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Abstract

Two state of the art methods for neuromusculoskeletal modeling are inverse dynamics
based modeling and electromyography (EMG) driven modeling. These methods can be
combined into a hybrid model to benefit from the strengths of both methods. A real-time
hybrid neuromusculoskeletal model was developed that enables real-time measurement of
ankle joint’s EMG signals that account for realistic joint torques. Simulated annealing is
used to optimize for excitations that resemble measured EMG and produce joint torque
close to joint torque measured by inverse dynamics. Human kinematic data, ground
reaction force and EMG were measured and used to test the model’s ability to calcu-
late optimized excitations in real-time. It is shown that real-time calculated optimized
excitations show large correlation with EMG signals that were optimized in an offline en-
vironment. Joint torques resulting from optimized excitations show large correlation with
joint torques measured by inverse dynamics. This real-time hybrid neuromusculoskeletal
model can potentially be used in a clinical environment to obtain online measurements
of neuromuscular data and can be used to drive a wearable robotic device.
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1 Introduction

Neuromusculoskeletal (NMS) modeling gives insight in how the human body generates
motion. The brain sends neural signals to the muscle-tendon units (MTUs) by firing
alpha motor neurons. Innervated MTUs generate forces acting on the bones, resulting
in joint moments that move body segments and make interaction with the environment
possible. Nowadays, treatments for mobility impairments are often selected based on
clinical experience of the clinician rather than objective prediction of post-treatment
function (Fregly et al., 2012). NMS modeling gives understanding of the NMS mechanisms
involved in the human body, enabling clinicians to see what muscle causes an abnormal
gait pattern and to predict the outcome of a treatment. It can also be used to observe
load patterns during sports activities, giving insight in the cause of an injury. Direct
measurement of internal properties of the NMS system is often not possible, so in order
to fully understand what is happening in the human body in case of a pathology or injury,
it is important to have NMS models that give insight in certain properties of the NMS
system. Current state-of-the-art NMS systems are inverse dynamics (ID) based models
and electromyography (EMG) driven models.

(a) Schematic of ID-based models. Torque is calculated from joint kinematics and ground reaction force using the equations of motion.
Then, static optimization is done to overcome the muscle load sharing problem. Resulting muscle forces can be fed into contraction
dynamics to calculate muscle activation. Using activation dynamics, muscle excitations can be calculated.

(b) Schematic of EMG-based NMS models. Raw EMG is measured and, high-pass filtered, full-wave rectified, low-pass filtered and
normalized. This is used as input to the activation dynamics describing the delay caused by calcium release from the sarcoplasmic
reticulum. Contraction dynamics uses a Hill-type muscle model to calculate muscle force, which is translated into joint torque using
the moment arms.

Figure 1: Schematics of ID-based models (a) and EMG-based models (b).

ID based models (figure 1a) use measured joint kinematics and ground reaction force
(GRF) as input of the model to calculate joint torques from the equations of motion
(Erdemir et al., 2007). Joint torques and moment arms are then used to calculate mus-
cle forces. In general, the number of muscles is larger than the number of joints. This
muscular load sharing problem can be solved by static optimization, which requires an as-
sumption of the strategy used by the brain to coordinate MTU activation. Sum of cubed
muscle stresses or sum of squared muscle forces are commonly used as minimization cri-
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teria, but other criteria can also be used depending on the task. The assumption on
muscle recruitment strategy determines the calculated muscle force, so ID-based models
are unable to account for differences in recruitment strategy due to pathology or environ-
mental conditions such as a slippery or uneven surface. ID-based models usually don’t
make use of a calibrated muscle model for the translation from muscle force to EMG.
Therefore, they are unable to account for differences in subject-specific muscle properties
when estimating EMG.

EMG is an indirect measure of the excitation of muscles. Therefore, measured EMG can
be used as input of a forward dynamics model to model human movement mechanics while
accounting for differences in muscle recruitment strategy. These EMG-driven models
(figure 1b) are based on the Hill-type muscle model (Hill, 1938). EMG measurements
are used as input to the MTUs to calculate muscle forces and joint moments. To be
able to calculate these forces and moments for different individuals, the model must have
knowledge of subject-specific parameters such as muscle’s optimal fiber length, tendon
slack length, maximum isometric force and many others. These parameters are calculated
with a calibration of the model. Experimental joint moments calculated with ID are
used as validation of the predicted joint moments by the EMG-driven model during
calibration. However, when performing tasks that were not done during calibration, the
predicted joint moment does not always represent the experimental joint moment. This
is because of limitations of surface EMG measurements such as cross-talk, movement
artefacts, the inability to access deep muscles and the weak association between EMG
amplitude and motor unit action potentials (Farina and Negro, 2012). Furthermore, NMS
modeling using EMG involves model imperfections due to simplifications and errors in
model parameters.

To benefit from both EMG-driven model’s ability to account for differences in individual’s
muscle recruitment strategy and static optimization based method’s ability to account for
the right joint moments, Sartori et al. (2014) developed a hybrid NMS model (figure 2),
combining EMG-driven modeling with static optimization methods. The model adjusts
measured EMG to track experimental joint moments. Its static optimization component
makes sure that (1) experimental joint torques are tracked, (2) EMG measurements are
minimally adjusted and (3) squared excitations are low. While EMG-driven models can
only measure EMG of superficial muscles, the hybrid model also enables EMG measure-
ments of deep muscles. Furthermore, current EMG-driven methods involve uncertainties
in EMG measurements caused by cross-talk, movement artefacts and the weak associa-
tion between EMG amplitude and motor unit action potentials. Therefore, muscle forces
and joint torques predictions may contain errors. The hybrid model counteracts these
errors because it ensures tracking of experimental joint torques. Therefore, the hybrid
model combines the benefits from both EMG-driven and ID-based models.

NMS models are elaborate models requiring a lot of computations. Therefore, most NMS
models are used offline. Certain methods can be used to make the model faster, so it can
be used in real-time. Real-time models are models that can do computations fast enough
to provide useful information on the current movement and can be used for applications
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Figure 2: Working mechanism of the hybrid model. EMG-driven forward dynamics is used to calculate predicted joint
torque from measured excitations and kinematics. ID and kinematics are used to calculate experimental joint torque.
The hybrid model does a static optimization where it optimizes for (1) predicted joint torques close to experimental
joint torques, (2) sum of squared excitations and (3) excitations close to measured excitations. Adapted from ”Hybrid
neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from
electromyograms and optimization,” by M. Sartori, D. Farina and D. G. Lloyd, 2014, Journal of Biomechanics, 47(15),
p. 3615.

such as biofeedback (Pizzolato et al., 2017) or wearable robotic devices (Sartori et al.,
2018; Durandau et al., 2019). Wearable robotic devices are usually controlled using
excitations, so the real-time hybrid model could generate adjusted excitations to control
the device. Currently, state of the art NMS models are used to calculate joint loads
(Kinney et al., 2013), joint stiffness (Sartori et al., 2015) or muscle stiffness in an offline
environment. This induces a delay in obtaining clinical data. A real-time NMS model
is important in a clinical environment, because it enables immediate insight into clinical
data such as joint loads. The real-time hybrid model can help to increase precision of the
estimation of muscle stiffness and joint loads compared to an open-loop NMS model or
an ID-based model.

Durandau et al. (2018) adapted the offline EMG-driven model from Sartori et al. (2012)
to work in real-time by changing the OpenSim inverse kinematics (IK) algorithm to a
multithreaded algorithm and simultaneously running multiple IK computations on differ-
ent threads. The model also used one B-spline function per MTU for faster calculation of
the muscle-tendon length and moment arm. Another possible method to improve com-
putation time is to gather kinematics data by using inertial measurement units or joint
sensors instead of optical markers that involve time-consuming IK computations.
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The goals of this study are (1) to adapt the hybrid model from Sartori et al. (2014)
to work in real-time, (2) validate if the algorithm meets real-time requirements and (3)
validate the output of the model using experimental data.
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2 Software implementation

The online optimization plugin is written in C++ as an extension to the model written by
Durandau et al. (2018). This model performs real-time open-loop musculoskeletal mod-
eling as in figure 1b. It uses activation dynamics to calculate activation from measured
excitations. The OpenSim Inverse Kinematics algorithm (Delp et al., 2007; Seth et al.,
2018) calculates joint angles from experimental markers. Musculotendon lengths (LMT)
and moment arms (MA) are then calculated from joint angles using multidimensional cu-
bic Bspline functions. Then, using the force-length and force-velocity relationships and
tendon dynamics it calculates muscle force from muscle activations and LMT. Predicted
joint torque is calculated from muscle force and MA.

The open-loop model consists of one core class with the NMS model containing its prop-
erties and data. The NMS model’s properties include subject-specific parameters such as
muscle’s optimal fiber length, tendon slack length, maximum isometric force and many
others and are set during the initialization. The NMS model’s data are received from
plugins during execution of the software. The EMG plugin receives time and EMG data
and processes measured EMG signals to obtain excitations. The IK-ID plugin receives
angle data and computes LMT and MA from that. It also receives GRF data in order to
compute ID torque.

Data can be measured in real-time or read from file. The former method is used when
doing experiments. Data are measured and processed by their plugins and are imme-
diately sent to the NMS model. The latter method can be used to test the real-time
model without the need to do an experiment each time you test the data. Data can be
prerecorded and saved to a file. When running the software, data is read from this file
frame by frame as if the measurement is done in real-time. During this study, data was
always read from file. This holds for the software analysis phase described in this section
as well as for the experimental analysis described in section 3.

2.1 Hybrid model
The hybrid model (Sartori et al., 2014) uses ID joint torque to adjust muscle excitations
in order to produce realistic joint torques. The objective function optimized by the
optimization algorithm can be seen in equation 1.

fobj = αEtrackMOM + βEEXC + γEtrackEMG (1)

The objective function minimizes three terms. The first term contains EtrackMOM , the
sum of squared differences between predicted and ID joint torque, and ensures that
predicted excitations produce realistic joint torques. The second term contains EEXC ,
the sum of squared excitations, and ensures that muscle excitations remain low. The third
term contains EtrackEMG, the sum of absolute differences between measured and adjusted
excitations, and ensures that adjusted excitations remain close to measured excitations.
In this study, α = 1, β = 15 and γ = 500. The hybrid model enables measurement
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of excitations that account for realistic joint torques. Furthermore, excitations of deep
muscles can be obtained.

