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Abstract

The quantum approximation optimisation algorithm (QAOA) is one of the leading
candidates for testing the applicability of gate-model quantum resources at solving
optimisation problems on small-sized quantum hardware. A combinatorial problem that
has been understudied with QAOA is correlation clustering: given a weighted (+1,-1)
graph, where the edge weights indicate whether two nodes are similar (positive edge
weight) or different (negative edge weight), the task in correlation clustering is to find a
clustering that either maximises agreements, minimises disagreements or a combination
of both. In this thesis, we design Hamiltonian formulations that encode correlation
clustering problems such that they can be solved with QAOA. For all Hamiltonian
formulations we propose circuit implementations and study their complexities. To
benchmark the performances of a basic QAOA algorithm using these formulations, we
use numerical simulations on complete graph data sets. For one of the formulations,
which uses a multi-level approach naturally suitable to qudit systems, we investigate
the performances of several optimisers and introduce heuristic strategies to further
improve its performance. On all instances in our data-sets, which include complete as
well as Erdős–Rényi graphs, the improved algorithm shows competitive performances
for QAOA depth p ≥ 2. We also show that for this algorithm at p = 1 parameters exists
such that it has a performance guarantee of 0.670 on 3-regular graphs.
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CHAPTER 1

Introduction

Over the past decades the world has undergone drastic changes as it entered a new
technological era, generally referred to as the information age. Tasks, previously done
by humans, are automatised by the use of machines and information has never been as
accessible as it is now. And this process has been growing in its capabilities ever since its
first invention: computer manufacturers have so far been able to exponentially increase
the amount of transistors—the fundamental building block of computers—that are put in
computer circuits.

But this process is now reaching its physical limit: as the length scale that the
transistors operate on becomes smaller and smaller, quantum mechanical effects start to
dominate the physics of the system. In particular, a specific quantum effect called quantum
tunnelling causes source-to-drain leakage, destroying the functionality of the transistor. A
lot of research has been performed in looking for workarounds this problem, but one might
also ask: can we actually use these quantum effects to our advantage instead?

This started an entire new field of quantum technologies, where quantum effects are
exploited for practical applications. Examples are the design of ultra-sensitive quantum
sensors, quantum encryption that is unbreakable, and quantum computers to perform
quantum computations (generally referred to as the field of quantum computing). When
Peter Shor in 1994 showed that a quantum algorithm run on such a quantum computer
could solve the prime factorisation problem exponentially faster than any classical
algorithm, he was the first to show that quantum computers could be fundamentally
more powerful than classical computers on certain problems [1]. More algorithms
have been designed ever since, showing potential quantum speed-ups in solving linear
systems of equations [2], unstructured search [3], simulation of quantum systems [4] and more.

However, running most of these algorithms requires a large fault-tolerant quantum
computer: this computer would have a large amount of working qubits, gate operations
with low error probabilities and even more qubits to allow for an error correction scheme.
This could be decades away or, taking a pessimist view, even be a technological challenge
that is simply too difficult to overcome. At the time of writing the largest circuit-based
quantum processor is Google’s Bristlecone, which has 72 qubits [5]. But as hardware research
continues to result in larger and better hardware, we want to know whether there are specific
applications and algorithms that are viable for these Noisy Intermediate-Scale Quantum
(NISQ) devices.
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1. Introduction

One of the proposed algorithms that might be suitable for these devices is the quantum
approximate optimisation algorithm, abbreviated as QAOA, proposed by Farhi, Goldstone
and Gutmann in 2014 [6]. QAOA is hybrid algorithm that uses a parametrised quantum
processor in conjunction with a classical processor used to tune the parameters that describe
the quantum system. Due to its heuristic nature and the curse of dimensionality when
the depth of the circuit increases, it is very difficult to prove performance guarantees on
specific problems (for some this has been achieved though), which increases the reliance on
numerical studies to investigate its potential. Most studies focus on specific, easy-to-analyse
computational problems, and in particular the MAXCUT problem. However, the quantum
speed-ups are not generic, and for industrial computational applications problems might not
be as clearly defined as those in theoretical computer science. Therefore, more and more
QAOA research focuses on more applied problems that can be found in for example biology
[7, 8], physics [9, 10], computer science [11, 12, 13, 14, 15, 16, 17, 18, 19] and finance [20].

A problem that is both fundamental and has industrial applications in modelling
social networks, logistics, machine learning and more, is the correlation clustering problem:
clustering is the problem of partitioning data points into groups based on their similarity, and
in correlation clustering this is done without specifying the number of clusters in advance.
The two most common objectives are either minimising the disagreements or maximising the
agreements between the input estimates and the output clustering. For both objectives the
decision versions of the corresponding optimisation problem is known to be NP-complete
[21]. However, both objectives differ in the difficulty of their approximabilities. The best
classical algorithm for maximising the agreements has an approximation ratio of 0.7666 [22],
and will be frequently used as a benchmark for the results in this work. This thesis will look
at the potential of using of QAOA-based algorithms in approximating correlation clustering
problems.

1.1 Research questions and objectives

The goal of this research can perhaps be better framed into an objective than a question:
we want to try to create the best possible performance for some QAOA-based algorithm in
solving correlation clustering problems, whilst keeping actual hardware considerations in
mind. Framing this into a research question to help us work towards this objective, we define
our main research question to be:

Main question:

• What is the best (empirical) performance (computation time and approximation ratio)
we can obtain using some form of QAOA in solving correlation clustering?

It is important to note that the word ‘can’ in this question has the meaning of ‘the best we
have achieved with our efforts so far’ instead of ‘the best that can be fundamentally achieved’.
This is also reflected in the following sub-questions we consider, helping us in answering the
main research question:

2



1.2. Structure of this thesis

Sub-questions:

• What is the impact of different aspects of the algorithm (e.g. the initial state, the
choice of optimiser and the Hamiltonian formulations?)

• What heuristics can we add to improve our algorithms performance?

• Which properties of the correlation clustering problem determines the expected
performance of our algorithm? Are there differences in performance on different
variants of correlation clustering? And what about different formulations within these
variants?

• How does our algorithm compare against state-of-the-art classical solvers?

1.2 Structure of this thesis

This thesis is structured into three different parts consisting of a total of 8 chapters. In Part
I we will focus on introducing background information such that readers with little to no
background in quantum computing should be able to follow most of the work performed.1 We
will give a brief introduction to quantum computing in Chapter 2 and look at the correlation
clustering problem in Chapter 3. In Part II one can find a survey of the quantum approximate
optimisation algorithm. Whilst this does not fit into our previously established research
questions and objectives, we felt that a survey is currently missing in QAOA literature,
and this part provides building blocks to create one. Chapter 4 will be concerned with the
fundamentals of QAOA and Chapter 5 will look into more recent results in literature. In part
III, we will try to address our main research question. In Chapter 6 we will propose different
formalisms to solve the correlation clustering problem and benchmark their performances.
We decide upon a formalism to improve upon, and Chapter 7 deals with all the steps we took
in order to achieve substantial improvements. In Chapter 8 we summarise our conclusions
and propose future work, concluding the main body of this thesis.

1Basic knowledge of physics, mathematics (in particular linear algebra) and computer science is assumed
though.

3





PART I

Introduction to key concepts





CHAPTER 2

A primer on quantum computing

Since readers of this thesis will have backgrounds ranging from physics to mathematics
to quantum computing, or any combination of those, this chapter will introduce the basic
concepts of quantum computing. Throughout the chapter, most material that has been used
has been taken from the standard text-book of the field, written by Nielsen and Chang [23].
We assume the reader is familiar with basic concepts in linear algebra, and in particular
Hilbert spaces.

2.1 Fundamentals of quantum mechanics: the postulates

The discovery of modern quantum theory in the 1920s brought about one of the greatest
revolutions in our thinking about nature since the days of Isaac Newton. By unifying the
wave and particle interpretations of light and matter, scientists were finally able to find
explanations to problems as the photoelectric effect, Compton scattering and black-body
radiation. Quantum theory is founded on a set of postulates, resulting from experiments
and theoretical analysis. The postulates describe how microscopic particles must be
represented, how to obtain quantities that can be observed, how time evolution must
be described and what the logical structure of a measurement is. The postulates are as follows:

Postulate 1: State space
Any isolated physical system has an associated Hilbert space known as the state space
of the system. The state vector, which is a unit vector in the system’s state space,
uniquely describes this system.

The state space of a specific system is not given by quantum mechanics, and it can be a
difficult problem to figure it out. The simplest example, which we will discuss in more detail
later, is the qubit, which has a two-dimensional state-space.

Postulate 2: evolution
The evolution of a closed quantum system is described by a unitary transformation:

|ψ′〉 = U |ψ〉 .

7



2. A primer on quantum computing

Just as we saw for the state space postulate, quantum mechanics itself does not tell us which
unitary operators U describe the evolution of a particular real-world quantum system. If we
consider continuous time evolution, we can define a more refined version of the postulate,
familiar to all physicists:

i~
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (2.1)

where H is the energy operator, the so-called Hamiltonian of the closed system, and ~ a
physical constant known as Planck’s constant. Once you know the Hamiltonian of a closed
system, you essentially fully understand its dynamics. However, determining a Hamiltonian
of a given system is very difficult problem—in fact a large share of twentieth century physics
was dedicated to figuring them out.

Postulate 3: Quantum measurement
Associated to any measurement of a physical system with corresponding state space H
is a set of operators {Mm}m∈I acting on H which satisfies (completion relation):∑

m

M†mMm = I,

where the indexm refers to the measurement outcomes that may occur in the experiment.
If the system is in state |ψ〉 ∈ H, the probability that one measures the outcome m is

P (m) = 〈ψ|M†mMm |ψ〉 .

If prior to the measurement, the physical system was in state |ψ〉 ∈ H and the
measurement outcome was m, the resulting state of the system, directly after the
measurement, is given by

Mm |ψ〉√
〈ψ|M†mMm |ψ〉

.

The third postulate tells us two very important - and perhaps mind-boggling - results of
quantum mechanics: 1) measurement of a quantum system interferes with the system’s state,
and causes the system to collapse into one of the eigenstates of the observable and 2) there
is no quantum measurement capable of distinguishing between non-orthogonal quantum states.

Postulate 4: Composite systems
The state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. Furthermore, if we have n systems labelled
1, . . . , n, and system i is prepared in the state |ψi〉, the joint state of the total system is
|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 .

If we cannot write the state of the composite system as a simple tensor, we say that its
(isolated) physical systems are entangled.

One of the best examples to get more comfortable with these postulates is the so-
called particle in a box-problem, which can be found in any standard textbook on quantum
mechanics. Now that we have established the fundamental rules of quantum mechanics, let
us see how these allow us to create a formalism to perform computations.
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2.2. Qubits and qudits

2.2 Qubits and qudits

In classical computation, the fundamental unit of information is a bit, which can take a value
of 0 or 1. Hence, we have two possible computational states per a single bit. In quantum
computation, the fundamental unit of information is a called a qubit (shorthand for quantum
bit). Taking {|0〉, |1〉} as our computational basis vectors, this qubit can be in |0〉 and |1〉,
similarly to the classical bit, but it can also be any other state that satisfies

α |0〉+ β |1〉 where |α|2 + |β|2 = 1. (2.2)

Any of these states for which both α and β are non-zero are in a so-called superposition, a
type of state which knows no classical counterpart. Physically, any quantum mechanical
system that can be modelled by a two-dimensional complex vector space can be viewed as a
qubit. Real-world examples of such systems are the polarisation of a photon, the orientation
of an electron spin and the ground state combined with some excited state of an atom. A
common way to pictorially view qubits is through the use of the Bloch sphere, as depicted in
Figure 2.1:

Figure 2.1: Bloch sphere representation of a single qubit. The state vectors aligning with the
x- and y-axis have different relative phases, but are impossible to distinguish from one another
through measurement in computational basis states {|0〉 , |1〉} since they share the same probability
distribution over these states.

From postulate 4 we know that a general state of n qubits is written as a tensor product of
single qubits, i.e.

|ψ〉 =
n⊗
i=1

(ai |0〉+ bi |1〉) =
2n−1∑
j=0
|αj |2 |j〉 , (2.3)

where
∑2n−1
j=0 |αj |

2 = 1. Here we represented our n-qubit system on our new basis states |j〉.
Note that a system of n qubits lives in C2n , and this exponential growth of the Hilbert space
with n explains the difficulty of classically simulating quantum mechanical processes: one
needs an exponential number of bits to represent the n qubits.
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2. A primer on quantum computing

It is important to stress the difference between superposition and entanglement: we
say that an n-qubit system is in superposition if it is not in one of the computational basis
states, and we say that an n-qubit state is entangled when it cannot be written as a simple
tensor. This means that all entangled states must necessarily be in a superposition, but this
does not hold in the other direction. For example, take the two-qubit state

1
2(|00〉 − |01〉+ |10〉 − |11〉),

which is in a superposition but can also be written as a tensor product of |+〉 ⊗ |−〉, and
therefore is not an entangled state. Here {|+〉 , |−〉} form a different set of computational
basis vectors, which can be written as functions of |0〉 and |1〉 as |+〉 = 1√

2 (|0〉) + |1〉) and
|−〉 = 1√

2 (|0〉)− |1〉), respectively. We now take another state as our example, defined as

1
2(|00〉+ |11〉). (2.4)

By defining two arbitrary single-qubit states |ψA〉 = αA |0〉+βA |1〉 and |ψB〉 = αB |0〉+βB |1〉,
we observe that no solutions of αA, βA, αB , βB satisfying (2.2) exist such that the tensor
product

(αA |0〉+ βA |1〉)⊗ (αB |0〉+ βB |1〉) = αAαB |00〉+ αAβB |01〉+ βAαB |10〉+ βBβB |11〉
is equal to (2.4).

So far we only concerned ourselves with two-level systems that were used to en-
code information in the form of qubits, but it is possible to extend this idea to systems with
any amount of levels. A system with three computational basis states (|0〉 , |1〉 , |2〉) is called
a qutrit, and any d-level system (|0〉 , |1〉 , . . . , |d− 1〉) can be used to form a qudit. Examples
of these are photonic systems that can be in a superposition of multiple possible wavelengths
[24] or neutral atoms with a larger range of intrinsic spin states [25]. Every d-level qudit
can be represented by dlog2 de qubits. Hence, there is no formal argument of why you
would have an advantage of using qudits over qubits, as one can always be mathematically
represented in the other. However, on the hardware level, the interactions describing the
system might be more suitable to either qubit or qudit operations, which means that you
sometimes gain something (e.g. smaller errors, larger accessible Hilbert space) from using
qudits instead of qubits.

2.3 Quantum gates

Quantum gates provide us with the basic operations needed to manipulate qubits—just as in
classical complexity theory a Boolean circuit uses basic logic gates on its bits. Well-known
examples are the OR, AND, and NOT gates. By postulate 2, we know that every quantum
gate must perform a unitary transformation. Consequently, every quantum gate operation is
reversible. Quantum gates can be represented by matrices, and we refer to this matrix as the
matrix representation of a quantum gate.

One of the simplest quantum gate example is the X-gate, which is the quantum
analogue of the classical NOT-gate. Its matrix representation is

X =
[
0 1
1 0

]
.
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Identity : |0〉 〈0|+ |1〉 〈1|
[
1 0
0 1

]
I

Pauli-X − gate : |1〉 〈0|+ |0〉 〈1|
[
0 1
1 0

]
X

Pauli-Y − gate : i |1〉 〈0| − i |0〉 〈1|
[
0 −i
i 0

]
Y

Pauli-Z − gate : |0〉 〈0| − |1〉 〈1|
[
1 0
0 −1

]
Z

Hadamard gate : |0〉+ |1〉√
2
〈0|+ |0〉 − |1〉√

2
〈1| 1√

2

[
1 1
1 −1

]
H

Rφ-gate : |0〉+ e2πiφ |1〉
[
1 0
1 e2πiφ

]
Rφ

Table 2.1: Some common single-qubit quantum gates.

We define our computation basis states as |0〉 and |1〉 in the following vector representation

|0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
,

such that X operates on these computational basis states in the following way:

X |0〉 =
[
0 1
1 0

] [
1
0

]
=
[
0
1

]
= |1〉 and X |1〉 =

[
0 1
1 0

] [
0
1

]
=
[
1
0

]
= |0〉 .

Hence, X essentially performs a bit flipping operation, just as a NOT-gate would do classically.
X is part of a larger group of single-qubit gate operations, called the Pauli matrices. An
overview of all Pauli matrices, as well as some other common examples of single-qubit gates
are shown in Table 2.1. The last column of this table indicates the circuit representation,
which will be explained in more detail later. From the Pauli quantum transformations we
can also construct the so-called rotation gates:

RX(θ) = e−iθX/2, RY (θ) = e−iθY/2, RZ(θ) = e−iθZ/2,

which will be commonly used throughout this thesis. Every single-qubit unitary transforma-
tion U can be written as U = RX(α)RY (β)RZ(γ), for some α, β and γ.

One of the most important gates in Table 2.1 is the Hadamard gate H. Applying
H to initial state |0〉 results in a new state with equal probabilities of measuring |0〉 or
|1〉. Applying H on this new state gives us back our initial state |0〉. This effect is called
interference due to the fact that the amplitudes of the |1〉 state have cancelled out, similar
to the effect one would observe in classical wave mechanics.

So far we have only considered single-qubit gates, but the notion of a gate opera-
tion can be generalised to any amount of qubits. Every n-qubit quantum gate can be
represented by a 2n × 2n unitary matrix (with complex entries), and every 2n × 2n unitary
matrix can in theory be a quantum gate. We will now discuss some of the most important

11



2. A primer on quantum computing

multiple-qubit quantum gates.

Let us first consider the so-called controlled gates. These gates act on two or more
qubits, where one or more qubits act as a control for some operation. We define some general
single-qubit operation U with matrix elements {u0,0, u0,1, u1,0, u1,1}, then its controlled
operation C(U) where qubit 1 acts as the control qubit and qubit 2 acts as the target qubit
is given by

C(U) =


1 0 0 0
0 1 0 0
0 0 u0,0 u0,1
0 0 u1,0 u1,1

 .
In quantum circuit notation, we use the following graphical depiction

C(U) =
•
U

where the ‘large dot’ indicates the control qubit. Common examples of controlled two-qubit
operations are the CNOT operation (CX), as well as other controlled Pauli operations and
their controlled rotations (for example CRX). It is also possible to swap the target and
control qubit or extend this idea to multiple control qubits. A common example of the latter
is the Toffoli gate (CCNOT), represented by the following matrix

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

The circuit symbols of both the CNOT and Toffoli (CCNOT) are by convention drawn as

CNOT =
•

and CCNOT =
•
•

2.4 Quantum circuits

A Quantum circuit is a model describing the ‘recipe’ for a quantum computation. The
graphical depiction of quantum circuit elements is described using a variant of the Penrose
graphical notation, and includes initialised qubits (often in the |0〉-state), a sequence of
quantum gates and measurement of the qubits. Some conventions are:

• In a quantum circuit diagram, moving from left to right corresponds to moving forwards
in time.

• Each qubit is represented by a wire and has an initial state (often |0〉).

• Quantum gate operations are denoted by symbols in a box, which spans over the wires
of the qubits it operates on.

12
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• The final state always has to be measured and is therefore often left out of the notation,
unless only specific qubits have to be measured or some measurements have to be
performed along the computation.

Let us consider a simple example of a 2-qubit quantum circuit, of which the circuit description
is given in Figure 2.2:

|0A〉 H •

|0B〉

Figure 2.2: Quantum circuit to create an entangled state.

This circuit consists of two qubits, labelled with subscripts ‘A’ and ‘B’, that are both
initialized in state |0〉 and uses two gate operations: a Hadamard transform applied only to
qubit A and a CNOT applied to control qubit A and target qubit B. The state of the system
can be represented by a vector describing the amplitudes of each computational two-qubit
basis state in {|00〉 , |01〉 , |10〉 , |11〉}, where the first entry indicates the state of qubit A and
the second of qubit B. Just as it is possible to find a matrix representation of a quantum
gate, there is a matrix representation for each quantum circuit. The matrix representation of
this circuit is given by

[CNOT ]i,j · [H ⊗ I]i,j =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1√
2

1√
2 0 0

1√
2 − 1√

2 0 0
0 0 1 0
0 0 0 1

 =


1√
2 0 1√

2 0
0 1√

2 0 1√
2

0 1√
2 0 − 1√

2
1√
2 0 − 1√

2 0


So what happens when we apply this circuit operation to our initial state |00〉, ?

1√
2 0 1√

2 0
0 1√

2 0 1√
2

0 1√
2 0 − 1√

2
1√
2 0 − 1√

2 0




1
0
0
0

 =


1√
2

0
0
1√
2

 = 1√
2

(|00〉+ |11〉),

This state, already encountered in section 2.2, is one of the Bell states: a maximally
entangled two-qubit state.

Some important complexity measures of quantum circuits are the elementary gate
complexity and query complexity. The elementary gate complexity of a quantum circuit is
defined as the number of elementary gates it consists of. We are free to choose any set of
gates we define to be elementary to our definition of gate complexity, keeping in mind that
some are more convenient than others. Some common ones are:

• The set of all single-qubit operations and the two-qubit CNOT gate. This set is
universal, meaning that any other unitary operation can be built from these gates.
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2. A primer on quantum computing

• The set of CNOT, Hadamard and the phase-gate T = Rπ/4, which is universal in the
sense of approximation. The Solovay-Kitaev theorem states that this approximation is
in fact quite efficient: simulating arbitrary gates up to an exponentially small error
costs only a polynomial overhead.

• The set of Hadamard and Toffoli (CCNOT) is universal for all unitaries with real
entries in the sense of approximation.

In the query complexity model, the input is given as an oracle (a black box function). The
algorithm gets information about the input only by querying this oracle (‘calls’ the black
box). The algorithm starts in some fixed quantum state and the state evolves as it queries
the oracle. The query complexity is then defined as the number of queries the algorithm
makes to the oracle. Therefore, query complexity provides a lower bound on the overall time
complexity of an algorithm as it only takes the oracle into account.

For hardware considerations, one also very often talks about the depth and width
of a quantum circuit. The circuit depth is the length of the longest path from the input (or
from a preparation) to the output (or a measurement gate), moving forward in time along
qubit wires. This takes into account that, in actual quantum hardware, some operations
can be performed parallel. The circuit width is the number of qubits (and bits) used in the
quantum circuit (the number of wires in the diagram).

2.5 Quantum algorithms and their complexity

An algorithm solves a given class of problems using a finite sequence of well-defined
(computer-implementable) instructions. An algorithm in which all of these steps can be
executed on a universal Turing machine will be referred to as a classical algorithm, whilst an
algorithm that requires at least some inputs to be operated on by a quantum circuit to be
a quantum algorithm. The part of the algorithm that can be implemented on a universal
Turing machine is referred to as the classical part of the quantum algorithm, which is also
something we will encounter when dealing with the Quantum Approximate Optimisation
Algorithm this thesis is concerned with.

Arguably, the greatest success of quantum computing to date is that research over
the past decades has shown that quantum algorithms exist that provide a speed-up over
the best classical algorithms. The first example of this was provided in the form of Shor’s
factoring algorithm, which provides a super-polynomial speed-up in finding the prime
factorisation of an n-bit integer. To be precise: this means that for the prime factorisation
problem, the quantum algorithm can find solutions with time and space requirements that
are bounded by a polynomial in the size of the input, while it is conjectured that a classical
computer would need an exponential amount of resources for the same task.

(Quantum) computational complexity theory provides a general framework to quantify
the resources algorithms need for the problems they attempt to solve. The class of
problems that are in polynomial time on a quantum computer is called Bounded-error
Quantum polynomial (BQP), analogous to the classical Polynomial (P) complexity class.
It is generally conjectured that P ( BQP, which implies that there exist problems
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Figure 2.3: Conjectured relations between different complexity classes, including some example
problems within certain classes. Picture taken from Ref. [27].

that are in BQP but not in P (as we already saw for prime factorisation).1 If an
algorithm can verify whether the problem is solved if given both the input and the
output, and this algorithm takes polynomial time on a classical computer, the problem is
Non-deterministic Polynomial (NP). The quantum analogue for these problems is called
Quantum Merlin Arthur (QMA). Since solving a problem in polynomial time necessarily
requires you to be able to verify an output in polynomial time, we have that P⊆NP
and BQP ⊆ QMA. We also have that any classical computation can be implemented
on a quantum computer, and therefore and NP ⊆ QMA. In addition, the class NP-hard
(QMA-hard for quantum) includes all problems to which all problems in NP can be reduced
to in polynomial time: this means that these problems are as ‘difficult’ as any problem in NP.
If a problem is both in NP and NP-hard, we call it NP-complete (QMA-complete for quantum).

So BQP does not seem to be in P, and it is also unknown whether it is in NP. So
where does it actually fit in relation to other complexity classes? Bernstein and Vazirani
showed that it is possible to simulate a quantum computer classically with exponential
time and polynomial memory, which means that the following upper bound exists [26]:
BQP ⊆ PSPACE, where PSPACE is the class solvable on a digital computer using a
polynomial amount of memory, but possibly exponential time. Figure 2.3 shows the current
best guess of where BQP fits in. An overview of quantum algorithms and the speed-up they
provide over certain problem can be found on online, see https://quantumalgorithmzoo.org/.

1In fact this statement is also based on a conjecture: neither the existence nor non-existence of such
algorithms for prime factorisation has been proved, but it is generally suspected that no classical algorithms
exist that are able to solve prime factorisation in polynomial time.
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2.6 An example: Grover’s algorithm

With all established so far, we now look at a non-trivial example of a quantum algorithm
that provides a quantum speed-up. Consider the following problem:

The unstructured search problem:
For N = 2n, we are given an arbitrary x ∈ {0, 1}N . The goal is to find i such that
xi = 1 and to output ‘no solutions’ if there are no such i.

