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show how a generative adversarial network is trained on bivariate binary data using
the maximal leakage and a-leakage measures, and show the relation between o = 1
with mutual information and o = co with maximal leakage.
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Chapter 1

Introduction

Organizations and companies gather a lot of data in the current age. This data is
used to support functionality of apps and help researchers. Unfortunately, this data
usually includes a lot of privacy-sensitive information of a client. Sometimes, this data
is explicitly allowed to be used by the client for specified actions. However, the same
data can mostly also be used for actions of which the client has no interest and thus
are potentially be harmful. To overcome this issue, a lot of research has been done
in the field of privacy-preserving systems. For such a system, the goal is to make it
impossible for an adversary to infer the sensitive attributes given the released data.
This system will be referred to as privatizing the data. However, this appears to be a
non-trivial task as privatizing data is always at the cost of its usability. This is often
referred to as the privacy-utility trade-off [2].

A good indication of the challenges in this task is the privacy leakage based on
the Netflix prize challenge [11]. Netflix thought the data to be privatized. However,
researchers have shown that the data was in fact leaking Netflix’ users’ video prefer-
ences based on a linkage attack using auxiliary data from the IMDB-database. Other
research showed that Apple’s privatizing scheme was not as secure as they claimed it
to be [13], this is mainly due to the negligence of privacy over time.

As stated by [7], one of the most popular privatizer mechanism today is that of
Differential Privacy (D.P.) by [3]. It is a widely used transformation for privatizing
data, however, limited in quantifying the remaining utility. This method approaches
the problem by adding noise according to the Laplace distribution to all attributes.
By this mechanism, the overall distribution of the data should remain almost identical
to the original but with preserved privacy. However, the amount of noise needed to
make the new data-set indistinguishable from the original data, decreases the utility of
the data significantly. This is inherent to the fact that no context is used to privatize
the data [7]. Furthermore, this method does not satisfy the linkage inequality [17].
This means that it is great for estimating the distribution of the data in a privacy-
preserving manner. However, when it comes to other data statistics or entry specific
inquiry, it is less of a good solution due to this great utility loss.

In this thesis we further investigate a possible alternative using a machine learning
approach. To be specific, we will focus on a solution-design inspired by Generative Ad-
versarial Networks by Tripathy et al. This paper will be used as guideline throughout
this thesis, and is further introduced in Section 1.1.

1.1 Data and Minimizing Privacy-Leakage

To address the problems of privacy-preserving systems the following three categories
are defined for the source data set in [12] and will be used accordingly in this document:
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1. Explicit Identifiers These type of attributes directly define the subject. Such
as: Names and Social Security Number.

2. Quasi Identifiers Attributes of this sort potentially allow an adversary to infer
the explicit identifiers when linked to external data. Quasi Identifiers include:
Postal Code, Country and Street.

3. Sensitive Attributes These are the attributes that are relevant for research or
app functionality, but are also the most sensitive attributes once associated with
the identity of the subject. Therefore, these associations must be kept secret
to anyone who has no direct access. Examples of these attributes include: a
patient’s disease and a client’s sexual preference or religion.

The perspective on these attributes, however, is still subject to the purpose of an
application or research project. The parts that should and should not be inferable are
completely application-dependent. A clear example would be the practical experiment
on a Face-to-BMI (Body Mass Index) classifier. In such an application face-images
would be privatized with the goal to hide the person’s identity and retain the BMI
inference. Depending on the application, it would be equally reasonable to perform
this experiment conversely, i.e. hide the BMI and retain the identity. Whether such
an approach is or is not ethically justifiable is outside the scope of this thesis.

In short, privacy-preserving release mechanisms should keep as much information
as possible especially sensitive attributes. However, it should be impossible for an
adversary to infer the identity of the corresponding subjects, or vice versa.

For simplicity, it is assumed to hide Explicit and Quasi identifiers, and retain the
sensitive attributes (e.g. BMI, age, ethnicity). To achieve this, Explicit identifiers are
usually removed altogether, and the remaining two categories undergo some trans-
formation. This problem is represented by the rate-privacy function. Consider some
input W composed of two random variables X and Y, where X represent the Quasi
identifiers (which we will consider as private parts) and Y represents the sensitive data
(and we thus consider the public parts, the part we wish to make public). Further,
suppose we have a communication channel Py such that Z is the released version of
W with limited information on X, where a communication channel is some medium for
transmitting information. Then the most informative channel which preserves most
privacy, where the utility constraint is given by €, is described as

min I(X;2),st. I(Y;Z) > €, (1.1)
Pyiw (XY )W Z

which is also known as the privacy-funnel [1]. Intuitively, this equation shows
that the mutual information of X and Z, the information contained in both X and Z
indicated by I(X;Z), is minimized by adjusting the release mechanism Py y. In the
context of this paper, this is the variational approximation of Z given W. However,
the constraint stated shows that this same release, i.e. Z, should still contain enough
information on Y (indicated by I(Y; Z) > €). This is a constraint on the utility of Z,
more on Mutual Information in Section 2.3.1.

