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Abstract

With the rapid evolution of automated driv-
ing, an ever-increasing number of driving tasks
is being taken over by smart vehicles. To oper-
ate, these smart vehicles need more information
than that provided by their own sensors. Auto-
mated vehicles therefore need to communicate
with the infrastructure surrounding them, and
they need to be able to do it reliably and in
real-time to ensure passenger safety.

Traditional cloud computing cannot deliver
the required data quickly enough, because the
large physical distance between servers and user
devices causes a long round-trip time (RTT).
Therefore, a new technique must be adopted to
fill the existing performance gap; Multi-Access
Edge Computing (MEC). In MEC, infrastruc-
ture is brought physically closer to the user to
avoid having to go through the core network.
This reduces the response time experienced by
the end user, allowing a myriad of different ap-
plications, including automated driving ones.

MEC requires that an automated vehicles’
data is handed over from one server to the next
whenever the connection quality starts to dete-
riorate due to physical distance or overloading.
In this work, we investigate what the optimal
strategy is for handover timing and the con-
nected server. We define the optimal strategy
as the strategy that causes the least frequent
violations of round-trip time requirements, as
this is a vital aspect of safety standards for au-
tomotive applications.

We do this using a novel model for MEC im-
plemented in the ns-3 network simulator [21].
Conclusions are based on a replicated set of ex-
periments conducted on an oval track with 100
vehicles travelling 90 to 110 km/h. In our ex-
periments, we consider a single use case for the
automotive application; a platooning applica-
tion that was created at TNO in the context of
the European AUTOPILOT project. This pro-

vides us with a realistic set of parameters. The
experiments test a set of eight different strate-
gies, each comprised of a combination of a met-
ric for connection quality and a trigger. The
metrics are the following:

• RTT observed by the vehicle
• Physical distance to the server

There are four different triggers defining
when to initiate a handover. These triggers are
as follows:

• Optimal, handover as soon as a better al-
ternative is found

• Hysteresis, handover when an alternative
is found that is at least 15% better

• Threshold, do not handover unless the ser-
vice level drops below a certain threshold

• Threshold & hysteresis, a combination of
the previous two triggers

The results show that the optimal data han-
dover metric for a platooning application is de-
lay (the RTT observed by the vehicle), and that
it far outperforms strategies where the metric
is the physical distance to the server. Further-
more, the results indicate that the optimal re-
sult is achieved by applying hysteresis to the
trigger mechanism. Thus, the optimal data
handover strategy for a platooning application
is the delay-hysteresis strategy.
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Chapter 1

Introduction

Automated driving is evolving rapidly, with
smart vehicles taking over more and more tasks
that were typically executed by the driver. It
is not unusual to have cruise control on a vehi-
cle. Features such as adaptive cruise control
and lane-keeping assistants are quickly gain-
ing ground. Multitudes more automotive ap-
plications are under development currently, all
of them with complex requirements and con-
straints. These constraints cannot always be
met by the current network technology; for ex-
ample, a maneuver planning application would
typically allow 10 ms latency between the mo-
ment an object is detected somewhere in the
system and the moment the vehicle is up-
dated by the system, based on the desired con-
trol update rate [11]. Most modern-day net-
works and network-based applications depend
on cloud computing for complex calculations
like these. Although cloud computing can ex-
ecute the calculations quickly, the delay in-
curred by traveling the network to and from the
cloud is much too large to meet tight delay con-
straints; according to [10], the four main cloud
service providers (CSPs), namely Amazon Elas-
tic Cloud, Microsoft Azure, Google AppEngine,
and RackSpace CloudServers, have an average
latency of approximately 65 ms measured from
200 vantage points worldwide. The total de-
lay is even higher, as latency is only one among
several delay-incurring factors.

This means that to enable automated driv-
ing, a new networking paradigm must be
adopted. Multi-access Edge Computing (MEC)
was designed to create this low-delay network.
MEC was first defined by ETSI in 2014 and pro-
vides "the ability to run IT based servers at net-
work edge, applying the concepts of cloud com-

puting" [17]. The aforementioned servers have
a limited computational capacity in compari-
son to their cloud computing counterparts but
have a much larger capacity than user equip-
ment (UE), such as mobile phones, laptops, or
vehicles’ on-board computational units. This
computational capacity can be utilized for a
wide range of services. Another defining prop-
erty of MEC is that it brings computing power
closer to the edge of the network, i.e. phys-
ically closer to the UE. This can significantly
reduce delay, making it an enabling technol-
ogy for time-constrained applications such as
the maneuver planning application.

When a UE is utilizing a MEC service, it is
not necessarily stationary. This is an especially
vital factor in an automotive use case. Con-
sequently, during the service time, a UE may
move from the target area of one MEC server
to that of another. The connection between the
UE and server will deteriorate or even fail alto-
gether. Unless the UE finds an alternate server
to which to connect, the service will be discon-
nected. In this case, the data associated with
the UE must be transferred from the originating
MEC to the successor. This process is referred
to as "handover". This thesis investigates the
optimal approach to this process for an auto-
motive application.

The rest of this document is structured as
follows: Chapter 2 will introduce the published
work related to this project. Chapter 3 ana-
lyzes the problem to be solved, and Chapter 4
describes the design of our approach. Chapter 5
elaborates on the implementation of the exper-
imental environment. Chapter 6 and 7 discuss
the experiment results and the conclusions that
can be drawn from them, respectively.
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Chapter 2

Related Work1

Over the last few years, a lot of research has
been done on MEC. Part of the effort was fo-
cused on defining what MEC is exactly. It is
commonly accepted ([1], [17]) that MEC has the
following characteristics as compared to classic
cloud computing:

• proximity, servers are located close to the
end-users

• on-premise, (most) network traffic is re-
stricted to the local network, foregoing the
internet’s core network.

• low latency, because of the proximity, la-
tency is lower when compared to classical
cloud computing

• location awareness, because servers are lo-
cal, the rough position of end-users is
known. This can be used for e.g. geofenc-
ing.

• network context information, properties of
the network, e.g. radio channel strength,
are known, allowing applications to re-
spond to current circumstances.

Naturally, some of the research also focused
on the possible applications for MEC; that is,
research focused on the problems that MEC can
help solve. Furthermore, research was also car-
ried out on a more structural level. These works
focus on the underlying techniques for MEC,
such as how a UE can best select a server, or
how a MEC server should divide up its process-
ing time. The following sections of this chapter
will focus on MEC applications and MEC tech-
nologies, respectively. The distinction of appli-
cation or structural research is not always so

1This chapter was originally written for the prepara-
tory phase of this research, documented in [28], and has
been directly copied from that report.

clear; some papers propose a structural con-
tribution but then also verify their design us-
ing a more application-level perspective. How-
ever, for ease of reading this divide has been
upheld here. The chapter concludes with a sec-
tion about handover strategies in cellular net-
works; cellular networks and MEC are closely
related, and handover strategies employed in
cellular networks can provide a good basis for
potential handover strategies in a MEC context.

2.1 MEC Applications
This section focuses on the applications that
have been designed for MEC, to give the reader
an idea of the possibilities. To structure the
overview somewhat, we adhere to the classifica-
tion of Beck et al. [3] They define the following
classes of MEC applications:

• Content Scaling
• Local Connectivity
• Offloading
• Augmentation
• Edge Content Delivery
• Aggregation

Each of the classes will be described and
exemplified in the following. Content scaling
applications downscale user-generated content
such as images at the edge of the network. Do-
ing this before data traverses the network rather
than doing this at the data centre where the
file/image will be stored reduces the impact
of the application on the core network. This
makes an application of this class both easier on
the core network and cheaper for the applica-
tion owner to run. Applications of this type are
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useful mainly for data-rich applications, such as
social networking sites where a lot of images are
shared.

Other applications focus on providing local
connectivity. These applications provide con-
nectivity or a specific service to users in a cer-
tain geographical area. The type of connectiv-
ity provided can vary; it could be used for geo-
graphically targeted advertising, or it could be
used for automated vehicles to share their ob-
servations of the world. The latter is described
in [16]; each vehicle publishes the objects they
have detected around them, and a service run-
ning in the MEC combines all received data into
one Shared World Model (SWM). This SWM
is then communicated to each automated vehi-
cle, allowing them to "see" beyond the reach
of their own sensors. The paper describes an-
other local connectivity use case; Platoon Man-
agement. In this use case, automated vehicles
follow one another at a close distance automat-
ically. This reduces the chance of traffic jams;
vehicles are closer together, leaving more space
for other road users. Vehicles in a platoon also
accelerate and brake simultaneously, assuaging
the harmonica effect wherein each vehicle must
brake harder than its predecessor, eventually
causing traffic to come to a halt. However,
these platoons need to be managed as a whole.
A MEC server provides a solution here; it can
provide the overview and can accommodate the
highly localized (and time-constrained) nature
of the application, whereas cloud computing
would put undue strain on the core network as
well as the application.