2.2 XML file
To pass certain parameters onto the plugin, an Extensible Markup Language (XML) file
was created in which these parameters can be given as input to the model. This file should
be specified in the command line when running the software. The software contains an
XML Schema Definition (XSD) file that describes how elements should be described in the
XML file to be readable by the software. From this XSD file, the XML file in appendix A
was created. It contains an element for the hybrid model, which contains weighting
parameters α, β and γ from equation 1. Furthermore, tracked and predicted muscles
can be specified. Tracked muscles are the muscles that were measured and should be
optimized. Predicted muscles are the (deep) muscles that were not measured and should
be optimized.

Many muscles are biarticular. This biarticularity of muscles increases the complexity of
NMS modeling and thus increases computation time of the hybrid model. Therefore,
the possibility to choose which DOFs to optimize was added in this study. This can be
specified in the DOFsOptimized element. For this purpose the XSD file was changed, as
well as the files containing classes that read data from the XML file, compare the data
to the XSD file and pass the data to the optimization plugin.

2.3 Optimization plugin
Initialization
The online optimization plugin (figure 3) is written in C++ as an extension to the open-
loop model written by Durandau et al. (2018). During start-up, the optimization plugin
is initialized. In this initialization, the NMS model core class is set up in the plugin. This
includes reading the muscles and DOFs from a file, including their calibrated parameters.
Then, the XML file parameters are loaded to the plugin in order to obtain the weighting
parameters of equation 1 and which muscles and DOFs to include in the optimization.
Then, the loggers are initialized which output certain signals (such as EMG, LMT and
torque) to their output files. Finally, the DOFs that are not optimized are erased from
the NMS model. For this, a function was written that erases those DOFs from the NMS
model. This function can be seen in appendix B.

Loop
During the loop, the open-loop model transmits time, EMG, ID torque, MA and LMT
data to the optimization plugin. Time and EMG data are received from the EMG plugin
at one frequency. ID torque, MA and LMT data are received from the IK-ID plugin
at another frequency. When data is received from the IK-ID plugin, one optimization
instance is started before waiting until new LMT, MA and ID data are transmitted. Then,
the next optimization instance is started. Within one optimization instance ID torque,
time, EMG, LMT and MA data are set to the NMS model from the optimization plugin
before starting the actual optimization algorithm, which will be explained in section 2.5.
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Figure 3: Schematics of the plugin working mechanism. The EMG plugin receives EMG data and transmits these to
the optimization plugin. The IK-ID plugin receives IK and ID data and transmits these to the optimization plugin.
The EMG and IK-ID plugins transmit data on different frequencies. When data from the IK-ID plugin are transmitted
to the optimization plugin, one optimization instance is started. This optimization instance executes the hybrid model
block diagram from figure 2 The next optimization instance is started if the previous optimization instance is finished,
only if new data are received from the IK-ID.

Finally, data are sent to the loggers to be saved to the output files. Complete code of the
optimization plugin can be found in appendix appendix C.

Offline optimization
For some applications, it may be useful to do the optimization in an offline way. For
example, if you want to compare the real-time optimization to a slower offline optimiza-
tion. Running the slow optimization would currently lead to the discard of many input
data values, because the next optimization instance is started only when the previous
optimization instance is finished. This would lead to a loss of data. To enable offline
optimization in the current framework, a buffer was created, which remembers all input
data points. Also, the plugin is not shut down after execution of the open-loop model to
enable the plugin to finish the optimization of all data points. This buffer can be used by
hardcoding a few changes in the software. These changes are highlighted in appendix C
using the comment ’Comment out for buffer’.
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2.4 Bug fixes
Some bugs in the open-loop model were exposed when running the optimization plugin.
The bugs that needed to be fixed are described in this subsection.

Read data from file
As described in the introduction of this section, data can be measured in real-time or
read from file. This can be different for the EMG and IK-ID plugin. For both plugins,
it can be specified in the XML file of the open-loop model which real-time measurement
plugin to use. When a read-from-file plugin must be used, this should be specified in the
command line when running the application, including the directory in which these data
files can be found. For the IK-ID plugin there also was a choice between reading only the
IK angle data or both the IK angle and the ID data.

The IK-ID plugin where both angle and ID data were read from file included the header
file from the IK-ID plugin where only the angle data were read from file, and therefore
building the application failed. After including the right header file the application built
successfully.

The read-from-file IK-ID plugin automatically loaded the plugin where only the angle
data were read from file, and therefore the ID data could not be read from file. This was
changed in such a way that if an ID file was present, IK and ID data are read from file
and if no ID file was present, only IK data are read from file.

Figure 4: It can be seen that the optimized torque develops a delay compared to the ID torque during execution.
This is weird, because the ID torque is used to optimize the torque. Therefore, the period of the signals should be
similar.
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ID torque
When running the application, the ID torque sent to the plugin by the IK-ID plugin
remains doesn’t change during the execution of the application. It is found that the
variable which holds the ID torque was declared twice in the IK-ID plugin, of which one
declaration was used in an if-statement. Therefore, these declarations were regarded as
different variables. The second declaration was updated with the datum that was read
from file (inside the if-statement), while the first declaration was sent to the optimiza-
tion plugin (outside the if-statement). The only exception was for the first time frame.
Therefore, the ID torque sent to the plugin by the IK-ID plugin remained constant with
the first ID torque value. When the second statement was deleted, the ID torque sent to
the plugin did change its value during execution.

However, it can be seen from figure 4 that the optimized torque develops a delay com-
pared to the ID torque during execution. This is weird, because the optimized torque is
optimized (among others) with respect to the ID torque, so although errors may exist,
the period of the signal should be similar. It was found that the ID torque values that
are read from the ID torque file are put into a buffer, out of which the IK-ID plugin takes
ID torque data to use in the software. The data is put into the buffer at the back and it
is received from the buffer at the front. For the hybrid plugin this buffer is problematic,
so it was changed such that the ID torque is both put into and received from the back of
the buffer. Figure 5 shows that the delay disappeared.

Figure 5: After changing the way in which torque data is read from the buffer, the delay issue is fixed.
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2.5 Pagmo
Pagmo was used for the implementation of the optimization (Biscani and Izzo, 2020).
Pagmo is an open-source library which can be used for parallel optimization. It supports
various algorithms that can be used to solve optimization problems.

Linking pagmo
To use the pagmo library in the optimization plugin, it was installed and linked to the op-
timization plugin library. First of all, the pagmo library source code (version 2.15.01) was
downloaded from https://github.com/esa/pagmo2/releases. The pagmo library requires
three other libraries: Boost, Intel TBB and Eigen3. Boost is already used by the plu-
gin. The TBB library (version 2020.3) was downloaded from https://github.com/oneapi-
src/oneTBB/releases/tag/v2020.3 and the Eigen3 library was downloaded from (ver-
sion 3.3.8) from http://eigen.tuxfamily.org/index.php?title=Main Page#Download and
installed. Then, the following paths were added to the PATH environment variable (to
enable the pagmo library to find the TBB library):

• C:\PATH\TO\TBBFOLDER\tbb\lib\intel64\vc14

• C:\PATH\TO\TBBFOLDER\tbb\bin\intel64\vc14

Also, the TBB and Eigen3 directories were set in the CMakeLists file from pagmo. Then,
pagmo was built and installed.

In the CMakeLists file from the optimisation plugin, the pagmo library was searched for
using the find package statement. Then, the pagmo library was linked to the optimization
plugin.

Pagmo problem
A user-defined problem (UDP) was created which could be solved by various algorithms
provided by the pagmo library. The code of the UDP can be found in appendix D. A
UDP is a class that contains at least the fitness(EMG) and get bounds() functions. The
former evaluates the objective function (equation 1) for a given set of EMGs and returns
the objective function value. The latter is used to provide the bounds for the the EMGs.
In this study, the UDP also contains the subject core class to which data is set before
evaluating the objective function as described in section 2.3. The actual optimization is
done in the evalfp() function. First, torques are received from (and calculated by) the
staticComputation object, which is a class that is used to remember all variables that
are necessary to evaluate the objective function, such as the EMG values before and after
adjustment and predicted torque values. Then, the first term of the objective function
is calculated. After that, initial and adjusted EMG values of the muscles of which EMG
is measured are received from the staticComputation object to calculate the third term
of the objective function. Finally, the second term of the objective function is evaluated
and the objective function value is calculated.

1From 2.16.0 onwards, pagmo requires a compiler which is able to understand at least C++17.
However, XSD offers no support for C++17, so using C++17 causes build errors with the XSD. Until
XSD has a new release with support for C++17, version 2.15.0 of pagmo should be used.

10

https://github.com/esa/pagmo2/releases
https://github.com/oneapi-src/oneTBB/releases/tag/v2020.3
https://github.com/oneapi-src/oneTBB/releases/tag/v2020.3
http://eigen.tuxfamily.org/index.php?title=Main_Page#Download


3 Experimental analysis

Experimental data were used to analyse the ability of the optimization plugin to opti-
mize in real-time and validate the output of the model. In this section, it is described
how experimental data was collected, which DOFs were considered for optimization and
which algorithms were compared to each other. It is concluded with a description of the
procedure that is used to validate the output.

3.1 Data collection
GRF data were recorded from one subject while walking with 1.8 km/h on a split-belt
treadmill (Motek Forcelink, the Netherlands) with a sampling frequency of 2 Khz. Kine-
matics were captured with a motion capture system (Qualisys, Sweden) with a sampling
frequency of 128 Hz.

Subject’s EMGs were measured using an EMG amplifier (Delsys Bagnoli System, USA)
with a sampling frequency of 2 Khz. Raw EMG signals were first high-pass filtered with
a cut-off frequency of 20 Hz. Then, they were full-wave rectified followed by a low-pass
filter with a cut-off frequency of 6 Hz. They were finally normalized with the EMG
values during maximum voluntary contraction, which were collected offline before the
measurement. Resulting muscle excitations were used as input to the model, as well as
torque calculated by ID.

In section section 2.3 it was described that a new optimization instance is started when
new LMT, MA and ID data are received by the plugin. These data are received at
64 Hz2, so the goal is to get a computation time of 1

64
= 0.015625 seconds. Subject-

specific parameters from the EMG-driven forward dynamics block were determined by a
calibration of the model. During this calibration, only the EMG-driven forward dynamics
block was used to calculate predicted joint torque, which was compared to the ID joint
torque in order to determine the subject-specific parameters.

