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Abstract

This thesis proposes the automatic variant derivation of given hardware architectures
using functional HDL Clash. The purpose of those variants is implementation
diversity, which would involve their alternated use to introduce temporal jitter as a
side-channel attack countermeasure. One systematic derivation approach involving
left-fold higher-order functions is worked out as a proof of concept. Through
traversal of the abstract syntax tree representation of hardware designs, it could be
applied wherever possible in the MixColumns step of an AES cipher implementation.
This fully automatic compile-time application yielded over 50000 variants, their
suitability for impeding side-channel attacks in is yet to be verified.

Additionally, the core components needed to realize a Clash FPGA design
featuring partial dynamic self-reconfiguration are identified and implemented. A
design element representative of a reconfigurable region is defined to have different
compilation and simulation behaviour. It compiles to the HDL sources needed by
FPGA EDA tools to enable partial reconfiguration, and it simulates — like on an
actual FPGA — the exchange of modules. In combination with a novel partial
reconfiguration controller design, simulation and measurements from a Xilinx FPGA
were shown to be true to each other.
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1 Introduction

Automatic implementation diversity In recent years, side-channel attacks
(SCA) have been demonstrated to be a major treat to unprotected cryptographic
implementations [1]. As cryptography is widely used for the secure storage and
communication of sensitive data that should only ever be accessible to trusted
entities [2], research of countermeasures has been very active.

Side-channel attacks and fault attacks are classes of non-invasive physical
attacks in computer and embedded hardware security [3]. They exploit information
that inadvertently leaks from an algorithm’s implementation in a device through that
device’s intrinsic physical interfaces with the outside world rather than weaknesses
in the algorithm itself. Exploitable side-channels include power consumption [4],
electromagnetic radiation [5] and timing behaviour [6]. Many powerful attacks
depend on statistical analysis of many aligned measurements of a device’s side-
channels while in operation. In practice, countermeasures aim to raise the cost
of mounting a successful attack beyond the gain due to a success by raising the
number of required measurements [7].

Some countermeasures for hardware implementations utilize implementation
diversity to introduce temporal or spatial jitter to side-channel leakages [8, 9, 7].
Here, some parts of the algorithm are alternately carried out by functionally equival-
ent but physically different variants of the implementation. For the countermeasure
to work, these variants need to have differing side-channel leakage characteristics.
They can be derived at either the algorithm level by transforming the algorithm
specification or at the implementation level by transforming how the design is
synthesized, placed and routed. Implementation diversity has been shown to mitig-
ate attacks to some extend [8, 9, 7], and can be used in combination with other
countermeasures to further increase the level of protection.

One purpose of this work was to explore a generic way of deriving hardware
variants at the algorithm level. To the best of my knowledge, an automated way
of doing this in the context of computer and embedded hardware security has
not been attempted before. The merits of this approach are that implementation
diversity countermeasure could be automatically applied to any suitable algorithm,
thereby facilitating fast application and prototyping of hardware designs with this
countermeasure. This led to the first two research questions:

1. How to derive functionally equivalent variants of a given hardware architecture
in a systematic way so that their alternated use as implementation diversity
can be a countermeasure against side-channel attacks?

2. Can such systematic derivations of variants be automated?

In answering these questions, the Clash functional hardware description language
(HDL) was used because of its powerful language features. This gave rise to the
third research question:

3. Given that the formalism of Clash is strongly mathematical, would Clash be
a suitable language for performing such derivations?
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FPGA partial reconfiguration All variants of a design utilizing implementation
diversity need to be usable in runtime. The straight-forward solution would be
to implement all variants in hardware side-by-side. To save hardware resources,
the variants could alternatively be alternately implemented on the same hardware
if a reconfigurable computing platform is used. Such platforms can be found in
many complex embedded systems. They provide a middle-ground between the high
flexibility of software and the high-performance of custom hardware.

Field-programmable gate arrays (FPGAs) are a widely used platform for the
deployment of reconfigurable computing applications [10]. FPGAs have a range
of configurable hardware resources [11]. How these behave and interconnect is
determined by an FPGA’s configuration, which can be changed after production of
the FPGA itself. The process of dynamic partial reconfiguration (DPR) changes
part of such a configuration and enables runtime circuit modifications on demand.
A common use case is exchanging design parts that are never needed at the same
time to save on hardware resources: a smaller and cheaper FPGA that consumes
less power may suffice [12].

Another purpose of this study was to identify, investigate and, if necessary,
implement the core components needed to realize an FPGA design featuring DPR.
Specifically, designs in the Clash functional hardware description language are
considered since that language was used for the aforementioned implementation
diversity related work. Support for simulation is desirable for the purpose of
functional verification. To the best of my knowledge, how a design in a functional
HDL such as Clash could be specified, simulated and deployed when using DPR
was never examined in detail. This led to the final two research questions:

4. How to simulate the runtime change of a hardware architecture that results
from partial dynamic FPGA reconfiguration in Clash?

5. How can the Clash compiler be made to produce the sources needed by FPGA
EDA tools to enable partial reconfiguration?

1.1 Document outline

After discussing some relevant background information and related work in chapters
2 and 3, Chapter 4 works out an approach to automating implementation diversity
at the algorithm level. Chapter 5 realizes a workflow for partial reconfiguration
enabled FPGA designs using functional HDL Clash. Chapter 6 then combines both
works to apply implementation diversity in an AES implementation. Chapter 7
finishes with some conclusions and recommendations for future work.
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2 Background

This chapter gives background information about side-channel and fault attacks in
Section 2.1, about FPGAs and their ability of partial reconfiguration in sections 2.2
and 2.3 and about the Clash HDL in Section 2.4.

2.1 Non-invasive physical attacks in embedded system
security

This section discusses two non-invasive physical attacks and how they can com-
promise the security of cryptographic implementations.

Side-channel attacks (SCAs) are a class of non-invasive physical attacks [3].
They passively exploit information leaking from an algorithm’s implementation
in a system in hard- or software and that system’s intrinsic physical interfaces
with the outside world rather than weaknesses in the algorithm itself. This makes
them hard to prevent with there being many different reasons for leakages in the
design space [13]. Exploitable sources of information include a system’s power
consumption [4], electromagnetic radiation [5] and timing behaviour [6]. For
example, bit flips in a digital system affect its instantaneous power consumption
and can be related to the data that it is processing. Successful applications of
side-channel attacks enable the extraction of sensitive data from a system, even
when the algorithm that it implements is considered mathematically secure. Known
weaknesses in the algorithm can however aid the effectiveness of these attacks.

Fault attacks (FAs) are a type of non-invasive physical attacks [3]. Here, the
system is actively brought outside of its intended operating conditions by altering
its environment. This is done with the intention of obtaining information from the
errors caused by the faults that this induces. For example, the temperature could
be changed [14], the power supply or clock signal [15] may be modified at specific
moments in time (glitches), or the system could be subjected locally to intense
light beams [16] or electromagnetic fields [17]. Fault injection is a probabilistic
process with a certain chance that an injection leads to an exploitable error.

2.1.1 Cryptography

Electronic systems may contain or operate on sensitive data that should only ever
be accessible by trusted entities. Encryption is commonly used for the secure
storage and communication of such data [2]. It is the process of encoding to an
unintelligible alternative representation of data that can only be reversed through
decryption by a party that has the right secret key. Ciphers, the encryption and
decryption algorithms, are designed such that decryption without knowledge of the
correct key is very, very computationally expensive. Possession of the encrypted data
is therefore rendered useless without knowing the corresponding key. Encryption
keys are a common target of physical attacks.

The widely embraced Kerckhoffs’s principle states that the security of cryptosys-
tems should depend solely on secrecy of the key, not on the obscurity of the cipher
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used. In line with this principle, many encryption standards, such as the wildly
popular Advanced Encryption Standard (AES) [18], are scrutinized by the scientific
community. Yet, implementations of ciphers, even those that are considered math-
ematically secure, may still be attacked successfully by exploiting their side channels
to unveil the secret key in a limited amount of time.

2.1.2 Power analysis attacks

Power analysis attacks are a commonly used subset of side-channel attacks in
practical attacks. They were introduced by Kocher et al. [4] and use a system’s
power consumption side-channel by measuring power over time at its power supply
to obtain power traces. Örs et al. were the first to show experimental results on
an FPGA in 2003 [19].

Simple power analysis (SPA) considers only few measurements and can succeed
when measurements show distinctive patterns depending on the secret information.
This is the case when whether or not certain operations are performed depends on
the data being processed [20]. This attack can typically be mitigated by simply
removing this dependency, though less sensitive information such as the cipher
being used or the number of rounds of a round-based cipher being used may still
be uncovered. System in- and output may not need to be known for the attack to
be successful.

Differential power analysis (DPA) is more sophisticated and uses statistical
analysis of many aligned power traces and typically some corresponding system
in- and outputs. SPA may be used first to determine the algorithm under attack.
Chunks of the secret key are targeted individually in a divide-and-conquer fashion.
Tiny differences in power consumption can be discerned and correlated to the most
likely values of the secret key chunks using a hypothetical leakage model.

CMOS logic power dissipation Correlation side-channel attacks require leak-
age models to relate a system’s side-channel measurements to its internal data.
In case of power analysis of digital electronics, considering the dynamic power
dissipation of logic gates is appropriate. The CMOS style of digital circuit design
and fabrication process is used for the vast majority of integrated circuits [21],
including FPGAs. PMOS and NMOS are combined to make up digital logic gates.
For example, Figure 2.1 pictures a CMOS inverter.

Apart from static leakage currents as a source of CMOS logic power dissipation,
dynamic currents result from the switching of a transistor from a logic zero to a
one or vice versa. Due to non-zero rise- and fall-times of transistors, there is a
short time during which they (partially) conduct simultaneously, thereby creating a
low-resistance path from VDD (positive voltage) to VSS (negative voltage, typically
ground) through their source and drain contacts. Furthermore, such switching
results in the charging and discharging of several load capacitances CL. The dynamic
power consumption could for example be modelled as in Equation 2.1 as described
by Standaert et al. in [23]. Here, the product of the clock frequency f and the
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Figure 2.1: A CMOS inverter. Source: [22].

probability of a logic 0 → 1 transition P0→1 is referred to as the switching activity.
The highest peak in power consumption will appear during this rising transition
(0 → 1) because of the charging of capacitances [23].

Pd yn =CLV 2
DD P0→1 f (2.1)

2.2 Reconfigurable hardware: FPGAs

Off-the-shelf microprocessors such as microcontrollers, CPUs and GPUs provide
easy means to running computationally-intensive applications in software. Yet,
these flexible general-purpose processing platforms have overhead in that they
are not tailored to the application at hand. In situations where power, area or
speed requirements are stringent, it may make more sense to go for a custom
implementation in hardware. Such a custom design could either encompass the
entire application or offload and accelerate some part of the workload from a
general-purpose microprocessor.

In such situations, Application Specific Integrated Circuits (ASICs) could provide
the optimal solution given today’s semiconductor manufacturing processes. With
ASIC designs needing to be built from the ground up, the possibilities are almost
endless, and very fine-grained design and fine-tuning are possible. However, ASICs
have low post-production flexibility because of their fixed hardware resources, and
their design is quite involved. Reusable Intellectual Property (IP) blocks may be
acquired and used to reduce engineering effort somewhat, but the non-recurring
engineering (NRE) costs are high, and a manufacturing cycle alone can take months
per design iteration.

When the application at hand does not warrant such engineering expenses in
both time and money, reconfigurable computing featuring Programmable Logic
Devices (PLDs) strikes a balance between ASICs and general-purpose computing
platforms in power, performance, flexibility, design effort and cost. Many PLD
technologies exist [24], including CPLDs, PALs/GALs, MPGAs and FPGAs, of
which at least the last is widely used [10].

Field-Programmable Gate Arrays (FPGAs) are integrated circuits providing
a wealth of hardware resources designed to be configurable after production of
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the FPGA itself [11]. They therefore enable highly application-specific hardware
implementations while being an off-the-shelf product without any manufacturing
time at each design iteration with them being configurable in a matter of seconds.
Figure 2.2 gives an overview of the core resources that can be distinguished on any
FPGA:

• Configurable Logic Blocks (CLBs) that implement logic functions using
Look-Up Tables (LUTs) and flip-flops

• Configurable I/O blocks (IOBs) that facilitate off-chip connections

• Configurable routing that interconnects all resources

Figure 2.2: Schematic depiction of a basic FPGA architecture. Source: [11].

In addition to this, most modern FGPAs also feature fixed DSP and large
memory (block RAM) blocks interspersed with the other configurable resources
for accelerating some common logic functions and memory tasks. Some devices
combine configurable logic with a hard processor core on the same chip in a SoC-like
fashion to alleviate the need for, also popular, soft processor cores implemented in
the configurable logic.

As opposed to ASIC designers, FPGA designers generally do not need to
concern themselves with clock and reset nets, clock sources, power distribution,
manufacturing process variations, parasitic capacitances or I/O communication
designs as all such things are already taken care of in the design of the FPGA
itself. An FPGA’s configurability does come at a cost with the overhead in silicon
area, propagation delay and power consumption being significant [25]. Yet, FPGAs
provide faster time to market and are generally cheaper overall when the volume of
production is limited [26, 10].
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2.3 FPGA partial reconfiguration

This section introduces partial reconfiguration: the process of altering part of an
FPGA design in runtime.

2.3.1 Changing the configuration memory

The functionality of an FPGA is fully determined by its configuration as stored
in its configuration memory [27]. Changing this memory’s contents enables the
implementation of new designs and can be accomplished through reconfiguration.
A configuration is referred to as the whole of the FPGA’s currently implemented
functionality. This implies that reconfiguration, no matter how big or small the
reconfigured area, yields a different configuration.

Full reconfiguration concerns the whole of an FPGA’s configuration memory.
It leaves no trace of any previous implementation, and therefore does not require
any consideration regarding whether the new configuration is compatible with
any previous ones. This kind of reconfiguration is most commonly used, if only
because of it being required at power-up with most FPGAs utilizing volatile in
nature SRAM-based configuration memories [28, 11].

On the other hand, selectively reconfiguring part of an FPGA’s configuration
memory is referred to as partial reconfiguration (PR) [27]. Execution on the
whole FPGA is paused when performing static partial reconfiguration, whereas
dynamic (or: active, run-time) partial reconfiguration (DPR) allows changing part
of the design while leaving the rest of the circuitry functional and intact without
interruption.

Configuration bitstreams determine what the contents of an FPGA’s configura-
tion memory should look like, and therefore how an FPGA is to be configured [29].
They are the main compilation output of electronic design automation (EDA) tools.
Partial bitstreams are relevant to partial reconfiguration as they concern only part
of the configuration memory. FPGA (re)configuration is the act of feeding an
FPGA configuration interface with the desired bitstream. FPGAs may feature
such interfaces that are accessible from within the FPGA fabric itself to enable
self-reconfiguration.

2.3.2 Reconfigurable regions and modules

Each physical region designated for partial reconfiguration in an FPGA design is
referred to as a partially reconfigurable region (PRR), or reconfigurable region
for short. Conversely, the remainder of the area is called the static region. The
configuration in a reconfigurable region can be alternately defined by reconfigurable
modules (RMs). Any such region needs to be at least as large as its largest module.

2.3.3 Use cases

When some parts of an FPGA design never need to be active at the same time
(i.e. in a mutually exclusive fashion), they may be implemented as reconfigurable
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modules in a reconfigurable region. Smart applications of this time-multiplexing of
FPGA area enable a variety of use cases [12]. Hardware resources can be saved with
not all modules needing to be implemented on the FPGA fabric simultaneously as
would be the case in a static design. A smaller and cheaper FPGA that consumes
less power may suffice. This benefit increases with more modules per region.

Moreover, PR may help in situations where an active FPGA design needs to be
updated with minimal downtime or without losing state. A partial bitstream may
target only changed regions or even solely consist of the difference between the old
and new configurations [30], thereby reducing the bitstream size and reconfiguration
time. This can also be applied for fast device start-up, with the logic that is not
required in a very short time span after power-on being configured later.

