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Management summary 
During a mass casualties incident (MCI), treatment capabilities are overwhelmed by casualties. An MCI 

is characterized by either the sheer number of injured casualties needing treatment simultaneously or 

a small number of casualties who require advanced care or a combination of both. Furthermore, an 

MCI creates a sudden spike in demand for emergency response resources. Having a limited number of 

(air and land) ambulances causes longer waiting times for casualties,  which eventually leads to a lower 

survival rate. Examples of MCIs are the Enschede’s fireworks explosion in 2000 or Beirut's explosion in 

2020. 

During an MCI, a dispatcher is responsible for coordinating ambulances. Furthermore, in cooperation 

with the associated ambulance staff who are available on-site, the dispatcher is responsible for 

distributing casualties to the surrounding hospitals without overwhelming the hospitals.  

During an MCI, each casualty is categorized into a triage level. In this research, we have distinguished 

two types of triage levels, T1 and T2. T1 casualties need to receive treatment in a hospital within two 

hours after the MCI happens. T2 casualties need to receive treatment in a hospital within four hours.  

Hospitals are classified into different levels. The classification of hospitals is based upon their abilities 

to treat trauma casualties. Level 1 hospitals can treat each casualty. Level 2 hospitals have the abilities 

of a Level 1 hospital, but some facilities are not available. Level 3 hospitals can treat isolated injuries 

such as hip fractures or burns. T1 casualties preferably receive treatment in a Level 1 or 2 hospital. T2 

casualties can receive treatment at any hospital. Besides, the Netherlands is equipped with a major 

incident hospital. This hospital might open for an MCI. The major incident hospital is located at Utrecht.   

An example of Acute Zorg Euregio (AZE) preparing their region for an MCI is organizing Emergo Train 

System (ETS) exercises. Those exercises focus on simulating the allocation process of casualties to 

hospitals during an MCI. Two ETS exercises were organized in the autumn of 2019.  

AZE wants to know if a model can objectively allocate casualties to hospitals optimally using data from 

the ETS exercises of autumn 2019. In this research, we have answered and formulated this desire into 

the following research question.   

“What mathematical model can be developed to improve the assignment of casualties to hospitals 

with limited resources in case of an MCI?” 

We chose Integer Linear programming (ILP) to solve this assignment problem. The ILP model presents 

all the possible decisions of a dispatcher during the ETS exercises of autumn 2019. Furthermore, the 

performance of the ETS exercises of autumn 2019 was compared to the ILP model. Before the 

comparison was made, some changes were applied to the model to enable a fair comparison.  

The ILP model (days 1 and 2) does not overwrite the treatment capacities of the hospitals, while in 

both ETS exercises, this happens a few times. Furthermore, no casualties arrive late at the hospitals in 

the ILP model, while in the ETS exercises one T1 casualty arrives late at the hospital.  

The ILP model improves the T1 and T2 makespan of the ETS exercises. On day 1, The T1 makespan in 

the ETS exercise is 140 minutes and in the model, it is 109 minutes. The ILP model decreases the T1 

makespan by 31 minutes. On day 1, the T2 makespan in the ETS exercise is 210 minutes and in the ILP 

model, this is 181 minutes. So, the ILP model decreases the T2 makespan by 29 minutes. On day 2, 

approximately the same decrease on the T1 and T2 makespan is found.  

On the contrary, the average T1 and T2 throughput times are worse in the ILP model than in the ETS 

exercises. On day 1, the average T1 throughput time for the model is 63.7 minutes and for the ETS 
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exercise of 54.2 minutes. The ILP model increases the average T1 throughput time by 9.5 minutes. On 

day 1, the average T2 throughput time for the model is 65.6 minutes and in the ETS exercise this is 54.4 

minutes. The ILP model increases the average T2 throughput time by 11.2 minutes. On day 2, 

approximately the same increase on the average T1 and T2 throughput time is found.  

In conclusion, a trade-off exists between the average throughput time and makespan. We have shown 

this by looking into the ranges of ambulances completing their trip. The finish time among the 

ambulances doing trip 1 variates less in the ILP model than the ETS exercise. On day 1, the first 

ambulance of the ILP model finishes trip 1 within 151 minutes and the last finishing ambulance within 

181 minutes, which is a difference of 30 minutes. In the ETS exercise (day 1), the ambulance finishes 

trip 1 first within 127 minutes and the last ambulance after 181 minutes, which is a difference of 81 

minutes. The same observation is done for day 2. In literature is found that the makespan is an 

important KPI and therefore, this KPI is minimized in the ILP model. Future research is needed to 

conclude which KPI is more critical and improves the survival rate of the casualties.  

Besides, eight scenarios are conducted, by adapting the base ILP model, to determine which scenario(s) 

improved the assignment of casualties to hospitals most during an MCI. A scenario where six T1 

casualties are allocated to a Level 3 hospital and a scenario in which only T1 casualties are allowed to 

hospitalize at hospital Enschede are the best performing scenarios. All the scenarios in which the major 

incident hospital is included results in worse performance. Therefore, we do not recommend using the 

major incident hospital when the MCI is located in the region of AZE. 

For future research, we suggest developing a (meta) heuristics in which stochastic elements are 

included. Stochastic elements to include are for instance, the possibility of hospitalizing T1 casualties 

to a Level 3 hospital, uncertain travel times and the varying duration of dropping off and stabilizing 

casualties. Another way of implementing more complexity in a future model is to include the T1 and 

T2 survival probabilities. By implementing those survival probabilities, it might be possible to answer 

which KPI, the makespan or average throughput time, is more important. Another possibility for future 

work is to develop Integer Linear Program algorithms such as column generation to find the optimal 

global solution to this allocation problem.  

For AZE, we suggest using the model developed in this thesis to compare future ETS exercises on their 

performances. Moreover, developing a decision-making tool in real-time to be used during an ETS 

exercise and possibly during an actual MCI might help the dispatchers make better decisions. A first 

step is made by developing a new Excel sheet for logging the performance of future ETS exercises. 

Finally, the following suggestions can improve the execution of ETS exercises: 

• Check if all the variables of the ETS exercise are up-to-date. Making the ETS exercises more 

realistic creates higher engagement of the participants. Components that need to be checked 

on reality are the ambulances, travel times, and treatment capacities of the hospitals.  

• Improve the documentation of the ETS exercises. Firstly, write down how the variables of the 

ETS exercises are derived. Secondly, describe the different components and the assumptions of 

the ETS exercise. Finally, whenever variables are changed, update them in the documentation. 

In this way, the ETS designer can look back and remembers how the ETS exercise is conducted.   
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Chapter 1: Introduction    
This chapter is divided into five sections. Firstly, this chapter gives a brief introduction to the healthcare 

institution Acute Zorg Euregio (Section 1.1). Secondly, the definition of a mass-casualty incident is 

given. Also, the different components of a mass-casualty incident are addressed (Section 1.2). Thirdly, 

problem analysis is done to identify the core problem (Section 1.3). Based on the problem analysis, the 

objectives and research questions are defined (Section 1.4). Lastly, the research approach and the 

structure throughout this thesis are presented (Section 1.5).  

1.1. Acute Zorg Euregio 
In the Netherlands, health care institutions are obligated to guarantee a constant healthcare level, 

including during emergencies and disasters (Acute Zorg Euregio, n.d.). Eleven emergency care 

networks monitor the level of emergency healthcare. These institutions take care of the regional 

coordination and organization of emergency care. AZE is the designated emergency care network for 

the Dutch regions Twente and Oost-Achterhoek. AZE is also working together with the German regions, 

Landkreis Grafschaft Bentheim, Kreis Borken and Kreis Steinfurt (see Figure 1). Regionally, this 

institution supports the coordination and the collaboration between their chain partners such as 

hospitals, general practitioners and regional ambulance services. Nationally, AZE is in collaboration and 

contact with other emergency care networks. These networks translate national advice into 

operational direction and execution on regional levels. Furthermore, AZE shares its knowledge and 

research throughout its region by providing education, training and theme-based meetings aiming at 

optimizing emergency care and quality of care (Acute Zorg Euregio, n.d.). 

 

Figure 1 Emergency care region of AZE (Source: Acute Zorg Euregio, n.d.).  
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1.2. Mass-casualty incidents 
This section provides information about the different aspects of a mass-casualty incident (MCI). Firstly, 

the definition and complexity of an MCI are explained (Section 1.2.1). Secondly, a way to prepare for 

an MCI is described (Section 1.2.2). Lastly, the decisions made by a dispatcher during an MCI are 

addressed (Section 1.2.3).  

1.2.1. The complexity of a mass-casualty incident 

Mass-casualty incidents (MCIs) are defined as incidents where the number of casualties overwhelms 

the local emergency response and hospital treatment capabilities. In this research, we use the terms 

patient and victim as synonyms for the term casualty. Examples of MCIs are Beirut's explosion in 2020, 

the terrorist attack in New-Zealand in 2019 and the firework explosion in Enschede in 2000. 

AZE aims to prepare its chain partners in such a way that each casualty receives the best emergency 

care. For an MCI, there are several reasons why this is difficult to achieve. Firstly, the number of victims 

overwhelms local treatment capabilities. The victims are either a sheer number of injured casualties, 

all needing treatment simultaneously or a small number of victims who require advanced care 

(Repoussis et al., 2016, p. 531). Secondly, local resources are finite. Therefore an MCI might create a 

sudden spike in demand for emergency response resources (Mills et al., 2013).  Having a limited 

number of (air and land) ambulances causes a slower response time, which eventually leads to a lower 

survival rate.  

All-together this makes it complex to give the best treatment to each casualty. Therefore, the 

Netherlands has developed several policy frameworks to provide the best treatment for each casualty 

during an MCI (Damen & Moors, 2016). Disaster-preparedness activities are used to practice policy 

frameworks to obtain specific skills. An example of AZE organizing a disaster-preparedness activity is 

doing an Emergo Train System exercise. In the next subsection, the Emergo Train System exercise is 

briefly introduced. 

1.2.2. Emergo Train system 

Emergo Train System (ETS) is a “simulation system that is widely used for education and training in 

emergency and disaster management” (Emergo Train System, n.d.). The system consists of several 

magnet boards representing different components of an MCI such as the incident location, hospital 

location or the resources available in the exercises (see Figure 2). On those boards, different kinds of 

magnets are attached presenting resources or casualties. A casualty is presented by using a human-

shaped magnet, which is called  “Guba” in ETS (see Figure 3) (Hornwal et al., 2016). On this magnet, 

information about the Guba such as gender and type of injuries is provided. The resource magnets 

present different emergency services such as medical, fire, or police services. In this research, only 

medical services are included. For instance, a medical service is an (emergency) dispatcher. A 

dispatcher decides for each casualty where he/she is hospitalized during an MCI. ETS can simulate a 

scenario in which the dispatcher has to decide on such kinds of challenges. More information about 

the decisions made by a dispatcher is given in the next subsection. Whenever an ETS exercise is 

finished, an evaluation is done. It is analyzed on different kinds of Key Performance Indicators (KPIs). 

The chosen KPIs depends on the learning objectives and the scenario of the ETS exercise. More 

information about ETS and KPIs is given in Chapter 2. 
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Figure 2 Example of an ETS whiteboard (Source: Hong Kong Jockey Club Disaster Preparedness and Response Institute, 
2019). 

 

Figure 3 Human-shaped magnet (Source: Emergo Train System, n.d). 

1.2.3. The role of the dispatcher  

The dispatcher is responsible for managing the operations of ambulances in the immediate aftermath 
of a disaster. A disaster is massively complicated due to the dynamics and uncertainty with the 
planning conditions (Talarico et al., 2015). The process of emergency care starts as soon as the 
dispatcher receives an emergency call. By asking questions to the caller, the number of victims and the 
type of injuries is estimated. Whenever the estimated number of casualties is more than ten, the 
dispatcher uses the policy framework GGB-model (Grootschalige Geneeskundige Bijstand model; 
Large-scale medical assistant model). This framework gives guidance on how many emergency 
response resources such as (air and land) ambulances and medical (aid) teams are alarmed (Cools et 
al., 2015). During the MCI, information is transferred between the ambulances and the dispatcher by 
using a communication system called C2000 (Ministerie van Justitie en Veiligheid, 2020). The 
information is used to estimate the number of casualties accurately. With this given information, the 
dispatcher decides to increase or decrease the number of ambulances. 

During an MCI, several components make a dispatcher operate in a hectic and abnormal situation. 
Calls are coming in demanding help, while the dispatcher has to coordinate the ambulances to and 
from the scene. In consideration with the associated ambulance it is decided where a casualty is 
hospitalized. If the number of ambulances is limited, the dispatcher decides which ambulance should 
return to the MCI. Either way, AZE aims to prepare the dispatcher in a way that each casualty receives 
the treatment as fast and best as possible (Acute Zorg Euregio, n.d.). 

1.3. Problem analysis 
As is described in Section 1.2.3, during a large-scale MCI, a dispatcher makes many decisions under a 

hectic and short timespan. A dispatcher makes the best decision for each casualty with the available 
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information at the time. It is perhaps challenging for a dispatcher to estimate the impact that a 

particular decision or strategy has on the subsequent assignment of casualties. Moreover, the 

decisions about the allocation of casualties to hospitals are based upon the dispatcher's experience 

and the associated emergency healthcare team of an ambulance. An interactive support system would 

help a dispatcher make the best assignment for all the casualties assignments to hospitals. This system 

could automatically decide where a casualty should be hospitalized given the estimated number of 

casualties, type of injury, available resources, hospitals' treatment capacity, etc. The support system 

should be deployable for a dispatcher to check whether the best decision is made for each casualty 

during an MCI or an ETS exercise. Whenever the situation changes due to the uncertainties of an MCI, 

the interactive support system should be able to adapt. Unfortunately, such type of interactive support 

is not available at the moment. To develop such an interactive support system, first the optimal 

allocation of casualties and ambulances after an MCI or ETS exercise should be found. At the moment, 

this is not available. An MCI or ETS exercise evaluation is currently based on experience and 

performance indicators such as throughput time and makespan. By knowing the optimal allocation 

after an MCI or ETS exercise, the evaluation of MCIs and ETS exercises can be improved. 

1.4. Motivation and research questions 
The core problem we address during this research is the process of finding the optimal solution for 

assigning casualties to hospitals in case of an MCI. In this research, a mathematical model is developed 

to find the optimal allocation of casualties and ambulances to aid the dispatcher. The model is 

deployable for analyzing the performance of certain KPIs after an MCI or an ETS exercise. The model 

takes the number of casualties, transportation times, the available number of ambulances and the 

treatment capacity of each hospital as inputs. In return, it provides dispatchers and AZE more insight 

into how dispatchers should make decisions. Moreover, it motivates to continuously improve the 

preparation for an MCI. This leads to shortening the treatment response time and increasing the 

survival rate of casualties. Furthermore, this mathematical model contributes to research in the field 

of disaster planning. The model produces realistic decisions, which are verified by comparing the 

model results with two (existing) ETS exercises. Finally, this model is the first step in making an 

interactive support system, which can be used by dispatchers during an MCI. The main research 

question is formulated as follows:  

“What mathematical model can be developed to improve the assignment of casualties to hospitals 

with limited resources in case of an MCI?” 

