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Abstract

To increase the walking performance of active exoskeletons, and legged robots in general, model
predictive techniques can provide more dynamic and robust control. Model predictive control
(MPC) can optimize a trajectory and corresponding inputs for a given model, in a given setting.
MPC has been used for legged locomotion before, though previous works tend to use simplified
dynamics and therefore do not optimize the robot joint torques. In this work we set out to
design an MPC framework for legged locomotion that includes whole-body dynamics, such that
trajectories can be generated that are efficient in joint torque. MPC based on implicit contact
would be preferable, but showed infeasible with the direct collocation method. Instead an
approach with explicit contact, based on predefined stance and swing phases, was used. This
is an extension of TOWR [1], with the addition of whole-body dynamics. MuJoCo was used
to model the system dynamics and IPOPT as numerical optimizer. The framework proved
effective in locomotion generation and versatile to robot models, terrains and gaits. For a wide
variety of robot types gait trajectories are optimized. However, the optimized trajectories are
ineffective when applied in an MPC simulation.
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1 - Introduction

1.1 Context and Problem Description

Tens of thousands of people suffer from spinal cord injuries world-wide [2]. Injuries to the spinal
cord often leave a person with a type of paralysis, for example paraplegia (lower-body paralysis).
While such injuries have become more treatable, people suffering from it will often still be left
unable to walk on their own after their rehabilitation. Being restricted to a wheelchair limits
the self-reliance of a person greatly and therefore affects their quality of live.
Powered exoskeletons (see Fig. 1) are an upcoming technology that can make a difference. A
paraplegic could use an exoskeleton to regain the ability to walk by means of the actuated joints,
attached to their own legs.

Figure 1: An example of a powered exoskeleton, developed by the Symbitron+ team at the University of Twente.
Image from [3].

Actuated exoskeletons are in some respects similar to a bipedal robot. When an active
exoskeleton is used by a paraplegic, the motions of the joints in the legs have to be initiated
autonomously, comparable to stand-alone robot. The combination of exoskeleton and human
user will therefore be considered as a biped robot with disturbances.

These legged robots require a locomotive control scheme for walking. A controller needs
to produce a trajectory for the joints resulting in a desired gait, i.e. a walking pattern. The
most primitive approach to locomotive control is to simply play back reference joint trajectories
recorded from healthy human beings.
Although this is a simple method, the drawbacks are clear: the trajectories will not be flexible to
small deviations (terrain irregularities, steering, etc.), they will not be robust to perturbations
or errors and trajectories need to be somehow scaled from the human to the robot. To expand
on the latter point, a joints trajectory for a human is likely optimal for that human, however
it might not be suitable to a robot that has different body lengths, mass distributions or even
different degrees of freedom.

Hence there is a need for a more autonomous and universal method of legged locomotive
control. Model predictive control (MPC) is a method that has been applied successfully in this
context and still has more potential. MPC is a method of optimal control where a sequence of
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inputs are computed for the future, while optimizing some objective function (see Sec. 2.2 Model
Predictive Control). Through MPC walking gaits could be produced that are efficient and sta-
ble, tailored to the situation.

The aim of this work is to design a control framework based on model predictive control for
locomotion of legged robots.

1.2 Requirements and Objectives

The goal of the framework is to enable control for legged locomotion. A rough abstraction of
walking control shows two possible levels:

1. Finding footholds over time.

2. Control the body to step through the footholds.

The goal of the new framework is to solve the second step, which is steering the robot
through footholds efficiently. However, it is preferable if the footholds are planned together
with the body control, such that no explicit foothold planning is needed.

Another requirement for the new platform is efficiency in the gait with regard to the whole
body. In the end it is only the joint-specific values (e.g. joint accelerations or joint torques)
that matter, hence the optimization needs to regard those explicitly. Optimization with respect
to e.g. only center of mass acceleration will not be sufficient for the framework. (Illustrated by
Fig. 2.)

Optimizer

Optimizer

Locomotion
problem

Joint torque
profile

COM+EE+

Reaction forces

Optimizer

Locomotion
problem

Joint torque
profilea) b)

Figure 2: Optimization based on centroidal dynamics (a) requires a secondary optimization step to find joint
torques, whereas they are immediately provided by a whole-body dynamics optimization (b). The joint torques
found after the cascaded optimization (a) are not necessary optimal for the original problem.

Optimizations done with MPC methods are typically vulnerable to finding solutions in local
minima, making them dependent on the initial guess. Hence an objective for the framework is
to rely as little as possible on user input, such that a gait can be produced without a specific
guess or constraint to steer the outcome.
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Because there is a practical application to the framework, the speed of its solution is im-
portant. The faster it is, the more often it can be executed in a real system and the higher
the quality of the trajectories. Achieving a rate of 10 to 100 Hz is desirable. Note that this
is included as an objective, not a requirement. It is acceptable if the designed framework is a
proof of concept and runs slower.

It is desired that convergence of the optimization is robust. It should be avoided that tedious
tweaking of settings is needed to finish the optimization.

Lastly it would be useful if the framework was flexible to the kind of robot it optimizes for.
This goes for the properties of the robot though also its structure, including for instance the
number of limbs.

All requirements and objectives summarized together:

Requirements

1. Produce walking gaits with efficient actu-
ation

2. Consider whole body in optimization

Objectives

1. Optimize footholds along with joint tra-
jectory

2. Require little user input to produce a gait

3. Fast to compute

4. Robustness to optimization parameters

5. Variable number of legs

6. Easy to modify/replace robot model

1.3 Related Work

In this section a brief overview of relevant earlier works is given. Sec. 2 Background presents a
more in-depth analysis of the components of these relevant works. The design concepts discussed
in Sec. 3 Design will also often refer back to these. Table 1 provides a summary for each existing
framework addressed here.

Opheusden [4] and Paas [5] are two projects which were performed earlier by this research
group applying MPC for legged locomotion. Both optimized the walking trajectory of a five-link
walker in the sagittal plane (see Fig. 3) and were in turn heavily based on an MPC manual
written by Kelly [6].

The optimizations were based on analytical dynamics and were performed in MATLAB,
though Paas [5] used an interface to IPOPT to speed up the optimization. Opheusden [4]
focused on a practical example of obstacle crossing where Paas [5] focused on time and speed
for real-time application. Paas [5] concluded that for the five-link biped real-time application
should be possible and effective.

The largest shortcoming of these three works is the complete lack of dynamic ground contact.
A walking trajectory that is optimized without forces from the ground will have little correlation
to the real world. Moreover, only a single stance phase could be considered, double stance was
ignored.

Hutter et al. [7, 8, 9] used trajectory optimization for their legged robot with wheels.
Their optimization relies on predefined gaits and the acceleration profiles of the base and each
end-effector are optimized. No system dynamics are included during optimization, allowing the
optimization to be performed quickly. A whole-body controller then steers the robot according
to the generated profiles.

3



swing foot
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hip
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(torque motor)
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torso motor torque

swing knee
(torque motor) link orientation

Figure 3: Biped five-link sagittal walker from Matthew Kelly [6]. The stance foot is hinged to the ground.

The optimization does not relate to torques or forces at all. Nonetheless, the results are
good. The control scheme is tested on the actual robot and a series of challenges are passed
successfully.

Sangbae et al. [10, 11] work on the control of a small quadruped robot called the Mini
Cheetah. The optimization is based on only the dynamics of the base, the end-effectors and
reaction forces. The 3D dynamics is linearized to result into a quadratic program that can be
solved quickly. Ground contacts are explicit and defined by an input to the optimization.

Because only the body of the base is considered, no torque can be optimized. However,
they mention the mass of the legs is only 10% of the total mass, so the assumed dynamics is
reasonable. The results are good, the Cheetah has robust control and behaves dynamically.

Neunert et al. [12] aimed to apply a completely self-sufficient MPC approach to legged
locomotion. Contacts are left implicit as part of the dynamics and dynamics of the complete
system is considered. By considering the problem as unconstrained and by using a custom
solver that is similar to iLQR the NLP can be solved at a speed that is unrivaled.

A large feat of this work is having no need for explicit contact. This allows the optimizer
complete control over the motion, which is especially useful in light of disturbances.
There are a few drawbacks to this method although they are small. A brief time horizon is con-
sidered of only half a second, the constraints to the problem are soft (allowing the great speed)
and, most importantly, the approach is highly complex and tailored. It is not straightforwardly
adapted to other projects.

Tassa et al. [13] employed dynamic differential programming (specifically a variant of iLQG)
to synthesize optimized trajectories1. Although they did not focus on legged locomotion, Tassa
et al. do manage to optimize whole-body dynamics with implicit contact on a humanoid robot
and even ‘accidentally’ produce a walking gait.

The success of their application of dynamic differential programming is somewhat surprising,
because in theory DDP is not well suited to complex dynamic systems. Part of why it has worked
well for them is probably the fact that no non-linear constraints were involved.

Posa et al. [14] focused on a method where no contact modes sequencing is required before-
hand in the optimization. By adding a linear complementary problem (LCP) for contacts next
to the optimization, contacts are solved implicitly. Sequential quadratic programming (SQP) is
used to solve the problem. Posa et al. [14] test their framework on a biped sagittal walker, on
which they find good results.

1A video of the results are posted here: https://www.youtube.com/watch?v=anIsw2-Lbco
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No mention is made of the solve time of the optimization on the walker, nor is it clear how
well this approach would scale to more complex systems or a system in 3D. Moreover it seems
as only analytical models were used, limiting the range of systems that can be evaluated.

Winkler et al. [1, 15] have made an effective platform for legged locomotion called TOWR.
It uses direct collocation, solved with IPOPT (wrapped in an interface library named IFOPT).
Contacts are explicit and the key component of this platform is the phases are explicit for each
end-effector. The duration of each phase is also an optimization variable, such that the initial
guess does not completely fix the gait. Through varying the phases different gaits can still
emerge. This is elaborated further in Sec. 2.5.4 Timed Foothold Optimization.

The base position, each end-effector positions and reaction forces are part of the optimization
variables. These are constrained by centroidal dynamics, which is also the most significant
shortcoming of this method. Although the platform is capable of optimizing a cost function,
they choose to not use any costs. Only the set of constraints are solved.

Dynamics Contact Shortcomings Platform

Opheusden [4]
and Paas [5]

Analytical,
MATLAB
generated

Hinged stance foot,
no dynamic contact

Hybrid contacts
MATLAB &
IPOPT

Hutter et al.
[7, 8]

None
Explicit
(only in position)

No dynamics QuadProg++

Sangbae et al.
[10, 11]

Centroidal
Explicit, optimized
reaction forces

No whole-body
dynamics

qpOASES

Neunert et al.
[12]

Whole-body
dynamics

Implicit (soft contacts
in dynamics)

Short time horizon,
unconstrained,
complexity

Custom
iLQR-NMPC
solver

Tassa et al. [13]

Whole-body,
using the
MuJoCo
simulator

Implicit (MuJoCo)
Not tested with
locomotion

iLQG

Posa et al. [14] Analytical
Implicit (contact
parameters in LCP)

Limited dynamics
description

SQP with
additional LCP

Winkler et al.
[1, 15]

Centroidal
Explicit (phase-based,
optimizable)

No whole-body
dynamics

IPOPT (TOWR)

Table 1: Brief overview of the evaluated previous works.

None of these existing frameworks suit the defined requirements and objectives directly.
Most lack the use of whole-body dynamics and the ones that do include it do not have the
desired flexibility in the model. If the work of Sangbae et al. or Winkler et al. were expanded
to include whole-body dynamics, like in the platform from Tassa et al., they would fit the
requirements.
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2 - Background

In this section a brief overview of techniques for modelling dynamics systems is given first.
Then the concept of model predictive control is explained. Numerical optimization in general is
discussed as well as common approaches to MPC. Next, possible implementation levels of MPC
are put forward. Finally, techniques used to speed up MPC to make it suitable for real-time
application are summarized and different approaches to handling contact between bodies are
evaluated.

2.1 Dynamic Modelling

The purpose of modelling dynamics is to predict the accelerations of a system in response to
present torques and forces. The equation of motion is a system specific notation that correlates
these forces to accelerations, velocities and positions:

M(q) + C(q, q̇) + N(q) = τ (1)

Here q are the generalized coordinates, M the mass matrix, C the virtual forces, N the potential
forces and τ the generalized torque. In a general and brief notation the dynamics are described
by the system state:

x =

(
q
q̇

)
(2)

ẋ = f(x,u) (3)

The equations of motion can be found analytically by hand, through the Newton-Euler ap-
proach or Euler-Lagrange, though this is only feasible for simpler systems. The Euler-Lagrange
approach was automated to avoid tedious derivations by hand. First the Lagrangian is defined
as the difference between kinetic and potential energy:

L = Ekin − Epot (4)

Then the equations of motion follow from:

d

dt

(
∂L
∂q̇j

)
− ∂L
∂qj

= τj (5)

Using the symbolics toolbox of MATLAB the Lagrangian is defined for a specific system.
From this expression the equations of motion can then derived with Eq. (5) through analytical
differentiation provided by the toolbox. The equations will be in the form of Eq. (1). If the
system is small enough, i.e. if the analytical inverse of the mass matrix does not have too many
terms, the dynamics can be expressed in closed form like Eq. (3). For more complex system,
the analytical mass matrix is kept and only inverted numerically when used. From the symbolic
expressions MATLAB or C++ code can be generated, which can then be used on different
platforms.