Finally, PR may be utilized as part of countermeasures for certain physical
attacks, an idea explored further in this thesis.

2.3.4 Vendor support

The support of and interface for partial reconfiguration on commercial FPGA devices
differs from vendor to vendor. Most major FPGA vendors — like Intel, Xilinx and
Lattice — nowadays support partial reconfiguration of at least part of their product
families. The FPGA resources that qualify and the granularity and speed with
which they can be reconfigured vary.

2.3.5 Reconfiguration controllers

To reconfigure a reconfigurable region, an FPGA’s configuration interface needs to
be supplied with the desired partial bitstream. The soft- or hardware responsible
for this process is referred to as the Partial Reconfiguration Controller (PRC). On
receiving a trigger for reconfiguration, a PRC has to carry out several tasks. Note
that some of these tasks are not essential, but may be desirable for practical and
easier applications of PR. These tasks are generally categorized in the before, during
and after phases of reconfiguration.

Before Optionally wait for or notify the old module to save its state, flush its pipeline
or otherwise give the green light for reconfiguration.

During Retrieve the desired partial bitstream from a storage location and supply it
to a configuration interface of the FPGA.

Optionally isolate the module boundaries to avoid seemingly random signals
from the region under reconfiguration to propagate through the static region.
Conversely, dynamic (i.e. changing) signals coming from the static into the
reconfigurable region may also be undesirable during reconfiguration when it
is not reset afterwards [27].

After Optionally restore the new module’s state or assert its reset signal to bring it
in a predefined state.
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2.4 Hardware description language Clash

Digital hardware designs are generally made using a hardware description language
(HDL). This section introduces one such language: Clash.

VHDL and Verilog are the widely-used traditional HDLs at the register-transfer
level (RTL) of abstraction. Such languages describe structure: the flow of digital
signals between the hardware registers that store state between clock cycles in
synchronous designs. Conversely, high-level synthesis (HLS) uses algorithmic
descriptions of a hardware design.

In a standard EDA tool flow, HDL descriptions are synthesized into netlists:
descriptions of logic gates and how they interconnect. Place and route then
maps the logic gate descriptions onto the available hardware resources. Typically
only a subset of a HDL is synthesizable. Simulators exist so that the behavioural
correctness can be tested during design.

HLS tools provide a higher level of abstraction by working on algorithmic
description of a desired hardware behaviour. Such tools derive a corresponding
implementation in hardware and perform pipelining — the insertion of registers —
given size and latency constraints. The fact that most HLS tools use imperative
programming languages can be problematic in the sense that their sequential nature
makes that they do not capture the parallel nature of hardware well. This may
frustrate the transparency of the synthesis process: it can be hard to develop a feel
for what hardware structure will result from a given HLS description.

Clash [31, 32] is a functional HDL that uses the syntax and semantics of the
functional programming language Haskell [33]. It is of a high abstraction level in the
sense that it supports Haskell’s powerful language constructs such as higher-order
functions, type classes and parametric and ad hoc polymorphism. On the other
hand, it is not so much high-level in the sense that it still works on the RTL
level of abstraction and the designer still has to insert every single register. Clash
being strongly typed and pure (expressions are referentially transparent) enables
highly-parametrizable designs and makes it suit the immutable nature of hardware
well. For those uninitiated with Haskell and Clash, some language aspects are
introduced in Appendix A.

Hardware descriptions in Clash are supported by the free and open source
Clash compiler. Figure 2.3 visualizes what an FPGA design flow looks like. The
compiler’s interactive shell (REPL) enables circuit simulation by evaluating the
Haskell functions that any Clash design consists of. The compiler can compile Clash
descriptions to VHDL, Verilog and SystemVerilog to enable the use of conventional
EDA tools for synthesis, placement and routing.

Clash features a templating system that allows the annotation of Clash functions
with HDL primitives. They specify exactly what the compilation output for the
corresponding function should look like in the compiler’s supported output HDLs.
The function declaration is then only used for simulation purposes. Use of HDL
primitives allows for the integration of existing non-Clash IP blocks.
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Writing Clash Simulation

RTL flow
(traditional HDLs)

Logic level
(netlist, e.g. EDIF)

Device level
(Bitstream (FPGA),

layout (ASIC))

Compilation

Synthesis Place & route

Figure 2.3: What an FPGA hardware design flow using Clash may look like.
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3 Related work

In this chapter, some relevant related work is outlined and discussed. The first
section considers mitigation techniques to certain physical attacks with a focus on
those utilizing implementation diversity to do so. The second section considers
approaches to modelling and simulating FPGA designs using PR.

3.1 Side-channel and fault attack countermeasures

The existence of side-channel and fault attacks has shown that cryptosystem security
comes and goes with not just security of the cipher, but also with security of the
hardware platform that the cipher is implemented on. Many studies have focussed
on side-channel and fault attack mitigations techniques. This section outlines
some of those that concern hardware implementation and utilize FPGA partial
reconfiguration to introduce implementation diversity.

Since fault attacks are active, a different class of countermeasures deals with
trying to detect fault insertion and to take action based on that. This can
be accomplished through either error checking logic or sensors. This class of
countermeasures is not considered further in this thesis.

A number of samples is required to mount a successful side-channel or fault
attack. In practice, countermeasures aim to raise that number, and thereby make
an attack more difficult [7]. Ideally, countermeasures are sufficient to render
attacks infeasible, that is: to raise their cost beyond the gain due to a success.
Countermeasures utilizing implementation diversity generally do so to introduce
temporal or spacial jitter.

In case of temporal jitter, the instance of time at which certain sub-operations
are performed depends on the active reconfigurable module and is different for
various executions of an algorithm because of PR. This breaks the assumption of
differential side-channel and fault attacks that changes in side-channel measurement
traces depend solely on changes in system input signals; they now also depend on
which variant is active. For such a countermeasure to be effective, it is essential
that an attacker is not able to discern the individual variants or force a single
one to remain active. Otherwise, traces could be statistically analysed per variant
which would largely nullify this kind of countermeasure. The overall encryption
time should remain constant to prevent timing analysis attacks from giving away
the active variant.

Addition of spacial jitter by continually changing where certain sub-operations of
an algorithm are performed on an FPGA can counter fault attacks as the area that an
attacker needs to target is not constant. Furthermore, certain transient faults that
are induced in a reconfigurable region can be undone through reconfiguration [7].

We distinguish two levels at which variants for implementation diversity can differ.
At the algorithm level, the algorithm that is implemented on the FPGA is varied.
Each variant will have a different RTL description. Conversely, implementation
diversity at the implementation level is used to refer to approaches that alter
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synthesis (and thus the netlist), placement and/or routing to obtain variants. Here,
the RTL description does not change.

Mentens et al. (2008) Mentens et al. [7] appear to have been the first
to propose physical attack countermeasures involving PR. They consider two
approaches, one involving temporal jitter, the other both temporal and spatial jitter.

The first approach concerns the architecture level and adds temporal jitter
to an AES-128 implementation using a dynamically reconfigurable switch matrix.
AES is a round-based block cipher that each round performs four sub-operations
sequentially: AddRoundKey, SubstituteBytes, ShiftRows and MixColumns, in that
order [18]. Through the switch matrix, two registers in the static region are each
inserted at locations in between two of the four or after the fourth AES round
sub-operations. After which sub-operation each is wired up depends on the switch
matrix configuration, which is changed through PR.

The authors note that there are eight configurations with differing temporal
shift for the in SCA commonly targeted SubstituteBytes sub-operation when using
the fact that SubstituteBytes and ShiftRows can be swapped. They claim that the
number of measurements required to break the implementation using a DSCA is
increased by a factor of over three under conservative assumptions. With regards
to fault analysis attacks, they claim that the countermeasure is effective due to the
aforementioned general reasons as to how temporal jitter can help in that regard.

With only the switch matrix being reconfigured and with it consisting of only
a bunch of wires, the reconfigurable region can be very small and reconfiguration
fast. The number of possible configurations is small.

As a second approach to further increase the resistance of the implementation
to fault analysis attacks that target a system locally, such as with optical ones, the
authors also propose a countermeasure utilizing both temporal and spatial jitter.
This concerns both the architecture and implementation levels. When applied to
AES, the reconfigurable modules are the four AES sub-functions with and without
an appended register. With them being relocated in runtime, the probability of
successfully targeting them with local fault injection processes such as optical ones
now has a lower probability.

Hettwer et al. (2019) Hettwer et al. [8] ventured exchanging 128 different
variants of the entire datapath of an 8-bit serialized AES-128 encryption implement-
ation. These variants differ at the implementation level as they are derived from the
same synthesized netlist. Their mutual differences in physical layout come from the
fact that for each variant implementation 80% of the slices in the reconfigurable
partition are randomly prohibited for placement. Practical measurements are shown
to be effective against EM analysis and FAs with resistance against power-based
SCAs being increased by a factor of 2 to 3 at a significantly higher hardware
resource utilization.
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Bow et al. (2020) Bow. et al. [9] build on the concepts introduced in
[34]. They consider an AES cipher with 18 reconfigurable regions for SBOX
implementations that are regularly reconfigured. One of them is used at a time
for the SubstituteBytes step of AES. The SBOX variants are derived at the
implementation level by using four different standard cell libraries during synthesis.
Moreover, more variants are added through, among other things, addition of random
buffer delays to in- and outputs or to internal nodes, addition of dummy fan-out
capacitive loads, and through manipulation of the clock tree. Proof of concept
experiments suggest a significant increase in correlation power analysis resistance.

In conclusion The few approaches that apply implementation diversity with
variants differing at the algorithm level, like [7], use variants that are manually
tailored to and optimized for the application at hand. Conversely, the approach
proposed in this thesis is more general, with variants of a given hardware architecture
being automatically derived. Whether this more general approach can yield variants
that are sufficiently effective as a countermeasure will need to be shown.

3.2 Reconfiguration modelling & simulation

Designing for FPGAs brings several additional challenges when utilizing partial
reconfiguration. The design parts that are only ever needed in a mutually exclusive
fashion need to be identified or designed as such. Their internal state may need to
be stored and restored and the timing needs to work out. Having electronic design
automation (EDA) tool support can therefore be highly beneficial.

Simulation is widely-used as part of functional verification: verifying that a
design conforms to specification. There are several tools and frameworks that
support the definition of reconfigurable modules and functional simulation of their
exchange in reconfigurable regions that do so in high-level synthesis languages such
as SystemC. This thesis, however, focusses on defining and simulating designs using
DPR at a lower abstraction level: RTL. This facilitates cycle-accurate analysis of
timing behaviour and the uncovering of faulty designs. In order to simulate the full
design, support for simulating the exchange of modules is required as opposed to
simulation of individual configurations.

Xilinx Vivado, the vendor EDA tool for Xilinx FPGAs, supports standard simu-
lation of individual configurations, but not of the process of partial reconfiguration
itself [27, p. 85]. This is, however, still possible to accomplish through the manual
insertion and management of multiplexers, to be used in simulation only. This is
an approach supported and automated by Intel Quartus, the vendor EDA tool for
Intel FPGAs, as illustrated in Figure 3.1 [35]. The PR Activate input in that figure
should be active during simulation of reconfiguration to have the output set to
unknown values.

ReSim [36] is is a library written in SystemVerilog that works similar to Intel’s
approach in the sense that it operates at the RTL level and that is automatically
inserts simulation-only multiplexers. It does so through something that represents
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Figure 3.1: The wrapper for PR simulation provided by Intel Quartus Prime Pro
Edition. Intel uses the term persona for reconfigurable module. Source: [35].

the reconfigurable region named the extended portal. ReSim features simulation-
only bitstreams that are similar in layout compared to real bitstreams. Such
bitstreams are retrieved from a simulation-only bitstream storage location by the
PRC and led to an artefact representative of possible configuration interfaces. That
artefact extracts the region and module identifiers for the extended portal to know
the reconfiguration status and which module to multiplex next. On initiating PR,
the extended portal selects the new module that is now under configuration. It is
fed with undefined "x" values to help test the initialization mechanism that may be
present to bring the module in a predefined state after reconfiguration. Meanwhile,
the extended portal output is also set to undefined "x" values to help test the
region isolation logic.

The PR library presented in this thesis is similar in functionality compared to
the approaches taken by Intel and in ReSim. In line with the latter, undefined
"x" values are propagated out of the reconfigurable region to help test any region
isolation logic. The module under reconfiguration is not already selected during
simulation of reconfiguration, but this should not prevent testability of the module
initialization logic. The bitstreams used in simulation are user-provided, and can
therefore contain anything. Unlike with ReSim, they are not used to extract
the reconfiguration status and active regions. Instead, this information needs
to be passed explicitly to each reconfigurable region simulation artefact. This
digital signal is unused outside of simulation and therefore does not take any
hardware resources. For cycle accurate simulations representative of an actual
hardware implementation, the module bitstream sizes need to be back-annotated
after synthesis and implementation. To the best of knowledge, the PR library
presented in this thesis is the first to be written in and to support hardware designs
and simulations with DPR in Clash.
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4 Automatic implementation diversity at the al-
gorithm level

As discussed in Chapter 3, related work, implementation diversity can be an effective
countermeasure to side-channel and fault attacks. It uses the fact that a desired
behaviour of a digital circuit can generally be realized in many different ways where
each may have different side-channel leakages. The limited amount reconfigurable
resources on an FPGA limits this somewhat, but these resources can still be inter-
connected and configured in many different ways and still have the same functional
result. In that context, this chapter explores generic approaches to deriving variants
of an implementation with the purpose of automating implementation diversity at
the algorithm level. This relates to the first two research questions.

Several concepts for deriving variants at the algorithm level are explored in
Section 4.1. One of those concerns higher-order functions, a commonly used
abstraction in functional programming languages that is present in Clash and can
be used describe structure in hardware. This concept is worked out to a set of
provably-correct transformation rules that describe how certain left fold higher-
order functions can be rewritten to functionally equivalent yet structurally different
variants in Section 4.2.

For automating the application of transformation rules like the aforementioned,
an appropriate compiler interface is picked in Section 4.3. The choice fell on Tem-
plate Haskell. Its compile-time metaprogramming facilities are used in Section 4.4
to implement a modified version of one of the left fold transformation rules as a
proof of concept. The resulting transformation primitive is a function that receives
a Clash expression and returns expressions for all transformation rule outcomes if
all conditions for the rule are met.

Transformation primitives like the above kick into action only when encountering
an expression that matches the transformation rule conditions, for example on an
expression that is a call to a left fold function. It is however desirable to match on
any suitable expression, even if it is a subexpression that is part of a larger one.
Section 4.5 proposes a way of constructing variant transformations: functions that,
given a section of Clash code, takes any transformation primitive, applies it wherever
possible and accumulates all resulting variants. Furthermore, an implementation is
proposed for applying a given variant transformation to a Clash function or variable
declaration and bringing any resulting variants in scope for them to be usable in
the rest of an FPGA design.

4.1 Concepts

This section considers some general concepts for acquiring several variants of a
design, a prerequisite for adding implementation diversity. The variants need to be
functionally equivalent but exhibit different side-channel leakages in relation to one
another.
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Altering data representations Any value in Clash has a type. Each member
of that type will get a different bit-representation when compiled. At least

⌈︁
2log n

⌉︁
bits are required to represent values of a type with n inhabitants. Unless the type
in question has no or a single inhabitant, this injective mapping to binary can
be performed in different ways. For example, a value of the Colour data type
of Listing 4.1 is either Red, Green or Blue, so

⌈︁
2log 3

⌉︁ = 2 bits are required to
represent those values. Therefore, the binary numbers 00, 01, 10 and 11 can be
arbitrarily assigned to represent Colour’s values.

data Colour = Red
| Green
| Blue

Listing 4.1: A data type with three data constructors, each representing a colour.

How many and which bits on wires in digital hardware flip from a zero to a one
and vice versa as inflicted by values changes depends on how values are represented
in binary. Changing these representations affects side-channel leakages and might
change the location of where an attacker may wish to inject a fault.

