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1 General Introduction

Damage to the spinal cord, is called a Spinal Cord Injury (SCI) [I]. In severe cases this leads to
loss of motor and/or sensory function below the site of the damage. The limited functionality as
a result of SCI has a highly negative influence on the quality of life [2].

To date, no cure has been found to repair the damage. Instead, most people make use of
supportive equipment such as crutches or a wheelchair. A more advanced solution involves the use
of a motorised exoskeleton which is capable of guiding the human body through movements such
as walking [3]. The use of an exoskeleton for people who suffer from an SCI could give them their
mobility back.

A problem that currently exists with exoskeleton solutions is the lack of a balance controller
and the need of pre-determined joint angles and/or torque trajectories to move around [4][5][6].
As a result, supportive equipment is necessary to keep the balance and the system is not capable
of reacting to perturbations. In order to control the movement of the exoskeleton and the human
in it with a more intuitive controller, a balance controller is necessary.

A measure used to quantify balance is the location of the Zero Moment Point (ZMP) with
respect to the Base of Support (BoS). In order to relate the ZMP to the BoS, the Centre of Mass
(CoM) position, linear and angular momentum must be known. Unfortunately, the CoM position
and momenta cannot be measured directly, and therefore have to be estimated. Previous work [7]
has shown that the Statically Equivalent Serial Chain (SESC) method can be used to successfully
estimate the CoM position of a human body. In this work we introduce a novel method to estimate
the CoM position and momenta based on the SESC method of a human wearing an exoskeleton.

The rest of this thesis is structured as follows. In section [2] the conducted research for finding
the method to predict the CoM position, and linear, and angular momentum of a human wearing
an exoskeleton is explained in a research paper. Section [3] gives a general conclusion. And last,
extra tables and figures are presented in the appendices.
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Estimation of the Centre of Mass Position, Linear Momentum, and
Angular Momentum of a Human Wearing an Exoskeleton

Anouk Leunissen, Arvid Keemink

Abstract— For people with a Spinal Cord Injury, performing
daily tasks such as walking and standing upright are very
difficult or even impossible. The use of a motorised exoskeleton
can make it possible to perform the daily tasks again. However,
a common problem for the current exoskeleton designs is the
lack of a balance controller. The use of a balance controller
to stear the movements of the exoskeleton and therefore of the
human, makes balancing without extra support and react to
perturbations possible. The quantification of the balance used
for the balance controller could be the Zero Moment Point
(ZMP). To determine the ZMP, the Centre of Mass (CoM)
position and momenta need to be estimated.

For this research the Statically Equivalent Serial Chain
(SESC) method is used to predict the CoM position. To predict
the CoM linear and angular momentum a novel method,
inspired by the SESC method, is developed. The identification of
the model parameters are performed by Recursive Linear Least
Squares, and the uncertainty in the parameters are given by the
95% confidence inteval. The uncertainty in the predicted CoM
position and momenta is given by the 95% prediction interval.
The methods are tested with a virtual experiment for ideal
(i.e. quantization-free and noise-free) data and more realistic
measured data.

From the results it is concluded that for the ideal data the
methods were able to predict the CoM position and momenta.
For the measured data, the methods were still able to predict the
CoM position and momenta. However, only the CoM position
was predicted with the sufficient prediction interval.

To conclude, the method shows promising results for the
estimation of the CoM position and momenta of a human
wearing an exoskeleton. However, improvements can be made
for the uncertainty measure and the learning time. Besides that,
it is important to test the methods for real data.

Keywords - Spinal Cord Injury, Exoskeleton, CoM position and
momenta estimation, Statically Equivalent Serial Chain Method,
Recursive Linear Least Squares

I. INTRODUCTION

Damage to the spinal cord, often caused by a trauma, is
called a Spinal Cord Injury (SCI). According to the World
Health Organisation, every year about 250.000 to 500.000
people around the world suffer an SCI [1]. If the damage
to the spinal cord is severe, it can lead to loss of part of
or complete motor and/or sensory function below the site of
the damage. The loss of these functionalities makes moving
around, performing upright standing tasks and other daily
activities a lot harder or even impossible [2]. Not being able
to perform such activities has a highly negative influence on
the person’s physical and mental health and on the quality
of life [3].

University of Twente, 7500 AE Enschede, The Netherlands

To date, no cure has been found to repair the damaged
spinal cord which in turn would restore the motor and sen-
sory function. In the mean time people often use supportive
equipment such as crutches or a wheelchair to increase
their mobility. A rise in popularity is noticed for the use
of exoskeletons as a replacement for the wheelchair. This
type of supportive equipment is motorised and, in parallel,
attached to the person’s body. The motors of the exoskeleton
can generate torques around the joints of the person in order
to guide the body through, for example, a walking movement
[4]. The advantage of this device over a wheelchair is that it
supports natural movement of the human body enabling the
person to walk around, stand up right and perform the daily
activities again.

A critical problem with the current exoskeletons such
as Rewalk [5], Ekso [6] and Indego [7] is the lack of a
balance controller. Balance plays a key role in walking,
standing upright without falling and reacting to perturbations;
all important factors in ensuring the patient’s safety [8].
In the current systems, actions like walking are performed
by following a predefined joint angle or torque trajectory.
Balance and safety is achieved by the use of crutches or a
walker. However, being dependent on this extra support is
not an option when the exoskeleton is going to be used in
daily life. On top of that, it does not solve the inability to
react to perturbations. As a result, the need for a balance
controller in exoskeletons is very high.

In order to develop a proper controller, some sort of
feedback from the system is needed. For the balance con-
troller this means that a quantification of the balance of
the exoskeleton including the person wearing the device
is required. A measure that is widely used for quantifying
balance is the location of the Zero Moment Point (ZMP)
with respect to the Base of Support (BoS). The ZMP is
defined as the point on the ground shifted in such a way
that the vertical reaction force acting at that point is able to
compensate for not only the system’s vertical forces but also
the horizontal moments. In other words, as the name already
suggests, the horizontal components of the ground reaction
moment at the ZMP are zero [9]. As long as the ZMP is
located within the base of support, the system is dynamically
stable. Dynamic stability becomes more important when the
velocities of the system increase. An important element for
relating the ZMP to the BoS in order to find the dynamic
stability, is the Centre of Mass (CoM) position but also its
linear and angular momentum [10]. Besides the role of the
CoM momenta in finding the ZMP, they can also be used
to build a direct momentum controller for the exoskeleton.



Unfortunately, knowing where the CoM is located and what
its momenta are can be difficult as they cannot be measured
directly.

For humanoid robots, similar to the exoskeleton, the CoM
position and its momenta are generally estimated from link
parameters and joint angle information gathered from the
encoders. However, this information is much harder to get
from the human body. In clinical use the CoM kinematics
of a person are often estimated using motion capture sys-
tems in combination with standard body segment inertial
parameters and using force plate data [11]. However, these
methods for estimating the CoM kinematics are bound to the
clinical setup and because the standard body segment inertial
parameters are gathered from a selective population it is not
applicable for everyone.