2.1.1 Numerical Simulators

While such an analytical approach nets an accurate description that can be evaluated quickly,
it is limited to systems with a low number of degrees-of-freedom, preferably with no kinematic
coupling between those degrees-of-freedom. And using a pipeline that solves for the equations
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of motion automatically pushes these limits back only a little bit. Specifically collisions between
bodies are difficult to model in this way. Instead we can look at numerical methods to solve
dynamic systems, which are not restricted by the dimension of the problem. Numerous physics
simulators are available that solve such systems, such as MuJoCo, ODE and Bullet [16]. Such
simulators work by composing a dynamics equation for all coordinates and subjecting it to
constraints resulting from joints. Collisions can be included as constraints (hard contacts) or
as reaction forces (soft contacts).
MuJoCo specifically is a good choice for a simulator when comparing it to alternatives because
of its accuracy and speed [16, 17, 18]. It was created with model predictive applications in
mind. In MuJoCo models are created in XML files, which provide a hierarchical structure. It
can then compute forward and inverse dynamics, as well as step-wise simulation. The simulation
is focused on generalized coordinates and states, velocities and forces can be easily set and read,
as well as e.g. geometric jacobians and the mass matrix.

2.2 Model Predictive Control

Control techniques typically focus on defining the system inputs of the next discrete time steps
based on current control error (feedback) or on current target (feedforward). Instead of work-
ing rather short-sighted we can try to optimize our control over a longer stretch of time. In
a general sense, optimal control revolves around finding some input signal u(t) in a window
0 ≤ t ≤ T, T ∈ (0,∞) such that the output is as desired and a cost function (typically related
to the system’s control signal input) is minimized. Typically, optimal control results in an
optimized feedback controller, tuned for a specific use-case. Model predictive control takes it a
step further by using a model of the system to tailor a control sequence to the current situation,
resulting in a set of feedforward controls that will bring the system to a target, assuming the
physical system is identical to the modeled system. The final configuration at t = T is referred
to as the horizon. If the horizon is finite it can be at a fixed point in time (approaching horizon)
or continuously in the future (fixed or rolling horizon).

The model would have to be perfect and the plant without disturbances for the realized
trajectory to be identical to the optimized trajectory, through only the optimized input. In
practice this is almost never the case. Because of this, practical implementations of MPC use
it online. That is to say the optimization is repeated such a new trajectory is created after the
realized one has deviated. This is illustrated in Fig. 4. The factor that limits when the opti-
mization is performed again is often the time it takes to perform the optimization. In practice
this MPC rate is often at 10 to 100 Hz [5].

Additionally a feedback controller is typically added to steer the real trajectory to the
optimized one (see Fig. 5). This feedback controller is not limited by computational power like
the optimizer, so it can be run much more often (typically around 1000 Hz). The addition of
the feedback controller makes the controlled plant much more robust to disturbances.

8



t

x

t0 tt1

x

t

u

t0 tt1

u

Figure 4: The past state (solid line) and predicted state and input (dashed lines) at two time instances. Because
of a disturbance or modelling error the state trajectory evolved differently from the prediction, resulting in a new
optimized trajectory.

uff[k+1]

xr[k+1]

x[k]
Plant

ufb[k+1]

Feedback

u[k+1]

Optimizer Interpolator

xr(t+τ)

ur(t+τ)

+

+

Figure 5: Overview of the online MPC control scheme. The optimizer produces a set of reference torques and
states for the future and is updated at a slower rate than the control loop itself. Here t+τ represents the predicted
time, last updated at t. The interpolater picks the reference state and feedforward torque from the reference set.
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2.2.1 Optimization Problems

In a general sense, an optimization problem is formulated as:

min
z
J(z) subject to : (6)

f(z) = 0

g(z) ≤ 0

zl ≤z ≤ zu

Here J(z) is the objective function, z the optimization variable, f(z) an equality constraint,
g(z) an inequality constraint and zl and zu are the variable upper and lower bounds.

The collection of objective, variables, constraints and bounds is referred to a NLP (non-
linear problem) in case the constraints are non-linear. There are also linear problems (LP) and
quadratic problems (QP). NLPs are the hardest to solve and difficult to find a global optimum
for.

A problem with optimizing a non-linear problem is that there is no guarantee a global so-
lution is found. Instead the solver can return a local optimum (see Fig. 6) as it is not able to
distinguish it as only a local optimum. Solvers typically follow the gradient of the objective
function and return when this gradient is (close to) zero, indicating a minimum or maximum.
This is also why the initial guess (also named starting point) of the problem plays an important
role. The starting values for the optimization variables can determine which solution the solver
will find. Having a starting point close the global minimum will make it much easier to find
this optimum. In practice it not always achievable to have such a well-tailored starting point.

Figure 6: The objective function (vertical axis) plotted against two optimizations variables. An optimizer can
find a local optimum instead of the global optimum. Image from [19].

The problem is solved when the optimization variables converge: the constraints are not vi-
olated and the objective function gradient is zero. When a problem converges easily, the solver
finds a solution through a small number of productive steps. Convergence is not always easy, the
objective function for example can be rough such that many steps are needed or the constraints
too limiting to reach an optimum. When an optimizations does not converge, either the problem
itself is unsolvable or the allotted time was too little. There is no sure way to know the difference.

There is a wide variety of solvers available that solve such optimization problems. Examples
of solvers for NLPs are IPOPT [20] (interior-point optimization), SNOPT [21] (sparse non-linear
optimizer) and function fmincon in MATLAB. Solvers for quadratic programs are for example
Xpress [22] and CVXOPT [23] (and the code generator CVXGEN [24]).
All these tools have varying strengths and weaknesses and licenses. Although there is hardly
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an ultimate champion among these solver, IPOPT [20] is particularly interesting because of its
speed, open-source nature, active development, robustness and flexibility.

2.2.2 MPC Techniques

There is a distinction between two different approaches in MPC: there are the direct and indirect
methods [25]. In a direct method the trajectory is first discretized to a finite set of points. For
these points the constraints and objectives are then optimized. In other words, the problem is
discretized and than optimized. With an indirect method the conditions for optimality need
to first be composed analytically. Those are then discretized and solved analytically. So the
problem is first optimized and then discretized [6].

Direct methods are typically more suitable to problems involving system dynamics, because
they are less dependent on a strict initial guess and more robust, and they are easier to for-
mulate and solve for complex constraint systems than indirect methods. On the other hand,
indirect methods typically result in more accurate solutions and are easier to combine with path
constraints [6].

There exist multiple methods of problem formulation for MPC. The most prominent ones
are put forward.

Direct Collocation As the name implies, direct collocation is a direct method and therefore
shapes both the control and state trajectories at the same time. It works by discretizing the
optimization window into collocation points. This is shown in Fig. 7. Each state and input
signal for each point is then an optimization variable, such that for N collocation points the
total number of variables to be optimized is N · (n(u) + n(x)). The state x is a combination of
independent coordinates and velocities:

x =

(
q
v

)
(7)

The complete optimization vector then looks like:

zT = (xT [1] xT [2] . . . xT [N ] uT [1] uT [2] . . . uT [N ])T (8)

In order to keep the system dynamically correct, constraints are added to correlate acceler-
ations, velocities, positions and torques of adjacent collocation points. A type of interpolation
has to be chosen for integration between points. The simplest approach is a first order interpo-
lation, resulting in trapezoidal integration. A more accurate solution could come from a second
order interpolation, which is also called the Hermite-Simpson method [6]. Any order polynomial
could be used to interpolate between points. The polynomial coefficients are then optimized in
addition to or instead of the collocation points. Additional constraints might then be needed
to keep the trajectories first order continuous to be physically feasible.

Differential Dynamic Programming Dynamic programming methods do not really be-
long to either the direct or indirect methods. The latter methods work by finding an optimal
trajectory, whereas dynamic programming methods result in an optimal policy, which can then
be applied to all points in the state space. The advantage is this policy can be directly applied
to the real system. A second advantage is the global optimal will always be found (at least
for sufficiently basic problems). A significant disadvantage of dynamic programming is that
computing a solution for every point in the state space is expensive. And this computational
intensity scales exponentially with the dimensions of the problem [6].
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Figure 7: Diagram showing how the trajectory which is to be optimized is discretized into collocation points.
The first and Nth points are fixed, all points in between are optimized.

Differential dynamic programming (DDP) is a type of dynamic programming. It relies on
the optimality principle: a problem with an optimal sub-structure can be broken up into sub-
problems, where each part is solved optimally, resulting in an optimal solution for the original
problem.

We consider the dynamics of the system in consecutive timesteps:

xi+1 = f(xi,ui) (9)

And a set of all inputs for the time window:

U = (u0,u1, . . . ,uN−1) (10)

A cost function based on all inputs is constructed:

J0(x,U) =
N−1∑
i=0

l(xi,ui) + lf (xN ) (11)

We take a tail section of the control sequence and define the cost-to-go function (the cost to go
from a certain point to the end):

Ui = (ui,ui+1, . . . ,uN−1) (12)

Ji(x,Ui) =

N−1∑
j=i

l(xj ,uj) + lf (xN ) (13)

Define the optimal cost function, which is the value of the cost-to-go function for a certain
point:

V (x, i) = min
Ui

Ji(x,Ui) (14)

From the optimality principle:

V (x, i) = min
u

[l(x,u) + V (xi+1, i+ 1)] (15)

= min
u

[l(x,u) + V (f(xi,ui), i+ 1)] (16)
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We find a second order variation function of the arguments of the min function in V :

Q(δx, δu) = l(x + δx,u + δu) + V (f(xi + δxi,ui + δui), i+ 1)

− l(x,u)− V (f(xi,ui), i+ 1) (17)

≈ 1

2

 1
δx
δu

T 0 QT
x QT

u

Qx Qxx Qxu

Qu Qux Quu

 1
δx
δu

 (18)

This Q function is the discrete analog of the Hamiltonian.

Using Q we can iteratively optimize the problem:

1. Initialize problem with initial guess x0 and U0.

2. Perform a forward pass, i.e. a regular forward simulation of the system using U .

3. Perform a backward pass, i.e. estimate the objective function and dynamics for each state
and input.

4. Calculate an updated U .

5. Decide on program termination or repeat with another forward pass.

Together with approximations to the Hessian of the dynamics in Eq. (18) with respect to the
variations δx and δu this method is called iLQR or iLQG (iterative Linear Quadratic Regulator
/ Gaussian)

Direct Shooting Methods In direct shooting methods [6] a trajectory is optimized through
simulation, from an initial state and controls along the way (shown in Fig. 8). The trajectory
itself is not part of the optimization variables. In direct single shooting the entire trajectory
in considered at once, whereas direct multiple shooting breaks the trajectory up in segments,
making the optimization much more robust. Compared to collocation methods, whose problems
are big and sparse, shooting methods build problems that are smaller and more dense.
Path constraints are difficult to implement on shooting methods because the trajectory is not
directly a part of the NLP. Instead, the state at any time has to be propagated from the initial
state.

u

t t

x

Figure 8: Diagram of an example of two iterations of direct single shooting. Only the input (left, blue nodes)
are optimization variables. The resulting state trajectory (right, red arrows) has to be computed from the input.

2.3 Implementation Levels of Locomotive MPC

Model predictive control for locomotion can be applied on different stages and work together
with different schemes that e.g. produce foothold locations. A few different levels of implemen-
tation are suggested below. See Fig. 9 for a schematic overview.
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Figure 9: Overview of different levels to MPC-like locomotion control. The main variation is which steps are
part of the locomotion optimizer. The most complete solution would be optimizing the entire movement from A to
B (typically at least an entire stride), which is also the method that would be the most difficult to implement. A
linear inverted pendulum (LIP) is a more basic and conventional model for legged locomotion. ‘Input’ represents
a high-level control signal, such as a joystick.