3.2 DOF choice
In this study, it was chosen to only optimize the ankle joint in order to decrease com-
putation time. This limits the complexity of the problem and therefore the computation
time. The muscles spanning the ankle joint are soleus (SO), gastrocnemius medialis
(GM), gastrocnemius lateralis (GL) and tibialis anterior (TA).

2This should be 128 Hz, but there is a bug in the IK-ID plugin. Each time one ID torque value should
be read, it actually reads two values and discards the first one. Therefore, the information is written to
the plugin at 64 Hz instead of 128 Hz. This was discovered when writing the report, so it could not be
changed anymore.
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3.3 Algorithms
Three algorithms were tested on their ability to meet real-time requirements. The first al-
gorithm is simulated annealing (Corana et al., 1987). This algorithm is reliable in finding
the global optimum (as opposed to a local optimum) because of its ability to make uphill
moves. However, it is a costly algorithm and its sequential nature makes parallelization of
single objective function evaluations impossible. The other algorithms are PSOgen (Poli
et al., 2007) and CMAES (Hansen, 2006). These are population-based algorithms, so
single objective function evaluations can be parallelized, decreasing computation time.
Several tests were done for the PSOgen and CMAES algorithms with different values for
population size and number of generations.

Muscle excitation ranges from 0 to 1. However, it costs valuable computation time to
search the whole field, while excitations don’t change instantaneously. Information from
the previous excitation value can be used to set the boundaries for searching the current
excitation value. From EMG measurements it was checked that the maximum change
within 15.625 ms was 0.22. Therefore, the boundaries for the optimization problem were
in the range of:

(EMGpast − 0.22) ≤ EMGcurrent ≤ (EMGpast + 0.22)

Optimization of CMAES and PSOgen involves a large population of individuals whose
initial values are randomly assigned within the boundaries. The simulated annealing op-
timization involves only one individual, whose value was initialized with EMGpast.

3.4 Validation
The ability from each algorithm to work in real-time was assessed using the mean value
of the objective function and the mean computation time including their standard devi-
ations.

Results from the online optimization were compared to the results from an offline opti-
mization using simulated annealing. This algorithm used different parameters that made
it slow, but likely to find the global optimum. Therefore we can assume that the global
optimum of the optimization problem was found. Predicted joint torque and adjusted
excitations were validated using Pearson’s r and mean absolute error.
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4 Results

Figure 6 shows the computation time density distribution for each algorithm including
their 95% confidence interval, mean and median computation time values. This dis-
tribution was obtained by fitting a Kernel density estimation to the computation time
data.

Figure 6: For each algorithm, computation time density is shown, including their 95% confidence interval (blue),
mean (red) and median (yellow). Probability density distribution was obtained by fitting a Kernel distribution to the
computation time data.

With the SA algorithm, mean objective function value calculated by equation 1 was
48.13 ± 32.05. The mean computation time was 17.19 ± 4.53 ms. The PSOgen algo-
rithm obtained a better mean objective function value of 46.31 ± 30.61 when using 400
individuals and 10 generations. Mean computation time for this algorithm was 1165 ±
208.24 ms. When using 50 individuals and 6 generations, a mean computation time of
99.60 ± 22.86 ms was obtained, resulting in a mean objective function value of 55.03 ±
31.14. The CMAES algorithm resulted in mean objective function value of 47.14 ± 30.78
when using 100 individuals and 6 generations, which had a mean computation time of
226.21 ± 40.71. Faster results were obtained with 50 individuals and 6 generations with
a mean computation time of 127.35 ± 24.23 ms. Mean objective function value for this
algorithm was 51.42 ± 30.78. All results are presented in table 1.
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Table 1: The mean objective function values f and time (including standard deviations) for the three algorithms with
several parameters. Population size is the number of individuals used in the population. Simulated annealing is not a
population-based algorithm, so it contains 1 individual. PSOgen and CMAES are population-based algorithms, so their
performance and computation time depend on the population size. Also the number of generations gen is varied for those
algorithms.

Algorithm Pop size Gen f Time (ms)
SAoffline 1 - 43.66 ± 31.03 861.49 ± 73.46
SART 1 - 48.13 ± 32.05 17.19 ± 4.53
PSOgen 400 10 46.31 ± 30.61 1165 ± 208.24
PSOgen 200 6 49.53 ± 30.41 378.88 ± 64.47
PSOgen 100 6 51.49 ± 30.50 191.39 ± 36.02
PSOgen 100 3 65.86 ± 33.69 128.34 ± 27.64
PSOgen 50 6 55.03 ± 31.14 99.60 ± 22.86
CMAES 100 6 47.14 ± 30.78 226.21 ± 40.71
CMAES 100 3 54.82 ± 30.91 140.00 ± 27.29
CMAES 50 6 51.42 ± 30.78 127.35 ± 24.23
CMAES 50 3 65.91 ± 34.68 76.68 ± 20.36

Figure 7 shows plots of EMG and torque for the real-time EMG model using SA. Op-
timized EMG using the real-time algorithm is compared to optimized EMG using the
offline SA algorithm and unoptimized EMG for TA, SO, GM and GL muscles. Although
validation was done using data from multiple gait cycles, only one gait cycle is shown in
figures 7 to 9 for clarity. Begin and end of the gait cycle were determined by the low peak
in torque calculated by ID. It can be seen that excitation and torque values are close to
those values for the offline SA algorithm.

(a) EMG plot for the real-time SA algorithm (blue) compared to op-
timized EMG using the offline SA algorithm (red) and unoptimized
EMG (orange) for each muscle.

(b) Torque plot for the real-time SA algorithm (blue) compared
to ID torque (black) and torque calculated from unoptimized EMG
(orange).

Figure 7: EMG (a) and torque (b) plots for the real-time SA algorithm.
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Figure 8 shows the same plots of EMG and torque for the CMAES algorithms.
It can be seen that for slow CMAES algorithms excitation and torque values are
close to those values for the offline SA algorithm. However, for faster CMAES algo-
rithms, the number of times that the global minimum can not be found increases.

Figure 8: Plots of EMG (left) and torque (right) for the CMAES algorithm with different parameters
(rows). The values between brackets represent population size and number of generations, respectively.
Begin and end of the gait cycle were determined by the low peak in torque calculated by ID. Optimized
EMG (blue) is compared to optimized EMG using the offline SA algorithm (red) and unoptimized (measured)
EMG (orange) for tibialis anterior (TA), soleus (SO), gastrocnemius medialis (GM) and gastrocnemius
lateralis (GL) muscles. Optimized torque (blue) is compared to ID torque (black) and torque calculated
from unoptimized (measured) EMG (orange).
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The same plots for the PSOgen algorithm are shown in figure figure 9. As with the
CMAES algorithm, excitation and torque values are close to those values for the
offline SA algorithm for slow PSO algorithms, but with faster PSO algorithms the
similarity decreases.

Figure 9: Plots of EMG (left) and torque (right) for the PSOgen algorithm with different parameters
(rows). The values between brackets represent population size and number of generations, respectively.
Begin and end of the gait cycle were determined by the low peak in torque calculated by ID. Optimized
EMG (blue) is compared to optimized EMG using the offline SA algorithm (red) and unoptimized (measured)
EMG (orange) for tibialis anterior (TA), soleus (SO), gastrocnemius medialis (GM) and gastrocnemius
lateralis (GL) muscles. Optimized torque (blue) is compared to ID torque (black) and torque calculated
from unoptimized (measured) EMG (orange).
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Pearson’s r and mean absolute error for each algorithm compared to the offline SA algo-
rithm are shown in table 2.

Table 2: Pearson’s correlation value r and mean absolute error (MAE) and standard deviation for each algorithm (Alg).
Population size P and number of generations G are specified for the PSOgen and CMAES algorithms. r and MAE are
shown for each muscle as well as the mean value for the muscles and the value for the torque.

Alg r MAE Alg r MAE
SART TA 0.98 0.01 ± 0.01 PSOgen TA 1.00 0.004 ± 0.01

SO 0.98 0.005 ± 0.01 SO 1.00 0.002 ± 0.004
GM 1.00 0.003 ± 0.004 P = 400 GM 1.00 0.002 ± 0.003
GL 0.98 0.002 ± 0.003 G = 10 GL 0.98 0.002 ± 0.003
Mean muscles 0.98 0.005 ± 0.009 Mean muscles 0.99 0.003 ± 0.004
Torque 1.00 1.95 Nm ± 1.22 Torque 1.00 1.93 Nm ± 0.88

CMAES TA 0.99 0.01 ± 0.01 PSOgen TA 0.98 0.01 ± 0.01
SO 1.00 0.003 ± 0.005 SO 0.99 0.004 ± 0.01

P = 100 GM 1.00 0.003 ± 0.004 P = 200 GM 1.00 0.004 ± 0.005
G = 6 GL 0.98 0.003 ± 0.003 G = 6 GL 0.94 0.004 ± 0.005

Mean muscles 0.99 0.004 ± 0.01 Mean muscles 0.98 0.005 ± 0.01
Torque 1.00 1.96 Nm ± 0.97 Torque 1.00 1.93 Nm ± 1.03

CMAES TA 0.97 0.01 ± 0.01 PSOgen TA 0.98 0.01 ± 0.01
SO 0.99 0.005 ± 0.01 SO 0.99 0.004 ± 0.01

P = 100 GM 0.99 0.01 ± 0.01 P = 100 GM 0.99 0.005 ± 0.01
G = 3 GL 0.85 0.01 ± 0.01 G = 6 GL 0.89 0.005 ± 0.01

Mean muscles 0.95 0.01 ± 0.01 Mean muscles 0.97 0.01 ± 0.01
Torque 1.00 2.13 Nm ± 1.39 Torque 1.00 1.97 Nm ± 1.16

CMAES TA 0.98 0.01 ± 0.01 PSOgen TA 0.93 0.02 ± 0.02
SO 0.99 0.004 ± 0.01 SO 0.98 0.01 ± 0.01

P = 50 GM 0.99 0.005 ± 0.01 P = 100 GM 0.97 0.01 ± 0.02
G = 6 GL 0.91 0.01 ± 0.01 G = 3 GL 0.66 0.01 ± 0.02

Mean muscles 0.97 0.01 ± 0.01 Mean muscles 0.88 0.01 ± 0.02
Torque 1.00 2.01 Nm ± 1.21 Torque 0.99 2.22 Nm ± 1.62

CMAES TA 0.93 0.02 ± 0.02 PSOgen TA 0.97 0.01 ± 0.01
SO 0.97 0.01 ± 0.01 SO 0.99 0.005 ± 0.01

P = 50 GM 0.96 0.01 ± 0.02 P = 50 GM 0.99 0.01 ± 0.01
G = 3 GL 0.62 0.01 ± 0.02 G = 6 GL 0.84 0.01 ± 0.01

Mean muscles 0.87 0.01 ± 0.02 Mean muscles 0.94 0.01 ± 0.01
Torque 0.99 2.34 Nm ± 1.69 Torque 1.00 2.09 Nm ± 1.33
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5 Discussion

A real-time hybrid NMS model was developed that overcomes torque errors in open-loop
EMG-based NMS modeling due to limitations in EMG measurements (such as cross-talk,
movement artefacts and the weak association between EMG amplitude and motor unit
action potentials) and model imperfections. The hybrid model from Sartori et al. (2014) is
adapted such that it also works in real-time. It is implemented as an extension to the real-
time open-loop NMS model from Durandau et al. (2018). This model works in real-time
with a frequency of 64 Hz and therefore enables online measurement of muscle excitations,
forces and joint torques, which can be used in experiments for biofeedback or in a clinical
environment to obtain insight in impairments of a patient’s NMS system.