A method which is person specific and is used succesfully
in [12] for the estimation of the CoM of a human is the Stat-
ically Equivalent Serial Chain (SESC) method. This method
makes use of the fact that the position of the CoM of a system
can be defined by the end-effector position of a statically
equivalent serial chain (further explained in section II-A)[13].
A beneficial property of the SESC is that the segment inertial
parameters can be identified by using linear regression. After
identifying these parameters, only joint angles are needed
in order to estimate the CoM position. Because portable
sensors such as the Inertial Measurement Units (IMUs) have
already been used succesfully for measuring the joint angles
of a human [14] [15], these sensors together with the SESC
method could form a suitable solution to estimate the CoM
position at home or in the field. However, this solution does
not yet include the estimation of the linear and angular
momentum.

In this work we build upon the SESC method for estimat-
ing the CoM position of a human and apply this method
to the human wearing an exoskeleton problem. Because
it is also desired to estimate the CoM linear and angular
momentum, new methods inspired by the SESC are intro-
duced to estimate these. The methods designed are intended
to be used in daily life. Therefore, it is required that the
methods are able to estimate the CoM position and momenta
without the use of a clinical setup. On top of that, the
learning time of the method must be as short as possible such
that it fits into people’s morning ritual next to for example
brushing their teeth or making coffee. at the same time, after
identifying the model parameters, the method must be able to
predict the CoM position and its momenta with a sufficient
accuracy. For this reason, we want to use a method that can
terminate as soon as we have achieved sufficient accuracy in
the parameters or model prediction. The uncertainty in the
parameters is indicated with a confidence interval (CI) and
the accuracy in the predicted CoM position and momenta
with a prediction interval (PI). These requirements of the
methods for finding the CoM position and momenta are
tested with a virtual experiment.

This work is structured as follows. In section II back-
ground information is given about the general SESC method
followed by the explanation of the ordinary linear least

squares and the recursive linear least squares and ending
with the derivation of the confidence and prediction inter-
vals of the parameters and the predicted value. Section III
discusses how the estimation problem of the CoM position
and momenta of a human wearing an exoskeleton is handled
and how the measured data is filtered. In section IV a
protocol for a real life experiment and the protocol for the
virtual experiment are given. Section V presents the results
and discussion of de virtual experiment. Lastly, section VI
presents the conclusion and recommendations.

II. BACKGROUND

This section gives some more background information. In
subsection II-A the general form of the SESC method is
explained. After that the ordinary linear least squares and
the recursive form are discussed. Lastly it is explained how
for linear models with more than one explanatory variable
the parameter confidence interval and the estimated output
confidence and prediction intervals can be calculated.

A. SESC Method for CoM Estimation

To estimate the CoM of a multibody system, the SESC
method can be used. This method states that the CoM
position of every serial or tree structured multibody system
can be presented by the end-effector of a statically equivalent
serial chain [13]. The kinematics of this SESC are deter-
mined as follows starting of with the definition of the CoM
position, p., of an i-linked multibody system:

n

Z (mz-pii,i)

pe="F (1)
my

where m; is the mass of segment ¢, m; is the total mass
of the system and py; is the position vector of the CoM
of segment i. The superscript, *, indicates that the position
vector is expressed in the global frame. Next, equation 1 is
reformulated such that p.; is expressed in the local frame
attached to link 7 and homogeneous transformation matrices,
T, are used to define the orientation and the location of

these local frames.

> ()
pe| _ i=1 e | BT di
1 e e

Here R} and d] are the rotation matrix and the position
vector, respectively, of the local frame expressed in the global
frame. Substituting the definition of 77" into the equation

gives:
- Ry d] fp.
o 2l 5{)
{ 1 } - my
{ m1(RIpe,1+d])++mn (R pe,nt+dy,) }
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Fig. 1: Schematic representation of a planar two link system.
Subfigure (a) show the positioning of the segment CoMs and
the total system CoM together with the reference frames and
the position vectors d;, d; and p. ;. Subfigure (b) illustrates
the corresponding SESC of which the end-effector defines
the total system CoM position.

Which gives the equation for p,. as:

T c di n ; c,n d;
Pe = ml(Rlp 71_‘_ 1)+ +m (Rnp ) =+ n) (2)

mi

To illustrate the next steps, a simple planar example of a
two link system (see figure 1) is introduced. For this example,
equation 2 becomes:

Ry d3 R} d;
Do = mi (Ripea +di) + ma(R3pe2 + d3) 3)

my

Because dj and dj are expressed in the global frame,
they will differ for different configurations of the system.
However, as will become clear later in this section, it is more
convenient to define them as follows:

di =dy, d5=dy+ Rido, “)

where d; and do are the position vectors of local frame
1 and local frame 2, respectively, expressed in the local
frame attached to the previous link ¢ — 1. Substituting 4 into
equation 3:

ma(R{pe + di) + ma(R5pe,2 + di + Rida)
my

Pe =

Rearranging the equation and writing it into a matrix-vector
multiplication form gives:

_ (my + ma)dy 4 prMPer + mads L pp 2P
be my ! my 2 my
dy
=[xz R Rj){ ™pertmad b _ pg 5)
mapec,2

me

where B is a 2 X 6 matrix containing the rotation matrices
and S is a 6 x 1 vector containing the system parameters.
Because p.; and d; are defined in the local frames, and the
system only contains rotational joints, p. ; and d; will remain
constant for every configuration resulting in a constant vector
S as well. Using this together with the linear characteristics

of equation 5 (see section II-B), linear regression techniques
can be used to identify the system parameter vector.

B. Linear Regression Techniques

A model is called linear when it is of the following linear
form:

y=Xp, (6)

where y is an m X 1 vector containing the n observations
of the dependent variable, X is the n x k matrix of k
independent variables for every observation, J is the £ x 1
unknown parameter vector and e is the n x 1 vector of the
disturbances or error. Or in matrix-vector form:

Y; X1 Xio Xik B1 €1
Y Xo1  Xao Xog B2 €2
=1 . . . ) N R B )
Yn an Xn2 Xnk /Bk €n

For such models linear regression techniques can be used
to identify the model parameters 5 which gives the “best”
model fit for the observed data. In order to find this best fit,
a certain cost function needs to be minimised. A commonly
used cost function is the sum of squared error used in the
linear least squares regression method. How this method
works is explained in the next section.

1) Linear Least Squares

The cost function used for linear least squares is the sum of
squared errors. The errors, e, are defined as the difference
between the real data and the predicted output of the model:

e=y—Xj (8)

Next the sum of squared errors can be calculated and
rewritten into:

efe=(y—XB) 'y - Xp)
=y"y—y"XB-BTX"Ty+ X" Xp
=y"y—28" X"y + 4T X" Xp ©)
In order to find the values for B that minimise the sum

of squared errors, the partial derivative of equation 9 with
respect to 3 is calculated and set to zero:

T ~
e ¢ oXTy1aXTX =0
oB

(10)

Rewriting this equation gives what is called the normal
equations: A
XTXp=X"y (11)
Solving this equation will give the values for B that min-
imises the cost function:
XTxp=XxTy
(XTX) UXTX)p=(XTX)'xTy
I8 = (XTX)"1xTy

B=(X"X)"'XTy, (12)

where (X7 X)™1 X7 is known as the pseudo inverse of X.