All-in-one NMPC:

The amount of inputs and constraints is kept at a minimum. The optimizer should figure out
where to place the footholds in order to move and keep stability.
Getting a complete NMPC scheme to converge quickly enough is challenging. We are still
unsure if this method is practical at all. It is likely that optimization has to be done over an
entire stride (i.e. two steps) in order to achieve proper walking.
In theory this is the preferred method, because both trajectory and stability are optimized at
the same time (e.g. balance can be kept after a disturbance by changing the next foothold).

Step optimization NMPC:

The footholds are produced by another scheme and the NMPC steps through them. This could
be either per step or per stride (two steps). The latter might produce a more optimal and
less rigid motion since intermediate states are less restricted. This might be easier to converge
than the all-in-one NMPC, though it might also be less resilient in terms of balance. Balance
robustness will depend on how strict the foothold constraints are and how intricate the foothold
planner is. If the footholds are only described by a range (or maybe even only through the
objective function), side-stepping to maintain balance could still occur.
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Simplified (L)MPC:

The complete system dynamics come down to:

M(q)q̈ + C(q, q̇) + N(q) = τ (19)

Instead we only consider the main body, as a lumped mass with only reaction forces from the
ground. Then:

mr̈(t) =
∑
i

f i(t)−mg (20)

Iω̇(t) + ω(t)× Iω(t) =
∑
i

f i × (r(t)− pi(t)) (21)

Having the footholds from an external planner, we can optimize the reaction forces from those
footholds and the center of mass trajectory (see Fig. 10). Because of rotations in 3D this simple
system is still non-linear. However, if the angular velocities remain small the fictitious forces
can be neglected (ω(t)× Iω(t) ≈ 0). A quadratic program can be solved orders of magnitudes
faster than a non-linear equivalent, so this could be advantageous for real-time applications.
From the desired reaction forces the joint torques can be computed using kineostatics:

τ = JT (q)
∑
i

f i (22)

Note that finding optimal joint torques which correspond to ground reaction forces is an opti-
mization problem in itself, because the number of actuated joints is typically larger than the
combined dimensions of the reaction forces. The pseudo-inverse mentioned above is the easiest
solution, though another optimizer could be used to get a more efficient outcome.

r1
r3

r4
r2f2

f3

f4

f1

Figure 10: The system is simplified to a single body on which reaction forces from the ground act. These
reaction forces span the contact surface.
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2.4 MPC Real-Time Implementation

Perfect non-linear model predictive control, which would be control for an entire body over a
large number of collocation points for a significant horizon executed at a high control rate, is
difficult and currently impossible. Conventional control loops run at a speed in the order of
1 ms (1000 times per second). Solving a difficult NLP in such a short time is not possible on
even modern personal computers. Techniques have been used in previous work in attempts to
overcome this speed limitation. The most promising techniques will be discussed with their
advantages and disadvantages.

Simplification: Avoid System Dynamics

NMPC is computationally intensive to solve because of the non-linear nature. A linear or
quadratic optimization problem can typically be solved quickly enough to be used in real-time.
The non-linear aspect in NMPC comes from constraints which are not linear. The system
dynamics constraints for instance are not linear to all optimization variables for any system
in 3D or containing even a single rotation joint. By simply excluding the system kinetics and
only considering the kinematics, the problem can be made a quadratic program (QP), making
it fairly easy to solve. This is what Hutter et al. do in [7] for the quadruped hybrid ANYmal
robot. They use MPC to find a smooth trajectory for the wheels at the tips of the legs, without
taking torques into account. As a result they can optimize each wheel trajectory in under 1 ms.

The significant downside of this is the resulting trajectory is optimal only in its own shape.
Momentum of all bodies or joint torques cannot be considered, which are arguably the properties
that matter most for optimality.

Simplification: Lumped Rigid Body

In [10] MPC is used in combination with whole-body control (WBC) on the quadruped Cheetah
robot. For the system dynamics only the base body is taken into account, which is modelled
as a single rigid body. Additionally the Newton-Euler equations are simplified such that the
EOM in 3D are linear. Instead of optimizing joint torques, the reaction forces at the ground for
each leg are optimized (see Fig. 10). The optimization problem is quadratic, they call it convex
model predictive control (cMPC) and it can be quickly solved. The online WBC then computes
the required joint torques to realize the computed reaction forces. Sangbae et al. advice to
put aside the idea of optimizing joint trajectories and instead only focus on the reaction forces.
This would work well for a quadruped robot, which is frequently entirely in the air.
Although this cMPC method results in a QP, Sanbgae et al. only run the prediction at 30
Hz. It should be possible to run the optimization more often if needed. Still, their results are
impressively dynamic.

Similar work was done before by [26]. Here they optimize the dynamics of only the center of
mass, which they call the centroidal dynamics, of a biped robot. And also in [1], where Winkler
et al. optimize centroidal dynamics for robots with any number of legs in a impressive software
platform, named TOWR.

Optimization: Complete Dynamics

A more head-on approach is done in [12]. Hutter et al. include the entire system dynamics and
go through great lengths to tailor a custom optimization sequence (instead of an off-the-shelf
optimizer) that can optimize their control torques at a rate up to 190 Hz for a time window of
0.5 seconds.

Hutter et al. made the software platform open-source, it is released as the Control Toolbox.
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Offline optimization: Neural Network

Another solution would be to optimize state and control trajectories offline. This would result
into a large look-up table of states and torques. This table could then be used for online
control instead of running the optimization online. A potentially more effective method could
be training a neural network on the generated table and using the trained network for online
control. To the best of our knowledge such an intermediate neural network has not been tested
on walking robots before.

2.5 Modelling Contact in MPC

Dynamic optimization problems based on a set of continuous equations of motion are reasonably
straightforward. The problem description can be defined clearly, gradients are defined continu-
ously and convergence is relatively easy to achieve. This was done earlier by this research group
[4, 5] for a sagittal walker, hinged at the stance foot. However, the resulting generated gait
has no ground interaction whatsoever, making the double stance phase infinitely short. The
end-effectors never switch between stance or swing during the horizon. The result would likely
not be directly useful for a real robot, the interaction with the ground through contact is vital
in legged locomotion.

To find a more useful solution the ground interaction has to be taken into account. This
has two purposes. For one, contact is needed such that all walking phases such as foot landing,
double stance and foot push-off can be included. And secondly the floor contacts significantly
influence the system dynamics. For example, a high speed impact might be unfavorable because
of the resulting torques to stabilize. Such aspects are ignored when no floor contact is included.

Modelling contact with the floor is not trivial, largely because it is inherently discontinuous.
There are various approaches, which are discussed below. Figure 11 summarizes the methods.

a) b) c)

Figure 11: Three different methods of handling contacts: a) Hybrid dynamics (switch to a joint), b) non-linear
soft contacts and c) reaction force optimization.

2.5.1 Implicit Contacts

It could be easiest to include the contact dynamics in the equations of motion ẋ = f(x,u). This
way no specific attention to contact is required. The dynamics will be accurate, no scheduled
contact information is needed and contacts will be automatically discovered.
One way to accomplish this is by employing soft contacts, i.e. modelling contact through spring-
dampers. Hutter et al. [12] use exponential spring-dampers to keep reaction forces (close to)
zero in the air and to a varying non-zero value based on penetration:

λ = −k exp (αkpz(q))− d sign (αdpz(q))ṗ(q, q̇) (23)

Downsides of such soft contacts is that they are relatively inaccurate compared to the hard
contacts of the real world. If the spring-dampers are made more stiff the accuracy becomes
larger, however as a result a higher frequency in simulation (i.e. density of collocation points)
will be needed to model it properly. The model will be more robust for softer springs, at the
cost of accuracy compared to the real world.
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Another problem is the spring-dampers require careful tuning to be non-sticking, i.e. it should
not take additional force to pull a limb out of the penetration into the floor. The Hunt-
Crossley spring-damper [27] is suitable, it is designed to be non-sticking for contact simulation.
Its definition is somewhat complex and therefor the dynamics derivatives will be even more
complex.

A method that still seems to have been explored little in combination with collocation
techniques so far is using dedicated simulators that can handle rigid body mechanics and contact
dynamics. A simulator like MuJoCo [28] could be used to compute the dynamics function
during optimization, also making the contacts entirely implicit. Such simulators are based on
soft contacts, though through numerical methods the stiffness of contacts can be much greater
than an analytical model with soft contact.
A limitation of numerical simulators is the required gradients. Forward dynamics can be easy
and fast to compute, but the NLP will inevitably require gradients in order to be solved. So
besides the system dynamics itself:

ẋ = f(x,u) (24)

all gradients are needed too:

∂ẋ

∂x
,
∂ẋ

∂u
(25)

Such gradients will have to be approximated through finite differences, e.g.:

∂ẋ

∂xi
≈ f(x + εi,u)− f(x,u)

||εi||
(26)

Meaning that for every element of x dynamics have to be computed again, increasing the
computation time of the optimization proportional to the size of x.

2.5.2 Hybrid Model

Arguably the most common method is using a hybrid model [29, 30, 31], i.e. a model that
switches behavior based on the current mode. The previous works of Opheusden [4] and Paas [5]
are arguably also hybrid models, although their optimizations simply stop before the transition
to a next phase. Examples of such modes could be double stance, swing or flight (completely
free from the ground, relevant for running gaits). The modes are then connected through extra
constraints, to make sure the states at the boundaries correspond. Modes typically switch at
fixed schedules, the time for each mode is then pre-programmed.

This type of model is not ideal, most noticeably for more complex systems. Moreover,
scheduled mode switches limit the extend to which the problem can be optimized. The hybrid
model is criticized further in [14] and the suggested alternative is mentioned below.

2.5.3 Contact Optimization

An alternative to the hybrid model is suggested in [14] is optimizing the contact explicitly. Nu-
merical simulators typically solve contacts between rigid bodies using an optimization problem.
The result from this optimization are the contact forces. Instead of considering the contact
forces as part of the dynamics function (and therefore part of the constraints), it is suggested to
include the contact forces in the optimization variables, effectively solving the dynamic contacts
together with the rest of the problem. This does increase the number of variables to be solved,
though this is acceptable considering the ease with which the dynamics can now be calculated.
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Posa et al. [14] describe the forward dynamics of a rigid body with floating base as:

find q̈,λ (27)

subject to M(q) + C(q, q̇) + N(q) = Ja(q)u + JT (q)λ

φ(q) = 0

λ ≥ 0 (28)

∀i, φi(q)λi = 0 (29)

Where λ represent the constraint forces, φ(q) ≥ 0 the non-penetration constraint and JT (q)
the jacobian projecting constraint forces to generalized forces.

2.5.4 Timed Foothold Optimization

A large downside of hybrid dynamics methods is that footholds are typically entirely planned
beforehand, i.e. timing of each gait phase is fixed. Ideally the gait itself is optimized as well,
instead of having to rely on the suggestion that is given. An improvement to this is suggested
by Winkler et al. [1]: each leg has consecutive contact times Ti,contact and swing times Ti,free,
which are optimized too. The number of points that react to the ground is discretized to a set
of end-effectors. Winkler et al. use a single end-effector per leg, modelling pin-feet. This could
be extended further to include for instance heels and toes on a leg.
The optimizer is free to naturally select a gait pattern. In practice the final gait is largely
dependent on the initial guess, so the gait can be designed through it while still being optimized.
The number of phases for each end-effector is fixed. However, because the duration of each
individual phase is variable, there is still large flexibility in the final gait selection.

The gait phases are realized through reaction forces at the end-effectors. These forces are
zero during swing and non-zero during stance. The forces are included in the optimization
variables, comparable to the contact method mentioned above.

Figure 12 shows how the phase durations result in different gaits. Figure 13 shows the
complete non-linear problem description.

Figure 12: Two different biped gaits (top and bottom), only varied by changing the phase durations of individual
legs. [1]
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Figure 13: The complete problem description of time-parameterized, multi-legged locomotion. [1]
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3 - Design

In this chapter the design of the MPC framework is discussed. This is split into different
sections, each addressing a specific aspect and the decisions involved in that aspect. These
aspects are contacts, system dynamics and NLP formulation. Additionally some light is shed
on how the MPC is used in an online fashion and how the software implementation was done.

The foundation was formed by the works by Opheusden [4] and Paas [5], whereas this design
builds upon this.

3.1 Contacts

3.1.1 Implicit Contact

The analytical dynamics model of the sagittal five link biped from Kelly [6] (see Fig. 3) is hinged
to the ground at the stance foot. By removing this hinge and instead connecting both feet to
non-linear spring-dampers (Eq. (23)) soft contact could be simulated, as was put forward in
Sec. 2.5.1 Implicit Contacts. Because of the analytical nature of the model the needed gra-
dients could be defined exactly, all extracted from MATLAB as outlined in Sec. 2.1 Dynamic
Modelling. With no need to pre-define gait information the optimization might discover a gait
by itself, which is why this method of implicit contact is desirable.
However, no sensible gait can be generated when the model is extended with spring-damper
contacts. Only when the springs are made weak the optimization can converge, though the
result is an unnatural bouncing from the initial to the final configuration.