Offloading is one of the most commonly re-
searched classes of MEC applications. The
premise is that UEs have limited computation
power and battery life, but MEC servers have
both in relative abundance. Therefore, the UE
can offload computations to the MEC server,
conserving energy and bypassing the limit on
computation power. Because the MEC server
is physically close to the UE, the incurred de-
lay is in an acceptable range. This idea has
been received enthusiastically by the research
community; many papers have been published
describing various scenarios of how best to capi-
talize on this new development. A few examples
are [20], where the focus is on lowering the de-

lay in a mobile gaming scenario, and [2], which
provides a strategy for making the decision of
whether or not to offload a certain computation.
Augmentation applications provide extra in-

formation (e.g. the number of connected UEs
or the available bandwidth) to application ser-
vice providers (ASPs) so that ASPs can adapt
their service strategies in real time, such as
Tran et al [27]. Although in their work they
refer to context-aware services rather than aug-
mentation, the two concepts are essentially in-
terchangeable. The paper proposes a resource
management platform which takes into consid-
eration the augmented data and applies this
framework to a set of three use cases to demon-
strate its effectiveness.

Applications in the edge content delivery
class provide cached content delivery from the
edge of the network. The aim is to drastically
decrease the latency experienced by the user
for the most popular applications. The applica-
tions that benefit most from this approach are
typically media streaming applications. In their
work [14], Malandrino et al use a large data
set to determine the best caching architecture,
i.e. the best place to cache data, in a MEC-
enabled environment. They consider four cases:
caching in base stations, in base station rings,
in aggregation-layer pods or core-layer switches.
They conclude that in cases with localized con-
tent, such as navigation data, MEC provides a
good solution, but when the content is less lo-
calized, a more centralized approach works bet-
ter.

The final class of applications use MEC for
aggregation. These are applications that ag-
gregate related data from devices in the same
geographical area (e.g. V2V or wireless sensor
networks communications) before providing the
aggregated data to a (cloud-based) server. Xiao
et al [31] describe an architecture that aims to
allow large-scale crowdsensing by making use
of MEC. The use case they use is that of a
young child gone missing in a crowd; using the
cameras of (consenting) bystanders, the child
could be localized before they even realize their
parents are gone. However, an application like
this requires an enormous amount of processing
power; if the images of each phone must be pro-
cessed in the cloud, this would put an enormous
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strain on the network, making the widespread
use of this application impossible. With MEC
however, sources can be analyzed locally, mak-
ing the processing more distributed and keeping
the flow of data off the core network. Theo-
retically, this aggregation of data enables the
scaling up of crowdsensing applications.

2.2 MEC Technologies

Another branch of research focuses on the un-
derlying technologies in MEC. Reading through
the papers in this area of study reveals four cat-
egories in which the research is focused. Each
is listed and detailed in the following.

• Resource allocation
• Cooperative computing
• Server selection
• Handover technique

Resource allocation research focuses on find-
ing the best strategy for the allocation of com-
putational capacity and/or radio capacity to
UEs based on a certain service aspect, e.g. en-
ergy consumption or delay tolerance. [22] refers
to this as resource management and proposes
a time-division multiple access (TDMA) based
approach as part of their work on MEC on
fiber-wireless (FiWi) networks, networks whose
topology partially consists of wired links and
partially relies on wireless links. They conclude
that ’obtained results show the significant ben-
efits of MEC over FiWi networks’. Satria et al
[23] propose two distinct recovery schemes for
overloaded MEC servers. Each scheme provides
a way for traffic or jobs destined for the over-
loaded MEC server to be redirected, either to
neighbouring MEC servers or by using nearby
UEs as relay nodes to reach neighbouring MEC
servers. By redirecting incoming jobs like this,
the overloaded server gets the opportunity to
recover and resume service.
Cooperative computing refers to UEs not only

making use of the compute power of MEC
servers, but also of one another’s. This is of-
ten referred to as fog computing in literature,
although this term is not well-defined; it may
refer to only offloading to a MEC server, to of-
floading to both MEC servers and other UEs,

or only to offloading to other UEs. Coopera-
tive computing is described in [7], in which a
system is developed for vehicular fog comput-
ing. The paper investigates several scenarios
in which moving and/or parked vehicles can be
used for cooperative computing. Tran et al [27]
propose a collaborative MEC system that uti-
lizes both MEC servers and UEs and test the
system in three different use cases.
Server selection research focuses on finding

the best MEC server to connect to from a UEs
perspective. Some research connects to the
server that is physically nearest ([6], [18]), oth-
ers focus on cost and leave the definition of cost
an open problem ([29], [30]).[26] migrates to a
new MEC server only if the total amount of
core network traffic is less with migration than
it would have been without. The traffic gener-
ated by the migration itself is included in this
calculation.
Handover technique is closely related to

server selection. When a UE determines the
current MEC server is no longer the optimal
one, a handover must take place. Handover re-
search focuses on how best to execute the mi-
gration from one MEC server to another when
needed. MEC applications typically work us-
ing either virtual machines (VMs) or containers
(such as Docker) in the relevant MEC server,
and a handover action means migrating the rel-
evant VM/container to the new server. [13]
compares the handover performance of VMs to
that of containers and concludes that container-
based handover experiences less service down-
time with each of the four tested applica-
tions (game server, high random-access memory
(RAM) application, video streaming, and face
detection). Even in the least favourable com-
parison, use of containers leads to more than
four and a half times less service downtime as
compared to a VM-based approach.

To answer our research question - What is
the optimal handover strategy in an automotive
MEC use case? - we will need to define exactly
what we consider to be a handover strategy. In
this work, we consider a handover strategy a
combination of two elements: the selection of
the optimal MEC server, and the decision of
when to make the switch. Our research will
therefore mainly take place in the domain of
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server selection, but will also partially consider
the handover technique sub-domain. There are
several papers in this area of research that are
related to our research question, though none
explicitly consider automotive use cases. We
provide a concise summary of each.

Heinonen et al [6] claim that to meet 5G la-
tency requirements, applications and core net-
work functions must be optimized, as well as
decision-making algorithms and mobility man-
agement. They attempt to do this by using a
network slice that instantiates virtual network
functions (VNFs) at the cloud edge. As these
VNFs run in a virtual machine, it is possible to
place them in optimal locations, even if those
locations change dynamically. In terms of mo-
bility management, the work selects the optimal
MEC server during the UE attach procedure;
this can either be the physically closest one or
can take the network state into account. The
latter approach is described in a separate paper
by the same authors [9]. In this work there is
a separation between radio handover and han-
dover of the MEC server (from here on referred
to as data handover); this ensures that the work
is (also) applicable for scenarios in which the
MEC servers are not co-located with base sta-
tions, or situations in which not every base sta-
tion has its own MEC server. The optimality of
the current MEC server is re-evaluated during
each handover procedure; however, an optimal
strategy is not determined, rather a number of
suggestions are made. In the work proposed
in this document, determining what makes a
server ’optimal’ will be a significant aspect of
the research. Heinonen et al also provide a
performance evaluation of the current situation;
they conclude that current handover procedures
are not sufficient for low latency services, espe-
cially in the context of 5G. They suggest this
as an area of further study. This work does not
attempt to resolve this, but focuses on the per-
formance of a simple, unoptimized, handover
procedure.

Machen et al [13] consider the live migration
of stateful applications. They present a layered
migration framework using incremental file syn-
chronization. The framework splits the archi-
tecture into three layers: the base layer (con-
taining the guest OS and kernel, but no appli-

cations), the application layer (containing an
idle version of the application and application-
specific data) and the instance layer (contain-
ing the running state of the application). A
copy of the base layer is stored on every MEC
server so that this does not have to be trans-
ferred in a handover action. The application
layer is instantiated in every MEC that is cur-
rently running that application; it may be nec-
essary to transfer this layer of an application
to a MEC where the application is not yet run-
ning. Finally, the instance layer must always be
transferred in the case of a handover. During
a migration, the application layer is transferred
if necessary while the application is still run-
ning; then the service is suspended and the in-
stance data is transferred before the application
is restarted in the new server. This significantly
reduces the amount of data to be transferred
while the application is suspended. Due to
space limitations (it is a poster work), no mobil-
ity model or other experimentation details are
provided. This work focuses on how to transfer
application data, whereas our proposed work
will focus on when and where. However, us-
ing the approach mentioned in this work could
improve performance, making certain handover
tactics more or less suitable for certain applica-
tions.

Farris et al [5] propose an approach to better
support user mobility for container-based state-
less micro-services. They consider a system
architecture in which there is a Mobile Edge
Orchestrator (MEO), as well as MEC servers.
The MEO has an up-to-date view of network
state, MEC server status, and user workload.
It decides which applications to deploy in which
MEC server, as well as when to relocate a par-
ticular application to another server. It is as-
sumed that the relevant context data is avail-
able in individual MEC servers, that Docker
containers are used, and that there are data
volumes (DVs) available so that data remains
intact even if the application/Docker instance
is destroyed. The handover procedure works as
follows:

• DV is synchronized between the source and
target servers (this is done periodically, not
only during handover)

• Service is stopped in the source server
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• A final DV sync is executed
• Service is restarted in the target server
• User traffic is switched from the source

server to the target server
• Container in the source server is destroyed

This provides a reliable handover; if the pro-
cedure fails, the system can roll back and re-
sume service on the source server before retry-
ing the migration. However, the periodic syn-
chronization also incurs a cost per service in
terms of a larger number of containers to deploy,
duplicated storage needs and back-haul link
congestion; it is therefore important to man-
age the number of secondary instances wisely.
Farris et al did a performance evaluation using
a small-scale test bed with two workstations as
MEC servers and a UE. They compare the de-
scribed proactive handover results to those of a
reactive approach and find that a proactive ap-
proach results in a smaller total migration time
that stays stable as the volume size increases,
while the migration time for a reactive approach
increases more or less linearly as the volume size
increases.