Altering arithmetic operation implementations Several implementations
and algorithms for arithmetic operations exist. For example, an adder could be
implemented as ripple-carry or carry-lookahead using FPGA CLBs or implemen-
ted using FPGA DSP blocks. Each may exhibit different side-channel leakage
characteristics.

Rewriting higher-order functions Higher-order functions (HoFs) are a com-
monly used abstraction in functional programming languages. Such functions take
a function as an argument or produce it as a result. For example, zipWith from the
Haskell Prelude module is a HoF that zips two lists using a given binary function;
zipWith (+) [1,2,3] [4,5,6] evaluates to [5,7,9]. Jan Kuper et al. [37]
note that HoFs express structure and may be seen as hardware architectures as
things like memory usage and execution time — relevant when executing on a
microprocessor — have been abstracted away from.

It is possible to rewrite certain higher-order functions using transformation rules
that are provably correct and meaning preserving [38, 37, 39]. The transformation
outcomes can be seen as functionally equivalent variants and may be used to
introduce spatial and temporal jitter.

Retiming Retiming is the process of moving the structural locations of registers
in digital circuitry in a manner where the same functional behaviour is retained.
When moving a register over e.g. a logic gate, one register must be consumed at
every gate input and one placed at every gate output or vice versa. Additional
difficulty comes when the registers have reset values.
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Retiming is typically performed as an optimization step to improve circuit
performance by shortening the critical path or to reduce circuit area or power
consumption. It affects when operations are performed and can be used to introduce
temporal jitter.

Conclusion All previously mentioned approaches have potential in that they
could be used to obtain functionally equivalent variants that may have differing
side-channel leakages. In the end, higher-order functions were pursued. They are
an iconic feature of Clash, the somewhat unconventional HDL that I work with,
and there are systematic approaches that are provably correct in which variants
can be ascertained.

4.2 Higher-order function transformation rules

This section outlines some transformation rules on higher-order functions (HoFs)
as proposed in existing literature.

Higher-order functions are a commonly used abstraction in functional program-
ming languages. They are used by Rinse Wester in [38] to express a mathematical
formulation of a DSP algorithm that is subsequently transformed using a set of
transformation rules that distribute computations over time and space. In general,
computations can be implemented in time by performing operations sequentially
or in space by performing operations in parallel. This translates to an increase
in execution time or chip resources respectively in case of hardware design. The
exact distribution between these two is controlled by a parameter introduced by
the proposed transformations rules which allows for an optimal trade-off. These
rules are applicable to several common higher-order functions and are proven to be
meaning-preserving.

In [37], Jan Kuper et al. propose very similar transformation rules. They
propose annotating imperative code fragments with Haskell higher-order functions
that indicate the computational structure. The annotations are mathematical in
nature and allow for provably correct transformations on them with the goal of
finding a good mapping to the target hardware platform that is to execute the
algorithm. Corresponding transformations that are hard to find by themselves have
to be performed on the imperative code fragments. To demonstrate the idea, the
paper outlines a few transformation rules that are proven to be correct.

Both works introduce transformation rules on the commonly used left fold
function. In functional programming, folding refers to a family of higher-order
functions that can reduce container-like data structures to a single return value
using a given binary reduction function. Given some constraints on the reduction
function, the concept of implementation diversity can be applied to folding functions
particularly well as there are many different ways in which the reduction can then
be arranged.

GHC’s Prelude module exports foldl :: Foldable t => (b -> a -> b)
-> b -> t a -> b. It takes as arguments a reduction function, an initial value
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and a foldable data structure, in that order. Its structure is illustrated in Figure 4.1.
The left fold function and the below transformation rules apply to any foldable
and splittable data structure, including vectors, but they will be explained using
lists. As an example of folding a list, foldl (+) 0 [1,2,3] would evaluate
as ((0+1)+2)+3 to 6. For background information on the likes of Haskell type
signatures and function application, please refer to appendix A.

...f f f

x0 x1 xn−1

z r

Figure 4.1: The structure of r = foldl f z xs.

Transformation rule 1 Any list xs of length N ×M can be unconcatenated
by splitting it up in N sublists of length M . The result is a list of lists xss. The
folding can therefore be split up in N sections as illustrated in Figure 4.2. This
transformation can be stated as:

foldl f z xs = foldl (foldl f) z xss (4.1)

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

z rf f f f f f f f f f f f

Figure 4.2: An example of the structure resulting from applying the transformation
rule of Equation 4.1. Here, N = 4 and M = 3. Source: [37], modified to use different
variable names.

Note that the four groups in the example of Figure 4.2 are occurrences of the
inner fold (the one in parentheses) of Equation 4.1. They are folded by the outer
fold, which uses the inner fold as its reduction function. This grouping allows for
the inner fold to be implemented in space with it being computed in a single time
instance, and for the outer fold to be implemented in time with each application
of its reduction function being performed sequentially, over multiple clock cycles.
This is illustrated in Figure 4.3. The overall ratio of distribution between time and
space is determined by how the original list xs is unconcatenated to the list of lists
xss. In a hardware design, only one instance of the inner fold (i.e. a single group)
would need to be implemented, plus a memory element (such as a register) for
storing the intermediate value of the outer fold.

Transformation rule 2 When the reduction function f is associative and has an
identity element that is used as the initial value z, folding left could be restructured
as illustrated in Figure 4.4. This transformation can be stated as:

foldl f z xs = foldl f z (map (foldl f z) xss) (4.2)
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Figure 4.3: Left fold distributed over time and space. Source: [38, Fig. 4.8],
modified to use different variable names.

x0 x1 x2z x3 x4 x5z x6 x7 x8z x9 x10 x11z

z r

f

f

ff

f

fff

f

fff

f

fff

Figure 4.4: An example of the structure resulting from applying the transformation
rule of Equation 4.2. Source: [37], modified to use different variable names.

Transformation rule 3 Finally, when the reduction function f is also com-
mutative, that is: in addition to being associative and the initial value being the
corresponding identity element, folding left could be restructured as illustrated in
Figure 4.5. This transformation can be stated as:

foldl f z xs = foldl f z (foldl (zipWith f) zs xss) (4.3)

Here, zs is a list with the initial value repeated N times. Note that remarks
similar to the aforementioned about distributing the computation over space and
time can be made about these latter two transformation rules.

4.3 Transformation automation: API choice

In order to automatically perform transformations of a given Clash hardware design,
an appropriate interface with the compiler must be used. The Clash compiler
exposes several with potential, each operating on a different representation of the
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Figure 4.5: An example of the structure resulting from applying the transformation
rule of Equation 4.3. Source: [37], modified to use different variable names.

user’s design. They are compared in this section with the purpose of deliberately
selecting one based on a trade-off between versatility and ease of use.

GHC Rewrite Rules GHC, the Haskell compiler Clash uses behind the scenes,
features rewrite rules for optimization purposes. By putting one or more rules in a
RULES pragma, any matching expression is replaced with an alternate one. For
example, an optimization rule for rewriting two mappings over a list is depicted in
Listing 4.2. If more than one rule matches, GHC arbitrarily chooses one to apply.
All rules are implicitly exported from the module where they are defined. Therefore,
the rule is in effect in any module that imports it, directly or indirectly.

{-# RULES
"map/map" forall f g xs. map f (map g xs) = map (f . g) xs

#-}

Listing 4.2: A GHC rewrite rule from a map over a map over a list to
a single map with the original functions composed. Source: GHC docu-
mentation (https: // downloads. haskell. org/ ~ghc/ latest/ docs/ html/
users_ guide/ glasgow_ exts. html# rewrite-rules ).

GHC plug-ins Alternatively, GHC compiler plug-ins could be used for variant
generation. Behind the scenes, GHC is used as a front-end library by Clash. In the
compilation process, Clash lets GHC translate a given user design to its internal
intermediate representation named Core. This language is very concise; many
of the possible syntactic constructs in Haskell have been gotten rid of. Clash
translates GHC Core to its own Clash Core representation to then submit to further
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transformations and eventually pretty-print the result in the user-selected target
HDL.

The use of GHC makes that its plug-in functionality1 can be used. GHC
Core plug-ins insert an extra compilation pass on the Core representation into the
compiler pipeline, and may therefore be used to implement the variant generation
transformations. In order for such a hypothetical transformation plug-in to know
where to try and apply these transformations, Haskell annotations pragmas may be
used. They allow the attachment of data to identifiers in user Haskell code that is
preserved during compilation. This data may then be retrieved by a plug-in, in this
case to inform it which program sections to apply transformations to.

Template haskell with QuasiQuotations Template Haskell (TH) [40] is an
extension to the GHC compiler. It allows for compile-time metaprogramming by
constructing or manipulating abstract syntax tree (AST) representations of Haskell
code. The TH AST is represented using an ordinary Haskell data type (ADT).
Quotation bring Haskell code to such a representation, and splicing does the inverse.
Please refer to Appendix B for more information.

Quotation and splicing enable the writing of variant generation transformations
that operate at the TH AST level. Such a transformation may modify given source
code, i.e. an expression or declaration, and opt for inserting additional variants.

Comparison Rewrite rules allow for very straight-forward rewriting of expressions.
However, they can never add any new declarations or expressions for derived variants
as only one rule is applied arbitrarily when multiple match. Furthermore, rewrite
rules are static, and no functions can be used to determine the resulting expression
based on the matching input expression. Lastly, rewrite rules cannot be restricted
to certain sections of code that may be of interest for variant generation.

GHC core plug-ins are a lot more versatile. They operate on the very concise
Core intermediate representation of the compiler where many syntactic constructs
of Haskell have been gotten rid of. Transformation plug-ins that work at this
level would be small and apply to many semantically equivalent Haskell language
constructs. The scope where transformations are applied can be limited through
the use of annotation pragmas.

Template Haskell-based transformations would operate on an AST representation
of code that comprises the rich Haskell syntax in full. Rich interplay of splicing and
quotation may nevertheless enable concise transformations. Limiting the scope of
such transformations is implicit as the relevant code sections need to be enclosed
by quotation brackets.

Template Haskell is the route taken given yours truly’s familiarity with it from
implementing the ILA Clash core proposed in Section 5.5 and given its presumed
higher accessibility for those not involved in GHC compiler development when

1https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/
extending_ghc.html#compiler-plugins
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compared to GHC Core plug-ins. Rewrite rules weren’t much of a contender given
their many shortcomings.

4.4 Left fold transformation rule implementation

Now that a suitable compiler API is chosen, one of the transformation rules from
Section 4.2 on left fold higher-order functions is modified to be applicable in more
ways and implemented as a proof of concept. The resulting transformation primitive
returns as variants all possible ways of applying the rule if given a suitable call to
foldl.

4.4.1 Reconsidering the original transformation rules

All left fold transformation rules from Section 4.2 involve splitting an N ×M long
foldable (i.e. container-like) and splittable data structure, such as a list, in N
equally sized chunks of M elements. This is desirable when wishing to efficiently
distribute the computation over time and space: the N chunks can be processed
consecutively on the hardware required for simultaneously processing M elements
plus a register for storing intermediate values.

To use one of the transformation rules for generating variants for implementation
diversity, its parameter must be varied. The parameter controls how the folded
data structure is split. Finding all possible ways of splitting boils down to finding
all possible factors N and M that have as product N ×M . An algorithm for that is
provided in Listing 4.3.

factorsOfProduct :: Integral a => a -> [(a, a)]
factorsOfProduct x =

[ (a,b)
| a <- [1..x]
, b <- [1..x]
, a * b == x

]

Listing 4.3: A function that finds all possible pairs of positive integer factors that
have a given positive integer number as their product. It uses a list comprehension
to do so.

Note that this problem does not have many solutions for small products. For
example, the MixColumns step of the AES encryption standard — an algorithm
for which implementation diversity could be beneficial — could be described by
left fold higher-order functions with data structures containing five elements. Only
two pairs of numbers have 5 as their product: factorsOfProduct 5 evaluates to
[(1,5),(5,1)], sufficient for a mere number of two variants per left fold. Since
MixColumns could be described using four such folds, the variants could however
be combined to have a total number of 24 = 16 variants.

27



If this approach were taken, many transformation outcomes require differing
numbers of clock cycles to complete. It would complicate automating implement-
ation diversity as the rest of the design would need to accommodate for varying
timing behaviour and could allow an attacker to distinguish some variants through
timing analysis. Registers could be added to the shorter variants as a work-around
to even things out.

Instead, note that the left fold operation can easily be distributed in more ways
when staying within a single clock cycle. The N ×M long list needs not be split in
N chunks of equal length M . Rather, it could be split in any way as long as the
individual chunk sizes sum up to N ×M . Finding all possible ways of splitting with
these loosened constraints therefore involves finding all possible combinations of
terms that have as sum N ×M . Listing 4.4 has an algorithm for that. It enables
many more ways of splitting a left fold as could be described for the MixColumns
step of AES: evaluation of termsOfSum 5 yields 15 results.

-- | Finds all possible positive terms of a given integer sum.
--
-- For example:
-- > termsOfSum 4
-- [[1,1,1,1],[2,1,1],[1,2,1],[3,1],[1,1,2],[2,2],[1,3]]
termsOfSum

:: Integral a
=> a
-- ^ A sum of which to find terms
-> [[a]]
-- ^ All possible combinations of non-zero natural numbers that have the
-- given number as sum

termsOfSum = Prelude.init . go []
where

go :: Integral a => [a] -> a -> [[a]]
go xs 0 = [xs]
go xs rem =

[ xs'
| p <- [1..rem]
, xs' <- go (p:xs) (rem-p)

]

Listing 4.4: A recursive function that finds all possible non-zero terms of a given
sum. It uses a list comprehension to do so.

Because its simplicity, it was decided to go for this approach of not distributing
transformation outcomes over time, but rather staying within a single clock cycle.
From the transformation rules discussed in Section 4.2, this immediately disqualifies
rule 1 (Equation 4.1, illustrated in Figure 4.2) for implementation in the context
of implementation diversity given that all possible transformation outcomes are
equivalent when not distributing over time. Furthermore, the approach of arbitrarily
splitting the folded data structure in chunks that need not be equal in size is easily
applied to rule 2 (Equation 4.2, illustrated in Figure 4.4), whereas this is not quite
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self-evident in case of rule 3 (Equation 4.3, illustrated in Figure 4.5). As such, it
was decided to implement transformation rule 2 as a proof of concept.

4.4.2 Implementation on TH expressions

This section presents an implementation of the left fold transformation transform-
ation rule 2 (Equation 4.2, illustrated in Figure 4.4) from Section 4.2. This is
without distribution over multiple clock cycles, as was argued in Section 4.4.1. The
implementation is presented in Listing 4.5 and will be explained piece by piece
below.

1 tfFoldl :: Exp -> (Maybe [Exp])
2 tfFoldl (AppE (AppE (AppE (VarE ((== 'foldl) -> True)) f) init) vec)
3 | lengthTH vec > 1
4 && ( (f == VarE '(+) && init == LitE (IntegerL 0))
5 || (f == VarE '(*) && init == LitE (IntegerL 1))
6 || (f == VarE 'and && init == LitE (IntegerL 1))
7 || (f == VarE 'and && init == ConE 'True)
8 || (f == VarE 'or && init == LitE (IntegerL 0))
9 || (f == VarE 'or && init == ConE 'False)

10 || (f == VarE 'xor && init == LitE (IntegerL 0))
11 || (f == VarE 'xor && init == ConE 'False)
12 || (f == VarE 'xor && init == VarE 'zeroBits)
13 || (f == VarE 'mappend && init == VarE 'mempty)
14 || (f == VarE '(<>) && init == VarE 'mempty)
15 ) = Just $ foldlTH fNew init . listToVecTH' <$> foldedVariants
16 | otherwise = Nothing
17 where
18 fNew = AppE (VarE 'keep) f
19 chunkVariants = splitPlacesTH <$> termsOfSum (lengthTH vec) <*> [vec]
20 foldedVariants = ( \v -> if lengthTH v == 1
21 then headTH v
22 else myFoldlTH f init v
23 ) <<$>> chunkVariants
24 (<<$>>) = fmap . fmap
25 tfFoldl x = Nothing

Listing 4.5: The left fold transformation primitive. Uses functions that are
provided in Appendix C.