The main research question consists of multiple aspects that should be solved separately. By dividing 

the main research question into multiple sub-questions, the main question can be answered at the 

end of this research. The following sub-questions are answered by each chapter: 

Context (Chapter 2) 

Sub-question 1 – ‘What kind of activities are performed to deliver the best treatment for each casualty 

in the pre-hospital phase?’ 

1. Which aspects are taken into consideration for the assignment of casualties to hospitals?  

2. How are the ETS exercises of autumn 2019 performed and what are the results? 

Literature Review (Chapter 3) 

Sub-question 2 - ‘Which existing approach is most applicable to the assignment of casualties to 

hospitals and how to measure the effectiveness of such approaches?’ 

1. Which key performance indicators (KPIs) fit best to assess the performance of the model? 
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2. Which approaches are available in the literature for optimizing the distribution of casualties in 

case of an MCI and to what extent are they useful for this research? 

3. What has been done in the preliminary research conducted by AZE and applies to this research?  

Mathematical formulation (Chapter 4) 

Sub-question 3 – ‘How to develop an optimization approach that models the decisions made by the 

dispatcher in the ETS exercises of autumn 2019? ‘ 

1. Which research framework can be set for modeling the decisions of a dispatcher?  

2. Which data and input variables are used for the model to make it realistic?  

3. What are the objectives, parameters and constraints of the models?  

Experimental design (Chapter 5) 

Sub-question 4 – ‘What kind of scenarios are conducted on the optimization approach and how is the 

performance of the optimization model assessed? ‘ 

1. What kind of scenarios are conducted on the optimization approach? 

2. Which KPIs fit best to compare the different scenarios?  

Results (Chapter 6) 

Sub-question 5 ‘What are the results of the model?’ 

1. What are the results of the model when using the data from the ETS exercise and are they 

comparable with the ETS exercises of autumn 2019?  

2. What are the results of the various scenarios?  

3. How does the model perform in comparison to the past ETS exercises? 

Conclusion and recommendations (Chapter 7) 

Sub-question 6 ‘In which way can the mathematical model improve the assignment of casualties to 

hospitals with limited resources? ‘ 

1.5. Research approach 
This thesis is structured by providing answers to each sub-question. Each sub-question is answered 

within one of the chapters. After answering all sub-questions, the main research question is answered. 

Chapter 2 answers the first sub-research question. This chapter addresses the factors that are 

determining where a casualty is hospitalized. Moreover, information on how the ETS exercises 

performed in the autumn of 2019 is given. It regards how these ETS exercises are prepared, executed 

and evaluated. Chapter 3 answers sub-question 2 by conducting a literature review.  Before describing 

the related research streams through a literature review, we give the reader basic knowledge about 

mathematical modeling, simulation studies and heuristics, which are different types of techniques in 

the field of Operations Research. Chapter 4 answers sub-question 3 by developing a mathematical 

model, which mimics the dispatcher's decisions in the ETS exercises. Chapter 5 includes the 

experimental design of this research. In Chapter 6, the execution and the comparison of the results of 

the model and the ETS exercises are presented. Chapter 7 answers the main research question. 

Moreover, the conclusions and discussion of this research are presented.   
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Chapter 2: Context   
This chapter answers research question 1: “What kind of activities are performed to deliver the best 
treatment for each casualty? ”. This chapter is divided into six sections. Section 2.1 describes the 
factors that influence the hospitalization of a casualty in the case of an MCI. Section 2.2 addresses the 
difference in hospital capabilities and levels in the Netherlands. Section 2.3 explains what triage is and 
the different categories of triage. Section 2.4 presents how ETS exercises are conducted. Section 2.5 
explains how the ETS exercises of autumn of 2019 were conducted. Finally, Section 2.6 closes this 
chapter by answering research question 1.  

2.1. Factors determining where a casualty is hospitalized 
As stated in Subsection 1.2.3., the dispatcher's responsibility is to assign the casualties of an MCI to 

the surrounding hospitals. The goal for each casualty is to receive treatment at the right time and 

location. Furthermore, it is also aimed to prevent overcrowding at the hospitals that are closest to the 

incident scene. Whenever the number of casualties is too large for the surrounding hospitals, 

casualties get allocated to hospitals even further away to avoid overwhelming the surrounding 

hospitals' treatment capacities. The information given to the dispatchers is used to determine which 

GGB code (Large-scale medical assistance code, Grootschalige Geneeskundige Bijstand code) is issued. 

The different codes can be found in Appendix A. The GGB code is scaled down or up during the MCI. 

The issued GGB code gives the dispatcher guidance on how many ambulances to alert. Based on the 

following factors, the dispatcher decides where a casualty is hospitalized (ROCAH RAV Haaglanden, 

2019):  

• Triage level  

• Type of injury  

• Age  

• Hospital level 

Furthermore, the dispatcher makes use of the actual treatment capacity of the hospitals. In the ETS 

exercises the age of the Guba is included. Children are prioritized over adults. However, they were not 

many child Gubas involved in the ETS exercises of autumn 2019. Therefore, the age factor is neglected 

in this research. In the next sections, the differences in hospital levels (Section 2.2) and triage levels 

(Section 2.3) are explained.  

2.2. Hospitals levels  
Hospitals are classified into different levels (de Vos, 2016; Moors, n.d.; Noord Nederland Acute 

Zorgnetwerk, 2020). The classification of hospitals is based upon their abilities to treat trauma patients. 

Level 3 hospitals can treat isolated injuries such as hip fractures or burns. Level 2 hospitals can treat 

stable patients with vital injuries. In comparison to level 1 hospitals, some facilities are not available in 

Level 2 hospitals. Level 1 hospitals can treat heavily injured casualties with neurotrauma (a trauma that 

impacts the brain and spinal cord), polytrauma (simultaneous injuries to serval organs or body 

systems).  

2.3. Triage categories and hospitalization  
The term triage is defined as “the process of sorting patients and categorizing them based on clinical 

acuity” (Vassallo et al., 2016). Triage is classified into four categories: T1, T2, T3 and T4. In the ETS 

exercises of autumn 2019, only Gubas with triage category T1 and T2 are within scope. The main reason 

for not including T3 and T4 Gubas in this research is given at the end of this section. For the 

completeness of this research, we explain each category in this section.    
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The MIMMS triage sieve flowchart is used by a paramedic for assigning a casualty to one of the 

categories (in het Veld et al., 2016) (see Appendix B). After establishing the triage category, a casualty 

gets a particular color bracelet corresponding to their triage category. Table 1 describes the color for 

each category of triage. Triage category T1 is given to the most heavily injured casualties, including 

casualties with neurotrauma and/or polytrauma.  Each triage category has a certain timespan in which 

a casualty needs treatment (Vassallo et al., 2016; Wilson et al., 2013). Casualties with triage category 

T1 need treatment preferably within two hours. Most critical casualties need to receive more 

specialized treatment in a higher-level hospital (de Vos, 2016). Therefore, a T1 casualty needs 

treatment preferably at a Level 1 or 2 hospitals. Casualties with triage category T2 are considered the 

second-highest triage category. A T2 casualty must receive treatment preferably within 2-4 hours. T2 

casualties need treatments in a hospital as well. The difference with a T1 casualty is that a T2 casualty 

can receive treatment regardless of the hospital level. Casualties with triage category T1 or T2 are 

transported to a Casualty Clearing Area at the MCI, where they wait for transportation by (air and land) 

ambulances to a hospital. Casualties with triage category T3 are less hurt than T1 and T2 casualties. 

Therefore, T3 casualties receive treatment at the incident location itself. They must receive treatment 

within four hours. T4 casualties have unfortunately passed away. T3 and T4 casualties do not require 

any decisions of a dispatcher. Therefore, T3 and T4 casualties are not included in this research.   

Table 1 The preferable assignment of casualties to hospitals 

Category Treatment within Triage color Hospital Injuries 

T1 Immediately, but 

within 2 hours 

Red L1, L2 Neurotrauma / polytrauma 

T2 -4 hours Yellow L1, L2, L3 Vital injuries 

T3 > 4 hours Green Field hospital  Isolated injuries 

T4 -   - - Passed away  

 

2.4. ETS  
As stated in Subsection 1.2.2, ETS is a disaster-preparedness activity for simulating an MCI. The 

required resources and preparations of an ETS exercise are addressed (Subsection 2.4.1). Secondly, 

how ETS exercises are executed is introduced (Subsection 2.4.2). Thirdly, an explanation is given how 

the ETS exercises are analyzed on their performance (Subsection 2.4.3).  

2.4.1. Preparation  

Before performing an ETS exercise, some preparation is done by the ETS designers. The designers 

decide which scenario is simulated and which simplifications are made in comparison to reality. 

Furthermore, the learning objective of an ETS exercise is devised by ETS designers. Based on the 

learning objective, a decision is made on the number of included hospitals, ambulances, and Guba 

types. Also, the transportation time is determined by the ETS designers. Lastly, based on the learning 

objective suitable participants are invited to take part in the ETS exercise (Hornwal et al., 2016). 

2.4.2. Execution  

After designing, preparing and organizing, the ETS exercise is executed. Various whiteboards full of 

Gubas and ambulances are placed in a room (see Figure 4). The red warning tape in the figure depicts 

a symbol for the part of the disaster, which has not been accessed yet and means that a Guba placed 

inside the red warning tape does not participate in the exercise yet. After some time, these Gubas are 
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coming in the exercises. After that, the Guba gets assigned to an ambulance. In an ETS exercise, there 

are two groups of participants. The first group is sitting behind the tables. Those participants are the 

dispatchers in the ETS exercise. The dispatchers have several documents available with information 

about transportation times, treatment capabilities and capacity of hospitals. The dispatcher uses those 

documents for deciding where a Guba is hospitalized. The second group is standing in front of the 

whiteboards (see Figure 4). They are responsible for logging the results. Furthermore, they make sure 

no constraints are violated in the ETS exercise. Lastly, one participant is a runner. The runner is 

responsible for moving the Gubas from the whiteboard to the dispatchers and back to the whiteboard 

(Hornwal et al., 2016). 

 

Figure 4 Execution of the ETS exercises (Source: Draijer, 2017). 

2.4.3. Evaluation  

An ETS exercise is finished when all the Gubas have reached a hospital. According to previously defined 

Key Performance Indicators (KPIs), an evaluation takes place after the exercise is finished. By doing an 

evaluation, the participants can reflect on themselves and get insights on what went well and what 

needs improvement (Hornwal et al., 2016).  

2.5. ETS exercises autumn 2019  
As previously mentioned in Chapter 1.2.2 AZE conducted two ETS exercises in the autumn of 2019. This 

section describes how those ETS exercises were prepared (Subsection 2.5.1).  Also, the KPIs chosen for 

evaluating those ETS exercises are described in Subsection 2.5.1. The execution of the ETS exercises of 

autumn 2019 is not explained because they were executed in the same way as discussed in Subsection 

2.4.2. The evaluation of the ETS exercises of autumn 2019 is addressed in Subsection 2.5.2. Both 

exercises used the same scenario, but the participants differed. The participants of the ETS exercises 

were all dispatchers.  

2.5.1. Preparation 

The learning objective of the ETS exercises of autumn 2019 was to understand how the dispatchers 

allocate the Gubas of an MCI to the hospitals. Moreover, the exercises were performed to test whether 

the triage category was connected to the right hospital level. 

The ETS exercises were finished when the last Guba arrived at a hospital. The ETS designer of autumn 

2019 devised an MCI scenario on a liberty festival at Goor (see the red dot in Figure 5). According to 

this scenario, the stage of the festival collapsed and caused a fire. The scenario included 90 Gubas in 

which 26 were classified as T1 type and 64 were type T2. The triage category of the Gubas was known 
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by the participants and could not change during the exercises. Each Guba was assigned to one of the 

27 hospitals (see hospital signs in Figure 5). Information about the hospital's treatment capabilities and 

the capacity per hour was given to the participants. A total of 47 ambulances were included in the ETS 

exercises. Those ambulances were originating from regions Ijsseland (23 land ambulances), Twente 

(17 land ambulances), Noordoost Gelderland (19 land ambulances) and Germany (10 land 

ambulances).  No air ambulances were used in those ETS exercises.  

 

Figure 5 Hospital levels  

For the ETS exercises, some simplification and assumptions were made. For the ETS exercises of 

autumn 2019, the following assumptions and simplifications were made: 

1. A casualty receives treatment in the hour of the arrival at the hospital. 

2. Each ambulance carries only one casualty at a time. 

3. The travel time matrix is symmetric.  

4. Each ambulance finishes its last trip at a hospital. 

5. All ambulances are available at the beginning of the disaster. 

6. The triage category of a casualty cannot change throughout the MCI. 

7. A T2 casualty can occupy a T1 bed at the emergency department of a hospital. 

8. The age discrepancy of the Gubas is neglected.  

9. German ambulances arrive one hour after the MCI has happed. 

10. All ambulances are using sirens and warning lights. 

One of the ETS exercises' assumptions was that on each trip of an ambulance, at most one Guba was 

transported to a hospital. The term “trip” was defined as traveling from the ambulance start location 

to the MCI and then from the MCI to the hospital. Each ambulance can perform multiple trips in a row. 

There were three variants of trips possible (see Figure 6). Each variant is discussed in the next 

paragraphs.  
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The first variant of a trip was when an ambulance travels from its initial location to the MCI to pick up 

a casualty and deliver the Guba to a hospital (see red dotted lines in Figure 6 ). In this figure, between 

position t0 and t1 the ambulance team drives from its initial location, Raalte, to the MCI located at 

Goor. This takes 28 minutes. Stabilizing the Guba for transportation is done in between time positions 

t1 and t2 and takes 15 minutes. The ambulance in this setting leaves the MCI location at t2 (t=43 min) 

and transports the Guba to a hospital. In this example, the participants decide to transport the Guba 

to the hospital Almelo. The ambulance arrives at the hospital at t3 (t = 60 min). The ambulance team 

drops off the Guba, which takes 10 minutes. At time t4 (t = 70 min) the first trip is completed. The 

preparation time and the drop-off time of a Guba are determined by using data of the AZE's trauma 

registration (see Appendix C). 

The second variant of a trip was similar to the first variant, except that idle and off-load time was 

included in this trip variation (see black dotted lines Figure 6). The ambulance had an idle time when 

no Guba was available for the stabilization step. This was caused by the time a Guba comes into the 

ETS exercise. In the ETS exercises, this was called the release time of a Guba. Before the release time 

of a Guba no decision was made on this Guba. The participants did not know in advance when a Guba 

comes into play. In this example at t2 (t=40 min), the Guba is released and is stabilized for 

transportation. At time t3 (t=55 min), the ambulance team starts transporting the casualty to the 

hospital located at Almelo. As soon as the ambulance arrives on t4 (t4 = 72 min) at the hospital. In 

between t4 and t5 (t5 = 77 min) the ambulance must wait a few minutes before the casualty is dropped 

off at the hospital. At time t6 (t6= 87 min), the trip is completed.  

The third variant of a trip happened after an ambulance completes one of the described trips before 

(See red or black line Figure 6). The participants decided to start a new trip. Instead of driving from its 

initial location, the ambulance drives from the hospital to the MCI and back to a hospital. In this 

example, both ambulances start their second trip at hospital Almelo. The second trip looks like one of 

the two variants discussed before.  