As an alternative the analytical model was replaced by a model in the MuJoCo physics
simulator. The same five link biped in sagittal plane was recreated as a MuJoCo model. When
the stance foot is hinged to the world and the swing foot left free to interact with the ground,
good single-step trajectories can be produced. The optimization is quick and robust to the
initial guess.
When both feet are made free, again no sensible gait can be produced. No optimizations would
converge and the unconverged results look like unnatural and erratic jumping that is not close
to physically correct and could not be used on a real system. Starting with a reasonable initial
guess does not improve the results. Figure 14 shows the objective function and constraints
violation over the course of the iterations. There seems to be no steady decline in constraint
violation, so it is unlikely it is a matter of patience. To put this in more perspective, the opti-
mization of the biped when hinged at the stance foot converged typically within 20 iterations.
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Figure 14: Objective function and constraint violation over iterations during optimization of biped in MuJoCo
with implicit contacts. An unscaled constraint violation of about 10−5 is considered acceptable.

From these findings it seems that implicit contact through soft-contacts is simply not fea-
sible for optimization of system trajectories. Moreover, the design requires not just feasibility
but also robustness in the optimization and flexibility to the initial guess (Sec. 1.2 Requirements
and Objectives).

A hypothesis to why this could be is outlined in Fig. 15. The optimizer works by follow-
ing gradients, it has no understanding of the situation. For example, from the gradient of
the dynamics function it can ‘deduce’ that increasing a specific torque will steer a state out
of constraint violation. The ground reaction forces have a gradient that is flat when not in
contact and become steep when penetration starts. For hard contacts (and the real world) this
gradient would be almost infinitely steep. This means that before a limb is close to contact
the optimizer is not ‘aware’ of it. When contact is made the reaction force is sensitive and its
gradient non-linear. Thus making it difficult to find a constant penetration depth and rather
making the limbs bounce on the surface.

Figure 15: Diagram showing how the ground reaction force (FR) and its gradient change when contact is being
made in a soft-contact simulation. The optimizer looks only at gradients and from the gradient alone a contact
cannot be foreseen in time.
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3.1.2 Explicit Contact

As the framework concepts based on implicit contacts do not seem feasible, a logical next con-
cept involved explicit contacts. The method of timed footholds of Winkler [1] forms the basis
for this, as explained in Sec. 2.5.4 Timed Foothold Optimization.
A fork of Winkler’s TOWR framework was made, using whole-body dynamics while still relying
on explicitly defined contact phases. This proved to be effective, trajectories for arbitrary robots
could be produced even with the most basic initial guess. The solver can comfortably deal with
the constraints created by the contact, solving them through reaction forces and keeping the
system dynamics valid.

There is one major difference between the phase-based optimization in TOWR and this
framework: the gait phases are not part of the optimization variables and therefore fixed to the
predefined phases. This is a consequence from the universal nodes, which is explained in the
next section.

3.2 System Dynamics and Kinematics

3.2.1 MuJoCo

Analytical dynamics produced by MATLAB are a relatively easy solution to modelling dynam-
ics. However it quickly showed it is not practical for realistic systems with more degrees of
freedom. Instead it was decided to use a numerical simulator to compute forward dynamics.
MuJoCo [28] was chosen as it designed for purposes such as these, as outlined in Sec. 2.1 Dy-
namic Modelling.

Besides dynamics MuJoCo can also provide the solver with kinematic constraints. By nam-
ing the end-effector bodies in the XML model file their positions can be found as a function
of the generalized coordinates (see Fig. 16). Geometric jacobians for each body are already
computed internally that can be used for the constraints jacobian.

Figure 16: Rendering of a MuJoCo model for a 3d biped walker, showing the body frames. Body frames can
be marked as end-effectors by the optimization framework. In this example the heels and inner and outer toes
are selected as end-effectors.
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A large advantage of using MuJoCo is that models are easily modified and replaced, since
almost nothing of the robotic system needs to be embedded in the code. Adding a new robot
to produce gaits for is done with the following procedure:

1. Making a new XML model file, with a name for each end-effector body.

2. Pointing the optimizer to this file and listing the names of the end-effector bodies.

3. Describing basic joint positions which will make up the initial guess.

4. Optionally adding joint bounds to limit the solutions.

Although MuJoCo is a suitable platform, it could easily be replaced. The code of the
framework is written in an object oriented fashion such the abstract robot class can be extended
by any other class relying on a different platform. Such a platform must be able to compute
forward dynamics without integration and should include direct state manipulation and forward
kinematics.

3.2.2 Node Interpolation

Opheusden [4] and Paas [5] used direct collocation with universal nodes fixed in time, and be-
tween the nodes linear interpolation was used. Universal nodes means all variables are defined
with a fixed time interval between them, like frames of an animation. Winkler’s TOWR frame-
work [1] works with cubic splines instead, where the start and end of each spline are restricted
to positions and their derivatives. And the nodes connecting these splines are not all universal,
nor are they all fixed in time. This is illustrated in Fig. 17. This works well with the timed
phases approach. In TOWR each phase consists of three cubic splines, where start and end
node of these phases are timed and can be shifted by the optimizer. Because the nodes are
shifted, the full continuous range of time is available. The nodes for variables specific to an
end-effector are independently timed to other end-effectors. The nodes for base position and
orientation are fixed in time, independent on gait phases.

When collocation nodes are universal, constraints can be applied to a set of nodes that
completely define the system at that frame, for instance to keep the dynamics correct. When
the nodes are variable in time, constraints have to be applied to the interpolation between them
(see Fig. 18) because the nodes do not align in time. This is done in the TOWR framework, at
fixed intervals the dynamics and kinematics constraints are applied. Velocities are determined
through the derivatives of the splines. The dynamics are constrained by matching the second
derivatives of the base splines the applied forces.

When the same principle of phase-based nodes is extended with another spline representing
joint torques and the centroidal dynamics constraint replaced with a whole-body constraint, the
solver can no longer find a solution that satisfied all constraints. This is likely because of the
irregularity in the constraints relative to nodes. Figure 18 shows this: the end-effector position
spline has three nodes between two constraints on the far left, whereas there is only one node
between two constraints right next it. In order words, parts of the problem are over-constrained
while other parts are under-constrained. For almost linear centroidal dynamics, as applied in
TOWR, this is not a problem because a linear relation between functions can always be satis-
fied when those functions are sets of cubic splines. However, a highly non-linear relation like
whole-body dynamics cannot always be satisfied by polynomial functions.

Hence it is necessary to use universal nodes, constrained by integrated dynamics (Fig. 19
illustrates this). This proved successful, universal nodes in combination with trapezoidal dy-
namics integration result in converging optimizations.

The downside of universal nodes compared to phase-based nodes is that the order of gait
phases cannot be changed. The reason for this is that the bounds of the inequality constraints
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Figure 17: Two different types of spline variables used in the phase-based NLP. For an abstract visualization
only a single dimension is drawn per variables and the image is not to a physical scale. The base motion (linear
and angular) and the new torque variables are splines with nodes at constant intervals. The variables specific
to an end-effectors (reaction forces, end-effector positions) are splines where the node spacing is not constant, in
order to realize the variable gait phases. Here the values are either constant or a spline where the start and end
time is defined by the phase duration. Inside a phase the nodes are evenly spaced.

must be static and cannot depend on optimization variables. E.g. the limits of an end-effector
constraint cannot be toggled from (0, 0) for a contact phase to (0,∞) for a swing phase. It
is still possible to alter the time of nodes and therefore the phases, although these are for all
phases at that time. Nonetheless the universal nodes were implemented in the framework to
achieve functional dynamics constraints.
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Figure 18: Constraints (dashed lines) are applied at fixed intervals, not directly on the nodes but on the spline
interpolation between them.
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Figure 19: Dynamics constraints can be applied at fixed times (left) for node splines. The acceleration at time
instance can be differentiated from the position splines. Alternatively the constraint can be applied by comparing
adjacent nodes (right), applying trapezoidal integration of the acceleration. In the latter case no differentiation
is needed.
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3.3 Non-Linear Problem Formulation

Figure 20 gives an abstract but complete overview of the non-linear problem in the framework.
The next sections will elaborate more on the choices made.

Optimize:

• J =
∑
τ 2

For:

• q(t) ∈ Rnq Joint coordinates

• v(t) ∈ Rnv Joint velocities

• τ (t) ∈ Rnu Joint torques

For every foot i:

• Fi(t,∆Ti,1, ...) ∈ R3 Reaction forces

With the constraints:

• v̇ − f(q,v, τ ,F) = 0 System dynamics

• q̇− dq
dt = 0 System states

For every foot i:

During stance:

• pi,z(q) = 0, Jee,i(q)v = 0 End-effector on the terrain

•
√
Fi,t1

2 + Fi,t2
2 ≤ µFi,n Limiting to friction pyramid

During swing :

• pi,z(q) > 0 End-effector above the terrain

• Fi = 0 No reaction forces

Figure 20: A simplified representation of the non-linear program of the new framework. The phase durations
are leading variables but are not optimized over.

3.3.1 Variables

The biped walker optimizations from previous work contain the states (joint positions and joint
velocities) and torques as optimization variables. The TOWR platform uses the base position
and orientation, end-effector positions and reaction forces. The velocities of the base are not
made explicit, instead these are determined from the derivative of the position splines.
With the addition of whole-body dynamics, the joint torques will have to be included as opti-
mization variables. There is however still freedom in how the state is described.
Because the end-effector positions will be needed in the constraints, due to the explicit contact
method, it is tempting to include the end-effector positions in the optimization vector, like in
the formulation in TOWR. For a simple model the end-effectors can provide an exact coordinate
system, see for example Fig. 21. For more complex models a preferable inverse kinematics solu-
tion would needed to be picked (e.g. a knee swivel angle) to make for an exact representation.
Another downside is the dynamics description become rather difficult (see appendix C).

Including only the joint positions and velocities would make the dynamics description easier.
Geometric jacobians would then be needed to constrain the end-effector positions.
A third option is then to include both joint and end-effector states. It would make both the
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Figure 21: Two examples of exact coordinate sets: joint space (left) and end-effector positions (right). The
number of independent variables should be 7, regardless of which set is chosen.

dynamics and terrain constraints easiest, only it would require another set of constraints to
make sure the end-effectors match with the joint positions.
It was decided to only include joint states. This limits the size of the optimization vector and
the number of constraints. More over, of all notations the one involving only joint states con-
verges most easily.

So the optimization variables will consist on the joint positions q, joint velocities v, joint
torques τ and reaction forces F. Each of these forms a set of variables, which are defined as a
set by the help of the IFOPT interface. Each variable set has the variables for that type for all
collocation points. We will denote this with the bar symbol:

q[k] =
(
q1[k] q2[k] ...

)T
(30)

q̄ =
(
q[1]T q[2]T ...

)T
(31)

(32)

The same goes for v̄, τ̄ and F̄. Then

zT =
(
q̄T v̄T τ̄T F̄

T
)

(33)

3.3.2 Costs

IFOPT makes it easy to define multiple costs that will be added together. The gradient of this
can then be defined per cost and per variable set.
The main cost is the torque squared:

J(z) =
N∑
k=0

n(τ )∑
i=0

τi
2[k] (34)

Joint torque is chosen for minimization because it is the best representation of an efficient gait.
The sum is squared, as is common in optimization, such that the objective function itself and its
derivative are smooth, a global minimum exists and such that no distinction is made between
negative and positive values.

A secondary cost that was experimented with is the angular velocity of the main body:

J(z) =
N∑
k=0

5∑
i=3

vi
2[k] (35)
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Where v3 to v5 is the angular velocity of the base. The addition of this cost limits twisting in
the upper body.

3.3.3 Constraints

See appendix D for complete definitions of the constraints and jacobians.

A number of constraints were needed or helpful to produce the gaits. The IFOPT allows
us to define constraints in smaller sets. And instead of needing to define the jacobian for these
constraints to the entire optimization vector, IFOPT lets us define jacobians per constraint, per
variable set:

gT =
(
Φ1

T Φ2
T · · ·

)
(36)

∂g

∂z
=


∂Φ1

T

∂q̄
∂Φ1

T

∂v̄ · · ·
∂Φ2

T

∂q̄
∂Φ2

T

∂v̄ · · ·
...

. . .