A left fold function call as a TH expression Template Haskell (TH) allows
modification of Haskell code (and thus also Clash hardware descriptions) by operat-
ing on an abstract syntax tree (AST) representation of them. Any left fold in a
clash description is a function call, and any function call is part of an expression.
Any Template Haskell representation of an expression is of type Exp as exported
by module Language.Haskell.TH. Specifically, a call to foldl from the Clash
Prelude module looks as shown in Listing 4.6 and illustrated in Figure 4.6. Here, f
represents the reduction function, z the initial value, and xs a vector that is to be
folded.
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AppE (AppE (AppE (VarE Clash.Sized.Vector.foldl) f) z) xs

Listing 4.6: A fully applied function call to foldl.

AppE

AppE

AppE

VarE

Clash.Sized.Vector.foldl

f

z

xs

Figure 4.6: A visualization of a fully applied function call to foldl as a tree.

Transformation primitives Transformation rule transformation implementa-
tions like this one will be referred to as transformation primitives. Such primitives
need to be of the type Exp -> Maybe [Exp]. On receiving a TH expression, they
must return a list of variants wrapped in a Just when the rule fired, and Nothing
otherwise. The extra Maybe in the return value type is because of implementation
reasons discussed in Section 4.5.2.

Detecting eligible left fold function calls Unlike data constructor functions,
regular Haskell functions like foldl cannot be pattern matched on. So in order to
detect such left folds, a fully applied function call as a TH Exp like in Listing 4.6 is
instead matched on.

A call to foldl must meet a few criteria to be eligible. As it isn’t straightforward
to determine whether a given reduction function is associative and whether it has
an identity element, only a select few that are known fulfil these requirements are
allowed. This is checked in Listing 4.5 lines 4 to 13. Furthermore, it serves no
purpose to consider folding any vector of length zero or one. As such, sufficient
lengthiness is asserted in Listing 4.5 lines 3. This used function lengthTH as
defined in Listing C.3.

Constructing new left folds The original vector must be split in as many
different as ways as possible to construct the different variants. In line 18 of
Listing 4.5, function termsOfSum from Listing 4.4 is used to determine how that
must be done, and splitPlacesTH from Listing C.8 is then used to split the
original vector that way.

At line 19 to 22 of Listing 4.5, each of the resulting vector chunks is kept as is
when of length one and wrapped in a new call to foldl when of greater length.
This is done using foldlTH from Listing 4.7. The original reduction function
is used with the addition of a keep attribute, the need of which is discussed in
Section 4.4.3. The original initial value is used as well. Finally, the folded chunks
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are transformed into a vector using listToVecTH' from Listing C.9 and passed in
a final call to foldl at line 14.

foldlTH f init vec = AppE (AppE (AppE (VarE 'foldl) f) init) vec

Listing 4.7: Constructs a new fully applied function call to
Clash.Prelude.foldl.

Note that the variants resulting from an application of this transformation
primitive may be transformed again. This is accomplished through its repeated
application as accomplished in Section 4.5.

Note that the above implementation operates solely on the Template Haskell
representation of Clash expressions, which can be a bit clunky. Alternatively, it
could have used a calls to functions operating on the regular Haskell representation
of code. Two examples using this approach are provided in Listing 4.8. They can
be deployed in a more versatile manner, but they can be harder to understand and
write due to having to deal with the Q monad and Exp return values all the time.
Implementations like these have been experimented with, but could not be finished
in time. They would still need to use the current approach in part, because there
is no way of splitting vectors like splitPlacesTH from Listing C.8 does due to
vectors having their lengths encoded in their types.

lengthTH2 :: Exp -> ExpQ
lengthTH2 v = do

length' <- [| length |]
return $ length' ̀AppÈ v

lengthTH3 :: Exp -> Exp
lengthTH3 v = (VarE 'length) ̀AppÈ v

Listing 4.8: Alternative approaches to determining the length of a vector compared
to Listing C.3.

4.4.3 Forcing EDA tools to keep structure

EDA tools, particularly those for FPGAs, have many optimization steps in pursuing
minimal hardware resource usage, power usage and propagation delay. It was ob-
served that Xilinx Vivado synthesis optimizations transformed the variants returned
by the left fold transformation primitive from Section 4.4.2 such that there did not
appear to be any difference between the synthesized variants. This is troublesome
as equivalent "variants" do not lead to implementation diversity. Disabling certain
synthesis optimizations could work around the issue but is undesirable in general as
that would negatively affect the entire user design.

Vivado can be instructed to leave certain signals be that would otherwise
be absorbed into logic blocks or otherwise pruned [41]. Such signals should be
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annotated by the keep attribute to force their keeping during synthesis, or by
dont_touch to additionally force their keeping during implementation.

Clash allows for the annotation of signals with HDL user attributes. However,
the feature is experimental, and limited testing showed it working improperly more
often than not2. As a workaround for this bug, a Clash HDL primitive was written.
It emits a given attribute when compiled to VHDL.

Clash primitives do not seem to support insertion of code in the declaration
section (i.e. before the begin keyword) of a VHDL architecture statement — the
location where the VHDL syntax dictates attributes to go. To work around this
fact, the new primitive declares an extra signal in a VHDL block statement.

4.5 Generic transformations through AST traversal

It is useful to be able to limit the scope of a user’s design where a transformation
is applied. With regards to protection against certain physical attacks through
implementation diversity, only the sensitive logic may need to be considered. In
that given scope, the transformation should be applied wherever possible. And in
case of transformations that may yield multiple variants, all variants need to be
accumulated.

This section introduces a generic solution for these problems by making variant
transformations. They can be made to work with any given transformation primitive
that works on AST representations of code, such as the one worked out in Section 4.4.
Section 4.5.1 first considers existing approaches to AST traversal and serves as
a prelude to Section 4.5.2 where a new approach that supports transformation
primitives is introduced. It traverses an AST, tries to apply the transformation
primitive wherever possible and accumulates all variants. Section 4.5.3 finally deals
with obtaining the AST representation of code in the first place and with putting
any resulting variants back in as new function or variable declarations.

4.5.1 Scrap your boilerplate

Template Haskell operates on TH AST representations of user code. Transform-
ations on such complex data structures quickly induce lots of code that solely
performs traversal. Such boilerplate code can be rid of using the freely available
libraries discussed in this section. It serves as a background introduction for the
next section, 4.5.2.

Let us take the small arithmetic language from Listing 4.9 as a running example.
Expr expresses integer values contained by Val and operations on them as an
AST. For example, 4−2 may be represented as Sub (Val 4) (Val 2) in our new
language as illustrated in Figure 4.7. Suppose that we wish to simplify our language
by removing Sub. After all, any subtraction can be expressed with the help of
addition and negation. Function f from Listing 4.10 applies this transformation

2The Clash compiler issue report that details the issue: https://github.com/clash-lang/
clash-compiler/issues/1082
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through pattern matching given an existing Expr. If it matches Sub, the substitution
is applied, otherwise the original Expr is returned.

data Expr = Val Int
| Add Expr Expr
| Sub Expr Expr
| Mul Expr Expr
| Neg Expr
deriving (Show, Eq, Data)

Listing 4.9: A simple arithmetic language.

Sub

Val Val

4 2

Figure 4.7: AST for 4−2.

f :: Expr -> Expr
f (Sub x (Neg y)) = Add x y -- Substitute x - (-y) with x + y
f (Sub x y) = Add x (Neg y) -- Substitute x - y with x + (-y)
f x = x

Listing 4.10: Rewrite when given a subtraction node, otherwise return the
argument untouched.

When applying f to our example subtraction AST, it neatly returns Add (Val
4) (Neg (Val 2)) as one would expect. Unfortunately though, f only applies its
transformation on subtractions at the root of an AST and its usability is therefore
quite limited. To resolve this, f could be rewritten to Listing 4.11’s f' to call itself
recursively on all recursive data constructor fields: its children. Code like this works
perfectly well but is somewhat undesirable to write and maintain, particularly for
larger data structures with many constructors such as the Template Haskell AST.
There is a lot of added boilerplate code for traversal that has nothing much to do
with the transformation’s intent of altering only a small subset of a data structure.
It can be error-prone to write and likely needs to be changed when the data type
changes, like is the case with the Template Haskell AST because of its regular
backwards incompatible changes between major GHC releases.

f' :: Expr -> Expr
f' (Sub x (Neg y)) = Add (f' x) (f' y) -- Substitute and recurse
f' (Sub x y) = Add (f' x) (Neg (f' y)) -- Substitute and recurse
f' (Add x y) = Add (f' x) (f' y) -- Recurse on Expr fields
f' (Mul x y) = Mul (f' x) (f' y) -- Recurse on Expr fields
f' (Neg x) = Neg (f' x) -- Recurse on Expr fields
f' x = x

Listing 4.11: Traverse the recursive data type to try and apply a transformation
on any arbitrarily deep node.

Scrap Your Boilerplate (SYB) is a Haskell library providing generic programming
[42]. It enables generic traversals and queries on data structures by taking care of
traversing over the (possibly recursive) fields of data constructors. For the sake of
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simpler terminology, the rest of this thesis regards tree data structures specifically
as the TH AST is the intended field of application. For a data type to be supported,
it needs to be an instance of the Data typeclass, which can be derived automatically
when enabling the DeriveDataTypeable GHC extension3.

Uniplate is another Haskell library that has similar goals to the SYB work but is
simpler and faster [43]. It can be used easily through automatically derivable Data
instances from SYB, but manual Uniplate or Biplate typeclass instances may
alternatively be written for significantly higher performance. Applying Uniplate’s
transform to f yields a function with the same functionality as f'. It traverses a
given data structure and applies f to the root of an AST and all its children.

4.5.2 Variant transformations

Libraries such as Uniplate provide powerful and concise means to generic transform-
ations of, for example, ASTs. They do, however, not support transformations that
may return multiple variants. This section proposes an implementation that does
just that without sacrificing the simplicity of only having to pattern match on the
constructors that are of interest like with Listing 4.10’s function f.

Transformations that traverse a given data structure to apply a transformation
rule wherever possible while accumulating all resulting variants will be referred to
as variant transformations. A data type for them is provided in Listing 4.12. To run
a variant transformation, it should be passed to accessor function runT to obtain
function of type a -> [b] that is contained within. Multiple variant transformations
can be composed using the (||>) operator as defined in Listing 4.13.

newtype Transformation a b = Transformation {runT :: a -> [b]}

Listing 4.12: A no-op newtype wrapper for variant transformations so that
typeclass instances could be declared.

(||>) :: Transformation a b -> Transformation b c -> Transformation a c
tf1 ||> tf2 =

Transformation $ \x ->
let ys = runT tf1 x
in concat (runT tf2 <$> ys)

Listing 4.13: An operator for composing variant transformations.

Variant transformations can be constructed using function mkT from Listing 4.14.
As can be seen, it operates on types that are instances of both the Eq and Data
typeclasses.

3Data can be automatically derived for user-provided types: The Glorious Glasgow Haskell
Compilation System User’s Guide, Version 6.12.2. The GHC Team. http://www.haskell.org/
ghc/docs/6.12.2/html/users_guide/.
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mkT
:: forall a. (Eq a, Data a)
=> (a -> Maybe [a])
-- ^ The transformation primitive
-> Transformation a a

mkT tf =
Transformation $ \x ->

case go Nothing (contexts x) of
Nothing -> [x] -- If the transformation resulted in no variants,

just return the original value.→˓
Just out -> nub out -- ̀nub̀ shouldn't be needed, but may help prune

duplicates at times.→˓
where
go

:: (Eq a, Data a)
=> Maybe [a]
-- ^ Accumulation of variants, if any.
-> [(a, a -> a)]
-- ^ Elements and corresponding contexts.
-> Maybe [a]
-- ^ Variants, if any. Nothing otherwise.

go acc [] = acc
go acc ((element, context):cs) =

case tf element of
Nothing ->

go acc cs -- Transformation didn't match, check the next element.
Just vs ->

let redf :: (Eq a, Data a) => Maybe [a] -> a -> Maybe [a]
redf acc' v =

if v == element
then go (Just [context element]) cs <> acc'
-- ^ If one of the variants returned by a transformation

primitive is its input, don't transform that variant
again as that would result in an infinite loop with the
variants being duplicated over and over.

→˓
→˓
→˓
else Just ((runT $ mkT tf) (context v)) <> acc'

in foldl' redf Nothing vs <> acc

Listing 4.14: An approach to making variant transformations given a transforma-
tion primitive.
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Transformation primitives As its first argument, mkT takes a function of type
a -> Maybe [a] that will be referred to as a transformation primitive. Such
a primitive should match at the root of an AST of type a and must return
either a list of resulting variants wrapped in a Just when it wishes to change
something in the AST or add any variants, or a Nothing otherwise. An example
of a transformation primitive is the left fold transformation rule implementation
discussed in Section 4.4.2.

When the primitive application returns an empty list wrapped in a Just, the
variant is pruned as an empty list is returned. When the primitive application
returns a singleton list (i.e. with a single element) wrapped in a Just, this is like
doing a regular transformation; no variants are added or pruned. There are a few
requirements on what primitives may and may not do as discussed in the paragraph
titled drawbacks below.

The use of Maybe was opted for for performance reasons. The implementation
discussed below requires knowledge of whether a transformation primitive matched,
and it is much cheaper to check for a Nothing than to check whether there are any
differences between the trees given to and returned by a transformation primitive.

Context is key The variant transformation that mkT returns is a wrapper around
the actual transformation function of type a -> [a]. Of the tree that is the
argument, all subtrees and their contexts are determined by calling Uniplate’s
contexts function, hence the Data contraint on a. All subtrees and their contexts
of Figure 4.7’s AST for 4−2 are illustrated in Figure 4.8. A subtree’s context is
the original tree with a hole in place of the subtree. One obtains the original tree
when plugging the subtree into the hole of its context.

Sub

Val Val

4 2

Val

4

Val

2

Sub

Val

2

Sub

Val

4

Figure 4.8: At the top all three subtrees for the AST of 4−2 in Listing 4.9’s
language, at the bottom their corresponding contexts with a hole in place of the
subtree.
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Note that 4 and 2 are not considered to be subtrees. This is because Uniplate
functions only perform single type traversal, in this example of Expr values and their
Expr fields. The numbers are fields of a different type, namely Int. Multi-type
traversal is possible using Biplate and its functions, but it was not needed and
therefore out of the project scope.

Traversal mkT traverses a given tree by applying a given transformation primitive
to all possible subtrees. When the primitive application returns a Nothing, it
continues with the next subtree. Otherwise — when it returns a list wrapped in
a Just — each element is put into the proper context and passed in a recursive
call to mkT. There is one exception: when an element is found to be equivalent to
the subtree passed to the primitive, it puts it into context, adds it as a variant and
continues with the next subtree. Passing it in a recursive call to mkT would result
in infinite recursion. This equality check gave rise to the Eq constraint on a. All
results are concatenated and returned.

Drawbacks and limitations The fact mkT recursively calls itself on any variants
returned by the transformation primitive that are not equivalent to the primitive
input makes that it will recurse on any such variants until the primitive does not
match on them any more and returns a Nothing. To avoid infinite recursion, it
is therefore important that the primitive will not match on variants after a finite
number of applications any more. Note what this implies:

• Transformation primitives should not contain mappings that are each other’s
inverse. For example, if some element A is transformed to some other element
B, the primitive may not also transform B to A.

• Transformation primitives should not simply add depth to a given tree, for
example by wrapping it in an identity node. They should either:

– return reduced variants (like a left fold on a smaller vector than the
input as happens with the fold left transformation primitive discussed
in Section 4.4.2), or

– return a variant that does not match any more (for example by replacing
a matching call to foldl with a non-matching one to myFoldl that is
declared as myFoldl = foldl).