We assume that we have access to a (quantum) oracle: a black box function that is able to
recognise solutions to the search problem. To be precise, we define this oracle in the quantum
setting to be

Ox,± |i〉 = (−1)xi |i〉 , (2.5)

which means that the oracle marks the solutions to the search problem by shifting the phase
of the solution. We also define R as a unitary operation that puts a ‘−1’ in front of all basis
states |i〉 where i 6= 0n and does nothing to the other basis states:

R = 2 |0n〉 〈0n| − I (2.6)

We define the Grover iteration (or Grover operator) G as2

G = H⊗nRH⊗nOx,±. (2.7)

Let us define so-called ‘good’ states |G〉 and ‘bad’ states |B〉 as

|G〉 = 1√
t

∑
i:xi=1

|i〉 and |B〉 = 1√
N − 1

∑
i:xi=0

|i〉 .

When inspecting the Grover iterate G one observes that it is actually the product of two
reflections in the 2-dimensional space spanned by |G〉 and |B〉: Ox,± is a reflection through
|B〉 and

H⊗nRH⊗n = H⊗n(2 |0n〉 〈0n| − I)H⊗n = 2 |U〉 〈U | − I (2.8)

is a reflection through |U〉. The circuit design for a single Grover iterate is given by,

G = Ox,±

H

R

H

H H

H H

Figure 2.4: Quantum circuit for a single Grover iteration G.

where R can be implemented using O(n) elementary gates.

Assuming that we know that the fraction of solutions is ε = t/N , Grover’s algorithm is then
given by

2To simulate this operator classically, one would of course need an exponentially growing amount of
resources.
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1. Set up the starting state |U〉 = H⊗n |0〉.

2. Repeat the following k = O(1/
√
ε) times:

a) Reflect through |B〉 (apply Ox,pm).
b) Reflect through |U〉 (apply H⊗nRH⊗n).

3. Perform the measurement and check that the resulting i is a solution.

The quantum circuit representation of the complete algorithm is given in Figure 2.5:

Figure 2.5: Quantum circuit for Grover’s algorithm with k iterations. Picture taken from Ref. [28].

So why does this algorithm work? There are two main arguments used to illustrate this, but
we will focus on the geometric argument. We start in the state

|U〉 = sin(θ) |G〉+ cos(θ) |B〉 . (2.9)

We note that the reflections (a) and (b), as described in the steps of the Grover iterate,
increase the angle from θ to 3θ, which moves us towards a good state as illustrated in Figure
2.6:

Figure 2.6: The rotations of a single Grover iterate G. Picture taken from Ref. [28].

Additional reflections (a) and (b) increase the angles with another 2θ, so in general we have
that after k applications of (a) and (b) we find ourselves with the following state

sin((2k + 1)θ) |G〉+ cos((2k + 1)θ) |B〉 .
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If we measure this state, the probability of observing a solution is Pk = sin((2k + 1)θ)2. We
want to have Pk as close to 1 as possible, which is the case if k = π/4π − 1/2. However,
since we can only do an integer amount of Grover iterations, k has to be an integer as well.
Choosing k̃ to be the integer closest to k our failure probability is ((assuming t� N)

1− Pk̃ = cos
(
(2k̃ + 1)θ

)2 = cos((2k + 1)θ) + 3(k̃ − k)θ)2 ≤ sin(θ)2 = t

N
,

where we used that |k̃ − k| ≤ 1/2. Since arcsin (θ) ≥ θ, the total number of queries is
k ≤ π/4θ ≤ π

4

√
N
t .

Since Grover queries the oracle only once for during every Grover iterate G, Grover’s
algorithm solves the unstructured search problem with O(

√
N) queries and dlog2Ne qubits.

A randomised algorithm (which is in fact optimal in expectation) would need O(N) queries
to solve this problem, and therefore Grover’s algorithm provides us with a quadratic speed-up.

Even though a quadratic speed-up is not as spectacular as some other quantum al-
gorithms (i.e. the ones that provide exponential speed-ups), Grover’s search is important
because of its applicability: basically any classical algorithm that has some search component
can be improved using Grover’s algorithm as a subroutine. This also includes many basic
optimisation applications where we are interested in finding optimal, not near-optimal,
solutions. Examples are finding shortest paths, minimum spanning trees, and various other
graph algorithms.
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CHAPTER 3

Correlation clustering

In general, the objective of clustering problems is to group elements into a family of subsets,
which we will name clusters, such that the elements within a cluster are more like to
one another than elements in different clusters. This problem can be visualised by graph
clustering. In this clustering formulation the nodes are the elements to be grouped in clusters
and edges represent similarities between these elements. In our work, we will consider
the correlation clustering problem. First defined by Harary in 1955 [29], the problem has
a history of being repeatedly rediscovered under different names ever since [21, 30, 31,
32, 33]. Correlation clustering has proven to be a popular topic of research as many real
world problems can be modelled using correlation clustering—examples are found in social
psychology, statistical mechanics and biological networks. It is also common among computer
vision tasks: in section 3.4 we will consider a specific example of one of those problems.

A notable survey paper on the topic is that of Schaeffer [34] in which she focuses
on different definitions of clusters and measures of cluster quality, as well as presenting some
general approaches to solving clustering problems. Another is the work by Böcker and

Figure 3.1: Example of a correlation clustering problem for which a solution exists without any
disagreements, using a total of three different clusters.
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Baumbach [31], which surveys exact methods for solving correlation clustering. However,
since the quantum approximate optimisation algorithm is primarily an approximation
method, we will mainly use a chapter on correlation clustering by Immorlica and Wirth
in Constrained Clustering: Advances in Algorithms, Theory and Applications [35]: this
chapter puts large emphasis on approximation methods and is therefore ideal for our purposes.

For approximation algorithms the approximation ratio is often used as the most
important performance measure. Consider some class of optimisation problems P . For max-
imisation objectives, it is the convention that the approximation ratio of an r-approximation
algorithm A, which finds approximate solutions for instance X in the class of problems P , is
some number r ∈ [0, 1] such that OPT(X) ≤ f(A(X)) ≤ rOPT(X) for every X ∈ P , where
f(A(X)) is the objective function value of approximation A(X) and OPT(X) the optimal
objective value of X. When dealing with minimisation objectives, r ∈ [1,∞) and we have
that an r-approximation algorithm A needs to satisfy rOPT(X) ≤ f(A(X)) ≤ OPT(X) for
every X ∈ P .

3.1 Problem definition

There are some basic variants to correlation clustering, where you pick one out of i) minimise
disagreements/maximise agreements or a combination of those, ii) unweighted/weighted and
iii) bounded or unbounded number of clusters. Also, one can vary the type of graph structure
that is studied. The most basic form is the following:

Definition 3.1. Let G(V,E) be an undirected graph of N = |V | nodes. Consider the
clustering C to be a mapping from the elements to be clustered, V , to a set of cluster labels,
so that u and v are in the same cluster if and only if C(u) = C(v). Given edges (u, v) having
two weights w+

u,v and w−u,v, the objective of correlation clustering is to find a clustering C
that minimises ∑

C(u)=C(v)

w−u,v +
∑

C(u)6=C(v)

w+
u,v,

or equivalently, maximises ∑
C(u)=C(v)

w+
u,v +

∑
C(u)6=C(v)

w−u,v.

The weights w+
u,v and w−u,v are in this formulation non-negative and can be though of as

positive and negative evidence towards co-association. For unweighted graphs, we have that
every edge only has one weight labelled either 〈+〉 (equivalent to ‘+1’) or 〈−〉 (equivalent
to ‘-1’). Both problems are equivalent in the exact setting but differ in the approximation
setting, as we will see in the next section.

Throughout this thesis, when we talk of MIN-DISAGREE, MAX-AGREE and
MIN(DISAGREE-AGREE) as objectives of the correlation clustering problem we
always have that for all weights wu,v ∈ {−1,+1} and the amount of clusters is unbounded
(except for the amount of nodes which always upper bounds the correlation clustering
problem).
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3.2. Classical results

3.2 Classical results

Some standard techniques that have been developed over the years to solve correlation
clustering problems are region growing [36], techniques based on rounding linear programs,
and combinatorial approaches that draw upon connections to sorting. This section will
elaborate on how these techniques have been used for both the maximisation and minimisation
variants to correlation clustering.

3.2.1 Maximising agreements

Results by Charikar et al., later extended by Tan [37], show that the maximisation problem
on general graphs is APX-hard: it is in NP but does allow polynomial-time approximation
algorithms with an approximation ratio bounded by a constant. To be precise, it is proven
that it is NP-hard to to obtain results that are strictly better than a factor of 79/80 ≈ 0.99.
The 2004 paper [21] by Bansal et al., famous for introducing correlation clustering to the
computer science community, proposes a (trivial) method that produces a 0.5-approximation
algorithm for the maximisation of agreements. Their algorithm looks at the total of the
positive weights: if this exceeds the total of the negative weights all the items are placed in a
single cluster, otherwise they put each item a singleton cluster. The 0.5-approximation factor
is still quite far from the predictions by the complexity studies, and indeed considerable
improvements have been made over the years. A factor of 0.7664 was obtained using semi-
definite programming by Charikar [38] et al., and further improved to 0.7666 by Swamy [22]
by utilising improved rounding techniques. We now give a sketch of this algorithm:

Swamy algorithm Let ei ∈ Rn be a vector with all zeros except for the ith element. This
vector ei represents a possible cluster i. The correlation clustering problem can now be
formulated as

max
x

∑
e=(u,v)

w+
e xu · xv + w−e (1− xu · xv)

s.t. xv ∈ {e1, . . . , en} for every v ∈ V.
(3.1)

xv = ei for any clustering, and for every vertex v assigned to cluster i, the objective function
value becomes the weight of the agreements in clustering. We consider at most k clusters.
We relax the constraints to get a semi-definite program:

max
x

∑
e=(u,v)

w+
e xu · xv + w−e (1− xu · xv)

s.t. xu · xv = 1 for all v,
xu · xv ≥ 0 for all u, v, u 6= v.

(3.2)

We solve the SDP to obtain solution {xv ∈ Rn}, which can be done up to an additive error ε
in time that is polynomial in the program description size and log 1/ε). Choosing a rounding
procedure similar to Goemans-Williamson, we split our algorithm in two cases k ≥ 6 and
k ≤ 5. For k ≥ 6: choose 6 random vectors r1, . . . , r6 ∈ Rn whose coordinates have the
standard normal distribution. Randomly choosing this scheme gives a 0.7666-approximation
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3. Correlation clustering

algorithm that produces at most 6 clusters. For k ≤ 5 : we now use a different relaxation:

max
x

∑
e=(u,v)

w+
e

1 + (k − 1)(xu · xv)
k

+ w−e
(k − 1)(1− xu · xv)

k

s.t. xu · xv = 1 for all v,

xu · xv ≥
−1
k − 1 for all u, v, u 6= v,

(3.3)

of which the solution can be rounded by choosing either 1 or 2 hyper-planes. This
achieves an approximation ratio of 0.77. Therefore, this algorithm gives a 0.7666-
approximation algorithm for maximising agreements in correlation clustering. Note
that the same approximation ratio holds for the k−clustering variant. More information
on this algorithm as well as references to the proofs can be found in the original work, Ref. [22].

The algorithms concerned so far work for general graphs—if the graph is complete
the problem becomes significantly easier although still NP-hard. For complete graphs,
Bansal et al. provided a polynomial time approximation scheme (PTAS) [21]: an algorithm
that for some ε > 0 is able to produce a solution that is within a factor 1− ε of being optimal
and runs in time polynomial in ε.

3.2.2 Minimising disagreements

The minimisation variant is considerably more difficult to solve than the maximisation
problem for both general [21] and complete [38] graphs it is APX-hard. Though Karpinski
and Schudy [39] proved the existence of a polynomial time approximation scheme on complete
graphs and a fixed number of clusters, the design of sub-logarithmic approximations for
general graphs is still an open problem [40, 41]. Just as was the case for the maximisation
problem, Bansal et al. [21] provided the first constant-factor approximation algorithm for
complete inputs: the algorithm adopts a local search method and has a constant-factor
that is quite large. A significant improvement can be made at the expense of solving the
natural linear program formulation of the problem, as was pointed out by Bertolacci and
Wirth [42]. However, this comes with the cost of long computation times and huge memory
demands. Nonetheless, using region-growing type rounding procedures Charikar et al. [38]
were able to produce a 4-approximation algorithm which could eventually be improved
further to 2.5. In 2015, Chawla et al. [43] proposed new rounding schemes for the standard
linear programming relaxation of the correlation clustering problem, achieving approximation
factors almost matching the integrality gap. For complete graphs their approximation is
2.06− ε (integrality gap of 2), for complete k-partite graphs the approximation is 3 (matching
the integrality gap) and for complete graphs with edge weights satisfying triangle inequalities
and probability constraints, their approximation is 1.5 (integrality gap of 1.2). This is the
best polynomial-time approximation algorithm known at the moment.

3.3 Quantum approaches

Whilst there are some papers that use QAOA to work on some form of graph clustering
problems [44, 45, 46, 47, 48], the only paper we know of that considers correlation clustering
in particular and mentions QAOA is the work by Pramanik and Chandra [49]. They use
generalised Pauli operators to solve graph clustering, framed as a Max-d-Cut problems,
with qudits (d−levels). They only show a derivation of a possible Hamiltonian formulation
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Figure 3.2: General procedure of the Deep(er)Cut algorithm. Starting from a single monocular
image of multiple individuals, a neural network computes a sparse set of candidate body parts (1).
Next, a densely connected graph is constructed which incorporates various types of interactions
between the candidate body parts (2). The multi-person pose estimation is now formulated as an
integer linear program (ILP) with an objective consisting of a clustering (a) and labelling (b) part.
Solutions to the ILP describe the labelling of the edges and the clustering of the nodes, and therefore
gives a joint pose estimation of multiple people. Adapted Figure taken from Ref. [51]

which is also suitable for correlation clustering, but do not show any extensive results on the
performance of a QAOA implementation of this formulation. Their formulation is listed in
Appendix A for completeness, will not be used in this work as we expect it to be inferior to
the formulation we will propose for qudit systems.

3.4 An example: multi-person pose estimation

The following example was put forward by Bosch Research as an example of an optimisation
problem they encountered in practice. It was the original motivation for this work to focus
on correlation clustering.

Given an image that contains an unknown amount of persons, the goal of multi-
person pose estimation is to estimate poses of the persons in the image by representing
the orientation of every person in a graphical format. This is usually done in the form of
connected nodes that form a skeleton, where any valid connection between two nodes is
called a limb. There are several ways to solve the multi-person pose estimation, but we will
focus on a method (and its improved version) called Deep(er)Cut as its objective generalises
the correlation clustering objective [50, 51].

The general procedure of Deep(er)Cut is explained in Figure 3.2. In Deep(er)Cut,
a neural network is used to compute a sparse set of candidate body parts D. Each candidate
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3. Correlation clustering

d ∈ D has a unary score for every body part c ∈ C, where C is a pre-defined set of body
part classes (e.g. neck, head). Based on the unary scores parameters αdc ∈ R are computed,
which can be viewed as the ‘cost’ of placing body part d in class c. Next, for every pair
of distinct body part candidates d, d′ ∈ D and every two body part classes c, c′ ∈ C the
pairwise term generates parameters βdd′cc′ ∈ R which represent the ‘cost’ of having body
part d, belonging to body part class c, and body part c′, classified as c′, being part of the
same person. Using the defined sets and parameters, the pose estimation problem is framed
as an ILP with two types of binary variables: x : D × C → {0, 1} for which holds that
xdc = 1 if body part candidate d is of body part class c, and y :

(
D
2
)
→ {0, 1} such that

ydd′ = 1 indicates that body candidates d and d′ belong to the same person. Using the
defined variables, one can construct the following objective that consists of a labelling and
clustering part

min
x,y

∑
d∈D

∑
c∈C

αdcxdc︸ ︷︷ ︸
Labelling part

+
∑

dd′∈(D2 )

∑
cc′∈C

βdd′cc′xdcxd′c′ydd′

︸ ︷︷ ︸
Clustering part

, (3.4)

which can be constructed into an ILP by introducing new variables zdd′cc′ = xdcxd′c′ydd′ and
some constraints:

min
x,y

∑
d∈D

∑
c∈C

αdcxdc +
∑

dd′∈(D2 )

∑
cc′∈C

βdd′cc′zdd′cc′

ydd′ ≤
∑
c∈C

xdc for all dd′ ∈
(
D

2

)
ydd′ ≤

∑
c∈C

xd′c for all dd′ ∈
(
D

2

)
ydd′ + ydd′′ − 1 ≤ ydd′′ for all dd′d′′ ∈

(
D

3

)
.

(3.5)

Note how (3.5) is hard and hard to approximate, as it is a generalisation of the correlation
clustering objective which is central to this thesis.
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PART II

The quantum approximate optimisation
algorithm: a survey





CHAPTER 4

The fundamentals

In 2014 Farhi et al. [6] introduced a new quantum algorithm that produces approximate
solutions for combinatorial optimisation problems: the quantum approximate optimisation
algorithm, often abbreviated as QAOA. QAOA can be thought of as a heuristic to prepare
a superposition of bit strings with probability amplitudes heavily concentrated around
the solution of an optimisation problem. Due to its shallow circuit depth and its hybrid
nature—it is usually used in conjunction with a classical optimiser1—it is relatively robust
to circuit errors, making it a candidate algorithm to run on NISQ devices. Soon after the
publication of this seminal work, Farhi et al. [52] published another work in which they
applied the algorithm to the combinatorial problem MAX-3-XOR. They showed that QAOA
at p = 1 already produces a string that satisfies a better number of equations than the at
that time best classical algorithm. Even though the classical algorithm community responded
quickly by producing an algorithm with asymptotically even better performance [53], QAOA
had attracted the attention of researchers hoping that it would be a candidate to first exhibit
practical quantum supremacy.

The following two chapters provide a survey concerning the QAOA algorithm. In
this chapter we will deal with the fundamentals of QAOA: we give a general introduction to
the algorithm, apply the algorithm to an example in the form of the MAXCUT problem,
show that the values of the strings it outputs are concentrated around some mean value and
look at the link with quantum adiabatic computing. In Chapter 5 we will look more closely
at more recent results in QAOA literature: we will discuss properties, generalisations and
variants to the algorithm, parameter optimisation, practical applications and list some open
problems in the field of QAOA.

4.1 The algorithm

Suppose we have an objective function f(x) acting on n-bit strings x ∈ {0, 1}n, some domain
F , and our objective is

max
x∈F

f(x). (4.1)

This function can be mapped to a Hamiltonian that is diagonal in the computational basis,
and we say that a Hamiltonian HC represents a function f : {0, 1}n → R if its eigenvalues

1For the reader familiar with variational quantum algorithms: QAOA can be thought of as a special
Ansatz within the variational quantum algorithm approach.
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4. The fundamentals

satisfy

HC |x〉 = f(x) |x〉 for all x ∈ {0, 1}n. (4.2)

Here we have that x ∈ {0, 1}n labels the computational basis states |x〉 ∈ C2n .

Such a Hamiltonian HC can be easily simulated using Controlled-NOT and Z-rotation gates
if we can compute its expansion in terms of Pauli Z operators as

HC = c0I +
n∑
j=1

c1Zj +
∑
j<k

cjkZjZk + . . . cα ∈ R, (4.3)

implementing the operation as unitary

UC(t) = e−iHCt, t ∈ [0, 2π]. (4.4)

For a problem on n binary variables x ∈ {0, 1}n, the quantum approximate optimisation
algorithm (QAOA) consists primarily of the three components2:

1. The initial state
The initial state should be trivial to implement, and should be a (superposition of)
feasible solutions. For unconstrained optimisation, or when using a penalty function, it
is often taken to be the equal superposition state, i.e.

|s〉 = |+〉⊗n = 1√
2n

2n−1∑
x=0
|x〉 . (4.5)

.

2. A family of cost (phase separation) operators

UC(γ) = e−iγHC , (4.6)

where γ ∈ {0, 2π} and HC acts on the basis states |x〉 as HC |x〉 = f(x) |x〉. Soft
constraints can also be encoded in HC through the use of a penalty function.

3. A family of mixing operators

UM (β) = e−iβHM , (4.7)

where β ∈ {0, 2π} and HM is usually written as a sum of tensor products of X operators.
The mixing operators are required to:

a) Preserve the feasible subspace F .
2We have used the generalisation by Hadfield et al. [54], the Quantum Alternating Operator Ansatz

that has the same abbreviation by design. In the current QAOA literature, people often do not distinguish
between the original QAOA—which restricts itself to the uniform superposition as the initial state and the
X-mixer—and the more general version by Hadfield.
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4.1. The algorithm

b) Provide transitions between all pairs of states x,y corresponding to feasible points:

for all x,y ∈ F there exists β∗, r such that
| 〈x|UrM (β∗) |y〉 | > 0

Once the initial state and operators are established, the QAOA circuit is further specified
by circuit depth parameter p ∈ N and the 2p angles γ1, . . . , γp and β1, . . . , βp. In QAOA,
the problem instance is encoded in the QAOA operators and therefore this circuit itself is
dependent on the problem instance. The algorithm consists of applying the cost (phase
separating) operators and mixing operators in alternation to the initial state to obtain the
state

|γ, β〉 = UM (βp)UC(γp) . . . UM (β1)UC(γ1)︸ ︷︷ ︸
2p unitary operations

|s〉 =
p∏
k=1

UM (βk)UC(γk) |s〉 , (4.8)

on which a computational basis measurement is performed.

Now that we have defined all components of QAOA, we can give the general pro-
cedure for the algorithm under the variational approach:

1. Begin with initial state |s〉

2. Initialise 2p parameters ~β = (β1, . . . , βp), ~γ = (γ1, . . . , γp)

3. Construct
∣∣∣~γ, ~β〉 from Equation (4.8).

4. A computational basis measurement is performed on this state, returning candidate
solution |x〉 with probability |

〈
x
∣∣∣~γ, ~β〉 |2. Repeating this procedure, the expected value

of the cost function is given by

Fp(~γ, ~β) =
〈
~γ, ~β|HC

∣∣∣~γ, ~β〉 , (4.9)

which can be statistically estimated from the produced samples.

5. Repeat the above steps with updated sets of time parameters as part of a classical
optimisation loop, used to update β, γ. We will denote the maximum over the different
parameters as

Mp = max
~γ,~β

Fp(~γ, ~β). (4.10)

6. Stop when the convergence condition on M is reached, output the corresponding solution
|x∗〉 and value M∗p .

The quality of the final solution M∗p strongly depends on p. In fact, in the original paper
they show that

lim
p→∞

Mp = max
x

f(x), (4.11)

where Mp depends on p through Equation (4.8). Hence, for p sufficiently large optimal
angles exist such that the expected value of (4.9) is arbitrarily close to the optimal solution.
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4. The fundamentals

However, we do not know how large p has to be in order to obtain a certain quality of
approximation, nor what the values of these parameters must be. Figure 4.1 gives a
schematic overview of the QAOA procedure.

Figure 4.1: Schematic illustration of the variational quantum approach for QAOA. Optimal
parameters are found through a loop with a classical optimiser.

4.1.1 An example: unweighted MAXCUT

We define some undirected graph G = (V,E), with N = |V |. In unweighted MAXCUT,
one tries to find a partition of the graph’s vertices into two complementary sets S and
T = Sc = V \ S, such that the number of edges between the set S and the set T is as large
as possible. The objective function is

f(x) = 1
2
∑

(i,j)∈E

1− xixj , (4.12)

where xi ∈ {−1, 1}. The interpretation of this variable is that xi = 1 when node i is in the
cut S and xi = 1 if node i is in the complementary set T .

Figure 4.2: Example of MAXCUT problem instance with 5 nodes. The dotted line represents the
optimal cut, creating two subsets of two and three nodes. This results in a cut where 4 out of 5
edges are shared between the subsets which is optimal for this instance.
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The quantum analogue of this problem has the following (cost) Hamiltonian

HC = 1
2
∑

(i,j)∈E

I − ZiZj , (4.13)

where Zi is the previously introduced Pauli Z-operator. This is representation works
because the eigenstates |0〉 and |1〉 have eigenvalues 1 and -1 respectively, so minimising
this Hamiltonian is equivalent to maximising the MAXCUT objective. Since we have no
constraints, we have that our feasible region F = {0, 1}N . As a mixer, we choose the standard
mixing Hamiltonian

HM =
∑
i∈V

Xi, (4.14)

and the initial state will be the superposition over all computational basis states

|s〉 = 1√
2N
∑
x

|x〉 . (4.15)

From these expressions we can use Equation (4.7) and (4.6) to construct our unitary operations,
and define a QAOA circuit for any desired value of p. To illustrate why this is useful in the
first place, note that in this case HC can be written as

HC =
∑
(i,j)

hC,(i,j), (4.16)

where hC,(i,j) = 1
2I − ZjZk and (i, j) describes the edge between nodes i and j. The

expectation value of our quantum circuit is then

Fp(~β,~γ) =
∑
(i,j)

〈
~β,~γ
∣∣∣hC,(i,j) ∣∣∣~β,~γ〉 . (4.17)

We will now consider p = 1. Note that each term in summation (4.17) is then of the form

〈s|UC(γ1)†UM (β1)†hC,(i,j)UM (β1)UC(γ1) |s〉 . (4.18)

Terms that do not involve qubits j and k commute through hC,(i,j), and therefore all terms
in UM (β1) and UC(γ1) that do not depend on either one of these qubits cancel out. Our
final expression involves only qubits on edge (i, j) and edges adjacent to (i, j). In fact, for
general p one can show that the expression only depends on at most p edges away from edge
(i, j). Therefore, the calculation of Fp(~β,~γ) depends only on p and does not grow with the
number of qubits n. However, some research indicates that for many practical cases p might
have to scale with n in order to maintain good performance, but this will be elaborated on
throughout the next chapter.