 

Figure 6 Modification and components of a trip 

Another assumption is that each ambulance was using sirens and warning lights in the ETS exercises of 

autumn 2019. In reality, the ambulance crew decides if the ambulance is using warning lights and 
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sirens. Lights and sirens help the ambulance to travel faster through traffic while transporting the 

patient. Altogether, this makes intuitive sense because a better outcome is achieved when the patient 

receives definitive care sooner (Murray & Kue, 2017). The difference between (not) using lights and 

sirens is influenceable by multiple factors. Some factors found in the literature are the number of 

stoplights encountered, traffic intensity, and distances traveled (O'Brien et al., 1999). So, the impact 

of using lights and sirens depends on the situation itself, how much the use of sirens and lights 

positively impacts the survival rate of patients. 

Since the travel time of ambulances depends on multiple factors, the ETS designers made an 

approximation for determining those travel times. They used Google Maps’ for determining the 

ambulances travel times. Using Google Maps is an accurate method for estimating trip-base 

transportation times (Wallace et al., 2014). For an ambulance that uses warning lights and sirens, the 

transportation times of Google Maps travel times are multiplied with a factor of 0.7 (See Appendix C). 

This factor is compared to the regional trauma registration of AZE and is approximately the same. 

Looking into the determined transportation times of the ETS exercises in autumn 2019, some 

inconsistency can be observed. Appendix D shows that the factor of this exercise ranges between 0.60 

and 0.86. Unfortunately, this is untraceable whether the transportation times of Google Maps have 

been changed over time or the ETS designer referred to a different transportation time. To correctly 

compare, the transportation times used in the ETS exercises of autumn 2019 are used in the 

mathematical formulation. However, those travel times might not represent the real travel times of 

the ambulances using sirens and warning lights correctly. 

2.5.2. Evaluation 

As previously mentioned in Section 1.3 the evaluation is based on the experience of the ETS instructor 

and some KPIs. The following KPIs are used for analyzing the performance of the ETS exercises of 

autumn 2019: 

1. The total number of T1 Gubas hospitalized at each hospital.  

2. The total number of T2 Gubas hospitalized at each hospital.  

3. The makespan.  

4. Average throughput time of the Gubas.  

5. The latest departure from the disaster scene among the T1 Gubas. 

6. The latest departure from the disaster scene among the T2 Gubas. 

7. The number of ambulances deployed on each trip. 

Most of the chosen KPI are self-explanatory. Except for KPIs 3, 4 and 7, those need explanation. The 

term makespan (3) is defined as the completion time of the lastest job to leave the system (Pinedo, 

2008, p. 18). Applicable to this problem, this definition is translated to the difference between the 

latest arrival of the Gubas at a hospital after dropping off and the starting time of the ETS exercise. In 

the ETS exercise, the throughput time (4) is defined as the difference between the arrival time at the 

hospital and the starting time of triage.  

As mentioned in Subsection 2.4.1, an ambulance can make multiple trips from the MCI site to the 

hospital and back. It depends on the dispatcher whether an ambulance is deployed for a second or 

third trip. KPI (7) analyses how many ambulances are deployed for one, two, or three trips, 

respectively. Appendix E summarizes the performance of both ETS exercises. For developing the model 

in this research, the KPIs used in the ETS exercises are considered together with findings from the 

literature for deciding which KPIs are used for testing the performance of the model.  
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2.6. Conclusion 
Casualties with triage category T1 or T2 receive treatment in a hospital. T1 casualties must receive 

treatment in an L1 or L2 hospital and need treatment within two hours. A T2 casualties can receive 

treatment regardless of the hospital level but needs treatment within two and four hours. T3 and T4 

casualties do not require the decisions of dispatchers. Therefore, they are out of scope.  

The Emergo Train System (ETS) is a disaster-preparedness activity for simulating an MCI. Such type of 

exercise is a way to prepare dispatchers for those types of incidents. The disaster scene is simulated 

by using magnet boards. Two ETS exercises were held in the autumn of 2019. The same scenario was 

used in both of the ETS exercises. However, dispatchers differed. The scenario and all the input 

variables such as treatment capacity and capabilities of hospitals, transportation times, and Guba types 

included in the exercises were determined by the ETS designers. 

Furthermore, the designers determined the learning objectives. During the exercise, the participants 

assigned each Guba to a hospital, dependent on the triage level. The triage level of a Guba was known 

by the participants and could not change during the ETS exercises. All measurements of the exercises 

(KPIs) were written down in Excel sheets. Later on, the KPIs were calculated for the evaluation part of 

the ETS exercises. It is essential to know the outcome and performance of the ETS exercises because 

data is also used in the developed model and performance indicators are compared. 
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Chapter 3: Literature review 
This chapter discusses literature related to this research topic and answers research question 2: ‘Which 

existing approach is most applicable to the assignment of casualties to hospitals and how to measure 

the effectiveness of such approaches?’. This chapter is divided into three sections. Section 3.1 

describes some background information about different modeling and solution techniques. Also, the 

advantages of each technique are discussed. Section 3.2 addresses in-depth the related work of the 

literature review per stream. Section 3.3 closes this chapter by answering research question 2.  

3.1. Methods 
The topic of this research is solvable by using a different kinds of methods. One method is optimization 

modeling. The topic of this research is formulated as an optimization problem. An optimization 

problem is solved by using an optimization model. Optimization modeling is a collection of variables 

and the relationships needed to describe essential features of a given problem (Rader, 2013, p. 1). 

There are different kinds of methods available to solve optimization problems. All the different kinds 

of methods aim at minimizing or maximizing the objective value. Optimization models are divided into 

two categories (see Figure 7). The first category is mathematical programming and is discussed in 

Subsection 3.1.1. The second category is optimization algorithms and is explained in Subsection 3.1.2. 

Another method applicable to this topic of research is simulation models and is addressed in 

Subsection 3.1.3. 

3.1.1. Mathematical programs  

A mathematical program is a mathematical structure where decision variables represent problem 

choices. The decision variables are used to define certain restrictions and requirements of the 

optimization problem. The decision variables are used to minimize or maximize the objective function 

(Grond, 2016; Rader, 2013). There are three common variations within the mathematical program (see 

Figure 7). The first one is a linear program (LP). In this program, all the decisions variable are continuous 

and each constraint is either a linear inequality or a linear equation. The second is the integer linear 

program (ILP). The main difference to an LP is that an ILP is required to have only integer variables. The 

last common variation of the mathematical program is a so-called mixed-integer linear program 

(MILP). At least one variable is an integer and at least one variable is discrete. A mathematical program 

seeks to find the global optimum. This solution is the best feasible function value of the program. A 

disadvantage of this method is that it may require simplification in constraints, solution space or 

linearization of the problem (Grond, 2016). Such models often use a lot of computation time (Rader, 

2013). 

3.1.2. Optimization algorithms 

Optimization algorithms are divided into exact and not exact algorithms, as depicted in Figure 7. An 

exact method can find the optimal solution to an optimization problem but has the same disadvantage 

as a mathematical program. An exact method requires a lot of computation time. The group of not 

exact optimization algorithms is divided into (not) guaranteed methods.  

The group of heuristics is divided into two main types: simple and metaheuristics. Simple heuristics are 

also called constructive heuristics. Those types of heuristics aim to construct their final solution by 

building a partially incomplete solution as it iterates. A metaheuristic constructs its final solution by 

starting from some initial complete feasible solution and iteratively modifies the current solution to 

get a new one until a better solution is obtained (Rader, 2013). Heuristics seek reasonable solutions. 

However, the main disadvantage of a heuristic is that it cannot guarantee feasibility, optimality or even 

an estimation on how close the solution is to the global optimum. They typically handle large problems 

more efficiently than mathematical programs (Grond, 2016). 
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3.1.3. Simulation models  

A simulation model is defined as a method that imitates the operation of a real-world system as it 

evolves. A simulation model usually takes a set of assumptions about the system's operation, 

expressed as mathematical relations between the object of interest in the system. In comparison to 

mathematical programs, simulation models are easier to apply. Also, simplifying assumptions are less 

needed in simulation models. Simulation models are not an optimization method, which is the 

disadvantage of simulation models (Winston & Goldenberg, 2004). However, the heuristics are 

possibly implementable into the simulation models (Grond, 2016).  

 

Figure 7 Examples and classifications of optimization models and algorithms (Source: Grond, 2016). 

Much research is conducted to relieve resource allocation in MCIs (Caunhye et al., 2012; Manopiniwes 

& Irohara, 2014). In contrast, less attention is given to the transportation of casualties and in particular, 

in conjunction with triage (Repoussis et al., 2016; Sung & Lee, 2016). No generally accepted evidence-

based guidelines exist to advise dispatchers on fundamental questions such as which hospitals to 

include in a specific MCI response and how many casualties to transport to each. Ambulance 

dispatching has been performed mostly based on the reliability and validity of the dispatcher's 

cognitive abilities (Repoussis et al., 2016, p. 532). Altogether, this topic of research is relatively novel 

and could prove an interesting field for research.  

Sacco et al. (2005) show one of the first attempts to analytically model resource-constrained patient 

prioritization. The paper proposes an ILP to optimally determine the patient transportation priority. 

Follow-up studies of Sacco et al. (2005) define a stream about prioritization as an ambulance 

scheduling problem, which is often formulated as an ILP or IP model. The outcome of such types of 
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studies is to provide tactical insight for resource allocation by characterizing the structure of optimal 

policies for the stochastic scheduling problem (Sacco et al., 2005).     

3.2. Related work  
The rest of this section is structured by distinguishing three different types of literature streams. The 

first stream is about the vehicle routing problem (see Subsection 3.2.1). Before moving to more specific 

vehicle routing problems, the general ideas about this problem are explained. The papers of the first 

stream apply to a lot of different optimization problems. The second stream is about scheduling or 

routing the ambulances of an MCI (see Subsection 3.2.2). Those types of studies assume that 

information needed to solve the mathematical program is available at the MCI scenes. The outcome 

of such a type of model is a “real-time” prioritization solution in the form of an ambulance schedule 

(Sung & Lee, 2016). The third stream includes the use of simulation models to tactically develop 

insights on the resource allocation during an MCI (see Subsection 3.2.3). Furthermore, in this stream, 

we include general rules and principles applied to patient prioritization in MCIs.   

3.2.1.  Vehicle routing problems (VRP) 

One of the best-known routing problems is at the same time the simplest one, namely the traveling 

salesman problem (TSP). This problem is formulated as: “seeks a minimum cost route visiting each 

location exactly once” (Rader, 2013, p. 103). The basic VRP is an extension of the TSP and seeks to find 

a set of 𝑚 vehicle routes such that (a) each route begins and ends at the depot, (b) every customer is 

included in exactly one route, (c) the total demand of each route does not exceed the maximum vehicle 

capacity and the total cost associated with each route is minimized (Rader, 2013). An example of what 

a VRP looks like is given in Figure 8.  

 

Figure 8 Example of single depot VRP for three routes (Source: Tunga, 2017). 

On the basic VRP many different variations of the basic VRP model are developed. A common variation 

of the VRP is discussed first before moving to the VRP variation found in the literature. After addressing 

the common VRP variations, more specific and relatable VRP variants are addressed (see Table 2).  

A common variation of the VRP is the VRP with time windows (VRPTW). Over the last 20 years, VRPTW 

has been an area in which many papers have been published on exact, heuristics and metaheuristics 

methods (El-Sherbeny, 2010, p. 123). In the VRPTW each vehicle has to visit a customer within a specific 

time frame. The vehicle may arrive before the time window opens but the customer cannot service it 

until the time windows open. It is not allowed to arrive after the time window has closed (El-Sherbeny, 

2010). The second common variation of VRP is the VRP with release and due dates. 
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Table 2 Research stream on VRP 

Applied by  Method  Objective function  

Mirabi et al. (2016)  Mathematical model  Minimize transportation costs 

Zhen et al. (2020) Mathematical model  Minimize transportation costs 

Mirabi et al. (2016) focus their research on the multi-depot VRP with time windows (MVRPTW). This is 

almost the same as the VRPTW variation. However, there are some differences. In Mirabi et al. (2016) 

there are multiple options from which the vehicle can leave the depot. Furthermore in this 

formulation, a vehicle is not allowed to have a flexible beginning and ending depot.  

Both modifications are not possible in the VRPTW formulation. The mathematical formulation 

of Mirabi et al. (2016) aim at minimizing the transportation cost. The transportation cost consists of 

the traveled distance and a penalty cost for not serving the customers on time. In comparison to this 

research, the beginning and location in our model can differ too. As mentioned in Chapter 2.5,  in the 

ETS exercises, the beginning and end location of each vehicle's first trip might differ. The “depot” is the 

same whenever the same hospital is chosen on the second trip. However, this should be flexible as 

well. Another comparable component with our research is that each Guba needs treatment within a 

certain time-window. However, in our case, they are only two types of time windows instead of having 

a separate time-window for every customer. The treatment time intervals of each triage category are 

addressed in Chapter 2.3. As a solving method, the paper chooses a novel Genetic Algorithm clustering 

method. This method is compared to the fuzzy C mean and K-means algorithm. In the fuzzy C mean 

algorithm, each point is allocated to the clusters by a degree of joining. Meaning a single point is 

possibly a member of two or several clusters simultaneously (Mirabi et al., 2016). A K-means algorithm 

splits a data set into a fixed number of k clusters. Each point is assigned to one of the clusters (Söder, 

2008).  

Zhen et al. (2020) formulate a MILP for a multi-depot multi-trip VRPTW. Also, the capacity constraint 

of a vehicle is taken into account. This paper aims to optimize the assignment of trips and customers 

to vehicles and the sequence of vehicles visiting customers. The paper chooses a hybrid particles 

swarm optimization algorithm (HPSO) and a hybrid genetic algorithm (HGA) as a solving method.  

Both papers have differences that are important to highlight. First of all, Zhen et al. (2020) assume 

each trip to start and end at the same depot. In our model, we want to allow each vehicle to have a 

different start and end location and a vehicle can make multiple trips. When applying this assumption 

of Zhen et al. (2020) much flexibility is lost in the assignment of casualties to hospitals. In this way, the 

mathematical formulation would not present all the possible decisions of a dispatcher. In Mirabi et al. 

(2016) this flexibility is given. However, in Mirabi et al. (2016) the vehicle is not allowed to make 

multiple trips. Finally, both papers formularize that a vehicle can visit multiple customers on one trip. 

In our model, we would not allow visiting multiple casualties on the trip since an ambulance can only 

transport one casualty at a time.  

