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1 Introduction

Field Programmable Gate Arrays or for short ”FPGAs” are semiconductor devices that are
based around a matrix of Configurable Logic Blocks (CLBs) connected via programmable
interconnects. Nowadays with a method called partial reconfiguration, certain areas on the
FPGAs can be reconfigured or modules can be interchanged on the board. Partial reconfig-
uration dynamically modifies prebuild design modules during runtime without interrupting
the other logic on the board. In this way a lot of power can be saved and area utilization
can be optimized (1). For instance with partial reconfiguration one can interchange mod-
ules within a certain reconfigurable area without implementing both of them and therefore
reducing the used up area by the modules.

Another way to reconfigure the design would be through bitstream manipulation. The
composition of the bitstream will be more elaborated upon in Section 2.2. If the designer
has a deep understanding of the bitstream and what it represents it is possible to create for
instance dummy Look Up Tables (LUTs) which might confuse any possible attackers. By
placing extra LUTs, with contents but without functionality, in the bitstream, the attacker
might lose track of the actual design. The dummy LUTs work as a distraction. Nowa-
days, adversaries can have many motivations for obtaining or manipulating a configuration
bitstream. FPGAs are already widely used in a variety of branches. For instance medi-
cal, aviation and industrial all use devices in which FPGAs are often part of cyber-physical
systems (2).

With bitstream manipulation one can also change the contents of the LUTs to achieve
a different functionality of the design. A big advantage of bitstream manipulation is being
able to change the design without having to rerun all the original steps of the FPGA design
flow. This would save the user time when designing a project. This design flow is further
discussed in Section 2.1. This thesis will present a program that can manipulate any LUT
on the fabric of the development board used in this work.

So the main advantage of LUT adaptation during runtime is that it would save a lot of
time since all the necessary design steps have to be done once, and then the bitstream can
be manipulated. For small changes only the bits would have to be modified and the stream
has to be uploaded again to the FPGA board. Also, with bitstream manipulation, relocation
should be possible to realize. Ideally this has to be done during runtime.
This leads to the following goal for this research:

The goal of this thesis is to design a program that allows bitstream manipu-
lation in order to achieve LUT adaptation and to support relocation of reconfig-
urable modules in a created design.

The reason to explore the field of bitstream manipulation is to get a better view of
the bitstream contents. The LUT adaptation/manipulation can be seen as an attack on
the bitstream. The contents will be changed in order to modify/damage the initial design.
Meanwhile, the relocation of the module can be seen as a countermeasure to prevent this
attack. The contents of the LUTs will be shifted to another location on the fabric, so any
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(sensitive) LUTs targeted by an attacker will not remain static on the fabric.
The remainder of this paper is structured as follows: Section 2 will talk about theoreti-

cal background, Section 3 describes the concepts that will be implemented in this research.
Section 4 talks about the toolflow used for these concepts. Section 5 will discuss the imple-
mentation. The report will end with Section 6 which is about testing and evaluation. The
conclusion is in Section 7.
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2 Theoretical Background

This section will talk about the flow that is used when creating a FPGA-based design.
Furthermore, the section will go more in depth in the theory of certain aspects that will be
used throughout this research. First, the architecture of FPGA is briefly mentioned. Then
a few essential bitstream words are highlighted, followed by a short section about module
relocation. The section ends with a small overview of the configuration interfaces.

2.1 FPGA Design Flow

As stated in the introduction this report will talk about bitstream manipulation. In order
to create a bitstream, the program Vivado IDE version 2018.3 (see Section 4.1) is used. In
Figure 1, one can see a general overview of the FPGA design flow. The designer starts off
with creating a circuit in Hardware Description Language (HDL). This can be done by using
the Block Diagram window in the design suite to add and connect different IPs (Intellectual
Property) and use the Vivado wrapper to generate a HDL code that represents the circuit in
the Block Diagram window. Another option would be to start with an empty file and write
their own program in HDL code. Furthermore, a constraints file has to be created to ensure
correct pin connections between the ports in the HDL code and the actual I/O options on
the hardware that will be used in this work.

Figure 1: General overview of the FPGA design flow

After the design is validated, the next step is to synthesize the design. The code that is
created in the first step is, during synthesis, converted to a netlist of LUTs and FlipFlops.
Following the flow from Figure 1, the next step would be implementation. This will take care
of placement and routing of the design. After the implementation step is finished, one is able
to have a look at the implemented design. Here, final constraints changes can be made before
going to the next step, which is generating the bitstream. The bitstream composition will
be discussed later on in Section 2.2. In order to create an application project the hardware
is exported and the Xilinx SDK is launched (see Section 4.2). The design flow ends with
uploading the bitstream and application to the FPGA.
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2.2 Bitstream Configuration

Nowadays, most devices have a combination of a processing system (PS) and programmable
logic (PL). In order to let the PS communicate with the PL, an Advanced eXtensible Interface
(AXI) is used. A schematic overview can be seen in Figure 2. The user can write software
which can be run on the processing system. Via the AXI interface, the configuration frames
in the PL can be changed.