4.2 Concentration around the mean

We will now build upon our MAXCUT example to show some upper bound on the spread
of HC measured in the state

∣∣∣~γ, ~β〉. First, consider a regular graph of degree v. For finite
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p there are only a limited amount of possible sub-graphs g(j, k) possible, such that the
following holds:

Fp(~β,~γ) =
∑
g

wgfg(~β,~γ), (4.19)

where wg is the number of occurrences of sub-graph g and fg(~β,~γ) is the contribution of
each sub-graph to the expectation value. The maximum number of qubits qmax are needed
for fg when the sub-graph forms a tree structure, and this number is that case equal to

qmax = 2
[

(v − 1)p+1 − 1
(v − 1)− 1

]
. (4.20)

For p fixed, we want to calculate〈
~γ, ~β

∣∣∣H2
C

∣∣∣~γ, ~β〉− 〈~γ, ~β∣∣∣HC

∣∣∣~γ, ~β〉2
(4.21)

=
∑

(j,k),(j′,k′)

[〈s|U†C(γ1) . . . U†M (βp)HC,(j,k)HC,(j′,k′)UM (βp) . . . UC(γ1) |s〉

− 〈s|U†C(γ1) . . . U†M (βp)HC,(j,k)UM (βp) . . . UC(γ1) |s〉
· 〈s|U†C(γ1) . . . U†M (βp)HC,(j′,k′)UM (βp) . . . UC(γ1) |s〉].

Now consider sub-graphs g(j, k) and g(j′, k′). If both sub-graphs do not share common
qubits, equation (4.21) will be zero. The sub-graphs g(j, k) and g(j′, k′) will not have any
common qubits as long as there is no path in the instance graph from (j, k) to (j′, k′) of
length 2p + 1 or shorter, hence we can replace p in Equation (4.20) with 2p + 1 and note
that there at most

2
[

(v + 1)2p+2 − 1
(v − 1)− 1

]
(4.22)

edges (j′, k′) which could contribute to the sum of (4.21). Therefore,〈
~γ, ~β

∣∣∣H2
C

∣∣∣~γ, ~β〉− 〈~γ, ~β∣∣∣HC

∣∣∣~γ, ~β〉2
≤ 2

[
(v + 1)2p+2 − 1

(v − 1)− 1

]
· |E| (4.23)

where we used that each summand is at most 1 in norm. This result implies that the sample
mean of order |E|2 values of HC(x) satisfies |Fp(~γ, ~β)−HC(x)| ≤ 1 with probability 1− 1

|E| ,
as we can estimate Fp(~γ, ~β) with a reasonable amount of samples.

4.3 Relation to the quantum adiabatic algorithm

Back in 2000, the same authors that proposed QAOA (Farhi, Goldstone, Gutmann but
this time with Sipser as well) published a work concerning another, but related, quantum
algorithm: the Quantum Adiabatic Algorithm, sometimes referred to as Quantum Annealing
(QA) [55]. The cornerstone of the algorithm is the Adiabatic Theorem:

Theorem 4.1. Suppose that the Hamiltonian of a system gradually changes from an initial
form Hi to some final form Hf . The Adiabatic Theorem states that if the system was initially
in the nth eigenstate of Hi, then at the end of the process, the system will still be in the nth
eigenstate of Hf .
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4.3. Relation to the quantum adiabatic algorithm

A proof of this theorem can be found in most introductory textbooks for quantum mechanics,
for example Griffiths’ Introduction to Quantum Mechanics [56]. In QA one uses a time-
dependent Hamiltonian H(t) that interpolates between an initial Hamiltonian Hi = H(0),
whose ground state is easy to prepare, and a final Hamiltonian Hf = H(T ) whose ground
state encodes the satisfying assignment for the problem you want to solve. T is defined
as the total time of evolution. Commonly, an initial Hamiltonian Hi that has the uniform
superposition |+〉⊗n as ground state is used, because it can be easily prepared on a quantum
computer. Generally, the time evolution can be represented as

H(t) = f(t)Hi + g(t)Hf , (4.24)

where f(t) and g(t) are smooth functions with boundary conditions f(0) = g(T ) = 1 and
f(T ) = g(0) = 0. A commonly used evolution scheme is linear evolution, using f(t) = 1− t/T
and g(t) = t/T , but any scheme that satisfies (4.24) and the boundary conditions is possible.

Let us now look at the unitary time evolution in quantum annealing to observe the
relationship with QAOA, where the roles of HM and HM are similar to the Hi and HF ,
respectively, in the quantum annealing setting. For this, we start from the time-dependent
Schrödinger equation (See Chapter 2, Equation (2.1)). We set ~ = 1 for convenience, start
at some initial time t0 and describe the time evolution of some quantum state |ψ(t)〉 with
the unitary operation U(t, t0) as

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 . (4.25)

The operator U(t, t0) is transitive, i.e. U(t2, t0) = U(t2, t1)U(t1, t0). If we now combine (2.1)
and (4.25) we obtain the following expression

i
∂

∂t
U(t, t0) |ψ(t0)〉 = H(t)U(t, t0) |ψ(t0)〉 . (4.26)

This expression must hold for any normalised |ψ(t)〉, so we can define

i
∂

∂t
U(t, t0) = H(t)U(t, t0), (4.27)

subject to the initial condition U(t0, t0) = I as |ψ(t)〉 = |ψ(t0)〉 if t = t0 (so when no time has
passed yet). To find an expression for U(t+ ∆t, t0), we Taylor expand (4.27) up to second
order in ∆t and substitute the first order temporal derivative to find

U(t+ ∆t, t0) = U(t, t0)− iH(t)U(t, t0)∆t+O(∆t2). (4.28)

By using the initial condition we obtain

U(t+ ∆t, t) = I − iH(t)∆t+O(∆t2) = exp (−iH(t)∆t) +O(∆t2), (4.29)

which holds if we only concern ourselves with terms up to ∆t. We now use the transitivity
property to derive an expression for U(t, t0) for arbitrary time steps t− t0. Define time steps
ε = (t − t0)/N , with N � t − t0 such that (4.29) is approximately precise. Plugging this
into (4.29) we obtain the following expression

U(t, t0) =
N∏
k=1

U(t0 + kε, t0 + (k − 1)ε) = lim
ε→0

N∏
k=1

exp{−iεH(t0 + (k − 1)ε)}. (4.30)
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If we are now able to write this as an exponential of a sum, we might also be able to
write it as an exponential of an integral when taking the limit ε→ 0. However, this would
require commutivity of H(ti) with H(tj) for every combination of ti, tj ∈ [t0, t]. To maintain
generality, we will therefore not make this assumption and continue by using the so-called
time-ordered exponential instead to describe the evolution [57]:

U(t, t0) = T exp
{
−i
∫ t

t0

dτH(τ)
}
, (4.31)

where

T exp
{
−i
∫ t

t0

dτH(τ)
}

= I +
∞∑
k=1

(−i)k
k!

∫ t

t0

dt1

∫ t1

t0

dt2· · ·
∫ tn−1

t0

dtnH(t1)H(t2) . . . H(tn).

(4.32)

This integral is very hard to evaluate, but we can approximate it by using the so-called
Suzuki-Trotter decomposition. Define two operators A and B with some commutation relation
[A,B] 6= 0. The first order Suzuki-Trotter decomposition is then given by

ex(A+B) = exAexB +O(x2), (4.33)

for some parameter x. Usually, one applies the decomposition in the following way(
e
x
NAe

x
NB
)N = ex(A+B)+ x2

2 [A,B]+O( x3
N2 ), (4.34)

which approximates the exponential up to an arbitrarily small error as N becomes larger and
larger. We use our previously defined discretisation of t− t0 into N small intervals of length
∆t such that we can use the Suzuki-Trotter expansion to approximate the time-ordered
exponential (4.31)

U(t, t0) = T exp
{
−i
∫ t

t0

dτH(τ)
}
≈
N−1∏
k=0

exp{−iH(k∆t)∆t}. (4.35)

We now take the H(t) from QA, as defined in Equation (4.24)

N−1∏
k=0

exp{−iH(k∆t)∆t} =
N−1∏
k=0

exp{−i(f(k∆t)Hi + g(k∆t)Hf )∆t}, (4.36)

which can be further approximated using (4.33) to obtain our final unitary operation that
describes the quantum annealing scheme

UQA(t, t0) ≈
N−1∏
k=0

exp{−i(f(k∆t)Hi} exp{−ig(k∆t)Hf )∆t}. (4.37)

Let us slightly rewrite (4.8) in order to compare this operation with QAOA, which has its
unitary evolution defined by

UQAOA(~β,~γ) =
p∏
k=1

exp{−iβkHM} exp{−iγkHC}. (4.38)
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4.3. Relation to the quantum adiabatic algorithm

Figure 4.3: Comparison evolutions as a path through state space: QAOA (bottom) versus QA
(top). Picture inspired from a figure in Ref. [58].

Inspecting equations (4.37) and (4.38), one observes that taking βk = f(k∆t), γk = g(k∆t)
and N = p one finds a way to construct the approximated quantum annealing unitary from
the QAOA unitary. Therefore, QAOA can be considered as some kind of discretised version
of QA. However, even though QAOA can be viewed as some kind of trotterised version of
QA, this does not mean that it also performs as a mere approximation. In fact, some works
use optimal control theory arguments to show how QAOA separates from QA [59, 60]. In
next chapter this will be explained in more detail.

But there is still one big elephant left in the room that we have not addressed so
far: the adiabatic theorem holds when the evolution is gradual, so how large does the
evolution time T have to be to in order to satisfy this criterion? It turns out that this
depends on the minimum energy gap ∆min between the ground state and the first excited
state during the evolution:

∆min = inf{|E1(t)− E0(t)| : t ∈ [0, T ]}, (4.39)

where E0(t) is the ground state energy of H(t) and E1(t) is the energy of the first excited state.
To guarantee that the systems remains in the ground state, the runtime of the algorithm
should typically scale as T = O(1/∆2

min) [61]. For some Hamiltonians, this energy gap can
become exponentially small. Finding the ground state of a problem of size N would in this
case require a runtime of O(

√
N), which for problems that grow exponentially in problem

size means that we can at most hope for a quadratic speedup (Grover-like) [62].
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CHAPTER 5

Literature review

In this chapter we will dive more deeply into the state-of-the-art QAOA literature. At the
moment of writing, no extensive survey on the topic exists. Throughout the time that I
worked on this thesis, I tried to keep up-to-date with all published QAOA literature, of which
the results are compiled into this chapter.

5.1 Properties, generalisations and variants

This section is structured such that it first covers the most important properties of QAOA,
which are the characteristics of the depth p, its behaviour for different problems and their
instances, its relation to quantum annealing and optimal control theory and the fact that it
is computationally universal. In the last two subsections, we provide the reader with some
generalisations and variants of QAOA.

5.1.1 The depth p

One of the most fundamental questions of QAOA is its performance for different values of p.
Whilst a lot of studies perform numerical experiments in which they vary p (to some extent)
for their problems, more rigorous analytical work showing performance guarantees have been
done as well. In the previous chapter we already mentioned how Farhi et al. [52] provided
performance guarantees for Max-3-XOR at p = 1. The original work that proposes QAOA
also contains a p = 1 performance guarantee for MAXCUT on 3-regular graphs [6]. Wang et
al. [63] extended this result, by providing an analytical expression of p = 1 performance on
MAXCUT for general graphs. They also show that, for a special case of MAXCUT, the
analogy with the 1D anti-ferromagnetic ring can be used for analysis. In the particular
instance of MAXCUT similar to the 1D anti-ferromagnetic ring, called the ring of disagrees,
they derive analytical expressions resemble the performance of QAOA for any p. Niu et
al. [64] take a different approach to study the influence of p on the performance of QAOA.
By analysing the success probability for realising state transfer in a 1D qubit chain using two
qubit XY Hamiltonians and a single-qubit Hamiltonian, they obtain analytic expressions
for the success probability as a function of p. In the derivation of these expressions, they
assume that the time evolution under the mixing Hamiltonian is short and the same for all
iterations whilst the cost Hamiltonian is described by a time evolution resembling a Grover
oracle. In the limit of small p they show that the total number of steps QAOA requires to
reach the target state has a Grover-like dependence on the circuit depth, and for p large the
success probability actually grows exponentially in p. Defining the physical runtime as the
total number of applied unitaries, their numerical results show three different scenarios of
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Figure 5.1: Average performance of QAOA on unweighted MAXCUT (100 instances) as measured
by the fractional error 1 − r, plotted on log-linear scale. Lines of different colours correspond to
fitted lines for different problem sizes N , where the model function is 1 − r ∝ e−p/p0 . The inset
shows the dependence of the fit parameter p0 on the system size N , indicating that p has to scale
with N in order to maintain a desired performance. Figure taken from Ref. [61].

success probability scaling as a function of total run time: 1) exponentially suppressed, 2)
exponentially growing and 3) steadily growing, happening in this order.

As already mentioned, most results rely on numerical work to study the behaviour
of QAOA at higher p. The result of Zhou et al. [61] also shows exponentially (stretched)
growing performance of QAOA applied on MAXCUT with increasing p, but only up to the
system size that they study. Their results indicate that p has to increase with increasing
system size N , as can be observed in Figure 5.1. Additionally, in practice the complexity of
the optimisation of the variational parameters increases with increasing p as well: in a large
numerical case study by Shaydulin and Alexeev [65] they find that the approximation ratio
at some point only marginally increases with p as the gains in QAOA are cancelled out by
the increased complexity of the variational parameter optimisation.

5.1.2 Problems and instances

What makes a problem suitable for QAOA in the first place? The performance of QAOA
seems to strongly differ for different problems. Willsch et al. [66] evaluate the performance
of QAOA by using three different measures on a set of problem instances, consisting of
weighted MAXCUT problems and 2-satisfiability problems. Their results confirm that the
overall performance of the quantum approximate optimisation algorithm strongly depends
on problem type. Streif and Leib [67] investigated the kind of problems that can be solved
exactly with level 1 QAOA. For one-dimensional target sub-spaces they identify instances
within the implicitly defined class of Hamiltonians for which Quantum Annealing (QA) and
Simulated Annealing (SA) have an exponentially small probability to find the solution. For
two-dimensional solution sub-spaces they show that the depth of the QAOA circuit grows
linearly with the Hamming distance between the two target states: this points to a new
research direction of new encodings of combinatorial optimisation problems into problem
Hamiltonians, where the desired solution is not necessarily the ground state but rather
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exceptional in its interference (many states are close in Hamming distance).

Interestingly, in a large numerical case study by Shaydulin and Alexeev [65] it is
shown that large variations can even exist within the same class of problem instances.
For MAXCUT, Moussa et al. [68] find that the Laplacian spectrum and the density of
the graph are critical aspects of the optimisation problem to determine the suitability of
QAOA to solve this problem. They also use a machine learning approach to decide, given a
certain MAXCUT configuration, whether QAOA or the classical approximation algorithm of
Goemans and Williamson (GW) will yield the best results.

5.1.3 More on Quantum annealing

In the previous chapter we have shown how QAOA can be thought of as a discretised version
of quantum annealing (QA). Some works consider the relation and (performance) differences
between QAOA and QA more in-depth. Streif et al. [59] show how interference effects
separate QAOA from Simulated and Quantum Annealing. They find problem instances
that are exactly solvable for QAOA but for which QA and SA have an exponentially small
probability to find the solution. Interestingly, they also show that for the problem instances
they consider an efficient classical algorithm exists that also is able to find the solutions.

In a bench-marking study comparing the performance differences of QA and QAOA on
problem instances consisting of weighted MAXCUT problems and 2-satisfiability problems,
Willsch et al. [66] show that the D-Wave 2000Q quantum annealer outperforms QAOA
executed on a simulator (IBM simulator and IBM Q Experience) based on their three
different measures.

5.1.4 Relation to optimal control theory

Various authors also made the link between QAOA and optimal control theory. Yang
et al. [69] view VQA as a closed-loop learning control problem and apply Pontryagin’s
minimum principle of optimal control theory to show that the optimal protocol for VQA
has a “bang-bang” (square pulse) form. They also show that operations of QAOA are of
this form, providing justification for the algorithm’s performance. However, more recent
work by Brady et al. [60] in the context of optimal control theory shows that in general, the
optimal procedure has the pulsed (or ‘bang-bang’) structure of QAOA at the beginning and
end but can have a smooth annealing structure in between (‘bang-anneal-bang’). This would
mean that a procedure that combines QAOA and quantum annealing would be the optimal
procedure according to optimal control theory.

5.1.5 Universal computation

Interestingly, QAOA also turns out to be a universal quantum algorithm. In 2018, Lloyd [70]
was the first to show that QAOA can be used to perform universal quantum computation: the
dynamics of QAOA can be programmed to perform any desired quantum computation. The
Hamiltonians required for this can be as simple as homogeneous sums of single-qubit Pauli
X’s and two-local ZZ Hamiltonians on a one-dimensional line of qubits. Morales et al. [71]
extended upon this work. Their work provides complete proof that, under some precise
conditions that are defined in the paper, one-dimensional QAOA is quantum computationally
universal.
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5.1.6 Generalisations

Perhaps as a stepping stone to his more seminal work we will discuss in the next paragraph,
Hadfield et al.’s [72] 2017 paper provided a framework for designing QAOA circuits for a
variety of combinatorial optimisation problems, with both hard (must be met) and soft
constraints (want to minimise the violation). For a large variety of problems they discuss the
design of the problem and mixing Hamiltonians, amongst which are: maximising properly
coloured edges, finding graphs’ chromatic number, the travelling salesman problem and
single machine scheduling. This year, Ruan et al. [73] further generalised this by formalising
different constraint types to linear equalities, linear inequalities, and arbitrary form in the
context of QAOA.

Arguably, the most important generalisation is also by Hadfield et al. [54] in the
form of the Quantum Alternating Operator Ansatz 1. This generalises QAOA by considering
more general parametrised families of unitaries rather than only those corresponding to
the time evolution under a fixed local Hamiltonian, for a time specified by the parameter.
This Ansatz supports the representation of a larger, and potentially more useful, set of
states than the original formulation. In the same work they also lay out design criteria for
mixing operators, detail mappings for eight problems, and provide a compendium with
brief descriptions of mappings for a diverse array of problems. This establishes this work
firmly as a reference in the field of QAOA. In the work of Wang et al. [74], they show
one of the first results using this generalisation. By using the generalised W -state and an
XY -Hamiltonian as mixer, they show that for the MAX-κ-Colourable-Sub-graph problem
this setup outperforms the original QAOA formulation that uses a penalty function in the
problem Hamiltonian to encode the constraints.

5.1.7 Variants

QAOA has also inspired researchers to come up with similar algorithms. Wei Ho and
Hsieh [75] define the variational quantum-classical simulation (VQCS), which utilises a
quantum simulator and a classical computer in a feedback loop for the purpose of preparing
a non-trivial quantum state. Marsch and Wang [76] change the QAOA state evolution
to alternating quantum walks and solution-quality-dependent phase shifts, and use the
quantum walks to integrate the problem constraints of NPO problems. They also apply
this scheme to minimum vertex cover, showing promising results using only a fixed and low
number of optimisation parameters. Bapat and Jordan [77], using bang-bang control as a
design principle for quantum optimisation algorithms, define a new version of simulated
annealing, BBSA, which uses a bang-bang procedure similar to QAOA. They show that
on their two bench-marking instances the bang-bang control algorithms (QAOA, BBSA)
exponentially outperform both classical and quantum annealing-based algorithms (QAO and
SA). An iterative version of QAOA that is problem-tailored, developed by Zhu et al. [78], is
shown to converge much faster than conventional QAOA on a class of MAXCUT problems.
Bärtschi and Eidenbenz [79] propose another variation to QAOA, called GM-QAOA, which
uses Grover-like selective phase shift mixing operators. It is designed to perform well for
constraint optimisation problems, but in theory works on any NP optimisation problem for
which it is possible to efficiently prepare an equal superposition of all feasible solutions. They
apply their formalism on MAX-k-vertex-Cover, TSP and Discrete Portfolio Rebalancing.

1This is also the generalisation we used in Chapter 4. As a bonus they were even able to maintain the
original abbreviation for the quantum approximate optimisation algorithm (QAOA) for their generalisation.
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Zhang, Zhang and Potter [80] propose a general framework for modifying QAOA, using QED
inspired mixing Hamiltonians that preserve flow constrains, to solve constrained network flow
problems. They numerically compare the performance of modified QED-QAOA and original
(X-mixer) QAOA on a (classically easy) flow maximisation problem, and show that the quality
of approximate solutions increases in a way that is consistent with exponential-in-problem
size scaling. Egger, Mareček and Woerner [81] create a new way of QAOA initial state
generation by using fractional solutions from relaxed combinatorial optimisation. Results for
recursive QAOA applied on MAXCUT problems show a systematic increase in the size of the
obtained cut for fully connected graphs with random weights, when Goemans-Williamson
randomised rounding is utilised as a warm start. Finally, we would like to highlight the work
by Li et al. [82] in which they propose modifications to both the Ansatz and variational
parameter prescription of QAOA. The authors define the Gibbs objective function and
Ansatz Architecture Search (AAS), which has the same variational parameters as QAOA
but improved performance on certain Ising-type problems. The Gibbs objective function
is an alternative to the energy expectation value for optimising the variational parameters,
and AAS is a method for searching the discrete space of quantum circuit architectures for
superior gate layouts. The reason that the Gibbs objective function has an advantage over
using the expected energy of the cost Hamiltonian, is due to the fact that the exponential
profile rewards increasing the probability of low energy, and de-emphasises the shape of the
probability distribution at higher energies.

5.2 Parameter optimisation

The optimisation of QAOA parameters is itself a NP-hard problem: the optimisation
objective is non-convex with low-quality non-degenerate (the Hessian has an eigenvalue 0)
local optima [47, 61]. Therefore, classical optimisation or any other strategy to find good
parameters are crucial in order to obtain good performance. One of the first works that
specifically focuses on parameter finding was the work by Guerreschi and Smelyanskiy [83],
in which they study how the overall performance of the variational algorithm is affected by
the precision level and the choice of the optimisation method. Their results indicate that
gradient methods (and quasi-Newton optimisers in particular) seem to be more effective than
gradient-free ones for QAOA, however this does not suffice to claim that such optimisation
procedures are the most suitable for hybrid schemes in general. In addition, we will later see
that this might considerably change when we introduce noise into the system.

Another approach was to adopt machine learning to train the QAOA algorithm by
Wecker et al. [84]. In their approach, the goal is to find a quantum algorithm that, given an
instance of Max2Sat, will produce a state with high overlap with the optimal state. Using
machine learning, a set of instances and optimised parameters was chosen to produce a large
overlap for the training set. Testing the trained quantum optimiser on other random instances
show improvement over annealing, with the improvement being most notable on the hardest
instances. More groups have taken machine-learning approaches since. Khairy et al. [85]
report that their policy network, trained through reinforcement learning, can reduce the op-
timality gap by a factor up to 8.61 compared with other off-the-shelf optimisers tested. They
later extend upon this work, including another machine-learning approach in the form of ker-
nel density estimation (RDE), and show that they can reduce this optimality gap even further
by factors up to 30.15 (compared with the other commonly used optimisers) [86]. Other works
using forms of reinforcement learning include that of Garcia-Saez et al. [87] and Yao et al. [88].
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Other groups try to enhance the procedure whilst sticking to more conventional op-
timisation methods. Shaydulin et al. [89] study the use of a multi-start optimisation
approach, using six derivative-free optimisers, within QAOA to improve the performance on
graph clustering problems. Roch et al. [90] show that the usage of a Cross-Entropy method,
which shapes the solution landscape of the variational parameters in QAOA, allows the
classical optimiser to escape local optima more easily. They also empirically demonstrate
that this approach can reach a significant better solution quality for the Knapsack Problem.
Sung et al. introduced a new optimisation method designed for superconducting qubit
processors called Model-Gradient-Descent (MGD). It is a surrogate model-based algorithm
designed to improve the reuse of collected data, by estimating the gradient using a
least-squares quadratic fit of sampled function values within a moving trusted region. In a
large-study of hyper-parameter optimisation for a broad class of optimisers, they show that
1) hyper-parameter optimisation can be very important and that 2) MGD gives good results
on their experiments with MAXCUT on 3-regular graphs, the Sherrington-Kirkpatrick model
and the Hubbard model. They also show how hyper-parameter optimisation can greatly
enhance the performance.

A lot of the work uses optimisers from the SciPy package [91], but for more noisy
simulation one might also consider optimisers provided in the scikit-quant package by
Lavrijsen et al. [92]. They study more advanced optimisation methods, specifically designed
for noisy functions, from the field of applied mathematics and show how these outperform
gradient-based optimisers in the presence of noise.

As p increases the optimisation problem generally increases in difficulty. However,
might there be a connection between different parameters that we can exploit? In a work
we already mentioned before, Zhou et al. also investigated the relation of the values of
higher depth parameters to lower depth [61]. They exploit this structure to create two
efficient parameter-optimisation heuristics to generate initial pints for the QAOA parameter
optimisation, called FOURIER and INTERP:

INTERP For a given instance, iteratively optimise QAOA starting from p = 1 and increment
p after obtaining a local minimum (~γLp , ~βLp ). To optimise for p+ 1, we take the optimised
initial parameters from level p and produce initial points (~γ0

p+1,
~β0
p+1) according to

[
~γ0
p+1
]
i

= i− 1
p

[
~γLp
]
i−1 + p− i+ 1

p

[
~γLp
]
i
,

for i = 1, 2, . . . , p + 1. [~γ]i denotes the i-th element of parameter vector ~γ, and[
~γLp
]
0 =

[
~γLp
]
p+1 = 0. The expression for ~β0

p+1 is the same but we replace γ → β.