3.2.2. Ambulance scheduling and routing problem 

During the literature review, we have found four papers on the ambulance scheduling problem in the 

context of an MCI. Table 3 summarizes those papers. In this section, we highlight the interesting 

findings of each paper and compare them to our research.   
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Table 3 Research stream on the ambulance scheduling and routing problem 

Applied by Method Objective function  

Talarico et al. (2015) Mathematical model  Minimize the weighted sum of the latest service 
completion time among each casualty group  

 Optimization model 
(heuristics) 

Minimize the weighted sum of the latest service 
completion time among each casualty group 

Repoussis et al. (2016) Mathematical model  Minimize the completion time of the latest 
treatment in the hospital among all the patients 

 Optimization model  
(heuristics) 

Minimizing the (weighted) total flow time for 
each patient and the completion time of the 
latest treatment in the hospital among all the 
patients 

Wilson et al. (2013) Optimization model 
(heuristics) 

Minimizing fatalities, suffering and makespan 

Sung and Lee (2016) Mathematical model 
(column generation) 

Maximize the number of excepted survivals for 
each group of patients 

Draijer (2017) Mathematical model Minimize the latest arrival time of each group of 
patients 

Talarico et al. (2015, p. 120) propose two mathematical formulations to obtain route plans that 

minimize the latest treatment completion time in the hospital among the casualties. They distinguish 

two types of groups. The first group consists of slightly injured people who are treated in the field. The 

second group consists of seriously injured people who are brought to a hospital. The completion time 

of each patient group is minimized. The mathematical model is using weights to prioritize seriously 

injured people over slightly injured people.  

Repoussis et al. (2016, p. 531) propose a response model of the aftermath of an MCI that is used to 

provide operational guidance for regional emergency planning as well as to evaluate strategic 

preparedness plans. Repoussis et al. (2016) model the sequences of events during an MCI of each 

casualty, beginning with the waiting time for an available ambulance and the time when a casualty 

completes the hospital service time. They distinguish two types of casualties, namely critically injured 

patients and non-critical patients. As depicted in Table 3, the MILP formulation of Repoussis et al. 

(2016) minimizes the latest treatment completion time among the patients in the hospital.  

Sung and Lee (2016) propose a MILP model applicable in the immediate aftermath of an MCI. The MILP 

model determines the order in which victims are transported to their destination hospital. Sung and 

Lee (2016) distinguish two types of triage categories, namely an immediate and a delayed group of 

patients. This paper assumes that the patients in each triage category follow a survival probability 

profile given by a known function of time. This model's objective function is to maximize the number 

of expected survivors from an MCI by using the probability profiles of both triage categories.  

Talarico et al. (2015), Repoussis et al. (2016) and Sung and Lee (2016) have different arguments for 

proposing their applied method, which is deployed for solving their problem. Talarico et al. (2015, p. 

126) mention that the ambulance scheduling problem must be solved within seconds to respond 

properly to the emergency requests and to replan the routing if updated information becomes 

available. Therefore, Talarico et al. (2015) propose another approach by using a (meta)heuristics. Their 

main argument is that (meta) heuristics are usually faster than an exact approach and can have near-

optimal quality solutions. The model formulation by Repoussis et al. (2016) is based upon the ideas of 

flexible job shop scheduling problems (FJSP) with unrelated parallel machines. FJSP is extensively 

studied in literature and is well known to be hard to optimize using the exact MIP solution. Therefore, 
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Repoussis et al. (2016) propose a hybrid multi-start local search framework for solving their problem 

formulation. Lastly, Sung and Lee (2016) base their model formulation upon a parallel machine 

scheduling problem. Such types of problems are well-known to be NP-hard (Chen & Powell, 1999; van 

den Akker et al., 1999). Moreover, the survival probability function, which is used as the objective 

function in the model, is non-linear. A non-linear function is even harder to solve in the mathematical 

modeling method. To overcome these difficulties, Sung and Lee (2016, p. 626 ) re-formulate the model 

to a set-partitioning problem. This set-partitioning problem is then solved by using a column 

generation approach.  

Talarico et al. (2015) conclude that a larger number of hospitals help in serving seriously injured 

patients by reducing the trip duration to transport them to a hospital with free capacity. In Talarico et 

al. (2015) the casualties are spread over a large area caused by a hurricane, while in this research, the 

casualties of the MCI are located at one location. In Talarico et al. (2015, p. 132) the capacity of 

hospitals seems to have a minor effect on the obtained solution. In conclusion, our research is different 

in some ways from Talarico et al. (2015). In Talarico et al. (2015) the casualties are spread over a large 

area, while in this research, the casualties are located on one site. The conclusions made by Talarico 

et al. (2015) are relevant but the scenario is significantly different in comparison to our research.   

Repoussis et al. (2016) answer the question regarding the role of additional distant hospitals. They 

found out that adding remotely located facilities increases the traveled distance but reduces the 

makespan. Moreover, Repoussis et al. (2016) suspect that when longer transportation times are 

introduced, the allocation of patients to hospitals is more balanced and the capacity of the hospital 

system considered as a whole is more effectively utilized. Lastly, they conclude when the number of 

ambulances increases, the response times improve. However, this effect quickly fades out. The 

bottleneck is moved from the ambulances to the hospitals. Repoussis et al. (2016) the MCI occur in 

Manhattan in New York. This is one of the most urban areas in the world. In comparison to the region 

of AZE this is significantly different. The region of AZE is in comparison to Manhattan not an urban 

environment. The travel time for the ambulances to reach a hospital is way longer than in Repoussis 

et al. (2016) due to the difference in location of the scenario. For instance, the hospital closest to the 

MCI in our scenario has a travel time of 17 minutes, while in Repoussis et al. (2016) the longest travel 

time to the hospital from the MCI is 18 minutes. This stresses that the scenarios are significantly 

different from each other.  

Wilson et al. (2013) propose a constructive heuristic and a Variable Neighborhood Descent 

metaheuristic. The heuristics make decisions relating to the extrication, treatment and transporting of 

casualties. The heuristic aims to minimize the fatalities, suffering and makespan. The performances of 

the metaheuristic are measured on: the expected number of fatalities, how quickly casualties are 

delivered to the hospital and how appropriate the hospital allocation choice is. For the expected 

number of fatalities, Wilson et al. (2013) implemented a Markov chain representing the stochastic 

process of the health of a trapped casualty. The paper of Wilson et al. (2013) is related to the research. 

However, there are two main differences. Firstly, in Wilson et al. (2013) the MCI takes place in London, 

which is just like Manhattan, one of the most urban areas in the world. In comparison to the MCI of 

this research, it not an urban environment. Secondly, the MCI in Wilson et al. (2013) is multi-sited. In 

this thesis, the MCI is single sited.  

Sung and Lee (2016) show that the number of survivors is maximized when the delayed group of 

casualties receives treatment first. After that, the immediate group of casualties receives treatment. 

In comparison to this research, the delayed group of casualties can in our research be compared to the 

group of T2 casualties and the immediate group of casualties to the group of T1 casualties. Sung and 

Lee (2016) dispatchers believe more urgent patients deserve higher priority, which intuitively makes 
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more sense. Sung and Lee (2016, p. 632) believe this discrepancy between the dispatchers’ belief and 

the model outcome is attributed to the two key components. Firstly, the chosen objective function in 

the model may not include some of the dispatchers' KPIs. Secondly, the way the survival probabilities 

are modeled results in favoring the second highest casualties group over the highest group of 

casualties. In the ETS exercises, the triage level cannot change throughout the exercise and due to this 

a casualty cannot die. The simplifications made in the ETS exercises are the basis for the model such 

that it can be compared to the ETS exercises.  In conclusion, the chosen objective function in Sung and 

Lee (2016) does not apply to this research. However, this paper gives valuable insights into the 

available methods for solving this type of problem.  

Draijer (2017) is developed in cooperation with AZE. Draijer (2017) proposes a MILP model. The model 

assigns each casualty to an ambulance and makes sure that the patient gets transported to the right 

hospital. This model minimizes the latest arrival time at the hospital of each casualty group. Heavily 

injured casualties are prioritized over less injured cases. Evaluating the results of this model with the 

ETS exercises shows promising results. However, this MILP model is built under rather strict 

assumptions. Especially, the data from the ETS exercise was lacking for analyzing the MILP model 

correctly with the ETS exercises. Besides, not all limitations on resources are investigated. Those 

promising results need to be validated by improving and expanding the mathematical model. Draijer 

(2017) is most relatable to this research. In their research, they aim to improve the allocation of 

casualties to hospitals in MCI. This goal is the same as we strive to optimize in this research. Also, the 

incident has taken place in the same region as in this research. 

3.2.3. Simulations models 

During this literature review, two simulation studies are found that are relatable to the context of an 

MCI.  Table 4 summarizes those papers. In this section, the interesting findings of each paper are 

highlighted and compared to this research.   

Table 4 Related work of the stream simulation models 

Applied by  Method Objective function 

Hawe et al. (2015)  Simulation model Minimizing the final hospital arrival time of a 

critically injured casualty 

Wilson et al. (2016)  Simulation model Minimizing the fatalities and suffering among 

all the casualties  

Hawe et al. (2015) use an agent-based simulation to model the decisions regarding how the resources 

of emergency services should be divided over a multi-site MCI. Hawe et al. (2015) conclude the higher 

proportion of critically injured casualties at an incident site, the higher proportion of resources should 

be allocated to that site. Since we only have one incident site, such type of simulation studies is not 

particularly interesting to investigate further. The scenario of Hawe et al. (2015) occur in London, which 

is an urban environment. A city like London significantly differs from this research scenario, which is a 

more rural scenario.  

Wilson et al. (2016) continue the research of Wilson et al. (2013). They improved their model by 

changing their static model into a dynamic one. Static simulation represents a disaster incident at a 

particular point in time, while a dynamic simulation can evolve. In this research, the simulation study 

minimizes fatalities and the suffering of casualties. A higher priority is given in the objective function 

to minimizing fatalities than suffering. Wilson et al. (2016, p. 346) show that the extension of the 

model from its initial static design to the dynamic case has resulted in significant improvements in 
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terms of both expected fatalities and the suffering of casualties. Before making a dynamic model like 

this one, there should be a static model. Currently, AZE does not have a static model for the MCIs.  

3.3. Conclusion  
Different approaches exist in the literature to improve the response time, the allocation of casualties 

to hospitals and resource allocation in the immediate aftermath of an MCI. These approaches found 

in the literature are divided into three different streams: ambulance scheduling problems, simulation 

models and VRPs. The papers on the ambulance scheduling problem and the VRP stream are most 

applicable to this research. All the papers found on those streams first formulate a mathematical 

program. Most of those papers argue that the running time of such types of programs might be a 

problem. After having set up the mathematical program, most of the papers propose a heuristic. The 

heuristic is built upon the constraints of the mathematical program. Some of the papers are 

incorporating stochastic elements to make the results even more realistic. We neither consider 

stochasticity nor propose a heuristic or simulation model at this point. We first want to formulate a 

mathematical program before adding any complexity. The mathematical program should present all 

the possible decisions of a dispatcher and should be compared with the ETS exercises of autumn 2019. 

In those ETS exercises, they use deterministic variables, which is another argument for choosing 

deterministic variables over stochastic variables. 
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Chapter 4: Mathematical formulation  
This chapter answers research question 3: “How to develop an optimization approach that models the 
decisions made by the dispatcher in the ETS exercises of autumn 2019?“. In Chapter 3, we conclude 
that a mathematical programming approach fits best to this problem type. An optimization approach 
is chosen to solve the underlying problem. This chapter aims to formulate the model. This chapter is 
divided into three sections. Section 4.1 describes the model assumptions and definitions, which are 
used in the ILP model. Section 4.2 proposes the ILP model. Moreover, all the different ILP model 
components such as the sets, decisions variable, parameters, objective function and constraints are 
explained. Section 4.3 finishes this chapter by answering research question 3.  

4.1. Model assumptions and definitions 
The scenario of the ETS exercises of autumn 2019 forms the basis for this ILP model. A detailed 

explanation of this scenario is described in Chapter 2.5. The assumption and simplification made in 

those ETS exercises are implemented in the ILP model. Before presenting the model assumptions, the 

following terms are defined.  

• Throughput time: By throughput time we understand the difference in time between a 
casualty coming into play in the ETS exercise (release time) and the arrival time of this casualty 
at the hospital. 

• Makespan: The difference between the latest arrival of the Gubas at a hospital after dropping 
off and the starting time of the ETS exercise. 

• Trip completion: An ambulance can finish its trip after dropping off the casually at the hospital. 
After the drop-off, a new trip of an ambulance can start. 

In literature, throughput time is defined as the average elapsed time taken for input to move through 

the process and become output (Slack et al., 2016). By interpreting the throughput time definition of 

the ETS exercises of autumn (see Chapter 2.5.2), it seems wrong not to take each Guba drop-off time 

into account to calculate the average throughput time of casualties. However, as the drop-off time is 

constant in the ETS exercises and takes 10 minutes for all trips, it could be neglected for calculating the 

throughput time. The results are, in any case, not affected by the drop-off time. In a real MCI, each 

casualty is unloaded first by the ambulance aids before it arrives at the hospital. For the sake of 

completeness, the drop-off time is therefore taken into account but does not change the conclusions. 

The definitions of makespan and trip completion are originating from Chapter 2.5 and are used in this 

ILP formulation.  

Besides the simplifications of the ETS exercises in autumn 2019 (see Chapter 2.5.1) , some additional 

assumptions are defined. Each of the simplifications is justified either by literature or AZE. The 

following additional assumptions, next to the ones we defined already in are formulated for the ILP 

model: 

1. A T2 casualty can occupy a T1 bed at the emergency department of a hospital. 

2. An ambulance is allowed to make a maximum of two trips.  

We assume in (8) that a T2 casualty can occupy a T1 bed in a hospital. Whenever T1 capacity is left, it 

can be filled with T2 casualties. The other way around is not possible because T1 casualties require 

more intensive treatment. In the ETS exercise of autumn 2019, we do not observe any T2 casualties 

that occupy a T1 bed in a hospital. Therefore, we take this as a model assumption. AZE experts support 

this assumption (8). Assumption (9) defines the maximum number of trips that are allowed by an 

ambulance. Repoussis et al. (2016) use assumption (9) in their model as well. Moreover, in the ETS 

exercises of autumn 2019, an ambulance made at most two trips. So for simplicity, we assume a 

maximum of two trips.  
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4.2. ILP model formulation  
This section aims to propose a new formulation of the casualty allocation problem. The outcome is a 

static schedule for a fleet of ambulances, which give aid to a set of casualties and transport them to a 

set of hospitals. The model determines the order in which casualties are transported. Furthermore, 

the model determines where each casualty gets hospitalized. The formulation in this section is 

deployable for analyzing the performance of an ETS exercise or an MCI. So far, we have used the term 

“casualty” to indicate a person who needs assistance at the MCI. In the ILP model, the term patient is 

used to indicate. These terms can be used interchangeably and are considered synonyms. This problem 

is formally described by using the notation that is described in the following section. First, we explain 

the (sub)sets and decision variables before presenting the mathematical formulation. The objective 

function and constraints are explained afterward.  

4.2.1. Sets 

P  set of patients                                                               {0,1, … , P},    P =  PT1 ⋃ PT2  

PT1  subset of  T1 patients                                           ⊆ P                 

PT2  subset of T2  patients                                           ⊆ P           

 

H  set of hospitals                                                            {0,1, … , H}    

HMAJ  subset major incident hospital                       ⊆  HL1    

HUMC  subset UMC hospital                                         ⊆  HL1  

HL1     subset of Level 1 hospitals                              ⊆ H                     

HL2     subset of Level 2 hospitals                              ⊆  H                    

HL1L2  subset of Level 1 and 2 hospitals                   HL1L2  =   HL1⋃ HL2   

 

V  set of vehicles                                                              {0,1, … , V} 

K  set of trips                                                                    {0,1, … , K} 

I  set of time − intervals                                               {0,1, … , I} 

The set of patients P, consist of two subsets: urgent patients PT1 and less urgent patients PT2. T1 

patients require care within two hours and T2 patients require care within four hours. The set of 

hospitals consist of three types of hospitals. The difference in triage levels and hospital levels is given 

in Chapter 2. In the mathematical formulation, a separate subset is available for the major incident 

hospital (HMAJ) and Universitair Medisch Centrum Utrecht (HUMC). Both hospitals are located in 

Utrecht and have Level 1 treatment capabilities. The ambulances' set is given by using notation 𝑉. 

