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Abstract—In computed tomography it is important not only
to obtain images of good quality but also to minimize the radia-
tion dose given to the patient. Research efforts are dedicated to
increase the quality of the reconstructed images and minimize
the radiation exposure. This work addresses the problem of
reducing the dose by using deep learning to correct the update
term of the simultaneous iterative reconstruction technique
(SIRT). The aim is to improve the output of the backprojection
operator which does not rely on any prior knowledge about
the object and distributes all the rays back into the volume
under reconstruction uniformly. We propose a deep learning
solution to correct the update term of the SIRT algorithm
after the backprojection operator has been applied with the
purpose to increase the image quality. We evaluate the quality of
the images obtained with the proposed method using similarity
measures between the low dose reconstructions obtained with
the proposed method and the high dose reconstructions taken as
ground truth. We also investigate whether the iterative scheme
converges faster with the proposed modification. We obtained
a structural similarity index (SSIM) of 0.725, a peak signal-
to-noise ratio (PSNR) of 29.42 dB and a mean absolute error
(MAE) of 92.69 HU which indicates that our method performs
better than the classical SIRT algorithm. We also demonstrated
that the proposed iterative scheme has the side benefit that it
converges faster, achieving with three iterations the similarity
that is obtained with the classical scheme with 115 iterations.

[. INTRODUCTION

Computed tomography (CT) is an imaging technique that
aims at reconstructing patient’s interior volume from the
measurement of the X-ray beams that passed through the
volume and were attenuated. This imaging modality was used
clinically for the first time in in the Atkinson Morley Hospital
in London in 1972 [1], [2]. Since then, the number of CT
scans performed every year has constantly grown and the
CT has become an indispensable imaging tool for diagnosis.
Nowadays, over 80 million CT scans are performed every
year only in the United States [3]. Due to the increasing
number of patients that undergo CT scans and the fact that
exposure to radiation increases the risk of induced cancer
[4], current research efforts are dedicated to improve the
image quality while minimizing the exposure to radiation. It
is always possible to improve the quality of the CT images
by increasing the radiation dose, but this comes at the price
of exposing the patients to a higher risk for the their health.
Thus, the research nowadays is focused on how to lower the
radiation dose without affecting the image quality [5].

For many years the reconstruction method of choice was

filtered backprojection (FBP) [6]. This was preferred because
it is computationally cheap and the quality of the images
obtained with these algorithms was good enough to be
used clinically [6]. However, in the case of some patients,
especially the young ones which are more prone to be
affected by ionizing radiation, the CT scans were being
acquired with a lower X-ray intensity to avoid exposing them
to a high radiation dose. This determined a reduction of
the image quality. Once the computational power permitted,
iterative reconstruction algorithms were adopted which made
it possible to obtain images of the same quality as those
obtained with FBP, but with up to 76% lower radiation dose
[3]. In recent years, methods that combine iterative schemes
with learned models started to be investigated. The reason
why these methods are interesting is that the reconstruction
task is partly performed by the classical steps of the scheme
which greatly reduces the amount of work to be done by
the neural networks and thus makes it easier to train them
[5]. On the other hand, there is also the advantage that if
the prediction of the neural networks at a certain iteration
is wrong, the classical part of the algorithm will correct the
wrong prediction during the next iterations.

In this work we address the problem of reducing the
radiation dose and propose a modification of the simulta-
neous iterative reconstruction technique (SIRT) by using an
independent deep neural network at each iteration to improve
the quality of the low dose images. The neural network
is designed to improve the output of the backprojection
operator which has the drawback that does not rely on any
prior knowledge about the volume and distributes all the rays
back into it uniformly. We will use low dose projections
as input in the reconstruction scheme and take images
reconstructed from high dose projections as ground truth for
training the neural networks. The quality of the reconstructed
low dose images is improved by making them more similar
to the reference high dose images. We perform optimization
of the solution on a validation set investigating different loss
functions and the use of transfer learning among iterations
to possibly improve the model convergence and the perfor-
mance. We also use the validation set to compare a number of
network architectures in order to identify the one that gives
the best performance indicators. Finally, we will evaluate the
performance of the optimized solution on the test set and we
will analyze whether the iterative algorithm converges faster



with the proposed correction.