FOURIER Instead of using 2p parameters (~γ, ~β) ∈ (0, 2π)2p we define 2q parameters (~u,~v) ∈
R2q, where γi, βi are written as functions of (~u,~v) through the following transformation:

γi =
q∑

k=1
uk sin

[(
k − 1

2

)(
i− 1

2

)
π

p

]
,

βi =
q∑

k=1
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)
π

p

]
,
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which is also known as the Discrete Sine/Cosine Transform, where uk and vk can be interpreted
as the amplitude of the k-th frequency component for ~γ and ~β, respectively. When optimising
for p+ 1, the initial parameters are generated by re-using optimised amplitudes (~u,~v) from
level p.
A comparison of three different optimisation routines, with and without these strategies,
applied to 10 MAXCUT instances of 14-vertex w3R graphs is shown in Figure 5.2.

Figure 5.2: Comparison of different optimisers applied to 10 instances of weighted 3-regular
MAXCUT problems with 14 nodes. Initial points are generated through FOURIER, INTERP or at
random (RI). r is defined as the approximation ratio. Picture taken from Ref. [61].

We already showed in Chapter 4 how the work by Brandao et al. [93] shows that, if the
parameters are fixed and the instance comes from a reasonable distribution, the objective
function value is concentrated in the sense that typical instances have (nearly) the same
value of the objective function. This indicates that it is possible to run QAOA in a way
that reduces, or even eliminates, the use of the optimisation loop and may allow us to find
good solutions with fewer calls to the quantum computer. Many works use this principle for
initial state generation: they try very hard to solve one instance, and use this as an initial
point for similar instances.

Some works also illustrate that it is possible to find values of the variational para-
meters without using classical optimisation at all. In the work by Streif and Leib [94], they
present a strategy to find good parameters for QAOA based on topological arguments of the
problem graph and tensor network techniques. In all their investigated cases, the results
using the Tensor Network methods were either comparable or better than QAOA with training.

5.3 Applications, practical aspects and experiments

The following section gives an overview of all work in which QAOA is applied to specific
problems in a certain field, and serves as a reference for the reader interested in performance
results within a specific field.
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5.3.1 Mathematics & Computer Science

Cook, Eidenbenz and Bärtschi [11] apply QAOA to the problem of MAX-k-vertex cover,
extensively varying in different problem setups to investigate QAOA’s performance. Their
work includes a performance comparison between easy-to-prepare classical states and Dicke
states, a performance comparison between two XY -Hamiltonian mixing operators, an
analysis of the distribution of solutions via Monte Carlo sampling, and the exploration of
efficient angle selection strategies. They show that the usage of Dicke states improves the
performance compared to the easy-to-prepare classical states, the complete graph mixer
improves performance relative to the ring mixer confirming the results by Wang et al. [63].
Their results also indicate that the standard deviation of the distribution of solutions
decreases exponentially in p and that angle parameters are correlated such that they behave
similarly to a discretised version of the Quantum Adiabatic Algorithm.

Multi-colouring problems, which have applications in flight scheduling, frequency al-
location in networking and register allocation, were solved using QAOA by Oh et al. [12].
Their results show that QAOA (and VQE) can find one of the best solutions for each
application they investigated, strengthening the case that QAOA can find an optimal
solution in polynomial time for combinatorial problems in various fields.

Multiple formalisms have been proposed for solving MAX-k-CUT using QAOA. Fuchs et
al. [13] provide an encoding that provides an exponential improvement for the number of
qubits needed compared to previous encodings with respect to k. They test the algorithm
and show that for k = 2, 3, 4 the algorithm is a good candidate to show quantum advantage
on NISQ devices.

Shor’s algorithm for factoring was (and still is) one of the key algorithms to propel
the quantum computing field, but its execution requires hardware still way beyond the
currently accessible NISQ devices. Anschuetz et al. [14] apply QAOA on the factoring
problem by mapping the factoring problem to the ground state of an Ising Hamiltonian
which energy is to be minimised. They show that it is in principle possible to factor using
QAOA, but note that it is still an open question whether it will work under realistic
constraints posed by imperfect optimisation methods and noise on quantum devices.

An and Lin [15] demonstrate that with an optimally tuned scheduling function,
adiabatic quantum computing is able to solve a quantum linear system problem (QLSP)
with polynomial runtime. This result also has implications for QAOA: with an optimal
control protocol it should be able to achieve the same complexity in terms of the runtime,
making it suitable to solve QLSP.

We have already seen that ML techniques can help in the variational process of
QAOA, but Verdon et al. [16] show that a QAOA-like algorithm can also in itself solve
deep learning problems. They introduce the Backwards Quantum Propagation of Phase
errors (Baqprop) principle, a central theme upon which they construct multiple universal
optimisation heuristics for training both parametrised quantum circuits and classical deep
neural networks on a quantum computer. The Quantum Dynamical Descent unitary is of
the form of QAOA, with the cost Hamiltonian being the effective phase shift induced on the
parameters and the mixer Hamiltonian made up of generators of shifts of each register.
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Matsumi et al. [17] investigate the use of QAOA employing quasi-maximum-likelihood for
the decoding of classical channel codes. For p = 1, they derive theoretical expressions for the
cost expectation for arbitrary binary linear codes. In addition, for the (7, 4)-Hamming code
they analyse the impact of the degree distribution in associated generator matrix on the
quantum decoding performance. Finally, they demonstrate the QAOA decoding performance
in a real quantum device.

A perhaps more surprising application of QAOA was proposed by Szegedy [19],
who showed that QAOA can be used for graph structure discovery—the most important
property being isomorphism—by omitting the time-consuming parameter optimisation phase
and utilising the dependence of QAOA energy on the graph structure for (randomly) chosen
parameters to learn about graphs.

Verdon et al. [95] show that it is possible to apply QAOA to continuous optimisa-
tion problems. They introduce QAOA in the context of continuous optimisation by
describing the algorithm in the model of continuous-variable quantum computing, where
registers are quantum harmonic oscillators characterised by position and momentum
operators. In addition, they also show that the algorithm allows for quadratic speed-up
(similar to Grover’s algorithm) for search problems.

5.3.2 Physics

The Sherrington-Kirkpatrick model is a mean-field model for a spin glass: a disordered
magnetic alloy that exhibits unusual magnetic behaviour. Farhi et al. apply QAOA to this
problem and propose a method for calculating, in advance, what energy the QAOA will
produce for given parameters at fixed p in the infinite size limit for this model [10]. They
find optimal parameters up to p = 8.

Wauters, Mbeng and Santoro [9] study the performance of QAOA on the fully con-
nected p-spin model. Traditionally, QA was the tool to solve this problem but it is limited
by the smallest gap encountered during the evolution, which vanishes in the thermodynamic
limit when the system crosses a phase transition. They show that QAOA is able to find
exactly the ferromagnetic ground state with polynomial resources, even when the system
encounters a first order phase transition. However, they are unable to construct minima in
the energy landscape associated with smooth parameters γ∗, β∗.

5.3.3 Biology

In 2018 Fingerhuth et al. [7] were the first to apply QAOA on a biology problem: lattice
protein folding. Lattice protein models are coarse-grained representations of proteins
that can be used to explore a vast number of possible protein conformations and to infer
structural properties of more complex atomistic protein structures. Using different types of
mixer Hamiltonians, they find that the best one obtains a maximum ground state probability
of 0.477.

Tse et al. [8] use QAOA as an approach to image segmentation. They demonstrate
their approach on small artificial and medical datasets, which comes from a coronary
angiogram of the artery. A coronary angiogram is a procedure that uses X-ray imaging to see
your heart’s blood vessels. The test is generally conducted to see if there is a restriction in
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blood flow to the heart. The data size is currently constrained only by the size of currently
available quantum hardware, so the authors note that future development depends on the
development of quantum hardware.

5.3.4 Other applications

Another notable application of QAOA is in logistics. Vikstal et al. [96] apply QAOA to the
tail assignment problem in airplane allocation (mapped onto the Exact Cover problem), and
use real world data to test their algorithm. They do not benchmark their results against
classical algorithms though. Utkarsh, Behera and Panigrahi [97] attempt to solve the Vehicle
Routing Problem (VRP). They conclude that in general, for a finite value of p, there is no
guarantee that the solution achieved by QAOA corresponds to the most optimal solution of
the original combinatorial optimisation problem.

QAOA was also applied on the discrete portfolio optimisation problem in finance,
by Hodson et al. [20]. Portfolio rebalancing is the process of realigning the weightings of a
portfolio of assets—it involves periodically buying or selling assets in a portfolio to maintain
an original or desired level of asset allocation or risk. Their results give an indication the
potential tractability of this application on Noisy Intermediate-Scale Quantum (NISQ)
hardware, identifying portfolios within 5% of the optimal adjusted returns and with the
optimal risk for a small eight-stock portfolio. They also compare the performance of the
original QAOA [6] to the Quantum Alternating Operator Ansatz [54], and find that for their
specific case the quantum alternating operator Ansatz is superior compared to the original
quantum approximate optimisation algorithm.

5.4 Practical aspects

In this section we will consider the practical aspects that deal with the actual hardware
implementation of QAOA. In general, it has been shown that the general circuit depth of the
QAOA formulation of a combinatorial optimisation problem has to be at least the chromatic
index of the corresponding graph G by Ostrowski et al. [98].

5.4.1 Compilation

One of the first works focusing on the compilation of QAOA is by Venturelli et al. [99]. In
particular, they look at the compilation of QAOA to superconducting hardware architectures
by framing compilation as a temporal planning problem. They verify this approach
numerically by testing it on a range of compilation problems of QAOA circuits of various
sizes to a realistic hardware architecture. This approach is surpassed by the later work of
Oddi and Rasconi [100]. Their GRS (greedy randomised search) procedure, which synthesises
NN-compliant quantum circuit realisations starting from a set of instances of QAOA tailored
for the MAXCUT problem, outperforms the temporal planner approach by Venturelli et
al. [99].

Another contribution to the compilation on superconducting hardware is by Ab-
rams et al. [101]. They present an implementation of XY (β, θ) in a superconducting qubit
architecture, making it possible to reduce circuit depth in (for example) MAXCUT QAOA.

Pichler et al. [102] devise an architecture to solve the maximum independent set
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(MIS) problems with QAOA using neutral atom arrays trapped in optical tweezers.
Appendix D gives a short introduction to such quantum computing hardware systems. They
show that solutions of MIS problems can be efficiently encoded in the ground state of
interacting atoms in 2D arrays by utilising the Rydberg blockade mechanism.

5.4.2 Noise resilience

Real quantum computers will be noisy—in particular the NISQ devices are expected to be
subjected to noise. Several studies tried to focus on the noise resilience of QAOA. Alam,
Ask-Saki and Ghosh [103] investigate the impact of various noise sources on the performance
of QAOA both in simulation and on a real quantum computer from IBM ( superconducting).
Their results indicate that optimal number of stages (value of the depth p) for any QAOA
instance is limited by the noise characteristics (gate error, coherence time, etc.) of the
target hardware, which contradicted the at that time current perception that higher depth
QAOA will provide monotonically better performance for a given problem compared to the
low-depth implementations.

A more general work by Xue et al. [104] studies the effects of typical quantum
noise channels on QAOA. The output state fidelity, the cost function, and its gradient
obtained from QAOA decrease exponentially with respect to the number of gates and noise
strength. They conclude that noise merely flattens the parameter space without changing its
structure, so optimised parameters will not deviate from their ideal values.

Dong et al. [105] looks at potential solutions to enhance the noise resilience: they
demonstrate that the error of QAOA simulation can be significantly reduced by robust
control optimisation techniques, specifically, by sequential convex programming (SCP). The
achievable fidelity of QAOA can significantly decrease in the presence of uncertainties in the
Hamiltonian.

Wang et al. [106] show that noise in variational quantum algorithms causes the
training landscape to have a barren plateau (vanishing gradient), for which the gradient
vanishes exponentially in the number of layers. This is illustrated in Figure 5.3, which
shows the concept of the Noise-Induced Barren Plateau (NIBP) and its effect on QAOA
performance. This means that any variational quantum algorithm with a noise-induced
barren plateau will have exponential scaling, which destroys the quantum speed-up. This has
potentially large consequences for QAOA if p has to scale with problem size. Error-reduction
is proposed as the (obvious) strategy to overcome this problem.

5.4.3 Experiments on quantum Hardware

We would like to highlight three papers that focus specifically on QAOA experiments
performed on two different types of quantum computers: superconducting qubits and trapped
ions.

Superconducting

Otterbach et al. [46] use QAOA in conjunction with a gradient-free Bayesian optimisation
to train the quantum machine to solve clustering. The QAOA optimiser was run on a
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Figure 5.3: Left: Schematic diagram of the Noise-Induced Barren Plateau phenomenon. Note how
the cost function landscape changes as the problem size increases. Right: QAOA performance in the
presence of noise. Pictures taken from Ref. [106].

quantum processor consisting of 20 superconducting transmon qubits2 with fixed capacitive
coupling. The run time for 55 Bayesian optimisation steps with 2500 measurements per step
is approximately 10 minutes. This run time includes network latency in the communication
between the quantum processor and the classical processor running the high-level hybrid
algorithm, as well as many other factors such as circuit compilation and job scheduling.
For random problem instances, the vast majority of the traces reach the optimum of the
clustering problem in fewer than 55 steps, demonstrating the potential of a hybrid quantum
algorithm for clustering on a NISQ.

Google AI and collaborators. [107] use Google’s Sycamore superconducting qubit
quantum processor to run QAOA algorithms in solving Hardware grid problems with graphs
matching the hardware connectivity, MAXCUT on 3-regular graphs and the fully connected
Sherrington-Kirkpatrick model (see Figure 5.4). For problems defined on the hardware graph
topology they obtain an approximation ratio that is independent of problem size and observe,
for the first time, that performance increases with circuit depth. For problems requiring
compilation (the MAXCUT and Sherrington-Kirkpatrick model), performance decreases
with problem size but still provides an advantage over random guessing for circuits involving
several thousand gates. This emphasises the importance of compilation of problems into real
quantum hardware.

Trapped Ion

The first report of an experimental implementation of QAOA on a trapped ion quantum
simulator was by Pagano et al. [108]. Their goal is to estimate the ground state energy of the
transverse field Ising model with tunable long-range interactions. Their algorithm uses up to
40 trapped-ion qubits, which was at that point the largest ever realised on a quantum device.
Single-shot high-efficiency qubit measurements in different bases give them access to the
full distribution of bit-strings that is difficult (or potentially impossible) to model classically.

2Due to a fabrication defect, one of the qubits not tunable. Consequently, the device is treated as a
19-qubit processor (hence the name Rigetti 19Q) instead.
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Figure 5.4: Left: hardware topology of Google’s Sycamore. Middle: QAOA performance as a
function of problem size, n. Each data point is the average over ten random instances (standard
deviation given by error bars). Right: QAOA performance as a function of p on the hardware grid
problems. In ideal simulation, increasing p increases the quality of solutions. However, for larger p
the hardware errors dominate the potential gain. Pictures taken from Ref. [107].

With the addition of individual control over the interactions between qubits, their approach
can be employed in this experimental platform to give insight into quantum chemistry and
hard optimisation problems, such as MAX-SAT or exact cover, or be used for the production
of highly entangled states of metrological interest.

5.5 Quantum supremacy?

But perhaps the most interesting question is whether QAOA can be used to obtain
quantum supremacy. The first attempt to answer this came from Farhi [109], one
of the original contributors to the original paper. He and co-author Harrow show
that, based on plausible conjectures from complexity theory, there are choices of γ, β
and the cost function such that even at the lowest depth (p = 1) QAOA can not
be efficiently simulated using a classical computer. Their argument is based on the
fact that if this would be possible, then this would also imply that P = NP. From this
they conclude that QAOA is a great candidate for early demonstration of quantum supremacy.

In 2018, Crooks et al. [110] published the results of QAOA optimised on batches of
problem instances. They report that their results exceed the performance of the classical
polynomial time Goemans-Williamson [111] algorithm (the best known classical algorithm
for MAXCUT) with modest circuit depth in solving MAXCUT problems, as displayed
in Figure 5.5. The performance with fixed circuit depth is insensitive to problem size.
However, they also state in their conclusions that their observations are suggestive only—it
is prohibitively expensive to classically simulate the quantum MAXCUT algorithm on
anything but small graphs. Definitive proof will have to await the anticipated arrival of a
quantum computer with sufficient gate fidelity able to execute the algorithm on a larger
scale. A month after this publication, Guerreschi and Matsuura [112] tried to quantify the
order of number of qubits we would need to reach this point (Figure 5.6). Their numerical
results show that classical solvers are very competitive until several hundreds of variables are
considered for MAXCUT. Therefore, quantum speed-up would require hundreds of qubits
which is still out of reach for the current state-of-the-art quantum hardware (53 qubits,
IBM [113]).
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Figure 5.5: Left: Average approximation ratio of QAOA on MAXCUT with 10 nodes. The total
data-set consisted of Erdős–Rényi 100 graphs with edge probability 0.5. Right: Approximation
ratios of QAOA on MAXCUT as a function of the problem size N , also showing the performance of
the Goemans-Williamson algorithm on the same test sets. QAOA exceeds the performance of the
Goemans-Williamson algorithm by p = 8 (P represents the QAOA depth p in these figures). Picture
taken from Ref. [110].

Imposing fine-grained versions of the non-collapse assumption, Dalzell et al. show
that Quantum Approximate Optimisation Algorithm (QAOA) circuits with 420 qubits
are large enough for the task of producing samples from their output distributions up to
constant multiplicative error to be intractable on current technology [114].

Figure 5.6: Computational cost of solving 3-regular MAXCUT with QAOA. The blue lines
correspond to the (classical) AKMAXSAT solver, and the red and green marks to QAOA for p = 4
and p = 8, respectively. The areas indicate a 95% confidence interval for linear regression performed
on the actual data for the QAOA algorithm. Picture taken from Ref. [112].
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Figure 5.7: f = EQAOA
q −min(HSAT) plotted against clause density for the 3-SAT problem. Note

how f increases as the clause density increases, which means that the expectation value of the
QAOA state is further away from the optimal solution.

However, there is also work that nuances our expectations for QAOA. Results by Hastings [115]
suggest that local classical algorithms are likely to be at least as promising as the QAOA
for (some problems of) approximate optimisation. By investigating instances of triangle-free
MAXCUT and Max3Lin2 with different degrees, he finds that QAOA cannot achieve the
same scaling as can be done by their defined class of global classical algorithms. In addition,
Akshay et al. [116] report that QAOA exhibits a strong dependence on a problem instances
constraint to variable ratio (Figure 5.7): this problem density places a limiting restriction on
the algorithm’s capacity to minimise a corresponding objective function (and hence solve
optimisation problem instances), indicating that some classes of optimisation problems might
be more suitable to QAOA than others.

5.6 Summary

QAOA has been generalised into the Quantum Alternating Operator Ansatz. The work by
Hadfield et al. [54] provides guidelines to transform an optimisation problem into a QAOA
formulation. It is preferred to have the initial state and mixer encoding the feasible subspace,
as the use of penalty functions generally leads to inferior performance. There are also many
variants to QAOA that might be more suitable for some problems.

Increasing the circuit depth p in theory always increases the performance of QAOA, but in
practice this is limited (in a sense that it might lead to marginal gains or even a decrease in
performance) by the increased complexity of the variational optimisation and additionally
introduced noise in the quantum circuit.

There is no such thing as a ‘free lunch’ when it comes to classical optimisers: dif-
ferent optimisers perform differently on different problems, and hyper-parameters
optimisation might turn one of the worst-performing optimisers in one of the best. However,
we can generally say that in noise-free simulations, gradient-based optimisers might lead to
the fastest convergence but in the presence of noise gradient-free black-box based optimisers
might be more suitable. This is due to the fact that noise causes the training landscape to
have a barren plateau, for which the gradient vanishes exponentially in the number of layers
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of gate operations.

However, the good news is that good parameters values for instances belonging to
the same class of problems are concentrated in parameter space—this greatly helps in the
classical optimisation step. In fact, there are works that even argue that QAOA might be ad-
opted without the classical optimisation step as long as you have access to good initial points.
Additionally, methods like FOURIER and INTERP exploit relationships between different
~β,~γ for different values of p such that good initial points can be obtained. This is particu-
larly useful for problems that require high values of p in order to obtain sufficient performance.

The performance of QAOA very much depends on the type of problem. Amongst
the factors that need to be incorporated in determining the potential of QAOA on a problem
are the constraint to variable ratio, the complexity of the cost and mixing Hamiltonians and
chromatic number in case of a graph problem. In particular whether the constraints can be
encoded into an efficient mixer is an important measure, as penalty function approaches
have generally shown to have inferior performance.

There have been experimental studies on superconducting and trapped ion hard-
ware. However, the performance generally degrades as the problem geometry (graph
problems) is different from the actual hardware structure. Improved compilation, error
reduction and error mitigation is needed to obtain better performances on these problems.

5.7 Open problems

Only for very specific problems and usually at low depth p, researchers have so far been
able to obtain performance guarantees for QAOA, therefore most work relies on numerical
bench-marking. It remains to be shown whether bounds can be obtained for more problems,
in particular for p > 1.

The biggest problem with numerical bench-marking is the fact that it only allows
for the study of small instances. Since even for these small instance sizes some results
indicate that p already has to grow with the problem size, the optimisation landscapes
increase in difficulty (but the way in which this happens is also not yet clear) and noise leads
to vanishing gradients in these landscapes we are not sure how scalable QAOA truly is, or
whether relevant quantum supremacy can be achieved on NISQ devices in the first place.
And if this is possible, for which problems does this hold and for which not?

On a more specific level, more research is also needed into the variational paramet-
ers: for some problems it has been shown that the values of optimal parameters can be
derived analytically, but is this also the case for any type of problem? And if not so, what
are the best alternatives to derive these values?

Experimental considerations greatly restrict the potential of the algorithm. Effects
of noise and compilation, as well as other problems that arise from hardware implement-
ation, have so far been understudied. However, progress here is mainly tightened to the
hardware developments, as actual experiments are the best way to test the actual performance.

QAOA essentially seems to be able to provide some sort of polynomial time ap-
proximation scheme for every optimisation problem: in theory we can get arbitrarily close to
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the optimal solution as we increase p (and therefore the runtime), if we have access to good
variational parameters β, γ. This means that QAOA has the potential of better quality of
solutions, a better runtime or both. However, how large p has to be in order to obtain some
approximation ratio that cannot be obtained through a classical algorithm for a certain
problem, and whether this is still polynomial in p has yet to be proven.
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CHAPTER 6

Hamiltonian formulations for correlation
clustering

In this chapter several Hamiltonian formulations for correlation clustering will be introduced.
Some are naturally more suitable for different types as hardware, and they generally have
different energy landscapes in their QAOA implementation. We consider three main
encodings: an edge-based, one-hot and multi-level encoding. After the encodings and their
Hamiltonian formulations are introduced, we will discuss their circuit implementations,
circuit complexities and look at an example. Finally, we will perform numerical experiments
to get an indication of how the different formulations compare to one another in terms of
performance.

Our objective functions are always formulated in the MIN-(AGREE-DISAGREE)-
objective.1 In the section on the numerical results we will show how we can convert this to
the MAX-AGREE-objective.

Figure 6.1: Schematic illustration indicating the way the variables encode the correlation clustering
problem. The edge-based and one-hot formulations use binary variables, the multi-level formulation
an integer variable. Throughout the text the different formulations will be explained.

6.1 Overview of Hamiltonian formulations

This section gives three different possible formulations for correlation clustering in the
QAOA setting. Every formulation is defined by its variable domain, cost Hamiltonian,
mixing Hamiltonian and initial state. In general, we consider correlation clustering problems
described by a graph G = (V,E) with edge weights w(u,v) ∈ {−1, 1} and N = |V |. We also

1This is more natural when using Pauli Z operators since this operator has eigenvalues ‘+1’ and ‘-1’.
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define a cluster mapping C(u) : V → Kκ that indicates the cluster label of node u, where
the set Kκ = {0, 1, . . . , κ− 1} defines the labels of all possible clusters. For each formulation,
an overview is given at the end of the section. Throughout the rest of the work, we will
frequently refer to these formulations. Possible quantum circuit implementations as well as
their gate complexities are discussed in the next section.

6.1.1 Edge-based

For this formulation we put an additional constraint on the graph-type: we consider only
complete graphs G = (V,E) with edges E = {(u, v) : u < v, v = 1, · · · , N}. We define
edge-encoded bit strings x ∈ {0, 1}|E| that represent a clustering by using entries x(u,v), such
that

x(u,v) =
{

0 if C(u) = C(v),
1 otherwise

(6.1)

In the MIN-(DISAGREE-AGREE) formulation of correlation clustering, the objective function
can be defined using x(u,v) as

min
x

∑
(u,v)∈E

w(u,v)(2x(u,v) − 1). (6.2)

In general, we can represent a Boolean variable in terms of a Pauli Z−operator as (I − Z)/2
[117]. The eigenvalues of Z are 1,-1 with eigenvectors |0〉 and |1〉, respectively. Therefore,
measuring (I − Z)/2 results in either eigenstate |0〉 with eigenvalue 0 or |1〉 with eigenvalue
1, as desired. We represent our objective function in the following diagonal Hamiltonian:

Hproblem = −
∑

(u,v)∈E

w(u,v)Z(u,v) (6.3)

In this sum, we use the convention that local operators are described only by their
local operation, leaving out all identity operations that operate on the remaining Hilbert
space. This convention will be used throughout the entire chapter, unless stated otherwise.
Not every element in the space of x corresponds to a valid clustering: if for three nodes
u, v, w we have that C(u) = C(v) and C(u) = C(w), then we must have that C(v) = C(w).
This property is called transitivity. In terms of Boolean logic operators we can write this
down as

x(u,v) = 0 ∧ x(u,w) = 0⇒ x(v,w) = 0
or, equivalently

x(u,v) = 1 ∨ x(u,w) = 1 ∨ x(v,w) = 0,
(6.4)

which must hold for all combinations of u, v, w that are part of the set of edges. For general
graphs the constraints become more complicated: cycles of every length should be considered
in this case, which makes the constraints considerably more difficult.