The term ambulance is interchangeable with the term vehicle. In the set hospital H, h = 0 is defined 

as the initial location of vehicle v at the start t = 0 of the MCI. The number of trips is noted with the 

letter K. The set of time intervals is noted with I.   
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4.2.2. Parameters 

Ch         =      Total treatment capacity of hospital h given per hour  

ChT1      =      T1 treatment capacity of hospital h  given per hour  

Vv          =      Initial travel time of vehicle v to reach the MCI for the first time in minutes 

Vh          =      Travel time from the MCI to hospital h/ from hospital h to MCI in minutes  

Rp         =     The release time of a patient in minutes  

M          =     A large number (47 in this case)  

S           =     The stabilization time of a patient, which takes 15 minutes   

D           =     The drop off time of a patient, which takes 10 minutes 

Timei    =     The upper or lower bound of a time interval i      {0,60,120, . . , I} 

Most of the parameters and decision variables are self-explanatory. Variable Rp needs additional 

explanation. The term Rp  is defined as the release time of each patient (see Chapter 2.5). This includes 

the time a patient comes into the ETS exercises. If the patient is not released, no decisions can be made 

on this patient. 

4.2.3. Decision variables 

Yhpvk      =  {
1 If Vehicle v on trip k originates from hospital h to "load" patient p from the MCI 

0 Otherwise
 

Zhpvk       =   {
1 If Vehicle v on trip k transports to hospital h to drop off patient p 

0 Otherwise
 

Avk          =   The arrival time at the hospital of vehicle v on trip k  in minutes 

F0            =   The latest arrival at the hospital among al the vehicles of trip 0 in minutes  

F1            =   The latest arrival at the hospital among al the vehicles of trip 1 in minutes 

Tp              =    The penalty time of patient p is not arriving in its interval in minutes  

Nihp         =   {
1 If patient p arrives at hospital h in time − interval i 

0 Otherwise
 

θ            =   {
1 if the major incident hospital is open  

0 Otherwise
 

4.2.4. Model formulation 

The ILP model consists of 23 constraints. To maintain an overview, we explain the constraints by 

categorizing them into five groups. The first group of constraints (2-9) is about how vehicles are making 

their trips. The second group of constraints (10-12) formulates when the major incident hospital opens 

or closes. The third group of constraints (13-15) calculates the trip completion time of each vehicle. 

The fourth group of constraints (16-19) ensures that the hospitals' treatment capacity is not violated. 

The fifth group of constraints (20-23) determines the components of the objective function and 

includes the sign constraints (24-25).  
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min  F0 +  F1 +    ∑ Tp

pϵP

                                                                                                                                                   (1) 

                                                                                                             

s.t.   

∑ ∑ ∑ Yhpvk =  1                                                                                                                                           ∀ p ∈  P  (2)

k∈Kv∈Vh∈H

 

∑ ∑ ∑ Zhpvk =  1                                                                                                                                    ∀ p ∈  PT1(3)

k∈Kv∈Vh∈HL1L2

 

∑ ∑ ∑ Zhpvk =  1                                                                                                                                     ∀ p ∈  PT2 (4)

k∈Kv∈Vh>0 ∈H

 

∑ Y0pv0  =  1                                                                                                                                                            ∀ v ∈ V (5)

p∈P

 

∑ ∑ Yhpvk 

p∈P  

 ≤  1                                                                                                                                      ∀  v ∈  V, k ∈ K (6)

h∈H

 

∑ ∑ Zhpvk 

p∈P  

 ≤  1                                                                                                                                      ∀ v ∈  V, k ∈ K (7)

h∈H

 

∑ Zhpvk  
≥  ∑ Yhpvk+1 

p∈P

                                                                                                   ∀ h ∈ H, v ∈ V, k ∈ (K − 1) (8)

p∈P

 

∑ Yhpvk  
−  ∑ Zhpvk  

h∈H

=  0                                                                                                         ∀ p ∈ P, v ∈  V, k ∈ K (9)

h∈H

 

The objective function (1) is minimized by taking three components into account. The first component 

is the latest trip completion among all the vehicles of trip 0. This latest trip completion is determined 

in constraint (22). In this way, vehicles making only one trip are not allocated to a hospital further away 

than necessary. The second component is the latest completion time among all the vehicles of trip 1. 

This latest completion time is determined by constraint (23). This constraint does the same as a 

constraint (22), but constraint (23) applies to all the vehicles making a second trip. The last component 

of the objective function (1) is the penalty for delayed patients. T1 patients have stricter time 

requirements than T2 patients. In this way, we aim to influence the model by giving priority to T1 

patients over T2 patients when assigning them to an ambulance. 

Constraints (2) ensures that each patient is handled only once. Constraints (3) and (4) assign the 

patients to the right hospital level and is based on their triage level. Constraint (3) forces T1 patients 

to get allocated to L1 or L2 hospitals. Constraint (4) ensures that each T2 patient is assigned to an L1, 

L2 or L3 hospital. According to the constraint (5), each vehicle is deployed for trip 0. The initial location 

of the vehicle is noted with h = 0. Constraints (6) and (7) enforce each vehicle v to transport a 

maximum of one patient per trip k. Constraint (8) ensures that no trip k + 1 can exist for a vehicle if 

there was no trip k. Besides, if trip k + 1 starts, the end location of trip k of the vehicle v is the start 

position for trip k + 1. Finally, constraint (9) verifies that each patient is carried and transported on 

the same trip with the same vehicle.  

M(1 − θ)  ≥  ∑ ∑ ∑ Zhpvk 

k∈Kv∈Vp∈P

                                                                                                                           ∀ HUMC (10) 
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5 − ∑ ∑ ∑ Zhpvk 

k∈Kv∈Vp∈P

≤  M(1 − θ)                                                                                                                     ∀ HMAJ (11) 

Mθ ≥ ∑ ∑ ∑ Zhpvk 

k∈Kv∈Vp∈P

                                                                                                                                        ∀ HMAJ (12) 

According to constraint (10), the UMC emergency department closes whenever the decision is made 

to open the major incident hospital. The staff of the UMC emergency department moves then to the 

major incident hospital. Constraint (11) regards the opening of the major incident hospital. The major 

incident hospital opens when five or more patients are allocated to this hospital. Constraint (12) 

enforces patients to receive treatment at the major incident hospital when it is open, if it is closed, no 

patients can be hospitalized there.  

Avk  ≥  ∑ ∑ RpYhpvk 

p∈P

+   ∑ ∑ VhZhpvk  

p∈P

 + ∑ ∑(S + D)Zhpvk  

p∈P

   

h∈H

                                   
h∈H

∀ v ∈ V, k ∈ K  (13)

h∈H

 

Av0  ≥  ∑ ∑ VvYhpv0 

p∈P

+  ∑ ∑ VhZhpv0 

p∈P

+ ∑ ∑(S + D)Zhpv0  

p∈P

   

h∈H

                                                    ∀

h∈H

v ∈ V  (14)

h∈H

 

Avk ≥ Avk−1 + ∑ ∑ VhYhpvk 

p∈P

+  ∑ ∑ VhZhpvk 

p∈P

+ ∑ ∑(S + D)Zhpvk  

p∈P

  
h∈H

             ∀ v

h∈HH∈H

∈ V , k > 0 ∈ K (15) 

Constraint (13) makes sure that no patient is transported until the patient is released. Constraints (14) 

and (15) guarantee that no patient is transported if the assigned ambulance has not arrived yet at the 

MCI location. Constraints (13-15) determine the trip completion time of trip k of vehicle v. By 

formulating it this way, the ILP model has the freedom to incorporate waiting times for an ambulance.  

∑ ∑ Nihp 

h∈H  

 =  1                                                                                                                                                   ∀p ∈  P (16)

i∈I

 

Zhpvk = 1  >> ∑ Nihp

i∈I,i<I−1

timei   ≤ Avk ≤  ∑ Nihp (timei+1 − 1)    

i∈I,   i< I−1

 ∀ h ∈ H, p ∈ P, v ∈ V, k ∈ K (17) 

∑ Nihp  
 ≤ Ch                                                                                                                                                ∀ i ∈ I, h ∈ H (18)

p∈P

 

∑ Nihp  
≤ Cht1                                                                                                                                          ∀ i ∈ I, h ∈ H (19)

p∈PT1

 

Constraint (16) forces each patient to be classified into one of the defined time-intervals. Constraint 

(17) is an indicator constraint. The Gurobi solver supports indicator constraints. Those types of 

constraints are a new way of controlling whether a constraint takes effect based on the value of a 

binary variable (AIMMS, 2020; AIMMS B.V., 2018). Traditionally, such relationships are expressed by 

the so-called big-M formulation. Big-M methods introduce unwanted side effects and numerical 

instabilities into a mathematical program. Indicator constraints take those unwanted side effects away. 

Constraint (17) determines in which time-interval vehicle v completes its trip k. Zhpvk  is the binary 

decisions variable. If Zhpvk  equals one, Avk is classified into one of the time-intervals. By classifying 

each patient into one time-interval, each patient is connected to the right hospital and the hour of the 

hospital arrival. Constraints (18) and (19) ensure that the given hospital treatment capacity per hour is 

not violated for T1 and the total number of patients.  
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∑ ∑ Nihp ∗  Timei+1

hϵHiϵI−1

 −   Rp   ≤  120 +  Tp                                                                                         ∀ p ∈ PT1 (20) 

∑ ∑ Nihp ∗  Timei+1

hϵHiϵI−1

 −   Rp   ≤  240 +  Tp                                                                                         ∀ p ∈ PT2 (21) 

F0 ≥  Av0                                                                                                                                                                   ∀ v ∈ V (22) 

F1 ≥  Av1                                                                                                                                                                   ∀ v ∈ V (23) 

F1, F0, Avk  , Tp   ≥  0 integer                                                                                                                                              (24)  

Yhpvk , Zhpvk , Nihp ,  O    ∈    {0, 1}                                                                                                                                     (25) 

The left part of constraints (20) and (21) approximately calculate the throughput time of each casualty. 

Those constraints subtract the patient's release time from the upper bound when they arrive at a 

hospital. A better way is to know the exact arrival time of a patient at the hospital. Unfortunately, this 

is not possible because of the way constraint (15) is formulated. For each trip 𝑘 of a vehicle 𝑣 the 

allocated patient changes. When the set of patients is added to the decision variable Avk  , the 

completion time of trip 𝑘 − 1 cannot be determined correctly. Other ways of connecting the patient's 

set to vehicles and trips were explored. However, they were unsuccessful without getting non-linear 

constraints. The right part of constraints (20) and (21) originates from the treatment time. If the 

difference is bigger than the given treatment time, each minute that goes over is penalized by the 

objective function. Constraint (22) uses the largest completion time among all the vehicles of trip 0. 

Constraint (23) does the same for trip 1. Constrain (24) and (25) are the sign restrictions of the ILP 

model.  

4.3. Conclusion  
The ILP model presents all the possible decisions in the ETS exercises. The data from the ETS exercises 

of autumn 2019 forms the basis for the ILP model. We use the ETS exercises' input variables such as 

travel times, the number of available ambulances, and the number of casualties. Some assumptions 

are made before proposing the ILP model. All the model assumptions are justified: either by literature 

or AZE experts. As an objective function, the latest arrival time among the vehicles of trip 0 and trip 1 

are taken into account and minimized. Furthermore, in the objective function T1 casualties are 

priozited over T2 casualties. 
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Chapter 5: Experimental design  
This chapter answers research question 4: “What kind of scenarios are conducted on the optimization 

approach and how is the performance of the optimization model assessed? “. This chapter is divided 

into four sections. Section 5.1 presents the key performance indicators for analyzing the results. In 

Section 5.2 gives an approach for comparing the ILP model with the ETS exercises of 2019.  Section 5.3 

explains different scenarios that are conducted on the ILP model. Section 5.4 finally answers research 

question 4. 

5.1. Scenarios 
For designing scenarios, the same input parameters are used from the ETS exercises of autumn 2019. 

In this section, various scenarios are proposed. The scenarios are conducted on the ILP model. The goal 

of conducting these scenarios is to describe the impact of making certain decisions having certain 

circumstances. Examples that may have an impact are the increase of hospital treatment capacities, 

by closing all the German or forcing all the casualties to go to the major incident hospital.  

All the scenarios in this section are made in consideration with the AZE experts. For some of the 

scenarios, the constraints are changed in comparison to the ILP formulation of Chapter 4.2. In Appendix 

F it is stated for those scenarios how and which constraint(s)changed.  The scenarios are divided into 

four categories. In data analyses of the results, the scenarios are compared to find similarities and 

differences amongst each other. The first category is about the impact of allocating T1 casualties to a 

Level 3 hospital. The second category is about the major incident hospital located at Utrecht. The third 

category is about the resources provided by Germany. The fourth category is presenting different 

scenarios about the hospital in Enschede.  

Category 1: Base scenarios 

T1 casualties are preferably allocated to a Levels 1 or 2 hospital. Sometimes, this is not possible in an 
MCI and the decision to allocate a T1 casualty to a Level 3 hospital is made. Determining this impact is 
interesting to show if this decision has any impact. The following scenarios are designed to determine 
this impact: 

0. T1 Gubas should go to Level 1 or 2 hospitals.  

1. Six T1 Gubas are allocated to Level 3 hospitals. 

Scenario 0 presents the base model, which is addressed in Chapter 4.2. Scenario 1 is comparable to 

what we have seen in the ETS exercises of autumn 2019. In total, six T1 Gubas get allocated to a Level 

3 hospital on day 1 and seven on day 2. For Scenario 1 six T1 casualties are allocated to Level 3 

hospitals.  

Category 2: Major incident hospital 

As mentioned in Chapter 2.5, in the AZE region, different opinions exist on hospitalizing casualties at 

the major incident hospital of Utrecht. The major incident hospital is usually closed but can open in 

case of an MCI. Some experts argue that the distribution of casualties would be better when all or most 

casualties are hospitalized at the major incident hospital. Regular emergency care can continue by 

applying this category. Also, an MCI is stressful for dispatchers. Allocating all the casualties to the major 

incident hospital might remove some of the stress. The final argument for taking the major incident 

hospital into account is that there are more resources available at the major incident hospital in 

comparison to regional Level 1 hospitals. On the other hand, other experts argue that the surrounding 

hospitals of the AZE region have sufficient treatment capacity and capabilities to provide each casualty 

with the best and right treatment on time. Furthermore, they argue that the transportation time to 

the major incident hospital is too long. It would take (with siren) at least an hour to reach the major 

incident hospital from the region of AZE. The aim of conducting different scenarios of this category is 
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to understand the impact of hospitalizing casualties at the major incidents hospital. The following 

scenarios are designed: 

2. All T1 Gubas go to the major incident hospital.  

3. All T2 Gubas go to the major incident hospital. 

4. All Gubas go to the major incident hospital. 

Scenario (2-4) presents the possible strategies for hospitalizing the casualties at the major incident 

hospital.   