2) Recursive Linear Least Squares

For the linear least squares method described in the previous
subsection the unknown parameter vector B can only be
estimated after all observations are collected. However, as
explained in the introduction it is beneficial to estimate the
parameters for every new observation such that it can be
stopped as soon as the parameters are accurate enough. This
can be done with the recursive linear least squares method
[16]. Instead of identifying the parameters over the whole
data set this method updates the estimated values for every
new incoming data point. How the update function is build
up will be explained next. The first step is to realise that the
following equalities hold:

t
X'x => x:x\

(13)
=1
t
XTy=>" Xy, (14)
=1

where X; and y; represent the data measured at timestep .
Next, in equation 12 let (X7 X)~! = P(t) and use equation
14 such that the equation for [ at timestep ¢ becomes:

t t—1
= P(t) Y Xuy; = P(1) (Z Xiyi + Xtyt) (15)
i=1

i=1

The equation for the previous timestep,

Pt-1) ZXZyZ

Taking the inverse of P(t) and using equation 13 gives:

t — 1, is given by:

ﬁ(t -1) (16)

t
Pt =X"X =) XX =Pt - 1)+ X X[
=1
P lt—1)=P't) - X, X[ (17
Combining equation 16 and 17 gives:
ZXyz— Yt —1)B(t-1)
= (P7Yt) - X, X)) Bt — 1) (18)

Finally, substituting this into equation 15 and rewriting gives:

B(t) = P(t) ((P—l(t) — X, XT) Bt —1)+ Xtyt)
=P(t)P~ (t)B(t —
= B(t—1)+ P(H)X, (yt XTB(t — 1)) (19)

To use this equation for updating B first P(¢) is updated with
the following function:

P(t) = (P~

Next, the new P(t) is used in equation 19 to calculate the
new (. However, this requires the matrix inversion of P,

Yt —1)+ X X))~

1) — P(OX, X[ B(t — 1) + P(t) Xow

which is not always possible. To avoid this, the Kalman gain
is used:

_ P(t-1)X,
K(#) = 1+ XIP(t—1)X, (20)
By =Bt -0+ K (- X7Be-1) @D
P(t)=P(t—1)— Pt = DX X/ P(E 1) (22)

1+ XfPit-1)X,

where K (t) is known as the Kalman gain.
C. Parameter Confidence Interval

When model parameters are estimated from noisy measure-
ment data, they are determined with limited accuracy. This
can be regarded as a confidence bound on the parameter
values [17]. To find the e.g. 95% confidence interval of the
estimated model parameters first the covariance matrix needs
to be determined. The parameter covariance matrix is defined

as follows:
o8] . [op]"
B o] M

_ [Xvalx}71XT‘/y71‘/y‘/yle[XT‘/yle}fl
= [ X7V, ' X XY, XXV X

= [XTVy 'x)t (23)

where V), is the covariance matrix of the measurement error.
The parameter covariance matrix, VB’ is also called the error
propagation matrix because it describes how the random
measurement errors in the data propagate to the estimated
model parameters. Because, it is often not known what
the values of random measurement errors are, V,, must be
estimated. For now, it is assumed that the measurement error
has the same distribution over time and that the measurement
errors are uncorrelated such that V;, becomes:

Vy=0.1 (24)
next, 05 is estimated using:
1
A2 AT ~
oy, = n_p(y—y) (y—19)
1 A A
= ——(y- XDy - XP), (25)
n—p

Where n is the number of observations and p is the number
of model parameters. The covariance matrix of the estimated
model parameters is obtained by:
~20 v T y\—1
VB =0 y (X X )

In order to find the standard error of the parameters, the
square root of the diagonal of Vj is taken:

T8~/ Vi

after calculating the standard parameter errors, these values
are used in the following equation to obtain the confidence
intervals:

(26)

27

(28)



Here 1 — « defines the desired confidence level. For a large
data set (n — p > 100) the critical t-value for a 95%
confidence interval is given by ¢ = 1.96. Substituting the
value for ¢ into equation 28:

B—1.960;5 < B < f+1.960, (29)

D. Confidence and Prediction Interval CoM kinematics

Because the certainty of the output of the found model is of
even more interest, the confidence and prediction intervals of
the output are determined as well [17]. First the covariance
matrix of the estimated output must be calculated:

V; = XVBXT =l X(XTX) ' X" (30)

again, the square root of the diagonal of the covariance
matrix is used to find the standard error. The confidence
interval of the estimated model output is:

§(z; B) — 1.9605 <y < g(x; 8) + 1.960,  (31)

However, for unobserved data used for future predictions,
both the variance of the fitted model and the variability of
the measurement data must be taken into account. Therefore,
the predictive covariance matrix is calculated using:

Vip =V +V, =, X(XTX)"' X" +67 (32
And the prediction interval becomes:
j(w; B) — 1.960g, <y < g(a; B) + 1.9605,  (33)

III. SETTING-UP ESTIMATION PROBLEM

This section will discuss how the estimation problem of the
CoM position, linear momentum and angular momentum of
a human wearing an exoskeleton is tackled. First, section III-
A presents how the SESC method introduced in section II-A
is used for estimating the CoM position of a human wearing
an exoskeleton. Sections III-B and III-C introduce the new
methods developed for estimating the linear and angular
momentum, respectively. Last, section III-D presents how
the measurement data is filtered and how joint velocity and
acceleration are estimated from the measured joint angles.

A. SESC Method for CoM of the Human and Exoskeleton

To find the SESC for the human and exoskeleton, first
the structure of the human and exoskeleton needs to be
determined. Because the exoskeleton is attached in parallel
to the limbs of the human, and therefore makes the same
movement, it is assumed here that the addition of the
exoskeleton to the human body only changes the inertial
parameters and mass distributions and not the orientation
of the segments. Due to that assumption, the structure of
the human body is representative of both the human and the
exoskeleton. How the structure is defined is depicted in figure
2a. The human wearing the exoskeleton is viewed from the
right and analysed in the sagittal plane. The structure consists
of five links representing the shank, thigh, torso, upper arm
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and lower arm. The origins of the local reference frames are
located in the joints and the y-axis is aligned with the link.
The joints are assumed to be purely revolute joints rotating
around the z-axis and consist of; ankle, knee, hip, shoulder
and elbow. Figure 2b shows how the joint angles are defined.
The corresponding SESC, shown in figure 2c, is described

by:
di

S1

pe = [Iax2 Ri R3 R;] =BS (34

S5

Where B is the matrix containing the rotation matrices and S
is the vector of unknown system parameters. Now to identify
the vector with unknowns the CoM and the joint angles need
to be measured. For the CoM position, the ZMP is measured
during static poses, because the non-vertical coordinate(s)
coincide. The joint angles of the ankle, knee and hip are
measured with the encoders of the exoskeleton. The shoulder
and elbow joint angles are obtained from IMUs attached to
the upper body.