We can take two approaches to impose the transitivity constraints within our Hamiltonian
formulation:

1. Create a penalty function that adds a penalty value for every constrained that is
violated.
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2. Construct an initial state and driver Hamiltonian that respects this constraint.

Let us first discuss option 1 and consider 2 in the next section. In the penalty function
approach, the problem Hamiltonian is now a linear combination of two Hamiltonians:

HC = Hproblem + λHconstraints, (6.5)

where λ is a penalty for violating the constraints. To construct Hconstraints we use (6.4) and
note that the expression

1
8(1 + Z(u,v))(1 + Z(u,w))(1− Z(v,w)) (6.6)

gives 1 for the quantum state
∣∣0(u,v)

〉 ∣∣0(u,w)
〉 ∣∣1(v,w)

〉
and zero for the seven other possible

states. By summing over the three possible permutations we obtain the expression for a
single triangle. Now we expand the expression and sum over all edges to obtain the final
Hamiltonian expression for the constraints

Hconstraints =
∑

u<v<w

1
8 [3 + Z(u,v) + Z(u,w) + Z(v,w) − Z(u,v)Z(u,w) − · · ·

· · ·Z(u,v)Z(v,w) − Z(u,w)Z(v,w) − 3Z(u,v)Z(u,w)Z(v,w)].
(6.7)

Since we have no restrictions on the domain, we can use the conventional Pauli X-mixer of
which the time evolution allows transitions from and to all possible 1-qubit states. The total
mixing Hamiltonian is the sum of Pauli X-operations on every variable:

HM =
∑

(u,v)∈E

X(u,v). (6.8)

Our initial state is the uniform superposition over all possible edge variable combinations,
e.g.

|s〉 = |+〉⊗|E| = 1√
2|E|

∑
x∈{0,1}|E|

|x〉 (6.9)

We have now arrived at the point which we can formally define all parts of our first formulation:
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Formulation 6.1. Edge-based (EB)
Domain: Bit strings x ∈ {0, 1}|E| with entries x(u,v), such that

x(u,v) =
{

0 if C(u) = C(v),
1 otherwise.

Cost Hamiltonian:

HC = Hproblem + λHconstraints,

where Hproblem and Hconstraints are given by equations (6.3) and (6.7), respectively.

The mixing Hamiltonian:

HM =
∑

(u,v)∈E

X(u,v)

The initial state:

|s〉 = |+〉⊗|E|

Constraints through initial state and mixer?

In general, it has been shown that finding a driver Hamiltonian for an arbitrary set of
constraints is NP-hard [118]. Let us now show that, even if we find such a driver Hamiltonian
for the transitivity constraints, it will be computationally expensive to execute this mixing
on general graphs due to the fact that it cannot be decomposed into local operations.

As already established in Chapter 4 a mixing unitary UM (β) is required to have
the following properties [54]:

1. Preserve the feasible subspace F .

2. Provide transitions between all pairs of states x, y corresponding to feasible points:

for all x, y ∈ F there exists β∗, r such that
| 〈x|UrM (β∗) |y〉 | > 0

We make the following claim considering the design of a mixer in the edge-based encoding:

Theorem 6.1. For complete graphs G = (V,E) no k-local, where k < |E|, mixing unitary
exists that satisfies the above design criteria in the edge-based Hamiltonian formulation.

Proof. We consider some complete graph G = (V,E) with N = |V | nodes and |E| edges. We
define string x of |E| variables x(u,v) ∈ {0, 1} according to describing the edge-based state
according to (6.1). Let us first consider the transition from a state x to another state x′ in
which we want to change at one variable x(u,v) → x′(u,v). To check whether the transition
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x→ x′ is allowed, we need to verify whether we stay in the feasible subspace, i.e. satisfies
the transitivity constraints given by

x′(u,v) + x(u,w) + x(v,w) 6= 2 for all w ∈ V \ {u, v}. (6.10)

The largest Hamming weight change of the set of smallest required transitions would be the
transition to (or from) state y = (1, 1, ..., 1), defined as the state in which all nodes are in
the same cluster, from (or to) a state z which has all nodes but one, let us say node i, in
the same cluster. The transition of y → z requires a change in Hamming weight of at least
N − 1, since all variables y(i,v), v ∈ V \ {i} have to change from 1 to 0 as node i is no longer
in the same cluster as all other nodes v 6= i. Since any k-local operation can only change
the Hamming weight by k, we require the operation to be at least (N − 1)-local. However,
before flipping any of the edges (i, v) by the same argument as before we need to make sure
that this operation satisfies the transitivity constraints (6.10) for all of these edges:

y(i,v) + y(i,w) + y(v,w) 6= 2 for all w ∈ V \ {i, v} for all v ∈ V \ {i}.

Hence, our mixer needs to operate on a total of N(N − 1)/2 = |E| variables. Therefore, the
mixing operation has to be global and cannot be decomposed into local mixing operations. �

Figure 6.2: Graphical depiction of the proof for a complete graph with five nodes. When we
want to transition from the singleton-cluster state to the state where all nodes but one are in the
same cluster—where cluster labels are indicated by the colours of the nodes—we see that we need
to change at least all variables from the edges connected to this node. However, we still need to
satisfy the transitivity constraints for all triangles these edges are part of, and this accounts for all
remaining edges.

6.1.2 One-hot

We define bit strings y ∈ {0, 1}κN consisting of binary variables yu,i where u ∈ V and i ∈ Kκ

is a cluster label, such that

yu,i =
{

1 if C(u) = i,

0 otherwise.
(6.11)

In this formulation, contrary to what we had in the edge-based formulation, the total amounts
of clusters κ can be varied. One-hot formulations have been applied to the graph colouring
problem in the work of Wang et al. [74], which will be used for this work as a reference to be
able to define a similar formulation for the correlation clustering problem. Our objective and
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constraint are defined as

min
y

∑
(u,v)∈E

∑
i∈Kκ

−w(u,v)yu,iyv,i +
∑

(u,v)∈E

∑
i6=j∈Kκ

w(u,v)yu,iyv,j

s.t.
∑
i∈Kκ

yu,i = 1 for all u ∈ V.
(6.12)

Encoding this to a Hamiltonian requires some constants to be taken into account in order to
have the same objective value for equivalent solutions as we had for the edge-based encoding.
We write the cost Hamiltonian as

HC =
∑

(u,v)∈E

(
a(u, v) + b(u, v)

∑
i∈Kκ

Zu,iZv,i

)
, (6.13)

where a(u, v) and b(u, v) are constants. We note that this Hamiltonian only consists of
two-body terms, in contrast with the edge-based encoding that only used one-body operations.
Even though the constants are not practically relevant in the quantum circuit implementation—
they only add a global phase—let us derive their values for the sake of completeness. When
two nodes are in the same cluster the corresponding bit strings will be the same on all κ
positions, while if they are in different clusters the strings will differ on exactly two positions
and match on κ− 2 places. This gives us a set of two equations in a(u, v) and b(u, v)

a(u, v) + κb(u, v) = w(u,v) (same cluster)
a(u, v) + (κ− 2)b(u, v)− 2b(u, v) = −w(u,v) (different cluster).

(6.14)

Solving this set of equations (6.14) gives a(u, v) = (2 − κ)w(u,v)/2 and b(u, v) = w(u,v)/2,
such that our cost Hamiltonian becomes

HC = 1
2
∑

(u,v)∈E

(
(2− κ)w(u,v) + w(u,v)

∑
i∈Kκ

Zu,iZv,i

)
. (6.15)

For the edge-based encoding, we have proven that there is no ‘natural’ way of incorporating
the constraints through the initial state and mixer. This is not the case for the one-hot
encoding, as has already been shown by Wang et al. [74]. Following their approach, we define
our the mixing Hamiltonian on a single node u as

hM =
∑

(i,j)∈R

Xu,iXu,j + Yu,iYu,j , (6.16)

where the pairs (i, j) in the set R determines the connectivity of the mixer. For example,
if R = {(i, j)|i < j, j = 1, 2, · · · , κ}, we have that we have a complete mixing Hamiltonian
and when R = {(i, j)|i = j + 1 if j = 1, 2, · · · , κ− 1 and i = 0 if j = κ} (periodic boundary
conditions), we refer to it as the ring mixing Hamiltonian. We can choose any set R in
principle, but in our case we will always use the complete mixing Hamiltonian in the one-hot
encoding unless stated otherwise. Our full mixing Hamiltonian is obtained by summing over
all nodes u, such that

HM =
∑
u∈V

hM . (6.17)

For the initial state we want to use a state that is a (superposition of) feasible

62



6.1. Overview of Hamiltonian formulations

state(s). Using the generalised W-state, which is a superposition of states with Hamming
weight 1, for every node in fact provides us with an equal superposition of all feasible states.
For a single node, this state is given by

|Wκ〉 = 1√
κ

(|100 . . . 0〉︸ ︷︷ ︸
κ

+ |010 . . . 0〉︸ ︷︷ ︸
κ

+ |000 . . . 1〉︸ ︷︷ ︸
κ

), (6.18)

such that our entire initial state becomes

|s〉 = |Wκ〉⊗N . (6.19)

The full description of the one-hot encoding is summarised in the following box:

Formulation 6.2. One-hot (OH)
Parameters: R: the set of all possible transitions from cluster i to cluster j, κ: the
maximum amount of clusters.

Domain: Bit strings y ∈ {0, 1}κN with entries y(u,v), such that

yu,i =
{

1 if C(u) = i,

0 otherwise.

Cost Hamiltonian:

HC = 1
2
∑

(u,v)∈E

(
(2− κ)w(u,v) + w(u,v)

∑
i∈Kκ

Zu,iZv,i

)

The mixing Hamiltonian:

HM =
∑
u∈V

∑
(i,j)∈R

Xu,iXu,j + Yu,iYu,j

The initial state:

|s〉 = |Wκ〉⊗N

Reducing the amounts of qubits

Currently, we have that every node can be put in every possible cluster. However, this
creates redundancy in the total solution space: we have a lot of different strings that resemble
identical correlation clustering solutions. For example, putting all nodes in a single cluster
with label i is the same as putting all notes in a different cluster with label j 6= i. Since the
one-hot encoding is very expensive in the amount of qubits it needs (κN), we propose the
following reduction: we give node i access to i clusters. The amount of qubits that we then
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6. Hamiltonian formulations for correlation clustering

need, given κ, is then given by2

∑
i≤κ

i+ (N − κ)κ = 1
2κ(κ+ 1) + (N − κ)κ = 1

2κ(2N − κ+ 1). (6.20)

This requires some changes to be made in the indexing in the formulation, of which the
results are summarised in the following box:

Formulation 6.3. One-hot reduced (OHr)
Parameters: R: the set of all possible transitions from cluster i to cluster j, κ: the
maximum amount of clusters.

Domain: Bit strings y ∈ {0, 1} 1
2κ(2N−κ+1) with entries y(u,v), such that

yu,i =
{

1 if C(u) = i,

0 otherwise.

Cost Hamiltonian:

HC = 1
2
∑

(u,v)∈E

(2− κ)w(u,v) + w(u,v)
∑

i∈Kmin(κ,v)

Zu,iZv,i

 ,

The mixing Hamiltonian:

HM =
∑
u∈V

∑
i,j∈R

Xu,iXu,j + Yu,iYu,j ,

The initial state:

|s〉 =
⊗
u∈V

∣∣Wmin(κ,u)
〉

6.1.3 Multi-level

We now consider a multi-level system consisting of κ levels. We define string z ∈ KN
κ

consisting of variables zu ∈ Kκ such that zu = C(u). Our objective function is

min
z

∑
(u,v)∈E

{
−w(u,v) if zu = zv

w(u,v) otherwise
(6.21)

Having access to a multi-level system, we can now encode individual qudit states with
the cluster label |0〉 for cluster 0, |1〉 for cluster 1, . . . and |κ− 1〉 for cluster κ − 1. This
formulation does not come with constraints, and therefore does not have to be formulated

2We can actually use even one qubit less, since the first one is fixed in the one state.
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using a penalty function.

We define a two-body interaction Vκ according to

Vκ =
∑

i 6=j∈Kκ

|iu〉 |jv〉 〈iu| 〈jv| −
∑
i∈Kκ

|iu〉 |iv〉 〈iu| 〈iv| , (6.22)

which is defined by the following κ2 × κ2 (unitary-)matrix:

Vκ =



−1 0 . . . . . . . . . . . . . . . 0

0 1 . . . . . . . . . . . . . . .
...

... . . . . . . . . . . . . . . . . . .
...

...
... . . . −1 . . . . . . . . .

...
...

...
... . . . 1 . . . . . .

...
...

...
...

... . . . . . . . . . ...
...

...
...

...
... . . . . . . 0

0 . . . . . . . . . . . . . . . 0 1


. (6.23)

Hence, for two nodes we have that when they are in the same (different) cluster(s), we
measure an eigenvalue of -1 (+1). Our full cost Hamiltonian can be obtained by summing
over all nodes including the weight between those nodes,

HC =
∑
(u,v)

w(u,v)Vκ (6.24)

For both cases we need a suitable mixing Hamiltonian that can handle qudits. An example
of this is given in the work by Hadfield et al [54], where the following single-qudit mixing
Hamiltonian is proposed:

hM (r) =
r∑
i=1

(
(Σx)i + (Σx†)i

)
, (6.25)

where Σx is the generalised Pauli X-operator given by

Σx =


0 0 0 . . . 1
1 0 0 . . . 0
0 1 0 . . . 0
...

... . . . . . . ...
0 0 . . . 1 0

 . (6.26)

One observes that for r = 1, the single-qudit mixer is therefore given by

hM (r = 1) =



0 1 0 . . . 0 1
1 0 1 . . . 0 0

0 1 0 . . . 0 0
... 0 . . . . . . 0

...

0
... . . . . . . 0 1

1 0 . . . 0 1 0


, (6.27)
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such that every level is connected to its nearest neighbour, including periodic boundary
conditions. Increasing r increases the connectivity by adding more off-diagonal terms. The
full mixing Hamiltonian can be written as

HM =
∑
u∈V

hM . (6.28)

We can pick any value of r ∈ {1, . . . , κ − 1}, where the special cases at the boundary are
called the single-qudit ring mixer for r = 1 and the fully-connected mixer for r = κ − 1,
similar to what we had in our on-hot encoding.

We take the superposition of all qudit computational basic states as our initial
state, i.e.

|s〉 = |+κ〉⊗N = 1√
κN

∑
z∈KN

κ

|z〉 (6.29)

The following box summarises the multi-level encoding:

Formulation 6.4. Multi-level (ML)
Parameters: κ: the maximum amount of clusters. r: parameter describing the connectivity
of the mixer.

Domain: Bit strings z ∈ {0, . . . , κ− 1}N with entries zu, such that

min
z

∑
(u,v)∈E

{
−wu,v if zu = zv

w(u,v) otherwise

Cost Hamiltonian:

HC =
∑
(u,v)

w(u,v)Vκ,

where Vκ is given by (6.22).

The mixing Hamiltonian:

HM =
∑
u∈V

r∑
i=1

(
(Σx)i + (Σx†)i

)
,

The initial state:

|s〉 = |+κ〉⊗N

Reducing the state space?

In principle, we can apply the same trick we used for the one-hot encoding to reduce the total
state space—this would mean that different qudits have access to different levels. However,
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the question is whether this is possible in practice. For the one-hot formulation the physical
system does not have to change (since we only use two-level physical systems), but in this case
we need systems with different quantum levels, which seems less reasonable from a Hardware
perspective. Therefore, we do not make this reduction in the multi-level formulation.

6.2 Circuit compilations, complexities and an example

In this section we will analyse the circuits and their complexities for three different
formulations Λ: EB, OH and ML. In any complexity analysis throughout this section
we will always consider some complete graph G = (V,E), with arbitrary edge weights
w(u,v), (u, v) ∈ E and N = |V |. Only complete graphs are considered because results for
their circuit complexity upper bound the results for any other graph with the same amount
of nodes. OHr is not considered as it is upper-bounded by OH.

Additionally, we will also consider the implementation for a trivial example to visu-
alise the compilation of the QAOA algorithm onto an actual quantum circuit when
p = 1.

Example 6.1. We consider a correlation clustering problem instance on graph G = (V,E)
with V = {0, 1, 2}, E = {(0, 1), (0, 2), (1, 2)} and edge weights {w(0,1) = −1, w(0,2) =
1, w(1,2) = −1}, as depicted in Figure 6.3. The total solution space consists of 33 = 27
solutions and the set of optimal solutions is

{(0, 1, 0), (0, 2, 0), (1, 0, 1), (1, 2, 1), (2, 0, 2), (2, 1, 2)},

with an optimal number of agreements corresponding to 3. Random guessing finds an optimal
solution with probability P = 0.222 and has an expected approximation ratio (which is the
ratio of the expected objective function value and the optimal objective function value) of
r = 13

27 ≈ 0.481.

Figure 6.3: Correlation clustering example that we will use throughout this section. We have three
nodes and three edges and the optimal solution can be obtained by putting node 1 in a different
cluster than node 0 and 2, which are placed in a single cluster.

After all gate complexities and the quantum circuits for example 6.1 have been established,
we will show the optimisation landscapes for all considered formulations in this example
and give the best expected approximation ratio of all formulations when p = 1. From a
practical point of view, the actual circuit depth might be more relevant that the total gate
complexity—that is why we end this section with numerical results on the depths for all
considered formalisms at different values of p.
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6.2.1 Edge-based

Consider the edge-based formulation as described in EB. We start with |E| qubits initialised
in the zero state. To create the uniform superposition we apply a Hadamard gate H
to every qubit. The unitary corresponding to the cost Hamiltonian itself is very easy to
implement, requiring |E| Pauli-Z rotation gates. However, the added penalty term complicates
matters: we have a sum of one-body, two-body and three-body terms. Fortunately, all terms
commute since our cost Hamiltonian is diagonal by construction, and can therefore be easily
implemented. Figure 6.4 and 6.5 show how the two-body and three-body Pauli Z-terms can
be implemented using only CNOT and RZ(2θ) operations.

|qi〉 • •
|qj〉 RZ(2θ)

Figure 6.4: Quantum circuit performing the operation U = exp{−iθZiZj}

|qi〉 • •
|qj〉 • •

|qk〉 RZ(2θ)

Figure 6.5: Quantum circuit performing the operation U = exp{−iθZiZjZk}. [119]

This means that for every constraint we need 7 RZ-gates and 10 CNOT-gates. A complete
graph has

(
N
3
)

= N(N − 1)(N − 2)/6 triangles, thus the amount of constraints also scales as
O(N3). The X-mixer can be implemented by |E| RX -gates. Putting everything together,
the EB formulation requires a |E| qudit-system and O(N3) gate operations.

In order to solve example 6.1 we choose our penalty parameter λ = 3, such that
the best possible solution in the non-feasible subspace has a larger objective function
value than the best possible solution in the feasible subspace. However, there is still
overlap between the feasible subspace and the non-feasible subspace, which hopefully helps
in smoothing out the optimisation landscape. The circuit implementation is shown in
Figure 6.6:

Figure 6.6: Quantum circuit to solve example 6.1 in the edge-based formulation.
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6.2.2 One-hot

In the OH formulation, we have to set κ = N as N upper bounds to maximum amount
of clusters that could be needed. We start with a total of N2-qubits in the all-zero state
again. In the first step, we want to establish the in a superposition of all feasible states: the
previously defined generalised W -state (6.19). Let us first define a new gate operation, called
the odds gate which is defined as

M(p : q) =
√

1
p+ q

[ √
p
√
q

−√q √
p

]
. (6.30)

We can then implement the generalised W−state for a single node u with just (controlled)
odds gates and (controlled) X-gates. An example for κ = 5 is given in Figure 6.7:

|qu,1〉 M(1 : 4) • • X

|qu,2〉 M(1 : 3) • •

|qu,3〉 M(1 : 2) • •

|qu,4〉 M(1 : 1) •

|qu,5〉

Figure 6.7: Quantum circuit implementing the generalised W -state for one node with 5 possible
clusters.

Since odds gates are not ‘native’ gates, they must in practice be approximated in terms
of elementary gates: this adds a factor log(1/ε) to the complexity, where ε is the desired
precision of the gate. In total, we require N odds gates, N(N − 2) controlled odds, N(N − 1)
CNOT’s and N Pauli X operations to set up our initial state.

Our cost unitary consists solely of two-body ZZ-terms (the other terms only add a
global phase), that can be implemented using the circuit in Figure 6.4. Since they are
applied on every edge for every cluster number, we have a total of N2(N−1)/2 of these terms.

Finally, we have the XY -mixing operation to maintain our feasible subspace. Every
XY -mixer on single node u that allows for transitions between cluster i and cluster j can
be implemented using the circuit in Figure 6.8, requiring two CNOT’s and one controlled
RX(2θ)-operation.

|qu,i〉 • RX(2θ) •

|qu,j〉 •

Figure 6.8: Quantum circuit for the XY -mixer on a single node u that allows for transitions
between cluster i and cluster j.

The connectivity of the mixing operations to its neighbours sets the total amount of
gates that are needed. Considering a fully connected mixer, which has shown to have
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Figure 6.9: Quantum circuit in the OH formulation that encodes our correlation clustering
example 6.1.

the best performance by Wang et al. [74], we need a total of N2(N − 1)/2 mixing
operations. As a result, we end up with a N2 qudit-system and O(N3) gate operations. To
implement the circuit that solves example 6.1, we need 9 qubits as is shown in Figure 6.9.

6.2.3 Multi-level

We define an N qudit quantum system of dimension κ = N , such that the computational
basis can be written as |0〉 , |1〉 , . . . ,

∣∣NN − 1
〉
. All qudits are initialised in the all-zero state.

We first consider a generalised Hadamard transform HN , which implements the following
transform

HN |j〉 = |0〉+ e2πi0.j |1〉+ · · ·+ e2(N−1)πi0.j |N − 1〉 , (6.31)

that can be represented by the following matrix:

HN =


1 1 . . . 1
1 e2πi0.1 . . . e2πi0.(N−1)

...
... . . . ...

1 e2(N−1)πi0.1 . . . e(N−1)πi0.(N−1)

 . (6.32)
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Figure 6.10: Quantum circuit to solve example 6.1 in the multi-level formulation (6.4).

We will assume that our cost Hamiltonian unitary can be implemented as a single two-qudit
gate, which needs to be applied on every edge. Therefore, a total amount of |E| = N(N−1)/2
operations are needed. For the mixing, we have the ring-mixer that works very much like the
XY -mixer we defined for the OH formulation. Considering the single-qudit ring mixer (r = 1)
as an elementary qudit gate, we would need just N of these operations. More connectivity
(r > 1) would increase the complexity in a similar way as increasing the connectivity of the
XY -mixer would. To sum it up, we need N qudits with N levels and the total amount of
qudit gates scales as O(N2). As always, Figure 6.10 shows the circuit implementation of
example 6.1.

6.2.4 Optimisation landscapes for our example

The optimisation landscapes as a function of (β, γ) corresponding to our three formulations
for example 6.1 are given in Figure 6.11. Every data points is generated by taking 1000
samples from the QAOA state-vector and therefore shows slight irregularities due to the
sampling noise, as would also be the case in the actual experiment.

Figure 6.11: Optimisation landscapes corresponding to the expectation value of the cost
Hamiltonian. 1000 measurements were taken from the QAOA state, parametrised in β, γ.

The one-hot and multi-level formulations are expected to have similar landscapes, since they
would be isomorphic if the connectivity of the mixer is identical. In the MIN-(DISAGREE-
AGREE)-objective, which was used for the Hamiltonian, we have that the maximum and
minimum values of the objective function values are −3 and 1, respectively. Therefore, these
values should bound the optimisation landscapes of the OH and ML formulations at all
parameter values. Figure 6.11 shows that this is indeed the case for those two formulations,
and one can also observe that all formulations do not attain the minimum value of −3 for
any β, γ. The edge-based formulation has some peaks that do exceed the maximum of
the objective, which correspond to parameter combinations that have a high probability
amplitude for states that violate the constraint.
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Λ (γ∗, β∗) F1(γ∗, β∗) r
EB (0.8251, 2.094) -2.377 0.90
OH (0.7616, 0.6347) -2.63 0.94
ML (3.808, 0.6347) -2.70 0.95

Table 6.1: Optimal results for our example for different formulations, obtained by brute-force
search. The way the approximation ratio r is defined is given in the next section (See (6.33)). For
now it is only important to know the definition given in Chapter 3.

Figure 6.12: Circuit depth as a function of problem size N for different values of p in each
formulation Λ.

If we perform a brute-force search over the optimisation landscapes to find the best
β, γ in each formulation, we find the following optimal points, corresponding function values
and approximation ratios as displayed in Table 6.1. Hence, we have that for example 6.1 all
formulations have values of β, γ such that they have much better expected approximation
ratios than we could get by random guessing (r = 0.481). Note that at (β, γ) = (0, 0) all our
QAOA unitaries become identity operations, and for those that use a superposition of all
feasible states we retrieve the same performance as a random guessing algorithm. For the
best found β, γ, we observe that the best approximation ratios are given by the ML and OH
formulation with the EB formulation only slightly behind.

6.2.5 Circuit depths and scalability

So far we looked only at the total amount of gates but in practice a lot of gate operations
can be parallelised. Qiskit by default, and Cirq when forced to, creates an optimal schedule
of operations such that the total circuit depth is minimised. A plot of the circuit depth
as a function of N for several values of p is given in Figure 6.12. We note that for both
the OH and ML formulation we have that the depth scales linearly with N , whilst for the
edge-based formulation it scales quadratically. Note that for OHr the scaling will be the
same as OH except for a different pre-factor.
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Since the amount of qubits and depth of the circuit is our most important bench-
mark in simulation, we can conclude that circuit complexity-wise the OH (and in
particular OHr) and the ML formulation would be preferred over the EB formulation.
However, in our analysis we did assume that the odds gate and qudit gates are directly
implementable, whilst all gates used in the EB formulation are generally considered to be
elementary gates. However, the order of scaling of the depth is the most important here;
since by the Solovay-Kitaev theorem every arbitrary gate can be approximated up to an
exponentially small error costing only a polynomial overhead.