The architecture of the PL is arranged in columns. These columns are called resource
columns and contain only 1 type of resource. The resources are for instance Block Random
Access Memory (BRAM) blocks, Digital Signal Processors (DSPs) and CLBs. The CLBs
on the programmable logic consists of 2 different slices, named Slice-M and Slice-L. These
slices contain Basic Elements of Logic (BELs), like LUTs and Flip Flops. The CLBs are
subdivided in a number of frames. These frames contain the configuration words, which
configure the elements in the CLB. These frames are the smallest addressable units on the
PL configuration memory and are responsible for the configuration of both slices in the CLB.
The configuration words in a bitstream contain the information to configure these frames.
A comprehensive look on how the frames are configured can be found in Section 4.6.

Figure 2: Basic overview of a development board (3)

Bitstream manipulation is a rather simplified approach for changing implemented hard-
ware. All the information for configuring the FPGA is within the bitstream. So it is im-
portant to know the details of all the information that the bitstream holds. There is a user
guide which has an extensive explanation of an example bitstream (4). There are different
types of bitstreams. In this thesis, the .bit file and .bin file are used. The difference between
these files is that the .bit files contain a header in the bitstreams, whereas the .bin files do
not have this header.

There are a few bit sequences mentioned in this user guide that are important for
this project, which will be briefly discussed. First, there is the configuration data word
0x30002001, which indicates a write to the Frame Address Register (FAR). The FAR regis-
ter holds the address at which the first Frame Data Register Input (FDRI) word is written.
A typical bitstream starts writing the first FDRI word at address 0 and auto-increments to
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the final count. If one is able to change the FAR register one can change the location to
where the design is loaded to the device. The FAR register is described according to the
table in Figure 3 (4).

Figure 3: Description of the FAR (4)

Secondly, there is the configuration word 0x30004000 which indicates the start of writing
the FDRI words. After word 0x30004000 follows a word that indicates the total amount of
configuration words that are loaded into the registers. This value is especially convenient to
check whether the program processes the configuration words correctly.

2.3 Module Relocation

There are a couple of aspects that have to be considered when one wants to relocate a
module to another part of the FPGA in terms of available resources. These aspects are
summarized by the term ’footprint’(5). A footprint of a module has to match with the
available resources at the target area on the board. There are different type of footprints
which will shortly be elaborated. The Resource footprint spans the resource blocks that are
used by the module. These are the CLB, DSP and BRAM columns used by the module.
Next is the Wire Footprint which deals with the routing resources. The Timing Footprint
also has to be considered. The clock signals that are used on the Xilinx FPGA boards run
in horizontal lines and then split up in vertical splines that go up and down. If a module
is shifted from a downwards spline to an upwards spline it could affect the timing as well.
Furthermore, if a module is relocated on the FPGA it can be possible that this relocating
results in longer routing delays at some points in the fabric (6).

It is important that the static design does not route any wires through the partial areas.
In order to make sure that this does not happen, a blocker macro can be used, which occupies
all the wires that are within the partial areas. By doing so, the routing of the static design
is forced to go around the partial area. This way the signals belonging to the static design
are prevented from going through the partial areas. In order to have an interface with the
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areas, tunnel wires are used. Tunnel wires are wires that are unblocked and form a path for
each signal to its corresponding connection primitive. These connection primitives are used
to anchor signals that aren’t connected yet. These signals, in this case, are the input and
output signals of the module.(7). The connection primitives, tunnels and blocker are more
extensively discussed in Section 5.2.2.

2.4 Configuration Interfaces

There are different ways to configure the frames on the PL. In this section a few techniques
will briefly be discussed.

JTAG cable
JTAG, named after the Joint Test Action Group who initialized the IEEE 1149.1 standard,
is a method that configures the PL via the use of a cable. This JTAG cable is directly
connected between the hardware and a host computer. In this way, the configuration data
can directly be downloaded. This interface is a very straightforward way of configuring the
FPGA.

FSBL
Another method to configure the programmable logic is with the usage of a First Stage
Boot Loader (FSBL). With this technique, the configuration data is directly uploaded to the
memory when the hardware device is powered on. In this way, no extra cables from the host
computer have to be attached to the hardware. Another advantage of this method is that
user code can simultaneously be uploaded to the PS.

PCAP
PS-processor Configuration Access Port, or for short PCAP, is yet another way to configure
the FPGA. With PCAP, the PL can be configured with data using the PCAP bridge (8).
This bridge provides access to the PL configuration module in software. This is what makes
this configuration technique very interesting. However the PCAP can only configure the
frames with binary files (9).

One has to be aware that the interfaces to the programmable logic are mutually exclusive.
One has to be careful when switching between these interfaces. All outstanding transactions
have to be completed before the interfaces are switched. (8).
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3 Concept

As mentioned in the Introduction, there are two main research goals of this thesis. Namely
the adaptation of a look-up table and the relocation of a module. In this section,
these two goals will be elaborated upon.

3.1 LUT Adaptation

Since the LUT is one of the basic elements of logic within a slice in the programmable logic,
it is important to understand how these elements are represented in the configuration data
(more on this later in Section 4.6). With LUTs, all kinds of combinational logic circuits
can be realised. Simple logic gates like AND and OR gates can be implemented but also
more elaborate truth tables, which can be combined to make even bigger designs. If it is
possible to change the contents of one or more of this small basic elements, the results can
be catastrophic. When, for illustration, adversaries manage to disrupt the outcome of a
truthtable, the design can already malfunction by merely changing a few logic gates to an
AND or an OR.