 (37)

These constraints Φ all apply to each collocation point:

Φ1 =


Φ1[0]
Φ1[1]

...
Φ1[N − 1]

 (38)

The constraint jacobians need to be defined to entire variable sets. To make these definitions
easier we introduce node jacobians:

∂Φ[k]

∂q̄
=
∂Φ[k]

∂q[k]

∂q[k]

∂q̄
(39)

∂q[k]

∂q̄
=
[
0 . . . 0 In×n 0 . . . 0

]
(40)

n = n(q[k]) (41)

So we only need to define the jacobians to a general point k:

∂Φ[k]

∂q[k]
,
∂Φ[k]

∂u[k]
,
∂Φ[k]

∂F[k]
, etc. (42)

For brevity we will omit the notation [k] further on when possible.

Integration constraints are added to constrain that joint velocities add up to joint posi-
tions. If states x were used as optimization variables this would be implicit in a dynamics
constraint: ẋ = f(x,u). However, to make integration with a simulator easier the positions and
velocities were separated. Therefore also the dynamics constraints and integration constraints
are independent.
The constraint is:

Φ[k] = q[k]− q[k + 1] +
∆t

2
(q̇[k] + q̇[k + 1]) (43)
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Note that the joint rates q̇ are integrated. These can be determined from the joint velocities:

Φ[k] = q[k]− q[k + 1] +
∆t

2
(Bkv[k] + Bk+1v[k + 1]) (44)

Here B(q) relates the joint velocities to joint rates (see appendix A.2 Quaternions in joint
position):

q̇ = B(q)v (45)

Note that last collocation point k is kept free. The bounds of this constraint set are zero.

Dynamics constraints keep the velocity, torques and forces physically correct. We define it
as:

Φ[k] = v[k]− v[k + 1] +
∆t

2
(v̇[k] + v̇[k + 1]) (46)

v̇ is not an explicit variable, so it is computed by the dynamics function:

Φ[k] = v[k]− v[k + 1] +
∆t

2
(fk + fk+1) (47)

Where

fk = f(q[k],v[k], τ [k],F[k]) (48)

which is determined numerically by MuJoCo in this implementation. It could just as well be
defined analytically or by a different simulation tool.

Note that last collocation point k is kept free. The bounds of this constraint set are zero.

Quaternions constraints make sure the norm of the quaternions embedded in the joint
positions are kept normalized:

Φ[k] =

(
||
(
qi[k] qi+1[k] qi+2[k] qi+3[k]

)
|| − 1

...

)
(49)

Here i is the index corresponding to the first component of a quaternion.
Each quaternion present in the model results in a row in the constraint for each collocation
point. Note that most conventional models will only include a single quaternion for the free
base.

Terrain constraints are needed to keep the end-effectors on the surface of the terrain without
slip:

Φ[k] =

zee[k]− zterrain[k]
xee[k]− xee[k − 1]
yee[k]− yee[k − 1]

 (50)

The first row keeps the vertical distance between end-effector and terrain zero during stance.
The second and third rows define the difference in horizontal location between adjacent collo-
cation points and also should be zero during stance, with the exception of the first point of the
stance phase (then k − 1 is still part of a swing phase).
Instead of these differences in position the horizontal velocities could be constraint to zero.
This would be accomplished through multiplication of the end-effector jacobians and the joint
velocities. The constraint jacobian would then involve ∂Jee(q)v

∂v , which contains the kinematic
Hessian and is not easily retrieved from MuJoCo.
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Force constraints are used to keep the reaction forces zero during swing phases and limit
the forces to a friction cone during stance.
The friction cone is simplified to a pyramid shape to make the equations easier (Fig. 22). This
shape corresponds to three limits:

0 ≤ F · n ≤ Fn,max (51)

|F · t1| ≤ µ(F · n) (52)

|F · t2| ≤ µ(F · n) (53)

This means that the reaction force must be on the positive side of the surface and limited to
some maximum and each tangential projection of the reaction force must be limited by a friction
coefficient µ.

Figure 22: Friction cone and simplified friction pyramid for a contact force. ni is the surface normal and t1 and
t2 the surface tangents. Image is from [32] (modified).

This results in 5 constraints in our NLP, because the absolute value operation should be
avoided due to corresponding discontinuity in the gradient. These are [1]:

Φ =


F · n

F · (t1 − µn)
F · (t1 + µn)
F · (t2 − µn)
F · (t2 + µn)

 (54)

These constraints must be zero during flight: Φ = 0. During stance the inequality constraint
is: 

0
−∞

0
−∞

0

 ≤ Φ ≤


Fn,max

0
∞
0
∞

 (55)

Note that these have to be applied for each end-effector individually.

3.4 Online MPC Loop

The purpose the locomotive trajectory generation is online MPC on a real system, hence the
designed optimization framework should be testing in an online MPC fashion.
Figure 5 shows an overview of how such an MPC scheme looks like. The optimizer finds a tra-
jectory until the horizon, which is applied as feedforward to the system. A feedback controller is
used with the optimizer output as reference. The feedback loop can run at a high rate (order of
1000 Hz), whereas the optimizer takes much more computation time and will therefor update at
a slower rate (1 - 100 Hz). The feedback controller and the fact that the optimizer updates can
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make the system robust against disturbances, while keeping the optimal nature of the control.

Because a legged robot is not fixed the ground, it is underactuated:

M(q)q̈ + C(q, q̇) + N(q) = Su + Jλ(q)λ (56)

n(q̇) > n(u) (57)

Here S is a selection matrix mapping the actuator torques to system states and Jλ(q)λ the
reaction forces on the end-effectors. All actuators work on joints which are included in the
generalized coordinates, hence S consists of rows with only a single 1, the rest being zero.
For the feedback controller torques u have to be found to reduce an error in the states: qref−q.
Because the system is underactuated there is no solution that will make the error go to zero for
all time instances. It is chosen to simply only include the actuated generalized coordinates in
the feedback controller:

u(qu,error) = u(STqerror) (58)

For a PD controller, where the derivative action is based on the state velocity:

u = ST (Kp(qr − q) +Kd(q̇r − q̇)) (59)

3.5 Software Implementation

The framework is written in C++, chosen because of its speed and because both IPOPT and
MuJoCo are available in C++. The implementation is very similar of the TOWR platform
made by Winkler [1]. Like TOWR, IFOPT is used as an interface to the IPOPT solver. IFOPT
greatly eases the creation of a non-linear problem by combining variable sets, cost sets and con-
straint sets, each as individual objects. All of these are classes that extend an application base
class, which in turn extends an general IFOPT base class. Appendix E shows UML diagrams
showing the structure of parts of the code.

The program starts with a helper class to compose the NLP (NLPFormulation). This class
creates the variable, cost and constraint sets. Note that all these objects are created as shared
pointers such they can be easily shared. The pointers of the variable sets are grouped together
in a struct, NodesHolder. By passing this struct to a constraint it has easy access to all the
variables. When the optimization is finished the nodes holder can also be used to extract the
solutions.

The NLP formulation class also contains two helper objects: a terrain and a robot model.
The terrain is a height-map instance providing information of the ground, i.e. the height, nor-
mal vector and the corresponding derivatives. The robot model is an object containing methods
for the system dynamics and kinematics (and derivatives). Pointers to these two objects are
passed to constraints where needed, e.g. the robot model is passed to the dynamics constraint
and the terrain object to the forces constraint.
The robot model is used for forward dynamics, not for a step-wise simulation. So each con-
straint that uses it will update the model with the state for a collocation point, read the output
and update it again for the next point.

Integration with MuJoCo is accomplished through the MuJoCoModel class. MuJoCo itself is
deliberately written in C instead of C++ for performance, and is therefore completely without
object orientation. The MuJoCoModel class is an object oriented wrapper for MuJoCo making it
much easier to use and the code more organized. It is unlikely this is at the cost of computation
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speed for a C++ compiler with optimizations enabled.

The predefined gaits play an important role. To ease the gait definitions the same method
from TOWR is used. For each type of legged robot (e.g. biped, quadruped, biped with toes,
etc.) an extension of GaitGenerator is made. In each generator all possible modes are defined,
which are combinations of each end-effector being in contact and in the air. The generator then
has a number of strides, such as stance, flight or taking a step. Each stride consists of a set
of modes with for each mode a duration. An entire sequence can then be easily composed by
combining strides. An example is shown in Fig. 23.

Left

Right

Modes

Strides

L+R L L+
R

R L+R 0 L L+R

Stance Step Skip Stance

t

Figure 23: Illustration of the gait generator for a biped. The four different modes and the set of strides have
to be defined only once. The strides can then be easily combined to form walking sequences.

It is significant to compile the program with the g++ -Ofast option, as it can improve the
computation speed as much as five times compared to -O0. -Ofast enables all standard compile
optimizations also used in -O3, as well as some optimizations that are outside the standard.

The complete source be found here: https://bitbucket.org/ctw-bw/gambol/.
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4 - Results

In this section the results of the new framework are shown. Examples of generated motions
for different models, gaits and terrains are shown, as well as the influences on the computation
time and the performance in an online MPC setting.

4.1 Gait Generation

The framework is able to produce a wide variety of gaits for different types of robots on different
terrains. Figure 24 shows an example of an optimized sequence for a biped in 3D. This example
shows a full gait including single and double support, with heel strike and toe lift. Figure 25
shows the corresponding trajectory. This is only the suggested trajectory by the optimizer, not
a simulated result.

Figure 24: Resulting gait from a biped in 3D with heels and toes, consisting of 18 degrees-of-freedom. It has
six defined end-effectors: the heel, inner toe and outer toe of each foot. This sequence consists of 25 collocation
points. The red arrow represent the reaction forces. It starts and ends with zero velocity.

Models both in 3D and in only the sagittal plane can be optimized, the latter being signifi-
cantly faster. The following robot models have been created and tried in gait optimization:

• Monoped (single end-effector, 3 DOF)

• Biped (two pin-foot end-effectors, 14
DOF, hip ball-joint)

• Biped with feet (six end-effectors (one
for each heel and two for the toes), 18
DOF, with movable ankle)

• Quadruped (four pin-foot end-effectors,
18 DOF)

• Caterpillar (four-link chain with three
end-effectors, without actual legs, in 2D)

All have been used successfully. Figures 26 to 28 show snapshots of examples of gen-
erated trajectories of these robots. Videos of the optimization results can be found here:
https://robert-roos.nl/category/masters-assignment.

Most of the generated motions are intuitive and seem natural, with the exception for the
monoped robot. It makes an unexpected twisting motion around the x and z axes. When an
additional cost is added to the angular velocity of the base this twisting does not occur. How-
ever, the total squared sum of torques is larger for this straight motion, explaining the behavior.
Similarly, bipeds optimized in 3D tend to place their feet awkwardly far apart. This likely an-
other artifact because of the torque squared minimization. It could be the sum squared torque
is less when the load is distributed over multiple joints, although this is not confirmed.
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Figure 25: Graphs of the generated trajectory for the biped in 3D, corresponding to Fig. 24. The joints and
torques for the right leg have been omitted.

Although not a practical robot, the caterpillar robot emphasizes the versatility of the plat-
form. Any body can be used as an end-effector and as long as the gaits are defined a trajectory
can be optimized.

Figure 26: Gait sequence of a monoped.
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Figure 27: Gait sequence of a quadruped.

Figure 28: Gait sequence of a snake robot.
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By changing the gait phases a different walking pattern emerges. Figures 29 and 30 show
the same model with the same NLP starting point but with different gait phases. The emerging
motions are specific the gait.

Figure 29: Biped model with a running gait.

Figure 30: Biped model with a skipping gait.
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Figure 31 shows the optimization with examples of terrains that are not flat, produced by
simple height-maps.

Figure 31: Biped model with terrain that is not flat.

4.2 Symbitron Exoskeleton

The framework was also tested with a model for the Symbitron exoskeleton (depicted in Fig. 1).
The Symbitron exoskeleton is a powered lower-limb exoskeleton, intended for paraplegics. It
has two actuated joints in each hip, one in the knee and one in the ankle. It also has a passive
degree-of-freedom for ankle inversion and eversion, connected to a spring. The hip also has
passive internal and external rotation but is connected to a very stiff spring. Figure 32 shows
all degrees-of-freedom of the exoskeleton.

The kinematics and actuation of the systems is modelled in MuJoCo, without attention to
precise dimensions or inertias. The goal is to test whether an exoskeleton with a structure like
the Symbitron can balance on one foot and walk normally, despite the single actuator in the
ankle.
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Figure 32: The Symbitron exoskeleton. The 6 degrees-of-freedom per leg are shown, with four of them actuated.
The AIE axis (ankle in- and eversion) is passive and the HIE axis (hip internal and external rotation) is practically
locked.

When the ankle is modelled in MuJoCo as a reasonably stiff spring, the optimization cannot
converge. Only when the stiffness is insignificant the optimization can converge. This likely
due to how the spring time constant compares to the time between collocation points. If this
time constant is approximately equal to or smaller than the time between collocation points,
no meaningful dynamics propagation can be done. This is comparable to a simulation where
the timestep is large compared to a time constant in the simulated system.
Therefore the ankle is modelled as completely passive instead. The hip twist is considered as
locked.