Plachy and Becvar [18] propose a handover
approach with mobility prediction that uses dis-
tance as the sole metric for VM migration deci-
sions. It considers an offloading application as
the use case. The solution consists of two algo-
rithms. The dynamic VM placement algorithm
checks whether there is a better VM to process
a job before starting on that job. The second
algorithm, named PSwH enhanced with mobil-
ity prediction, is used to select a suitable com-
munication path. A handover between MEC
servers is executed if it is profitable to the UE
from an offloading perspective. The proposed
algorithms cooperate by placing the VM before
the UE starts offloading; this curbs the han-
dover delay incurred by migrating during an
offloading operation. The dynamic VM place-
ment algorithm is therefore started by the UE
in between two offloading actions if and only
if the signal-to-noise ratio is below a certain
threshold. The set of possible candidates con-
sists only of servers which are not overloaded
and to which there is an adequate connection.
The algorithms’ performance was evaluated us-
ing MATLAB; the proposed approach was com-
pared to the authors’ previous work as well as

two other approaches, and it was found to be
the most optimal in terms of offloading delay.
In terms of UE energy consumption, however,
it is outperformed by some of the competitors,
which suggests that for some applications the
proposed algorithms might not provide an op-
timal handover tactic.

2.3 Cellular Handover

Although MEC is a relatively new concept, not
all aspects of its technological makeup are new.
Concepts such as handover have been applied in
cellular networks for many years, and an abun-
dance of research has come with it. In cellu-
lar networking, handover during active service
time is less frequent than it is expected to be
in MEC; while in automotive MEC a UE has
a continuously active connection to a server, in
cellular networks such a connection only exists
when making a call. However, it can happen
that a UE moves from one base station to an-
other during a call. We describe here the work
done in this area of cellular networking.

In cellular networks, there are a few distinc-
tions between types of handovers. They are dis-
cussed in [24] and outlined in the following.
Horizontal vs Vertical handovers can either

take place between two structures of the same
network (horizontal), or between two different
networks (vertical). An example of vertical
handover could be a UE transferring from an
802.11p to a 5G network. In our work, we will
consider a homogeneous network, so there will
be only horizontal handovers.
Intra-cell vs inter-cell refers to the physical

areas a network is made up of, called cells.
Each cell is serviced by at least one base sta-
tion. Intra-cell handover means the horizon-
tal handover takes place within the cell, while
inter-cell means the signal is handed over to an-
other cell. Intra-cell handover is used to di-
minish inter-channel interference when moving
around within a cell. Inter-cell handovers are
initiated when a UE is starting to move out of
a cell to another one.
Hard vs soft refers to the strategy used when

handing over. In a soft handover, a connection
to the new cell is made before the connection
to the old cell is relinquished. In a hard han-
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dover, this is not the case; the old connection is
severed before the new one is made. Because a
soft handover puts more strain on the resources,
many networking solutions use hard handovers
instead. The proposed work will do the same.

Though there are different types of handover,
each of these takes place in the same fashion.
Four phases can be distinguished according to
[24]:

• Measurement - this stage consists of doing
measurements. In a cellular context, the
signal strength is measured at this point,
but in MEC another metric could be cho-
sen.

• Initiation - the decision of whether or not
to hand over is made in this phase.

• Decision - if there is a need for handover, a
decision is made to which channel to hand
over. This decision can be made by the
UE, the surrounding base stations or by
the network and the UE together.

• Execution - the phase in which the actual
handover process takes place.

Works on cellular handover also discuss a
number of performance metrics. The metrics
below are mentioned in both [24] and [19].

• Call blocking probability - the probability
that a user attempting to make a new call
is blocked.

• Handover blocking probability - the prob-
ability that a handover procedure fails.

• Handover probability - the probability that
an active call will require a handover before
it terminates.

• Call dropping probability - the probability
that a call is dropped due to a failed han-
dover.

• Probability of unnecessary handover - the
probability of initiating a handover when
the channel quality is still adequate.

• Rate of handover - the number of han-
dovers performed by a base station per
time unit.

• Interruption duration - the amount of time
during a handover that the UE is not in
connection with either base station.

• Delay - time between the initiation of a
handover and its completion

These metrics are clearly meant to be used in
a cellular context, and some of them might not
be directly applicable in a MEC context. How-
ever, these metrics can still form the basis of a
set of metrics for MEC. For example, although
a MEC system will not have call blocking, a
server that is overly busy could refuse service
to a new UE, so a MEC metric could be ’ser-
vice blocking probability’. Similarly, a server
might drop a UE that is already in service if it
becomes clear that the server will be unable to
meet the UEs delay constraints. The remain-
ing metrics in the aforementioned list can be
used in the same way in a MEC context as in a
cellular one.

In a cellular system, a handover will take
place if the channel quality becomes insufficient.
In a MEC environment, it is possible that other
metrics would be more appropriate; this will
be part of the research. However, a delibera-
tion from cellular handover that also applied to
MEC is the following: when should handover
take place? [19] discusses the following five op-
tions:

• Optimal
• Threshold
• Hysteresis
• Hysteresis and threshold
• Scheduling

The first option is to always connect to the
optimal base station. This will always give the
optimal connection, but if the values for the
old and new base station are close together and
subject to some speculation, which base sta-
tion is optimal might fluctuate at a considerable
rate. This translates into route flapping, even
if the old connection is still adequate. To pre-
vent this, there are two possible approaches: us-
ing a threshold and only handing over when the
threshold is exceeded, or by applying hystere-
sis. When using the latter, the UE only hands
over when another MEC is stronger by a cer-
tain margin. To compound the effect, both of
these measures can be combined so the UE only
hands over when the connection is no longer
good enough and a viable candidate has been
detected. Finally, it is possible to schedule han-
dovers: by predicting when and where a UE will
be handing over, the network can plan for this
event before the service starts to deteriorate.
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Chapter 3

Problem Analysis

Where the previous chapter describes the ex-
isting research on MEC, this chapter explains
what we will add to that existing body of re-
search, and the motivations for this choice.

The research proposed in this report will be
executed in the context of automotive applica-
tions. Automotive use cases are especially in-
teresting from a handover perspective for three
reasons:

• Most research on handover strategies does
not consider UEs that move at high
speeds. At higher speed, the ’grace pe-
riod’ in which a UE is on the precipice of
handover but does not require direct action
yet is much shorter.

• Vehicles’ mobility is predictable, as they
are confined to the road and tend to drive
at the speed limit or the maximum achiev-
able speed. This makes for relatively sim-
ple mobility prediction.

• Some vehicular applications are safety
critical. E.g. an obstacle-detection ap-
plication has a very low delay tolerance;
this calls for a high-performance handover
mechanism to avoid accidents.

The previous chapter demonstrates that a lot
of work has already been done concerning MEC.
However, although there are works proposing
how to handover, there are no works discussing
when a UE should handover from one server
to the next. Cellular networking provides some
best practices here, however it cannot be as-
sumed that cellular networking concepts are
also suitable for MEC. There are a number of
significant operational differences between the
two domains, as listed below:

• Number of handovers. In many MEC
scenarios, the UE is continuously exchang-
ing messages with the server. This is dif-
ferent from a cellular scenario, where this
continuous exchange is only in place when
a call is in progress. When there is no call
in progress, no handover need take place.
Therefore, a MEC application will han-
dover every time a new eNB is reached, but
this is not the case in a cellular system.

• Consequences of failed handover. In
a cellular system, a failed handover can
cause an ongoing call to be dropped. In
a MEC system however, a failed handover
has more severe consequences; it can lead
to a safety-critical message being dropped
or delayed. In a worst-case scenario, this
could cause a car to crash.

• Elasticity. A MEC application is more
adaptive to changing channel quality. If
the connection deteriorates for a moment,
a MEC application can recover. On the
other hand, if the connection momentarily
deteriorates in a phone call, this will result
in a call being dropped entirely.

These factors are significant enough that we
have dedicated this work to finding out what
the most successful handover strategy would be
in an automotive MEC scenario. In order to
do so, we must first determine what make a
strategy successful or unsuccessful, and how to
do an evaluation of various strategies. Further-
more, as we suspect that the best data handover
strategy may vary between applications, we ask
ourselves by which properties we can group ap-
plications in order to predict the type of han-
dover strategy they require. With this, we have
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structured the research along the following re-
search questions:

What is the optimal handover strategy
in an automotive MEC use case?

• What is an appropriate definition of ’opti-
mal’ in this context?

• What is the best way to evaluate different
handover strategies?

• What classes of MEC applications can be
distinguished in light of handover strate-
gies?

12



Chapter 4

Research design

This chapter covers the design that we made
to execute the research. We will first discuss the
chosen definition of an optimal handover strat-
egy, followed by a discussion of the handover
strategies that will be tested. Finally, it will
cover the method of evaluation, including the
use case to be employed for the experiments,
and the classes of applications that can be dis-
tinguished by handover strategies.