4.5.3 Splicing variants as new declarations

This section answers two questions. How can a variant transformation be applied to a
given section of a Clash hardware design? And how can the resulting variants be used
as regular Haskell in the rest of the design, for example in adding implementation
diversity?

A solution that answers these two questions involves a single Clash declaration of
a variable or function. It comprises the function varDecs as defined in Listing 4.17.
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Its use is demonstrated in Listing 4.15 and results in the log of Listing 4.16 being
printed when compiled.

$(varDecs
(mkT tfFoldl)
[d| fun = foldl (+) 0 ((1::Unsigned 8):>2:>3:>4:>5:>Nil) |]

)

Listing 4.15: An example application of the left fold variant transformation on a
variable declaration.

[INFO] Left fold transformation rule fired.
[INFO] Number of variants generated: 15.
[INFO] Variant declaration names are "fn_0" through "fn_14".

Listing 4.16: Part of the Clash compilation log of the code of Listing 4.15.

Function varDecs takes a variant transformation of type Transformation
Exp Exp and the Template Haskell representation of a single Clash function or
variable declaration. The latter is of type DecsQ, a type synonym for Q [Dec]. As
shown in the example, such a DecsQ can be obtained by quotation of a declaration
using the TH quotation brackets. The declarations returned by varDecs can be
spliced to obtain their regular Haskell representation.

At lines 4 through 9 of Listing 4.17, the input declaration is deconstructed into
the declaration name, its arguments in case of a function declaration, its body and
any potential where clause contents. Line 12 asserts that there is no where clause,
as its content would not be considered when applying the variant transformation.

Line 17 applies the variant transformation wherever possible in the body of the
declaration. For any resulting variants, a new declaration name is constructed at
line 19. These names are constitute the original input declaration name appended
with an underscore and a number between 0 and n where n is the number of
variants minus one.

Starting at line 24, helper function mkVariant is declared for constructing new
declarations for the variants. It supplements such new declarations for the variants
with a corresponding NoInline pragma and a Synthesize annotation. This
makes that the new variant declarations will be compiled as a separate component,
something particularly useful when the variants will be partially reconfigured on an
FPGA as discussed in Chapter 5. The helper function is used at line 37 to construct
the new variant declarations using a parallel list comprehension.

One additional declaration is defined at line 40: a list of all variants declarations.
This allows easy verification of the apparent functional equivalence of the variants.
Its evaluation for the example of Listing 4.15 looks as follows:

> fun
[15,15,15,15,15,15,15,15,15,15,15,15,15,15,15]
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1 varDecs :: Transformation Exp Exp -> DecsQ -> DecsQ
2 varDecs tf inputDecsQ = do
3 inputDecs <- inputDecsQ
4 let (name, mArgs, expr, whs) =
5 case inputDecs of
6 [FunD name [Clause args (NormalB expr) whs]]
7 -> (name, Just args, expr, whs)
8 [ValD (VarP name) (NormalB expr) whs]
9 -> (name, Nothing, expr, whs)

10 _ -> error "[ERROR] This function (varDecs) only supports a "
11 <> "single variable or function declaration as input!"
12 when (notNull whs) $
13 fail "[ERROR] This function (varDecs) does not support a declaration "
14 <> "with a where clause! Try and use let bindings instead. Note: "
15 <> "this check could be savely removed, but then no variants would "
16 <> "be generated for declarations in the where clause."
17 let variantExps = (runT tf) expr
18 traceM $ "[INFO] Number of variants generated: " <> show (length

variantExps) <> "."→˓
19 let variantNames = [ mkName $ nameBase name ++ '_' : show i
20 | i <- [0..(length variantExps)-1] ]
21 traceM $ "[INFO] Variant declaration names are \""
22 <> nameBase (head variantNames) <> "\" through \""
23 <> nameBase (last variantNames) <> "\"."
24 let mkVariant name mArgs expr whs = [fun, pragNoInl, pragAnnSyn]
25 where
26 fun = case mArgs of
27 Just args -> -- It's a function declaration
28 FunD name [Clause args (NormalB expr) whs]
29 Nothing -> -- It's a variable declaration
30 ValD (VarP name) (NormalB expr) whs
31 -- NoInline pragma to ensure Clash picks up on the TopEntity

annotation below→˓
32 pragNoInl = PragmaD $ InlineP name NoInline FunLike AllPhases
33 -- TopEntity annotation pragma so that Clash compiles the

declaration as a separate component. Required so that it can be
used as a partial module in a design using partial FPGA
reconfiguration.

→˓
→˓
→˓

34 pragAnnSyn = PragmaD $ AnnP
35 (ValueAnnotation name)
36 (AppE (VarE 'defSyn) (LitE $ StringL $ nameBase name))
37 let variantDecs = [ mkVariant name mArgs expr whs
38 | name <- variantNames
39 | expr <- variantExps ]
40 let variantNamesDec = ValD (VarP name) (NormalB $ ListE $ VarE <$>

variantNames) []→˓
41 return $ variantNamesDec : concat variantDecs

Listing 4.17: Apply a variant transformation to a given function or variable
declaration and return the declaration for any resulting variants.
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5 Partial reconfiguration using Clash

In this chapter, the aim is to investigate how one can realise a DPR-enabled FPGA
design that can also be simulated, all using Clash. Main research questions 4 and
5 will be answered in doing so. The core components needed are identified and
implemented in a generic manner, largely independent of any one FPGA vendor.
The results are combined in a library, allowing one to easily attain a Clash-based
design flow featuring DPR. Its full use would result in a design resemblant of
Figure 5.1, an overview that may be useful to refer back to while reading this
chapter. It could be used to realise a design with implementation diversity using
the variants generated through the techniques discussed in Chapter 4.

Bitstream
storage
location

Partial
reconfiguration

controller

Configuration
interface

Enable
Read/write

Reconfigurable
region

Bitstream

Read address

Status
(simulation only)

Trigger Status

Figure 5.1: A schematic overview of what a DPR design using the DPR library in
this thesis would look like.

Partial bitstreams are used to partially reconfigure an FPGA. A designer must
designate the reconfigurable modules of a design in order to have EDA tooling
generate the corresponding partial bitstreams. Approaches to this are considered in
Section 5.1.

An EDA tool must furthermore be notified of any reconfigurable region: the
section of FPGA fabric that is to alternately implement a number of reconfigurable
modules. Section 5.2 considers a way of grouping these modules and introduces a
design element that truly represents a reconfigurable region. This design element
is special in that it can simulate the process of undergoing reconfiguration in the
Clash simulator. Like on a real FPGA, modules can be exchanged, and the signals
going into the static region carry undefined values during that process. This novel
implementation enables cycle-accurate simulation of DPR designs for the express
purpose of functional verification.

Partial reconfiguration is not something that happens automatically. When
the situation calls for different functionality in runtime, the partial bitstream
corresponding to the module that implements that new functionality needs to be
retrieved from some storage location and fed to one of the FPGA’s configuration
interfaces. Section 5.3 introduces a simple yet effective controller for managing
these tasks.
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The final component needed for implementing a self-DPR design is a configura-
tion interface to the FPGA. Section 5.4 introduces a Clash primitive for instantiating
the ICAP, an internal configuration interface for Xilinx devices.

In Section 5.6, a simple hardware design is worked out to check that all DPR-
related work from this chapter works properly and together. After implementing it
on an FPGA, measurement and simulation waveforms are compared.

5.1 Defining reconfigurable modules

In order to deploy an FPGA design using partial reconfiguration, an EDA tool such
as Vivado must produce a full bitstream containing the default configuration, and
one partial bitstream for each reconfigurable module in the design. For it to do that,
it requires the design sources for the static region and all reconfigurable modules.

To realise a DPR workflow with Clash, the proper design sources need to be
provided by the Clash compiler. Clash produces self-contained HDL sources in
the user-selected target HDL, i.e. VHDL or (System)Verilog, for any top-level
function declaration. Such declarations must meet at least one of two conditions:
the function must be named topEntity or have a TopEntity annotation. This
is illustrated in Listing 5.1. Each reconfigurable module therefore needs to be
represented as a function declaration in a Clash design. Composition of simple
functions allows for more complex designs.

-- < module definition and imports >

topEntity = ...

{-# ANN foo (defSyn "bar") #-}
foo = ...

Listing 5.1: A Clash module that would, when completed, compile to two modules
named topEntity and bar.

5.2 Defining reconfigurable regions & DPR simulation

This section proposes a way of grouping reconfigurable modules in a design element
representative of a reconfigurable region that supports simulation of undergoing
DPR.

5.2.1 Definition

A reconfigurable region represents a physical portion of FPGA fabric that can
be reconfigured to alternately implement a number of reconfigurable modules.
From the static region’s point of view, it can be considered a single module
with a certain functionality that happens to change over time due to the process
of partial reconfiguration. It therefore makes sense to have functions represent
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reconfigurable regions. Such functions should return something of the same type
that the reconfigurable modules that the regions can implement have. Combined
with the fact that the Clash compiler requires top-level functions to be monomorphic
for them to be compilable, this makes that all reconfigurable modules in a region
should have same type.

A custom data type is introduced in Listing 5.2 with the goal of capturing the
reconfigurable region related information required to realize a partially reconfigurable
design. It encapsulates a vector of three-tuples where each first tuple element is
a function implementing a reconfigurable module in the region. The second and
third elements of each tuple are the corresponding partial bitstream start address
and size. These indicate where a partial reconfiguration controller may retrieve the
relevant partial bitstreams as elaborated upon further in the next section, 5.3. Type
variable n is the type-level natural number representing the number of reconfigurable
modules in the region while f is the type of the module functions. Their type
equality is enforced by the vector being homogeneous.

data Region n f
= Region (Vec n (f, BitstreamAddr, BitstreamSize))

type BitstreamSize = Unsigned 32
type BitstreamAddr = Unsigned 32

Listing 5.2: The custom data type introduced to contain the settings regarding a
reconfigurable region and its modules. BitstreamSize and BitstreamAddr are
type synonyms for a 32-bit unsigned number.

The only other major piece of information left regarding a reconfigurable region
is its physical footprint on the FPGA fabric. As this information is not required
at the Clash level of abstraction and as there is no standard way to pass such
information to an FPGA EDA tool like Vivado, it is not included in Listing 5.2’s
data type. Designating the region footprint is left as a manual step during the
floorplanning phase of the FPGA EDA toolflow.

5.2.2 Implementation

The function introduced to represent a reconfigurable region is presented in List-
ings 5.3. Its role is twofold: it needs to be able to mimic the act of reconfiguration
when simulated, whereas it needs to result in a format usable by EDA tools make
the design partially reconfigurable when compiled. This difference in behaviour
calls for use of a HDL primitive.

Function compilation To have region compile to the HDL sources required by
FPGA EDA tools to enable partial reconfiguration, it uses the region definition that
is its first argument to extract the function that is the first reconfigurable module.
That module function is passed fully applied in a call to region', which has a HDL
primitive annotation. This primitive only uses the applied module function, which
makes that region' is compiled to VHDL as a component that is instantiated
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region
:: (KnownNat n, HiddenClockResetEnable dom)
=> (HiddenClockResetEnable dom => Region (n+1) (Signal dom a -> Signal

dom b))→˓
-- ^ The region definition that this function implements
-> Signal dom (RegionSt (n+1))
-- ^ The region state denoting some module being active or the region

being undergoing reconfiguration. For simulation purposes only.→˓
-> Signal dom a -> Signal dom b

region r@(Region ((f0,_,_):>_)) pRegSt inp
= region'

f0Outp
(fst3 <$> fromRegion r) -- The reconfigurable modules in the region
(Reconfiguring undefined)
pRegSt
hasClock
hasReset
hasEnable
inp
(pure undefined)

where
f0Outp = f0 inp

Listing 5.3: The function that encapsulates a reconfigurable region.

with the first reconfigurable module. As all modules in a region have the same
type, all of them could be used to instantiate the VHDL component. This is the
format required by Xilinx Vivado, Intel Quartus [44, p. 16], and potentially EDA
tools of different FPGA vendors to make a design partially reconfigurable.

Function simulation The region' function definition of Listing 5.4 defines the
DPR simulation behaviour. Simulation only, as how the function is compiled is
defined in the function’s aforementioned HDL primitive annotation.

To know when to simulate which module being active or PR being in progress,
region' has a signal of RegionSt n as given in Listing 5.5 as argument. As
illustrated in Figure 5.1, this status signal is to come from the PR controller, and
is used in simulation only. It does not end up in hardware when compiled, as it is
not used by the HDL primitive of region'.

Function region' furthermore has the aforementioned region definition from
Listing 5.2 and the region’s inputs as arguments. It returns the region’s outputs.
Those outputs are set to undefined during reconfiguration to represent that they
can be random during that time, at least for Xilinx FPGAs [27].

Virtually all hardware designs operate on or return non-constant values. The
concept of changing values on a wire is captured by values of type Signal d
a in Clash. For the purpose of simulation, they can be constructed as infinite
streams of values using the (:-) type constructor, an operator that prepends a
value in front of another signal. Clash functions operating on signals describe the
function input/output relation over time. As such, when a reconfigurable region has
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region'
:: (KnownNat n, KnownDomain dom)
=> Signal dom b

-- ^ The first module, fully applied, used by the HDL primitive only
-> (HiddenClockResetEnable dom => Vec n (Signal dom a -> Signal dom b))

-- ^ The modules in the reconfigurable Region
-> RegionSt n

-- ^ The RegionSt during the previous clock cycle
-> Signal dom (RegionSt n)

-- ^ The RegionSt during this and all following clock cycles
-> Clock dom

-- ^ The reconfigurable region clock input
-> Reset dom

-- ^ The reconfigurable region reset input
-> Enable dom

-- ^ The reconfigurable region enable input
-> Signal dom a

-- ^ The reconfigurable region input
-> Signal dom b

-- ^ The reconfigurable region output when the same module as in the
previous clock cycle remains active. Undefined otherwise.→˓

-> Signal dom b
-- ^ The reconfigurable region output

region' !f0Outp mods prevSt (st :- sts) clk rst en inps outpActs
= head# outs :- region' f0Outp mods st sts clk rstNxt enNxt inpsNxt

(tail# outs)→˓
where

rstNxt = tailRst# rst
enNxt = tailEn# en
inpsNxt = tail# inps
outs = case st of

Reconfiguring x
-> undefined :- undefined

Active x
-> if st == prevSt

then outpActs
else exposeClockResetEnable (mods !! x) clk rst en inps

Listing 5.4: The helper function of region that determines reconfigurable region
simulation and compilation.

undergone PR, the function of the module that is then present needs to be initiated
by calling it with the then current values of the input signals. This is implemented
at the last line of the region' function definition. The module output signal values
of the subsequent clock cycles are passed in a recursive call, to be used when the
same module remains active (i.e. when the region state does not change). To have
the relevant inputs ready for a new module function call after a potential future
PR action, the clock and the consequent values (i.e. the tails) of the reset, enable
and normal input signals are passed to the recursive call as well.
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data RegionSt n
= Reconfiguring (Index n)
| Active (Index n)

Listing 5.5: A custom data type used to indicate the PR status of a reconfigurable
region.

Notes on the reconfigurable module type As can be seen, region requires
the modules in a reconfigurable region to be of the type Signal dom a -> Signal
dom b, optionally with hidden clock, reset and enable inputs. Ideally, it would have
a more general definition that supports module functions of any arity by using a
single type variable for the module type.

First, the reconfigurable module type is constrained to a -> b due to one
of the modules being used in the HDL primitive of region' to make it compile
properly as elaborated upon above. The Clash compiler requires types used in HDL
primitives, such as type variables a and b, to be representable in hardware, i.e.
monomorphic and not functions. (There are exceptions, but those have hand-rolled
reductions in the reduceNonRepPrim internal compiler transformation.) This
limitation implies that a -> b needs to represent functions of arity one. This does
not limit expressiveness in practice as the arguments of functions of a higher arity
can be bundled together in a tuple by uncurrying. Alternatively, multiple region
functions for reconfigurable regions with module functions of different arities could
have been written.