Figure 4: Concept for look-up table adaptation

The concept for this LUT adaptation is to make a meaningful change in the bitstream,
in order to change the functionality of this LUT. With meaningful is meant that the design
should have a working outcome and that we don’t just simply break it by modifing the bits.
For simplicity reasons, this research shows a change from an AND to an OR gate (see Figure
4). In order to achieve this goal, one must have a deep understand of the FPGA architecture.
Questions like, how to find the LUT contents in the bitstream, or, how do we interpret the
contents of the bistream, have to be answered. Also, in order to investigate these certain
aspects, a bitstream has to be generated. A simple AND gate design will be build in a design
environment, in which small changes in one specific LUT can be examined. In order to show
that the LUT functionality has changed, onboard switches and LEDs are used to have visual
proof. The steps taken to reach this goal, will be eleborated upon in Section 4

9



3.2 Module Relocation

In order to relocate a design or a reconfigurable module, one should again take a closer look
at the FAR register. The FAR address indicates where the first FDRI word is written in the
configuration memory. So in order to relocate the design, the FAR address should be changed
to shift the design. For this project the choice is made to floorplan two reconfigurable areas
above eachother. Furthermore, both the recongifurable areas span a height of 1 clockregion.
This is beneficial since this makes it possible to apply certain properties for these areas.
Another choice that is beneficial during implementation is that the two areas span the same
horizontal X coordinates on the development board. This is very convenient since the number
of available resource columns will be the same.

Reconfigurable areas are vertically divided into two slots. We call the left slot West
and the right slot East. For this goal it is desired to move a module from the West slot of
reconfigurable area 1 to the West slot of reconfigurable area 2, which resides below area 1.
This is illustrated in Figure 5

Figure 5: Relocation from Area 1 to Area 2

In order to show that the module actually has moved from one area to the other, the
output of the areas will be attached to different LEDs. Area 1 will occupy LEDs 0 to 3
whilst area 2 will use LEDs 4 to 7. This is in order to show that the relocation actually
happened. The module will contain logic resembling an adder function and will use the
onboard switches as input.
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4 Toolflow

Now that the two goals have been set and discussed, an implementation should be found in
order to reach these goals. This section will cover this part. First it will elaborate which
design environment and tools are used for this research. It will continue with the chosen
development board and will end with a comprehensive view of the FPGA fabric.

4.1 Vivado Design Suite

The design environment that is used for this project, is Vivado IDE version 2018.3. Vivado
is able to perform all the design flow steps in an organised way. Vivado has different options
for creating a design. It has both a graphical and a TCL interface. One can create a
block diagram, validate it and let Vivado manage wrapper and auto update. This creates,
depending on the user settings, a Verilog or VHDL code. Furthermore, it allows for easy pin
mapping between the logical and physical pins and supports additional bitstream settings.
This means that for instance a binary file or a logic location file can be generated as well,
when generating a bitstream. Furthermore, it is easy to relocate LUTs to another part of
the fabric in the graphical interface of the implemented design in Vivado. After this, it is
possible to regenerate a bitstream to see what has changed within the bitstream.

4.2 Xilinx Software Development Kit

As stated in the design flow section, the hardware of the project including the bitstream
is exported. After this step the Xilinx Software Development Kit (SDK) tool is launched.
This can be launched from within the Vivado IDE and creates SDK files local to the Vivado
project directory, being for instance the files used for initialization of the hardware platform.
In Xilinx SDK, one is able to create a number of different design applications. Furthermore
a FSBL application can be made. The FSBL is needed in order to create a BOOT.bin file.
If the BOOT.bin file is copied to a SD card and inserted into the board, it will configure the
FPGA and will execute the program. In order to see how the program behaves, or for the
purpose of debugging, there is a SDK terminal that will print statements (if the designed
program contains any) if the UART cable is connected between the host computer and the
development board.

4.2.1 FatFs Library

When an application is created in Xilinx SDK, a Board Support Package (BSP) is generated.
It is possible to modify the settings of this package and a designer can chose to add certain
libraries to this package. The library which is added for this project is the Generic Fat
File System Library (10). Herinafter we call this library FatFs. The main functionality of
this library is to operate as an application interface between the application and a storage
element. This storage element can for example be a SD-card. This functionality is needed
in order to load a bitstream from the SD-card onto the device. The library also contains
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functions for read and write operations of the files that reside on the SD card. This is
especially useful when it is desired to change certain elements in the bitstream and save it
under a different name. The original bitstream will still be intact.

4.2.2 Device Configuration Interface

Whereas the FatFs library takes care of the files on the SD card, the actual frames on the
device still have to be configured. For that the Device Configuration Interface will be utilized.
This configuration interface is already part of the BSP when an application is created. This
interface has three main functionalities, being [1] AXI-PCAP, [2] Security policies and [3]
XADC. The functionality that will be used for this research is the AXI-PCAP. This AXI-
PCAP is used to configure the PL. The configuration can be initiated from within a software
application created in the Xilinx SDK environment.