Several optimizations were done in order to compare SA to population-based algorithm
PSOgen. It can be seen from table 1 and table 2 that SA with real-time parameters
performs similar to PSOgen and CMAES even with population sizes of 100 individuals
and 6 generations, where computation time is too large to work in real-time. This means
that it will not benefit from multithreading, because even when PSOgen or CMAES are
multithreaded to work in real-time, they will not or hardly perform better than SA.

For this study, it was chosen to use the input frequency of the IK and ID plugins as a goal
for the optimization frequency. A higher frequency can be obtained when the optimiza-
tion is performed each time a new EMG datum is obtained. For this to work, computation
time of the optimization must be decreased. With SA, the only possibility is to change
the parameters, which will decrease the precision of the optimization. With PSOgen and
CMAES algorithms, similar precision can be maintained with a multithreaded environ-
ment. Therefore, PSOgen and CMAES have the ability to provide similar precision at a
higher frequency.

This study focused on the ankle joint only. When optimizing for multiple joints, compu-
tation time increases. Calculation of muscle activations, fibre kinematics, muscle forces
and joint torques can be multithreaded to counteract this. For one joint with four muscles
as in this study, this will not make a big difference, but for modeling the lower extremities
during walking this will have a large effect.

Joint loads (Kinney et al., 2013) and joint stiffness (Sartori et al., 2015) are currently
measured offline in a clinical environment. The real-time hybrid NMS model that was
developed in this study can potentially be used to obtain online measurements of these hu-
man movement data, or of other data such as EMG, muscle stiffness or joint torque.

The hybrid optimization of EMG measurements enables online measurement of EMG
signals that produce realistic joint torques as calculated by ID. This real-time adjusted
EMG signal can be used to drive an exoskeleton, which would not be possible with offline
EMG measurements.
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Appendix
A. XML file

1 <?xml version="1.0"?>

2 <optimization xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -

instance"

3 xsi:noNamespaceSchemaLocation="../../ XSD/

executionOptimization.xsd">

4
5 <Hybrid >

6 <alpha>1</alpha >

7 <beta>15</beta>

8 <gamma>500</gamma>

9 <trackedMuscles >med_gas_l lat_gas_l soleus_l

tib_ant_l </trackedMuscles >

10 <predictedMuscles ></predictedMuscles >

11 <DOFsOptimized >ankle_angle_l </DOFsOptimized >

12 </Hybrid >

13
14 </optimization >

B. Erase unused DOFs

1 template <typename Act ivat ion , typename Tendon , CurveMode : : Mode mode>
2 void NMSmodel<Activat ion , Tendon , mode> : : eraseUnusedDofs ( const std : : vector<

std : : s t r i ng>& dofNamesUsed , std : : vector<unsigned int>& dofsNotErased ) {
3 auto dofNameIt = dofNames . begin ( ) ; // I t e r a t o r through the DOF names
4 auto d o f I t = d o f s . begin ( ) ; // I t e r a t o r through the DOFs
5 dofsNotErased . c l e a r ( ) ; // dofsNotErased remembers which

DOFs o f the model are not erased . These can be used f o r us ing the
r i g h t MA and ID torque data

6 unsigned i n t i { 0 } ;
7 whi le ( dofNameIt != dofNames . end ( ) ) // loop through a l l DOFs in the

model
8 {
9 i f ( s td : : f i n d ( dofNamesUsed . begin ( ) , dofNamesUsed . end ( ) , ∗dofNameIt )

== dofNamesUsed . end ( ) ) // i f the DOF i s not used : e r a s e the DOF
10 {
11 d o f I t = d o f s . e r a s e ( d o f I t ) ;
12 dofNameIt = dofNames . e r a s e ( dofNameIt ) ;
13 }
14 e l s e // e l s e : i n c r e a s e i t e r a t o r s
15 {
16 ++dofNameIt ;
17 ++d o f I t ;
18 dofsNotErased . push back ( i ) ; // now we know which DOFs are not

erased , so we know which MAs to use
19 }

21



20 i ++;
21 }
22 }

C. Optimization plugin
Header files that are included were hidden for readability.

OptimizationHybridPlugin.h

1 us ing namespace Hybrid ;
2 us ing namespace pagmo ;
3

4 #i f d e f WIN32
5 template <typename NMSmodelT>
6 c l a s s d e c l s p e c ( d l l e x p o r t ) Optimizat ionHybridPlugin : pub l i c

Optimizat ionPlugin<NMSmodelT>
7 #e n d i f
8 #i f d e f UNIX
9 template <typename NMSmodelT>

10 c l a s s Optimizat ionHybridPlugin : pub l i c Optimizat ionPlugin<NMSmodelT>
11 #e n d i f
12 {
13 pub l i c :
14 Optimizat ionHybridPlugin ( ) ;
15 ˜ Optimizat ionHybridPlugin ( ) ;
16 void i n i t (NMSmodelT& model , const std : : s t r i n g& executionXMLFileName ,

const std : : s t r i n g& conf igurat ionFi l eName ) ;
17 void newData ( ) ;
18

19 std : : vector<double> getDofTorque ( ) ;
20 std : : vector<double> getShapeFactor ( ) ;
21 std : : vector<double> getTendonSlackLengths ( ) ;
22 std : : vector<double> getOptimalFiberLengths ( ) ;
23 std : : vector<double> getGroupMusclesBasedOnStrengthCoef f ic ients ( ) ;
24

25 void setLmt ( const std : : vector<double>& lmt ) ;
26 void setMA( const std : : vector<std : : vector<double> >& ma) ;
27 void setMusc leForce ( const std : : vector<double>& muscleForce ) ;
28 void setDOFTorque ( const std : : vector<double>& dofTorque ) ; // not used
29 void setExternalDOFTorque ( const std : : vector<double>& externalDOFTorque ) ;
30 void s e t A c t i v a t i o n s ( const std : : vector<double>& a c t i v a t i o n s ) ;
31 void se tF ibreLengths ( const std : : vector<double>& f ib r eLeng th s ) ;
32 void s e t F i b r e V e l o c i t i e s ( const std : : vector<double>& f i b r e V e l o c i t i e s ) ;
33 void setPennat ionAngle ( const std : : vector<double>& pennationAngle ) ;
34 void setTendonLength ( const std : : vector<double>& tendonLength ) ;
35 void setTime ( const double& time ) ;
36 void setEmgs ( const std : : vector<double>& Emgs) ;
37 // void s e t B u f f e r ( const double& time , const std : : vector<double>& Emgs ,

const std : : vector<double>& externalDOFTorque , const std : : vector<
double>& lmt , const std : : vector<std : : vector<double> >& ma) ;

38 void se tJo in tAng l e ( const std : : vector<double>& jo in tAng l e ) {}
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39

40 void s t a r t ( ) ;
41 void stop ( ) ;
42 void s e t D i r e c t o r i e s ( const std : : s t r i n g& outDirectory , const std : : s t r i n g&

inDi r e c to ry = std : : s t r i n g ( ) ) ;
43 void setVerbose ( const i n t& verbose ) ;
44 void setRecord ( const bool& record ) ;
45

46 protec ted :
47

48 void opt imiza t i on ( ) ;
49

50 void setupSubject (NMSmodelT& mySubject , s t r i n g c o n f i g u r a t i o n F i l e ) ;
51

52 NMSmodelT∗ model ;
53 ErrorMinimizerAnneal ing<NMSmodelT>∗ torqueErrorMin imizer ;
54 std : : vector<std : : s t r i ng> dofName ;
55 std : : vector<std : : s t r i ng> muscleName ;
56

57 std : : vector<double> shapeFactor ;
58 std : : vector<double> tendonSlackLengths ;
59 std : : vector<double> opt imalFiberLengths ;
60 std : : vector<double> groupMusc lesBasedOnStrengthCoe f f i c i ents ;
61

62 std : : vector<std : : vector<double> > ma ;
63 std : : vector<double> lmt ;
64 std : : vector<double> muscleForce ;
65 std : : vector<double> dofTorque ; // not used
66 std : : vector<double> externalDOFTorque ;
67 std : : vector<double> a c t i v a t i o n s ;
68 std : : vector<double> f i b r e L e n g t h s ;
69 std : : vector<double> f i b r e V e l o c i t i e s ;
70 std : : vector<double> pennat ionAngle ;
71 std : : vector<double> tendonLength ;
72 std : : vector<double> Emgs ;
73 double t ime ;
74 std : : l i s t <double> t imeBuf f e r ;
75 std : : l i s t <std : : vector<double>> EmgsBuffer ;
76 std : : l i s t <std : : vector<double>> externalDOFTorqueBuffer ;
77 std : : l i s t <std : : vector<double>> lmtBuf f e r ;
78 std : : l i s t <std : : vector<std : : vector<double>>> maBuffer ;
79 bool bufferEmpty ;
80 std : : vector<unsigned int> dofsUsed ;
81 double tota lTime ;
82 double t o t a l F i t n e s s ;
83