Reconfigurable module types are furthermore constrained to Signal dom a
-> Signal dom b to accommodate the signal deconstruction used by region' to
enable simulation of PR designs with sequential circuits as reconfigurable modules.
This does not limit expressiveness in synchronous designs as any combinational
circuit can be expressed as a sequential one through applicative lifting.

5.3 Partial reconfiguration controller design

This section discusses the design of a partial reconfiguration controller (PRC)
finite-state machine. A PRC is vital in designs using partial self-reconfiguration. On
receiving a trigger for a specific reconfigurable module and region, it is to initiate
and oversee the transfer of the corresponding partial bitstream from a bitstream
storage location to an FPGA configuration interface. The PRC is itself controlled
through its trigger inputs by a hardware state machine or software running on
processor cores. How it may be interconnected with other components is illustrated
in Figure 5.1.

PRCs can be implemented in software that runs on a soft- or hard processor
core, or in hardware in the reconfigurable logic of the FPGA in question. The latter
option was picked for this PRC implementation for no particular reason. The final
PRC design is provided in Listing 5.6 and will be discussed below. It supports
control of only one reconfigurable region at the moment.
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1 controller
2 :: ( HiddenClockResetEnable dom, KnownNat n, KnownNat b)
3 => Region n f
4 -> ( Signal dom BitstreamAddr -> Signal dom (BitVector b) )
5 -- ^ Address to bitstream, same clock cycle response is assumed
6 -> Signal dom (Trigger n)
7 -> ( Signal dom (RegionSt n)
8 , Signal dom (Maybe (BitVector b)) -- ^ A partial bitstream
9 )

10 controller r bsMem trig = (regionSt, mBitstream)
11 where
12 isReconfiguring (Reconfiguring _) = True
13 isReconfiguring _ = False
14

15 mBitstream = mux (isReconfiguring <$> regionSt)
16 (Just <$> bsMem rdAddr)
17 (pure Nothing)
18

19 (rdAddr, regionSt) = mealyB controllerTF (ControllerSt (Active 0) 0) trig
20

21 -- | PRC transfer function of mealy machine.
22 controllerTF
23 :: KnownNat n
24 => ControllerSt n -- ^ State
25 -> Trigger n -- ^ Input
26 -> ( ControllerSt n -- ^ Next state
27 , ( BitstreamAddr
28 , RegionSt n
29 ) -- ^ Outputs
30 )
31 controllerTF (ControllerSt regionSt counter) trigger
32 = (ControllerSt regionSt' counter', (counter, regionSt))
33 where
34 (_, bsAddrs, bsSizes) = unzip3 $ fromRegion r
35

36 (regionSt', counter') = case (trigger, regionSt, counter) of
37 (Nothing, Active x, _) -> (Active x, undefined)
38

39 -- Start reconfiguration when receiving a trigger, except when:
40 -- - the relevant bitstream size is set to 0, or
41 -- - the triggered module is already active.
42 (Just tr, Active x, _) -> if (bsSizes!!tr /= 0) && (tr /= x)
43 then (Reconfiguring tr, bsAddrs!!tr)
44 else (Active x, undefined)
45

46 (_, Reconfiguring x, c) -> let c' = c + 1
47 in if c' < (bsAddrs!!x + bsSizes!!x)
48 then (Reconfiguring x, c')
49 else (Active x, undefined)

Listing 5.6: A Clash hardware design for a partial reconfiguration controller.
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PRC in- and outputs The controller function requires a Region definition
for the bitstream addressing and size information stored within. It furthermore
takes a function representative of a bitstream storage location. This function is to
return the bitstream data at a given address. A response in the same clock cycle is
assumed at this revision of the PRC. Finally, controller has a trigger signal as
an input argument, Trigger is defined in Listing 5.7.

type Trigger n = Maybe (Index n)

Listing 5.7: A type synonym for PRC triggers.

The controller provides feedback through an output signal that shows the status
of the reconfigurable region that it controls. This indicates the reconfigurable
module that is currently active or being configured. Furthermore, the bitstream
that is to be sent to an FPGA configuration interface is returned as wrapped in
a Just when configuration should be in progress, or Nothing otherwise. This is
defined at lines 15 through 17 of Listing 5.6.

Mealy machine The controller function contains a Mealy machine with as
transfer function controllerTF as provided at lines 21 through 49. The Mealy
machine state is stored in a ControllerSt as defined in Listing 5.8. It contains
both the region state — which module is active or being configured — and an
address counter for requesting a bitstream from a bitstream storage location, from
a memory or over a bus.

data ControllerSt n
= ControllerSt

(RegionSt n)
BitstreamAddr -- Address counter

deriving (Show, Eq, Generic, NFDataX)

Listing 5.8: A data type for storing the PRC mealy machine state.

The next state is determined by the previous state and the PRC trigger input.
Line 37 covers no trigger and a reconfigurable module being active: the module
remains active and nothing changes. Line 36 covers a trigger coming in and a
module being active: in the next state reconfiguration will start with the counter
being set at the corresponding start address of the bitstream storage location. This
happens only if the trigger does not match the module being active, and if the
bitstream size for that module is not zero. Line 46 covers reconfiguration being in
progress: triggers are ignored and reconfiguration ends when the partial bitstream
has been sent in full.

Notes on tracking reconfiguration progress One major design consideration
is how to determine when a partial bitstream has been fully sent. As discussed
above, the start address and size as provided in a region definition are used to
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retrieve the bitstream from a storage location and to count until it has been sent
in full. This approach has been picked because of its ability to be simulated true to
the FPGA implementation and because of its independedness of any one FPGA
vendor.

Alternatively, some configuration interfaces (such as the Xilinx Ultrascale
ICAPE3) feature output signals indicating whether configuration is done [45, Table 7-
8]. Such run-time information may be very useful for reliable operation of a partial
reconfiguration controller. Unfortunately, accurate simulation of such signals is
not possible, as FPGA vendors have not released accurate models. After all, the
process of acquiring such a model that is reasonably fast to simulate is involved as it
would need to be a simplified version of the FPGA’s design itself. For example, the
ICAPE3 simulation element from the vendor-provided UNISIM Vivado simulation
library keeps its done and error signals constant. The only realistic fully accurate
simulation of partial reconfiguration is one involving hardware-in-the-loop.

5.4 ICAP configuration interface

To perform partial reconfiguration, a partial bitstream needs to be fed to one of the
FPGA’s configuration interfaces. This section introduces a Clash HDL primitive for
one such interface, the Xilinx ICAP, so that it may be easily instantiated in Clash
hardware designs.

We work with Xilinx devices as these are extensively used in the PR related
research at UT research group CAES4. The Xilinx Vivado Design Suite5 is a
proprietary HDL design logic synthesis and analysis tool for Xilinx FPGA devices.
Its partial reconfiguration flow has been supported since it’s predecessor, the ISE
Design Suite. Users wishing to utilize partial reconfiguration on Xilinx FPGA’s
need to utilize the vendor’s synthesis tools to do so. Though documenting the
configuration bitstream format – a prerequisite for developing alternative synthesis
tools – is an ongoing effort by the open source community in projects such as
SymbiFlow6, Xilinx’s tools are the only fully tested and functional tools supporting
PR on their devices as of yet.

FPGAs typically have a range of configuration interfaces supporting different
combinations of protocols and bus widths. Xilinx User Guide UG470 [29] documents
many configuration specifics of their 7 Series FPGAs. The document focusses on
the supported external configuration interfaces — serial, SPI, BPI, SelectMap and
JTAG — but also has a few specifics on the internal configuration access port
(ICAP) and processor configuration access port (PCAP). The former is, as the
name suggests, an internal interface, that is: accessible from within the FPGA
fabric to ease self-reconfiguration. The latter is present only in the Zynq SoC series
of Xilinx devices where it is accessible from the on-die hard ARM processor cores
accompanying the reconfigurable logic. This research is not limited to Zynq devices

4https://www.utwente.nl/en/eemcs/caes/
5https://www.xilinx.com/products/design-tools/vivado.html
6https://symbiflow.github.io/
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and focusses on self-reconfiguration from within the FPGA fabric, and therefore on
the ICAP.

The ICAPE2 design element is the ICAP in Xilinx 7 series FPGAs and Zynq-7000
SoCs. Its interface is illustrated in Figure 5.2. The Clash function introduced to
instantiate the ICAPE2 is provided in Listing 5.9. To accomplish that instantiation,
it has a HDL primitive based on a template from Xilinx. The function’s IcapEn input
is a custom data type introduced in Listing 5.10 that encapsulates the ICAPE2’s
CSIB active-low enable line and RDWRB input that selects between reading from
or writing to mode. The type is annotated with a custom bit representation so that
the two bits representing its values can be used by the HDL primitive directly.

CLK

CSIB

I[(n−1):0]

RDWRB

ICAPE2

O[(n−1):0]

Figure 5.2: The ICAPE2 interface where n is the data width in bits.

icape2
:: ( KnownDomain dom

, (n == 8 || n == 16 || n == 32) ~ 'True
)

=> Clock dom
-- ^ 1-bit input: Clock Input

-> Signal dom IcapEn
-- ^ 2-bit input:
-- - MSB is Active-Low ICAP Enable,
-- - LSB is Read/Write Select input (0=write, 1=read)

-> Signal dom (BitVector n)
-- ^ Configuration data input bus

-> Signal dom (BitVector n)
-- ^ Configuration data output bus

icape2 !_ !_ !_ =
pure $ error "This ICAPE2 simulation model does not support reading "

<> "the FPGA configuration memory from it."

Listing 5.9: Clash ICAPE2 function.

The ICAPE2 further provides a configurable 8, 16 or 32 bits wide parallel input
for providing (partial) bitstreams and an equally wide output for reading from the
configuration memory. The latter may be used to verify configuration correctness
or to determine the state of user state elements such as registers. Those specific
use cases are not specific to nor required for partial reconfiguration, therefore
readback simulation in Clash is not implemented by the icape2 function. Note
that this function is one of an uncommon few where one may not be interested in
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data IcapEn
= IcapIdle

-- ^ Inactive
| IcapRead

-- ^ Read from the ICAP
| IcapWrite

-- ^ Write to the ICAP
deriving (Show, Eq, Generic, NFDataX)

Listing 5.10: The custom data type used to represent the ICAP mode of operation.

its return value, but only in its side effect when implemented in hardware (in this
case: reconfiguration). Clash sees this as a call to a function where the result is
never used, i.e. as one that may be left unevaluated. To force it to be rendered
in hardware, one should take care to pass the function’s return value to hwSeqX,
which should in turn be (indirectly) used at the top of a design.

The parallel FPGA configuration interfaces automatically determine the data
width in use by observing how the bus width auto detection words present in each
configuration bitstream are received [29, p. 80]. Note that bitstream contents are
independent of the used configuration interface and its bus width.

An additional function with a different type is provided for easier incorporation
of the ICAPE2 in FPGA designs using self-DPR. Listing 5.11 provides function
icape2Write which only allows writing to it by feeding it a bitstream wrapped
in a Maybe. Depending on it being a Nothing or a Just, the enable is toggled
automatically.

icape2Write
:: ( KnownDomain dom

, (n == 8 || n == 16 || n == 32) ~ 'True
)

=> Clock dom
-> Signal dom (Maybe (BitVector n))
-> ()

icape2Write clk mbs = icape2 clk icapEn bs ̀hwSeqX̀ ()
where
icapEn = (\mbs' -> case mbs' of

Just _ -> IcapWrite
Nothing -> IcapIdle

) <$> mbs
bs = fromJustX <$> mbs

Listing 5.11: ICAPE2 instantiation that can only be written to.

The ICAPE2 expects bitstreams handed to it to have all individual bites reversed
[29, p. 83]. Function bytewiseReverseBV from Listing 5.12 provides a function
for accomplishing this bytewise reversal easily.
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bytewiseReverseBV
:: KnownNat l
=> BitVector (l * 8)
-> BitVector (l * 8)

bytewiseReverseBV bv = v2bv $ concat $ reverse <$> (unconcat d8 $ bv2v bv)

Listing 5.12: Takes a multiple-of-8 bit long bitvector and returns it with the bits
in each individual byte reversed.

5.5 Integrated logic analyzer IP core

When verifying or debugging FPGA designs, a logic analyzer can be very beneficial
in triaging problems. It can be used to monitor the internal signals of a design at
runtime. Xilinx Vivado is one of the EDA tools that provides such an integrated
logic analyzer (ILA) IP core [46]. This section introduces a Clash HDL primitive
for easy integration of the core in Clash designs.

The ILA IP core operates on detecting that a user-defined trigger condition is
met. It then samples the signals connected to its probe inputs and stores them in
an on-chip block RAM. From there they are sent to the Vivado analyzer over the
FPGA’s JTAG interface. How the core should be instantiated in a design depends
on the amount of probes and their bit widths it is configured to capture. As an
example, for two signals of bit widths 1 and 32, the instantiation in VHDL would
look as depicted in listings 5.13 and 5.14.

component ila_0
port (

clk : in std_logic;
probe0 : in std_logic_vector(0 downto 0);
probe1 : in std_logic_vector(31 downto 0)

);
end component;

Listing 5.13: An example ILA VHDL component declaration.

ila_0_inst: ila_0
port map (

clk => clk,
probe0 => probe0,
probe1 => probe1

);

Listing 5.14: An example ILA VHDL component instantiation.

To avoid the cumbersome manual integration of the core instantiation in the
compiled HDL output from Clash designs, a Clash HDL primitive may be used.
Unfortunately, the ILA IP core’s component port is not static, but depends on the
amount of probes and their bit widths it is configured to support.
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Polyvariadic functions can take an indefinite number of arguments that do not
have to be of the same type. They can be realized in Haskell through the use of
type classes, and sound like a good fit for a Clash ILA primitive. Unfortunately, they
are inadequate as HDL primitives in Clash’s templating system are static and cannot
vary depending on e.g. polyvariadic function arity. Supposedly a new template
system in the Clash compiler can support this, but that system is undocumented
and barely used as of this writing.

Therefore, Template Haskell (TH) [40] was utilized for code generation. It allows
for compile-time metaprogramming using abstract syntax tree (AST) representations
of Haskell code. Such ASTs are built in the quotation monad Q. This monad is
performed at compile-time when spliced to produce regular Haskell programs. See
Appendix B for more information on Template Haskell.

Meta function makeIla :: String -> [Int] -> DecsQ was written to cal-
culate the right ILA primitive. The first argument determines the name of the
ILA function that is spliced in Clash and should match the ILA IP core name as
configured in Vivado. The elements in the list that should be provided as the
second argument represent the bit widths of the ILA probes. It returns a list of
Template Haskell AST declarations wrapped in the Q monad as DecsQ is a type
synonym for Q [Dec]. This list of declarations includes the ILA function type
signature, function declaration, inline HDL primitive and NOINLINE pragma. The
pragma is required to ensure that Clash picks up on an HDL primitive7.

As an example, makeIla "ila_0" [1,32] splices in ila_0 as defined in
Listing 5.15. When used, it compiles to the VHDL component declaration and
instantiation from listings 5.13 and 5.14. They are, however, wrapped in a VHDL
block statement to work around the fact that Clash primitives do not seem to
support putting component declarations in the declaration section (i.e. before the
begin keyword) of a VHDL architecture statement.

ila_0
:: Clock dom
-> Signal dom (BitVector 1)
-> Signal dom (BitVector 32)
-> ()

ila_0 !_ !_ !_ = ()

Listing 5.15: The Haskell function declaration that results from makeIla
"ila_0" [1,32].

Note that ILA functions are of an uncommon few where one is not interested
in its return value — in this case it’s even void — but only in its side effect when
implemented in hardware. Clash sees this call to a function that always returns
void as one that may be left unevaluated. To force it to be rendered in hardware,
one should take care to pass the function’s return value to hwSeqX, which should
in turn be (indirectly) used at the top of a design.