II. RELATED WORK

Over the last few years there has been a growing interest
in the application of deep learning to solve a large number of
technical problems and in computed tomography there has
been a number of proposed deep learning solutions which
address the problem of dose reduction.

One possible way to employ deep learning in computed
tomography is to use neural networks to postprocess the
reconstructed image in order to improve the quality of the
image. Kida et al. [7] proposed a deep a convolutional
neural network to improve the quality of the cone beam
computed tomography (CBCT) images which are used to
reassess the position of the tumor before the treatment is
delivered. They used planning CT images (which are used
for diagnostic and have a higher quality) as targets for
the neural networks. Jiang et al. [8] proposed a symmetric
residual convolution neural network (SRCNN) architecture
to enhance the sharpness of edges and anatomical details for
images reconstructed from under-sampled projections. The
targets used for training the deep learning model were the
fully sampled CBCT reconstructions. By using fewer projec-
tions, the X-ray radiation exposure of the patient is reduced.
Maspero et al. [9] proposed a cycle-GAN architecture which
generates synthetic-CT images from CBCT images reducing
the CBCT artefacts and increasing similarity to CT. They
proved the efficiency of the method by showing that it results
in an accurate dose calculation for radiotherapy treatment.

Another possible way in which deep learning can be used
in computed tomography is by implementing the convolution
of a classical reconstruction algorithm as a layer in a neural
network and learning the filter samples [10].

Last but not least, deep learning solutions were also pro-
posed to modify iterative reconstruction schemes. Aggarwal
et al. [11] proposed a convolutional neural network (CNN)
to use be used in the regularization term of the conjugate
gradient optimization scheme. Although they applied the
proposed method to MRI, the same idea is applicable to CT.
Dilz et al. [12] focus on low dose CBCT application and
propose an algorithm named learned SIRT. They rework the
derivation of the SIRT formula so as to obtain a regularizer
term which will be predicted by a neural network and
demonstrate that their algorithm scales to clinically relevant
problems.

I1I. COMPUTED TOMOGRAPHY BASICS

The problem addressed in X-ray Computed Tomography
is to reconstruct a discrete volume (also called image)
given the attenuation values of the X-ray radiation for a
sufficient number of paths that pass through the volume.
Each voxel (volume pixel) in the image is described by its
X-ray attenuation coefficient. We use the terms projection
bin to refer to the attenuation on a single path, projection to
refer to all attenuation values measured for a single angular
position and set of projections to refer to all attenuation
values measured for all angular positions, respectively.

Figure 1 illustrated a simplified example of a CT scanner.
Each projection bin represents the sum of the voxel’s attenu-
ation coefficients over the corresponding X-ray path through
the volume (the total attenuation of the path is the product
of the attenuation values of the path’s voxels, but applying
the logarithm transforms the product into a sum [13]).

Fig. 1: The principle of the CT scanner: each projection bin
represents the sum of the attenuation values of the voxels
that radiation passes through.

From Figure 1 we obtain the following the following
relations between the voxels and the projection bins:

ZTo + %1 = Po
T +x3 = p1 )
1+ X3 = P2
To + X2 = Pp3
We can rewrite the system (1) in much more compact form
using the system matrix A:

Az =p (2)
where
1 1 0 0
00 1 1
A=10 1 01 3)
1 0 1 0
z=[vg a1 a2 3] )
and
p=[p0 p1 p2 ps]’ (5)

A can be thought as a forward projection operator which
is applied to the image x to obtain the set of projections p and
thus models how the radiation is attenuated in the volume z.
In real CT scans, the number of voxels in an image and the
number of projection bins differ and thus A is a non-square
matrix of size (m,n), where m is the number of projection
bins and 7 is the number of voxels.