Category 3 Assistance of resources and hospitals from Germany 

As previously mentioned, the region of AZE is located in a border area with Germany (Chapter 1.1). 

The experts of AZE are especially interested in the impact of using the assistance of Germany in the 

case of an MCI. It is important to know the impact, to understand the importance of international 

cooperation. The following scenarios are proposed to investigate the impact: 

5. Casualties of the MCI are not allowed to be allocated to the German hospitals.  

6. German ambulances can only go to German hospitals. 

Scenario 5 does not allow to hospitalize casualties from the MCI in the Netherlands at the German 

hospitals. Scenario 6 enforces allocating each Guba that is picked up by a German ambulance to go to 

a German hospital. In this way, we can determine whether the flexibility of sending German 

ambulances to a Dutch hospital has an impact.  

Category 4: Other variations  

In this category, we aim at determining the impact of closing the hospital located at Enschede. The 

hospital of Enschede is a Level 1 hospital and has the largest treatment capacity in the region of AZE. 

The following scenario is designed to determine the impact: 

7. T2 casualties are not hospitalized at hospital Enschede (as a result, T1 treatment capacity 

per hour is increased by two for hospital Enschede). 

8. Hospital Enschede is closed.  

According to Scenario 7, no T2 casualties are allowed to be hospitalized in hospital Enschede. When 

no T2 casualties are hospitalized at hospital Enschede, there is some treatment capacity left for T1 

casualties. In consideration with the AZE experts, we increase the treatment capacity of T1 casualties 

by two. Scenario 8 does not allow any of the casualties to be hospitalized at the hospital in Enschede. 

We are just curious what the consequences are of closing the largest hospital in the region of AZE.  

5.2. Key Performance Indicators (KPIs) 
During the literature review, several KPIs were identified. Furthermore, several additional KPIs were 

used in the ETS exercises of autumn 2019 to determine the performance of the exercises. All those 

KPIs are used as inspiration for defining the KPIs of this research. In this research, the following KPIs 

are taken into account: 

• Makespan of T1 and T2 casualties.  

• The average throughput time of T1 and T2 casualties. 

• The utilization rate of the hospitals per hour. 

• Number of T1 and T2 casualties arrive on time/late at the hospital.  

In Chapter 4.1 we defined the definitions makespan and throughput time. The KPI makespan is by 

Talarico et al. (2015), Repoussis et al. (2016) and Draijer (2017). Talarico et al. (2015) and Repoussis et 

al. (2016) define makespan slightly different than we do. Those papers include the hospital treatment 
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times of a casualty. The hospital's treatment time however is out of scope for our research and we 

therefore do not include it in our definition of makespan. Draijer (2017) uses the same definition of 

makespan as we do. Furthermore, the makespan and the average throughput time are used to analyze 

the performance of the ETS exercises of autumn 2019. This is the main argument for having the 

throughput time as KPI. The duration of the throughput time can be influenced by the model. The 

makespan also depends on the release time of the Gubas in the ETS exercises. The KPIs makespan and 

throughput time are determined separately for T1 and T2 casualties. The idea of distinguishing two 

groups of casualties is based upon two arguments. The first one is found in Chapter 2.3, in which each 

casualty gets a certain triage category (Vasallo et al., 2016). According to this triage category, the most 

heavily injured casualties (T1 casualties) require faster and more specialized treatment than less 

injured casualties (T2 casualties). The second argument originates from papers such as Talarico et al. 

(2015) and Draijer (2017). Those studies divide casualties into groups in which each group has a certain 

weight to indicate the importance of a group. In the ETS exercises of autumn 2019 the makespan of T1 

and T2 casualties is considered as separate KPIs. Without distinguishing triage categories, we cannot 

check if T1 casualties are prioritized over T2 casualties. Moreover, by distinguishing the two groups, 

we can check if the dispatchers of the ETS exercises of autumn 2019 use this priority rule in reality. We 

do not check the overall makespan since it is just a maximum of T1 makespan and T2 makespan. Also, 

the average throughput time is not considered as KPI since this is just the average of the average 

throughput times of T1 and T2 casualties. The utilization rate of each hospital is another important KPI. 

As mentioned in Chapter 2.1, the dispatcher's responsibility is to distribute the casualties of an MCI to 

the surrounding hospitals. This argument is also substantiated by Repoussis et al. (2016), who state 

that a hospital should not be overwhelmed by an MCI. Despite the importance of this KPI no papers 

are found in the literature about using the utilization rate of a hospital. Also, in the ETS exercises of 

2019 the utilization rate is not considered as a KPI. The last KPI is defined as the number of casualties 

arriving on time and late at the hospital. Hawe et al. (2015) use the same triage categories and 

incorporate the time interval in which each triage category requires medical treatment in a hospital. 

Sung and Lee (2016) are maximizing the expected number of survivals and are using the survival 

probability function for a pessimistic, moderate and optimistic scenario for each casualty group. Both 

papers indicate the importance of having a KPI determining the number of casualties arriving on time 

and late at the hospital. The makespan determines the number of on-time/late casualties. If T1 

casualties reach the hospital within two hours, we assume the casualties receive treatment on time. If 

the casualty arrives after two hours at a hospital, we assume the casualty arrives late. Also, here the 

triage categories are distinguished 

5.3. Comparison approach 
The ILP model was formulated in Chapter 4. This model presents the decision-making process of a 

dispatcher during the ETS exercises. To justify whether the model is realistically presenting the 

decisions of a dispatcher, we use the ETS exercises of 2019 to compare with the results of the model. 

During the data analysis of the ETS exercises, some discrepancies were revealed. For comparing the 

ILP model, the model is adapted to the situation of those executed ETS exercises. The differences and 

implementation of the discrepancies are addressed in this section.  

The first discrepancy is about the documented release time of the Gubas. Recall that no decisions can 

be made on the allocation of a Guba until is released. Figure 9 shows for each Guba the documented 

release time and the time a Guba is prepared/stabilized for transport. Both exercises show that Gubas 

are stabilized before their given release time. An explanation is that a different release time was used 

during the execution of the ETS exercises in autumn 2019 and it was not updated in the 

documentation. This explanation is most logical because ETS day 1 and ETS day 2 look quite similar to 

each other in terms of release times. Another possible explanation is that the release time of the Gubas 
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was sometimes forgotten to be noted down. Either way, for the comparison, the document release 

time of the Gubas is adapted to the start stabilization time for each ETS exercise.  

 

Figure 9 Scatterplot release time versus start transportation time 

 The ETS designers have found another discrepancy. Two Gubas were scheduled at the same time in 

the same ambulance. A coincidence or not, this happened in both of the exercises. In both exercises, 

those Gubas were left out of the performance analysis. To correctly compare, we remove these two 

Gubas, who were scheduled on that ambulance, from the sum of Gubas, making the total number of 

Gubas 88 instead of 90.  

Chapter 2.3 states that a T1 casualty preferably receives treatment at a Level 1 or 2 hospital. In the 

case of an MCI, a dispatcher may decide to allocate a T1 to a Level 3 hospital to increase the survival 

rate of the casualty. Both ETS exercises were allocating T1 casualties to Level 3 hospitals. In the ETS 

exercise of day 1, six T1 Gubas were allocated to a Level 3 hospital. In the ETS exercise of day 2 seven 

T1 Gubas were allocated to a Level 3 hospital. Such considerations are not implementable in the ILP 

model without adding stochastic elements. Therefore, we define a separate subset of Gubas in the ILP 

model. This subset consists of T1 Gubas that were allocated in the ETS exercise day 1 or 2 to a Level 3 

hospital. A separate constraint is made that ensures that the Gubas of this subset is allocated to a Level 

3 hospital in the ILP model.  

Another discrepancy was found by analyzing the results of the ETS exercises. The hourly hospital 

capacities were sometimes violated. For instance, hospital Zutphen's T1 treatment capacity was 

violated in both ETS exercises by one T1 patient at the second hour. Moreover, the T1 treatment 

capacity of hospital Enschede was violated in ETS exercise day 1. For comparison, we do not manipulate 

the treatment capacities of the hospitals. The difference is minor and has most likely no impact on the 

performance.  

5.4. Conclusion 
The KPIs used to determine the model's performance are the makespan, average throughput time, the 

utilization rate of each hospital and the number of casualties late/on time. KPIs makespan, average 

throughput time and the number of casualties late/on time are determined separately for T1 and T2 

casualties. ETS exercises of 2019 are used to justify whether the model presents the same kind of 

decisions as a dispatcher does in the MCI. During the data analysis of those ETS exercises, some 

discrepancies were revealed. For comparing the ILP model with the ETS exercises of autumn 2019, the 

model is modified to execute those ETS exercises.   
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Chapter 6: Results  
This chapter answers research question 5: “What are the results of the model?”. Section 6.1 describes 

the computation method for solving the scenarios and the experiments. Section 6.2 compares the 

performance of the ETS exercises (days 1 and 2) with the model (days 1 and 2). Section 6.3 shows the 

performance of each scenario. Lastly, Section 6.4 answers research question 5. 

6.1. Computation method 
The ILP model is implemented in Python. All the scenarios and experiments are conducted on a PC 

equipped with Intel Core i7–9750 clocked at 2.69 Gigahertz, 16 GigaByte RAM memory, and is running 

on Windows 10 64-bit edition. All the formulations are solved by using Gurobi 9.1. The maximum 

allowable computation time for running an experiment is 24 hours. Whenever the optimum value is 

not found, the gap is mentioned.  

6.2. Results comparing ILP models to the ETS exercises  
Alternative objectives are developed for the ILP model. Those objectives are executed to find the best 

objective for the model. By changing the objectives, the outcomes of the model changes. The 

performance of each objective is assessed by measuring the KPIs. Those KPIs are defined and described 

in Chapter 5.2. Each objective is compared to the ETS exercises of autumn 2019. The following three 

objectives are implemented as an alternative model. 

Model 1 presents the base model, which is presented in Chapter 4.2. Model 1, minimizes the makespan 

among trip 0 and trip 1 and penalizing for not arriving at the hospital within the given treatment time 

(two hours for T1 and four hours T2). The objective of Model 1 is formulated as follow: 

min  F0 +  F1 +    ∑ Tp

pϵP

   

Model 2 minimizes the makespan among trip 1 and penalizing casualties for not arriving at the hospital 

within the given treatment time (two hours for T1 and four hours T2). The objective of Model 2 is 

formulated as follow: 

min  F1 +   ∑ Tp

pϵP

   

Model 3 minimizes the makespan among trip 1 and penalizing casualties for not arriving at the hospital 

within the given treatment time for T1 of 100 minutes and T2 of 230 minutes. The objective of Model 

3 is formulated as follows 

min  F1 +   ∑ Tp

pϵP

   

To compare the alternative ILP models with the ETS exercises of autumn 2019 some changes are 

implemented. Those changes are explained in Chapter 5.3.  

The results of each alternative model (Day1) are depicted in Table 5. The first thing that stands out is 

the makespan of the T2 casualties. Comparing the ETS exercise (day 1) with the ILP models, the T2 

makespan is decreased from 210 minutes to 181 minutes, which is an improvement of 29 minutes.  

Model 2 is performing worse on the T1 makespan In comparison to the ETS exercise. The T1 makespan 

in the ETS exercise is 140 minutes and Model 2, 179 minutes. This is a decline of 39 minutes. The T1 

makespan of the ETS exercise is reduced by Model 1, from 140 minutes to 109 minutes, which is 31 

minutes shorter. Moreover, Model 3 improves the T1 makespan. Comparing the ETS exercise with 
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Model 3, the T1 makespan in reduced from 140 minutes to 119 minutes, which is an improvement of 

21 minutes.  

All models perform worse than the ETS exercises on the average T1 and T2 throughput time. The 

average T1 throughput time of Model 1, Model 2 and Model 3 is respectively 63.7, 62.4 and 57.2 

minutes. Model 3 has the best average T1 throughput time among all the models. The T1 throughput 

is increased from 54.2 minutes (ETS exercise) to 57.2 minutes (Model 3), which is a difference of 3 

minutes. However, when looking at the average T2 throughput, Model 3 performs worse than the 

other models. In the ETS exercise, the average T2 throughput time is 54.4 minutes, while in Model 3 

this is 70.3 minutes. The best average T2 throughput time among the models is Model 1 with 65.6 

minutes.  

Table 5 Summary of performances Model and ETS exercise day 1 

 
T1 casualties T2 casualties  

Average throughput time 
(minutes) 

Makespan 
(minutes) 

Average throughput time 
(minutes) 

Makespan 
(minutes) 

ETS day 1 54.2 140 54.4 210 

Model 1  63.7 109 65.6 181 

Model 2 62.4 179 64.4 181 

Model 3 57.2 119 70.3 181 

Table 6 summarizes the performances of the KPIs for each alternative model (day 2) and ETS exercise 

(day 2). Once again, all Models outperform the T2 makespan compared to the ETS exercise. Comparing 

the ETS exercise with the models, the T2 makespan is decreased from 203 to 195 minutes.  

The T1 makespan is reduced in some of the alternative models. Comparing the ETS exercise with Model 

one, the T1 makespan is improved by Model 1 from 121 to 110 minutes. This is a decrease of 11 

minutes. Again Model 2 is performing worse on the T1 makespan than the ETS exercise. The T1 

makespan of Model 2 is 179 minutes. Therefore, Model 2 is not considered further for executing the 

scenarios.   

Also, on day 2 the average T1 and T2 throughput times perform worse in the alternative model than 

in the ETS exercise. Model (1-3) has an average T1 throughput time of 67.3, 70.9 and 61.3 minutes. 

Model 3 performs best on the average T1 throughput time among all the models with 61.3 minutes. 

However, the impact of improving the average T1 throughput time is nullified by worsening the 

throughput time of T2 casualties. Model 3 has an average T2 throughput time of 72.6 minutes. Model 

1 performs best on the average T2 throughput time with 69.9 minutes. Comparing the ETS exercise 

with the model, the T2 throughput time is increased from 55.7 to 69.9 minutes.  

Table 6 Summary of performances of each alternative objective for day 2 

 
T1 casualties T2 casualties  

Average throughput time 
(minutes) 

Makespan 
(minutes) 

Average throughput time 
(minutes) 

Makespan 
(minutes) 

ETS day 2 55.1 121 55.7 203 

Model 1 67.3 110 69.9 195 

Model 2 70.9 179 74.8 195 

Model 3 61.3 116 72.6 195 
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 Figure 10 and Figure 11 depict the number of casualties who arrive late at the hospital for the models 

day 1 and day 2. In Model 2, two casualties arrive late. Model 1 and 3 no T1 casualties are late. All T2 

casualties arrive on time at the hospital.  

 

Figure 10 The number of on-time and late T1 casualties for day 1 

 

Figure 11 The number of on-time and late T2 casualties for day 1 

In conclusion, Model 1 performs the best in terms of the general KPIs without overfitting the 

parameters. This model provides the best makespan among the three models. Furthermore, no 

casualties arrive late at a hospital. The rest of this section focuses on comparing Model 1, which is the 

base model, with the ETS exercises of autumn 2019. From now on, when we are talking about the 

Model (day 1 or 2) or ILP model, the objective of Model 1 is implemented.  

