; 
    HammerPosition(k,:) = handles.alldata(k).HammerPosition; 
end 
  
f                = handles.alldata(1).ztCompliance.f; 
SumAbsPeaksLoc   = handles.alldata(1).ztCompliance.SumAbsPeaksLoc; 
SumAbsPeaksWidth = handles.alldata(1).ztCompliance.SumAbsPeaksWidth; 
SuperPointsIndex = handles.SuperPointsIndex; 
  
%% Natural frequencies 
Omega  = f(SumAbsPeaksLoc);                  % Natural frequencies Omega 
Lambda = diag(f(SumAbsPeaksLoc).^2);         % Eigenvalue matrix Lambda 
  
%% Natural modes 
for i = 1 : length(PickPeaks) 
    for k = 1 : DataSize 
        V(k,i)    = ImagH(k,PickPeaks(i)); 
        AbsV(k,i) = AbsH(k,PickPeaks(i)); 
    end 
end 
  
%% Fitting the mode shapes 
% Define mesh for surface fits 
[Xmesh,Ymesh] = meshgrid(x,y); 
  
for i = 1 : length(PickPeaks) 
     
    % Define coordinates 
    for k = 1 : DataSize 
        xpos = HammerPosition(k,1); 
        ypos = HammerPosition(k,2); 
         
        X(k,i)    = x(xpos); 
        Y(k,i)    = y(ypos); 
        Z(k,i)    = V(k,i); 
        AbsZ(k,i) = AbsV(k,i); 
        Zmesh{i}(ypos,xpos)    = V(k,i); 
        AbsZmesh{i}(ypos,xpos) = AbsV(k,i); 
    end 
     
    % Fitting Mode shapes (5th degree polynomial) 
    ModeShape{i}    = fit([X(:,i),Y(:,i)],Z(:,i),'poly55'); 
    AbsModeShape{i} = fit([X(:,i),Y(:,i)],AbsZ(:,i),'poly55'); 
end 
  
%% Damping coefficient 
for i = 1 : DataSize 
    % Calculate the damping from the intersections with the PeaksMag/sqrt(2) lines 
    % PeaksWidth = 50% height, sqrt(2) = 70% height, approximation -> *(2/sqrt(2)) 
    Omega1 = Omega(i) - 1/2 * SumAbsPeaksWidth(i) * (2/sqrt(2)); 
    Omega2 = Omega(i) + 1/2 * SumAbsPeaksWidth(i) * (2/sqrt(2)); 
    Xi     = (Omega2 - Omega1) / (2 * Omega(i)); 
     
    % Modal damping matrix 
    C(i,i) = Omega(i) * Xi;     % sigma = xi * omega_n 
end 
  
%% Plotting the natural modes 
for i = 1 : length(PickPeaks) 
    figure(2+i)     
    sp1 = subplot(2,3,1); 
    surf(Xmesh,Ymesh,Zmesh{i}); hold on; 
    stem3(X(:,i),Y(:,i),Z(:,i),'k'); 
    xlabel('x (m)'); ylabel('y (m)'); zlabel('Compliance (m/N)') 
    title(['imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(f(PickPeaks(i))),')']) 
     
    sp2 = subplot(2,3,2); 
    cp1 = plot(ModeShape{i},'Style','Contour'); view(2) 
    xlabel('x (m)'); ylabel('y (m)') 
    title(['imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(f(PickPeaks(i))),')']) 
     
    sp3 = subplot(2,3,3); 
    plot(ModeShape{i}); hold on; 
    stem3(X(:,i),Y(:,i),Z(:,i),'k'); 
    xlabel('x (m)'); ylabel('y (m)'); zlabel('Compliance (m/N)') 
    title(['Fitting of imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(f(PickPeaks(i))),')']) 
     
    sp4 = subplot(2,3,4); 
    surf(Xmesh,Ymesh,AbsZmesh{i}); hold on; 
    stem3(X(:,i),Y(:,i),AbsZ(:,i),'k'); 
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    xlabel('x (m)'); ylabel('y (m)'); zlabel('Compliance (m/N)') 
    title(['|H(f)| mode shape ', num2str(i),' (Omega = ',num2str(f(PickPeaks(i))),')']) 
     
    sp5 = subplot(2,3,5); 
    cp2 = plot(AbsModeShape{i},'Style','Contour'); view(2) 
    xlabel('x (m)'); ylabel('y (m)') 
    title(['imag(H(f)) mode shape ', num2str(i),' (Omega = ',num2str(f(PickPeaks(i))),')']) 
     
    sp6 = subplot(2,3,6); 
    plot(AbsModeShape{i}); hold on; 
    stem3(X(:,i),Y(:,i),AbsZ(:,i),'k'); 
    xlabel('x (m)'); ylabel('y (m)'); zlabel('Compliance (m/N)') 
    title(['Fitting of |H(f)| mode shape ', num2str(i),' (Omega = ',num2str(f(PickPeaks(i))),')']) 
     
    daspect(sp1, [1,1,1]); 
    set([cp1,cp2],'linestyle','none'); set(sp1,'XLim',[min(x),max(x)],'YLim',[min(y),max(y)]) 
    linkprop([sp1,sp2,sp3,sp4,sp5,sp6],'DataAspectRatio'); 
    linkprop([sp1,sp2,sp3,sp4,sp5,sp6],'XLim'); 
    linkprop([sp1,sp2,sp3,sp4,sp5,sp6],'YLim'); 
end 
  
%% Store data 
handles.alldata(1).V      = V; 
handles.alldata(1).AbsV   = AbsV; 
handles.alldata(1).ztC    = C; 
handles.alldata(1).Lambda = Lambda; 
  
guidata(hObject,handles) 
 

Table	11.14:	MATLAB	GUI	–	QuadraturePicking.	

	