In order to be able to do reconstruction, we also need the
backprojection operator. This operator takes the energy from
each projection bin and distributes it equally to all the pixels
encountered on the path (see Figure 2). From a mathematical
point of view, this operator is the transpose of the forward
projection operator A.



Fig. 2: The backprojection operator takes all the values from
the projection space and redistributes them back on the path
of the X-rays.

A. Classical SIRT scheme

The solution to the equation 2 can be solved exactly only
under idealized conditions. However, in computed tomog-
raphy we are dealing with real data which is affected by
measurement noise. Also, in the real world CT scanners
the number of voxels differs from the number of projection
bins which makes it impossible to invert the matrix A. We
therefore consider the least squares minimum norm solution
to the equation 2 which can be found by minimizing the
objective function

X2 = || Az — plf3 6)

This objective function can be minimized by starting with
an initial image 2(*) having all the voxels set to 0 and
applying the gradient update:

¢ =0
(7
20D =2 —av | Az — |3
where the gradient is:
V [z - p|; = AT (49 — p) ()

Combining equations 7 and 8 we get the update formula
of the SIRT algorithm:

gD = 2(F) 4 4T (p — A;z:(k)) )

Although one can work with this SIRT variant, it is
impractical due to the fact that the step size o has to be
chosen manually. We will instead proceed as in [14] and use
their variant of SIRT:

2B —p (k) L CATR (p _ Ax(k))
Cjj =1/ aij Ri=1/) ay
J %

where C' and R are diagonal matrices and a;; are the
individual components of A. The matrices C' and R are
weighting matrices that contain the sum of the columns and

(10)

rows of the projection matrix, respectively and are necessary
to guarantee the convergence of the scheme [14].

IV. MATERIALS AND METHODS
A. Proposed method

The drawback of the SIRT scheme is that the backprojec-
tion operator that is used in the update formula distributes the
energy from each projection bin uniformly into the volume
under reconstruction on the path of the corresponding ray
without relying on any prior knowledge about the object.
In Figure 3 we have shown an example in which the
energy was misallocated during backprojection. Our goal is
to train a neural network to provide this missing knowledge
about where the energy should be allocated. This will be
done by predicting for each voxel a value between 0 and
1 representing how much of the energy allocated by the
backprojection operator should actually be allocated there
and then using it to correct the allocation. In this way, we
try to prevent the backprojection operator from allocating
more energy that it should actually do.

In the following, we denote with ® the elementwise
multiplication of two tensors. Also, we denote by r(®) the
update term of the SIRT scheme:

r®) = CATR (p - Ax(k)> (11)

With this new notation, equation 10 becomes:

B = g(®) 4 (R) (12)

In order to prevent the SIRT scheme from allocating

energy to the wrong voxels, we propose to introduce a

multiplication tensor A(*) in the SIRT formula so as to
correct the update term (%)

D) = B L \®) g (k) (13)

The tensor A(*) is predicted by a neural network based on

the image at the current iteration z(*) and the update term
(k).
i

AF) = dnn(z® | r*) (14)

We make an assumption that in order not to allocate more
energy than the classical SIRT scheme would allocate, we
need that 0 < /\Z(-f) < 1. Note that if all the components of
the tensor predicted by the neural network are 1, then the
scheme is identical to the classical SIRT:

x(k+1) — Z(k) +1® ’I"(k) — 5
= z®) 4 () as)

On the contrary, if the components of the predicted tensor
are all 0, then the image is not varied. We hypothesise that
this will prevent the image degradation due to misallocations.