84 std : : s t r i n g outDi r e c to ry ;
85 bool r e c o r d ;
86 OpenSimFileLogger<NMSmodelT>∗ l o g g e r ;
87

88 boost : : thread ∗ thread ;
89 boost : : mutex DataMutex ;
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90 boost : : mutex newDataMutex ;
91 bool newData ;
92 boost : : c o n d i t i o n v a r i a b l e conditionNewData ;
93 bool threadStop ;
94

95 // Pagmo
96 PagmoProblem<NMSmodelT> UDP ;
97 std : : vector<unsigned> muscleIndexWithEMGtoTrack ;
98 std : : vector<unsigned> muscleIndexWithEMGtoPredict ;
99 std : : vector<unsigned> muscleIndexWithEMGtoOptimize ;

100 unsigned noParameters ;
101 boost : : mutex pagmoMutex ;
102

103 // Computation time l o g g e r
104 std : : o f s tream computationTimeLogger ;
105 } ;
106 #e n d i f

OptimizationHybridPlugin.cpp

1 #inc lude ” Optimizat ionHybridPlugin . h”
2

3 template <typename NMSmodelT>
4 OptimizationHybridPlugin<NMSmodelT> : : Optimizat ionHybridPlugin ( ) :

threadStop ( t rue ) , r e c o r d ( f a l s e ) , newData ( f a l s e ) , bufferEmpty ( f a l s e ) ,
tota lTime (0) , t o t a l F i t n e s s (0 )

5 {
6 }
7

8 template <typename NMSmodelT>
9 OptimizationHybridPlugin<NMSmodelT> : :˜ Optimizat ionHybridPlugin ( )

10 {
11 }
12

13 template <typename NMSmodelT>
14 void OptimizationHybridPlugin<NMSmodelT> : : i n i t (NMSmodelT& model , const std

: : s t r i n g& executionXMLFileName , const std : : s t r i n g& conf igurat ionFi l eName
)

15 {
16 model = new NMSmodelT( ) ;
17 se tupSubject (∗ model , con f igurat ionFi l eName ) ;
18

19 model −>getMuscleNames ( muscleName ) ;
20

21 ExecutionXmlReader execut ion ( executionXMLFileName ) ;
22 ExecutionOptimizationXmlReader execut ionOpt imizat ion ( execut ion .

ge tOpt imiza t i onF i l e ( ) ) ;
23

24 dofName = execut ionOpt imizat ion . getHybridDOFsOptimized ( ) ;
25

26 i f ( r e c o r d )
27 {
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28 std : : s t r i n g d i r e c t o r i O p t i m i z a t i o n = outDi r e c to ry + ”/ Optimizat ion /” ;
29 l o g g e r = new OpenSimFileLogger<NMSmodelT>(∗model ,

d i r e c t o r i O p t i m i z a t i o n ) ;
30 l o gge r −>addLog ( Logger : : ShapeFactor , muscleName ) ;
31 l o gge r −>addLog ( Logger : : TendonSlackLengths , muscleName ) ;
32 l o gge r −>addLog ( Logger : : OptimalFiberLengths , muscleName ) ;
33 l o gge r −>addLog ( Logger : : GroupMusclesBasedOnStrengthCoef f ic ients ,

muscleName ) ;
34 l o gge r −>addLog ( Logger : : Emgs , muscleName ) ;
35 l o gge r −>addLog ( Logger : : Act ivat ions , muscleName ) ;
36 l o gge r −>addLog ( Logger : : FibreLengths , muscleName ) ;
37 l o gge r −>addLog ( Logger : : F i b r e V e l o c i t i e s , muscleName ) ;
38 l o gge r −>addLog ( Logger : : MuscleForces , muscleName ) ;
39 l o gge r −>addLog ( Logger : :LMT, muscleName ) ;
40 l o gge r −>addLog ( Logger : : Torques , dofName ) ;
41 std : : vector<std : : s t r i ng> muscle{ ” muscle1 ” , ” muscle2 ” , ” muscle3 ” , ”

muscle4 ” } ;
42 f o r ( std : : vector<std : : s t r i ng > : : c o n s t i t e r a t o r i t = dofName . begin ( ) ;

i t != dofName . end ( ) ; i t ++)
43 {
44 l o gge r −>addMa(∗ i t , muscle ) ;
45 }
46 computationTimeLogger . open ( d i r e c t o r i O p t i m i z a t i o n + ”ComputationTime .

s to ” ) ; // opens the f i l e
47 computationTimeLogger << ”Time\ t ” << ”Computation time\ t ” << ”

F i tne s s ” << std : : endl ;
48 i f ( ! computationTimeLogger )
49 {
50 std : : c e r r << ” Error : computation time l o g g e r f i l e could not be

opened” << std : : endl ;
51 e x i t (1 ) ;
52 }
53 }
54

55 model −>eraseUnusedDofs ( dofName , dofsUsed ) ;
56

57 UDP . setModel ( model ) ;
58 UDP . setWeight ings ( execut ionOpt imizat ion . getHybridWeightings ( ) ) ;
59 UDP . se tPer fo rmanceCr i t e r i on ( execut ionOpt imizat ion .

ge tPer fo rmanceCr i t e r ion ( ) ) ;
60

61 model −>getMusclesIndexFromMusclesList ( muscleIndexWithEMGtoTrack ,
execut ionOpt imizat ion . getHybridMuscleWithEMG ( ) ) ;

62 model −>getMusclesIndexFromMusclesList ( muscleIndexWithEMGtoPredict ,
execut ionOpt imizat ion . getHybridMuscleWithEMGToPredict ( ) ) ;

63 muscleIndexWithEMGtoOptimize . a s s i g n ( muscleIndexWithEMGtoTrack . begin ( ) ,
muscleIndexWithEMGtoTrack . end ( ) ) ;

64 muscleIndexWithEMGtoOptimize . i n s e r t ( muscleIndexWithEMGtoOptimize . end ( )
, muscleIndexWithEMGtoPredict . begin ( ) , muscleIndexWithEMGtoPredict .
end ( ) ) ;

65 noParameters = muscleIndexWithEMGtoOptimize . s i z e ( ) ;
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66 UDP . setMusclesNamesWithEmgToTrack ( execut ionOpt imizat ion .
getHybridMuscleWithEMG ( ) ) ;

67 UDP . setMusclesNamesWithEmgToPredict ( execut ionOpt imizat ion .
getHybridMuscleWithEMGToPredict ( ) ) ;

68 UDP . setNoParameters ( noParameters ) ;
69 UDP . setParameters ( ) ; // should be a f t e r setModel ( ) ,

setMusclesNamesWithEmgToTrack ( ) and setMusclesNamesWithEmgToPredict ( )
70

71 std : : vector<double> lowerBounds ;
72 std : : vector<double> upperBounds ;
73 f o r ( i n t i = 0 ; i < noParameters ; i++)
74 {
75 lowerBounds . push back ( 0 . 0 ) ;
76 upperBounds . push back ( 1 . 0 ) ;
77 }
78 UDP . set bounds ( lowerBounds , upperBounds ) ; // i n i t i a l boundar ies are

between 0 and 1
79 }
80

81 template <typename NMSmodelT>
82 void OptimizationHybridPlugin<NMSmodelT> : : s e tupSubject (NMSmodelT& mySubject

, s t r i n g c o n f i g u r a t i o n F i l e )
83 {
84 SetupDataStructure<NMSmodelT , Curve<CurveMode : : Online> > setupData (

c o n f i g u r a t i o n F i l e ) ;
85 setupData . createCurves ( ) ;
86 setupData . c reateMusc l e s ( mySubject ) ;
87 setupData . createDoFs ( mySubject ) ;
88 setupData . createMusclesNamesOnChannel ( mySubject ) ;
89 }
90

91 template <typename NMSmodelT>
92 std : : vector<double> OptimizationHybridPlugin<NMSmodelT> : : getDofTorque ( )
93 {
94 boost : : mutex : : s coped lock lock ( DataMutex ) ;
95 re turn dofTorque ;
96 }
97

98 template <typename NMSmodelT>
99 std : : vector<double> OptimizationHybridPlugin<NMSmodelT> : : getShapeFactor ( )

100 {
101 boost : : mutex : : s coped lock lock ( DataMutex ) ;
102 re turn shapeFactor ;
103 }
104

105 template <typename NMSmodelT>
106 std : : vector<double> OptimizationHybridPlugin<NMSmodelT> : :

getTendonSlackLengths ( )
107 {
108 boost : : mutex : : s coped lock lock ( DataMutex ) ;
109 re turn tendonSlackLengths ;
110 }
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111

112 template <typename NMSmodelT>
113 std : : vector<double> OptimizationHybridPlugin<NMSmodelT> : :

getOptimalFiberLengths ( )
114 {
115 boost : : mutex : : s coped lock lock ( DataMutex ) ;
116 re turn opt imalFiberLengths ;
117 }
118

119 template <typename NMSmodelT>
120 std : : vector<double> OptimizationHybridPlugin<NMSmodelT> : :

getGroupMusclesBasedOnStrengthCoef f ic ients ( )
121 {
122 boost : : mutex : : s coped lock lock ( DataMutex ) ;
123 re turn groupMusc lesBasedOnStrengthCoe f f i c i ents ;
124 }
125

126 template <typename NMSmodelT>
127 void OptimizationHybridPlugin<NMSmodelT> : : setMusc leForce ( const std : : vector<

double>& muscleForce )
128 {
129 boost : : mutex : : s coped lock lock ( DataMutex ) ;
130 muscleForce = muscleForce ;
131 }
132

133 template <typename NMSmodelT>
134 void OptimizationHybridPlugin<NMSmodelT> : : setDOFTorque ( const std : : vector<

double>& dofTorque )
135 {
136 boost : : mutex : : s coped lock lock ( DataMutex ) ;
137 dofTorque = dofTorque ;
138 //newData = true ;
139 }
140

141 template <typename NMSmodelT>
142 void OptimizationHybridPlugin<NMSmodelT> : : setExternalDOFTorque ( const std : :

vector<double>& externalDOFTorque )
143 {
144 boost : : mutex : : s coped lock lock ( DataMutex ) ;
145 externalDOFTorque = externalDOFTorque ; // Comment out f o r b u f f e r
146 // externalDOFTorqueBuffer . push back ( externalDOFTorque ) ;
147 }
148