4.3 BitMan Tool

Changing the bitstream at the correct places and in the right manners can result in a
meaningful change in hardware. Earlier work has been done in this field of manipulating the
bitstream. One tool that is extremely helpful for getting a better insight in the bitstream and
how it behaves after a hardware change is made in the graphical interface of Vivado, is the
BitMan tool created by Khoa Dang Pham (11). This tool works via the command prompt
and allows for certain operation options like merging, relocating, copying and replacing parts
of the bitstream. Furthermore it contains an option to look at the contents of all the CLBs
that are occupied on the device. In Section 4.6, the relation between the bitstream and the
CLBs is dicussed more intensively. One more function of BitMan is the cut option. This
feature is especially handy when doing module relocation. The function can cut out the part
of the bitstream which is merely responsible for configuring a module that is occupying a
certain area on the FPGA.

4.4 GoAhead Tool

In order to relocate modules on the FPGA there have to be certain reconfigurable areas
(islands) present on the FPGA board. A tool that comes in handy at this point is the
GoAhead Tool (5). This tool allows for creation of both reconfigurable areas as well as
individual modules by selecting proper X-Y coordinates on the FPGA. This can be done via
either single commands, or a .goa script, which contains a list of commands that eventually
build the design. With GoAhead, the hardware description language files and tcl scripts
necessary for Vivado IDE, can be generated. Furthermore, it can generate blocker wires
which ensure proper routing between the module and the static design. The general flow
used for the relocation part of the thesis can be seen in Figure 6.

First, the areas and modules are floorplanned in GoAhead, which are accompanied by
the tcl scripts needed for Vivado to set the right properties and connections. Next step
is to generate the VHD files for implementing the floorplanned regions on the FPGA. The
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Figure 6: Design flow with the GoAhead tool

following step will be to generate a bitstream for the implemented areas in the Vivado. For
the modules, again BitMan(11) can be used to manipulate the bitstream. The bitstream
selection, responsible for configuring the resources within a area, has to be cut out, after
which the partial bitstream can be used for reconfiguration of that area. This is the final
step of the GoAhead Design Flow.

4.5 Zedboard

In order to upload a bitstream containing the implemented hardware, or to test a program
written in Xilinx SDK, a development board is needed. The development board that is used
for this project is the Zedboard (12). This is a physical board that has multiple I/O options,
like LEDs and switches, that can be used by the designer for showing a functionality of an
application or for debugging purposes. Furthermore it has a SD card slot. This slot will be

Figure 7: A schematic overview of the interfaces of the Zedboard (12)
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used to get the bitstreams, pregenerated by Vivado and/or BitMan, on the board in order
to manipulate them via an application created in the Xilinx SDK. In Figure 7 one can see
an overview of the Zedboard and the interfaces present on the board.

4.6 Coarse Granularity

When taking another glance at Figure 3 that shows the information in the FAR register, one
can see that the bits [25:23] indicate a certain block type. All these blocktypes are placed
as resource columns on the FGPA as can be seen in Figure 8. Each resource column has a
number of tiles. A clockregion spans 50 tiles containing CLBs or 5 tiles with BRAM/DSP
blocks.

For this project we are mainly interested in the blocktype CLB since it is desired to change
the LUT contents within those CLBs to achieve different functionality. Bit 22 indicates the
top/bottom half of the fabric. In the top half (Top = 0) reside the clock regions X1Y2 and
X2Y2. The other clockregions are part of the bottom half (Top = 1).

Bit [21:17] select the clock row. The top half of the Zedboard only has 1 clock row (Y2),
so there is no selection needed. However at the bottom part are two possiblities (Y0 or Y1)
(see Figure 8). The bits [16:7] select a major resource column within a clock row. For the
continuation of this report, this column coordinate will be called XT . As indicated before
there are multiple resources columns.

Then last but not least there are the bits [6:0] which will select a minor address within
a major resource column. These minor addresses are called frames.

Figure 8: Resource columns,Top and Clk rows on the Zedboard

All frames in Xilinx 7 series FPGAs devices have a fixed, identical length of 3232 bits
(101 words of 32 bits) in the bitstream. To get a better understanding of how the frames
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relate to the CLB we will take a closer look at a few CLBs. CLBs have 35 minor addresses
(13). A CLB consists of two slices (M or L). Each slice contains 4 LUTs, 3 Muxes, 8 Flip
Flops and a Carry Chain. Each frame can only contain information for 1 type of element in
the slice, but more frames can have information for the same type of element. For instance
the contents in the LUTs in slice M are represented in the Frames 31-34.

The height of one clockregion spans 101 configuration words of 32 bits each. This results
in a total height of 3232 words, which is equal to 1 frame. In the middle of every clockregion
resides a clock lane. This clock lane is configured by configuration word 50 in the frame,
leaving words 0-49 and 51-101 for configuring the CLB’s.

Figure 9 shows how the configuration of the CLBs is done. 2 words are needed to configure
1 CLB. Since the height of one clockregion is 50 CLBs we have (2 x 50 configuration words
+ (word clock lane)) = 101 words, which matches the amount of words within 1 frame.

Figure 9: Configuration of CLBs with frame words

To summarize the above: The CLBs are configured using 2 words from 35 frames each.
Frames 31-34 are responsible for the LUTs in slice M whilst frames 25-28 are responsible for
the LUTs in slice L.