In Figure 4 we illustrate how Ag4; is calculated. In Figure
4 (a) we have the image that is taken as ground truth. In
Figure 4 (b) we can see the first update that the classical SIRT
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Fig. 3: The backprojection operator redistributes the energy back uniformly to all voxels. Suppose we have an image which
has a single voxel (x¢) which has a high attenuation value and which results in a high value measured by the detector bin
p1 (see Figure 3 (a)). When backprojection is applied, the measured energy will be redistributed also to the voxels x4, =5
and z7 (see Figure 3 (b) and Figure 3 (c)). This will create, in turn, a further mismatch at the projection bins p4, pg and pr.

scheme would make to the initial image. Because the initial
image is 0, the first update (°) coincides with the image at
iteration 1, z(1). For training, the target (ground truth) tensor

)\g];) is taken to be the one that brings the image z(*) as close

as possible to the full dose image x 4. To obtain it, we first
calculate the update that would brings z(*) to fd:

(k) (k)

gt =$fd—l‘ (16)

r

We then calculate the )\(q]? tensor as:

k
0 _ ot

o = (17)

Finally, we clip )\;];) values between 0 and 1 and train a
neural network to predict the A(*) tensor. In Figure 4 (c) we
can see the resulted multiplication tensor )\;(z) and in Figure
4 (d) we can see the update term after it has been corrected.
Comparing Figures 4 (b) and (d), we can see how the image
1) would be improved if the prediction of A(?) was perfect.

In equation 17 we performed a division operation. It might
be that some of the components of the classical update term
() are close to zero which could cause numerical overflows.
In order to avoid that, we check all the values of (%) before
performing the division and we force the pixels of )\fﬁ) to
zero where the corresponding absolute values of the pixels



of %) are smaller that 10~15.
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Fig. 4: How the first step of the SIRT scheme is modified:
based on the ground truth (a) and the classical update term
(b) we calculate the target tensor (c) that the neural network
should predict. Applying the proposed multiplication, we
obtain the corrected update in (d).

B. The dataset and preprocessing

In this work we used data from the Low Dose CT
Grand Challenge which had the purpose to quantitatively
assess the diagnostic performance of denoising and iterative
reconstruction techniques on common low-dose patient CT
datasets. The data contains full dose projections (real sensor
data) and simulated low dose projections (obtained by adding
noise to the full dose projections). From the available data
we selected only the chest scans acquired with the GE
LightSpeed VCT scanner model which corresponded to scans
of 45 patients. Patients underwent a helical acquisition with
a peak voltage=100 kV, tube current=300 mA, exposure
time=500 ms and a collection field of view=500 mm. The
patients were randomly divided in three sets: training (n=27),
validation (n=9) and test (n=9).

Preprocessing of the Low Dose CT Grand Challenge
data was performed to convert to circular trajectory, to be
able to reconstruct the sinograms with available frameworks.
In particular, the preprocessing consisted in dividing the
volume to be reconstructed in slices perpendicular to the
axial direction by:

o Creating a sinogram containing the projections from
a complete rotation for each slice by interpolating at
each angle step the two closest projections to the slice
position; since the CT device uses a helical trajectory,
the positions at which projections are made do not, in
general, coincide with the slice position and thus inter-
polation is necessary to obtain the attenuation values at

that position Interpolation was performed as explained
in [6]. The slice thickness was set to 1.25 mm and the
reconstruction space chosen covers an area of 377 mm
by 377 mm divided in an array of 512 by 512 voxels.

o Rebinning the data from a curved detector array to a
flat detector array; this step was necessary to make it
possible to work with ASTRA Toolbox [15], [16].

o Reconstructing the full dose images from the cor-
responding sinograms using alternative direction of
multipliers algorithm [17] implemented in the ODL
framework [18] with ASTRA Toolbox backend; these
images are necessary to provide the ground truth for the
learning algorithm.

C. Architecture optimization and training

We implement the proposed method using an independent
neural network at each SIRT iteration. We fixed the number
of SIRT iterations to ten investigating whether ten iterations
are sufficient to obtain a good performance. The input to
the network has two channels: the image at the current
iteration, (*) and the classical update term r*) calculated
with equation 11 which were normalized so as to have values
between 0 and 1 before applying the forward pass. The
chosen architecture for the network is U-Net [19] because it
proved to give very good results in situations when the output
has the same dimensions as the input. The U-Net architecture
was adopted as provided by the MONAI framework [20]. The
number of up and downsampling blocks, number of channels
and the use of residual units has been investigated as reported
in the experiment section. The standard configuration for
the experiments consists of kernel size=5 (both for up
and downsampling), stride=2. The activation function used
throughout the network was PReLU.