149 template <typename NMSmodelT>
150 void OptimizationHybridPlugin<NMSmodelT> : : s e t A c t i v a t i o n s ( const std : : vector<

double>& a c t i v a t i o n s )
151 {
152 boost : : mutex : : s coped lock lock ( DataMutex ) ;
153 a c t i v a t i o n s = a c t i v a t i o n s ;
154 }
155

156 template <typename NMSmodelT>
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157 void OptimizationHybridPlugin<NMSmodelT> : : s e tF ibreLengths ( const std : : vector
<double>& f ib r eLeng th s )

158 {
159 boost : : mutex : : s coped lock lock ( DataMutex ) ;
160 f i b r e L e n g t h s = f ib r eLeng th s ;
161 }
162

163 template <typename NMSmodelT>
164 void OptimizationHybridPlugin<NMSmodelT> : : s e t F i b r e V e l o c i t i e s ( const std : :

vector<double>& f i b r e V e l o c i t i e s )
165 {
166 boost : : mutex : : s coped lock lock ( DataMutex ) ;
167 f i b r e V e l o c i t i e s = f i b r e V e l o c i t i e s ;
168 }
169

170 template <typename NMSmodelT>
171 void OptimizationHybridPlugin<NMSmodelT> : : setPennat ionAngle ( const std : :

vector<double>& pennationAngle )
172 {
173 boost : : mutex : : s coped lock lock ( DataMutex ) ;
174 pennat ionAngle = pennationAngle ;
175 }
176

177 template <typename NMSmodelT>
178 void OptimizationHybridPlugin<NMSmodelT> : : setTendonLength ( const std : : vector

<double>& tendonLength )
179 {
180 boost : : mutex : : s coped lock lock ( DataMutex ) ;
181 tendonLength = tendonLength ;
182 }
183

184 template <typename NMSmodelT>
185 void OptimizationHybridPlugin<NMSmodelT> : : setTime ( const double& time )
186 {
187 boost : : mutex : : s coped lock lock ( DataMutex ) ;
188 t ime = time ; // Comment out f o r b u f f e r
189 // t imeBuf f e r . push back ( time ) ;
190 }
191

192 template <typename NMSmodelT>
193 void OptimizationHybridPlugin<NMSmodelT> : : setEmgs ( const std : : vector<double

>& Emgs)
194 {
195 boost : : mutex : : s coped lock lock ( DataMutex ) ;
196 Emgs = Emgs ; // Comment out f o r b u f f e r
197 // EmgsBuffer . push back (Emgs) ;
198 }
199

200 template <typename NMSmodelT>
201 bool OptimizationHybridPlugin<NMSmodelT> : : getFromBuffer ( double& time , std : :

vector<double>& Emgs , std : : vector<double>& externalDOFTorque , std : :
vector<double>& lmt , std : : vector<std : : vector<double> >& ma)

28



202 {
203 boost : : mutex : : s coped lock lock ( DataMutex ) ;
204 time = t imeBuf f e r . f r o n t ( ) ;
205 t imeBuf f e r . pop f ront ( ) ;
206 Emgs = EmgsBuffer . f r o n t ( ) ;
207 EmgsBuffer . pop f ront ( ) ;
208 externalDOFTorque = externalDOFTorqueBuffer . f r o n t ( ) ;
209 externalDOFTorqueBuffer . pop f ront ( ) ;
210 lmt = lmtBuf f e r . f r o n t ( ) ;
211 lmtBuf f e r . pop f ront ( ) ;
212 ma = maBuffer . f r o n t ( ) ;
213 maBuffer . pop f ront ( ) ;
214

215 re turn EmgsBuffer . empty ( ) ;
216 }
217

218 template <typename NMSmodelT>
219 void OptimizationHybridPlugin<NMSmodelT> : : setLmt ( const std : : vector<double>&

lmt )
220 {
221 boost : : mutex : : s coped lock lock ( DataMutex ) ;
222 lmt = lmt ; // Comment out f o r b u f f e r
223 // lmtBuf f e r . push back ( lmt ) ;
224 }
225

226 template <typename NMSmodelT>
227 void OptimizationHybridPlugin<NMSmodelT> : : setMA( const std : : vector<std : :

vector<double> >& ma)
228 {
229 boost : : mutex : : s coped lock lock ( DataMutex ) ;
230 ma = ma; // Comment out f o r b u f f e r
231 // maBuffer . push back (ma) ;
232 }
233

234 template <typename NMSmodelT>
235 void OptimizationHybridPlugin<NMSmodelT> : : s t a r t ( )
236 {
237 thread = new boost : : thread ( boost : : bind(&OptimizationHybridPlugin<

NMSmodelT> : : opt imizat ion , t h i s ) ) ;
238 }
239

240 template <typename NMSmodelT>
241 void OptimizationHybridPlugin<NMSmodelT> : : s top ( )
242 {
243 threadStop = f a l s e ;
244 {
245 boost : : mutex : : s coped lock lock ( newDataMutex ) ;
246 newData = true ;
247 conditionNewData . n o t i f y o n e ( ) ;
248 } // Comment out f o r b u f f e r
249 thread −>j o i n ( ) ;
250 i f ( r e c o r d )
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251 {
252 l o gge r −>stop ( ) ;
253 d e l e t e l o g g e r ;
254 }
255 d e l e t e thread ;
256 d e l e t e model ;
257 }
258

259 template <typename NMSmodelT>
260 void OptimizationHybridPlugin<NMSmodelT> : : s e t D i r e c t o r i e s ( const std : : s t r i n g&

outDirectory , const std : : s t r i n g& inD i r e c to ry )
261 {
262 outDi r e c to ry = outDirec tory ;
263 }
264

265 template <typename NMSmodelT>
266 void OptimizationHybridPlugin<NMSmodelT> : : se tVerbose ( const i n t& verbose )
267 {
268 }
269

270 template <typename NMSmodelT>
271 void OptimizationHybridPlugin<NMSmodelT> : : setRecord ( const bool& record )
272 {
273 r e c o r d = record ;
274 }
275

276 template <typename NMSmodelT>
277 void OptimizationHybridPlugin<NMSmodelT> : : newData ( )
278 {
279 boost : : mutex : : s coped lock lock ( newDataMutex ) ;
280 newData = true ;
281 conditionNewData . n o t i f y o n e ( ) ;
282 }
283

284 template <typename NMSmodelT>
285 void OptimizationHybridPlugin<NMSmodelT> : : op t im iza t i on ( )
286 {
287 i n t pass { 0 } ;
288 whi le ( threadStop ) // not r ea l −time : ( ! bufferEmpty | | ( pass < 2999) ) //

when working in rea l −time t h i s should be : whi l e ( threadStop )
289 {
290 ++pass ;
291

292 {
293 boost : : mutex : : s coped lock lock ( newDataMutex ) ;
294 whi le ( ! newData ) conditionNewData . wait ( l o ck ) ;
295 newData = f a l s e ; // Comment out f o r b u f f e r
296 }
297

298 // bufferEmpty = getFromBuffer ( time , Emgs , externalDOFTorque , lmt
, ma ) ; // get data from one time frame

299
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300 auto s t a r t = std : : chrono : : s t e a d y c l o c k : : now ( ) ;
301

302 DataMutex . l o ck ( ) ;
303

304 unsigned i n t i = 0 ;
305 f o r ( auto i t = dofsUsed . begin ( ) ; i t != dofsUsed . end ( ) ; ++i t ) // s e t

e x t e r n a l torques f o r the DOFs that are opt imized
306 {
307 UDP . se tS ing l eExte rna lTorque ( externalDOFTorque . at (∗ i t ) , dofName .

at ( i ) ) ;
308 i ++;
309 }
310

311 model −>setTime ( t ime ) ;
312 model −>setEmgs ( Emgs ) ;
313 model −>setMuscleTendonLengths ( lmt ) ;
314

315 unsigned i n t j = 0 ;
316 std : : vector<vector<double>> ma log ; // f o r l ogg ing the moment arms
317 f o r ( auto i t = dofsUsed . begin ( ) ; i t != dofsUsed . end ( ) ; ++i t ) // s e t

moment arms f o r the DOFs that are opt imized
318 {
319 model −>setMomentArms (ma . at (∗ i t ) , j ) ;
320 j ++;
321 ma log . push back (ma . at (∗ i t ) ) ;
322 }
323

324 UDP . setStat icComputat ion ( ) ;
325 DataMutex . unlock ( ) ;
326

327 vector<double> pastEMGs , i n i t i a l G u e s s , lowerBounds , upperBounds ;
328 i n i t i a l G u e s s . r e s i z e ( noParameters ) ;
329 lowerBounds . r e s i z e ( noParameters ) ;
330 upperBounds . r e s i z e ( noParameters ) ;
331 model −>getPastEmgs (pastEMGs) ;
332 unsigned indexCt = 0 ;
333 double range = . 2 2 ;
334 f o r ( unsigned i = 0 ; i < muscleIndexWithEMGtoTrack . s i z e ( ) ; ++i , ++

indexCt )
335 {
336 i n i t i a l G u e s s . at ( indexCt ) = pastEMGs . at ( muscleIndexWithEMGtoTrack .

at ( i ) ) ;
337 lowerBounds . at ( indexCt ) = i n i t i a l G u e s s . at ( indexCt ) − range ;
338 upperBounds . at ( indexCt ) = i n i t i a l G u e s s . at ( indexCt ) + range ;
339 i f ( lowerBounds . at ( indexCt ) < 0 . )
340 lowerBounds . at ( indexCt ) = 0 . ;
341 i f ( upperBounds . at ( indexCt ) > 1 . )
342 upperBounds . at ( indexCt ) = 1 . ;
343 }
344 f o r ( unsigned i = 0 ; i < muscleIndexWithEMGtoPredict . s i z e ( ) ; ++i , ++

indexCt )
345 {
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346 i n i t i a l G u e s s . at ( indexCt ) = pastEMGs . at (
muscleIndexWithEMGtoPredict . at ( i ) ) ;

347 lowerBounds . at ( indexCt ) = i n i t i a l G u e s s . at ( indexCt ) − range ;
348 upperBounds . at ( indexCt ) = i n i t i a l G u e s s . at ( indexCt ) + range ;
349 i f ( lowerBounds . at ( indexCt ) < 0 . )
350 lowerBounds . at ( indexCt ) = 0 . ;
351 i f ( upperBounds . at ( indexCt ) > 1 . )
352 upperBounds . at ( indexCt ) = 1 . ;
353 }
354