4.1 Definition of optimal
It is crucial to have a good definition of what
an optimal handover strategy entails. In au-
tomotive applications, delay tends to be a vi-
tal performance measure. Many other perfor-
mance measures, such as channel throughput
and server queuing time, are reflected in the to-
tal delay an application perceives between issu-
ing a request and receiving a reply. This makes
the round trip time as measured by the UE a
good indication of overall system performance.

Furthermore, most applications have well-
defined requirements for delay tolerance. If
these requirements are not met, application
performance will degrade. For example, a me-
dia streaming application might falter, or an
autopilot application might be unable to com-
mand the vehicle to brake in time for a newly
detected obstruction.

It is insufficient to merely consider the av-
erage RTT for our definition of optimal. In a
MEC scenario where traffic is bursty, the aver-
age RTT might be quite low, while there are
spikes at the times where a lot of requests are
being sent at once. These spikes can cause
one or more messages to violate the RTT re-

quirement, leading to performance degradation.
This is an especially serious issue in safety-
critical systems.

We will therefore consider the optimal han-
dover strategy that has the lowest probability of
RTT requirement violation. The average RTT
is considered a secondary determinant, i.e. if
two strategies cause the same number of vio-
lations, the strategy that provides the lowest
average RTT is the optimal one.

4.2 Evaluation of strategies
To determine the optimal handover strategy,
a process for the evaluation of these strate-
gies must be established. A real-world test bed
would be the most accurate way to do this, but
is not an achievable method in a project of this
size. Instead, we turn to the alternative: sim-
ulation. There are several network simulators
freely available. Of these, ns-3 [15] has been
selected. The wide array of readily available
mechanisms and protocols, combined with the
large community and resource availability were
decisive factors in making the choice.

Although ns-3 has some simple mobility mod-
els such as random walk and constant veloc-
ity, it does not have a built-in way to model
more complex vehicle mobility. However, it can
couple with the Simulation of Urban MObility
(SUMO) tool [12]. We used this tool to gener-
ate mobility traces that are then coupled with
ns-3 in the offline mode.

For statistical accuracy, each test of a han-
dover strategy is repeated ten times. For each
run, all different strategies are run under the
same mobility trace and with the same seed
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for ns-3’s random number generator. This en-
sures that within a single run, mobility and ran-
dom number generation cannot be the cause for
differences in the strategies’ results. Both the
trace file and the seed are changed between runs
to assuage effects of certain mobility patterns
and/or random number orders.

In our experiments, there is a distinction to
be made between radio handover and data han-
dover. Radio handover is the handover of ra-
dio resources from one eNB to another as a UE
moves along the track; it is handled automati-
cally by ns-3’s LTE module. Data handover, on
the other hand, is the handover from one MEC
server to another based on the criteria set by
the handover strategy. This means that a UE
is not confined to using the MEC server that is
associated with its current eNB, but can han-
dover to another server separately from radio
handovers. When we speak about a handover
strategy, we therefore speak of a strategy for
data handover.

Scenario

The experiments are set in a highway scenario.
This choice was made to reduce the effect that
factors such as traffic flow and mobility predic-
tion have on the outcome of the experiments. A
simple traffic flow should reduce these kinds of
effects, although in the future it might be inter-
esting to see how handover strategies function
in a more complicated (e.g. urban) setting.

The track is a simple two-lane oval shape,
with the network infrastructure located in the
area enclosed by the road. The aforementioned
network infrastructure consists of three eNBs,
which are evenly spaced along the road so the
entire area has adequate LTE coverage. A MEC
server is co-located with each eNB. It is ex-
pected that in real-world situations, a MEC
server will be connected to multiple eNBs, but
to restrict the scale of the experiment and yet
make handovers from one server to another pos-
sible, we have chosen this approach. A vi-
sual representation of the physical layout can
be found in Figure 4.1.

Each MEC server has a different service ca-
pacity, i.e. a different maximum service rate
in jobs/second. This creates a heterogeneity
in waiting times that ensures that in experi-

ments that focus on optimizing RTT the UEs
do not always connect to the MEC server that is
physically closest. If the service capacities were
homogeneous, each MEC server would be con-
nected to an equal portion of the UEs, leading
to nearly identical waiting times at each server.
With the delay experienced in each server being
equal, the main factor increasing the RTT for a
UE would be whether or not a message can use
the speed boost provided by using MEC; the ef-
fects of different handover strategies would not
be clearly visible. Furthermore, it is not re-
alistic to assume that in a real-world scenario
all MEC servers would have the same computa-
tional capacity; it is likely that hardware would
differ between vendors.

Our scenario considers 100 vehicles; although
this does not utilize the full road capacity, it is
thought to represent a moderately busy road
that generates enough network traffic to pro-
vide reasonable results, while not straining the
simulator too much and dramatically increasing
experiment run time.

Use case

In this work, we test a single use case; a
platooning application for automated vehicles.
Such an application has already been developed
by TNO, ensuring that we can use realistic vari-
ables for the different experiment parameters.

A platooning application enables vehicles to
travel in a platoon; this means that the vehi-
cles intercommunicate and maneuver as a sin-
gle entity. Doing this allows the vehicles to
drive much closer together without compromis-
ing safety, which improves traffic flow and can
help to reduce traffic jams.

TNO’s platooning application uses both
vehicle-to-vehicle and vehicle-to-infrastructure
communication. In our experiments, we will
only consider the vehicle-to-infrastructure com-
munication. This type of communication is
used to create a collective perception; a com-
mon understanding of vehicles and other ob-
jects in the vicinity. Each Collaborative Per-
ception Message (CPM) contains a list of ob-
ject IDs and their locations. This means that
the size of a single message can vary strongly de-
pending on how busy traffic is at a given time.
However, in our experiments the size of a mes-
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sage has no consequence; it does not cause de-
lays in sending or job processing. In our exper-
iments we therefore assume each message re-
ceived by a UE is 256 bytes long. CPMs are
sent to the vehicles at a frequency of 10 Hz.

The platooning application has a low delay
tolerance, making it an interesting test subject
in terms of performance. For our experiments,
we have set the requirement that RTT mea-
sured by the vehicle must not exceed 30 ms.
This is less strict than the maneuver-planning
application requires in [11], however vehicle-
to-infrastructure communication in the case of
platooning is not safety-critical and therefore
some leeway can be allowed. Furthermore, 5G-
MOBIX preliminary results show that the av-
erage RTT without the use of MEC is approx-
imately 30 ms; setting this as the maximum
acceptable value means that MEC must out-
perform traditional cloud computing.

The application is stateless; when transfer-
ring from one server to the next, there is no
UE data that needs to be exchanged between
the servers as they only require a list of current
clients. It could be interesting to test multi-
ple types of applications, but due to time con-
straints we leave this to future work. Section
7.2 elaborates more on this.

In summary, the platooning application that
is our use case has the following characteristics:

• Message frequency between MEC server
and UEs - 10 Hz

• Message size - 256 bytes
• Delay limit - 30 ms
• Stateless

Model

To be able to run our experiments, we made a
model of the scenario. The model of the track
is quite simple: the long edge of the oval is 12
kilometers long, and each of the turns is com-
prised of a semicircle with a 50-meter radius.
This enables the vehicles to take the turns at a
speed of 100 km/h, so they can maintain their
driving speeds. Ensuring vehicles do not have
to brake for the turns avoids traffic buildup and
ensures the vehicles remain evenly spread over
the track. The total length of the track is ap-
proximately 24,3 kilometers and has two lanes

that are both traversed clockwise.
The infrastructure model is derived from the

5G-MOBIX test site in Helmond, where there
are a single eNB and MEC server covering 4
km of road. The virtual test site has been
extended so that handovers can and will take
place. Infrastructure behavior is modeled by
the standard LTE library of ns-3, our chosen
network simulator. This library has imple-
mented the standardized protocols and speci-
fications of real-world LTE modules.

Radio handover is handled by ns-3 using a
very sensitive trigger. Data handover is han-
dled by the applications written for these ex-
periments; more detail about this will follow in
Chapter 5. There is a MEC server co-located
to each eNB. That means that each eNB has
a MEC server connected to it through a link
that is very fast and lossless. In our experi-
ments, we assume that this link introduces no
delay. Furthermore, we assume that the appli-
cation we are modelling is already running on
each server, so that only the user data needs to
be transferred. This ensures that there does not
need to be a complicated data handover mech-
anism involving several stages, which will make
the experiment results more straightforward to
interpret.

If a UE is connected to the MEC server that
is associated with its current eNB, mobile edge
computing can be engaged. The link delay de-
pends on the network configuration and can
range up to 10s of milliseconds if the MEC
server and eNB are physically far apart. In our
experiments we assume that the eNB and the
MEC server are co-located and the link incurs
no link delay.

However, if a UE connects to a MEC server
that is not associated with the UE’s current
eNB, mobile edge computing cannot be used.
Instead, the message will have to go through
the regular core network. Measurements from
preliminary experiments done by 5G-MOBIX
at their Helmond test site indicate that this
approach is on average 15 ms slower than its
MEC counterpart. Therefore, in our experi-
ments, this is the value of the network delay
incurred by a non-MEC message exchange.