Training was performed with ADAM optimizer for 100
epochs with a batch size of 32. Early stopping was applied
with a patience of 7 epochs, mean squared error and binary
crossentropy loss functions over the whole image were
considered during training, performing experiments to decide
which one gives the best results.

D. Evaluation metrics

In order to assess the performance of the proposed method,
we employ three performance indicators: structural similarity
index measure (SSIM), mean absolute error (MAE) and peak
signal-to-noise ratio (PSNR) with a data range of 4095 HU.
Since the corners of the image are mostly dark areas, we
calculate these metrics only for the voxels in region of
interest illustrated in Figure 5. We will not explain these
metrics here, but the interested reader can consult references
[21] and [22] for a complete explanation on how they are
computed.



Fig. 5: The backprojection operator takes all the values from
the projection space and redistributes them back on the path
of the X-rays.

V. EXPERIMENTS AND RESULTS

In this section we present the results obtained with the
proposed method. Since we are trying to improve an existing
iterative algorithm, we will first obtain a baseline with the
classical SIRT algorithm. We then perform three experiments
to optimize the proposed solution and we use the validation
set to take design solutions. Finally, we evaluate the opti-
mized solution on the test set.

A. Baseline

In order to obtain a baseline, we ran the classical SIRT
algorithm (initialized with filtered backprojection) for 400
iterations on the test set. In Figure 6 it is depicted the
variation of the PSNR as the iteration number increases. We
can observe that after a certain iteration (115th) the quality
of the reconstructions starts to decrease. In TABLE I we
compare the metric values after 115 iterations, when the
maximum similarity is achieved, and after 400 iterations.
These values show that after the 115th iteration the images
better resemble the ground truth than after 400 iterations.
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after 400 iterations | best value
SSIM [-] 0.634 0.669
PSNR [dB] 28.02 29.08
MAE [HU] 123.50 115.42

TABLE I: Performance indicators for the classical scheme.
The highest similarity (the best metric values) is achieved
with 115 iterations. After 115 iterations the similarity de-
creases.

B. Model optimization

In order to optimize the model, we propose three exper-
iments. We decide which experiments are successful based
on the performance indicators calculated for the validation
set images after the tenth SIRT iteration has been performed.
The experiments we propose are:

1) Compare loss functions: We compare the metrics when
using the mean squared error (MSE) loss or when we use the
binary crossentropy (BCE) loss. In Figure 7 we can see the
evolution of the PSNR over the iteration number for the two
loss functions used from which it can be seen that the mean
squared error consistently performed better throughout all the
iterations. In TABLE II we displayed the maximum values of
the evaluation metrics on the validation set achieved during
the iterative scheme. It can be observed that the mean squared
error loss gave significantly better results than the binary
crossentropy. In Figure 8 we can see how the correction looks
for the case of the two losses investigated. We can observe
that the proposed scheme is capable to identify the regions
where the energy should be backprojected. It can also be seen
that the correction in the case of the mean squared error loss
is better at preserving the details. We therefore decide to use
the mean squared error during training because it gives a
better performance than the binary crossentropy loss.
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Fig. 7: PSNR for the BCE and MSE losses on the validation
set.
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Loss SSIM [-] | PSNR [dB] | MAE [HU]
BCE 0.641 27.98 113.37
MSE 0.7187 29.37 87.79

Fig. 6: Variation of PSNR over iteration number in the
case of classical SIRT scheme with filtered backprojection
initialization. It can be seen that after the 115th iteration the
similarity to the ground truth starts to decrease.

TABLE II: The best values of the similarity metrics achieved
during the iterative scheme on the validation set for the two
losses used show that the MSE loss outperforms the BCE
loss.
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Fig. 8: Comparison between the update terms in the case of
the two losses: (a) the classical update, (b) ideal update, (c)
update in the case of BCE loss, (d) update in the case of
MSE loss.