Figure 33 shows snapshots of the optimized trajectory for the exoskeleton balancing on a
single leg. The Symbitron model can easily balance on one foot with zero initial velocity. Also
when the base has an initial velocity, as if disturbed, the robot can regain balance. An initial
velocity of up to 1.5 m/s can be compensated by the robot.

Snapshots of an optimized walking trajectory for the Symbitron exoskeleton can be seen in
Fig. 34. Noteworthy is how the exoskeleton makes the first step without moving forward. This
is perhaps needed to gain a forward velocity, as it starts completely stationary.

The optimized gaits for the exoskeleton differ only slightly from optimized results for a fully
actuated biped, as in Fig. 24. The Symbitron exoskeleton has more sway in the upper body.
However, the robot seems capable of walking and maintaining balance even with an actuated
axis missing in both the hip and ankle.
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Figure 33: Snapshots of the optimization result for the exoskeleton balancing on one leg. The top sequence has
no initial velocity, whereas in the bottom sequence the base has an initial velocity of 1.5 m/s to its left.

Figure 34: Snapshots of an optimized gait trajectory for the exoskeleton.
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4.3 Influence of Collocation Density

Central in the technique of direct collocation is the number of collocation points N . Increasing
the number of points will make the optimization more realistic, at the cost of computation time.
The number of collocation points should be considered along with the duration of the optimized
sequence. We describe the number of collocation points per second as the collocation density.

To investigate the influence of the collocation density the same sequence is optimized with
an increasing value for N . The hypothesis is the optimized trajectory will start to converge to
a ‘real’ optimal trajectory, at N → ∞. In other words, for high values for N the optimized
trajectory should no longer change.
The result of this experiment is shown in Fig. 35. A sequence of 2 seconds for the biped with
heels and toes in 3D was optimized for 25, 35, 50 and 100 collocation points.
From the graph it can be seen the four trajectories are different, although they produce roughly
the same overall motion. The angles at t = 0.8 seems to converge as the density increases.
However, at t = 1.7 the trajectory for the angle of the knee first move away from the trajectory
of N = 100. The torque profile mostly seems to become more noisy as the collocation density
increases.
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Figure 35: Angles and torques of the left hip flexion/extension and left knee, of the same optimization problem
with an increasing number of collocation points N .
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In conclusion, the trajectories themselves are dependent on the choice of N . Increasing N
does not necessary converge to a final solution, at least not within the practical range for N .
A useful collocation density seems to be around 15 points per second or higher, as determined
qualitatively. A lower number can result in unnatural motions.

The optimization does not converge when there are more than 100 collocation points, IPOPT
then throws a ‘Converged to local infeasibility’ error. This means IPOPT is no longer capable
of satisfying the constraints from that current point. The error typically arises from problems
that have no solution. Why this occurs in this situation is not clear. Since the less accurate
formulations do converge, it seems unlikely the problem with higher density is unsolvable. There
is no theoretical limit to the density of collocation points. Perhaps problems arise when the
duration of nodes become closer to the time-steps in the finite-difference method. Note that
the problem with N = 200 is also very sizable: it has 13,364 optimization variables, 17,163
constraints and 746,984 non-zero elements in the constraint jacobian.

4.4 Computation Time

The number of collocation points greatly influences the optimization time, though also the ac-
curacy of the result. Figure 36 shows the average time per optimization iteration for different
models. Increasing the size of the NLP through the number of collocation points increases both
dimensions of the constraint jacobians, hence a quadratic relation between iteration time and
collocation points is expected. However, the figure shows a roughly linear relation. This is likely
because of the sparse nature of the constraint jacobians. The jacobians of the node constraints
are only non-zero around the diagonal. The number of iterations needed per optimization is
shown in Fig. 37. More iterations are needed for a larger number of collocation points. And
a more complex model does not always require more iterations to be solved. Figure 38 shows
the total optimization time needed for different models. It appears the optimization time is not
exponential to the number of collocation points, it could be approximately quadratic. Finally
Fig. 39 displays the final value for the objective function for different numbers of collocation
points. It shows the final cost decreases with a higher number of collocation points. However,
this decrease almost stagnates after about 20 points. The monoped in 2D does not quite ad-
here to this trend, the final objective value is more sporadic. This is likely due to the fact
the monoped has to jump as a walking gait, making the trajectory more sensitive to dynamic
incorrectness for fewer collocation points.
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Figure 36: Optimization time per 100 iterations for different models and number of collocation points.
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Figure 37: Number of iterations needed for optimization, for different models and number of collocation points.
Note that the 9 DOF model requires fewer iterations than the 7 DOF model.
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Figure 40 shows the progress of solving the NLP over the course of iterations. It shows the
objective to be minimized quickly, most of the iterations are spent satisfying the constraints.
It is interesting that the constraint violation does no longer steadily decline after 70 iterations,
but instead changes almost step-wise.
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Figure 40: The objective function and constraint violation for the biped in 3D, N = 20.

The implementation of arbitrarily definable terrains is useful, though it adds to the com-
putation time. With the addition of non-flat terrain, the terrain constraint needs to look up
the height, height gradients, normals and normal jacobians for each end-effector, for each point.
The force gradient also needs to take these extra steps. And it now needs to include the robot
model too, to compute the end-effector location at a certain point. This results in about 15%
more computation time per iteration, even for flat terrains.

4.5 MPC Setting

Multiple models were tried in a simulated setting. A MuJoCo simulation of a model was run,
with input torques suggested by the optimizer and a feedback controller applied to the trajec-
tory, as put forward in Sec. 3.4 Online MPC Loop. The optimizations were repeated with the
current state as initial configuration at an interval ∆T . This was not performed in real-time,
during the optimization the simulation was simply paused. Although unrealistic, this does allow
us to test the influence of ∆T on the online MPC performance.

The simulations show that when only the optimized torques are applied to the system, the
joint trajectories diverge from the optimized trajectories. When the optimization is run only
once without being repeated, as the only input, the robots fall over almost instantly. This
divergence indicates ∆T should be small for a feasible control loop. The PD-controller is cali-
brated by running an optimization of the robot standing still: the parameters are chosen such
the robot stays upright.

Experiments with the framework show most models cannot be made to go through a stable
gait, regardless of values for ∆T and the feedback controller. The biped with heels and toes in
sagittal plane is a simpler model that does work in simulation. Figures 41 and 42 show snapshots
of this trajectory and graphs of the trajectory. For this simulation ∆T = 0.1 seconds, which is
a realistic value. The simulated gait is not as smooth as the generated one, the body twitches
during simulation. This is particularly noticeable in the legs during swing phase. The graph
shows the reference is provided by the optimizer is being tracked well. However the ground
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reaction forces do not align closely.

To investigate the divergence between repeated optimizations, each optimized trajectory is
saved and plotted together. This is done in Fig. 43. As expected, the repeated optimizations
are not all identical. It seems that the actuated joints (like the hip angle) diverge little, whereas
un-actuated degrees-of-freedom (like the base angle to the ground) diverge significantly. In the
case of the 2D biped the repeated optimization compensates this properly.

Figure 41: Applied MPC with feedback on a biped with heels and toes in the sagittal plane. The MPC rate is
0.1 seconds and feedback settings Kp = 20, Kd = 2. The initial and final velocities are zero. The robot twitches
noticeably during the simulation, especially in the ankles during swing.
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Figure 42: Graphs of the applied MPC with feedback on a biped in the sagittal plane. Figure 41 shows the
corresponding snapshots. ‘FF Torque’ represents the feedforward torque (optimization result) and ‘FB Torque’
the feedback torque.
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Figure 43: Plot of the body angle and hip angle of the biped walker in the sagittal plane, corresponding to the
simulation results in Fig. 41. The blue line shows the simulated result and the gray lines the repeated references
from the trajectory generation. The markers correspond to the collocation points. The references are shown for
longer than ∆T and fade out, showing how new optimized trajectories differ from previously optimized ones.
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Figures 44 and 45 show the snapshots and graphs of the 3d biped. The simulation was not
successful, the robot starts to collapses during the first step. When the robot is collapsing the
optimizations also fail to converge, indicating the pose becomes irrecoverable. The MPC interval
∆T was 0.1. Decreasing it further does not improve performance for this model, the motions
then only become more erratic. Figure 46 shows how the real trajectories quickly diverge from
the optimized ones.

Figure 44: Applied MPC with feedback on a three dimensional biped, including heels and toes. The MPC rate
is 0.1 seconds and feedback settings Kp = 20, Kd = 0.5. The initial and final velocities are zero. The robot
collapses after about 0.6 seconds.
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Figure 45: Graphs of the applied MPC with feedback on a biped in 3D. Figure 44 shows the corresponding
snapshots. ‘FF Torque’ represents the feedforward torque (optimization result) and ‘FB Torque’ the feedback
torque. The robot collapses after about 0.6 seconds. The references are being tracked poorly from the start. The
graphs show how every 0.1 second the references are reset to the current position.
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Figure 46: Plot of the body position and hip y-angle of the biped walker 3D, corresponding to the simulation
results in Fig. 44. The blue line shows the simulated result and the gray lines the repeated references from the
trajectory generation. The markers correspond to the collocation points. The references are shown for longer
than ∆T and fade out, showing how new optimized trajectories differ from previously optimized ones. In the
velocity plots the optimized trajectories do not always start from the real trajectory. This is a consequence of
the optimizations not converging properly.
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A quadruped robot is inherently more stable than a biped, as it has at least four contact
points which span a large support surface underneath the body. So the same online MPC ex-
periment was performed with a quadruped with pin-feet in 3D. Figures 47 and 48 show the
snapshots of such a simulation and graphs describing the motion. A ∆T of 0.01 seconds was
needed to result in any motion.
Although the quadruped stays largely upright, it barely moves forward. The feet bounce on the
floor and the robot ends with its body tilted backwards slightly, making it that the base only
moved backwards. Many of the repeated optimizations did not converge properly.

The biped requires repeated optimizations to stay upright. The same is not true for the
quadruped, only a single optimization combined with a stronger feedback controller is sufficient.
The additional support surface is helpful in this regard. Gait simulations without repeated
optimizations for the quadruped resulted in very similar motions as Figs. 47 and 48, only with
feedback control torques exceeding the feedforward torques. This leaves little optimal nature
to the realized motion. No forward motion was achieved either.

Figure 47: Applied MPC with feedback on a quadruped in 3D for ∆T = 0.01 and feedback settings Kp = 20,
Kd = 2. The motions were jittery and the robot does not actually move forward.
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Figure 48: Graphs of the applied MPC on a quadruped in 3D. Figure 47 shows snapshots of the corresponding
motion. The angles of the left-front leg are shown. The reaction forces are from the left-front and right-rear feet.
The plot of the base position shows the robot slumps backwards, instead of moving forward with the desired 0.4
m. Many of the repeated optimizations did not converge properly, indicated by the very noisy feedforward plot.
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5 - Conclusion and Discussion

5.1 Conclusion

To evaluate the designed framework it is compared to the original requirements and objectives.
Table 2 summarizes this evaluation. Both requirements have been satisfied: walking gaits can
be produced with regard to whole-body dynamics. The gait is optimized in joint torque, which
is the most useful minimization.

Most objectives were accomplished well. The optimizations are robust as no settings need
to be tweaked and no specific initial guess is needed. The foothold locations do not need to
be chosen manually but are found naturally, given a basic interpolation from initial to final
configuration. Most useful is the flexibility to the robot model. Tweaking model setting or
modifying the kinematic chain can be done in the model XML and are handled immediately by
the framework. Adding new models can be done easily by providing a new XML, noting the
named end-effectors and describing a basic joint configuration. The number of end-effectors in
such a model is entirely free as well. These comments are specific to the implementation with
MuJoCo, though it could be easily replaced with a different simulator or analytical functions
by extending the abstract robot class.

Requirement Succeeded

Produce walking gaits with efficient
actuation

Yes
Gaits are produced with optimized
joint torque

Consider whole body in optimization Yes
With the MuJoCo simulator all
degrees of freedom are incorporated

Objective Score

Optimize footholds along with joint
trajectory

++
Foothold locations are found
automatically

Require little user input to produce a
gait

- Gait phases have to be predefined

Fast to compute -
Optimizations are typically in the
order of 10 seconds

Robustness to optimization parameters +
Optimizations are easily set-up and
always succeed

Variable number of legs +
There are no limitations to robot
kinematic layout

Easy to modify/replace robot model ++
Any MuJoCo xml file can be used,
with minimal manual settings

Table 2: The design requirements and objectives and whether they were satisfied by the new framework.