355 UDP . set bounds ( lowerBounds , upperBounds ) ;
356

357 problem prob{ UDP } ;
358

359 // auto UDA = pagmo : : pso gen (6u) ;
360 //UDA. s e t b f e (pagmo : : b fe ( ) ) ;
361 // a lgor i thm algo {UDA} ;
362

363 a lgor i thm algo { pagmo : : s imu la t ed annea l ing ( 2 0 . , . 1 , 3 u , 1 u , 5 u , range ) } ;
364

365 std : : vector<double> b e s t f ;
366

367 populat ion pop{prob , 0 } ; // problem , p o p s i z e (0 ) , ( seed )
368

369 pop . push back ( i n i t i a l G u e s s ) ; // have measured EMGs as i n i t i a l guess
370

371 pop = algo . evo lve ( pop ) ;
372

373 std : : vector<double> x = pop . champion x ( ) ;
374

375 b e s t f = UDP . f i t n e s s ( x ) ; // to make sure that the champion x i s s e t
to the model and used to compute torque ( f o r l ogg ing )

376

377 i f ( r e c o r d )
378 {
379 l o gge r −>l og ( Logger : : ShapeFactor , t ime ) ;
380 l o gge r −>l og ( Logger : : TendonSlackLengths , t ime ) ;
381 l o gge r −>l og ( Logger : : OptimalFiberLengths , t ime ) ;
382 l o gge r −>l og ( Logger : : GroupMusclesBasedOnStrengthCoef f ic ients ,

t ime ) ;
383 l o gge r −>l og ( Logger : : Emgs , t ime ) ;
384 l o gge r −>l og ( Logger : : Act ivat ions , t ime ) ;
385 l o gge r −>l og ( Logger : : FibreLengths , t ime ) ;
386 l o gge r −>l og ( Logger : : F i b r e V e l o c i t i e s , t ime ) ;
387 l o gge r −>l og ( Logger : : MuscleForces , t ime ) ;
388 l o gge r −>l og ( Logger : :LMT, t ime ) ;
389 l o gge r −>l og ( Logger : : Torques , t ime ) ;
390 l o gge r −>logMa ( dofName , time , ma log ) ;
391 // computationTimeLogger << t ime << ” \ t ” << std : : chrono : :

durat ion <double , s td : : m i l l i >( d i f fM in i m i z e r ) . count ( ) << ” \ t ”
<< b e s t f . at (0 ) << std : : endl ;

392 }
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393 /∗ std : : cout << ”ma:\n ” ;
394 f o r ( unsigned i n t i d o f = 0 ; i d o f < ma . s i z e ( ) ; ++i d o f )
395 {
396 std : : cout << ”DOF ” << i d o f << ” : ” ;
397 f o r ( unsigned i n t i ma = 0 ; i ma < ma . at ( i d o f ) . s i z e ( ) ; ++i ma )
398 std : : cout << ma . at ( i d o f ) . at ( i ma ) << ” ” ;
399 std : : cout << ”\n ” ;
400 }∗/
401 std : : vector<double> emgs ;
402 std : : vector<double> torques ;
403 std : : vector<double> torques1 ;
404 // std : : vector<double> torques2 ;
405 DataMutex . l o ck ( ) ;
406 model −>ge tAc t i va t i on s ( a c t i v a t i o n s ) ;
407 model −>getFiberLengths ( f i b r e L e n g t h s ) ;
408 model −>g e t F i b e r V e l o c i t i e s ( f i b r e V e l o c i t i e s ) ;
409 model −>getPennationAngle ( pennat ionAngle ) ;
410 model −>getTendonLength ( tendonLength ) ;
411 model −>getEmgs ( emgs ) ;
412 // model −>getTorques ( torques ) ; // torques from minimizer
413 // model −>updateState HYBRID ( ) ;
414 // model −>getTorques ( torques1 ) ; // torques a f t e r updating s t a t e
415 // model −>setEmgs ( emgs ) ;
416 // model −>updateState HYBRID ( ) ;
417 // model −>getTorques ( torques2 ) ; // torques a f t e r s e t t i n g emg and

updating s t a t e
418 DataMutex . unlock ( ) ;
419

420 auto end = std : : chrono : : s t e a d y c l o c k : : now ( ) ;
421 auto d i f f = end − s t a r t ;
422 std : : cout << std : : chrono : : durat ion <double , s td : : m i l l i >( d i f f ) . count ( )

<< std : : endl ; // << ” ms”
423 tota lTime += std : : chrono : : durat ion <double , s td : : m i l l i >( d i f f ) . count

( ) ;
424 t o t a l F i t n e s s += b e s t f . at (0 ) ;
425 }
426 std : : cout << ”Mean time : ” << tota lTime / pass << ” ms” << std : : endl ;
427 std : : cout << ”Mean f i t n e s s : ” << t o t a l F i t n e s s / pass << std : : endl ;
428 std : : cout << ” Opt imizat ions done : ” << pass << std : : endl ;
429 computationTimeLogger . c l o s e ( ) ;
430 }
431

432 #i f d e f UNIX
433 extern ”C” {
434 Optimizat ionPlugin<NMSmodel<ExponentialActivationRT , St i f fTendon<Curve<

CurveMode : : Online> >, CurveMode : : Online> >∗ createEAS ( )
435 {
436 re turn new OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,

St i f fTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >;
437 }
438
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439 Optimizat ionPlugin<NMSmodel<ExponentialActivationRT , Elast icTendon BiSec
<Curve<CurveMode : : Online> >, CurveMode : : Online> >∗ createEAEB ( )

440 {
441 re turn new OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,

Elast icTendon BiSec<Curve<CurveMode : : Online> >, CurveMode : : Online
> >;

442 }
443

444 Optimizat ionPlugin<NMSmodel<ExponentialActivationRT , ElasticTendon<Curve
<CurveMode : : Online> >, CurveMode : : Online> >∗ createEAE ( )

445 {
446 re turn new OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,

ElasticTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >;
447 }
448 }
449

450 extern ”C” {
451 void destroyEAS ( Optimizat ionPlugin<NMSmodel<ExponentialActivationRT ,

St i f fTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >∗ p)
452 {
453 d e l e t e p ;
454 }
455

456 void destroyEAEB ( Optimizat ionPlugin<NMSmodel<ExponentialActivationRT ,
Elast icTendon BiSec<Curve<CurveMode : : Online> >, CurveMode : : Online> >∗
p)

457 {
458 d e l e t e p ;
459 }
460

461 void destroyEAE ( Optimizat ionPlugin<NMSmodel<ExponentialActivationRT ,
ElasticTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >∗ p)

462 {
463 d e l e t e p ;
464 }
465 }
466

467 #e n d i f
468

469 #i f d e f WIN32 // d e c l s p e c ( d l l e x p o r t ) id important f o r dynamic load ing
470 extern ”C” {
471 d e c l s p e c ( d l l e x p o r t ) Optimizat ionPlugin<NMSmodel<

ExponentialActivationRT , St i f fTendon<Curve<CurveMode : : Online> >,
CurveMode : : Online> >∗ c d e c l createEAS ( )

472 {
473 re turn new OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,

St i f fTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >;
474 }
475

476 d e c l s p e c ( d l l e x p o r t ) Optimizat ionPlugin<NMSmodel<
ExponentialActivationRT , Elast icTendon BiSec<Curve<CurveMode : : Online>
>, CurveMode : : Online> >∗ c d e c l createEAEB ( )
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477 {
478 re turn new OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,

Elast icTendon BiSec<Curve<CurveMode : : Online> >, CurveMode : : Online
> >;

479 }
480

481 d e c l s p e c ( d l l e x p o r t ) Optimizat ionPlugin<NMSmodel<
ExponentialActivationRT , ElasticTendon<Curve<CurveMode : : Online> >,
CurveMode : : Online> >∗ c d e c l createEAE ( )

482 {
483 re turn new OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,

ElasticTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >;
484 }
485 }
486

487 extern ”C” {
488 d e c l s p e c ( d l l e x p o r t ) void c d e c l destroyEAS ( Optimizat ionPlugin<

NMSmodel<ExponentialActivationRT , St i f fTendon<Curve<CurveMode : : Online
> >, CurveMode : : Online> >∗ p)

489 {
490 d e l e t e p ;
491 }
492

493 d e c l s p e c ( d l l e x p o r t ) void c d e c l destroyEAEB ( Optimizat ionPlugin<
NMSmodel<ExponentialActivationRT , Elast icTendon BiSec<Curve<CurveMode
: : Online> >, CurveMode : : Online> >∗ p)

494 {
495 d e l e t e p ;
496 }
497

498 d e c l s p e c ( d l l e x p o r t ) void c d e c l destroyEAE ( Optimizat ionPlugin<
NMSmodel<ExponentialActivationRT , ElasticTendon<Curve<CurveMode : :
Online> >, CurveMode : : Online> >∗ p)

499 {
500 d e l e t e p ;
501 }
502 }
503 #e n d i f
504

505 template c l a s s OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,
St i f fTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >;

506 template c l a s s OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,
Elast icTendon BiSec<Curve<CurveMode : : Online> >, CurveMode : : Online> >;

507 template c l a s s OptimizationHybridPlugin<NMSmodel<ExponentialActivationRT ,
ElasticTendon<Curve<CurveMode : : Online> >, CurveMode : : Online> >;

D. User-defined problem
The code files (.h and .cpp) for the Pagmo problem class are included in this appendix.
The ”set functions (init)” functions are called only once at the initialization of the plugin.
The ”set functions (loop)” functions are called for each time instance. At the same time
subject data (such as EMG, torque, lmt, ma) are set by the plugin. Then, the opti-
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mization is started. This optimization iteratively calls fitness() to evaluate the objective
function.