2) Initialization with previous weights: As we use a
different network at each iteration, it is natural to ask whether
initializing the weights of the network to be trained with the
values of the weights of the network trained at the previous
iteration improves the performance. In Figure 9 we can see
the variation of the PSNR with the iteration number for the
case when we loaded the weights from the previous network
and for the case when we initialized the weights at random
from which we can see that the difference in performance
is not significant. In TABLE III we can see the values of
the SSIM, PSNR and MAE evaluation metrics for the same
experiment which also indicate that the performance does
not differ significantly. As it turned out that there were minor
improvements if we load the previous weights, we decide to
continue to to so for the rest of the experiments.

Using previous weights SSIM [-] | PSNR [dB] | MAE [HU]
no 0.7187 29.37 87.79
yes 0.723 29.52 87.24

TABLE III: Comparison of the evaluation metrics for case
when we initialize with the weights previously learned and
for the case when we initialize the weights at random.
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Fig. 9: PSNR for the case when we initialize with the weights
previously learned and for the case when we initialize the
weights at random.

3) Tuning the hyperparameters of the U-Net: We consider
five of variations of the U-Net architecture. Since running

an experiment for ten SIRT iterations is computationally
expensive, we will restrict ourselves to a suboptimal search
and optimize only for the network used at the third SIRT
iteration, which is the iteration for which the best similairty
metrics were obtained during the previous experiemtns. We
will then use the same network architecture at all iterations.
In TABLE IV we enumerated the architectures of the five
networks investigated and in TABLE V we have the evalu-
ation of each of these networks from which we can see that
there is no significant difference in performance between
the five architectures investigated. As in the case of the
previous experiment, we decide to adopt the architecture that
gave the best performance even though the difference is not
significant.

# blocks # channels # residual units
Arch 1 5 8, 16, 32, 64, 128 0
Arch 2 5 4,8, 16, 32, 64 0
Arch 3 6 2, 4,8, 16, 32, 64 0
Arch 4 5 8, 16, 32, 64, 128 1
Arch 5 5 4,8, 16, 32, 64 1

TABLE IV: Comparison of the evaluation metrics for five
architectures considered.

SSIM [-] | PSNR [dB] | MAE [HU]
Arch 1 0.7041 29.37 94.95
Arch 2 0.7007 29.33 95.54
Arch 3 0.7005 29.30 96.12
Arch 4 0.7045 29.39 94.75
Arch 5 0.7012 29.31 95.95

TABLE V: Result of the evaluation metrics for the five
architectures considered.

C. Results on the test set

We use the test set to assess the performance of the
solution found during the optimization stage. The resulted
values of the evaluation metrics for the proposed scheme
after ten iterations evaluated on the test set are:

o SSIM: 0.7254
e PSNR: 29.42
e MAE: 92.69

In Figures 11 - 13 we show the variation of these metrics
over the iteration number for the proposed method and for the
classical SIRT algorithm. We can observe that the proposed
method outperforms the classical scheme throughout all
the ten iterations. We can also observe that after the third
iteration the similarity starts to decrease in the case of the
proposed scheme. This was also observed in the case of the
variation of the PSRN of the classical scheme in Figure 6, but
there it was necessary to perform 115 iterations to achieve the
maximum value whereas the proposed algorithm achieved
the maximum similarity with only three iterations. In Figure
14 we depicted the variation of the objective function over
the iteration number and we observe that it indeed decreases
for all iterations.
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Fig. 10: Comparison between the images obtained with the proposed scheme (a and e), with the classical SIRT scheme (b
and d) and the ground truth (c and f).
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Fig. 11: SSIM for proposed solution (pr) and for the classical
SIRT (cl) evaluated on the test set.
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Fig. 12: PSNR for proposed solution (pr) and for the classical
SIRT (cl) evaluated on the test set.
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Fig. 13: MAE for proposed solution (pr) and for the classical
SIRT (cl) evaluated on the test set.