The contents of a single LUT comprises 64 bits which are configured as shown in Figure
10. The first 16 bits [15:0] of LUT A are configured by the first 16 bits of word K(also called
halfword K). Then the first 16 bits of LUT B are configured by the last 16 bits of 32 bit
word K in frame 31. We move on to the next word K + 1 which in turn will configure the
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first 16 bits of LUTs C and D. Now the first 16 bits of all the LUTs in slice M of one CLB
have been configured. Words K + 2 and K + 3 will configure the LUTs in the next CLB
and so on untill words K + 99 and K + 100 configure the first 16 bits of the LUTs in the
CLB at the top of the clock region. Then we move on to frame 32 which configures the LUT
bits [31:16] and so on till frame 34 when all the 64 bits, of all the LUTs in slice M, of all the
CLBs, in column XT are configured. Knowledge on how these LUTs are configured is very
important when the right elements have to be extracted from the bitstream.

Figure 10: Configuration of LUTs in Slice M of a CLB
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5 Implementation

5.1 Changing LUT

As is known, the bitstream consists of bits that can be represented in various ways. Common
ways to display a bitstream are in binary form or in hexadecimal form. When handling large
bitstreams the hexadecimal representation would give more insight in what is happening in
the bitstream. For the purpose of debugging the bitstream, a simple block diagram is build
in the Vivado IDE containing an AND gate structure (see Figure 11).

Figure 11: Vivado block diagram of an AND gate configuration

For the logic of the AND gate, the IP ”Utility Vector Logic” is used which allows the user
to combine 2 inputs, do an operation on the inputs and pass the outcome of the operation
to the output. For the inputs and the output, separate ports are created and are connected
accordingly to the Utility vector logic IP. The inputs are the switches and the output is a
LED.

Following the FPGA design flow, the design is saved, a HDL wrapper is created and
the design is synthesized and implemented. After implementation is finished, the design
is opened and the netlist appears. The input and output ports are initially connected to
peripheral modules but it is desired to use the on-board switches and leds. Using the master
XDC of the Zedboard (14) the pins are correctly configured. Furthermore, the connection to
the pins of the LUT should be fixed (locked). Locking these pins can be done in the Vivado
GUI. This is needed in order to be able to have a consistent bit sequence when changing the
functionality of the LUT. Vivado might change the mapping between the logical pins and
the physical pins during the implementation phase. This would make things harder when
comparing the bitstream of the AND configuration with other bitstreams, since a difference
in pin mapping already results in a different bitstream.

When the ports are set and the pins are locked, the bitstream can be generated. Now we
have a bitstream to work with. In order to discover what bits represent the AND gate, the
BitMan option which prints the CLB info is run. This shows the user the contents of the
frames in the CLBs and in which columns this contents is located. The CLB location can be
found by looking at the implemented design in the Vivado GUI (see Figure 12) and since it
is known which frames are responsible for configuring the LUT (Section 4.6), the bits that
configure the LUT can be found. These bits appear to be 0000 5555 5555 0000 for the AND
gate as can be seen in Figure 13a.
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Figure 12: LUT in Slice-L of the configured CLB located at X71 Y101. BitMan however
displays this at X71 Y51

(a) And LUT CLB configuration (b) Or LUT CLB configuration

Figure 13: CLB configurations obtained via BitMan. Bitman omits LUTs that only contain
zeros

In order to know how to change the bits to get the LUT to behave as another logic
function, the same steps are taken but instead the Utility Vector Logic IP is configured as
an OR gate. Again the bitstream is generated and BitMan is used to look at the CLB
contents. It is found that the LUT contents of an OR is represented in 5555 FFFF FFFF
5555 as can be seen in Figure 13b.
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5.2 Implementing the VHD Files from GoAhead

As stated in Section 4.4, GoAhead can be used to floorplan areas and modules on the board
using commands. The coordinate span for reconfigurable area 1 is set to (34,50) for bottom
left and (43,99) for top right. This creates a rectangle somewhere in the middle of the
ZedBoard in clock region Y1. The same size is applied to area 2 but the only difference is
that this area resides in clock region Y0. These regions are chosen to be here because the
same resource columns ran through both areas.

For the module the parameters for the area dimensions are set differently. Recall from
Section 3.2 the areas are vertically divided into 2 slots. Since the concept is to use the West
slot, the following coordinates are established. (34,50) for bottem left and (38,99) for top
right. This results in half the size of the reconfigurable areas.

After the areas and modules have been floorplanned in GoAhead using the commands,
the next step would be to generate the design in Vivado using the tcl scripts that are also
generated by GoAhead. For this project the static design and the module are implemented
in a separate Vivado project to maintain a clear overview.

5.2.1 Static Design

After the placement and interface constraints have been loaded into Vivado, the design looks
like Figure 14. Both the partial areas are visible in the Vivado device overview.

Figure 14: Partial Area 1 and 2 implemented in Vivado

In Figure 14 one can see a brown line that connects the two reconfigurable areas. This
line represents bundle wires, meaning that certain nets are both used by area 1 as by area
2. These lines are just for clarification of the design. In case of the static design, these
shared signals are the input switches for the adder program of the module. The switches are
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shared since it is not possible to reconfigure I/O ports, these must therefore remain in the
static region (1). The LEDs are not part of the bundle wire since it is desired to show the
relocation of the module with different LED outputs per area.