7Source: http://hackage.haskell.org/package/clash-prelude-1.2.4/docs/
Clash-Annotations-Primitive.html#t:Primitive
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This Clash primitive supports the Xilinx ILA core v6.2 (and most likely other
versions) in native mode only. Support for the core’s trigger in- and outputs for
interconnecting multiple ILAs is absent. It can be compiled to both VHDL and
Verilog.

5.6 Putting it all together

In this section, a simple hardware design is worked out to check that all PR-related
work from this chapter works properly and together. The general architecture as
depicted in Figure 5.1 is used. The design features a single reconfigurable region
with two modules: an incrementer and a decrementer. Over- or underflow occurring
is the PRC trigger for configuration of the other module. FPGA ILA measurements
and simulation traces are laid side by side to verify simulation being representative
of the actual FPGA.

Reconfigurable modules and region The first reconfigurable module in this
example design is incrementer as provided in Listing 5.16. The second module is
exactly equivalent, except for the names (decrementer instead of incrementer,
subOUF instead of addOUF) and one function call at line 10 (sub instead of add).
The two modules respectively increment and decrement a stored signed integer
number. The result is represented with one more bit than the input numbers. The
two most significant bits are checked for inequality, which would indicate over- or
underflow having occurred in the addition or subtraction. The resulting boolean
and a truncated version of the addition or subtraction outcome are returned in a
tuple.

The over- or underflow check at line 11 happens by packing the addition or
subtraction outcome to obtain its BitVector representation, then casting that to
a regular vector of bits and matching on the first two elements. Those are checked
for inequality. A TopEntity annotation at lines 15 through 20 is required to have
the modules compile to self-contained HDL sources in the user-selected HDL as
explained in Section 5.1.

Listing 5.17 provides the reconfigurable region definition. It captures all recon-
figurable region related information required at the Clash level to realize a partially
reconfigurable design as elaborated upon in Section 5.2.1. The bitstream starting
addresses and sizes were back-annotated after walking through the FPGA EDA
tool used.

Configuration interface The partial bitstreams are stored in a block RAM on
the FPGA fabric itself as to not have to deal with external memories and their
communication. This choice does imply that the partial bitstreams need to be
back annotated after an initial run of the FPGA EDA tooling, to then compile and
run that tooling again. The block RAM was instantiated as shown in Listing 5.18.
A block RAM contents file named bitstreams.rbt was manually compiled. It
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1 -- | Add two Signed numbers, output the result and whether over- or
2 -- underflow has occurred in the addition.
3 addOUF
4 :: KnownNat n
5 => Signed (n+2)
6 -> Signed (n+2)
7 -> (Signed (n+2), Bool)
8 addOUF x y = (truncateB r, ouf)
9 where

10 r = add x y
11 ouf = let (a:>b:>_) = bv2v (pack r) in a /= b
12 --Over- or underflow occurred if the two most significant bits aren't equal
13

14 {-# NOINLINE incrementer #-}
15 {-# ANN incrementer
16 (Synthesize
17 { t_name = "incrementer"
18 , t_inputs = [ PortName "clk", PortName "rst", PortName "en", PortName "inp" ]
19 , t_output = PortProduct "" [ PortName "outp", PortName "ouf" ]
20 }) #-}
21 incrementer
22 :: ( HiddenClock XilinxSystem
23 , HiddenReset XilinxSystem
24 , HiddenEnable XilinxSystem
25 )
26 => Signal XilinxSystem (Signed 3)
27 -> Signal XilinxSystem (Signed 3, Bool)
28 incrementer num = bundle (s', ouf)
29 where
30 s = register 0 s'
31 (s', ouf) = unbundle $ addOUF <$> s <*> num

Listing 5.16: One of the two reconfigurable modules: an accumulator that adds
the input value to the current state. Resets to 0.

1 prIncrement
2 :: HiddenClockResetEnable XilinxSystem
3 => Region 2 ( Signal XilinxSystem (Signed 3)
4 -> Signal XilinxSystem (Signed 3, Bool) )
5 prIncrement = Region $ (incrementer, 0, 13000) :> (decrementer, 13000,

13000) :> Nil→˓

Listing 5.17: The reconfigurable region definition.
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contains the two partial bitstreams, the first starting at address 0, the second at
address 13000. They fit together in 26000 32-bit words, hence the block RAM size.

1 bitstreams
2 :: (Enum addr, HiddenClock dom, HiddenEnable dom)
3 => Signal dom addr
4 -> Signal dom (BitVector 32)
5 bitstreams rdAddr
6 = blockRamFile
7 (SNat :: SNat 26000) -- ^ The bitstream size in 32-bit words
8 "bitstreams.rbt" -- ^ Path to file with block RAM contents
9 rdAddr -- ^ The blockram read addresses

10 (pure Nothing) -- ^ Don't ever write

Listing 5.18: Create a block RAM with 26000 32-bit values that is only ever read
from.

The top entity The top entity is provided in Listing 5.19. It has a clock, a
reset and an enable signal as inputs and a single bit signal indicating overflow
as output. The ICAPE2 is instantiated at line 11 and receives a bitstream from
the controller instantiated at line 13. The reconfigurable region input is set to a
constant one, so the modules always increment or decrement with one. The region
output is determined by an instantiation of region using the region definition from
Listing 5.17. The region in- and outputs are decoupled during reconfiguration to
avoid undefined values from propagating through the reconfigurable module and
the static region. Default values are output during that time. As shown at lines
20 through 24, DPR is triggered for the other module if and only if the currently
active module outputs over- or underflow having occurred.

Line 1 splices in an ila_0 function as described in Section 5.5. It is instantiated
at line 33 with as probe inputs the signals at lines 28 through 32. These inputs are
also marked as traced for simulation. This was required for them to end up in a
simulation trace dump to a Value Change Dump (VCD) file that is used below.

Xilinx Vivado and implementation on an FPGA The top entity was com-
piled to Verilog and the resulting sources were added to a project in Xilinx Vivado
2019.2. The project was set to target a Digilent Arty 7 development board fea-
turing a Xilinx Artix-7 XC7A35 FPGA. Xilinx ILA IP core in native mode with the
number of probes and probe widths as used in the design was added too. The core
was configured to add an input pipe stage, which is important to have the ILA
measurements match Clash simulation cycle-accurately.

During the implementation step of Vivado, the reconfigurable modules were as-
signed to a Pblock in the floorplanner. The Pblock has its RESET_AFTER_RECONFIG
property set to have the reconfigurable modules in a predefined state after reconfig-
uration and to have it match the Clash design as the XilinxSystem domain has
reset values enabled.
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1 makeIla "ila_0" [1,2,2,3,1]
2 topEntity
3 :: ( "clk" ::: HiddenClock XilinxSystem
4 , "rst" ::: HiddenReset XilinxSystem
5 , "en" ::: HiddenEnable XilinxSystem
6 )
7 => "result" ::: Signal XilinxSystem Bit
8 topEntity = ila ̀hwSeqX̀ icap ̀hwSeqX̀ (boolToBit . snd <$> regionOut)
9 where

10 -- We're not interested in the ICAP output, but need it in a call to
̀hwSeqX̀ to stop Clash from optimizing the ICAP primitive away.→˓

11 icap = icape2Write hasClock (bytewiseReverseBV <<$>> mBitstream)
12

13 (regionSt, mBitstream) = controller prIncrement bitstreams trig
14

15 -- Always increment or decrement with one.
16 regionIn = decoupler 0 <$> regionSt <*> pure 1
17

18 regionOut = decoupler (0, False) <$> regionSt <*> region prIncrement
regionSt regionIn→˓

19

20 trig :: Signal XilinxSystem (Trigger 2)
21 trig = ( \ouf regSt -> case (ouf, regSt) of
22 (True, Active n) -> Just $ complement n
23 _ -> Nothing
24 ) <$> (snd <$> regionOut) <*> regionSt
25

26 -- We'd like to give the signals nice descriptive names as they end up in
the Vivado ILA GUI.→˓

27 traceAndName s = nameHint s . traceSignal1 (ssymbolToString s)
28 ilaEn = traceAndName (SSymbol @"Enable") $ pack <$> fromEnable hasEnable
29 ilaTrig = traceAndName (SSymbol @"Trigger") $ mIndexToOH <$> trig
30 ilaRegSt = traceAndName (SSymbol @"RegSt") $ pack <$> regionSt
31 ilaCnt = traceAndName (SSymbol @"Count") $ pack . fst <$> regionOut
32 ilaOuf = traceAndName (SSymbol @"OverOrUnderflow") $ pack . snd <$>

regionOut→˓
33 ila = ila_0 hasClock ilaEn ilaTrig ilaRegSt ilaCnt ilaOuf
34 makeTopEntity 'topEntity

Listing 5.19: The top entity of this example design showcasing DPR.
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After bitstream generation, the partial bitstreams were included in the block
RAM in the Clash design. A second round of compilation and bitstream generation
later, the new bitstreams were verified to be equivalent to those from the previous
round as stored in the block RAM.

The full bitstream was used to configure the Digilent Arty 7 development board,
and the Vivado hardware manager was used to arm the ILA, its trigger being the
design’s enable input signal. The physical switch on the board that is wired to
the enable signal was flipped on to have the initial reconfigurable module start
accumulating and to trigger the ILA. The resulting measurements were stored as a
VCD file.

Waveform comparison The GTKWave software was used to show waveforms
of the aforementioned ILA and simulation VCD files. Sections of the waveforms are
shown in Figure 5.3, the simulation traces at the top, and the ILA measurements
from the design as implemented on the Digilent Arty 7 development board at the
bottom. The FPGA implementation measurements were time-shifted to align it
with the enable signal assertion at time instance 0 of the simulation.

The "trigger" signal uses one-hot encoding, either the least or the most signific-
ant bit being asserted respectively means PR of the incrementer or the decrementer
module being triggered. The most significant bit of the "RegSt" signal uses 0
for reconfiguration being in progress, and 1 for a module being active. The least
significant bit indicates the module under reconfiguration or being active; 0 for the
incrementer module, 1 for the decrementer.

The leftmost section of the waveforms show the initial reconfigurable module,
the accumulator, to immediately start accumulating. The counter already overflows
after four clock cycles, which triggers PR of the decrementer module. The middle
section of the waveforms show the FPGA coming out of reconfiguration at 13004 ps.
The continuous subtraction overflows after a couple of clock cycles, which triggers
PR of the accumulator module again. This module kicking into action again is
illustrated in the rightmost section of the figure. Of course, this alternation of the
two modules would continue indefinitely if the FPGA was to be kept powered on.

The waveforms of Figure 5.3 proof that the design elements developed and
described in this chapter are suitable for realizing a Clash FPGA design with PR.
Furthermore, the waveforms of the ILA measurements and the simulation being
equivalent shows that such Clash designs can be simulated cycle accurately and true
to how the design would run when implemented on an FPGA. With this approach
retaining the ability of full-design Clash simulation while using PR, design errors
may be caught more early on.
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6 Application on AES

In this chapter, the left fold variant transformation is applied to an implementation
of the Advanced Encryption Standard. Implementation diversity may be beneficial
to AES given the desired secrecy of the secret key, and its MixColumns step
can be expressed using left folds. This step is not typically targeted in published
side-channel attacks, but an interesting candidate nonetheless.

The pre-existing AES implementation used was acquired from [47]. It supports
encryption, which was successfully tested to be operating correctly through sim-
ulation of a few sample inputs. The author claims it to be FPGA-proven. Its
MixColumns step is declared as shown in Listing 6.1.

mixColumns :: AESState -> AESState
mixColumns = map mixColumn

where
mixColumn :: Vec 4 (BitVector 8) -> Vec 4 (BitVector 8)
mixColumn col = r0 :> r1 :> r2 :> r3 :> Nil

where
doubled = map (pack . gfDouble . unpack) col
r0 = (doubled !! 0) ̀xor̀ (col !! 3) ̀xor̀ (col !! 2) ̀xor̀

(doubled !! 1) ̀xor̀ (col !! 1);→˓
r1 = (doubled !! 1) ̀xor̀ (col !! 0) ̀xor̀ (col !! 3) ̀xor̀

(doubled !! 2) ̀xor̀ (col !! 2);→˓
r2 = (doubled !! 2) ̀xor̀ (col !! 1) ̀xor̀ (col !! 0) ̀xor̀

(doubled !! 3) ̀xor̀ (col !! 3);→˓
r3 = (doubled !! 3) ̀xor̀ (col !! 2) ̀xor̀ (col !! 1) ̀xor̀

(doubled !! 0) ̀xor̀ (col !! 0);→˓

Listing 6.1: The MixColumns step of an AES round. Source: [47]. Please refer
to the license at https: // github. com/ adamwalker/ clash-utils/ blob/
master/ LICENSE .

It was rewritten to use Clash.Prelude.foldl calls and subjected to the variant
transformation concocted from the left fold transformation primitive outlined in
Section 4.4. This is shown in Listing 6.2.

With four vectors of length five being folded and with termsOfSum from
Listing 4.4 returning 15 possible ways of splitting one such vector, a total number
of 154 = 50625 functionally equivalent MixColumns variants are spliced. They are
named mixColumnsV_0 through mixColumnsV_50624.

Unfortunately, there was no opportunity for the experimental verification of
these AES MixColumns variants by performing power measurements as there was
no working test bench available. Thus the extend to which mounting a successful
side-channel attack is impeded by these specific variants remains unclear. However,
this case study can be used to conclude that this Clash-based approach lends itself
well to deriving sheer numbers of variants in an automatic fashion. The variant
derivation approach can furthermore be highly mathematical in nature to enable
provably correct transformations.
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$(varDecs
(mkT tfFoldl)
[d| mixColumnsV col doubled = let

r0 = foldl xor zeroBits (doubled!!0 :> col!!3 :> col!!2 :>
doubled!!1 :> col!!1 :> Nil)→˓

r1 = foldl xor zeroBits (doubled!!1 :> col!!0 :> col!!3 :>
doubled!!2 :> col!!2 :> Nil)→˓

r2 = foldl xor zeroBits (doubled!!2 :> col!!1 :> col!!0 :>
doubled!!3 :> col!!3 :> Nil)→˓

r3 = foldl xor zeroBits (doubled!!3 :> col!!2 :> col!!1 :>
doubled!!0 :> col!!0 :> Nil)→˓

in (r0,r1,r2,r3)
|] )

-- | The MixColumns step of an AES round
mixColumns :: AESState -> AESState
mixColumns = map mixColumn

where
mixColumn :: Vec 4 (BitVector 8) -> Vec 4 (BitVector 8)
mixColumn col = r0 :> r1 :> r2 :> r3 :> Nil

where
doubled = map (pack . gfDouble . unpack) col
(r0,r1,r2,r3) = mixColumnsV_0 col doubled

Listing 6.2: The MixColumns step modified for the automatic derivation of
variants using the left fold transformation primitive.
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7 Conclusions & recommendations

7.1 Implementation diversity

Conclusions The first two research questions asked how to automatically derive
functionally equivalent variants of a given hardware design with the goal of adding
implementation diversity as a side-channel attack countermeasure. The proposed
solution involves formulating concepts to deriving suitable variants as transformation
rules. Such rules operate at an abstract syntax tree representation of a hardware
description and they are automatically applied wherever possible by traversing the
tree and accumulating any resulting variants at compile time.

As a proof of concept, one concept for transforming left fold higher-order
functions was worked out to such a transformation rule. The MixColumns step of
an AES cipher implementation could be described using such functions and was
subjected to the transformation rule. This fully automatic application resulted in
over 64000 variants. With those variants being physically different in relation to
one another, it stands to reason that they each have different side-channel leakage
characteristics; their alternated usage would introduce some temporal jitter.