Although the generation of locomotion trajectories on itself is widely applicable and works
as desired, it proved ineffective when applied in a practical online MPC fashion. Only for a
simpler model reasonable closed-loop performance was established. For other models the closed
loop simulations were not stable, even for higher MPC rates.

Perhaps this new framework is best suited for offline use, for instance to provide training
data for self-learning models or to optimize machines that repeat the same motion, where the
computation time is of less significance. Compared to self-learning algorithms which typically
train for hours [33], this framework is still fairly fast. The optimization times are within a scale
where it is comfortable to try different inputs and seeing their impact on the results.

55



In conclusion, we accomplished designing a model predictive control framework for legged
locomotion, based on explicit gait phases. However, we showed it cannot be directly applied in
an online fashion for robust control.

5.2 Discussion

5.2.1 Gait Generation

Not all objectives were adhered to. Most lacking is the computation speed. Simpler 2D models
with fewer collocation points can be optimized in the order of seconds on a regular computer,
while more complex 3D models with more collocation points need closer to 30 seconds. Consid-
ering an online MPC application generally has an update rate in the order of 0.1 seconds, our
framework is 10 to 100 times too slow.

Moreover, the gait generation is not free of manual input. The gait phases have to be com-
pletely predefined. Although this is made easier with the mode-based generator, every sequence
needs a deliberate input.

It is clear a method of implicit contact is preferable over explicit contact, as it requires less
manual input and every aspect of the gait is optimized. In this work we concluded explicit
contact is not feasible in combination with direct collocation MPC. However, Neunert et al. [12]
did succeed in this, and even with an impressively fast platform. It is possible the difference is
in the numerical solver: Neunert et al. [12] tailored their own iLQR-NMPC solver, whereas we
used the of-the-shelf solver IPOPT. If at all possible, it is recommended to choose a method of
implementation that allows such implicit contacts.

5.2.2 Online MPC

As pointed out before, the framework is not directly suitable for online model predictive control.
A hypothesis is this is because of the reaction forces on the system. As can be seen in Figs. 42,
45 and 48, the predicted reaction forces differ greatly from the reaction forces in simulation.
This is not completely surprising, as the optimizer is free to choose the reaction forces as long
as they fit the force and dynamics constraints. The expectation was they would be close to the
real forces, though we showed this was not the case. With different forces on the system than
during the prediction the trajectories diverge.
To investigate the performance of online MPC, in another experiment the predicted forces were
applied directly during simulation, while collision detection was disabled. In this setting with
disabled contacts, there is no difference between modelled and real reaction forces. The expec-
tation is the produced gait will now be realized more properly. The results are shown in Figs. 55
to 58 in appendix F. With a high number of collocation points these non-realistic simulations
show better results than the ones with realistic contact. This is most clear for the quadruped,
for the biped models the feet slip away to the sides quickly. This shows that discrepancies
between modelled and real reaction forces are a factor but not the sole cause of poor simulation
performance.
The fact remains that a walking robot is a highly underactuated system. And simple feedback
on the joints which are actuated is not sufficient to keep the robot stable. Perhaps a more com-
plex controller that is better equipped for an underactuated system could make the simulation
results better.
All things considered there is no proven cause for the inadequate simulation results.

Platforms using centroidal dynamics [1, 10] did seem to be successful in practical implemen-
tation. It would be interesting to apply this new framework and an existing centroidal frame-
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work plus whole-body controller on the same MuJoCo simulation to compare their performance.

This work set out to develop a framework focused on whole-body dynamics, with the notion
that only with whole-body dynamics a truly optimized trajectory can be found. The results of
this work indicate that this notion could be flawed. If the real system and reaction forces are
not going to match with the prediction, a significant amount of additional control torque will
be needed, defeating the purpose of the torque optimization. It might therefore be preferable
to have a more abstract optimization based on centroidal dynamics that provides a less specific
but more robust trajectory. Moreover, such a framework based on simplified dynamics could
run significantly faster and therefore more often, resulting in even more robustness.

5.3 Future Work

To improve the current framework the code could be optimized. The MuJoCo model could be
used more effectively for instance. Currently the model is updated for each node for each con-
straint. It would be more efficient to update the model for a node, then compute all constraints
and then move to the next node, requiring at most N updates.
Additionally the finite-difference approach in MuJoCo could be sped up by using multi-threading:
each differentiation variable could be varied in parallel. OpenMP is used for this purpose in
MuJoCo examples [28].

The biggest shortcoming of this framework compared to TOWR [1] is the lack of phase
optimization. As mentioned before, the use of universal nodes makes it impossible to have
complete freedom in the gait phases. However, it is still possible to shift the entire nodes in
time (see Fig. 49). For N nodes, N −1 optimization variables could be added each representing
the time between two nodes. In each node the state for an end-effector is then fixed, though
the durations can still be optimized. In a hyper-parameter optimization the order of gaits could
be changed to still get a global optimum with respect to gait phases. The difficultly in adding
node times as variables is defining jacobians to all constraints with respect to these durations.

t

x

Contact mode 1 Contact mode 2

Figure 49: Two iterations of a optimization solution when node durations can be varied. If node durations
were included in optimization variables, the contact mode duration could be varied as well, unlike in the current
implementation. Note that because universal nodes are used, only complete contact modes can be varied, not
individual end-effector phases.

Another improvement would be removal of the need to explicitly define gait phases at all.
The definition of gait phases limits the freedom of the optimization greatly, limiting it to the
insight of the human user. Such an improvement will have to be accomplished with a method
of implicit contact.
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A - Quaternions

A.1 Quaternion derivative and angular velocity

[34] A quaternion is a four element structure to store a 3D orientation without ambiguity or sus-
ceptibility to singularities. Angular velocity and angular acceleration can be safely represented
by x, y and z values, unlike orientation.

We denote a quaternion with Q, not to be confused by the joint positions vector q.

MuJoCo for instance uses quaternions to store 3D rotation, for the floating base and for any
ball joints. Because of this, the number of position variables (q) can be bigger than the number
of velocity variables (v).
Orientations and angular velocities can both be represented in global (inertial) frame or body-
fixed (rotated) frame. We will use the body-fixed notation, because this corresponds to the use
of joints in numerical models.
We can relate the quaternion time derivative to the angular velocity in body-fixed frame2 as
follows:

Q̇ =
1

2
Q⊗Ω (60)

Here ⊗ denotes the quaternion product and ΩT = [0, ωx, ωy, ωz]
T

Working out the product yields the following matrix-vector multiplication:

Q̇ =
1

2


0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

Q (61)

=
1

2
Ω̃Q (62)

This skew matrix form of the angular velocity is comparable to how a vector cross product
is identical to a matrix-vector multiplication of the cross skew form of the left vector.

The product can also be written as another matrix-vector product:

Q̇ =
1

2


−Qx −Qy −Qz

Qw −Qz Qy

Qz Qw −Qx

−Qy Qx Qw

ω (63)

=
1

2
Q̃ωω (64)

This makes the jacobians of the quaternion derivative which are needed by the optimizer
easy to show:

∂Q̇

∂Q
=
∂
(

1
2 Ω̃Q

)
∂Q

=
1

2
Ω̃ (65)

∂Q̇

∂ω
=
∂
(

1
2Q̃ω

)
∂ω

=
1

2
Q̃ω (66)

2In global frame the order is reversed: Q̇ = 1
2
Ω ⊗ Q
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Eq. (60) can also be reversed to find the angular velocity from a quaternion derivative, again
in body-fixed frame3:

Ω = 2Q̄⊗ Q̇ (67)

Here Q̄ is the conjugate of Q (or the inverse if Q, because it is a unit quaternion): Q̄ =
(Qw,−Qx,−Qy,−Qz).

In the matrix form:

Ω = 2


Qw Qx Qy Qz
−Qx Qw Qz −Qy
−Qy −Qz Qw Qx

−Qz Qy −Qx Qw

 Q̇ (68)

Leaving out the first row to find ω instead of Ω:

ω = 2

−Qx Qw Qz −Qy
−Qy −Qz Qw Qx

−Qz Qy −Qx Qw

 Q̇ (69)

= 2Q̃QQ̇ (70)

= 2Q̃T
ω Q̇ (71)

Note that this skew matrix is simply the transpose of one showed earlier: Q̃T
ω = Q̃Q

A.2 Quaternions in joint position

With a floating base and/or ball joints in the robot model quaternions will appear in the joint
position. However, the joint velocity vector will contain angular velocities instead of quaternions
derivatives. Hence there is a non-trivial conversion between joint rates q̇ and joint velocities v:

q̇ = B(q)v (72)

For a system not involving quaternions B(q) would simply be unity. When quaternions are
involved B(q) is rectangular and a combination of identity blocks and skew quaternion blocks.

To give an example to illustrate this:

qT =
(
Q1,w Q1,x Q1,y Q1,z θ1 θ2 Q2,w Q2,x Q2,y Q2,z

)
(73)

vT =
(
ω1,x ω1,y ω1,z θ̇1 θ̇2 ω2,x ω2,y ω2,z

)
(74)

Then:

B(q) =



0 0 0 0 0
0 0 0 0 0

1
2

˜Q1,ω 0 0 0 0 0
0 0 0 0 0

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 1
2

˜Q2,ω

0 0 0 0 0


(75)

3And again, in global frame the order would be reversed: Ω = 2Q̇⊗ Q̄
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The relation can also be inverted:

v = B−1(q)q̇ (76)

Note that B−1(q) is not the matrix inverse of B(q), which would not exist because it is not
square when at least one quaternion is present. From Eq. (71) we can find a definition. To
continue with the same example:

B−1(q) =



0 0 0 0 0 0

2 ˜Q1,Q 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0 2 ˜Q2,Q

0 0 0 0 0 0


(77)

A.3 Geometric Jacobian

When quaternions are involved in the position vector q̇ 6= v. This also results in two notations
for the geometric jacobian. On the one hand we have the jacobian based on joint rates (including
quaternion derivatives):

p = f(q) (78)

ṗ =
∂f(q)

∂q
q̇ = Jq(q)q̇ (79)

Whereas there is also the jacobian for the joint velocities (including angular velocities):

ṗ = Jv(q)v (80)

A relationship was already established for the joint rates q̇ and the joint velocities v:

q̇ = B(q)v (81)

And so we find:

ṗ = Jv(q)v = Jq(q)q̇ = Jq(q)B(q)v = Jv(q)B−1(q)q̇ (82)

For v 6= 0 and q̇ 6= 0:

Jv(q) = Jq(q)B(q) (83)

Jq(q) = Jv(q)B−1(q) (84)

Conventionally the joint rates are not as important and only the regular geometric jacobian
Jv is used. However, our direct collocation NLP contains constraints based on end-effectors.
The jacobians of these constraints rely (through the chain rule) on both Jq and Jq, hence the
need for an explicit difference.
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B - Inverse Kinematics

To create the initial guess for the optimization problem a basic inverse kinematics solver is
needed. The IK problem can be solved iteratively using end-effector jacobians. Take a robot
with joint coordinates q, end-effector position p (Fig. 50a) and a desired end-effector position
r. We can relate the end-effector velocity to the joint velocities:

ṗ = J(q)q̇ (85)

Because the jacobian is not square in most cases, we cannot take the matrix inverse. That is,
when the jacobian is not square there is not a unique combination of joint velocities resulting
in the end-effector velocity. A solution can still be found using a pseudo inverse:

q̇ = J†(q)ṗ (86)

Here J†(q) is the Moore-Penrose inverse, which is effectively the solution to a least sum squares
problem.

To solve the inverse kinematics problems we iteratively move the end-effector to the refer-
ence, calculating a desired end-effector velocity based on the current error:

whi l e (norm( r − p) > th r e sho ld ) :
e r r o r = r − p
dp = e r r o r ∗ eps
dq = pseudoInverse ( J ) ∗ dp
q += dq

This works well for a robot with a fixed base, though less so for a robot with a floating
base such as we encounter in the optimization problems because the entire robot will simply
be displaced (see Fig. 50b). It can be improved by adding multiple end-effector references,
including a reference to the base. In this way the base and end-effectors will all tend to their
desired position.
This can be accomplished by steering multiple desired end-effector velocities:

ṗ1 = J1(q)q̇ (87)

ṗ2 = J2(q)q̇ (88)

...

Which can be combined into a single pseudo inverse:

q̇ =

J1(q)
J2(q)

...


† [

ṗ1 ṗ2 . . .
]

(89)

And again the end-effector velocities are based on the error in position.
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Figure 50: Inverse kinematics for a.) a fixed model (with a single reference) and b.) for a floating model (with
multiple references).