Next up is the placement of the design, the connections of the clock pins and to insert
the blocker. The design is routed and the blocker is removed again. After the blocker is
removed, the resulting netlist can be seen in Figure 15. The green line coming from the left
is the clock line that first goes into a buffer before it connects to all the clock inputs of the
used flip flops in the design. The lines on the right hand side are the connection lines from
the I/O ports, which are the switches and LEDs.

Figure 15: View of static design after removal of the blocker

This is the final step before generating the bitstream, which can be used to configure the
FPGA.

5.2.2 Reconfigurable Module

Next up is the module. It is only required to create one module in order to show the actual
relocation from Partial Area 1 to Partial Area 2 (see Figure 14 for areas). An important
thing to note on the figure is that there are two extra areas, which are located outside the
borders of the reconfigurable module. These 2 areas are both connection primitives. If these
connection primitives are not present when building the design, Vivado will optimize these
signals away during implementation. (7). One connection primitive covers the incoming
signals from the onboard switches and the other one covers the outgoing signals, which
will travel to the onboard leds. The floorplanning of the module and the two connection
primitives can be seen in Figure 16 below.
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Again there are bundle wires present in the device overview. One is highlighted to clearly
show that there are 2 bundle wires for the module. The module itself uses both the 8 input
signals and 4 output signals. The connection primitive input has a bundle wire with the
module for the 8 input signals of the adder. The connection primitive output has a bundle
wire for the 4 output signals. That is why there are 2 bundle wires for the module. The
wires meet at the centre of the pblocks, just to indicate that a pblock has a bundle wire. The
actual connection does not happen in the middle. As already stated, one set of wires goes
to the connection primitive responsible for the input signals and the other bundle wire goes
to the primitive that connects the output signals. In Figure 17 one can see the remaining
wires, after the blocker has been removed from the netlist. It can be seen that the wires first
go in a straight line and then disperse over the fabric. This is where the blocker ends and
where the wires ’come out’ of the tunnel to connect with the connection primitives.

5.3 Writing Adaptation Program

The bitstreams have been created, so now it is time to write a program which can modify
them. In order to do so, we break the objective in smaller pieces:

1. Find a way to communicate with the SD on which the bitstream is placed.
2. Divide the configuration words into frames and columns
3. Group the words into LUTs
4. Save the changes that are made in the original bitstream file.

For problem one, the library FatFs is used which is discussed in the Toolflow section.
The part of the code that is responsible for opening and reading/writing files from/to the
SD card, is shown below in Listing 1. This code opens the file on the SD card and writes it
to an address (DestinationAddress) in the memory.

Figure 16: Floorplanning of the reconfigurable module
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Figure 17: Module wiring with the blocker removed

i n t S D T r a n s f e r B i t f i l e ( char ∗FileName , u32 Dest inat ionAddress , u32 ByteLength )
{

FIL f i l ;
FRESULT rc ;
UINT br ;

rc = f open(& f i l , FileName , FA READ | FA WRITE) ;
i f ( rc ) {

x i l p r i n t f ( ” ERROR : f open returned %d\ r \n” , rc ) ;
r e turn XST FAILURE;

}

rc = f l s e e k (& f i l , 0) ;
i f ( rc ) {

x i l p r i n t f ( ” ERROR : f l s e e k returned %d\ r \n” , rc ) ;
r e turn XST FAILURE;

}

rc = f r e a d (& f i l , ( void ∗) Dest inat ionAddress , ByteLength , &br ) ;
i f ( rc ) {

x i l p r i n t f ( ” ERROR : f r e a d returned %d\ r \n” , rc ) ;
r e turn XST FAILURE;

}

rc = f c l o s e (& f i l ) ;
i f ( r c ) {

x i l p r i n t f ( ” ERROR : f c l o s e returned %d\ r \n” , rc ) ;
r e turn XST FAILURE;

}

re turn XST SUCCESS ;
}

Listing 1: Code for transferring files from SD card to memory
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For problem two, one needs to take a closer look at the design again. It is known
that the address of the first FDRI word is determined by the FAR register. For a typical
bitstream, configuration of the FPGA will start at 0x00000000 and after that the address
auto increments to the final count. So in order to find the first FDRI it is required to find
the FAR location 0x00000000 on the PL. When looking at Figure 8 it can be seen that there
are basically 3 different clock rows. Distinguished by the Y coordinate to be either 2, 1 or 0.
The matching FAR address for these regions are 0x00000000, 0x00400000 and 0x00420000
respectively. These address values can directly be conducted from the bits that reside in the
FAR register (see Figure 3). The 4 in the address sets bit 22 high, meaning that the bottom
half rows are selected. The 2 represents the second clock row in the bottom half rows.