In conclusion, variants of a given hardware description can be automatically
derived using the novel approach outlined in this thesis. This does assume that
the desired approach to obtaining variants can be formulated as a transformation
rule. The strongly mathematical formalism of Clash enabled provably correct
transformations that were previously unexplored in the context of implementation
diversity. There was no opportunity for experimental verification of the example AES
MixColumns variants, thus the extend to which mounting a successful side-channel
attack is impeded by the left fold transformation rule specifically remains unclear.
Nonetheless, this work may aid in the (semi)automatic addition of implementation
diversity to a hardware design as a side-channel or fault attack countermeasure,
particularly when used with variant derivation approaches that have been proven to
be beneficial.

Recommendations Future research of the novel compile-time facilities for AST
traversal and variant accumulation proposed in this thesis will need to show whether
they are sufficiently versatile and efficient in aiding automated variant derivation.
This could be done in combination with the left fold transformation rule, or with
other rules that are found to be more promising or proven to be beneficial in
combating side-channel attacks.

For some variant derivation approaches, a notable optimization could be realized
by not necessarily considering every variant as entirely self-contained. For example,
the AES MixColumns variants described in this thesis only differ in how several
operations are wired together. By retaining the overlapping logic, potentially huge
savings in the physical footprint of variants could be realized.

Finally, the hard- or software required for the continuous pseudo-random ex-
change of variants was not explored in this thesis. Perhaps a reusable approach to
that could be developed, if not existing already.
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7.2 Partial dynamic reconfiguration

Conclusions Research questions four and five ask how FPGA designs featuring
partial dynamic reconfiguration can be simulated and compiled by the Clash com-
piler. The proposed solution revolves around a design element representative of
a reconfigurable region. Through the use of a HDL primitive, different behaviour
for compilation and simulation could be defined. This design element is special
in that it can simulate the process of undergoing reconfiguration in the Clash
simulator. Like on a real FPGA, modules can be exchanged, and the signals going
into the static region carry undefined values during that process. When compiled, it
produces the sources needed by FPGA EDA tools to enable partial reconfiguration.

Other core components needed to realize an FPGA design featuring partial
dynamic self-reconfiguration in Clash were identified and realized. A novel partial
reconfiguration controller was designed, and Clash HDL primitives for instantiating
the Xilinx ICAP configuration interface and the Xilinx integrated logic analyser IP
core were written.

To verify the correct operation of all components, an example design with
one reconfigurable region and two reconfigurable modules was written. It was
successfully implemented on a Xilinx Atix 7 FPGA. Waveforms acquired from both
Clash simulation and from the FPGA through an integrated logic analyser were
shown to be equivalent. This shows that simulation can be cycle-accurate and true
to what is happening on an actual FPGA.

All in all, the successful implementation and simulation have shown the proposed
solutions to be working. They can help one to easily attain a Clash-based FPGA
design flow featuring partial reconfiguration while retaining the ability of functional
verification through Clash simulation.

Recommendations Despite these conclusions, there is room for improvement
of some of the proposed design elements. For example, the partial reconfiguration
controller could be extended to support bitstream storage locations that take some
number of clock cycles to provide their response. The currently assumed same
clock cycle response works out when storing bitstreams in block RAM, but adding
compatibility with other storage devices can be beneficial.

Furthermore, the partial reconfiguration controller could incorporate detection
and handling of potential reconfiguration failures to increase robustness. Some
FPGAs feature configuration interfaces that provide feedback on whether config-
uration is done or on whether an error has occurred. Alternatively, the bitstream
could be checked for the presence of words that any bitstream should contain, a
synchronization word for example.

Finally, Clash compilation currently only yields the HDL sources needed by FPGA
EDA tools to enable partial reconfiguration. It may be desirable to automatically
set up parts of the EDA tool project based on what is defined in the Clash design.
For example, the reconfigurable regions, their corresponding reconfigurable modules
and perhaps the region’s physical footprint could already be set.
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A An introduction to Clash

Clash [31, 32] is a functional HDL that uses the syntax and semantics of the
functional programming language Haskell [33]. This appendix aims to concisely
introduce some main language concepts and conventions, particularly those most
useful for reading this thesis. I imagine it can strike one as being somewhat
rudimental, but I hope it at least provides useful pointers for further research
when concepts are unclear. Please refer to https://hoogle.haskell.org/ for
searching in many Haskell libraries.

Haskell being a functional programming language suggests that meaning is
conveyed by evaluating expressions as opposed to sequential execution of statements
as is the case with imperative programming languages. Haskell is pure: expressions
are referentially transparent. This implies that:

• Variables are immutable. A variable can only be declared to be (or: bound
to) a certain value and cannot be assigned a different value later.

• Expressions are side-effect free; they cannot alter some global state. Repeated
evaluation with the same inputs will always have the same result.

Declarations use the "=" keyword with the identifier name at the left hand side.
They can optionally be accompanied by an explicit type signature: "::" reads as
"has type".

x :: Int
x = 8

Concrete types (such as Int) always start with a capital letter whereas variables
(such as x) always start with a lower case one. Function declarations look as
follows:

plus :: Int -> Int -> Int
plus a b = a + b

We can read the type of function plus as "Int to (Int to Int)"; given two
values of type Int, it returns a value that is their sum and also of type Int. The
function can only be given values of type Int as Haskell programs are statically
typed: all types are checked at compile time, and compilation fails until any and
all type mismatches are resolved. Function application is indicated by whitespaces:
plus 1 2 evaluates to 3.

Because of support for partial function application, functions can also be applied
partially: plus 1 has only one of the two arguments of plus applied, yet it yields
a valid new function of type Int -> Int that adds 1 to any given integer value.
This already hints at the fact that functions are first-class: they can be passed
around and assigned just like any other value:
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increment :: Int -> Int
increment = plus 1

Functions that take a function as an argument or return a function as part
of their result are referred to as higher-order functions. An example is foldl as
illustrated in Section 4.2.

Of course there are more types than Int. In fact, one can define custom data
types. For example, a boolean data type Bool can be defined as shown below. A
value of this type can be either True or False. Common types and other definitions
like these are also provided by the GHC and Clash Prelude modules.

data Bool = True | False

Haskell’s type system knows ad hoc polymorphism and parametric polymorphism.
Types can contain type variables, such as "a" in the examples below. In contrast to
concrete types such as Int or Bool, they start with a lower case letter. Variables
of such types can take any value of any concrete type depending on the context in
which they are evaluated. For example, iden True evaluates to True and iden 1
evaluates to 1.

iden :: a -> a
iden x = x

Haskell is lazy : anything is only ever evaluated when needed. This allows us
to define, for example, our own if-then-else statement as illustrated with function
ifElse below. ifElse True 1 2 evaluates to 1 and ifElse False 1 2 evalu-
ates to 2. As can be seen, the function takes a boolean value as its first argument,
which is first pattern matched to True. If the match fails, it falls through to the
line below where the boolean value is matched to False. To know whether x or y
must be returned as the result, the boolean value must be evaluated. In fact, most
evaluation is driven by pattern matching: the values that x and y are bound to are
not evaluated unless and until they are needed at some point.

ifElse :: Bool -> a -> a -> a
ifElse True x _ = x
ifElse False _ y = y

Functions like iden and isElse have a somewhat limited usability; variables of
an unconstrained type can only be passed around. Type variables can be constrained,
for example requiring them to be an instance of a specific typeclass:

isEqual :: Eq a => a -> a -> a
isEqual x y = x == y

68



Haskell typeclasses allow one to define behaviour irrespective of one single type.
For example, the Eq a typeclass constraint above enables the use of the (==)
equality operator. The caller of isEqual can use any type for "a", as long as it is
an instance of Eq, which means as much as the behaviour of (==) having been
defined for it. Of course, use of (==) should be preferred over declaring and using
isEqual.

Data types can also be polymorphic and contain type variables:

data Maybe a = Just a | Nothing

Tuples and lists can be used to combine multiple values. Tuples contain a fixed
number of them, and they can be of different types. For example: (1,'a',False)
:: (Int,Char,Bool). Lists can be appended to or split, but only contain values of
a single type. For example: ["these","are","strings"] :: [String], which
is syntactic sugar for "these":"are":"strings":[].

With Haskell lists being single-linked, they do not lend themselves well to being
implemented in hardware. Clash therefore offers vectors that have their length
encoded in their types as an alternative. This allows the Clash compiler to deduce
their static length and thus how large such a data structure is in hardware at
compile time. For example: 0:>1:>Nil :: Vec 2 Bit.

Convention is to indicate lists and vectors like xs, the plural of x, which
represents elements x0 up to xn where n = (length xs)−1.

The application operator ($) can sometimes be used to omit parenthesis, and
the function composition operator (.) can be used to compose functions.
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B An introduction to Template Haskell

Template Haskell (TH) [40] is an extension to the GHC compiler. It allows for
compile-time metaprogramming by constructing or manipulating abstract syntax
tree (AST) representations of Haskell code. The TH AST is represented using an
ordinary Haskell data type (ADT).

When aiming to construct some Haskell source code, one can construct its AST
representation in the quotation monad Q using regular Haskell functions and splice
the result to instantiate the represented code at the desired location. Splicing
happens through use of splicing brackets $( and ) and is performed at early compile-
time. Conversely, quotation (or: Oxford) brackets [x| and |] convert from source
code to its TH AST representation. These operators being each other’s inverse
makes that y = $( [x| y |] ) holds for any expression y when x is e or empty,
any declaration y when x is d, any type y when x is t and any pattern y when x is
p.

For example, consider the following Clash expression not True. Quotation
yields its TH AST representation in the Exp data type: runQ [| not True |]
evaluates to AppE (VarE GHC.Classes.not) (ConE GHC.Types.True). This
represents a function application (AppE) of the function variable (VarE) not to the
data constructor (ConE) True.

In the above example, GHC.Classes.not and GHC.Types.True are just pretty
prints of the names (of type Name) for the respective function and data constructor.
Such names can be constructed by prepending an apostrophe to a variable in scope,
for example like 'not and 'True. This allows us to construct the original expression
by splicing as follows: $(returnQ $ AppE (VarE 'not) (ConE 'True)).
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C Auxiliary functions on vectors in the TH AST

This section exposes a couple of functions that were used in the left fold transforma-
tion primitive in Section 4.4.2. They operate on the Template Haskell representation
of Clash vectors.

These functions are declared in module THOps2, which imports Clash.Prelude
hiding (Exp) and Language.Haskell.TH while having GHC’s ViewPatterns
language extension enabled.

1 isCons :: Exp -> Bool
2 isCons (ConE ((==) 'Cons -> True)) = True
3 isCons (ConE ((==) '(:>) -> True)) = True
4 isCons (ConE ((==) "Cons" . nameBase -> True)) = True
5 isCons (ConE ((==) ":>" . nameBase -> True)) = True
6 isCons _ = False

Listing C.1: Checks whether an Exp represents Clash.Prelude.Cons or
Clash.Prelude.(:>). NB: Matches on any function named Cons or (:>) to
accomodate for TH ASTs acquired via the Language.Haskell.Meta.Parse parse
functions.

1 isNil :: Exp -> Bool
2 isNil (ConE ((==) 'Nil -> True)) = True
3 isNil (ConE ((==) "Nil" . nameBase -> True)) = True
4 isNil _ = False

Listing C.2: Checks whether an Exp represents Clash.Prelude.Nil. NB:
Matches on any function named Nil to accomodate for TH ASTs acquired via the
Language.Haskell.Meta.Parse parse functions.

1 lengthTH :: Exp -> Int
2 lengthTH (ParensE xs) = lengthTH xs
3 lengthTH (isNil -> True) = 0
4 lengthTH (AppE (AppE (isCons -> True) _) xs) = 1 + lengthTH xs
5 lengthTH (InfixE (Just _) (isCons -> True) (Just xs)) = 1 + lengthTH xs
6 lengthTH v@(UInfixE _ (isCons -> True) _) =
7 error $ "lengthTH: cannot reliably interpret ̀Vec̀s with ̀UInfixÈ (unknown "
8 <> "fixity). Either define it without infix operators or use quotation "
9 <> "brackets to acquire the TH AST as opposed to the parse functions "

10 <> "from the ̀Language.Haskell.Meta.Parsè library. The offending ̀Vec̀"
11 <> ":\n" <> show v
12 lengthTH x = error $ "lengthTH: could not interpret as a Vec: " <> show x

Listing C.3: Returns the length of an Exp that represents a Vec.
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1 viewVTH :: Exp -> (Exp, Exp)
2 viewVTH (ParensE xs) = viewVTH xs
3 viewVTH (AppE (AppE (isCons -> True) x) xs) = (x, xs)
4 viewVTH (InfixE (Just x) (isCons -> True) (Just xs)) = (x, xs)
5 viewVTH v@(UInfixE _ (isCons -> True) _) =
6 error $ "viewVTH: cannot reliably interpret ̀Vec̀s with ̀UInfixÈ (unknown "
7 <> "fixity). Either define it without infix operators or use quotation "
8 <> "brackets to acquire the TH AST as opposed to the parse functions "
9 <> "from the ̀Language.Haskell.Meta.Parsè library. The offending ̀Vec̀"

10 <> ":\n" <> show v
11 viewVTH (isNil -> True) = error "viewVTH: vector is empty"
12 viewVTH x = error $ "viewVTH: could not interpret as a Vec: " <> show x

Listing C.4: Returns the pair of the head and tail of an Exp representing a
Vec. Similar to Data.List.HT.viewL.Think of the type as Vec n a -> (a,
Vec (n-1) a).

1 consTH :: Exp -> Exp -> Exp
2 consTH x xs = AppE (AppE (ConE '(:>)) x) xs

Listing C.5

1 nilTH :: Exp
2 nilTH = ConE 'Nil

Listing C.6

1 splitAtTH :: Int -> Exp -> (Exp, Exp)
2 splitAtTH n (ParensE xs) = splitAtTH n xs
3 splitAtTH 1 xs = (x ̀consTH̀ nilTH, xs')
4 where
5 (x, xs') = viewVTH xs
6 splitAtTH n xs = (x ̀consTH̀ x', xs'')
7 where
8 (x, xs') = viewVTH xs
9 (x', xs'') = splitAtTH (n-1) xs'

Listing C.7: Think of the type as m -> Vec (m + n) a -> (Vec m a, Vec
n a).

1 splitPlacesTH :: [Int] -> Exp -> [Exp]
2 splitPlacesTH [] _ = []
3 splitPlacesTH (x:xs) vs =
4 let (v, vs') = splitAtTH x vs
5 in v : splitPlacesTH xs vs'

Listing C.8: Largely similar to Data.List.Split.splitPlaces.

1 listToVecTH' :: [Exp] -> Exp
2 listToVecTH' [] = nilTH
3 listToVecTH' (x:xs) = x ̀consTH̀ listToVecTH' xs

Listing C.9: Go from a list of elements to the TH AST representation of a Vec
of those elements. Think of the type as [a] -> Vec n a.

72


	Introduction
	Document outline

	Background
	Non-invasive physical attacks in embedded system security
	Cryptography
	Power analysis attacks

	Reconfigurable hardware: FPGAs
	FPGA partial reconfiguration
	Changing the configuration memory
	Reconfigurable regions and modules
	Use cases
	Vendor support
	Reconfiguration controllers

	Hardware description language Clash

	Related work
	Side-channel and fault attack countermeasures
	Reconfiguration modelling & simulation

	Automatic implementation diversity at the algorithm level
	Concepts
	Higher-order function transformation rules
	Transformation automation: API choice
	Left fold transformation rule implementation
	Reconsidering the original transformation rules
	Implementation on TH expressions
	Forcing EDA tools to keep structure

	Generic transformations through AST traversal
	Scrap your boilerplate
	Variant transformations
	Splicing variants as new declarations


	Partial reconfiguration using Clash
	Defining reconfigurable modules
	Defining reconfigurable regions & DPR simulation
	Definition
	Implementation

	Partial reconfiguration controller design
	ICAP configuration interface
	Integrated logic analyzer IP core
	Putting it all together

	Application on AES
	Conclusions & recommendations
	Implementation diversity
	Partial dynamic reconfiguration

	An introduction to Clash
	An introduction to Template Haskell
	Auxiliary functions on vectors in the TH AST