B. Rewriting Linear Momentum Equation

To calculate the linear momentum, [, of the CoM the follow-
ing equation is used:

n
l= Z MiPe,i
i=1

= MiPe,1 + -+ MsPes
<m1Pc,1 + o+ MsPes
= mt

my
= MtPc

)

The velocity of the CoM is calculated taking the time
derivative of equation 34 using the property that the time
derivative of a rotation matrix is given by the product of a
skew-symmetric matrix and the rotation matrix itself:

(35)

De = (BS) = BS

di
S1
=022 @TR} @3R3 @5 Ry (36)
S5
where @] is the skew-symmetric matrix built up as:
0 fwj,i W;,i
0 = | wi; 0 —Wy (37)
—Wyi Wi 0
Substituting equation 36 into equation 35 gives:
I = myp. = mBS (38)

In order to identify .S using this equation, both the regressor,
m; B, and the output, [, must be measurable. Unfortunately,



Fig. 2: (a) Abstract illustration of a human wearing an exoskeleton. The five link structure used to model the human and
exoskeleton is presented by the orange lines. (b) Representation of the locations of the segment CoMs, p. ;, and the total
CoM, p.. The heel height of the person is indicated with h, and the joint angles, ¢;, are defined as illustrated. The force
plate depicted as the horizontal line measures the location of the ZMP, p.,,,, and the reaction forces, F;. (c) The SESC
corresponding to a human wearing an exoskeleton standing in this pose is given in blue.

the linear momentum, [, cannot be measured directly. How-
ever, it is possible to measure the linear momentum rate with
a force plate and the following relation:

i=F+ [_ﬂ'ﬂw] (39)

Where F). is the ‘ground’ reaction force measured by the
force plate. If the linear momentum rate is used as the output,
it is also necessary to take the time derivative of the regressor.
The total function becomes:

0

my

[=F + [_ g} = mBS (40)

with [ as the output, my B as the regressor matrix and S the
model parameter vector.

C. Rewriting Angular Momentum Equation

The equation for calculating the angular momentum, #k,
around the CoM of a multibody system is:

n

k= Z((pc,i _pc) X ml(pcz _pc) + Iiwi)

=1

(41)
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Which can also be written as:

n
k= Z(mipc,i X pc,i + [sz) — MPe X pc

i=1
n n

= Zmipc,i X Pei + Z I'w; — mype X Pe (42)
i=1 i=1

Now, p. and p. can be replaced with respectively BS and
BS, where B, B and S are the same matrices and vector
mentioned in sections III-A and III-B. A similar replacement
can be done for the CoM position and velocity of the
individual segments; p.; = BS; and p.; = BS;. Here, B
and B are again the same as in sections III-A and III-B and
S; is the segment specific version of S. Substituting this into
equation 42 gives:

k=Y miBS; x BS;+Y I'w;—mBS x BS (43)
i=1 i=1
Because S is already identified using the methods described
in sections III-A and III-B, there is no need to identify it
again and therefore it can be included in the output:

n n
k+miBS x BS =Y m;BS; x BS; + > I'w; (44)
i=1 i=1
The next step is to take the right hand side of the equation
and seperate the knowns from the unknowns to find the
regressor matrix and the model parameter vector. For clarity



reasons, the right hand side of the equation is divided into
two parts, Z m; BS; X B S; and Z T'w;, which are handled

seperatly. Flrst the former of the two is rewritten starting
with expanding BS; x BS; and rearanging it such that:

BS; x BS;

n

Z

1k

Bu1,;Si;Ba Sk — BZ,jSi,jBlJcSi,k)

<.
Il
3 ||
—_

M=

(
(

Bl,jBQ,k - B2,jBl,k) S5k

<.
Il
—
Eod
Il
—

3
3

B 154,55 k 45)

<
Il
—_
Eod
Il
—

With:
Bjr = (B1;Bay — Ba;iBiy)

Writing equation 45 into vector multiplication form gives:

85151

L Si 152
Zzﬁjksusm—[ﬁ“ B2 Bun) | .
i=1 k=1 .

’ Si,nSi,n

(46)

Substituting equation 46 into Z m;BS; x BS; gives:

=1

i=1
[Si15i1]
n Si 152
Z (b1 Bro Bua) | .
- _Si,nSi,n_
[S;15i1]
n Si,15i,2
:[51,1 B1,2 Bn,n]zmi .
i=1 :
_Si,nSi,n_
47)

Next, Z I'w; is handled. For the human-exoskeleton model

this part of the equation becomes:

n
lewl :w1(11 ++I5)++UJ4(I4+I5) +OJ5I5
i=1

L4415

[w1 ws| : (43)
I5

Now combining equation 48 and equation 47 and substi-
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tuting this into equation 44 gives:

k+ kpc = BkSk7 (49)
kpe = m:BS x BS,
Bi = [[w1 ws] [Br1 Pia2 Branl]
i L+L+---+ 15 1
]2 + o+ [5
15
Sk =
m151151,1 + - +msS5,1551
m151,151,2 + -+ ms5S55155 .2
L mlsl,nsl,n + -+ mBSS,nS&n i

However, as for the linear momentum, angular momentum
cannot be measured directly either. Therefore, the angular
momentum rate is used which can be measured with:

k = (pzmp - pc,x)Fr,y + pc,yFr,x (50)

with p,,,, is the location of the ZMP, p., and p., are the
location of the total CoM in z and y direction and F;. ., and
F, , are respectively the x and iy component of the reaction
force. Together with the time derivative of equation 49:

Where k + /%pc is the output, By, is the regressor and X the
model parameter vector.

D. Data Filtering and Joint Velocity and Acceleration Esti-
mation

With the joint encoders and the force plate the following
data are measured; joint angles (g), the zero moment point
(p2mp) and the ground reaction force (F;.). To reduce noise,
the measured data needs to be filtered first. The filtering is
performed with a Hann-window based FIR filter which is

defined as:
< - > -
z
n+

1
The linear phase property of this type of filter results in a
group delay (251 samples for a filter with length 501), which
means that all frequency components of the input signal are
shifted in time by the same constant amount [18].

To estimate the joint velocity and acceleration, the filtered
joint angles are filtered again with central derivative stencils
[18]. For finding the first derivative the stencil is built up as
follows:

W(z) = sin’ (52)

n=0

—1z7 42
Wz)= — 53
()= 57 (53
and for the second derivative:
—1lz7142—2
W(z) = T2 (54)

where T gives the size of one timestep. Both stencils require
a unit-delay. This delay together with the group delay from



the Hann-window results in a total delay of 252 samples (or
252ms). In order to align all data for a correct regression it
is necessary to delay the other data with the same amount.