In Figure 10 we can see a comparison between a re-
construction obtained with the proposed method (a and e),
the same reconstruction obtained with the classical SIRT
algorithm (b and d) and the ground truth used for evaluation
(c and f). It can be observed that the proposed method
succeeded to improve the quality of the image at the tenth
iteration and that it reduced considerably the streaking arti-
facts. We can also observe that the details in the lung region
were accurately reconstructed at the cost of having a poorer
reconstruction in the bone region.
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Fig. 14: Variation of the value of the objective function to
be minimized by the SIRT algorithm over iteration number.

VI. DISCUSSION

The focus of this work is to explore whether neural
networks can learn to correct the output of the backprojection
operator which has drawback that it projects all the rays
uniformly into the volume without using any prior knowledge
and in this way to improve the SIRT scheme. Comparing
the performance metric values obtained for the proposed
method in section V-C with the ones obtained for the baseline
in TABLE I we can conclude that the proposed method
succeeded to improve the SIRT scheme. In addition, it turned
out that the proposed iterative scheme has the side benefit
that it converges very fast, achieving higher similarity to
the ground truth than the classical SIRT with only three
iterations. However, if we compare our method with other
works found in literature, we will will see that there is a
considerable difference between results of the existing state
of the art methods and the results we obtained. For example,
Dilz et al. [12], who also proposed a modification to the
SIRT algorithm, obtained a PSNR of 31.7 dB and an SSIM
of 0.922 for a model trained on chest anatomy. However,
they used a different dataset and possibly a different region
of interest for metric evaluation.

We also analyzed how the values of the similarity mea-
sures vary during the iterative algorithm and we observed
that the similarity decreases after the third iteration. We
observed that this behaviour is present also in the classical
SIRT. The possible reason for this is that the SIRT scheme is
designed to minimize objective function 6 which is different
from the metrics we use to evaluate the performance of the
proposed method. In order to verify this, we analyzed the
variation of the objective function over the ten iterations
(see Figure 14) and observed that it decreases throughout
the execution of the iterative algorithm. However, we can
observe that it quickly reaches a plateau. This indicates that
the objective function 6 can hardly be further minimized
after the forth iteration. Future work may investigate adding
a regularization term to the objective function that contains
the prior knowledge about the image features and constrains
the iterative algorithm to converge to a solution that contains
these features. The regularization can be provided by a deep



neural network which is very suitable for the task of learning
features. This approach was proposed by Aggarwal et al. [11]
who demonstrated the efficiency of the method obtaining
a PSNR of 39.24 dB on a brain MRI dataset. Another
limitation of the proposed method is that the neural network
is used only after the backprojector has been applied to
correct its output. Using an intelligent backprojector, one
which is capable to learn how to allocate the energy, may be
a better approach for a future work.

VII. CONCLUSION

In this work we addressed the problem of reducing the
dose given to the patient during the CT scanning and pro-
posed a modification to the simultaneous iterative reconstruc-
tion technique (SIRT) used in X-ray computed tomography.
Our goal was to correct the output of the backprojector
which redistributes back the rays from the detectors uni-
formly using no prior knowledge about the volume under
reconstruction and in this way to improve the quality of the
images reconstructed with the SIRT algorithm. We proposed
experiments to identify which loss function is indicated to be
used for training in order to obtain the best performance, to
assess whether transferring the network weights from each
iteration to the next one improves the performance. We tested
a number of network architectures in order to identify the
one that gives the best performance. We also compared the
speed of convergence of the proposed scheme with that of
the classical SIRT. We obtained an SSIM of 0.725, a PSNR
of 29.42 dB and an MAE of 92.69 HU and we showed that
this is an improvement over the classical SIRT algorithm.
We also proved that the proposed method has the side benefit
that it can can greatly speed up the convergence of the SIRT
algorithm achieving with three iterations the same quality
that is obtained with 115 classical iterations.
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