By doing an in-depth analysis, we check if the model is making realistic and logical decisions. An 

important component to take into account is the distribution of casualties to the surrounding hospitals. 

Most important is that the maximum treatment capacity is not exceeded. Figure 12 depicts the 

performances of the Model (day 1) and the ETS exercise (day 1) results in terms of the T1 utilization 

rate of the hospitals per hour. Figure 13 does the same comparison in terms of the total utilization 

rate. Appendix G depicts the number of (T1 and total) casualties hospitalized per hospital per hour.  

Recall Chapter 5.2 explains why the total utilization rates are considered and not the T2 utilization 

rates.  

The T1 utilization rate of the hospital presents a distorted picture of the ETS exercise (day 1) (see Figure 

12). Hospitals Zutphen and Enschede receive more T1 casualties per hour than their respective 

capacities documented in the ETS exercises. All the T1 casualties arrive at the hospital within two hours 

in Model (day 1). In the ETS exercise, all the T1 casualties arrive at the hospital within two hours, except 

for one casualty, which arrives at the hospital Münster in the third hour (see Appendix G). Most 

hospitals used in the ETS exercise are used in the Model as well. Hospitals Stadlohn and Utrecht are 



 

34 
 

not used in the ETS exercises, while in the model those hospitals receive casualties. On the contrary, 

hospital Münster is used in the ETS exercise, while in the model no casualties are allocated to hospital 

Münster.  

 

Figure 12 Day 1 T1 utilization rates of each hospital per hour 

Figure 13 depicts the total utilization rates of each hospital per hour. The total treatment capacity of 

the hospital is not exceeded in the ETS exercises day 1 and in the Model (day 1). Both have arrivals of 

casualties at the hospital in the fourth hour of the MCI. The maximum treatment capacity of some 

hospitals is reached in the model (e.g., hospital Almelo), whereas in the ETS exercise the maximum 

treatment capacity of the hospitals is never reached.   
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Figure 13 The total utilization rate of each hospital per hour 

Figure 14 shows the trip completion time of each ambulance trip for the ETS exercise (day 1) and the 

proposed Model (day 1). The definition of trip completion is given in Chapter 4.1. In the ETS exercise, 

the ambulance completing trip 1 first is ambulance 05-104 after 127 minutes and the last ambulance 

is DLD-07 after 210 minutes. A difference of 83 minutes is found. In the ILP model, the first ambulance 

completing trip 1 is 06-151 within 151 minutes and the last ambulance is 06-157 within 181 minutes, 

which is a difference of 30 minutes. So, the range of the ILP model is much smaller than in the ETS 

exercise. The same observation is done in the ILP model and ETS exercise of day 2 (see Appendix G). 

Furthermore, in the ETS exercise, the sequence in which each ambulance arrives for the first time at 

the MCI seems to influence the trip completion time. For example, the German ambulances, 

abbreviated with DLD, take the longest to arrive at the MCI for the first time. The ambulances from 

Germany have in comparison to ambulances with abbreviations 06, 04 and 05 that are originating from 

the Netherlands longer trips. 
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Figure 14 The difference between the Model (day 1) and the ETS exercise (day 1), the ambulance trip completion of each trip 
(a) ambulances sorted by total trip completion time (linear increasing) and (b) ambulances again sorted by total completion 

time (constant) 

Figure 15 depicts the trip composition of the casualties transported by all the ambulances for the ETS 

exercise (day 1) and Model (day 1). The composition is the same for the ETS exercise and the model. 

On the total number of ambulances, including 47 ambulances, 55.3 % are transporting a T1 casualty 

and 44.7 % are transporting a T2 casualty on trip 0. The ambulances on trip 1 are only transporting T2 

casualties. Meaning all T1 casualties are transported to the hospital by ambulances on trip 0. For the 

Model (day 2) and ETS exercise (day 2), the trip composition is the same as depicted in Figure 15. 
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Figure 15 Trip composition 

Figure 16 depicts the number of casualties arriving on time/late at the hospital for the ETS exercise 

(Day 1) and Model (day 1). In the ETS exercise, 3.7 % of the T1 casualties arrive late, which is one T1 

casualty. No T1 casualties arrive late in the model. So, the model improves the performance of the ETS 

exercise by one T1 casualty. In the Model as well as the ETS exercise, all T2 casualties arrive on time at 

the hospital. For Model (day 2) and ETS exercise (day 2), the number of casualties arriving on time and 

late is the same as depicted in Figure 16. 

 

Figure 16 Number of on-time and late casualties 

We have carried out similar analyses to Model (day 2) and the ETS exercises (day 2). The in-depth 

comparison can be found in Appendix G. We summarize the results of Appendix G here. When 

comparing the performance of Model (day 2) with the ETS exercise (day 2), the following is observed: 

• In the ETS exercise of day 2, the T1 treatment capacity is exceeded for hospital Zutphen in the 

second hour of the MCI. The total treatment capacity is not exceeded. In the model, no 

treatment capacity is exceeded.  

• The range of the ILP model is much smaller than in the ETS exercise. In the ETS exercise, the 

ambulance completing trip 1 first is ambulance 05-103 after 118 minutes and the last 

ambulance is 04-187 after 203 minutes, which is a difference of 85 minutes. In the ILP model, 

the first ambulance that finishes trip 1 is 04-187 within 162 minutes and the last finishing 

ambulance is 05-114 within 195 minutes, which is a difference of 33 minutes. So, the variation 

of the ILP model is much smaller than in the ETS exercise.  
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6.3. Scenario results 
Chapter 5.1 introduces various scenarios that are of interest. Here, each scenario is summarized before 

moving to the results of those scenarios. Scenario 0, is the base model and is described in Chapter 

4.2.4. In Scenario 1, six T1 casualties are hospitalized at a Level 3 hospital. In Scenario 2, the T1 

casualties are allocated to the major incident hospitals and the T2 casualties are allocated to any 

hospital. In Scenario 3, T2 casualties are allocated to the major incident hospital and T1 casualties are 

allocated to a Level 1 or 2 hospital. In Scenario 4, all the casualties are allocated to the major incident 

hospital. In Scenario 5, German hospitals are not allowed to hospitalize casualties of the MCI. In 

Scenario 6, German ambulances are allocated to German hospitals only. In Scenario 7, no T2 casualties 

are allowed to get hospitalized at the hospital Enschede and therefore, the T1 treatment capacity of 

Enschede is raised by two casualties. In this way, two additional T1 casualties are allowed to receive 

treatment at the hospital Enschede. In Scenario 8, hospital Enschede is closed for all casualties.  

Table 7 shows the performance of the scenarios for T1 casualties. Scenario 7 performs the best on the 

average T1 throughput times with 55.7 minutes. However, Scenarios 0, 1, 5, 6 and 8 are quite close, 

respectively 58.3, 57.9, 57.1, 59.0 and 58.6 minutes. Scenarios (2-4) are performing worse in terms of 

average T1 throughput time than the other scenarios. Scenarios 2, 3 and 4 have an average T1 

throughput time of respectively 89.2, 62.3. and 79.7 minutes. Scenario 2, in which all T1 casualties are 

allocated to the major incident hospital, has the highest T1 throughput time among all the scenarios.  

Scenarios 5, 7 and 8 perform the best on the T1 makespan with 122 minutes. Scenarios 0,1 have a T1 

makespan of 128 minutes compared to Scenarios 5, 7 and 8. This is an increase of 6 minutes. Scenario 

3 and 6 have a T1 makespan of respectively 139 and 133 minutes. The highest T1 makespan is obtained 

in Scenario 2 with 179 minutes. In this scenario, all the T1 casualties are allocated to the major incident 

hospital.  

The number of delayed T1 casualties is the lowest in Scenario 1 by having two T1 casualties arriving 

late at the hospital. Scenario 7 has three T1 casualties arriving late at the hospital. In Scenarios 0, 6 and 

8 the number of delayed T1 casualties is five and in Scenario 5 this is four. So, this difference in 

comparison to Scenario 1 and 7 is not that big.  Most T1 casualties arriving late at the hospital are 

reached in Scenarios 2 and 4 by having thirteen T1 casualties arriving late.  

Table 7 The performance of the scenarios on T1 casualties  

# T1 casualties 
 

Average throughput time (minutes)  Makespan (minutes)  Delayed (# of casualties) 

0 58.3 128 5 

1 57.9 128 2 

2 89.2 179 13 

3 62.3 139 7 

4 79.7 155 13 

5 57.1 122 4 

6 59.0 133 5 

7 55.7 122 3 

8 58.6 122 5 

Table 8 shows the performance of the scenarios for T2 casualties. Scenario 1 has the best average T2 

throughput time with 63.5 minutes. However, the average T2 throughput time is approximately the 
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same for Scenarios 0, 5 and 7, respectively, 68.5, 63.9 and 64.9 minutes. In Scenario 4 the average T2 

throughput times is 123.5 minutes, this is almost twice as high as in Scenario 1.  

The T2 makespan is the lowest in Scenario 1, with 185 minutes. Furthermore, Scenarios 0, 5 and 7 have 

a low T2 makespan too, respectively 189, 187 and 187 minutes. Scenarios 2 and 6 perform worse on 

the T2 makespan with, respectively, 215 and 203 minutes. Scenarios 3 and 4 have the worse T2 

makespan with 284 minutes.  

In Scenarios (0-2) and (5-8) zero T2 casualties arrive late at the hospital. In Scenario 3 twelve T2 

casualties arrive late at the hospital. In Scenario 4, T2 casualties arrive late at the hospital, namely 35 

T2 casualties.   

Table 8 shows the performance of the scenarios for the objective value and the optimality gap. The 

objective values of Scenarios (2-4) are relatively high compared to the other scenarios. Especially, 

Scenario 4 has the highest objective value with 509 minutes. In Scenarios 0, 1, 5, 7, and 8 the objective 

values are close to each other, ranging from 318 to 324 minutes. Scenarios 1, 5 and 7 have an objective 

value of 318, 320 and 320 minutes. Those scenarios have a lower objective value than in the base 

model (Scenario 0) with 322 minutes. The following arguments explain those objective values: 

• Scenario 1, 6 T1 casualties are allocated to a Level 3 hospital. In the base model (Scenario 0), 

such type allocation is not possible. Therefore, Scenario 1 has a lower objective value than 

Scenario 0.  

• Scenario 5, no German hospitals are used, has a smaller problem size than Scenario 0. This is 

an uncommon behavior of an ILP model since a smaller problem size usually does not result in 

a better objective value. Therefore, we gave Scenario 0 an initial solution, which was the 

solution of Scenario 5. The initial solution in Scenario 0 resulted in having the same objective 

value as in Scenario 5. So, the main argument for having a lower objective value in Scenario 5 

is the optimality gap. The optimality gap in Scenario 5 is 14.7%, while in Scenario 0 this is 20.2%.  

• Scenario 7, more T1 capacity is available at hospital Enschede, which is the main argument 

why Scenario 7 is performing better than Scenario 0.  

Overall the optimality gap, the difference between the LP-relaxation and the feasible solution, is high 

as it ranges between 11 % to 27 %. The lowest gap is obtained in Scenario 4 in which all the casualties 

are allocated to the major incident hospital.  
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Table 8 The performance of the scenarios on T2 casualties, objective value and the optimality gap 

# T2 casualties Model 
 

Average throughput time 
(minutes) 

Makespan 
(minutes)  

Delayed (# of 
casualties) 

Objective 
value 

Gap 
(%) 

0 68.5 189 0 322 20.2 

1 63.5 185 0 318 21.4 

2 75.2 215 0 415 27.0 

3 107.2 284 12 450 26.4 

4 123.5 284 35 509 11.0 

5 63.9 187 0 320 14.7 

6 72.4 203 0 337 12.5 

7 64.9 187 0 320 18.4 

8 76.9 191 0 324 20.7 

 

Appendix H addresses the utilization rate and the number of casualties hospitalized in each hospital 

per hour and for each scenario. We can summarize this appendix as follows: 

• Scenario 0: The closest hospitals such as Almelo, Deventer, Enschede, Gronau, Winterswijk and 

Zutphen reach their maximum T1 treatment capacity in the second hour of the MCI. The total 

treatment capacity is reached multiple times in hospitals Almelo and Gronau. 

• Scenario 1: The T1 treatment capacity is reached in hospitals Almelo, Bocholt, Deventer, 

Enschede and Nordhorn. The total treatment capacity is only reached in hospital Almelo.  

• Scenario 2: shows that all T1 casualties are hospitalized at the major incident hospital. The 

maximum T1 treatment capacity is not reached for the major incident hospital. The total 

treatment capacity is reached at hospitals at Almelo and Gronau.  

• In Scenario 3: the T1 maximum treatment capacities are reached in the second hour of the 

MCI at hospitals Almelo, Apeldoorn, Bocholt, Deventer and Nordhorn. The maximum total 

treatment capacities are not reached in any of the hospitals due to all T2 casualties are 

hospitalized at the major incident hospital. 

• Scenario 4:  All the casualties are hospitalized at the major incident hospital. The treatment 

capacities of the T1 casualties and total is not reached in any of the hospitals. Most casualties 

arrive at the hospital in the fifth hour after the MCI happened. In the other scenario, this did 

not happen.  

• Scenario 5: Hospitals Almelo, Apeldoorn, Deventer, Doetinchem and Enschede reach their 

maximum T1 treatment capacity. Moreover, the total treatment capacity of hospital Almelo 

and Zutphen is reached. All casualties arrive within four hours of the MCI.  

• Scenario 6: The total treatment capacity of hospitals Almelo, Ahaus, Gronau, Winterswijk and 

Stadtlohn is reached. The German hospitals are reaching their maximum treatment capacity 

quickly since they cannot handle lots of casualties per hour.  

• Scenario 7: shows that the extra T1 treatment capacity of hospital Enschede is used in the 

second hour of the MCI. Furthermore, the same hospitals are reaching their maximum 

treatment capacity as in Scenario 1.  

• Scenario 8: Hospital Enschede is not used and results in more hospitals reaching their 

maximum treatment capacity per hour.  
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The trip compositions are analyzed (see Figure 17). In Scenario 0 all the T1 casualties are scheduled on 

trip 0. On the total number of ambulances, including 47 ambulances, 55.3 % are transporting a T1 

casualty on trip 0 and 44.7 % are transporting a T2 casualty. The ambulances making a trip 1 transport 

T2 casualties. Scenarios 1 and (3-8) have the same trip composition. Therefore, those trip compositions 

are not depicted and do not need more explanation.  

 

Figure 17 Trip composition scenario 0 

Scenario 2 has a different trip composition in comparison to Scenarios (0-1) and (3-8) (see Figure 18). 

In Scenario 2, 16.3 % of the ambulances are transporting T1 casualties on trip 1. In comparison to the 

other scenarios, all the T1 casualties are scheduled on trip 0. By scheduling a few T1 casualties on trip 

1, more ambulances transport T2 casualties on trip 0. The ambulances on trip 0 transport 40.4 % T1 

casualties and 59.6 % T2 casualties. 