IV. EXPERIMENTAL METHOD

This section presents the experimental method. Section I'V-
A explains how the estimation of the CoM position, linear
momentum and angular momentum method can be tested
with a real life experiment. However, for this research, to
make sure that the methods introduced are functioning cor-
rectly a proof of concept on the basis of a virtual experiment
is conducted. How the virtual experiment is build up and
how it is performed will be discussed in section IV-B. To
make a clear distinction between the S identified using the
CoM position, p., and the S identified using the CoM linear
momentum, [, from now on the former will be denoted as
Spe and the latter as 5.

A. Test Protocol

To perform this experiment the following equipment is
needed:

« exoskeleton

« force plate

o IMUs

« Safety equipment to prevent the subject from falling

Before the experiment is started, some preparations need to
be done. First the subject is informed about the experiment.
After that the subject is installed in the exoskeleton. To make
sure the person is safe during the experiment it is important
to use for example a safety harness, to prevent the person
from falling. After being installed IMUs are placed onto the
upper body segments. The last step of the preparation is to
calibrate the force plate and the IMUs. After these devices
are calibrated the experiment can be started.

Two main experiments are conducted; a parameter iden-
tification experiment and a CoM position and momenta
prediction and validation experiment.

1) Parameter Identification Experiment

The parameter identification experiment is performed to find
the values of the parameter vectors Sy., S; and Sj. First
the parameter vectors S, and S are identified in the same
experiment. For this experiment the subject has to perform
different poses. Which poses the subject has to perform
is instructed by means of example pictures. In sync, the
exoskeleton will move towards the same poses following a
predefined reference trajectory. Arrived at the correct pose
the subject is instructed to wait for a few seconds and stand as
still as possible until the subject receives the signal to move
to the next pose. During the experiment, data is logged and
the parameter vector, .S is updated using recursive linear least
squares. At the same time the 95% confidence and prediction
intervals are determined by the software. When the software
detects a confidence and prediction interval that lies within
the acceptable range, the experiment is stopped.
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Fig. 3: Schematic block diagram of the virtual setup built
in Simulink and MATBLAB containing a PD controller, C,
a forward dynamics model of the human wearing an ex-
oskeleton, FD, the measurement with the encoders and force
plate, M, data filtering and joint velocity and acceleration
estimation which introduce a pure delay in the estimates,
which requires also a pure delay of the outputs, W, the
block that builds the regressor matrices and output, E, and
the recursive linear least squares, RLS.

After that, the second experiment is started. The only
differences for this experiment compared to the previous
experiment is that the subject has to perform a movement
instead of poses and that Sj is identified instead of the
vectors Sy, and .S;.

2) Prediction and Validation Experiment

For this experiment, the identified parameter vectors .S,
S; and Sj, are used to predict the CoM position, linear
momentum and angular momentum respectively. This pre-
diction will be carried out for newly gathered data. This
means that the subject is asked to perform a few poses
and movements again. The poses and movements will be
instructed the same way as for the identification experiments.
Normally, the force plate is no longer needed for predicting
the CoM position, linear momentum and angular momentum.
However, to validate whether the predictions are accurate,
the ZMP and the reaction forces are measured as well. For
the static poses, the x component of the predicted CoM
position can be compared to the ZMP. And predicted linear
and angular momentum rate of change can be compared to
the ones found from the relations given by the equations 39
and 50.

B. Virtual Experiment

For this research a virtual experiment is used to test the
proposed methods for estimating the CoM position and
momenta of a human wearing an exoskeleton. The advantage
of a virtual experiment is that everything is known and can
therefore be used to validate the results.

1) Virtual Setup

The virtual experiment is built in MATLAB and Simulink
version R2018b. Figure 3 gives a schematic representation
of the main components of the virtual setup. First the subject
wearing the exoskeleton has to be modelled. For this human-
exoskeleton model, the same structure is used as illustrated in



figure 2a. The subject’s segment lengths, weigths and inertias
are estimated using data from Winter [11] based on a person
with a height of 1.78m and a total mass of 75kg. To include
the exoskeleton, extra weight is added to the shank, thigh and
torso in the proper location, possibly shifting the segment
CoM w.r.t. the human’s segment CoM. The inertias of the
shank, thigh and torso are adjusted as well.

After that, the movement of the model is simulated
with the use of a forward dynamics model (FD). With
the Equations of Motion (EoM) derived for the FD model
joint accelerations are calculated from the joint torques. The
torques applied to the FD model are controlled with a PD
controller (C) which uses the error, e, between the reference
signal, gy, and the actual joint angles, q. Which reference
signals are used will be explained in the sections IV-B.2 and
IV-B.3. The joint accelerations calculated with the FD model
are then twice integrated to get the joint velocities and joint
angles. Next to that, the CoM, ZMP, reaction forces, linear
and angular momentum and momentum rate are calculated.

From these calculations only the joint angles, ZMP and
the reaction forces are measured. For this virtual experiment,
all joint angles are simulated as if they were measured by
encoders (also the ones which are measured by IMUs for
the real life experiment). The effect of this choice will be
discussed in section V. The measurement of the joint angles
by the encoders is simulated with the quantization of the data.
The measurement of the ZMP and the reaction forces by the
force plate is simulated by addition of zero-mean Gaussian
white noise.

Next, the joint angles, ZMP and the reaction forces are
filtered and the joint velocities and acceleration are estimated
as explained in section III-D. This introduces a delay of 252
ms (see Sec III-D) After that, the regression matrices and
output are derived according to sections III-A, III-B and III-
C. The recursive linear least squares block is then used to
identify the parameter vectors and the parameter confidence
intervals. The data is also stored in order to perform the
ordinary linear least squares over the whole data set.

2) Virtual Identification Experiment

For the identification of the parameter vectors Sp., S; and
Sk, two consecutive virtual experiments are conducted. Both
Experiments have a run time of 420 seconds (seven minutes)
and use a joint reference signal of several different poses
to simulate the movement of the virtual subject. Every ten
seconds a new pose is generated, resulting in a total of 42
poses per experiment. The poses are chosen such that the
virtual subject is dynamically stable at all time and that the
joint angles have realistic values. During the first experiment,
Both Sy, and S; are identified with the recursive linear least
squares. At the same time all data is stored such that at
the end of the simulation the whole data set can be used
to identify the parameters with ordinary linear least squares.
Next, the results of the first experiment are used in the second
experiment to identify the parameter vector Sy. Again, all
data is stored in order to identify S for the whole data set.
These two experiments are performed in sequence to avoid
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that the error in S, which is still large at the beginning of
the identification, negatively influences the identification of
Sk.

During the experiments the parameter vectors are identi-
fied twice; once using ideal (i.e. noise-free and quantization-
free) data obtained directly from the forward dynamics model
and once using the filtered measurement data. The first data
source is used to test whether the methods are working
properly. The second data source is used to get a better
understanding of how the methods will perform in real life.

3) Virtual Prediction and Validation Experiment

Next, to validate how well the different methods work, a third
experiment is conducted. For this experiment, the parameters
identified in the virtual identification experiments are used,
i.e. we now exploit the learned model, to predict the CoM
position and the linear and angular momentum for new test
data. The reference used for this experiment is a smooth
movement without stopping (see Appendix A.2). The run
time of this experiment is set to 240 seconds (four minutes).
After the 240s the prediction the Root Mean Squared error
and the mean Prediction interval are evaluated. For the CoM
position a RMS of 0.01m and a PI of +0.03m is stated as
sufficient. For the CoM linear and angular momentum a RMS
of 2kgm/s and a PI of £4kgm/s is stated as sufficient.