From Section 2.2 it is known that word 0x30004000 is followed by a word that indicates
the number of configuration words to be written. This in turn is followed by the first FDRI
word and this continues till all the configuration words are loaded into the memory. In order
to keep track of which coordinates correspond to which words, a set of well set counters is
created. First, a wordcounter is build in to the program. This counter counts the words
starting with the first FDRI word at address 0x00000000. After 101 words a full frame is
configured. In order to keep track of the number of frames a framecounter is implemented.
Remember that word 50 in each frame is supposed to be skipped since this is reserved for the
clock lane. It is important to note that not all the resource columns span the same amount
of frames.
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Algorithm 1: Pseudocode to create a framelist

Result: Framelist of fabric
while address ≤ Last FDRI do

address = address + 1;
word = word + 1;
if word == 50 then

word = word + 1;
address = address + 1;

end
if word == 101 then

word = 0;
frame = frame + 1;

end
if frame == 35 then

frame = 0;
column = column + 1

end
if last column clkregion then

clkregion = clkregion - 1;
column = 0;

end

end

The FAR address starts counting at the bottomleft of clockregion X0Y2 where there
are no CLB’s present. The area here is reservered for the PS but the FAR already starts
counting here. The first configurable frame starts at CLB X19Y100 in clockregion Y2. For
1 CLB resource column there are 35 frames which means that the column number should be
incremented after there have been 101 * 35 FDRI words. This goes on until all the columns
of a clock row have passed. Then the counters move 1 clock row down until all clockregions
have been processed. A short piece of pseudocode can be seen in Algorithm 1.

Now a framelist is created, meaning that it is possible to pinpoint any CLB on the device
using the same coordinates that Vivado uses to indicate which CLB is selected in the GUI.
Now it is desired to make a system that can pick 1 of the 8 LUTs that reside in this CLBs and
to change the contents of that LUT. In order to do this, one has to look at the frameindex
inside that CLB. If it is desired to change the LUT in a SLICE-M, one has to change the
bits that reside in frames 31-34. For SLICE-L these frames are 25-28. In order to find this
frame numbers, the words in the CLB with frame numbers 31-34 or 25-28 are selected. The
framecounter in combination with an if statement can cover this job. Next up is to split a
fullword into 2 halfwords. When looking at Figure 10 it can be seen that one fullword is
responsible for configuring 2 LUTs. Thus, with a halfword one has finally reached the 4 bits
in the entire bitstream that are responsible for 1 LUT in 1 CLB in 1 Clock row in 1 Clock
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region on 1 FPGA.

5.4 Write Bitstream Changes

After the bits have been modified, these changes should somehow be saved in order to test
the bitstreams on the development board. For this purpose the FatFs library is used again.
During this write operation all contents of the registers, including the registers that are
changed, are written to a new file on the SD card. Now the AND-gate functionality of the
LUT should have been changed to an OR-gate. It is very important that the correct file
length is set within the program. This is necessary for successfully uploading the bitstream
to the FPGA.

The same principle is used for the relocation of the module. With the program, the FAR
address and the value that this register holds can be discovered. The value can be changed
and the a new file with the changed FAR is written to the SD card. It is important to note
that this bitstreams for partial reconfiguration only hold the configuration information of the
module. This means that the size of the partial bitfile will contain far fewer bytes than the
size of the full bitstreams of the logic gates. Therefore the size of the newly written partial
file should be adjusted accordingly. Otherwise the configuration of the FPGA will not fully
succeed.

6 Testing & Evaluation

6.1 LUT Adaptation

To see whether the program finds the correct LUT, a small test is performed. In this test a
bitstream with the AND gate configuration, is placed onto the SD card. Then, the SD card
is inserted in the board and the program is launched from within the SDK. All the steps in
the program are performed and the LUT contents is changed from 0000 5555 5555 0000 to
5555 FFFF FFFF 5555 (see Section 5.1). The changed bitstream is saved to the SD card
with a different name to keep the original bitstream intact. This is done in case that more
experiments have to be done with the AND bitstream.

The changed bitstream is loaded to the FPGA via the PCAP. As expected, the function-
ality is now changed from an AND gate to an OR gate, which is clearly indicated by the
output of the LED. Pictures of the switch positions and the LED output can be found in
the appendix.

6.2 Module Relocation

As stated in Section 3.2, it is desired to show the relocation of the module with the usage
of LEDs. As a start, The FPGA is configured with the static bitstream. Now all the LEDs
on the board are on. This is because the adder functionality of the module is not yet loaded
to the board. Since the static design does not contain any hardware blocks, a Xilinx SDK
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cannot be launched. This causes problems when generating a FSBL in order to make the
program stand-alone. It was found that either the bitstream does not load to the FPGA, or
the program was not executed. That’s why it is chosen to load the static bitstream to the
board via JTAG.

In order to test that the (partial) bitstreams work correctly, they are first loaded to the
FPGA using JTAG. First the module is loaded to partial area 1. As a result the leds 0 to
3 respond to the input switches and the design behaves as an adder. In order to see if the
relocation works, the value in the FAR of the previous bitstream is changed from 0x00400000
to 0x00420000, meaning that the module would shift from partial area 1 to partial area 2.
When the bitstream with the changed FAR is uploaded to the FPGA, indeed the module
is now also configured in partial area 2. Both area’s have the adder functionality of the
module. Next step is to configure the areas with PCAP instead of JTAG.

When working with PCAP, it was found that certain binary files are not compatible
with the hardware manager of Vivado. Furthermore it was discovered that BitMan (11)
adds a header to the binary files when using the cut option. This causes the PCAP to fail.
This makes it impossible to create a partial binary file from a full binary file with BitMan.
Furthermore, the header of the partial file contains a mistake. The indicated size in the
bitstream does not match the actual size of the file.