The vehicles’ mobility is modeled in SUMO.
Each vehicle uses Krauss’ car-following model
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[8]. In short, this ensures that each vehicle will
attempt to drive the pre-set maximum speed
while maintaining enough distance that a crash
will not ensue should its predecessor brake.
It depends on three parameters: the vehicles’
maximum speed, the vehicles’ maximum accel-
eration and the vehicles’ maximum decelera-
tion. In our experiments all vehicles are con-
figured identically. The speed limit is set to
100 km/h or 27.8 m/s to mimic the driving
conditions at the 5G-MOBIX test site. Vehi-
cles will drive up to 10% slower or faster than
that, making the range of effective velocity 90
to 110 km/h. The acceleration and deceleration
parameters are set to 3.5 m/s2 and 2.2 m/s2

respectively. This was done at the recommen-
dation of SUMO literature [25].

The vehicles use SUMO’s default lane-
changing model. It is quite complex, but in
essence allows vehicles to change lanes if and
only is there is enough space between it and its
predecessor and follower in both the current and
target lane to do so safely. For a full description
refer to [4].

At the start of the experiment, vehicles start
driving at the top left corner of the track.
They start out driving 0 m/s and accelerate at
their maximum acceleration until they are go-
ing 27.8 m/s. Vehicles are released from the
starting point 9 seconds apart. As it takes
24300/27, 8 ≈ 900 seconds for a vehicle to com-
plete a full lap of the track, this means that
the last vehicle departs just as the first vehicle
completes its first lap. This aids in achieving a
steady-state for the mobility aspect of the ex-
periments, where the vehicles are evenly spread
out over the track. Experiment measurements
begin 1000 simulated seconds after the first ve-
hicle leaves, when the steady-state has been
achieved.
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Figure 4.1: Visual representation of the virtual
test site. Not to scale.
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4.3 Handover strategies

We have seen in Section 2.3 that cellular sys-
tems can use five types of events to trigger a
handover. These triggers are all based on some
metric, a concept of what a better connection
is. A data handover strategy therefore consists
of two elements; the metric and the trigger.

In radio handover, the metric is usually a
measure of the quality of the connection, e.g.
the Received Signal Strength Indicator (RSSI).
In data handover we therefore need not con-
sider this. What is an important measurement
of the connection quality depends on our defi-
nition of an optimal strategy. As we have pre-
viously determined that the total delay, or
RTT, is the most relevant factor, we will use
this metric as a component of our handover
strategies. We will also run experiments us-
ing another metric: distance. Connecting to
the nearest MEC server should normally result
in the smallest amount of link delay, thereby
reducing the RTT. However, this metric fails
to take into account waiting times at the the
server. That is, if the closest MEC server is
overloaded, a delay-based strategy will cause a
UE to avoid this server, but a distance-based
strategy will not. However, a distance-based
strategy has less messaging overhead while it is
plausible that it could still be a good estima-
tor for the optimal connection. We therefore
include it in our experiments.

The triggers we will evaluate are those de-
scribed in Section 2.3. The scheduling trigger
will however not be evaluated, as its implemen-
tation is considered too complicated and un-
wieldy for this project. This leaves four triggers
to be examined:

• Optimal
• Threshold
• Hysteresis
• Hysteresis and threshold

Combining the two metrics and four triggers
gives us eight data handover strategies to be
implemented and evaluated.

4.4 Classes of applications
It would be imprudent to assume that there is
a single optimal strategy for all different appli-
cations. After all, the properties of applications
can vary wildly. For our research in MEC, the
properties that we consider to have the most in-
fluence over what makes an optimal handover
strategy are the following:

• Service rate, the frequency with which the
application makes requests to the server.

• Service duration, the amount of processing
required from the server for a single service
request.

• Service message size, the size of the service
request and service response messages.

• Handover message size, the size of the mes-
sage sent from the old server to the new
server upon UE handover.

• Delay tolerance, the maximum acceptable
RTT on a service request from a UE.

Each MEC application has an individual set
of these properties, which can affect what the
best strategy is for that application.

For example, an application that sends re-
quests to the server at a high frequency might
have multiple requests suffering from the con-
nectionless period during a handover, while an
application that sends with lower frequency will
only have one or even no messages interrupted.
This might cause the former to prefer a strat-
egy with fewer handovers, while the latter will
not be penalized as strongly and might benefit
from a more aggressive handover strategy. Sim-
ilarly, an application that has processing-heavy
jobs will be less heavily effected by queuing
time than an application that has low process-
ing requirements. An application with a high
delay tolerance, for example, because it has a
built-in buffering strategy, might settle for a
sub-optimal server selection to avoid frequent
handovers, while an application with extremely
low delay tolerance, for example a safety-critical
application, will benefit from a more aggres-
sive handover strategy to reap the benefits of
a slightly lower RTT.

As discussed in Section 4.2, this work con-
siders a use case that is stateless and therefore
transfers little data upon handover. Further-
more, it has a very low delay tolerance and a
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high service rate, while message sizes are rela-
tively small. We expect that for an application
that has different properties, the optimal data
handover strategy will be different than in our
results. We suggest that this be tested in the
future. To this end, the simulation system was
built in such a way that it is very easy to con-
figure for another application type.
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Chapter 5

Implementation

To execute the experiments as detailed in the
previous chapter, an implementation was made
in ns-3. The code can be found on GitHub:
[21]. This chapter details exactly how it was
implemented. It covers the main actors in the
system, as well as an in-depth explanation of
the implemented processes. Finally, it discusses
the topology of the network used for the sim-
ulations, as well as a complete overview of the
experiment parameters.

5.1 Actors

The implemented system consists of three main
types of actors; MEC servers, UEs, and a single
orchestrator. The functions and responsibilities
of each are outlined in the following sections.

5.1.1 UE

The system’s main actors are the UEs. Each
UE is on board of a separate vehicle, and has
the client role in most interactions. It requests
service from the MEC server it is connected to
and measures the RTT. Each UE has a unique
mobility pattern associated with it so that no
two UEs will have identical mobility profiles.
The number of UEs in the system can be easily
adjusted to fit extended experiments.

5.1.2 MEC server

The MEC server provides service to the UEs
that are connected to it. It also communicates
with the orchestrator to execute data handovers
from one MEC server to another. It is possi-
ble to alter the number of MEC servers in the

system, although the process is slightly more
involved than it is for UEs.

MEC servers are governed by two experiment
parameters; the combined server capacity and
the server capacity distribution. The former
specifies how many jobs all MEC servers com-
bined can process per (milli)second. The lat-
ter specifies how this computational capacity is
distributed among the MEC servers. For exam-
ple, a [0.33,0.33,0.33]-distribution implies that
all three servers in the system get an equal share
of the total server capacity, while a [0.4, 0.5,
0.1]-distribution means that when the servers
have an equal amount of clients each, waiting
times in the first server will rise more than in
the second server. Note that even if the com-
bined server capacity far exceeds what the sys-
tem generates, a poor handover strategy may
cause individual servers to be overloaded.

5.1.3 Orchestrator

The orchestrator is the actor that makes the
decision of when and where a UE should do a
data handover. There is exactly one in the sys-
tem. It receives measurements of the system
state as taken by the UEs and MEC servers
and combines these with the selected data han-
dover strategy. If a handover is to be made, the
orchestrator sends the appropriate instructions
to the involved parties. A more detailed de-
scription of this process can be found in Section
5.3.3. Important experiment parameters for
this actor are the threshold and hysteresis val-
ues. For delay-based strategies, the threshold is
given in ms; if the UE’s measured RTT exceeds
that, an alternate MEC server will be sought.
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For distance-based strategies the threshold is
set in meters. The hysteresis parameter de-
termines what percentage of performance in-
crease another MEC server must offer before
the UE will consider switching to it. In the
experiments, we use a hysteresis of 15%. Pre-
experiments found that this value deters route-
flapping, but does not completely deter han-
dovers by setting an unachievable standard.

5.2 Topology
To connect all the actors and enable them to
run their applications, a network was imple-
mented in ns-3. This section details the design
for that network, including the major parame-
ter settings that were chosen.

The full topology of the network can be seen
in Figure 5.1. In our experiments, there are
100 UEs, three eNBs and their associated MEC
servers, and an orchestrator. It also contains a
packet gateway (PGW) and an IP router.

It was found that creating a true MEC im-
plementation in ns-3, that is, an implementa-
tion where the servers are connected directly
to an eNB, is prohibitively complicated. We
have therefore chosen to approximate MEC by
making the servers accessible through the core
network, and setting network delays in the core
network (between the PGW and the router, as
well as between the router and each server) to
zero. In a true MEC implementation, a UE
could circumvent the core network by connect-
ing to the server associated with their current
eNB. In our implementation, the core network
does not impose any delay. However, a 15 ms
penalty is incurred whenever a UE connects to
a server that is not associated with their cur-
rent eNB, thereby simulating the core network
delay. This way, the implementation is func-
tionally the same as a true MEC implementa-
tion and the experiments will provide realistic
results.

Figure 5.1: Network topology for the implemented
system

5.3 Processes

The implemented system consists of three pro-
cesses; service requesting, status reporting and
handover. The following sections will describe
for each process their purpose, the responsibil-
ities of each actor, and the control flow for this
process.

5.3.1 Service requesting

The service request process is the core of the
system. This process implements the regular
interaction between a UE and a MEC server.
The UE sends a service request at a certain in-
terval, to which the MEC server then replies.
The request interval, size of the request mes-
sage, and size of the response message are all
parameters that can be set. The UE measures
the RTT for each service request and logs it.
This data is used to complete an analysis that
will determine whether a data handover is nec-
essary.