V. VIRTUAL RESULTS AND DISCUSSION

This section presents the results from the virtual experiments
and discusses the findings. To evaluate if the methods pro-
posed in section III are working correctly the results of the
ideal data are discussed first. After that, it is evaluated how
well the methods would perform for the more realistic filtered
measurement data.

A. Results and Discussion Ideal Data

For ideal data both the .S}, and the S} converge to the target
values (see Figure 4). This means that the relations found
for the CoM position and linear momentum in section III-
A and III-B, respectively, are also found by the recursive
linear regression. However, it takes S, about 140s before it
levels out while .S; is almost instantly at its final value, even
though both vectors contain the same amount of unknowns.
The reason for this is that S, can only use static data to
update the parameters while S; can also use the dynamic
data. Therefore, it takes ten different poses (ten unknowns)
to find the correct Sy, and only ten different data points to
find the correct S;. The estimation of the parameters of .S,
and S; with the ordinary linear least squares over the whole
data set gives a similar results as the recursive linear least
squares (see Appendix B.1).

The method for estimating the parameters of Sj is not
able to estimate the expected target values for all 45 param-
eters(see Figure 5). This is also reflected in the confidence
intervals, which are broader for the unexpected parameter
values. This can be explained by the fact that not all 45
parameters are necessary to describe the behaviour of the
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Fig. 4: Graph of the identified parameter vectors S, and
S; from ideal data using recursive linear least squares. The
95% confidence interval is presented as a shaded area. Every
subgraph shows two parameters of the total vector. The target
values of the parameters are presented with a dot at t=420s.

CoM angular momentum. Using the singular value decom-
position on the regression matrix it was found that the
angular momentum behaviour can also be described with
just 35 parameters (i.e. 10 fewer) resulting in a non-unique
solution. What is interesting to point out, exactly 10 of the
parameters of S identified with the ordinary linear least
squares (see Appendix B.2) are set to zero. This results in a
more confident prediction of the other parameters.

Using the parameter vectors .Sy, S; and Sy, estimated from
the real data, the identified models are able to predict the
CoM position and its momenta accurately (see Figure 6).
This means that, even though the parameters of S}, are not
the expected values, the prediction of the angular momentum
is still possible. This supports the explanation in the previous
paragraph for the incorrectly estimated parameters of S.

B. Results and Discussion Realistic Data

For the filtered measurement data, Sp,. and S; approach
the target values (see Figure 7a). However, both parameter
vectors require a longer learning time to level out compared
to real data. On top of that, both vectors show a larger
error and confidence interval at t=420s for measured data
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Ideal Measured

RMS | PI RMS | PI
pos. x (m) 0.000 | 0.008 | 0.007 | 0.023
pos. y (m) 0.000 | 0.008 | 0.006 | 0.021
lin. mom. x (kgm/s) [ 0.000 | 0.015 | 0.714 | 7.592
lin. mom. y (kgm/s) | 0.000 | 0.015 | 1.271 | 7.609
ang. mom. (kgm/s) 0.000 | 0.097 | 1.195 | 4.924

TABLE I: Table of the results from the prediction experiment
for ideal and measured data. The Root Mean Squared (RMS)
error and the + PI are presented.

compared to ideal data (see table 7a). Especially for S, this
could be a result of errors introduced in the joint velocities
and accelerations because these are both estimated from the
joint angles and not measured directly.

Another point of discussion is the confidence interval in
relation to the correctness of the estimation of the parameters.
Even though the values of the parameters are not accurate,
the confidence interval is very small. This can be seen in
figure 7b. This could be a result of the sequential presentation
of new data to the model, as the variance between two
individual datapoints is relatively small.

The parameters of Sy are estimated less accurately com-
pared to S; when estimated using ideal data. This can be
explained by the non-unique solutions for the parameter
estimation, but amplified because of the possible errors
introduced in the estimated joint velocities and accelerations.

Figure 9 shows the predicted CoM position, linear and
angular momentum rate of change, and linear and angular
momentum. The associated confidence intervals are also
plotted. For the linear and angular momentum and their
rate of change, the mean prediction is quite accurate but
the prediction interval is relatively broad (see table I). An
explanation for the angular momentum is that the parameters
are estimated correctly, but it appears that the uncertainty
in the model parameters for the angular momentum (S%)
due to the non-unique parameter solution is reflected in the
CoM angular momentum prediction interval. The explanation
for the relatively high uncertainty in the predicted linear
momentum could be that for the prediction interval also the
variance in the measurement errors is taken into account.

V1. CONCLUSION AND RECOMMENDATIONS
A. Conclusion

The goal of this research was to design a method to estimate
the CoM position and linear and angular momentum of a
human wearing an exoskeleton. Requirements for the method
were that it is able to give the uncertainty in the parameters
and model and eventually is able to estimate the CoM
kinematics outside of a lab environment. Furthermore, it was
hypothesised that the SESC method for estimating the CoM
position together with the extended methods for the linear
and angular momentum would be able to estimate the CoM
position and its momenta of a human wearing an exoskeleton.
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First of all, from the ideal (i.e. noise-free and quantization-
free) data results, it can be concluded that the methods
described in sections III-A and III-B are able to estimate
the parameter vectors Sp. and S;. The method described
in section III-C for identifying S was found to have a
non-unique solution. As a result, the method is able to
identify a set of parameters using ideal data different from
the expected parameter set. Nevertheless, from figure 6 it can
be concluded that with the use of S, S; and Sy, from ideal
data, it is possible to estimate the correct CoM position and
linear an angular momentum. Table I shows that the sufficient
RMS and PI mentioned in Section IV-B.3 are met for ideal
data.

For the filtered measurement data, the results are also
promising. Even though S; and Sj were predicted less
accurate, Figure 9 shows that the methods are still able to
predict the CoM position and linear an angular momentum.
Table I shows that the sufficient RMS mentioned in Section
IV-B.3 are met. However, the sufficient PI was only achieved
for the CoM position.

The uncertainty measure eventually will be used to de-
termine whether the parameters are sufficiently learned to
predict the CoM position and momenta. However, the used
uncertainty measure can give a distorted picture when used
for the recursive linear least squares method. Therefore, it
is recommended to use a different uncertainty measure to
indicate whether the parameters are learned sufficiently.

The run time for the identification experiments were set
to seven minutes each, resulting in a total of 14 minutes
to identify all three parameter vectors. Within this time
the method is able to identify the parameters sufficiently
and some of the parameters leveled out even earlier. A
learning time of 14 minutes is acceptable, but leaves room
for improvements.

To conclude, the method described in this paper shows
promising results for the identification of the CoM position
and linear and angular momentum of a human wearing an
exoskeleton.