PagmoProblem.h

1 template<typename NMSmodelT>
2 c l a s s PagmoProblem
3 {
4 pub l i c :
5 PagmoProblem ( ) ;
6 ˜PagmoProblem ( ) ;
7

8 // Mandatory f u n c t i o n s ( s ee pagmo user−de f ined problem documentation ) :
9 std : : vector<double> f i t n e s s ( const std : : vector<double>& dv ) const ; // dv :

d e c i s i o n vec to r ( va lue s o f EMG)
10 std : : pa ir<std : : vector<double >, s td : : vector<double>> get bounds ( ) const ;
11

12 // Set f u n c t i o n s ( i n i t )
13 void setModel (NMSmodelT∗ s u b j e c t ) ;
14 void setWeight ings ( HybridWeightings hybridParameters ) {

hybridParameters = hybridParameters ; }
15 void se tPer fo rmanceCr i t e r i on ( const std : : s t r i n g per fo rmanceCr i t e r i on ) {

per f o rmanceCr i t e r i on = per fo rmanceCr i t e r i on ; }
16 void setMusclesNamesWithEmgToTrack ( const std : : vector<std : : s t r i ng>&

musclesNamesWithEmgToTrack ) ;
17 void setMusclesNamesWithEmgToPredict ( const std : : vector<std : : s t r i ng>&

musclesNamesWithEmgToPredict ) ;
18 void setNoParameters ( unsigned noParameters ) { noParameters =

noParameters ; }
19 void setParameters ( ) ;
20

21 // Set f u n c t i o n s ( loop )
22 void se tS ing l eExte rna lTorque ( double externalTorque , const std : : s t r i n g&

whichDof ) ;
23 void setStat icComputat ion ( ) ;
24 void set bounds ( std : : vector<double> lowerBounds , std : : vector<double>

upperBounds ) ;
25

26 // Object ive func t i on eva lua t i on
27 double e v a l f p ( ) const ;
28

29 p r i v a t e :
30 NMSmodelT∗ s u b j e c t ;
31 StaticComputation<NMSmodelT , StaticComputationMode : : Default<NMSmodelT>

>∗ s tat i cComputat ion { n u l l p t r } ;
32

33 std : : vector<std : : s t r i ng> subjectDofNames ;
34 std : : pa ir<std : : vector<double >, s td : : vector<double>> bounds ;
35 HybridWeightings hybridParameters ;
36 std : : s t r i n g pe r f o rmanceCr i t e r i on ;
37

38 std : : vector<std : : s t r i ng> musclesNamesWithEmgToTrack ;
39 std : : vector<std : : s t r i ng> musclesNamesWithEmgToPredict ;
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40 std : : vector<unsigned> muscleIndexWithEMGtoTrack ;
41 std : : vector<unsigned> muscleIndexWithEMGtoPredict ;
42 std : : vector<unsigned> muscleIndexWithEMGtoOptimize ;
43 unsigned noParameters ;
44

45 std : : vector<double> exte rna lTorques ;
46 } ;

PagmoProblem.cpp

1 template<typename NMSmodelT>
2 PagmoProblem<NMSmodelT> : : PagmoProblem ( )
3 {
4 }
5

6 template<typename NMSmodelT>
7 std : : vector<double> PagmoProblem<NMSmodelT> : : f i t n e s s ( const std : : vector<

double>& dv ) const
8 {
9 std : : vector<double> emgValues ;

10 sub j e c t −>getEmgs ( emgValues ) ;
11 f o r ( unsigned i = 0 ; i < muscleIndexWithEMGtoOptimize . s i z e ( ) ; ++i )
12 emgValues . at ( muscleIndexWithEMGtoOptimize . at ( i ) ) = dv . at ( i ) ;
13 sub j e c t −>setEmgs ( emgValues ) ;
14 double fp = e v a l f p ( ) ;
15

16 re turn { fp } ;
17 }
18

19 template<typename NMSmodelT>
20 std : : pa ir<std : : vector<double >, s td : : vector<double>> PagmoProblem<NMSmodelT

> : : get bounds ( ) const
21 {
22 re turn bounds ;
23 }
24

25 template<typename NMSmodelT>
26 void PagmoProblem<NMSmodelT> : : setModel (NMSmodelT∗ s u b j e c t )
27 {
28 s u b j e c t = s u b j e c t ;
29 sub j e c t −>getDoFNames ( subjectDofNames ) ;
30 exte rna lTorques . r e s i z e ( subjectDofNames . s i z e ( ) ) ;
31 f o r ( auto i t = subjectDofNames . begin ( ) ; i t != subjectDofNames . end ( ) ;

++i t )
32 {
33 std : : cout << ∗ i t << std : : endl ;
34 }
35 }
36

37 template<typename NMSmodelT>
38 void PagmoProblem<NMSmodelT> : : setMusclesNamesWithEmgToTrack ( const std : :

vector<std : : s t r i ng>& musclesNamesWithEmgToTrack )
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39 {
40 musclesNamesWithEmgToTrack . a s s i g n ( musclesNamesWithEmgToTrack . begin ( ) ,

musclesNamesWithEmgToTrack . end ( ) ) ;
41 }
42

43 template<typename NMSmodelT>
44 void PagmoProblem<NMSmodelT> : : setMusclesNamesWithEmgToPredict ( const std : :

vector<std : : s t r i ng>& musclesNamesWithEmgToPredict )
45 {
46 musclesNamesWithEmgToPredict . a s s i g n ( musclesNamesWithEmgToPredict . begin

( ) , musclesNamesWithEmgToPredict . end ( ) ) ;
47 }
48

49 template<typename NMSmodelT>
50 void PagmoProblem<NMSmodelT> : : setParameters ( )
51 {
52 sub j e c t −>getMusclesIndexFromMusclesList ( muscleIndexWithEMGtoTrack ,

musclesNamesWithEmgToTrack ) ;
53 sub j e c t −>getMusclesIndexFromMusclesList ( muscleIndexWithEMGtoPredict ,

musclesNamesWithEmgToPredict ) ;
54

55 // concatenate muscleIndexWithEMGtoTrack and
muscleIndexWithEMGtoPredict

56 muscleIndexWithEMGtoOptimize . a s s i g n ( muscleIndexWithEMGtoTrack . begin ( ) ,
muscleIndexWithEMGtoTrack . end ( ) ) ;

57 muscleIndexWithEMGtoOptimize . i n s e r t ( muscleIndexWithEMGtoOptimize . end ( )
, muscleIndexWithEMGtoPredict . begin ( ) , muscleIndexWithEMGtoPredict .
end ( ) ) ;

58 }
59

60 template<typename NMSmodelT>
61 void PagmoProblem<NMSmodelT> : : s e t bounds ( std : : vector<double> lowerBounds ,

std : : vector<double> upperBounds )
62 {
63 bounds = { lowerBounds , upperBounds } ;
64 }
65

66 template<typename NMSmodelT>
67 void PagmoProblem<NMSmodelT> : : s e tS ing l eExte rna lTorque ( double externalTorque

, const std : : s t r i n g& whichDof )
68 {
69 vector<s t r i ng > : : c o n s t i t e r a t o r i t = subjectDofNames . begin ( ) ;
70 whi le (∗ i t != whichDof && i t != subjectDofNames . end ( ) )
71 ++i t ;
72 i f (∗ i t == whichDof ) {
73 unsigned pos = std : : d i s tance<vector<s t r i ng > : : c o n s t i t e r a t o r >(

subjectDofNames . begin ( ) , i t ) ;
74 exte rna lTorques . at ( pos ) = externalTorque ;
75 }
76 e l s e {
77 std : : cout << ” ErrorMinimizer : : s e tS ing l eExte rna lTorque ERROR\n” <<

whichDof << ” not found in the s u b j e c t \n” ;
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78 e x i t (EXIT FAILURE) ;
79 }
80 }
81

82 template<typename NMSmodelT>
83 void PagmoProblem<NMSmodelT> : : setStat icComputat ion ( )
84 {
85 i f ( s tat i cComputat ion ) // should not be nece s sa ry i f stat icComputat ion

i s i n i t i a l i z e d as a n u l l po in t e r
86 d e l e t e stat i cComputat ion ;
87

88 s tat i cComputat ion = new StaticComputation<NMSmodelT ,
StaticComputationMode : : Default<NMSmodelT>>(∗ sub j e c t ,
musclesNamesWithEmgToTrack , musclesNamesWithEmgToPredict ) ;

89 }
90

91 template<typename NMSmodelT>
92 double PagmoProblem<NMSmodelT> : : e v a l f p ( ) const
93 {
94 // 1) c a l c u l a t e f i r s t term o f o b j e c t i v e func t i on : Least Squares F i t t i n g
95 double to rqueLeas tSquare sF i t t ing = . 0 ;
96 vector<double> torques ;
97 stat icComputat ion −>getTorques ( torques ) ;
98

99 f o r ( unsigned d = 0 ; d < torques . s i z e ( ) ; ++d)
100 {
101 to rqueLeas tSquare sF i t t ing += fabs ( exte rna lTorques . at (d) − torques . at

(d) ) ∗ f abs ( exte rna lTorques . at (d) − torques . at (d) ) ;
102 }
103

104 // 2) c a l c u l a t e the second term o f o b j e c t i v e func t i on : t rack exper imenta l
EMGs

105 double emgTracking = . 0 ;
106 vector<double> experimentalEMGs , adjustedEMGs ;
107 stat icComputat ion −>getInit ialValuesOfTrackedEMGs ( experimentalEMGs ) ; //

emg value f o r the tracked muscles be f o r e the emg adjustment
108 stat icComputat ion −>getAdjustedValuesOfTrackedEMGs ( adjustedEMGs ) ;
109

110

111 f o r ( unsigned e = 0 ; e < adjustedEMGs . s i z e ( ) ; ++e )
112 emgTracking += fabs ( experimentalEMGs . at ( e ) − adjustedEMGs . at ( e ) ) ;
113

114 // 3) c a l c u l a t e the performance c r i t e r i o n term o f the o b j e c t i v e func t i on
115 double per fo rmanceCr i t e r i on = . 0 ;
116 vector<double> currentEMGs ;
117 stat icComputat ion −>getCurrentEMGs ( currentEMGs ) ;
118 f o r ( unsigned i = 0 ; i < currentEMGs . s i z e ( ) ; ++i ) {
119 per fo rmanceCr i t e r i on += currentEMGs . at ( i ) ∗ currentEMGs . at ( i ) ;
120 }
121

122 double fp ;
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123 fp = hybridParameters . alpha ∗ to rqueLeas tSquare sF i t t ing +
hybridParameters . gamma ∗ emgTracking + hybridParameters . beta ∗
per fo rmanceCr i t e r i on ;

124

125 re turn fp ;
126 }
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