6.3 Performance: numerical results

The goal of the following section is to do experiments investigating the performance of the
established Hamiltonian formulations, by solving small correlation clustering instances for
which the quantum processor can be simulated on a classical computer. In these simulations,
we will not consider the OH formulation. This is because the amount of qubits is the dominant
factor in our computation times as well as the memory requirements, and for OH we would
not be able to solve the largest considered instances on individual CPU cores. Appendix C
verifies whether we can expect any major performance differences by applying this reduction
in qubits.

6.3.1 Experimental method and procedure

We will benchmark the performance on a data set of complete graphs of N nodes, where
N ∈ {3, . . . , 7}. For every N , we have sampled 50 graphs from the set of all possible weighted
complete graphs with w(u,v) ∈ {−1, 1}. The edge weight creation probabilities are P and
P − 1 for w(u,v) = 1 and w(u,v) = −1, respectively. To create our data sets, we sweep P
from 0 to 1 across all 50 instances, such that we have a good representation for the entire set
of possible graphs.

As a performance measure to the solution quality, we will only consider the approx-
imation ratio. Since QAOA is a stochastic algorithm, we need to use the expectation value
instead of the best-found string:

r = 〈C〉
OPT

, (6.33)

where 〈C〉 is the expectation value of the objective function and OPT the optimal value to
the correlation clustering problem. Since any we can classically simulate the full quantum
state-vector, the state space is always small enough to adopt a brute-force method to
determine the optimal value to the correlation clustering problem.

For the performance, we are interested in the objective function values correspond-
ing to the MAX-AGREE formulation. Therefore, we first need to transform the objectives
we used to construct our cost Hamiltonian, which are in MIN-(DISAGREE-AGREE).
We define the number of agreements a and disagreements d. Note that we must always
have that for every edge the solution either agrees or disagrees with the weight, and
therefore we have that a+ d = |E|. The expectation value of the cost Hamiltonian in the
MIN-(DISAGREE-AGREE) formulation is then 〈HC〉 = d − a, so we can calculate the
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expectation value in the MAX-AGREE setting 〈C〉 = a as

〈C〉 = 1
2(|E| − 〈HC〉). (6.34)

Defining the weighted adjacency matrix of a correlation clustering instance as w, and the
Hamiltonian formulation to be used as Λ we can summarise the adopted QAOA procedure
as QAOA-CC. The time complexity of QAOA-CC, is

Algorithm 1: QAOA-CC
Input: w, p, s, Λ, classical optimiser
Output: Fp(~β,~γ)

1 initialise ~β,~γ randomly
2 while not stopping criteria do
3 for i = 1, 2, · · · , s do
4 Run the QAOA quantum circuit in formulation Λ with the current ~β,~γ
5 Sample bit string x from the state vector by measurement
6 Estimate Fp(~β,~γ) from the s collected samples
7 Optimisation step of ~β,~γ

O(ospdΛ(N)), (6.35)

where o is the amount of calls the classical optimiser makes to the quantum processor,
s is the amount of samples it takes to estimate the energy of the QAOA state in the
cost Hamiltonian, p is the QAOA depth and dΛ(N) the depth of the quantum circuit for
formulation Λ. For Λ = ML and Λ = OH, dΛ(N) scales as O(N) and for Λ = EB this is O(N2).

An important remark is that in practice, the output of QAOA-CC would actually
be the best bit string x that was observed along the way. Alternative performance measure-
ments, as for example the probability of observing a string x that has an approximation
ratio above some threshold value, can then be adopted.

The QAOA quantum circuit will be simulated using Qiskit and Cirq for qubit and
qudit systems, respectively. The COBYLA implementation with off-the-shelve hyper-
parameter settings—included in the SciPy-package [91]—will be used as our classical
optimiser. The stopping criteria is set by the maximum budget (500 iterations) or the
(off-the-shelf) tolerance for termination. We will always set the total amount of samples
taken from the state-vector of the quantum computer to be s = 1000.

When Λ = EB, the value of the penalty parameter is always taken as λ = 2|E|+ 1, such that
separation between energies of feasible and infeasible states is guaranteed.

6.3.2 Simulation results

Figures 6.13, 6.14 and 6.15 show the main results on the complete graph data sets for the
considered formulations Λ. Let us start by summarising our four main observations:

• The average performance is similar for different formulations.
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Figure 6.13: Numerical results for three different Hamiltonian formulations Λ in solving 50 random
instances of complete graphs with N nodes. The expectation values, standard deviation and
maximum and minimum performance results for each data set are indicated by shaded areas, which
are made continuous to increase the readability.

• The standard deviation in the performance over different instances is large.

• There is no considerable difference in the difficulty experienced for different formulations
for different type of instances.

• Increasing p only marginally increases the performance, if not worsens it in some cases.

Starting with the first point, this is even better illustrated in Figure 6.14, which plots
the average approximation ratio as a function of the number of nodes N . For small
problem sizes the ML formulation performs better than EB and EB better than OH, but
this slightly changes as we move to largerN . AtN = 7 we even have that OH outperforms ML.

The standard deviation is very large for all three formulations. This is even more
so for the edge-based formulation, for which we encounter much larger extremes: for all N
the algorithm is at every p able to solve some instances exactly (the approximation ratio
equals one, see the maximum range of EB in Figure 6.13) but sometimes also fails terribly
(we even have cases where the approximation ratio approaches zero)—this happens when the
algorithm is stuck around parameter values corresponding to constraint violations. This
is also reflected in Figure 6.14 (right), which shows the worst case performances. In all
formulations, the large standard deviation is created by
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Figure 6.14: Left: Average approximation ratio at p = 1 as a function of problem size N .
The shaded area represents the error in the mean at every discrete point N . Right: worst case
approximation ratio found for different Λ when p = 1. In both graphs, we have added a form of
artificial continuity to the plots in order to improve the readability.

Figure 6.15: Left: Approximation ratios obtained for individual instances in the different
formulations Λ, plotted as a function of the ratio of positive weights to the total amounts of
weights. Right: Approximation ratios obtained for individual instances as a function of the optimal
cluster number that, found using a brute-force method. When an instance has multiple possible
optimal cluster numbers, the data point is plotted for every value.

1. A lack of robustness with the current classical optimisation method, which is very
dependent on the quality of the initial point.

2. The difference in performance for different instances, as can be seen in the both plots
in Figure 6.15.

The third point can be deducted from the data shown in Figure 6.15. The left picture shows
how the performance for single instances is related to the ratio of positive weights to the total
amount of edge weights. We note that for all three formulations the performance generally
decreases as the amount of positive weights increases. Similar behaviour is observed for the
optimal cluster number, which is shown in Figure 6.15 (right). This makes sense, as both
are correlated: the more edge weights are +1 the more nodes are excepted to want to be
put in a similar cluster, which decreases the optimal total number of clusters one would expect.
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Figure 6.16: Average fraction of feasible strings over the total amount of string samples that are
measured from an optimised QAOA state, when λ = 2|E|+ 1. The shaded area represents the error
in the mean.

And finally, regarding the lack of substantial performance improvement for higher p
in all cases we note that the relative performance of the classical optimiser is the main
bottleneck: as p increases the difficulty of the optimisation problem increases, and without
good initial points the optimiser is unable to find a better (or even equally good) solution.
In fact, the total parameter space increases exponentially with p, hence one would also have
to increase the number of random points exponentially in order to expect a similar relative
performance. However, we have restricted ourselves to just a single random initial point.

6.3.3 The downsides of penalty functions

Since we showed that in the EB formulation no efficient mixing operation can be constructed,
we adopted a penalty function approach. Since we use all strings, feasible and non-feasible,
in determining the energy over which we optimise, the optimisation landscape values are
partially constructed from the contributions of states that include unfeasible solutions. Since
the number of constraints grows as (N3), these contributions become more profound as the
problem size increases: there are more possible constraints to violate, each with their own
penalties to the energy. Therefore, one can expect that the optimisation landscapes become
increasingly complicated as N increases. This can explain why we observe such a large
variance in the approximation ratios we find.

Another effect is that the amount of measurements that correspond to feasible solu-
tions decreases as the amount of constraints increases. This is shown in Figure 6.16. The
average fraction decays very fast in N , our results even show that the average fraction for
both p = 1 and p = 3 is already smaller than 0.3 for N = 7. Since N = 7 is still a very
small instance, this shows that is very unlikely that this approach will be able to solve any
realistically-sized problem instances.

In these results we did not study how different values of λ effect the performance.
The study by Wang et al. [74] shows how it is possible to optimise over different values of λ,
increasing the approximation ratios. However, this does introduce yet another parameter to
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be optimised over, and even with this additional optimisation step included Wang et al.
make the case that penalty function approaches are still far inferior to formulations that
encode the feasible subspace through the initial state and mixer.

6.4 The verdict

After all work so far, we can draw some preliminary conclusions to help us move forward:

• Performance-wise, the ML and OH formulation show better results than the edge-
based formulation. This is in particular the case for larger N , where the edge-based
formulation even sometimes shows approximation ratios approaching zero at it is stuck
around states that have very high probabilities of violating constraints. Even though
the edge-based formulation can be further improved when another optimisation over λ
is performed, we still have to deal with the O(N3) scaling of the amount of constraints
that leads to a decrease of the fraction of feasible solution measurements.

• In terms of gate complexity measured in the required circuit depth, the scaling of
the ML and OH (OHr) formulations (O(N)) are better than the EB formulation
(O(N2)).

• For all formulations considerable improvements have to be made in order to make the
performance worthwhile. In particular, we need to overcome the large variation in
performance between different problem instances and marginal (or no) performance
increases with increasing p.

Due to its low depth and state-space dimension (relatively low simulation times), good
average (but in particular worst-case) performance and link to the Rydberg hardware that is
being developed at QuSoft, we will take the ML formulation to move forward in the next
chapter. However, it must be noted that the one-hot formulation does show better scaling
with N than the ML formulation, as its average (worst-case) performance even increased for
N ≥ 5 (N ≥ 6).
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CHAPTER 7

Improvements to the algorithm

In the previous chapter we proposed different Hamiltonian formulations that allow us
to encode the correlation clustering problem in a QAOA formulation. In bench-marking
the performance, we found that considerable improvements to standard procedure
of QAOA-CC are needed in order to obtain good performance. Strategies to achieve
such performance improvements are central to this chapter. In the first section, we
will focus on the classical optimisation step. In the following section, we propose
several heuristic strategies to further increase the performance. The strategies are
inspired by the results of Chapter 6. Combining all improvements, we propose a new
form of the QAOA algorithm called QAOA-CC-improved. We again perform a numer-
ical study and show that QAOA-CC-improved greatly outperforms QAOA-CC. In the
final section, we will derive a performance bound for QAOA-CC-improved on 3-regular graphs.

Throughout this chapter, we will always use the multi-level formulation as our en-
coding.

7.1 The choice of the classical optimiser

Most of the work on QAOA (and VQE) use optimisers from the SciPy library [91], such as
quasi-newton BFGS, Nelder-Mead and COBYLA. However, using these optimisers with
off-the-shelf hyper-parameter settings, initial experiments showed a considerable variation in
the quality of points that were found. Preferring not to do hyper-parameter optimisation
due to its daunting computation times (evaluation the objective function already consists a
considerable amount of time), we decided to instead compare different classical optimisers
using their off-the-shelf hyper-parameter settings.

A recent work by Lavrijsen et al. comes with a software package1 containing state-
of-the-art optimisation methods that specifically focus on noisy black box optimisation [92].
Even though noise is at this point of lesser importance for our study (we only introduce
sampling noise), the algorithms from their package showed very good performance in
zero and low noise simulations. In our study, we will consider two optimisers from SciPy
(COBYLA and basin-hopping) as well as three optimisers from the package by Lavrijsen et
al. (ImFil, BOBYQA and SnobFit).

1The name of the software package is scikit-quant. A python implementation of the software can be
installed from https://pypi.org/project/scikit-quant/.
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7. Improvements to the algorithm

First, we briefly introduce all the optimisers that are to be tested. Next, we dis-
cuss the results of a numerical study that compares the optimisers on a single instance of a
correlation clustering problem with N = 4.

7.1.1 Overview of used optimisers

Let us first briefly describe all optimisers that are considered in the bench-marking. For the
reader interested in further reading on a specific method: the first line always contains a
reference to the original work.

COBYLA Constrained Optimisation by Linear Approximation (COBYLA) is an optim-
isation method for (nonlinear) constrained problems where the derivative of the objective
function is not known [120]. For an objective function with N design variables, the algorithm
creates N + 1 vertices and evaluates the objective function and the constraints at vertices of
a trust region. For the optimisation process it uses linear approximations of the objective
and constraints. Since it is a trust region method, performance dependence on the quality of
the initial points can be expected.

Basin-hopping Basin-hopping is a global optimisation technique that works in conjunction
with some local optimiser [121]. Designed to mimic the natural process of energy minimisation
of clusters of atoms, it works particularly well for problems with rugged energy landscapes.
At every iteration the optimiser randomly perturbs its current coordinates, performs local
optimisation, and accepts or rejects the new coordinates based on their objective function
value. In our simulations, we used basin-hopping in conjunction with COBYLA.

ImFil ImFil, or Implicit Filtering, is specifically designed for problems with local minima
caused by high-frequency, low amplitude noise and with an underlying global structure that
is easily optimised [122]. The algorithm starts with initial clusters of points, determined
nearly entirely by the problem boundaries. The objective function values of these clusters
are evaluated, and for the minimum of these evaluations derivative estimation by first-order
interpolation is used to determine the next clusters to be evaluated. Since the boundary
predominately determines the initial points, ImFil is relatively insensitive to initial points,
unless they are used to restrict the boundary of the optimisation problem.

BOBYQA Bound Optimisation by Quadratic Approximation, or BOBYQA, is an algorithm
for bound constrained black-box optimisation problems [123]. It is a trust region method
that builds a quadratic approximation at each iteration, based on interpolation points. New
sample points are created in two ways: 1) a trust region step or 2) an alternative iterations
step, where steps are vectors that are added to the current iterate. In the trust region step,
this vector is chosen such that it minimises the quadratic model around the current iterate
and lies in the trust region, as well as the bounds set by the optimisation problem. The
alternative iteration step is used when the norm of the vector is so small that it would reduce
the accuracy of the quadratic model, so instead a vector is chosen such that good linear
dependence of the interpolation is ensured. The point with the best objective function value
is kept throughout the optimisation process. Since BOBYQA is also a trust region method,
similar to COBYLA, its performance is also expected to be sensitive to the quality of the
initial point.
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SnobFit SnobFit, or Stable Noisy Optimisation by Branch and Fit, is an algorithm for the
optimisation of problems with noisy and expensive objective functions [124]. It iteratively
selects sets of evaluation points balancing between global and local search, which makes
the algorithm good at escaping local optima. Evaluation points are selected by a branching
algorithm that recursively subdivides the search space, as well as by randomly generating
points from unexplored regions in parameter space. Locally, SnobFit builds a quadratic
model around the current best point and minimises it to select a new evaluation point. It
also chooses local search points as approximate minimisers within a trust region defined by
safeguarded nearest neighbours.

7.1.2 Numerical results

In our study, we will consider direct energy calculations from the state-vector as well as
energy estimation from state-vector sampling, in order to see effects of sampling noise on the
performance. We consider only one instance of correlation clustering for bench-marking: a
complete graph with just 4 nodes and all edge weights ‘−1’ such that the optimal solution
corresponds to all nodes being put in different clusters. For p ∈ {1, . . . , 5}, we generate 25
random initial points in the respective parameter space. We set the maximum budget—i.e.
the number of calls to the simulated quantum computer—at 500. Since basin-hopping has
two different budgets, one for the basin-hopping steps and one for its local optimiser, we set
the maximum budget by using the number of evaluations the local optimiser (COBYLA)
used in its individual run: the number of Basin-hopping steps is the rounded ratio of
the budget over this number. The results for state-vector sampling (s = 1000 shots) and
state-vector simulation are given in Figure 7.1.

First, we note that the performance is similar for state-vector sampling and state-
vector simulation. For COBYLA and basin-hopping(/COBYLA) the performance degrades
slightly more compared to other optimisers, but in general the sampling noise does not seem
to effect the performance too much. BOBYQA outperforms all other optimisers, but does
always use up all the budget.2 Unfortunately, the scikit-quant optimisation package does not
allow us to change the tolerance, which would allow for fairer comparison. As far as the
ratio of performance to number of function evaluations is concerned, ImFil performs well.

Even though adopting BOBYQA already potentially results in a large performance
increase compared to using COBYLA, which was used to obtain our initial results, we still
observe that a large gap exists between the best value found and the average performance.
This means that there is still a lot to be gained in the classical optimisation step, the main
one being the usage of good initial points, followed by hyper-parameter optimisation. Good
initial points will have a larger effect on the local optimisation methods (in particular
COBYLA and BOBYQA) compared to the global optimisers (e.g. ImFil).

7.2 Heuristic strategies

To further enhance the performance of QAOA, we will now propose several heuristic strategies
that are inspired from the analysis of the previous chapter as well as literature in (classical)
optimisation. We start this section with an overview of all strategies. One of these strategies

2There is one data point in the state-vector simulation data set for which BOBYQA used only 85
iterations, but this is the only time this was ever observed. This could be a consequence of the matrix that
BOBYQA uses becoming singular, which terminates the algorithm.
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Figure 7.1: Top: State-vector sampling with 1000 measurements. Bottom: State-vector simulation.
Left: found approximation ratios for 25 random points using different optimisers. Right: Number of
function evaluations. The shaded area indicates the error in the mean, where the discrete points
have been connected in order to improve the readability of the figure.

is the use of initial points, and in the second subsection we will give numerical evidence
that strengthening that the case made by Brandao et al. [93] for MAXCUT also holds for
problem: optimal values for different instances are concentrated in parameter space. We
will analyse the individual and collective improvement(s) of these heuristic strategies on our
N = 4 complete graph data set. Finally, an overview of strategies that were considered but
are not included in the results is given.

7.2.1 Overview of used strategies

We propose the following heuristic strategies to improve our performance:

Restarts Local optimisers can greatly benefit from restarts, since they are sensitive to the
quality of initial points. But even with fixed initial points, due to stochastic elements in both
the optimisers procedure as well as the noise introduced from sampling (or gate errors), the
algorithms can be made more robust by incorporating restarts. The work of Shaydulin et
al. shows how multi-start methods can improve QAOA [47]. This adds a factor m, where m
is the amount of (re)starts to the time complexity of the algorithm.

Optimised initial points Multiple works show how optimal parameters are concentrated
in parameter space across instances that belong to ‘similar classes’ [93]. In practice, this
means that we can select a single instance from a class, work very hard to find optimal
parameters through variational optimisation or from analytical arguments, and use these
values as initial points for the optimisation of other instances. In our improved algorithm,
we will define some dictionary D in which initial points for all relevant instances are stored.
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Even though it is not directly clear what the requirements are for instances to be-
long to a class with similar concentration, we expect this at least to hold for problems that
share the same amount of nodes N and amount of clusters κ. We choose the correlation
clustering instance of N nodes with all edge weights ‘−1’ and use a large set of initial points
to find optimal parameters for κ ∈ {2, . . . , N}. We set the criteria that for each found initial
point (β∗, γ∗) we must at least have that

Fp+1,N,κ(β∗, γ∗) ≥ Fp,N,κ(β∗, γ∗). (7.1)

Of all 100 initial points we needed to find for N = 3, . . . , 7 and κ = 2, . . . , N , we were able
to fulfil (7.1) for all but one case: N = 6, κ = 5, and p = 6. All initial points were stored in
our dictionary D.

As well as potentially increasing the performance compared to using random initial
points, using optimised initial points can also decrease the total computation time QAOA as
less quantum processor calls are needed for the optimiser. However, it is not clear how much
time and effort is needed to find those initial points, so we will not take into account any
benefits for the time complexity.

Optimised cluster number In the previous chapter we saw that the algorithm performed
well on instances that required a large amount of clusters—i.e. when the optimal cluster
number was close to the available amount of clusters κ—but not so when the amount of
clusters was low. Since both the one-hot and multi-level methods allow for a variable κ, we
can iterate the algorithm over the amount of the possible amount of clusters κ = 1, . . . , N
and see for which number the algorithm gives back the best result 3. The factor that upper
bounds the added time complexity is N .

Formal definition of the improved algorithm

Incorporating all defined heuristic strategies and the existence of our initial points dictionary
D, we define QAOA-CC-improved as:
Algorithm 2: QAOA-CC-improved(Λ = ML)
Input: w, p, κ, D, optimiser
Output: F ∗p,κ∗

1 for k = 1, · · · , N do
2 initialise ~βκ, ~γκ from D
3 for r = 1, · · · , R do
4 run QAOA-CC with Λ = ML, where κ = k
5 if Fp,k < F ∗p,κ∗ then
6 update F ∗p,κ∗ ← Fp,k, κ∗ ← k

The time complexity of QAOA-CC-improved is simply that of QAOA-CC multiplied by the
number of restarts m and the number of nodes N , to account for the loop over the different

3This is also possible on actual hardware: for one-hot this simply means that not all qubits are used and
for a multi-level approach some hardware types, as for example with the Rydberg neutral atoms, allow for
only a limited amount of states to be used.
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amount of clusters:4

O(osmpN2). (7.2)

In practice, it is very likely that we can adopt some stop criterion for the loop over these
clusters. Intuitively, one expects that the QAOA state energy is a convex function of the
amount of clusters. If this is the case, one can stop the loop once we observe that the energy
becomes worse as the cluster number increases. However, this is beyond the scope of this
work and therefore we will always loop over the maximum amount of clusters that are needed
to solve the problem instance.

7.2.2 Initial points study for p = 1
Whilst is evident that restarts and looping over different amount of clusters can only make
the algorithm perform better, since using no restarts and only the maximum of clusters
restores the original procedure of QAOA-CC, it might not be evident how fixed initial points
might help when solving across different instances. In this subsection, we will give numerical
evidence supporting the conclusions of the work by Brandao et al. [93]: initial points for
different instances across different problem classes are concentrated. Our first intuition was
that the same amount of nodes and maximum cluster number would define different problem
classes, but we will show that even across these different classes we have concentration of
initial points.

Concentration across instances

To investigate how concentration of good points at p = 1 across instances manifests itself
for our problem we run the following experiment: we start with initial points we obtained
from the all-negative-weights graphs for N = 4 and N = 5 and solve for all 50 instances in
our correlation clustering data set, using COBYLA as an optimiser. The resulting optimal
points are plotted in Figure 7.2:

Figure 7.2: Left: locations of obtained optimal points over the entire possible parameter space.
Right: close-up to the smallest possible square area that contains all optimal points. x∗

0 indicates
the used initial point, x∗

1 is the point with the smallest maximum distance to other points and x∗
2

the point with the smallest average distance to all other points.

4To get actual computation time estimates one needs to take actual hardware considerations into account,
in particular the compiled gate operations and their latencies.
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Note how all points are in the neighbourhood of our initial points. In fact, the smallest
rectangular area containing all points (indicated by the black rectangular) takes about 0.2%
of the entire possible parameter space. The plot on the right zooms in on this rectangular,
showing how the optimal points are located relative to each other. In this plot x0 is the
used initial point, which is for both N = 4 and N = 5 positioned at the boundary of the
collection of points. This makes sense due to the structure of the graph it belongs to—the
all-negative-weights graph is itself an extreme case of the correlation clustering problem
(requiring all clusters to be used). This also indicates that other graphs might be better
suitable as initial points.

Somewhat unexpectedly, we also observed that the points for N = 4 and N = 5
are in the same neighbourhood. In the next section we run the same experiment but for a
similar graph in different N and κ.

Concentration across classes

In our initial points data we observed that many initial points for different N and κ seemed
to be similar, but sometimes with an added factor of π. Therefore, we used similar initial
points as a starting points and verified whether optimal points for other problem sizes would
exist in their neighbourhood as well. We always used the all-negative-weights graph as the
correlation instance to solve, as this structure is easy to transfer between different problem
sizes Figure 7.3 shows the location of the obtained points for different N and κ in parameter
space (p = 1).

Figure 7.3: Left: locations of obtained optimal points over the entire possible parameter space.
Right: close-up to the smallest possible square area that contains all optimal points. The number
inside the point indicates the number of nodes.

We observe that κ = 2 is somewhat of an outsider, but again all points fall in a rectangular area
encompassing (coincidentally) about 0.2% of the entire possible parameter space. Looking at
the right plot of Figure 7.3, we observe that there is somewhat of a trend visible: in most
cases, when N goes up γ increases and β goes down. However, this does not hold in all cases,
and the data is generally too scattered to say something definitive. This could be due to the
sampling noise introduced in the algorithm—a point in the neighbourhood of the optimal
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point has a probability of resulting in a higher estimated energy. In order to verify whether
a model can be build to predict good initial points, it would be better to use state-vector
simulation. However, this greatly increases the simulation runtime for larger N .

7.2.3 Numerical results improvements

Figure 7.4 shows the numerical results on the N = 4 data set of complete graphs. We used
COBYLA as the optimiser, since it potentially better illustrates the individual improvements
compared to an optimiser that already performs better by itself. We note that looping over
cluster numbers has the largest contribution to the improvement, followed by the optimised
initial points which works particularly well for intermediate values of p. For small values
of p the optimiser is able to find good points even with bad initial points and for larger
values of p the distance from the initial point and the optimal point becomes larger in
parameter space, which results in the initial point effectively becoming random again. The
restarts are expected to have less of an effect when used in conjunction with good initial points.

Figure 7.4: Approximation ratios for different improvements added to the QAOA algorithm, used
on the N = 4 complete graph data set. The used optimiser is COBYLA. The dots indicate the
average value over all instances and the shaded area represents the error in the mean.