B.1 MuJoCo

The above algorithm can be implemented in MuJoCo easily because the geometric jacobian of
any body is readily available. These jacobians are already respective to the entire joint velocity
space, requiring no model specific information to solve the IK problem.

Some attention should be paid to the integration of intermediate joint velocities to joint
positions. The iterative velocity integration is then:

v =

J1(q)
J2(q)

...


† [

ṗ1 ṗ2 . . .
]

(90)

qk+1 = qk + B(qk)v (91)
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C - End-effector Equations of Motion

Equations of motion are typically described in joint space:

M(q)q̈ + C(q, q̇) + N(q, q̇) = τ (92)

This can be rewriting to end-effector coordinates using:

ṗ = J(q)q̇ (93)

p̈ = J(q)q̈ + J̇(q)q̇ (94)

τ = JT (q)F (95)

Where J(q) is the end-effector jacobian.
The equations of motion can now be written in end-effector space:

JT (q)M(q)q̈ + JT (q)C(q, q̇) + JT (q)N(q, q̇) = JT (q)τ (96)

JT (q)M(q)
(

J−1(q)p̈ + J̇−1(q)ṗ
)

+ JT (q)C(q, q̇) + JT (q)N(q, q̇) = JT (q)τ (97)[
JT (q)M(q)J−1(q)

]
p̈ +

[
JT (q)M(q)J̇−1(q)ṗ + JT (q)C(q, q̇)

]
+
[
JT (q)N(q, q̇)

]
= JT (q)τ (98)

Mp(p)p̈ + Cp(p, ṗ) + Np(p, ṗ) = JT (p)τ + F (99)
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D - Non-Linear Problem Formulation

D.1 Constraints

The [k] is omitted where possible. All constraints are applied at each collocation point.

Integration Constraints ensure the velocities add up to the positions:

Φ[k] = q[k]− q[k + 1] +
∆t

2
(Bkv[k] + Bk+1v[k + 1]) (100)

These obviously depend on v:

∂Φ[k]

∂v[k]
=

∆t

2
Bk (101)

∂Φ[k]

∂v[k + 1]
=

∆t

2
Bk+1 (102)

(103)

And depend on q directly and also indirectly through B(q):

∂Φ[k]

∂q[k]
= I +

∆t

2

∂(Bkv[k])

∂qk

(104)

∂Φ[k]

∂q[k + 1]
= −I +

∆t

2

∂(Bk+1v[k + 1])

∂qk+1

(105)

The derivatives ∂(B(q)v
∂q can be assembled from Eq. (65).

Dynamics Constraints make sure the velocities match with torque and reaction forces:

Φ[k] = v[k]− v[k + 1] +
∆t

2
(fk + fk+1) (106)

With fk = f(q[k],v[k], τ [k],F[k]). This makes the constraint dependent on all variables:

∂Φ[k]

∂q[k]
=

∆t

2

∂fk
∂q[k]

(107)

∂Φ[k]

∂v[k]
= I +

∆t

2

∂fk
∂v[k]

(108)

∂Φ[k]

∂τ [k]
=

∆t

2

∂fk
∂τ [k]

(109)

∂Φ[k]

∂F[k]
=

∆t

2

∂fk
∂F[k]

(110)

And analogously for k + 1.
The partial derivatives of the dynamics are determined numerically, like:

∂fk
∂q[k]

≈ f(q + h, ...)− f(q, ...)

h
(111)
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Quaternions Constraints are needed to keep the quaternion in the joint position (if there
are any) to unity length:

Φ[k] =

(
||
(
qi[k] qi+1[k] qi+2[k] qi+3[k]

)
|| − 1

...

)
(112)

This is only dependent on the joint positions:

∂Φ[k]

∂q[k]
=


· · · 0 0 0 0 · · ·
· · · 0 2qi[k] 0 0 · · ·
· · · 0 0 2qi+1[k] 0 · · ·

...

 (113)

Terrain Constraints keep the end-effectors on the surface of the terrain without slip. The
vertical position of an end-effector is a function of the joint positions. The height of the terrain
is dependent on the x and y location, which in turn are also determined by the generalized
coordinates:

Φ[k] =

zee[k]− zterrain[k]
xee[k]− xee[k − 1]
yee[k]− yee[k − 1]

 =

zee(q[k])− zterrain(xee(q[k]), yee(q[k]))
xee(q[k])− xee(q[k − 1])
yee(q[k])− yee(q[k − 1])

 (114)

The jacobian is only non-zero with respect to q̄:

∂Φk,1

∂q
=
∂zee(q)

∂q
− ∂zterrain(xee(q), yee(q))

∂q
(115)

= Jee,z(q)− ∂zterrain
∂xee

∂xee
∂q
− ∂zterrain

∂yee

∂yee
∂q

(116)

= Jee,z(q)− ∂zterrain
∂xee

Jee,x(q)− ∂zterrain
∂yee

Jee,y(q) (117)

(118)

In Eq. (116) the total derivative was used.

∂Φk,2

∂q̄
= Jee,x(q[k])

∂q[k]

∂q̄
− Jee,x(q[k − 1])

∂q[k − 1]

∂q̄
(119)

And
∂Φk,3

∂q̄ is analogous to this.

Force Constraints are used to keep the reaction forces zero during flight and within a friction
cone during stance:

Φ[k] =


F · n

F · (t1 − µn)
F · (t1 + µn)
F · (t2 − µn)
F · (t2 + µn)

 (120)

Note that the terrain height, and therefore also the terrain tangents and normal, are dependent
on the position:

n = n(xee, yee) = n(xee(q), yee(q)) (121)

t = t(xee, yee) = t(xee(q), yee(q)) (122)

(123)
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The jacobian is clearly non-zero for the reaction forces:

∂Φ[k]

∂F
=


nT

(t1 − µn)T

...
(t2 + µn)T

 (124)

And also non-zero for joint positions:

∂Φk,1

∂q
=
∂(F · n)

∂q

T

=
∂(F · n)

∂n

T ∂n

∂q
= FT ∂n

∂pee

∂pee

∂q
(125)

= FT ∂n

∂pee

Jee(q) (126)

Here pee = (xee, yee, zee)
T . The normal and tangents are constant for zee.

∂Φk,2

∂q
=
∂(F · t1 − F · µn)

∂q

T

(127)

= FT

(
∂t1

∂pee

Jee(q)− µ ∂n

∂pee

Jee(q)

)
(128)

= FT

(
∂t1

∂pee

− µ ∂n

∂pee

)
Jee(q) (129)

Analogously for Φk,3 to Φk,5:

∂Φ[k]

∂q
=



FT
(

∂n
∂pee

)
FT
(

∂t1
∂pee
− µ ∂n

∂pee

)
FT
(

∂t1
∂pee

+ µ ∂n
∂pee

)
FT
(

∂t2
∂pee
− µ ∂n

∂pee

)
FT
(

∂t2
∂pee

+ µ ∂n
∂pee

)


Jee(q) (130)
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E - UML

Below are UML diagrams of key components of the code of the new framework.

gambol::NodesConstraint

# nodes_holder_

+ GetValues()
+ GetBounds()
+ FillJacobianBlock()
# NodesConstraint()
# ~NodesConstraint()
# GetNumberOfNodes()

gambol::ForceConstraint

+ ForceConstraint()
+ ~ForceConstraint()
+ UpdateConstraintAtNode()
+ UpdateBoundsAtNode()
+ UpdateJacobianAtNode()

gambol::ForceFlatConstraint

+ ForceFlatConstraint()
+ ~ForceFlatConstraint()
+ UpdateConstraintAtNode()
+ UpdateBoundsAtNode()
+ UpdateJacobianAtNode()

gambol::IntegrationConstraint

+ IntegrationConstraint()
+ ~IntegrationConstraint()

gambol::QuaternionConstraint

+ QuaternionConstraint()
+ ~QuaternionConstraint()

gambol::TerrainConstraint

+ TerrainConstraint()
+ ~TerrainConstraint()
+ Update()
+ UpdateConstraintAtNode()
+ UpdateBoundsAtNode()
+ UpdateJacobianAtNode()

ConstraintSet

gambol::DynamicsConstraint

+ DynamicsConstraint()
+ ~DynamicsConstraint()

gambol::TerrainFlatConstraint

+ TerrainFlatConstraint()
+ ~TerrainFlatConstraint()
+ Update()
+ UpdateConstraintAtNode()
+ UpdateBoundsAtNode()
+ UpdateJacobianAtNode()

Figure 51: UML inheritance diagram of the different constraints. ConstraintSet is part of IFOPT.
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gambol::DynamicsConstraint

+ DynamicsConstraint()
+ ~DynamicsConstraint()

gambol::NodesConstraint

+ GetValues()
+ GetBounds()
+ FillJacobianBlock()
# NodesConstraint()
# ~NodesConstraint()
# GetNumberOfNodes()

ConstraintSet
gambol::NodesHolder

+ NodesHolder()
+ NodesHolder()
+ ~NodesHolder()

#nodes_holder_

shared_ptr< NodeTimes >

+node_times_

shared_ptr< NodesVariables >

+torques_
+joint_vel_
+joint_pos_

vector< NodesVariables
::Ptr >

+ee_forces_

vector< PhaseDurations
::Ptr >

+phase_durations_

#model_

gambol::MuJoCoRobotModel

+ MuJoCoRobotModel()
+ MuJoCoRobotModel()
+ clone()
+ ~MuJoCoRobotModel()
+ GetQuatIndices()
and 19 more...
# Update()
# QuaternionDerivative()
# QuaternionMatrix()
# QuaternionMatrixTranspose()
# AngularVelocityMatrix()

Figure 52: UML collaboration diagram of the dynamics constraint. The NodesHolder struct is a collection of
pointers to all variables. It is used to easily combine variables inside the costs and constraints.
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gambol::MuJoCoRobotModel

+ MuJoCoRobotModel()
+ MuJoCoRobotModel()
+ clone()
+ ~MuJoCoRobotModel()
+ GetQuatIndices()
and 19 more...
# Update()
# QuaternionDerivative()
# QuaternionMatrix()
# QuaternionMatrixTranspose()
# AngularVelocityMatrix()

gambol::RobotModel

+ RobotModel()
+ ~RobotModel()
+ clone()
+ HasIK()
+ SetCurrent()
and 21 more...
+ DenseToSparse()

VectorXd

#q_
#u_

#dq_

vector< VectorXd >

#ee_forces_

vector< int >

#ee_body_id_

MuJoCoModel

+ MuJoCoModel()
+ MuJoCoModel()
+ ~MuJoCoModel()
+ operator=()
+ get_file()
and 28 more...

#model_

Figure 53: UML collaboration diagram of the general RobotModel and the MuJoCo specific implementation.
The class MuJoCoModel is an object oriented wrapper for the MuJoCo function and MuJoCoRobotModel is simply
an interface between the two. A new dynamics implementation would extend RobotModel and override the pure
virtual methods.

gambol::HeightMap

# friction_coeff_

+ HeightMap()
+ ~HeightMap()
+ GetHeight()
+ GetHeight()
+ GetDerivativeOfHeightWrt()
and 7 more...
+ MakeTerrain()

gambol::FlatGround

+ FlatGround()
+ GetHeight()

gambol::Gap

+ GetHeight()
+ GetHeightDerivWrtX()
+ GetHeightDerivWrtXX()

gambol::Hill

+ GetHeight()
+ GetHeightDerivWrtX()
+ GetHeightDerivWrtY()
+ GetHeightDerivWrtXX()
+ GetHeightDerivWrtYY()

gambol::Slope

+ GetHeight()
+ GetHeightDerivWrtX()

... ...

Figure 54: UML collaboration diagram of the abstract height-map class and several implementations. An
instance of the a height-map class provides terrain information.
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F - Additional Simulations

Figures 55 and 56 show a simulation of the biped in 3D with the optimized forces applied
directly instead of simulated contact. Figures 57 and 58 show a similar simulation for the
quadruped.
For both simulations the optimizations were not repeated. The results are much worse if they
are, because the repeated optimizations fail due to how the end-effectors are free to penetrate
the ground with the lack of collision detection.

Figure 55: Simulation of the biped in 3D including heels and toes without real contacts. Instead the optimized
forces are applied directly. The optimization was not repeated, N = 50. The legs slip away from the robot almost
immediately
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Figure 56: Graphs corresponding to the snapshots in Fig. 55. The optimized references of the body are tracked
poorly, the robot also falls over quickly.

Figure 57: Simulation of the quadruped in 3D without real contacts. Instead the optimized forces are applied
directly. The optimization was not repeated, N = 50. In the last moments of the simulation the legs slip from
underneath the robot.
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Figure 58: Graphs corresponding to the snapshots in Fig. 57. The optimized references are being tracked well.
In the last 0.1 seconds the errors become larger, when the legs start to slip.
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