The control flow, which can be seen in Figure
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5.2, is as follows; the process is instigated by the
UE through an interval timer. The UE sends
a request message to its MEC server and starts
the RTT timer. The MEC server receives the
message and adds it to the processing queue.
Based on the queue’s current length, the server
calculates when the message will be done pro-
cessing. The server sets a timer, and when the
waiting time has elapsed it sends a response to
the UE. The UE receives the response, stops
the RTT timer, and logs the simulation time
and delay. A new trigger is set for the next
service request.

To prevent all UEs from sending their ser-
vice requests at the same time and creating
bursty traffic, the service request triggers are
staggered. If each UE would send a request
at the exact same time, it would lead to short
periods of the servers being overwhelmed be-
fore returning to a stable queue state. This
would cause sub-optimal performance. When
staggering the request, each UE is allotted a
narrow time slot in which to send their mes-
sages, creating a more uniform input flow for
the servers and thereby improving performance.
This is also a more realistic scenario; while in
the simulation all vehicles are perfectly time-
synchronized, it is very unlikely that this would
be true in the real world.

5.3.2 Status reporting
Status reporting is one of the support processes
in the system. It does not provide services to
the UEs or MEC servers directly but is required
to help the system function. In this process, the
UEs and MEC servers periodically update the
orchestrator regarding their perceived system
status. The process consists of separate parts
for UEs and MEC servers.

The status reporting for UEs is dependent
on the metric that is being used. If the ap-
plied metric is delay, each UE periodically up-
dates the orchestrator about their RTT to each
of the servers. Refer to Figure 5.3 for the ac-
tivity diagram. For readability, the diagram
only shows the UEs communication with a sin-
gle MEC server. By default, the UE will only
know the RTT to the server it is currently con-
nected to, by its measurement of the last service
request. It has no information on any of the

other servers in the system. To solve this, each
UE sends a ping request to each of the servers
in the system. This process is triggered by the
ping timer running out. The timer is config-
urable and is separate from the service timer.
A ping request is almost identical to a regular
service request; it has the same size and is han-
dled in the same way by a MEC server. How-
ever, it has a flag set so that the UE will rec-
ognize it as a ping response upon return. The
UE sends each request and sets separate RTT
timers. When the MEC servers receive the re-
quests, they handle it the same as a service re-
quest; they calculate the waiting time based on
current queue length, set a timer, and send a
response when the timer runs out. Once all
the ping responses have been received, the UE
bundles the gathered information and sends a
message called a measurement report to the or-
chestrator. Finally, the timer is reset.

When the distance metric is in use, the UE
does not inform the orchestrator of the RTTs,
but its current position. This makes the pro-
cess significantly simpler; when the ping timer
runs out, the UE simply sends a message con-
taining the current position for the UE to the
orchestrator. Then the ping timer is reset and
the process starts over.

Each MEC server also regularly updates the
orchestrator, triggered by a third timer called
the server timer. Once again, this timer is con-
figured in the configuration file and is sepa-
rate from the other timers. When the timer
runs out, the MEC calculates its current wait-
ing time and sends a message containing this
value to the orchestrator. Finally, the timer is
reset.

5.3.3 Data handover
The final process that is running in the system
is the handover process. In this process, the or-
chestrator reviews the data it has received from
the UEs and MEC servers, and decides whether
or not a data handover should take place. If
a handover should be made, the orchestrator
sends commands to the parties involved; the
relevant UE and its current MEC server. If no
handover needs to take place, the orchestrator
does not send any messages. It would have been
possible to implement this functionality in the
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Figure 5.2: Activity diagram of the service request process
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Figure 5.3: Activity diagram of the UE status reporting process for delay-metric strategies
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UEs themselves rather than in a single, sepa-
rate entity; however we made this decision to
have a clearer separation of concerns between
the various system components.

The control flow, visualized in Figure 5.5, be-
gins with the orchestrator receiving a measure-
ment report containing either the RTTs for all
MECs or the UEs current position. The orches-
trator then uses these numbers to fill out one of
the data handover equations; which one is used
depends on the handover strategy that is set in
the configuration file. The data handover equa-
tions depend on the trigger that is used and can
be found in Table 5.4. Here, the variables cur-
rent and other represent the numerical values
for the metric for the UEs current MEC server
and the MEC server it is being compared to,
respectively. The RTT is measured in millisec-
onds and distance is measured in meters. The
variables threshold and hysteresis are fractions
defined in the configuration file. They are kept
equal between experiments.

If at least one of the MEC servers that the
UE is not connected to triggers the handover
condition, a data handover is initiated to the
most favourable MEC server.

Our simulator, like LTE does, uses hard han-
dover. This means that the connection to the
old server is severed before the connection to
the new one is established. As a consequence,
there is a short period in which the UE is unable
to send requests to any server. We call this the
no-send period. The no-send period lasts un-
til both MEC servers have processed the han-
dover request. Should the UE need to send a
service request during the no-send period, the
RTT timer is started, but the message will not
be transmitted until the no-send period is over,
leading to an increased RTT during this time.
As ns-3 does not know this concept, the no-send
period is calculated by the application when a
data handover is initiated.

When a data handover is initiated, the first
step is for the orchestrator to calculate the no-
send period for the UE based on the response
time at its current MEC server and the MEC
server it is being handed over to. Then, the or-
chestrator sends the command to hand over to
the UE, and then sends a similar command to
its current MEC server. MEC servers do not

disconnect from the infrastructure when a UE
hands over and therefore do not have to abide
by the no-send period. Once the current MEC
server receives the command to hand over, it
transmits a message to the new MEC server to
inform it of its new client. The size of this mes-
sage can be configured, allowing the system to
mimic applications that have to transmit vary-
ing amounts of user data in a handover. The
old MEC server then removes the UE from its
client list, while the new MEC server adds the
UE to theirs. The data handover is now com-
plete.

5.3.4 Experiment parameters
An overview of all parameters that can be set,
as well as the values we have used in our exper-
iments can be found in Table 5.6.

Note that the total server capacity is calcu-
lated as follows: each vehicle produces 11 mes-
sages for a server to process per second; 10
service requests + 1 ping request. In a 100-
vehicle scenario, this means that in order to
be stable, the server capacity must be at least
1100 jobs/second. To ensure there is not too
much queuing influencing our results, we chose
to have double the minimum needed capacity;
2200 jobs/second.
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Trigger Equation
Optimal other < current
Threshold other < current && current > threshold
Hysteresis other < current ∗ (1− hysteresis)
Hysteresis & threshold other < current∗(1−hysteresis) && current > threshold

Figure 5.4: Overview of data handover equation

Figure 5.5: Activity diagram of the data handover decision and execution process
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Parameter Value Reasoning
Number of eNBs 3 Multiple handover opportunities, not overly complex.
Number of servers 3 One per eNB.
Number of UEs 100 Modest system load with feasible experiment duration.
Distance between eNBs 4000 m Even spacing between eNBs, mimicking TNO test site.
Simulation runtime 1820 s Time for each UE to do at least one full lap.
Service request packet size 256 bytes Realistic value for TNO platooning application.
Service response packet size 256 bytes Realistic value for TNO platooning application.
Handover UE data packet size 256 bytes Realistic value for TNO platooning application.
Handover command packet size 256 bytes Realistic value for TNO platooning application.
Ping interval 1000 ms Avoids influencing system load-based measurements.
Position update interval 1000 ms Avoids influencing system load-based measurements.
Service request interval 100 ms Realistic value for TNO platooning application.
Total server capacity 2200 jobs/second Creates some queuing at servers, but no systematic overload.
Server capacity distribution [0.4,0.5,0.1] Prevents closest server preference in delay metrics.
Hysteresis 15% Anti-route flapping, still achievable.
Threshold (delay) 100 ms Anti-route flapping, limits performance degradation.
Threshold (distance) 2200 m 10 % more than optimal.
Vehicle maximum speed 27.8 m/s Mimics TNO test site.
Vehicle maximum acceleration 3.5 m/s2 SUMO recommended value.
Vehicle maximum deceleration 2.2 m/s2 SUMO recommended value.
Car-following model Krauss SUMO recommended value.
Lane-changing model SUMO default SUMO recommended value.

Figure 5.6: Overview of simulator parameters
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Chapter 6

Results

This chapter discusses the experiment re-
sults. All results are based on 10 replications
of each experiment in the simulator, each with
their own mobility file and random generator
seed. For ease of reading, the chapter is split up
into four sections; one that discusses the han-
dover frequency affected by each strategy, one
that discusses the number of UEs connected to
each server, one that covers the round trip times
measured by the UEs, and finally a section de-
scribing the RTT violations per strategy. Recall
from Section 4.1 that we consider the likelihood
of RTT violations to be the decisive factor for
an optimal strategy; the other sections are in-
cluded for clarification of the simulator’s behav-
ior.

The results discussed in this section are those
that are measured in a steady-state; the ini-
tial transient has been removed from the re-
sults. The initial transient takes place in the
approximately 1000 seconds before the vehicles
are spread evenly along the track. In the re-
sults, we start counting experiment time from
the moment that steady-state is achieved.