7.2.4 Other considered strategies

There are two other strategies we tested for improving the algorithm, that were not included
in the final results as they did not lead to improved performance. We will call the first
block-wise optimisation and the second block-wise initial point optimisation. In block-wise
(initial point) optimisation, one optimises for p = 1 to find (γ∗1 , β∗1), and fixes (uses) these
(as initial points) when optimising for p = 2. This process is repeated for higher values of p.
Fixing these parameters showed considerable worse performance than the normal procedure:
for larger p the performance only increased by a very small margin. Using these parameter
values as initial points instead of fixing them resulted in a performance on par with the
normal procedure, hence the points obtained by this procedure could be considered as random
as any randomly generated point. A better strategy would have been to adopt the INTERP
or FOURIER method as proposed by Zhou et al. [61]. An explanation of these methods can
be found in Chapter 5. However, since we are primarily interested in good performance at
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Figure 7.5: Results of QAOA-CC-improved on the data sets of complete graphs and Erdős–Rényi
graphs with different edge creation probabilities Pe.

low values of p, these methods only become practically relevant once the performance has
significant scaling in p.

7.3 Numerical results and analysis

Next to the already created complete graphs data sets, we will now consider an additional
data set consisting of Erdős–Rényi graphs. In the creation of the Erdős–Rényi data set, we
considered edge creation probabilities of 0.5 and 0.75. Similar to what we did for the complete
graphs data set, we swept the edge weight probability Pe of giving an edge weight ‘+1’ from
0 to 1 over the 50 random instances. Additionally, we set the criteria that every problem
needed to have at least one edge, since the N = 3 data set in particular has a non-negligible
probability for this to happen. Figure 7.5 shows the results for QAOA-CC-improved on all
data sets.

Looking back at the observations we made for QAOA-CC in the previous chapter,
we see that we have improved upon all remarks: the overall performance is increased,
standard deviation is decreased and we generally have that performance increases with higher
p. However, we note that the increase in performance diminishes as the approximation ratio
becomes better: the difference between p = 1 and p = 2 is for example much larger than for
p = 3 and p = 4.
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Figure 7.6: Performances plotted as a function of the amount of nodes N for the different data sets.
Upper: worst case performances on all data sets. Lower: average performances. Left: results for
p = 1. Right: results for p = 2. As always, any artificial continuity is added to improve readability.

Figure 7.6 shows the performance as a function of the problem size N for different
graph types, giving an indication of the scalability. We observe that the algorithm performs
slightly better in the worst case for complete graphs compared to the more general
Erdős–Rényi graphs. This is to be expected, as it is generally assumed that quantum
algorithms need some kind of internal problem structure to work well (this is also the case
for classical algorithms). For average performance the performance is comparable amongst
different graph types.

For p = 1 we observe that the worst case performance on instances from our bench-marking
data sets drops slightly below the Swamy bound of 0.7666, but for p = 2 we have that the
algorithm performs better than this bound on all instances in the data set. This statement is
rather weak in the sense that all it provides is an indication of the performance, as instances
outside our data set might exist for which the algorithm performs worse. Ways to overcome
this are provided in the final chapter. Additionally, in the next section of this chapter will
derive a performance bound for QAOA-CC-improved on 3-regular graphs.
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7.3.1 Performance dependence on problem instance

Figure 7.7 shows scatter plots of the individual performance on instances in the data set of
N = 7 for different values of p.

Figure 7.7: Different scatter plots of performance on the N = 7 complete graph data set as a
function of left: the optimal amount of clusters, middle: the energy distance of the initial state
with respect to the optimal solution and right: the ratio of positive weights to the total amount of
weights.

We observe that the algorithm at low p has the most difficulty with instances that require a
low amount of clusters (except the singleton cluster case, which is trivial for κ = 1), and as p
increases the most difficult instances seem to have optimal cluster numbers in the middle of
the singleton and all-different clusters.

The energy distance is defined as the difference between the function value of the
optimal string and the expectation value of the cost Hamiltonian in the used initial
state, corresponding to the final cluster number that was used. We observe a negative
linear relationship between the energy distance and the performance. This fortifies the
idea that the quality of the initial state is very important, as well as giving some idea
of what kind of problems might suitable to QAOA in general: problems that change
drastically on a micro-level but are still close in energy distance might still be solvable
in QAOA as long as you can prepare a very good initial quantum state for some starting energy.

The optimal cluster number and the ratio of w+/(w+ + w−) are correlated5, and
both show a similar relation with the performance. This indicates that we can further
increase the performance of the algorithm by tailoring some aspects to some properties of
the correlation clustering instance, as has so far only been done by looping over the cluster
number.

7.4 Performance bound on 3-regular graphs

The numerical study shows promising results for QAOA-CC-improved. However, proven
lower bounds on the performance would allow us to make much stronger statements about its
performance. In general, performance bounds for QAOA are difficult to derive, in particular
for p > 1, which is why almost the entire body of literature relies on numerical studies. A
recent work by Wurtz and Love [125] showed a derivation of lower bounds for QAOA at

5This also holds for the energy distance, but this is depends on the way the initial state is generated.
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p = 1 and p = 2 (and a conjectured result on p = 3) on MAXCUT, and their techniques
form the inspiration for this section.

We will consider correlation clustering problems described by 3-regular weighted
graphs. The goal of this section is to find a lower bound at for the approximation ratio r at
p = 1 for QAOA-CC-improved, defined as

r = max
κ

Fκ(γ, β)
Cmax

, (7.3)

where Fκ(γ, β) is the QAOA energy of the algorithm with at most κ clusters and Cmax the
maximum amount of agreements for the correlation clustering instance. Since our graphs
have degree 3, we need at most 4 clusters to solve the problem. Hence, our algorithm
loops over maximum cluster values κ ∈ {1, 2, 3, 4}. We will show that for 3-regular graphs
G = (V,E), where G is not the complete N = 4 graph, initial points β∗κ, γ∗κ exist such
that QAOA-CC-improved gives a 0.670-approximation algorithm, even without the classical
optimisation loop.

7.4.1 Problem setup and a lower bound for the energy

Consider some arbitrary 3-regular graph G of N(G) nodes that is not the complete graph
with N = 4. We identify for each edge 〈i, j〉 the sub-graph Gp<i,j> of all edges and vertices
within p steps of node i and j. At p = 1 there are only three possible kinds of sub-graph
structures as indicated in Figure 7.8:

Figure 7.8: The 3 types of sub-graphs for p = 1. The sub-graphs form the environment of the
highlighted edge, and note how only neighbouring edges are included in the sub-graph. The dotted
edges indicate edges outside of the sub-graph.

Since all sub-graph types have 5 edges, we have a total of 3 · 25 = 96 possible sub-graphs
when we include weights wu,v ∈ {−1,+1}. However, by symmetry arguments we can reduce
the total amount of weighted sub-graphs we have to consider. We define three sets of
sub-graphs gi, i ∈ {1, 2, 3}, representing all 3-regular sub-graph structures with 6, 5 and 4
nodes respectively (see Figure 7.8), such that for every sub-graph λ ∈ gi there exists no other
graph λ′ ∈ gi that is equivalent in the QAOA setting. Our total set of possible sub-graphs is
then S = g1 ∪ g2 ∪ g3.

We now decompose our graph G into sub-graph environments λ ∈ S for which the
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multiplicity of each λ is Nλ(G). Since we have such a sub-graph environment for every
edge, we must have that the sum over all Nλ(G) is equal to the total amount of edges
3N(G)/2. For a single edge 〈u, v〉 with sub-graph environment λ, denoted as 〈u, v〉 → λ, the
contribution to the energy is given by

fκ,〈u,v〉→λ(βκ, γκ) = 〈βκ, γκ|w〈u,v〉Vκ |βκ, γκ〉 , (7.4)

where Vkappa is given by (6.22) and |βκ, γκ〉 by (4.8) in the ML formulation. Note how (7.4)
only contains terms that operate within λ. The expectation value of the algorithm with a
maximum of k clusters at p = 1 for some βκ, γκ is given by

Fκ(βκ, γκ) =
∑
λ

Nλ(G)fκ,λ(γκ, βκ). (7.5)

We must also have that this is always smaller than or equal to the expectation value using
the best values of βκ, γκ

Fκ,max = max
γκ,βκ

Fκ(γκ, βκ) ≥
∑
λ

Nλ(G)fκ,λ(γκ, βκ), (7.6)

providing us with a lower bound on the energy of the algorithm Fκ,max at a given κ.

7.4.2 Upper bound on the amount of agreements

We are now faced with the task of finding an upper bound on the objective function value.
A naive bound would be the total amount of edges, but we can do better by consider-
ing the same argument Wurtz and Love used to determine an upper bound for MAXCUT [125].

Consider the graph H which is a collection of Nλ(G) disconnected sub-graphs Gp〈i,j〉
for each edge in G. Since the largest sub-graph has a total solution space of 64 possible
solutions, a brute-force method can be used to find the ratio between the optimal objective
function value and the number of edges for every sub-graph λ, which we will call cλ. Since
all sub-graphs are isolated, the global fraction of agreements to edges is equal to the average
fraction over each sub-graph. However, we have several edges belonging to different disjoint
sub-graphs in H that are actually the same edge in G. In this case, we can have that for
both sub-graphs a clustering exists for which the edge contributes to the objective value, but
that the required clustering is different in both sub-graphs. A simplified example which
illustrates this effect is to consider a 2-regular graph I with edge weights ‘+1’ and ‘−1’,
decomposed into sub-graphs of single edges. In this setup, we have two possible sub-graphs
corresponding to edge weights ‘+1’ and ‘−1’. One easily verifies that J , which consists of all
disjoint edges, has agreements for all of its edges (c = 1) whilst for I the ratio of agreements
to edges can be at most c = 2/3, as shown in Figure 7.9. As a result, we have that the
objective function value of G is bounded from above by

Cmax ≤
∑
λ

Nλ(G)cλ. (7.7)
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Figure 7.9: Example that illustrates how transforming graph I into a new graph J , consisting of
disjoint single-edge sub-graphs for every edge in I, leads to a higher fraction of agreements per edge.
The cycle of edges in I has two clauses that cannot be satisfied at the same time, whilst in J all
clauses can be satisfied since all edges are disconnected.

7.4.3 Constructing the hardest graph

Since we have a lower bound for the energy and an upper bound for the objective function
value, the approximation ratio r is bounded from below by

rκ(G) ≥ max
κ

∑
λNλ(G)fκ,λ(γκ, βκ)∑

λNλ(G)cλ
. (7.8)

The worst case approximation ratio is then given by the hardest graph G = G∗, which
corresponds to some parameter combinations of Nλ(G∗) ∈ {0, 1, 2, . . . } for all sub-graphs
λ. However, not all parameter combinations of Nλ(G) correspond to valid graphs, as was
already shown by Farhi et al. [6]. For now, we will only consider the structure of the graph
and not take the feasibility of certain weight combinations into account. First, we note
that for every edge in sub-graph g3 there must be at least 4 edges that an environment of
sub-graph g2. Also, we have that the ‘triangle’ of g2 and ‘crossed square’ of g3 cannot share
the same vertex, which means that the number of triangular edges and crossed square edges
must be smaller than the amount of nodes N(G). Our final constraints are that all Nλ(G)
are non-negative integers and must sum up to 3N(G)/2. Defining nλ(G) ≡ Nλ(G)/N(G) such
that we can relax the integer constraint when considering the limit of large N(G), we obtain
the following Minimax Linear Fractional Program (MLFP):

min
nλ(G)

max
κ

∑
λ nλ(G)fκ,λ(γκ, βκ)∑

λ nλ(G)cλ
s.t.

∑
nλ(G)∈g2

nλ(G)− 4
∑

nλ(G)∈g3

nλ(G) ≥ 0

−
∑

nλ(G)∈g2

nλ(G) ≥ −1

∑
nλ(G)

nλ(G) = 3
2

nλ(G) ≥ 0 for all λ

(7.9)

Equation 7.9 is in the form of a generalised fractional program, which is not reducible to
a linear program (LP) which can be solved efficiently6. We choose as our primary solving

6There are linear relaxation bounding techniques that do allow for global optimisation up to some error
ε. We have performed initial experiments with one of those techniques [126], but were not able to achieve
desirable results so far due to the difficulties in approximating our objective function. We have also used a
bisection algorithm that converges to local minima, but its performance was worse compared to COBYLA.
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method a local constraint optimisation method with random initial points. Since this does
not guarantee that we have obtained a global optimum, we also adopt alternative methods.
Let us define a domain C such that x ∈ C when it satisfies the constraints of (7.9). To verify
our numerical results, we will also compare it with two other measurements:

1. Take the number of edges as the upper bound instead of the fractional objectives (7.7),
i.e. we let cλ → 1 for all λ. Under this relaxation we can write (7.9) as the following
LP:

min α

s.t.
∑
λ

nλ(G)fκ,λ(γκ, βκ) ≤ 3
2α for all κ

nλ(G) ∈ C, α ∈ R

(7.10)

The solution of this LP is a lower bound to the actual bound, as sub-graphs that
originally had cλ = 0.8 now contribute too much to the upper bound of the optimal
objective function value (7.7).

2. Similarly, we can also assume that only sub-graphs for which a perfect clustering exists
contribute to the construction of the most difficult graph. Under this assumption, we
define a new set S′ = {λ|λ ∈ S, cλ = 1}.

min α

s.t.
∑
λ

nλ(G)fκ,λ(γκ, βκ) ≤ 3
2α for all κ

nλ(G) ∈ C, α ∈ R, λ ∈ S′

(7.11)

Since S′ ⊂ S, the optimal α∗ provides an upper bound to the best value of r that we
can find for λ ∈ S.

All LP’s will be solved by a solver contained in the package ‘lpsolvers’ for Python.7

7.4.4 Iterative procedure for determining the bound

The mini-max optimisation problem gives us a method to determine the hardest instance
G∗, given that we fix the parameters βκ, γκ. But how do we choose the values of these
parameters? As one would normally do with QAOA, a classical optimisation loop can be
adopted. First, we choose some initial values for βκ, γκ and calculate fκ,λ(βκ, γκ) for all
sub-graph environments λ. Next, we construct the hardest graph G∗ by solving (7.9). In the
next step we use the same objective function as in (7.9), but instead of minimising over nλ
whilst keeping the βκ, γκ fixed we now fix nλ and try to maximise the objective over βκ, γκ,
i.e. we want to

max
βκ,γκ

max
κ

∑
λ nλ(G)fκ,λ(γκ, βκ)∑

λ nλ(G)cλ
s.t. βκ, γκ ∈ [0, 2π) for all κ,

(7.12)

where we have used some cut-off ε = 10−7 to speed up the calculation as computing the
values of fκ,λ(γκ, βκ) is expensive. However, there might exist some other graph G∗∗ which is

7For documentation, see https://pypi.org/project/lpsolvers/.
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more difficult for this particular β∗κ, γ∗κ, after which we can again try to find new parameters
β∗∗κ , γ

∗∗
κ . This suggests the use of an iterative procedure for finding the best parameters.

We do not know whether this procedure converges, but it doesn’t necessarily have to: any
combination of βκ, γκ has its own lower bound that holds specifically for these parameters,
and can therefore be used as our result. Convergence would only suggest something about
the tightness of this bound, guaranteed global convergence would mean that no better values
of βκ, γκ exist.

Algorithm 3: Iterative procedure to obtain a lower bound
Data: λ, maximum number of iterations M
Input: initial β0

κ, γ
0
κ,M

Output: optimal r∗, β∗κ, γ∗κ
1 for i = 1, 2, · · · ,M do
2 calculate fλ,κ(βi−1

κ , γi−1
κ ) for all λ, κ

3 Solve (7.9), store ri and the collection of niλ
4 Solve (7.12) and store βiκ, γiκ

7.4.5 The results

We set βκ = 0.15, γκ = 3 for all κ = 1, 2, 3, 4. For 20 steps in our iterative procedure
(M = 20), adopting COBYLA with 1000 restarts using random initial points, the best worst
approximation ratio bound we found is

r ≥ 0.670, (7.13)

corresponding to the parameter combinations listed in Table 7.1. For these parameters,
Table 7.2 shows the expected the edge contributions for every sub-graph that had a unique
contribution (all double rows were deleted).

κ = 1 κ = 2 κ = 3 κ = 4
β∗κ - 0.48326462 0.13104474 0.14350598
γ∗κ - 2.85741366 2.77318577 2.68161118

Table 7.1: Parameter values for different κ at which we were able to obtain performance
guarantee (7.13). At κ = 1 the algorithm has only one state and hence no parameters.

For the same parameter combinations, solving (7.10) and (7.11) results in r ≥ 0.6367 and
r ≥ 0.670, respectively. Therefore, we conclude that using the fractional objectives (7.7)
instead of the amount of edges provides us with a much better bound under the assumption
that (7.13) is (close to) optimal. This assumption is justified by the fact that in our results
all λ that have non-negligible nλ do have cλ = 1, and because the best solution we obtained
to (7.9) actually equals the upper bound set by (7.11).

For this particular combinations of sub-graphs belong to the hardest graph G∗, the
classical optimisation step actually does not make much of a difference: our results show
that solving (7.12) with G = G∗ results in

max
βκ,γκ

max
κ

∑
λ nλ(G∗)fκ,λ(γκ, βκ)∑

λ nλ(G∗)cλ
≈ 0.674,
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which is only a small improvement on the obtained bound. This shows the quality of these
values of β∗κ, γ∗κ (as well as the hardness of the graph G∗). Additionally, this also provides
further evidence that QAOA, when having access to good initial points, can also be used
without the classical optimisation step [93, 94].

7.4.6 Performance bounds for p > 1?

Unfortunately, we do not observe evidence for the existence of a trivial graph hierarchy as
Wurtz and Love proved (and conjectured) for MAXCUT at p ≤ 2 (p > 2) [125]. In fact,
when we consider their large loop conjecture for our problem, we find that for our used
βκ, βκ we obtain a worst-case approximation ratio of r = 0.693, which is significantly larger
than (7.13). Therefore, we do not conjecture the structure of the most difficult graph at any
p, which would ease the determination of lower bounds at larger p. If we are to use the same
method as we used for p = 1, we will have to consider of the order of 123 · 213 ≈ 106 different
sub-graphs (not taking symmetries into account). We can reduce this number by exploiting
symmetries, but since determining the energy of the largest sub-graph (14 nodes) is very
computationally expensive we do not attempt to determine bounds for p > 1.8

8In fact, a back-of-the-envelope estimation to the amount of computing hours needed to execute such a
computation—not including the symmetries—shows that we would need of the order of 10 million computing
hours, which is far beyond the budget we have for SURFsara’s LISA system.
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Graph type Weights c f1 f2(β∗2 , γ∗2 ) f3(β∗3 , γ∗3) f4(β∗4 , γ∗4)
1 (-1,-1,-1,-1,-1) 1 0 0.69313 0.86386 0.90215
1 (-1,-1,-1,-1,+1) 1 0 0.69313 0.85916 0.9073
1 (-1,-1,-1,+1,+1) 1 0 0.69313 0.85894 0.90634
1 (-1,-1,+1,-1,-1) 1 1.0 0.69313 0.56993 0.44161
1 (-1,-1,+1,-1,+1) 1 1.0 0.69313 0.56611 0.44677
1 (-1,-1,+1,+1,+1) 1 1.0 0.69313 0.57151 0.45194
1 (-1,+1,-1,-1,+1) 1 0 0.69313 0.85603 0.90695
1 (-1,+1,-1,+1,+1) 1 0 0.69313 0.85659 0.90717
1 (-1,+1,+1,-1,+1) 1 1.0 0.69313 0.56668 0.44898
1 (-1,+1,+1,+1,+1) 1 1.0 0.69313 0.56921 0.44805
1 (+1,+1,-1,+1,+1) 1 0 0.69313 0.85609 0.90584
1 (+1,+1,+1,+1,+1) 1 1.0 0.69313 0.56823 0.44915
2 (-1,-1,-1,-1,-1) 1 0 0.64632 0.83114 0.88456
2 (-1,-1,-1,-1,+1) 1 0 0.64632 0.82549 0.88586
2 (-1,-1,-1,+1,-1) 1 1.0 0.73376 0.61476 0.48902
2 (-1,-1,-1,+1,+1) 1 1.0 0.73376 0.61665 0.48976
2 (-1,-1,+1,-1,-1) 1 0 0.73376 0.89578 0.9324
2 (-1,-1,+1,-1,+1) 1 0 0.73376 0.89705 0.93315
2 (-1,-1,+1,+1,-1) 4/5 1.0 0.64632 0.5218 0.41154
2 (-1,-1,+1,+1,+1) 4/5 1.0 0.64632 0.51983 0.40978
2 (-1,+1,-1,-1,+1) 1 0 0.73376 0.89618 0.93475
2 (-1,+1,-1,+1,+1) 4/5 1.0 0.64632 0.51996 0.40933
2 (-1,+1,+1,-1,-1) 4/5 0 0.64632 0.8111 0.86811
2 (-1,+1,+1,-1,+1) 4/5 0 0.64632 0.81213 0.8691
2 (-1,+1,+1,+1,-1) 1 1.0 0.73376 0.61684 0.48872
2 (-1,+1,+1,+1,+1) 1 1.0 0.73376 0.61625 0.4889
2 (+1,-1,-1,-1,+1) 1 0 0.64632 0.82679 0.88596
2 (+1,-1,-1,+1,+1) 1 1.0 0.73376 0.61844 0.48769
2 (+1,-1,-1,+1,+1) 1 0 0.73376 0.89699 0.93467
2 (+1,-1+1,+1,+1) 4/5 1.0 0.64632 0.52144 0.40756
2 (+1,+1+1,-1,+1) 4/5 0 0.64632 0.80994 0.86782
2 (+1,+1+1,+1,+1) 1 1.0 0.73376 0.6166 0.48941
3 (-1,-1,-1,-1,-1) 1 0 0.59828 0.79063 0.85454
3 (-1,-1,-1,-1,+1) 1 1.0 0.78104 0.66778 0.53755
3 (-1,-1,-1,+1,-1) 1 0 0.6901 0.8679 0.91845
3 (-1,-1,-1,+1,+1) 4/5 1.0 0.6901 0.56985 0.44932
3 (-1,-1,+1,+1,-1) 4/5 0 0.59828 0.77636 0.83979
3 (-1,-1,+1,+1,+1) 1 1.0 0.78104 0.66407 0.5299
3 (-1,+1,-1,+1,-1) 1 1.0 0.78104 0.93665 0.95846
3 (-1,+1,-1,+1,+1) 4/5 1.0 0.59828 0.46984 0.36661
3 (-1,+1,+1,-1,-1) 1 0 0.78104 0.93725 0.95799
3 (-1,+1,+1,-1,+1) 4/5 1.0 0.59828 0.47393 0.36901
3 (-1,+1,+1,+1,-1) 4/5 0 0.6901 0.85378 0.89673
3 (-1,+1,+1,+1,+1) 4/5 1.0 0.6901 0.56885 0.4488
3 (+1,+1,+1,+1,-1) 4/5 0 0.59828 0.7637 0.83102
3 (+1,+1,+1,+1,+1) 1 1.0 0.78104 0.66761 0.53522

Table 7.2: Numerical values for the edge contributions for different sub-graph environments λ
corresponding to the parameter combinations β∗

κ, γ
∗
κ as listed in Table 7.1. Graphs with duplicate

entries (i.e. that are identical under the QAOA setting) were left out of the table.
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CHAPTER 8

Conclusions and future work

8.1 Conclusions

We have developed three main Hamiltonian formulations to solve correlation clustering with
the quantum approximate optimisation algorithm: an edge-based and one-hot encoding
designed for qubit systems and a multi-level encoding suitable for qudit hardware. We have
shown that for the edge-based formulation any mixing operation that preserves the feasible
subspace would have to be global, and therefore be very difficult to implement. Instead, we
propose a penalty function approach that can be used to (soft-)encode the constraints. The
one-hot encoding, also used in other works [74], can be reduced in qubit complexity from N2

to N(N + 1).

We have shown that the total amount of elementary gate operations is O(N3) for
the edge-based and one-hot formulation, and O(N2) for the multi-level formulation. However,
operations can be parallelised, and we have found that the simulated circuit depths for both
the one-hot and multi-level formulation scale with O(N) and the edge-based formulation
with O(N2), making the former two preferred over the latter for NISQ devices.

Numerical experiments for all Hamiltonian formulations in a standard QAOA set-
ting (QAOA-CC) have shown that the average performance is somewhat similar for different
Hamiltonian formulations, however the edge-based formulation has a larger range of
approximation ratios and is the only formulation that for all studied problem sizes even at
QAOA depth p = 1 is able to solve some instances exactly. However, it also has the worst
worst-case performance and seems badly scalable due to the fact that the feasible subspace
grows much slower than the total subspace as N increases. The variation in performance
between different instances is large for all three Hamiltonian formulations. This is mainly
due to the difference in performance on different graph types—in general we found that the
more positive weights the problem instance has the worse the performance is. Finally, we
did not observe that in these initial experiments increasing p resulted in improved performance.

Starting from the multi-level formulation we proposed several heuristic strategies to
improve the performance of QAOA-CC, including restarts, improved initial points and the
iteration over the cluster levels, leading to an improved algorithm called QAOA-CC-improved.
We show that initial points are concentrated for different instances as well as amongst
different problem sizes and maximum cluster numbers, justifying the practicability of a
collection of good initial points.
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Adopting QAOA-CC-improved to solve the instances in our data sets, consisting of
complete as well as Erdős–Rényi graphs, we showed that the algorithms worst case
performance on instances from our random data sets exceeded the Swamy bound for all
simulated problem sizes for any p ≥ 2. In addition, the way the worst case performance
scales as a function of N seemed to slow down considerably for N ≥ 5. Though it is hard to
make too definitive statements as it contains only 5 data points, it does show promise to also
be able to solve larger instances at low p.