 

Figure 18 Trip composition scenario 2 

6.4. Conclusion 
The ILP program presents all the possible decisions that were possible for the ETS exercises of autumn 

2019. Moreover, the performance of the ILP model is comparable to those ETS exercises.  

The ILP model has a T1 makespan of 109 minutes on day 1 and 110 minutes on day 2. The ETS exercise 

of autumn 2019 has a T1 makespan of 140 minutes on day 1 and 121 minutes on day 2. The ILP model 

improves the T1 makespan of the ETS exercise by 31 minutes on day 1 and 11 minutes on day 2. 
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 The T2 makespan of the ILP model is 181 minutes on day 1 and 195 minutes on day 2. For the ETS 

exercises, the T2 makespan on day 1 is 210 minutes and on day 2 203 minutes. The ILP model improves 

the T2 makespan by 29 minutes for day 1 and 8 minutes for day 2.  

In the ILP model, no casualties arrive late at the hospital, while in both ETS exercises, one T1 casualty 

arrives late at the hospital. Furthermore, no treatment capacity is violated by the models, while in the 

ETS exercises, this happens a few times. The trip composition of the models is the same as in the ETS 

exercises. 

On the contrary, the ILP model is performing worse on the average T1 and T2 throughput time.  On 

day 1, the average T1 throughput time for the model is 63.7 minutes and for the ETS exercise, this is 

54.2 minutes, which is 9.5 minutes longer. The average T2 throughput time of day 1 is in the ILP model 

65.6 minutes and in the ETS exercise 54.4 minutes, which is 11.2 minutes longer. We observe the same 

on day 2. On day 2, the average T1 throughput time for the model is 67.3 minutes and for the ETS 

exercise, this is 55.1 minutes. The average T2 throughput time of day 2 is in the ILP model 69.9 minutes 

and in the ETS exercise 55.7 minutes. 

In conclusion, a trade-off is going on between the average throughput time and the makespan. This is 

supported by looking at the ranges in which the ambulances are finishing trip 1. In the ETS exercise 

(day 1), the ambulance completing trip 1 first is ambulance after 127 minutes and the last ambulance 

is after 210 minutes. A range of 83 minutes is found. In the ILP model (day 1), the first ambulance 

completing trip 1 is within 151 minutes and the last ambulance is within 181 minutes, which is a range 

of 30 minutes. On day 2, the same observation is done. In the ETS exercise (day 2), the ambulance 

completing trip 1 first is within 118 minutes and the last ambulance is within 203 minutes, which is a 

difference of 85 minutes. In the ILP model (day 2), the first ambulance that finishes trip 1 is within 162 

minutes and the last finishing ambulance is within 195 minutes, which means a difference of 33 

minutes. So, the range of the ILP model is much smaller than in the ETS exercise.  

Several scenarios are performed on the ILP model. The best objective value is reached when six T1 

casualties are allocated to a Level 3 hospital. In the scenario in which the T1 treatment capacity of 

hospital Enschede is increased by two, the second-best objective value is obtained. Both scenarios well 

on the number of casualties arriving late at the hospital. 

In all the scenarios where the major incident hospital is forced to support, the same observation is 

obtained. Hospitalizing casualties at the major incident hospital is not the best strategy to improve the 

survival rate of casualties because the major incident hospital is relatively far away. The treatment 

capacity of the (surrounding) hospitals of AZE is sufficient to handle an MCI with many casualties.  

The impact of allocating German ambulances to German hospitals has a minor impact on the objective 

value, T1 makespan and throughput time. The T2 makespan and the average T2 throughput time are 

higher but do not result in many casualties arriving late at the hospital.  

The impact of closing hospital Enschede has a minor impact on the KPIs. Measuring no impact by 

closing hospital Enschede, which is the largest and highest hospital level in the region of AZE, indicates 

that the number of ambulances is the bottleneck of an MCI. Also, not allowing casualties to get 

hospitalized at German hospitals has almost no impact on the performance. This indicates once again 

that the number of ambulances is the bottleneck.  
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Chapter 7: Conclusion 
This chapter is divided into three sections. Chapter 7.1 answers the main research questions. Chapter 

7.2 describes the discussion of this research. Chapter 7.3 gives suggestions for future research and 

future ETS exercises.  

7.1. Conclusion  
In this section, the main research question is answered. The main research question is formulated as 

follows:  

“What mathematical model can be developed to improve the assignment of casualties to hospitals 

with limited resources in case of an MCI?” 

We have developed an ILP model that assigns casualties to hospitals that applies to different MCI 

scenarios with limited resources. We have shown that the ILP model improves various KPIs compared 

to the ETS exercises of autumn 2019. The treatment capacity of the hospital is not overwritten by the 

ILP model, while in the ETS exercises, this happens a few times. Moreover, in the ILP model, no 

casualties arrive late at the hospital. In both ETS exercises, one T1 casualty arrives late at the hospital.  

The ILP model improves the T1 and T2 makespan of the ETS exercises. On day 1, The T1 makespan in 

the ETS exercise is 140 minutes and in the model, 109 minutes. The ILP model decreases the T1 

makespan by 31 minutes. On day 1, the T2 makespan in the ETS exercise is 210 minutes and in the ILP 

model, this is 181 minutes. So, the ILP model decreases the T2 makespan by 29 minutes. On day 2, 

approximately the same decrease on the T1 and T2 makespan is found.  

On the contrary, the average T1 and T2 throughput times are worse in the ILP model than in the ETS 

exercises. On day 1, the average T1 throughput time for the model is 63.7 minutes and for the ETS 

exercise of 54.2 minutes. The ILP model increases the average T1 throughput time by 9.5 minutes. On 

day 1, the average T2 throughput time for the model is 65.6 minutes and in the ETS exercise this is 54.4 

minutes. The ILP model increases the average T2 throughput time by 11.2 minutes. On day 2, 

approximately the same increase on the average T1 and T2 throughput time is found.  

In conclusion, a trade-off exists between the average throughput time and makespan. We have shown 

this by looking into the ranges of ambulances completing their trip. The finish time among the 

ambulances doing trip 1 variates less in the ILP model than the ETS exercise. On day 1, the first 

ambulance of the ILP model finishes trip 1 within 151 minutes and the last finishing ambulance within 

181 minutes, which is a difference of 30 minutes. In the ETS exercise (day 1), the ambulance finishes 

trip 1 first within 127 minutes and the last ambulance after 181 minutes, which is a difference of 81 

minutes. The same observation is done for day 2. In literature is found that the makespan is an 

important KPI and therefore, this KPI is minimized in the ILP model. Future research is needed to 

conclude which KPI is more critical and improves the survival rate of the casualties.  

By adapting the base ILP model, several scenarios are conducted to conclude which scenarios improve 

the assignment of casualties to hospitals during an MCI. A scenario in which six T1 casualties are 

allocated to a Level 3 hospital and a scenario in which only T1 casualties are allowed to hospitalize at 

hospital Enschede is the best overall performing scenario. All the scenarios in which the major incident 

hospital is included results in having a worse performance. Therefore, we cannot recommend using 

the major incident hospital when the MCI is located in the region of AZE. 
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7.2. Discussion 
The discussion section is divided into three subsections. Subsection 7.2.1. explains the theoretical 

contribution of this research. Subsection 7.2.2. describes the practical contribution of this research.  

Subsection 7.2.3. addresses the limitations of this research.  

7.2.1.  Theoretical contribution  

During the literature review, we have noticed that the topic of MCIs has recently gained more attention 

due to the increase of terrorist attacks and the possible increase in natural disasters. While existing 

studies have studied MCIs in urban environments or environments where the casualties are spread 

over a large area, those studies did not address MCIs in a more rural place or MCIs on a single site 

location. Besides, in this research, the chosen MCI scenario is taking place in a cross-border area. As 

far as we know, only limited research is done on that topic. This thesis is the first start for further 

research to fill this gap. The restrictive assumptions and simplifications of the MILP model of Draijer 

(2017) are addressed and relaxed in this research. Lastly, the proposed ILP model in this thesis is 

generalizable and deployable for different kinds of MCIs. The number of casualties, ambulances, and 

hospitals' treatment capabilities can be changed and applicable for testing different locations and 

strategies.  

7.2.2. Pratical Contribution  

Comparing the ETS exercises executed before 2019, the ETS exercises of autumn 2019 are significantly 
improved. We have improved the ETS exercises even more by developing a model, which is deployable 
for analyzing future ETS exercises more objectively. Also, a better estimation of doing different 
scenarios is possible by using this model. The model variables and parameters are easily adaptable to 
a new scenario without doing a complete new ETS exercise. We suggest AZE to use this model for 
comparing future ETS exercises.  

7.2.3. Limitations  

An exact method, the branch and bound method, is used to find the optimal allocating of casualties to 

hospitals in case of an MCI. This method is an appropriate method for solving these types of problems. 

Due to the large problem size of this research, it does not solve to optimality in 24 hours. Heuristics or 

ILP algorithms such as column generation can be developed to make the model solvable within a 

reasonable time limit. Regardless, since the current feasible solution is in most KPIs better than the 

ETS exercises, it is appropriate to stop the solver and deliver the best solution. Furthermore, in the ETS 

exercises, the treatment capacities of the hospitals are sometimes violated. This could never happen 

in the ILP model, which is a big advantage since an ILP model always respects the constraints.  

As previously mentioned, several scenarios are conducted on the model. Scenarios in which hospital 

Enschede or all the German hospitals are closed had almost no impact on the KPIs. This indicates that 

the number of ambulances is the bottleneck.  

The collected data of the ETS exercises of autumn 2019 forms the input parameters of the ILP model. 

The more detailed this data collection was done, the more likely the ILP model presents a realistic MCI. 

During this research, it was sometimes questionable whether the data is reliable. Some changes were 

made to compare the ETS exercise with the model. Those changes include miscalculations in the ETS 

exercises and implementing discrepancies to the ILP model. Even though the ILP model might not fully 

present a realistic MCI due to those discrepancies in the data, it represents the executed ETS exercises 

of 2019 in a realistic way. For the ILP model, only one additional assumption is needed to describe the 

ETS exercises of autumn 2019.   
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7.3. Future work  
Subsection 7.3.1. gives suggestions for future research. Subsection 7.3.2. recommends future ETS 

exercises.  

7.3.1. Research 

In future work, it is possible to include more complexity since we have shown that the model is capable 

of making realistic and correct decisions. As previously mentioned in Subsection 7.2.3., developing a 

(meta)heuristic is possible for further work. In this heuristic, stochastic elements such as the possibility 

of hospitalizing T1 casualties to a Level 3 hospital can be included. Moreover, Instead of using the T1 

and T2 treatment time intervals, a survival probability function can be implemented to make the 

heuristic more realistic. By implementing those survival probabilities, it might be possible to answer 

which KPI, the makespan or average throughput time, is more important. Also, the time to stabilize 

and drop-off a casualty at a hospital has some time variation, which can be implemented in heuristics. 

Currently, the stabilizing and dropping off time are static parameters in the ILP model. The variation of 

those activities is derivable by doing data analysis on the trauma registration of AZE. Finally, making 

the travel times stochastic is another possibility to implement in a heuristic.  

Finally, figuring out why dispatchers in the ETS exercise avoid reaching the maximum treatment 

capacity of hospitals. We hypothesize that the dispatchers prefer to be on the safe side and hence 

conservatively plan when it comes to the capacity constraints. A pass rate, which decides if a casualty 

is allowed to get hospitalized at a particular hospital or not, is advised when it is necessary to minimize 

the number of times the maximum hospital treatment capacity is reached.  

7.3.2. Acute Zorg Euregio  

Additional suggestions are provided to improve the execution of ETS exercises. We have the following 
suggestions:  

• Check if all the variables of the ETS exercise are up-to-date. Making the ETS exercises more 

realistic creates higher engagement among the participants. Components that need to be 

checked on reality are the ambulances, travel times, and treatment capacities of the hospitals.  

• Improve the documentation of the ETS exercises. Firstly, write down how the variables of the 

ETS exercises are derived. Secondly, describe the different components and the assumptions of 

the ETS exercise. Finally, whenever variables are changed, update them in the documentation. 

In this way, the ETS designer can look back and remembers how the ETS exercise is conducted.  

• Discuss how the results should be logged in the ETS exercises. We developed a new excel sheet 

for logging the results of the ETS exercise. Appendix I is the implementation of this excel sheet 

explained. Also, feedback from the AZE experts on the given suggestions of this thesis is given.  
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Appendix A: GGB chore chart 

 

Figure 19 Tasks map of a dispatcher during an MCI (Source: Cools, 2015). 
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Appendix B: MIMMS Sieve flowchart 
 

 

Figure 20 Adult triage sieve (Source: Sillet, 2018). 
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Appendix C: Interview ETS designer 15-08-2020 
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Appendix D: Transportation times 
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Appendix E: Summary results of the ETS exercise in autumn 2019 
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Appendix F: Scenarios constraints  
Scenario 0 is the base model, which is described in Chapter 4.2. For conducting the Scenarios (1-4) and 

6, additional or changing the constraints is needed to conduct the scenario. Those changes in 

comparison to the base model are addressed in this appendix.  

Scenario 1  

In Scenario 1, six T1 casualties are allocated to a Level 3 hospital. To make this possible, we have 

defined an additional subset and constraint to make this happen: 

PT1L3  subset of T1  patients who get allocated to a level 3 hospital                                        ⊆ P           

∑ ∑ ∑ Zhpvk 

k∈Kv∈V

H

h=1

= 1                                                                                                                         ∀ p ∈  PT1L3 

Scenario 2 

In the base model (Scenario 0) each T1 casualty is allocated to a Level 1 or Level 2 hospital. In Scenario 

2, each T1 casualty is assigned to the major incident hospital. To make this possible, we have to change 

constraint (3) of the base model. In Scenario 2, constraint (3) looks as follows:  

∑ ∑ ZHMAJpvk =  1                                                                                                                                 ∀ p ∈  PT1

k∈Kv∈V

 

Scenario 3 

In the base model (Scenario 0) each T2 casualties is allocated to a hospital. The level of the hospital 

does not matter. In Scenario 3, each T2 casualty is assigned to the major incident hospital. To make 

this possible, we have to change constraint (4) of the base model. In Scenario 3, constraint (4) looks as 

follows:  

∑ ∑ ZHMAJpvk =  1                                                                                                                                 ∀ p ∈  PT2

k∈Kv∈V

 

Scenario 4 

In the base model (Scenario 0) each T1 casualty is allocated to a Level 1 or Level 2 hospital. 

Furthermore, each T2 casualties is allocated to a hospital. In Scenario 4, each casualty is assigned to 

the major incident hospital. To make this possible, we have to change the constraints (3-4) of the base 

model. In Scenario 4, constraint (3-4) are merged into the following constraint:  

∑ ∑ ZHMAJpvk =  1                                                                                                                                 ∀ p ∈  P

k∈Kv∈V

 

Scenario 6  

Scenario 6, forces German ambulances to travel to German hospitals in the MCI. An additional subset 

and constraint are needed to make this possible. The following subset and constraint are added: 

VGER     subset of German vehicles                         ⊆ V                     

∑ ∑  Yhpvk 

p∈P  

−  ∑ ∑ Zhpvk  

p∈Ph∈H

=  0                                                                                 ∀ v ∈  VGER, k ∈ K

h∈H
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Appendix G: Comparison of the ETS exercise and the ILP model  
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Appendix H: Results scenarios 
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Appendix I: Excel sheet  
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