B. Recommendations

This research gives a proof of concept for the proposed
methods for the identification of the CoM position and
momenta for a human wearing an exoskeleton. However,
there are some improvements that have to be made before it
can be used in practise.

First of all, the method is tested for a virtual situation
which has the advantage that everything is known and there-
fore can be validated more easily. However, using a model
to simulate reality also requires some simplifications. For
the model used in this research the joints of the person and
exoskeleton were assumed to be purely rotational. Besides
that, the lengths of the segments and the location of the
segment’s CoM w.r.t. the segment were assumed to be
constant. However, this is not entirely correct for a real
human. This will probably have a negative influence on the
performance of the methods. To get a better understanding
of how the methods will work for real data, the model can be
made more realistic, or the method can be tested for example
on a healty person without an exoskeleton first.

Second, for this research the measurement of all joints
were simulated as if they were measured with joint encoders.
However, in the final design the upper body is not measured
with encoders but with IMUs. The IMU measurements have
to be included in the simulation as well to test how this
influences the results. Because IMU data is filtered with a
Kalman filter this might give a problem with the alignment
of the data for the regression.

Third, it was concluded that the confidence interval of
the parameters gave a distorted view on the correctness of
the parameters of S; for the recursive linear least squares
method. It should be further investigated whether this is due
to how the parameters are updated by the recursive linear
least squares. If this is the case, a more suitable uncertainty
measure for the recursive linear least squares method should
be used.

Fourth, for this experiment the updating of the parameters
was stopped after seven minutes. Eventually, the method is
intended to stop after the parameters are learned sufficiently
in order to predict the CoM position and angular momentum
accurate enough. Therefore, it must be examined what value
of accuracy for the parameters is enough for an accurate
enough prediction.

Fifth, the learning and updating time can possibly be
improved, by using a *warm’ start for the model parameters
instead of starting from zero. For example, the parameter
values can be based on the dataset from Winter [11]. On top
of that, it can be investigated what the best poses are for the
identification of the parameters. It is likely that when more
diverse poses are used the learning time and the accuracy
are improved. Last, to make sure that this method is suitable
for all kinds of people and that it is a reliable method
for estimating the CoM position and momenta of a human
wearing an exoskeleton, more tests should be performed for
a diverse group of people. Especially, experiments with real
data are needed.
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3 General Conclusion

The goal of this work, was to find a method that could predict the Centre of Mass (CoM) position
and linear and angular momentum for a human in an exoskeleton. The method should be able
to predict the CoM position and momenta outside of a lab environment, and therefore capable
of using data from portable sensors. The model should also be able to limit the learning time
to only the required amount. As a result, we proposed a novel method based on the Statically
Equivalent Serial Chain method, and extended this to include a method to identify the linear and
angular momentum. The method makes use of a recursive update function, this allows the model
to stop the learning process as soon as the confidence for the parameter vectors are sufficient. The
method was evaluated with a virtual experiment for ideal data, in order to verify the correctness
of the method, but also evaluated for measured data (simulated data with noise) to mimic a more
realistic setting.

For ideal data, the CoM position and linear momentum parameter vectors converged to the
correct values, but for angular momentum this was not the case. This is a result of a non-unique
solution for the parameter vector. For the realistic data, there was an increase in uncertainty and
final error in the parameter estimation compared to ideal data. The final model was able to predict
the CoM position and momenta quite accurately, although the uncertainty could be improved. The
overall learning time for the method was 14 minutes, which fits in a everyday morning routine.

In order to improve the method, several suggestions are given. The current method uses
simplifications for the simulated model, and therefore should be tested in a real world setting.
Secondly, to make the experiment more realistic, IMUs have to be used for the upper body instead
of joint encoders, which is expected to have a negative influence on the performance. This impact
has to be investigated. The current uncertainty measure can give a distored view of the correctness
for the linear momentum parameters. Therefore a different uncertainty measure should be used
which better fits the recursive linear least squares method. A warm start could be used to improve
the learning time of the method. Finally the method should be tested on a diverse group of people
to ensure that the method is a reliable way to estimate the CoM position and momenta for all
kinds of people.
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Appendices

Appendix A References for Identification Experiment and Val-

A.1 Poses used for identification of the parameters

idation Experiment

In this appendix the 42 poses used for the identification of the parameters Sy., S; and Si are

presented. In figure 7?7 the poses are presented with the use of stick figures.
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A.2 Reference Movement used for Validation

y (m)

e

The joint angle reference used for the validation experiment is shown in the figure below.
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Appendix B Tables Results

B.1 Identification of S,. and S

Spe(m) Si(m)
Ideal Measured Ideal Measured
OLS RLS OLS RLS OLS RLS OLS RLS

err CI err CI err CI err CI err CI err CI err CI err CI

S1,2 | 0.002 | 0.000 | 0.000 | 0.002 | 0.000 | 0.000 | 0.002 | 0.005 | 0.000 | 0.000 | 0.000 | 0.000 | 0.117 | 0.016 | 0.098 | 0.004
S1,y | 0.001 | 0.000 | 0.000 | 0.001 | 0.003 | 0.000 | 0.003 | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.056 | 0.016 | 0.041 | 0.004
Sa. | 0.004 | 0.000 | 0.000 | 0.002 | 0.004 | 0.000 | 0.007 | 0.006 | 0.000 | 0.000 | 0.000 | 0.000 | 0.076 | 0.010 | 0.060 | 0.003
Sz, | 0.003 | 0.000 | 0.000 | 0.001 | 0.001 | 0.000 | 0.003 | 0.004 | 0.000 | 0.000 | 0.000 | 0.000 | 0.015 | 0.010 | 0.012 | 0.003
Ss. | 0.004 | 0.000 | 0.000 | 0.002 | 0.002 | 0.000 | 0.005 | 0.007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.331 | 0.011 | 0.131 | 0.003
Sz, | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013 | 0.011 | 0.009 | 0.003
Sy | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.013 | 0.002 | 0.008 | 0.001
Sa,y | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.020 | 0.002 | 0.010 | 0.001
Ss. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.001 | 0.001 | 0.000
Ss,4 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 | 0.001 | 0.002 | 0.000

Table 1: Results of the identification of the parameter vectors S,. and S; from ideal and measured
data and for the ordinary least squares and the recursive least squares methods. The absolute
error (err) and the &+ confidence interval (CI) are given.
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B.2 Identification of S

Sk (kgm?)
Ideal Measured
OLS RLS OLS RLS
value err CI value err CI value err CI value err CI
Ska | 0 17.305 | 0.000 | 6.963 10.341 | 2.636 | 0 17.305 | 3.429 | 39.589 22.285 135.369