Further evidence for this is provided by the results of a study to a performance
guarantee, in which we showed that values of βκ, γκ exist such that QAOA-CC-improved has
a performance guarantee of 0.670 on 3-regular graphs. For the hardest instance we could
use classical optimisation to obtain an approximation ratio of 0.674, which is only slightly
better than the performance bound that holds for all 3-regular graphs. This result, together
with the results for the initial point study, provides strong evidence that with good initial
points the classical optimisation step in QAOA becomes less important or can in fact even
be eliminated.

8.2 Future work

For all our problem sizes we had that the minimum energy always corresponded to either
the zero-clusters or maximum-amount of cluster numbers. The distribution of the amount
of possible clusters is given by the uniform distribution of all possible initial states, and
even though we saw that looping over this cluster number greatly improved the algorithm,
there could still be room for improvement by generating better initial quantum states.
Throughout the work on this thesis we had the idea of using the fractional solution of the
semi-definite program in the classical algorithm as an initial state, and recent a publication
showed promising results for implementing technique [81]. Another option would be to
design the initial states ourselves by using information on the correlation clustering problem,
as for example the ratio of positive to all weights. This also has the potential to serve as a
substitute to the looping over clusters.

Our results showed the importance of having good initial points when using QAOA. A big
open question is whether there are ’shortcuts’ to come up with these initial points. For
example, can we use relationships between optimal points for small instances to predict the
locations of good initial points for larger instances? Or on a more fundamental level, can we
analytically predict what makes a point optimal in the first place?

In our optimiser study we found that, when you don’t have access to good initial
points, the classical optimiser is a crucial element of QAOA: the difference between the
best and worst optimiser could result in as much as a 0.1 absolute difference in the average
approximation ratio. However, we observed that a considerable gap between the best-found
approximation ratio and the best optimiser still exists: hyper-parameter optimisation as well
as other strategies (besides the improved initial points) to improve the classical optimisers’
performance could still be very useful in improving the obtained results.

So far, we were only able to derive a performance guarantee for p = 1 on 3-regular
graphs. We saw that it would be computationally extremely expensive to use the same
method to determine bounds for p > 1. This also holds for increasing the degree: the amount
of possible sub-graphs increases considerably as well as the simulation times for these sub-
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graphs. More research is needed to find better methods for deriving these performance bounds.

Alternatively, we can also do more at the numerical end: recent work by Sato, Ya-
mada and Kashima provides us with an algorithm that uses machine learning to model the
hard instance distribution of graph algorithm [127]. This would allow us to strengthen the
results from numerical bench-marking, but we would still be restricted by only being able to
study very small instances.

The biggest point that is not addressed in our research is the fact that real quantum
hardware, at least until we have a general-purpose fault-tolerant quantum computer (if this
will even be possible), will be noisy. Our current study only includes sampling noise but
does assume perfect gate behaviour. Experiments on real quantum hardware, for example
via the IBM cloud, or quantum simulations with introduced noise are needed to see the
performance under more realistic conditions.

8.3 Outlook

The contents of this work started the efforts of creating a full-stack quantum computing
story about implementing QAOA-CC-improved on a Rydberg quantum computer (see also
Appendix D and Appendix E). Together with other researchers from QuSoft and the University
of Amsterdam, we already started working on the development of realistic noise models and
full implementation schemes, of which the results can hopefully be published soon. Most
importantly, we hope to derive criteria on the noise levels under which the quantum computer
is able to show performances that are competitive with the best classical algorithms. Whilst
the actual Rydberg quantum computer that is being build is still too small (50 qudits with
10 levels) to solve practical problems—as for example realistic instances of pose estimation as
we saw in Chapter 3—being able to experimentally show similar (or better) approximations
than the best classical algorithms on small instances beyond simulation capabilities would
be a large contribution to the field of quantum computing, and in particular QAOA.
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APPENDIX A

Alternative Hamiltonian formalisms

One-hot with a penalty function

The domain is equivalent to what we defined for the OH-formulation. We want to create
a Hamiltonian that is above zero on any state that has variables placed in more than one
cluster—this corresponds to violating the constraint. Using the approach by Wang et al. [74],
we consider the two-body penalty term

f =
N∑
v

(
1−

κ∑
i

xv,i

)2

.

We convert this to a Hamiltonian formulation by letting xv,i → (I − Zv,i)/2 and expand the
sum to obtain

Hconstraints =
N∑
v

(
1−

κ∑
i

I − Zv,i
2

)2

= 1
4

N∑
v

(
2− κ+

κ∑
i

Zv,i

)2

= N

4 (2− κ)2 + 1
2

N∑
v

(
(2− κ)

κ∑
i

Zv,i + 1
2(

κ∑
i

Zv,i)2

)

= n
(

1− κ

2

)2
+ Nκ

4 + 1
2

N∑
v

(2− κ)
κ∑
i

Zv,i +
κ∑
i<j

Zv,iZv,j



(A.1)

Just as we had for the EB-formulation, the cost Hamiltonian is given by:

HC = Hproblem + λHconstraints, (A.2)

where Hproblem is given by Equation (6.13). The mixing operation is again the Pauli X-mixer:

HM =
N∑
v

κ∑
v

Xv,i.

105



A. Alternative Hamiltonian formalisms

Our initial state is the uniform superposition over all possible string combinations:

|s〉 = |+〉
⊗

κN = 1√
2κN

∑
x∈{0,1}κN

|x〉 . (A.3)

Multi-level using generalised Pauli operators

Define the generalised Pauli Z-operator as

Σz =


1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω . . . 0
...

...
... . . . ...

0 0 0 . . . ωκ−1

 , (A.4)

where ω = exp{(2iπ/κ)}. Following the approach by Pramanik et al. [49], our cost
Hamiltonian is

HC = −
∑
u,v

wu,v
2
(
ΣzuΣz†v + Σz†u Σzv

)
. (A.5)

The complex conjugate is needed to make HC Hermitian—all its eigenvalues have to be real
in order to be observable. Since HC is a diagonal matrix, its eigenvalues are the entries on
this diagonal. Hence, using (A.5) we see that its eigenvalues are equal to

eig(HC , u, v) = −wu,v2

(
ei2πu/κe−i2πv/κ + e−i2πu/κei2πv/κ

)
= −wu,v cos (2π

κ
(u− v)),

(A.6)

where u, v ∈ {0, 1, . . . , κ − 1} 1. Hence, when u = v the resulting eigenvalue is −wu,v
and when u 6= v we have that its eigenvalue is an element of [−wu,v, wu,v). This
formulation comes with a potential disadvantage for higher values of κ: two different
state combinations, which are, considering their contribution to the objective value,
equivalent, might have two different energy values. Therefore, we will not use it in our
numerical simulations, unless it proves to be easier to implement on actual hardware than ML.

This formulation uses the same mixer and initial state as ML given by Equations
(6.28) and (6.29).

1This is similar to the Potts model known from physics.
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APPENDIX B

Increased mixing in the multi-level
formulation

In Chapter 6, we defined the mixing Hamiltonian that operates on a single qudit with κ
levels as

hM (r) =
r∑
i=1

(
(Σx)i + (Σx†)i

)
.

We consider κ = N = 5, such that r ∈ {1, 2, 3, 4}. For these values of r, the matrix
representation of the mixing Hamiltonian is given by

hM (r = 1) =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

 , hM (r = 2) =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 ,

hM (r = 3) =


0 2 1 1 2
2 0 2 1 1
1 2 0 2 1
1 1 2 0 2
2 1 1 2 0

 , hM (r = 4) =


0 2 2 2 2
2 0 2 2 2
2 2 0 2 2
2 2 2 0 2
2 2 2 2 0

 .
We see that for any r > 1, the mixing Hamiltonian becomes fully connected: it can transition
to any other level at all levels. Wang et al. [74] already showed how increased mixing increases
performance, and this is confirmed by our results as shown in Figure B.1 for the N = 5
complete graph data-set. Interestingly, we observe in Figure B.1(top) that for p = 3 that
even though we have a complete mixer, the fact that the transition factors are different for
different levels makes the performance only as good as the nearest-level mixer (r = 1). Figure
B.1(bottom) shows that for the different mixers the same types of graphs are difficult to
solve. However, the relative performance is somewhat better on the difficult graphs compared
to the easier-to-solve graphs.
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B. Increased mixing in the multi-level formulation

Figure B.1: Performance as a function of the mixing parameter r. The results are for the N = 5
complete data-set and were obtained by using COBYLA as an optimiser.
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APPENDIX C

OH versus OHr

The reduction in the amount of qubits we used for our one-hot encoding changes the Ansatz,
and as a result one would expect that the optimisation landscape changes accordingly. In
order to verify whether this does not considerably change the performance, we compare the
results for both formalisms on our N = 4 complete graph data set using QAOA-CC.

Figure C.1: Performance for QAOA-CC the OH and OHr formulation. The results are for the
N = 4 complete data set and were obtained by using COBYLA as an optimiser.

Figure C.1 (top) shows the average approximation ratio, standard deviation and total range
for both the OH and OHr formulation. We see that on average both formalisms have
similar performance, but when it comes to the worst and best case instances OH slightly

109
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outperforms OHr. Figure C.1 (bottom) shows the performance on individual instances when
p = 1. This shows that only the OH formulation is able to obtain approximation ratios
larger than 0.8.
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APPENDIX D

An introduction to Rydberg quantum
computers

Many different types of physical systems are pursued as candidate hardware for quantum
computers, of which some of the most common ones are superconducting [128, 129], trapped
ion [130], quantum dots [131] and neutral atoms [132, 133]. For neutral atoms, Rydberg
coupling can be utilised to perform quantum computations. A Rydberg state is a state of
an atom (or molecule) in which one of the electrons has been excited to a large principal
quantum number orbital. Rydberg atoms are relatively long-lived, and the large number of
available energy levels allow for coupling to electromagnetic fields spanning over a large order
of frequencies. In addition, they offer strong and controllable atomic interactions that can be
tuned through the states principal quantum number and orbital angular momentum. These
properties make Rydberg atoms attractive candidates for quantum computing.

Figure D.1: Rydberg simulator array setup for 87Rb-atoms, trapped using optical tweezers (vertical
red beams). Interactions Vij between the atoms (arrows) are enabled by exciting them (horizontal
blue and red beams) to a Rydberg state, with strength Ω and detuning ∆ (inset). Picture taken
from Ref. [134].

Rydberg coupling

We consider individual atoms that are held in an array of arbitrary geometry using so-called
optical tweezers. These tweezer traps are formed using micron-scale focused beams to create
a tight trapping volume that enhances atom-light interactions. Using techniques as dynamic
trap reconfiguration [135], spatial light modulating [136] or real-time sorting [137] it is
possible to create large defect-free qubit arrays. The quantum information is encoded in
hyper-fine ground states with a microwave-scale energy separation. The individual neutral
atoms experience extremely weak interactions in the ground state, providing excellent ground
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D. An introduction to Rydberg quantum computers

state coherence times. However, this makes two-qubit gate entanglement challenging unless
traps are merged to exploit collisional interactions. Coupling of the qubits to Rydberg atoms
overcomes this limitation. For atoms in ground state |g〉 coupled to a Rydberg level |r〉, the
Rydberg Hamiltonian is given by

HRyd = ~Ω
2
∑
i

σix − ~∆
∑
i

ni +
∑
i6=j

Vi,jninj , (D.1)

where σix = |gi〉 〈ri|+ |ri〉 〈gi| describes the coupling between ground and Rydberg levels, Ω
is the driving Rabi frequency, ∆ the laser detuning, ni the number operator on site i and Vij
is the Rydberg energy shift [138]. The Rydberg energy shift scales as

Vij ∝
1
r6
ij

, (D.2)

where rij is the distance between sites i and j. If we look at the different terms in (D.1), we
see that the first term describes the laser driving between states. The second term describes
the extent to which the laser is off-resonance with the transition. Finally, the last term
represents the Rydberg blockade effect: when an electron is excited to a Rydberg state it
creates a potential that shifts the energy levels of nearby atoms. Consequently, the laser
cannot drive these atoms to the Rydberg state due to the mismatch between the laser and
transition frequencies. This property can be used to create a CNOT operation in a very
natural way, as we will see in the next section.

Rydberg quantum gates

In general, the time evolution of a Hamiltonian H is given by (setting ~ to unity)

U(t) = e−iHt. (D.3)

However, if n-qubit Hamiltonian H = H1 + · · ·+Hn contains terms that do not commute
we have to use Trotterisation to be able to decompose the total Hamiltonian:

eiHt = (eiH1t/r . . . eiHnt/r + E)r, (D.4)

which introduces an error E with ‖E‖ = O(t2/r2).

Defining our Hamiltonian as HRyd, we have all ingredients needed to perform quantum gate
operations in a Rydberg quantum simulator. Let us give an example on how to construct
such a gate: the controlled Z-gate. First, we define two important single-qubit operations in
Rydberg quantum computing, the so-called π- and 2π-pulses, defined as

Uπ =
(

0 −i
−i 0

)
, U2π =

(
−1 0
0 −1

)
,

which both can be constructed from the time evolution of the Rydberg Hamiltonian (D.1)
using only the first term with Ωt = π or Ωt = 2π, respectively. We define control and target
basis states |0c〉,|1c〉,|0t〉 and |1t〉 on which the unitary acts, as well as Rydberg states |rc〉
and |rt〉. Our controlled Z gate is applied through a three pulse sequence: 1) a π pulse on the
control atom, 2) a 2π pulse on the target atom and 3) a π pulse on the control atom again.
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Figure D.2: Left: the control atom is in |0c〉, no Rydberg blocking takes place and the 2π pulse
gives the target atom a phase shift. Right: the control qubit is in |1c〉, the Rydberg blocking prevents
the target atom to pick up a phase shift. Picture taken from Ref. [139].

We consider the case when the target atom is in |1t〉. If the control atom is in |0c〉, it is not
Rydberg excited and there is no blockade. This results in a phase shift of π for the target
atom. However, when the control atom is in |1c〉, both atoms are coupled to the Rydberg
level. When the two-atom blockade shift B due to the Rydberg interaction is large compared
to Ω, the excitation of the target atom is blocked and it picks up no phase shift. This way
we have used the Rydberg blockade effect to create a CZ operation. Using different laser
schemes, whilst exploiting the Rydberg blockade properties, other gates can be constructed
as well (see also Appendix E).

Qudit quantum computing

So far we just considered qubit operations, but the formalism can in principle also be extended
to qudit systems. In September 2019, Stellmer et al. [140] created the first strontium Bose-
Einstein condensate. Since the fermionic isotope of Sr87 has a nuclear spin of I = 9/2, it
allows for 10 spin states to be used to store quantum information (Figure D.3). Therefore,
it would in theory be able to physically encode a 10-level qudit. This makes these systems
potentially suitable for our ML-formulation. An example of an implementation scheme for
this formulation, considering only qubits but with a formalism that can be extended to
qudits, is given in Appendix E.

Figure D.3: Energy levels for the two lowest electronic states of 87Sr in a magnetic field, each with
ten nuclear spin states, depicted by colours. Adapted picture taken from Ref. [141].
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APPENDIX E

Rydberg implementation scheme for
two clusters

This appendix is created from notes of work-in-process by prof. dr. C.J.M. Schoutens and
J. Minar. It proposes an implementation scheme for the ML-formulation on a Rydberg
quantum computer. Currently, we are working on creating one full-stack quantum computing
story that includes the algorithmic results of this thesis, the implementation scheme for such
a Rydberg quantum computer as well as some simulations using a realistic noise model.

The Rydberg Hamiltonian

We consider d states from a ground state manifold |0〉 , . . . , |d− 1〉, coupled to an excited
Rydberg state |r〉 by bosonic fields aj described by a Hamiltonian

H1 =
d−1∑
j=1

ωLj a
†
jaj + gj(ajσ+

j + a†jσ
−
j ) + ωj |j〉 〈j|+ ωr |r〉 〈r| . (E.1)

Transforming this to the frame where each bosonic field rotates with its respective frequency,
H → ULHU

†
L − iU̇LU

†
L, UL = exp

[
−it

∑
j ω

L
j a
†
jaj

]
, we obtain

H2 =
d−1∑
j=1

gj

(
eiω

L
j tajσ

+
j + H.c.

)
+ ωj |j〉 〈j|+ ωr |r〉 〈r| . (E.2)

This is followed by transforming to a new frame where the atomic states rotate with their
respective frequencies, H → UaHU

†
a − iU̇aU†a , Ua = exp

[
−it

∑
j ωj |j〉 〈j|+ ωr |r〉 〈r|

]

H3 =
d−1∑
j=1

gj

(
ei∆

L
j tajσ

+
j + H.c.

)
, (E.3)

where ∆j = ωr − ωLj − ωj . Alternatively, one can remove the explicit time dependence in the
spin flip operators by rotating to a frame defined by U = exp

[
it(ωLj |j〉 〈j|)

]
. In this case,

H2 becomes

H2 =
d−1∑
j=1

w′j |j〉 〈j|+ gj(ajσ+
j + H.c.) + ωr |r〉 〈r| , (E.4)
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E. Rydberg implementation scheme for two clusters

Figure E.1: Level scheme for d-level quantum system with a Rydberg state |r〉.

where ω′j = ωLj + ωj = ωr + ∆j . Using I =
∑d−1
j=0 |j〉 〈j| + |r〉 〈r| (which is subsequently

dropped), we can rewrite H ′2 as

H =
d−1∑
j=0
−∆j |j〉 〈j|+ gj(ajσ†j + H.c.) + V |r〉 〈r| , (E.5)

where we introduced some interaction energy V of the excited state |r〉.

Qubits representing two possible clusters

In the following section we will design an implementation scheme for the case when we have
two clusters (κ = 2), such that the scheme can be implemented on a qubit system. It is also
possible to extend this scheme to a general d-level system using similar operations.

We are interested in classical driving of the qubits. Therefore, we take the bosonic fields to be
in a coherent state |aj〉 ,aj ∈ C, |aj | � 1, such that gj〈aj〉 = gjαj = Ωj , gj〈a†j〉 = gjα

∗
j = Ω∗j .

We can now write the Hamiltonian (E.5) for a single qubit in matrix notation as

H =

−∆0 0 Ω0
0 −∆1 Ω1

∆∗0 ∆∗1 V

 . (E.6)

The associated unitary operator can in principle be obtained by diagonalisation of (E.6),
which leads to a cubic equation for the eigenvalues. If we consider two-photon resonance for
both qubit levels, i.e. ∆0 = ∆1 = 0., the situation simplifies. In the limit of large detuning,
V →∞, we obtain

U =

1 0 0
0 1 0
0 0 e−iV t

 . (E.7)
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For a general V , the |r〉 〈r| element of U = e−itH reads

Urr = e−
1
2 itV

[
cos
(

1
2 t
√
V 2 + 4Ω2

)
−
iV sin() 1

2 t
√
V 2 + 4Ω2

√
V 2 + 4Ω2

]
, (E.8)

where Ω =
√
|Ω0|2 + |Ω1|2. Since we require that the Rydberg population is zero at the

end of the evolution, when there is initially no excitation in the Rydberg state, we have the
following condition on the duration

t = 2nπ√
V 2 + 4Ω2

, n ∈ N. (E.9)

Specifically, at resonance V = 0,

U(θ, ϕ)) =

 cos θ sin θeiϕ 0
sin θe−iϕ cos θ 0

0 0 1

 for n odd, (E.10)

and
U = I for n even, (E.11)

where
cos θ = |Ω0|2 − |Ω1|2

Ω2 , sin θ = 2Ω0Ω∗1
Ω2 , (E.12)

and ϕ = φ0−φ1 with Ω0,1 = |Ω0,1|eiφ0,1 . Coupling only one of the qubit levels |j〉 resonantly
to the Rydberg state would be described by

H =
(

0 Ω
Ω∗ 0

)
→ U(θ, ϕ) = e−iHt

(
cos θ −i sin θeiϕ

−i sin θe−iϕ cos θ

)
. (E.13)

We will use all the established operations to create the operations needed to perform our
QAOA algorithm in the ML formulation with κ = 2:

The initial state The uniform superposition can be created by applying Hadamard
operations on every qubit. The Hadamard operation, within a global phase factor, can be
achieved in the following way

H = U(π/2, 0)U(π/4,−π/4), (E.14)

since (
cos π2 −i sin π

2
−i sin π

2 cos π2

)(
cos π4 −i sin π

4 e
−iπ2

−i sin π
4 e
−iπ2 cos π4

)
= 1√

2

(
−i −i
−i i

)
, (E.15)

which after adding a global phase of π/2 results in

1√
2

(
ei
π
2 0

0 ei
π
2

)(
−i −i
−i i

)
= 1√

2

(
1 1
1 −1

)
, (E.16)

which is the Hadamard gate.
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E. Rydberg implementation scheme for two clusters

The cost unitary The two-qubit cost operation is slightly more involved, but eventually
we want to design a two-body interaction UV (ϕ) on qubits representing nodes u and v that
achieves (up to a global phase):

UV (ϕ) =
{
|ij〉 → eiϕ |ij〉 if i = j

|ij〉 → e−iϕ |ij〉 if i 6= j,
(E.17)

where ϕ = wu,vβ,wu,v ∈ {−1,+1}, β ∈ [0, 2π). First, we define the 1-qubit phase gate
Pϕ=ϕ1−ϕ2 = U(π2 , ϕ1)U(π2 , ϕ2), written explicitly for two levels (basis |j〉 , |r〉) as

Pϕ =
(
eiϕ 0
0 e−iϕ

)
. (E.18)

We define the unitary of a π−pulse as Uπ ≡ U(π/2, 0). Using just π−pulses and 1-qubit phase
gates, we can achieve our desired interaction through the following sequence of operations
(written in the {|uu〉 , |ud〉 , |du〉 , |dd〉}-basis)

U (1)
π,urP

(2)
ϕ,drU

(1)
π,urU

(2)
π,drP

(1)
ϕ,urU

(2)
π,dr = diag(eiϕ, 1, 1, eiϕ), (E.19)

where G(n)
α,ij is the gate acting between levels |i〉 , |j〉 of the n−th qubit. Note that this

implements our desired interaction up to a global phase of −ϕ/2, since

diag(eiϕ
′
, 1, 1, eiϕ

′
)e−iϕ

′/2 = diag(eiϕ
′/2, e−iϕ

′/2, e−iϕ
′/2, eiϕ

′/2) = UV (ϕ′), (E.20)

where ϕ′ = 2ϕ/2 = 2wu,vβ.

The mixing unitary For the mixing operation, we simply require a rotation around the
x−axis, defined as

Rx(γ/2) = U(γ/2, 0) =
(

cos γ/2 −i sin γ/2
−i sin γ/2 cos γ/2

)
. (E.21)

This defines all necessary operations to implement our QAOA algorithm for κ = 2 on a
Rydberg quantum computer with Hamiltonian (E.5).
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APPENDIX F

Quantum mechanics and Markov theory

The following appendix on the link between quantum mechanics and stochastic theory was
requested by one of my supervisors, prof. dr. R.J. Boucherie. It should be viewed as a
separate appendix to the rest of the work, and mainly covers the work by Godart who has over
the years attempted to develop a stochastic theory of quantum mechanics [142, 143, 144].

Stochastic mechanics is an attempt to formulate a stochastic theory that describes
quantum mechanics. In 1952, Fenyes suggested a theory in which quantum mechanics is
fundamentally described by particles that move along trajectories that are random sample
functions of a Markov process [145]. This theory never really took off, and in 1966 Nelson
showed a derivation of quantum mechanics from classical mechanics and Brownian motion,
essentially rediscovering Fenyes’ idea [146]. In this work, Nelson uses that any wave function
Ψ(~x, t) that is a solution to the Schrödinger equation is of the form

Ψ(~x, t) = exp[R(~x, t) + iS(~x, t]. (F.1)
Subsequently, he defines two vectors ~u(~x, t) and ~v(~x, t) such that

m~u(~x, t) = h

2π∇R(x, t)

m~v(~x, t) = h

2π∇S(x, t)− e ~A(~x, t)
(F.2)

and remarks that the vectors ~v±(~x, t) = ~v(~x, t) ± ~u(~x, t) obey the classical equations of
a Markov process. Finally, he claims that these vectors coincide with the forward and
backward drift vectors that characterise such stochastic processes.

However, several authors raised objectives to this theory. The main argument is
that these vectors are not well-defined at points where the wave function Ψ(~x, t) is equal to
zero. In a more recent work by Godart, he tries to counter these arguments by working in
the reverse direction compared to what Nelson did: instead of staring out from the wave
function he shows that the stochastic theory of quantum mechanics allows him to recover
the solutions to the Schrödinger equation in a great number of particular cases. For this, he
uses the following three principles to start with:

1. Trajectories of particles are sample functions of a Markov stochastic process.

2. The diffusion tensor in non-relativistic stochastic theory is given by
wij = κgij , (F.3)
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with κ = h/4πm, h is Planck’s constant and gij the metric tensor, which is in a
Cartesian coordinate system equal to

gij =
{

1 if i = j,

0 if i 6= j.
(F.4)

3. The stochastic mechanics will depend on a stochastic variational principle, which states
that the evolution of a system that starts at point ~x0 at time t0 that arrives at ~x1 at
time t1 is described by a Markov process that makes the variation of the functional
zero.

By assuming that the electric field ~E(~x) and magnetic field ~B(~x) that act on the particle do
not depend on time, he shows that from the solutions of the Kolmogorov and Fokker-Planck
equations he is able to retrieve the time-independent Schrödinger equation:

h2

8π2m
∆Ψ = (E − V )Ψ. (F.5)

However, this is only possible because of another condition set along the way: the magnetic
field must be equal to zero. In the conclusion of the work, it is noted that some other
equations have to be adopted in order to use stochastic theory to explain quantum mechanics
with non-zero magnetic fields.

In the end, stochastic mechanics is able to formally recover the elementary solu-
tions of the Schrödinger in a great number of particular cases (including ones that include
relativity), but has so far not been able to show equivalence to the orthodox Copenhagen
interpretation of quantum mechanics. However, it also remains to be shown whether other,
alternative stochastic approaches might not be able to show equivalence.
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