6.1 Handover frequency

We start our results with a look at the system-
wide handover frequency in each strategy. This
indicates how many of the UEs perform a data
handover in a given second of the simulation.
Graph 6.1 plots the handovers per second versus
the simulation time in seconds. A second graph,
Graph 6.2, has been added to display more
clearly the lower-frequency strategies. From
these graphs, we can clearly see a number of
things. First of all, the delay-optimal strategy

gives rise to the highest handover frequencies.
This is expected; with the optimal trigger, a
data handover will be performed even if the al-
ternative server is only minimally better than
the current one, while both the hysteresis and
threshold triggers will not handover until there
is a sufficient gain from doing so. We can see
that the delay-optimal strategy creates route
flapping, where the delay-hysteresis strategy
significantly reduces this effect. However, the
delay-threshold strategy is even more efficient
at this. We can also see that the delay-threshold
& hysteresis strategy more closely follows the
line of the threshold only trigger than it does
the hysteresis-only trigger. This indicates that
the threshold (set at 100 ms) has a much more
significant effect on the handover decision than
the hysteresis parameter does, demonstrating
that if the threshold is met, there is almost al-
ways an alternative that is at least 15% better
than the current server, but the reverse is not
true.

At approximately 320 seconds into the exper-
iment, we see that two of the strategies, delay-
optimal and delay-hysteresis, suddenly have a
large increase in handover frequency. The han-
dover frequency graphs cannot provide an ex-
planation for this behavior, but graphs of the
individual servers’ response times, the time be-
tween the arrival of a message in the server and
the departure of the corresponding response,
provide us an explanation. Graph 6.3 shows
the response times of the servers in the delay-
optimal strategy, while Graph 6.4 shows the
same for the delay-hysteresis strategy. In both
graphs, we see that server 3, which has the least
computational capacity of all servers, becomes
overloaded. The response time shoots up and
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Figure 6.1: Handover frequency per strategy
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Figure 6.2: Handover frequency in low handover frequency strategies
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for both strategies the UEs connected to this
server will leave to find better connectivity at
servers 1 or 2. This causes the response time of
server 3 to plummet, making it once again a vi-
able candidate, and it quickly regains so many
clients that it becomes overwhelmed again. The
opportunistic nature of the delay-optimal strat-
egy causes the response time to remain imbal-
anced for the duration of the experiment, while
the hysteresis trigger clearly provides a damp-
ening effect, eventually causing the server re-
sponse times to return to a mostly steady-state.
The strong fluctuation in server response times
creates a flood of data handovers in either sit-
uation, which we can observe in the blue and
orange lines of Figure 6.1.

The graphs also show that the distance-
based strategies behave very differently than
the delay-based ones, as is best illustrated in
Figure 6.2. As expected, they perform han-
dovers much less frequently; a UEs position is
much more stable than the response time it is
measuring. The figure also reveals that the trig-
gers do affect the handover decision, but not
nearly as strongly as they do in the delay-based
scenarios; the different entries have very sim-
ilar, though not equal trends. This is caused
by the fact that handover decisions in distance-
based strategies are based on the position of the
car, and as the same mobility seeds are used for
each set of experiments, the vehicles’ mobility
is identical in each scenario. Due to the exper-
iment parameters the exact point of handover
is not the same between strategies. As servers
are 4000 meters apart, the optimal trigger will
cause a handover as a vehicle passes the 2000
meter mark between servers, but the hystere-
sis trigger will not perform a handover until
there is an alternative server that is at least
15% closer than its current provider, meaning
the handover will happen a few seconds later in
comparison. As the measurement of distance
to a server is as-the-crow-flies, the span of time
between when the optimal strategy hands over
and when a strategy based on another trigger
will can be slightly different when on a straight
stretch of road vs. in a turn. This explains
why the hysteresis, threshold and hysteresis &
threshold strategies do not yield a linear trans-
position of the optimal strategy, though they

are very similar.
Figure 6.5 shows the average frequency of

handovers per strategy. The vertical lines on
the bars indicate the 95% confidence inter-
vals. Here we can see very clearly that for the
distance-metric strategies, the trigger plays a
very minimal role in determining the number
of data handovers a UE performs. Furthermore,
the figure illustrates the large difference in han-
dover frequencies between the various delay-
metric strategies.
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Figure 6.3: Server response times for delay-optimal strategy

Figure 6.4: Server response times for delay-hysteresis strategy
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Figure 6.5: Average handover frequency & confidence interval per strategy

6.2 Clients per server

In this section, we will discuss the distribu-
tion of UEs over the various servers. Figures
6.6 through 6.13 show the number of clients
per server over time for the eight strategies.
Refer to Figure 6.6 for delay-optimal, Figure
6.7 for delay-hysteresis, Figure 6.8 for delay-
threshold and Figure 6.9 for delay-threshold
& hysteresis strategy graphs. In a simi-
lar order, Figure 6.10 shows the distance-
optimal, Figure 6.11 distance-hysteresis, Fig-
ure 6.12 distance-threshold and Figure 6.13 the
distance-threshold & hysteresis strategy.

We can see that the strategies that hand over
most frequently, seen in 6.6 and 6.7, that the
frequent handovers result in a more unbalanced
system compared to strategies where handovers
are less frequent, such as the delay-threshold
and delay-hysteresis & threshold strategies.

We can also see that in the delay-metric
strategies, server three, the weakest server in
the system, remains slightly underutilized. It
generally does not handle more than about 5%
of the populace, while it holds 10% of the pro-
cessing power. This indicates that server 3 is
generally not capable of providing better service
than the other servers are. This effect is exacer-
bated when the threshold or hysteresis triggers
are applied, as can be seen from figures 6.7, 6.8
and 6.9. These put an even stricter expectation
on an alternative server, and we can observe
server 3 being even further underutilized as a
result.

Figures 6.10 through 6.13 show us that the
distance-metric strategies are identical to one
another in this performance aspect. This is ex-
plained by the fact that which server a UE con-
nects to is determined by its mobility, which
does not change between the experiments. Also
observe that in these scenarios, each server
has approximately the same number of clients,
which indicates that the vehicles are indeed
spread evenly along the track.
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Figure 6.6: Number of clients per server, delay-
optimal strategy

Figure 6.7: Number of clients per server, delay-
hysteresis strategy

Figure 6.8: Number of clients per server, delay-
threshold strategy

Figure 6.9: Number of clients per server, delay-
threshold & hysteresis strategy

Figure 6.10: Number of clients per server,
distance-optimal strategy

Figure 6.11: Number of clients per server,
distance-hysteresis strategy
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Figure 6.12: Number of clients per server,
distance-threshold strategy

Figure 6.13: Number of clients per server,
distance-threshold & hysteresis
strategy
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6.3 RTT
This section discusses the (average) RTT as ob-
served by the UEs. Figures 6.14 and 6.15 show
the average RTT UEs experienced over time
for delay-metric strategies and distance-metric
strategies, respectively. Figures 6.17 and 6.18
condense this into an overall average. These
graphs also show error bars; these represent
the edges of the 95% confidence interval for the
RTT.

From the aforementioned graphs, we can see
that the delay-metric strategies by far outper-
form the distance-metric strategies (note the
different scales in figures 6.14 and 6.15). This
can be easily explained; in a delay-metric strat-
egy, if a UE finds its current server overloaded,
it will move to a more suitable one. In the
distance-metric strategies, this escape is not
possible, and the problem continues to esca-
late until the UE travels far enough to con-
nect to another server. Even though vehicles
are spread evenly across the track, servers can
still get overloaded in distance-metric strate-
gies, because they are not by definition capable
of shouldering a fair part of the workload.

Figure 6.17 shows that the optimal trigger
results in the highest average RTT of all delay-
metric strategies. Figure 6.14 reveals that it is
also the most variable of all strategies, followed
by the hysteresis trigger. As discussed in Sec-
tion 6.1, the instability is triggered by the weak-
est of the three servers in the system getting
overloaded. The optimal and hysteresis triggers
are satisfied easily, causing route flapping. The
resulting high number of handovers degrades
system performance and causes high and fluc-
tuating RTTs. The delay-hysteresis strategy
eventually stabilizes because its trigger some-
what delays handovers, but the delay-optimal
strategy continues to fluctuate wildly for the
remainder of the experiments.

For delay-metric strategies, the threshold and
threshold & hysteresis triggers perform best.
They perform so similarly that the line rep-
resenting the delay-threshold strategy entirely
disappears behind the delay-threshold & hys-
teresis line. Figure 6.16 provides a detailed
view of just how small the differences are. This
indicates that the delay-threshold & hystere-
sis strategy’s behavior is vastly more influenced

by the threshold requirement than the hystere-
sis. Apparently, there is almost always an alter-
native server that provides a 15% better RTT
when the current server’s RTT has degraded to
more than 100 ms.

For the distance-metric strategies shown in
Figure 6.15, we see that the results are nearly
identical. As in the previous sections, this can
be explained by the fact that with a distance
metric, the triggers do not influence how often
or which handover decision is made, but only
the timing. Because the vehicles’ mobility is
identical for each set of experiments, there are
only minor time-shifts between the strategies.