After looking at different ways to generate a partial binary file, the following method
was used. The partial bitstream is cut out of the full bitstream using BitMan. Now if we
open the properties of this partial bitstream it states that the bitstream contains 140196
bytes (see Figure 18a) which would be 02 23 A4 in hexadecimal. However if this bitstream is
opened in a hex editor it gives a size of 59272 (e7 88 in hex), which is highlighted in Figure
18b. In order to prevent errors when converting the file from bit to binary, the file size in
the bitstream is set to 02 23 A4.

(a) Properties of Partial Bitstream (b) Size of bitstream in hex editor

Figure 18: Differences in size indication by bitstream file properties and the bitstream itself
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Now that we have a correct sized partial bitstream, the final step that has to be performed
is changing from a bit file to binary file. This is done by a tcl command in Vivado.

Now a binary file is created which can be uploaded using PCAP. This file is placed on the
SD card, inserted in the Zedboard and loaded to the memory using the code in Listing 1. The
program and static bitstream are initially loaded via JTAG. After the program is running
on the board, the JTAG cable can be removed to demonstrate that the partial bitstreams
are actually loaded with PCAP and not via the JTAG cable.

When the binary file is not changed using the program, the results are as expected. 4
LEDs behave as an adder, the other 4 LEDs are not effected. However if changes to the
partial binary file are made, for instance the FAR address is changed, the result is unexpected.
The module is also loaded to area 2, but also to area 1. It is expected that only area 2 has
the adder functionality since we merely change the FAR address. The changed bitstream
is configured without problems using PCAP. It is assumed that the error occurred by using
BitMan but no proof was found for this. Again, the pictures of the switch positions and the
LED outputs can be found in the appendix.
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7 Conclusion

The goal of this project was to create a program or application that was able to manipulate
bits in such a manner to accomplish relocation of reconfigurable modules and to change the
contents of LUT tables. A program was build that allows to pinpoint any LUT table on the
device and to change its bits. This was achieved by a number of counters in the program
that kept track of the addresses, whilst the FDRI words were loaded into the configuration
memory. Not only the configuration words can be modified using the program, the FAR
register value can also be located and changed in the configuration bitstream. This makes
it possible to reconfigure certain areas on the FPGA fabric. By doing so, area utilization
can be optimized since multiple modules can be interchanged at the partial area. All this is
verified using the onboard switches and LEDs.

7.1 Further Improvement

The program that is build for this project is mostly serving the purpose of changing any
LUT on the device. The program in its current state is able to change the contents of the
first 16 bits of a LUT at the time. For small changes this would suffice, but if many LUTs
have to be adjusted these operations can be quite tedious. One could argue that changing
more LUTs at the time would be more convenient. However this also differs on what type
of design is chosen. For this thesis only one LUT had to be changed.

In the end of Section 5.1 it is explained how the bits of and AND configuration have to
change in order for the functionality to become an OR gate. But this would only be one
modification for one specific LUT with restricted pins and a restricted slice. Even moving
the configured LUT to another slice, or change the pin mapping of the LUT between the
switches and the input pins of the LUT BEL, already gives different bitstreams for the same
AND gate functionality. In order to link any bit change to a meaningfull hardware change,
one has to take a look at reverse bitstream engineering. As the name of this technique
already states, one ’reverses’ the bitstream, meaning that from the bits in the bitstream the
netlist can be extracted (15). If adversaries were to know which bits to change in a bitstream
in order to fulfill their own dark agenda, devices or even humans can be damaged.

Reverse bitstream engineering can also be used for more approachable design changes.
For this research, 2 bitstreams were generated and compared to see how the bits have to
be changed to get from an AND to an OR gate. If the designer wants yet another func-
tionality, a new bitstream has to be generated and one has to look for the differences again.
To investigate what changes are meaningfull one has to experiment with a lot of different
implementations and look at the differences in the bits that have occured after a single
hardware change. With reverse bitstream engineering, this step can be skipped since one
would understand how a bit change would affect the hardware. However, reverse bitstream
engineering lies beyond the scope of this project.
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Appendix

Pictures of Switches Positions and LED Outputs

(a) Slice-L LUT configuration AND
gate

(b) Switch settings and LED output on
the Zedboard

Figure 19: Program and LED output of the AND configuration before bitstream manipula-
tion
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(a) Slice-L LUT configuration OR gate
(b) Switch settings and LED output on
the Zedboard

Figure 20: Program and LED output of the AND configuration after bitstream manipulation
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(a) Static design LED output
on Zedboard

(b) Module loaded to partial
area 1

(c) Module loaded after FAR
change

Figure 21: LED outputs after loading the static design followed by loading the module to
area one and the relocation to area 2
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List of Acronyms

AXI (Advanced eXtensible Interface)

BEL (Basic Element of Logic)

BRAM (Block Random Access Memory)

BSP (Board Support Package)

CLB (Command Logic Block)

DSP (Digital Signal Processor)

FAR (Frame Address Register)

FDRI (Frame Data Register Input)

FSBL (First Stage Boot Loader)

HDL (Hardware Description Language)

IDE (Intergrated Design Environment)

IP (Intellectual Property)

JTAG (Joint Test Action Group)

LUT (Look Up Table)

PCAP (PS-processor Configuration Access Port)

PL (Programmable Logic)

PS (Processing System)

SD (Secure Digital)

TCL (Tool Command Language)

VHDL (VHSIC Hardware Description Language)

VHD (Virtual Hard Disk)
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