Sk2 | -19.976 | 35.974 | 0.000 | 0.937 | 15.060 | 2.363 | -164.812 | 180.810 | 2.703 | -44.440 | 60.438 | 121.358
Sk,3 | -36.200 | 50.375 | 0.000 | 0.522 | 13.651 | 2.341 | -105.687 | 119.861 | 2.286 | 5.162 9.012 120.262
Sk,a | -59.503 | 59.924 | 0.000 | -5.923 | 6.344 | 2.334 | -111.647 | 112.068 | 1.555 | 0.097 0.323 119.885
Sk,s | 0.481 0.195 | 0.000 | -1.507 | 1.792 | 2.254 | -0.422 0.708 0.391 | -0.411 0.697 115.786
Sk, | 0.003 0.000 | 0.000 | -0.011 | 0.014 | 0.119 | 77.974 77971 | 6.391 | 77.745 77742 | 6.369
Sk,7 | 3.053 0.000 | 0.000 | 3.082 | 0.028 | 0.235 | -134.623 | 137.676 | 12.836 | -133.668 | 136.721 | 12.783
Sk,s | 0.005 0.000 | 0.000 | 0.013 | 0.007 | 0.088 | 81.281 81.275 | 4.783 | 81.620 81.615 | 4.781
Sko | 2.463 0.000 | 0.000 | 2.480 | 0.016 | 0.149 | 102.802 | 100.339 | 7.819 | 103.401 | 100.938 | 7.811
Sk,10 | -0.229 | 0.000 | 0.000 | -0.226 | 0.003 | 0.064 | -50.075 | 49.846 | 3.399 | -50.363 | 50.134 | 3.402
Sk,11 | 1.540 0.000 | 0.000 | 1.555 | 0.014 | 0.166 | -20.417 | 21.958 | 8.641 | -20.564 | 22.105 | 8.632
Sk,12 | 0.000 0.000 | 0.000 | 0.001 | 0.001 | 0.022 | 10.722 10.722 | 1.168 | 10.873 10.873 | 1.169
Skas | 0.118 0.000 | 0.000 | 0.118 | 0.000 | 0.015 | -1.554 1.672 0.804 | -1.457 1.575 0.805
Sk,4 | 0.000 0.000 | 0.000 | -0.000 | 0.000 | 0.010 | -2.515 2.515 0.574 | -2.542 2.542 0.574
Sk,15 | 0.056 0.000 | 0.000 | 0.056 | 0.000 | 0.010 | 1.580 1.524 0.547 | 1.613 1.557 0.547
Skae | 0 0.000 | 0.000 | 6.963 | 6.963 | 2.636 | O 0.000 3.4299 | 39.589 39.589 | 135.369
Skar | 0 18.669 | 0.000 | 6.963 | 11.705 | 2.636 | O 18.669 | 3.429 | 39.589 20.920 | 135.369
Sk,s | 0.033 0.000 | 0.000 | 0.027 | 0.005 | 0.057 | -33.311 | 33.344 | 3.275 | -33.425 | 33.458 | 3.272
Sk,19 | 15.536 | 0.000 | 0.000 | 15.531 | 0.005 | 0.049 | -6.250 21.786 | 2.643 | -6.347 21.884 | 2.641
Sk,20 | -1.445 | 0.000 | 0.000 | -1.445 | 0.001 | 0.052 | 57.517 58.962 | 2.961 | 58.168 59.612 | 2.979
Sko1 | 9.717 0.000 | 0.000 | 9.716 | 0.001 | 0.079 | 37.158 27.441 | 4.524 | 37.659 27.942 | 4.532
Sk,22 | 0.000 0.000 | 0.000 | -0.000 | 0.000 | 0.012 | -5.086 5.086 0.670 | -5.154 5.154 0.671
Sk,23 | 0.744 0.000 | 0.000 | 0.744 | 0.000 | 0.008 | 0.767 0.023 0.455 | 0.757 0.014 0.455
Sk,24 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.006 | 1.071 1.071 0.340 | 1.063 1.063 0.340
Sk,2s | 0.351 0.000 | 0.000 | 0.351 | 0.000 | 0.006 | -1.796 2.146 0.338 | -1.821 2.172 0.338
Sk26 | 0 0.000 | 0.000 | 7.900 | 7.900 | 2.601 | O 0.000 2.009 | -4.850 4.851 133.549
Skor | 0 14.401 | 0.000 | 7.900 | 6.500 | 2.601 | O 14.401 | 2.009 | -4.850 19.251 133.549
Sk | -1.439 | 0.000 | 0.000 | -1.438 | 0.000 | 0.032 | 26.393 27.832 | 1.754 | 26.525 27.964 | 1.756
Sk, | 9.677 0.000 | 0.000 | 9.675 | 0.002 | 0.063 | 4.484 5.193 3.394 | 4.126 5.550 3.397
Sk,30 | 0.000 0.000 | 0.000 | -0.000 | 0.000 | 0.007 | -5.590 5.5690 0.422 | -5.606 5.606 0.422
Sk,31 | 0.741 0.000 | 0.000 | 0.741 | 0.000 | 0.007 | -2.096 2.837 0.408 | -2.098 2.839 0.408
Sk,32 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.004 | 2.106 2.106 0.221 | 2.104 2.104 0.220
Sk,3s | 0.349 0.000 | 0.000 | 0.349 | 0.000 | 0.004 | -2.805 3.154 0.238 | -2.804 3.153 0.238
Skza | 0 0.177 | 0.000 | 8.423 | 8.245 | 2.597 | O 0.177 2.137 | 0.311 0.134 133.386
Skas | 0 9.372 | 0.000 | 8.423 | 0.948 | 2.597 | 0 9.372 2.136 | 0.311 9.060 133.386
Sk,36 | 0.000 0.000 | 0.000 | -0.000 | 0.000 | 0.009 | -1.218 1.218 0.498 | -1.296 1.296 0.499
Sk,ar | 1.421 0.000 | 0.000 | 1.421 | 0.000 | 0.007 | 5.391 3.970 0.395 | 5.311 3.889 0.397
Sk,3s | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.005 | -0.519 0.519 0.276 | -0.489 0.489 0.276
Sk,30 | 0.670 0.000 | 0.000 | 0.670 | 0.000 | 0.005 | 4.254 3.583 0.311 | 4.245 3.575 0.311
Sk,a0 | 60.568 | 60.568 | 0.000 | 2.500 | 2.500 | 2.587 | 112.570 | 112.570 | 0.583 | 0.409 0.409 132.877
Ska1 | 0 0.449 | 0.000 | 2.500 | 2.051 | 2.587 | O 0.450 0.583 | 0.409 0.039 132.877
Sk,a2 | 0.000 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | -0.633 0.633 0.087 | -0.631 0.631 0.087
Sk,as | 0.265 0.000 | 0.000 | 0.265 | 0.000 | 0.001 | 1.049 0.784 0.061 1.051 0.786 0.061
Skaa | 0 0 0.000 | 0.994 | 0.993 | 2.452 | 0 0 0.196 | -0.002 0.002 125.935
Skas | 0 0.195 | 0.000 | 0.994 | 0.799 | 2.452 | O 0.195 0.196 | -0.002 0.196 125.935

Table 2: Results of the identification of the parameter vector Sy from ideal and measured data and
for the ordinary least squares and the recursive least squares methods. The absolute error (err)
and the + confidence interval (CI) are given.
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