Observe from Figure 6.18 that there is some
difference between the different distance-metric
strategies. However, we do not consider the dif-
ference to be statistically significant, as the 95%
confidence intervals (marked by the error bars)
largely overlap.
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Figure 6.14: Average RTT in delay-metric strategies
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Figure 6.15: Average RTT in distance-metric strategies
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Figure 6.16: Average RTT in delay-threshold & delay-threshold & hysteresis strategies
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Figure 6.17: Average RTTs, delay-metric strategies

Figure 6.18: Average RTTs, distance-metric strategies
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6.4 RTT violations

As the likelihood of RTT violations is the metric
by which we decide which is the optimal strat-
egy for the TNO platooning application, this
is the most important section of our results.
In our experiments, we aggregate all the RTT
measurements a UE does in a second, and log
the average of these. We refer to these as ’mo-
ments’; if in a given second the average RTT
exceeds 30 ms the moment violates the RTT
constraints, and if it does not, the moment is
in time. This choice was made to decrease the
time it takes to run an experiment, as ns-3 sim-
ulations are slow, and writing to file is one of
the more time-intensive operations. This way
of measuring is minimally less accurate as we
are using averages rather than separate values.
However, at 100 vehicles per experiment and
each experiment being replicated 10 times, we
have 1000 points of measurement per moment,
which minimizes the effect while allowing us to
run longer experiments.

Figure 6.19 shows us the total number of in-
time moments (in green) and the number of
moments that violate the RTT requirements
(in orange). We can see that there are sig-
nificant differences between the strategies; the
delay-optimal strategy is able to deliver over
25.000 more in-time moments than the delay-
threshold strategy, for example. At first glance,
the distance-metric strategies also seem to per-
form better than one might expect from the
RTT results. However, in this case, appear-
ances are deceiving; note that the total num-
ber of moments for the distance strategies is
much lower than they are for their delay-metric
counterparts. As we know that the vehicles are
driving for the same amount of time in each sce-
nario, this indicates that there are moments in
which it is impossible to determine an average
for that moment. This happens when the RTT
is so high that a UE does not receive any re-
sponses in a given moment. We can therefore
state that these moments also violate the RTT
requirements.

It is better to examine the percentage of in-
time moments versus the total moments. This
overview is provided in Figure 6.20. From this
Figure we can see that the delay-optimal and
delay-hysteresis strategies have a much higher

rate of successful deliveries than other strate-
gies. This may seem counter-intuitive, as we
have seen in Section 6.3 that the RTT for these
strategies becomes and remains unstable once
one of the MEC servers has become overloaded.
However, the high peaks are interspersed with
moments of low RTT where the deadlines are
met. The delay-threshold and delay-threshold
& hysteresis are much more stable, but as can
be seen in Figure 6.17, they remain stable just
above the required 30 ms RTT. Therefore, it
pays off in this scenario to be opportunistic,
even though it also means some high peaks.
The alternative is to almost always miss the
deadline. However, if an application is slightly
more delay-tolerant, that opportunism will not
be worthwhile any longer.

Another behaviour that may seem surpris-
ing based on the previously shown results; the
distance-metric strategies perform fairly well
compared to the delay-metric ones, and in some
cases even easily outperform them. This seems
strange, when in Section 6.3 we saw that the
average RTT increases dramatically for these
strategies over the duration of the experiment.
Figure 6.21, showing the average response time
per server for each strategy, provides insight as
to the cause of this behavior; while the server
with the lowest processing power becomes over-
loaded and response times skyrocket, the other
servers can handle their traffic and response
times stay remarkably low. As the vehicles are
spread equally among the servers, this means
that two-thirds of the vehicles are connected to
a server that has a chance of delivering mes-
sages in time. These results imply that in a
scenario where each server is powerful enough
to handle their portion of the traffic, distance-
metric strategies may be a better choice than
delay-metric ones.
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Figure 6.19: Number of moments with RTT violations
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Figure 6.20: Percentage of moments in which arrives in time.
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Figure 6.21: Average server response time per strategy.
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Chapter 7

Conclusion

This work has attempted to find a way to
determine the optimal data handover strategy
for an automotive application in a MEC envi-
ronment. As we have seen in Chapter 2, a lot
of work has already been done in many areas
of MEC research, including MEC applications
and supporting technologies, as well as vari-
ous techniques for performing a data handover.
However, before this project, there was no work
describing a strategy for when to make the de-
cision to perform a data handover.

In Chapter 3 we define our research question:
What is the optimal handover strategy in an au-
tomotive MEC use case? In Chapter 4 we then
propose the following definition of optimal; a
strategy that is least likely to violate the applica-
tion’s RTT requirement. We also pose that the
best way to investigate this for this project with
limited time is in a simulated environment us-
ing the tools ns-3 and SUMO. The use case for
this research is TNO’s platooning application,
although the simulator is capable of mimicking
many different applications. There are 8 strate-
gies to be tested, a combination of two metrics
(delay and distance) and four triggers (optimal,
hysteresis, threshold, threshold & hysteresis).

Chapter 5 concerns the implementation of
the simulation system. It describes the roles
of UEs, MEC servers, and the orchestrator. It
also describes in detail the processes that make
up the simulator: requesting service, status re-
porting and data handover.

Our experiment results, discussed in Chapter
6, show us that physical distance to the server
is not an optimal metric for data handover in
a situation where individual MEC servers are
likely to get overloaded. However, the results
indicate that in a more homogeneous and pow-

erful system, it could be a good alternative.
Further experiments are needed to confirm this
hypothesis. Nonetheless, such powerful servers
require much more expensive hardware. We
therefore believe that our current scenario is
more likely to occur in the real world, outside
of areas known to be very busy.

The distance-metric strategies show that it is
crucial to system performance to perform a han-
dover when a server starts getting overloaded.
In fact, in our scenario, it is crucial to be ag-
gressive in this respect; the two strategies with
the highest handover frequencies, delay-optimal
and delay-hysteresis, receive their replies on
time nearly twice as often as the other delay-
metric strategies. However, the downside to
these strategies is that they have a more unsta-
ble RTT, though this effect is much more pro-
nounced in the delay-optimal strategy than the
delay-hysteresis. This instability can possibly
be tampered by using a different set of param-
eters, particularly reducing the threshold; this
must be confirmed with extra experiments.

There are two handover strategies with a sig-
nificantly lower percentage of RTT violations
than the others; the delay-optimal and the
delay-hysteresis strategies. Of these two, the
delay-hysteresis strategy has the highest por-
tion of on-time moments at 65.71%. Further-
more, it is also the only strategy for which the
average RTT is below the maximum acceptable
30ms, though barely. We therefore conclude
that for TNO’s platooning application, the op-
timal handover strategy is the delay-hysteresis
strategy.
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7.1 Contributions

This work has made several contributions to
the research that is currently being done in this
field. The primary contribution is that of a net-
work simulator scenario for MEC. These some-
times exist, but are not always widely known,
and do not always have multi-server capabili-
ties. This work has provided a reasonably fast
and simple way to test appropriate data han-
dover strategies for a wide variety of applica-
tions. Finally, this work has given some insight
into the factors of data handover that impact
performance, e.g. the impact that a high han-
dover frequency can have on various system pa-
rameters, as well as the impact that a very low
handover frequency can have.

7.2 Future Work

This work provides a basic framework for MEC
simulations. In future work, several features
could be added or expanded to make it more
realistic, for example:

• Mobility. The mobility models in this work
are very bare-bones. The UEs drive in the
same circle over and over. It would be in-
teresting to see how the system performs
if mobility is more complex, for example
in an urban scenario with many possible
routes.

• Service duration. In the current implemen-
tation, all jobs that arrive at the server
have the same service rate, i.e. they take
the same amount of time on average. It
would be more realistic to have different
rates for different types of jobs; a service re-
quest might require significantly more pro-
cessing than a request for handover, or vice
versa. This feature could also take into ac-
count message size, so that a service re-
quest message containing more data would
take longer to be processed than a message
carrying very little data.

• Cross traffic. In the current implementa-
tion, it is assumed that the application be-
ing tested is the only application running
on the server. It is more or less possible to
simulate that there are other applications

running by diminishing the server capac-
ity and asserting that the rest of the ca-
pacity is taken up by other applications.
However, that means these other applica-
tions put a static reservation on the server
capacity, which is not realistic. It would
therefore be useful to implement dummy
applications to be running on the same
servers as the application under test is. It
would be even more realistic if the number
of these applications or the capacity they
require could vary per server.

Finally, we recommend to run the experi-
ments for different use cases. It is our hy-
pothesis that what is optimal for our platoon-
ing application might not be optimal for e.g. a
streaming application, but experiments are re-
quired to confirm or deny this.
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List of abbreviations

Abbreviation Meaning
ASP application service providers
CPM collaborative perception message
CSP cloud service provider
DV data volume
eNB eNodeB
ETSI European Telecommunication Standards Institute
FiWi fiber-wireless
LTE long term evolution
MEC multi-access edge computing
MEO mobile edge orchestrator
PGW packet gateway
QoS quality of service
RAM random access memory
RSSI received signal strength indicator
RTT round trip time
SUMO Simulation of Urban MObility
SWM shared world model
TDMA time-division multiple access
TNO Nederlandse Organisatie voor toegepast natuurwetenschappelijk onderzoek

(translation: Dutch Institute for Applied Scientific Research)
UE user equipment
VM virtual machine
VNF virtual network function

5G-MOBIX 5G for cooperative automated mobility on X border corridors (European project)
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