Tripathy et al. have addressed this optimization problem using a Generative Ad-
versarial Network approach. The Generative Adversarial Network architecture is used
to infer the variational approximation Pz, i.e. the optimal privacy-preserving re-
lease mechanism of Z given W [14]. However, they generalize the utility constraint
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I(Y;Z) < to any distortion function. This function should illustrate the distortion
of Z given Y:

min I(X;2),st. d(Y,Z) <. (1.2)
Pziw (X,Y)oWaZ

Note that this shows the distortion constraint instead of utility, and thus flipped
the equality. Tripathy et al. find promising results by doing so. In fact, their networks
are capable of finding the theoretical best solution. Although their findings are com-
pelling, we found it challenging to reproduce and will aim to produce more insights
into the approach in Chapter 4. This thesis builds on their findings; derivation of the
unconstrained minimax problem and network topology, which we further explain in

Chapter 3 and Chapter 4.

1.2 Research Question

The current research on privacy-preserving release mechanism inspired by generative
adversarial networks is greatly increasing, yet has no single regulated measure for
privacy-leakage. As we will explore in Section 2.3, many more privacy-leakage mea-
sures exist than just mutual information. As mentioned earlier, the results of [14]
are promising, yet entirely in the context of mutual information as privacy-leakage
measure. In this thesis we will expand on the paper of Tripathy et al. and apply
alternative privacy-leakage measures on their framework. Therefore, the goal of this
thesis is to find the optimal network that, given a utility constraint, minimizes the
privacy-leakage of the data. The privacy leakage for the networks is either measured
by Mutual Information, Maximal Leakage, a-Leakage or Maximal a-Leakage. The
research question can therefore be defined as: “How do Maximal Leakage and (Maxi-
mal) a-leakage functions compare to and affect the performance of the release-system
framework defined in Tripathy et al.”. Outside the scope of this thesis is testing dif-
ferent neural network topologies. Further, we only use existing proofs, there are no
proofs of mathematical relations. There is no prove that it is impossible to infer the
privatized data either. We do show, by the means of mutual information, that there
will little information to do such inference. In such a way that the released data is
responsible to disclose.

1.3 Contributions

Given the research question stated above in Section 1.2, we can concretely list the
contributions of this thesis as follows:

e A comparison of privacy-measures as loss functions on release systems. As
a result, we contribute with insights on maximal leakage, alpha-leakage and
maximal alpha-leakage when used as loss function in a Generative Adversarial
Network setting.

e Showing the difficulty of reconstructing the results presented in [14] using their
paper. Supported by: open source code, topology designs and pseudo-code algo-
rithms. It appears that every detail is important when working with Generative
Adversarial Networks. We find that, without a clear overview of the regular-
ization methods, learning parameters, a visual representation of the network
topologies and shared code, important details concerning Generative Adversar-
ial Networks may remain absent. Making reconstructions a challenging task.
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A textbook approach to the theory needed to implement privacy-preserving
release mechanisms, with the goal to reach and approach a wider audience. In
Chapter 2, an overview is provided with the most important theory needed to
create a privacy-preserving release mechanism. The goal is to have written down
the theory in such a way that computer scientist should be able to follow the
theory without external resources.

e A generalization of [14], such that one can adapt to any loss function concerning
the privacy-utility trade-off.

e Showing the practical relationship between the existing privacy measures using
the results of the trained release mechanisms. In particular, we show the rela-
tionship between the alpha-loss with « = 0 and Mutual Information. Further,
we show the identical relation for larger values of alpha, e.g. « > 100, with
Maximal Leakage.

e The start of a library which makes this thesis extendable for other researchers
(on top of the pytorch framework)!.

1.4 Outline

The subsequent chapters will revolve around equations (1.1) and (1.2). Chapter 2
will contain the background knowledge needed to understand the coming chapters. It
includes the notation used throughout this paper, the well-known notions of privacy
and more details on privacy-leakage measures, distortion measures and the working of
Generative Adversarial Networks. In Chapter 3, we will be measuring the performance
of the mentioned privacy-leakage measures. To do so, we have identified different test-
ing scenarios, along with a methodology to validate their results. In Chapter 4 we
focus on the reproduction of the paper of [14]. We will implement the framework as
explained, and test its results to our experiments. The remaining privacy-leakage mea-
sures Maximal Leakage and Alpha-Loss are identically implemented and validated in
Chapter 5. Finally, we will end with a discussion and conclusion written in Chapter 6
and Chapter 7.

!github.com/maxxiefjv/privpack [15]


https://github.com/maxxiefjv/privpack

Chapter 2

Background and Related Work

This chapter is used to describe the building blocks for this thesis. Doing so, it
contains the notation used throughout this thesis and the notions and intuition on
privacy. Most of this chapter, however, is dedicated to explaining alternative measures
to be used in (1.1); other than mutual information.

2.1 Notation

In this section, to simplify the understanding of context, we will give global meaning
to those variables used identically throughout this document. Other variables, which
are used in functions but regarded as context-dependent, will be introduced at that
point.

As mentioned in Section 1.1, in this document, we consider the privacy-utility
problem using the random variables:

(X,)Y) W« Z. (2.1)

As shown in this Markov chain, we have three states, where: W is the observed
data, X is our private attribute set, Y is our public attribute set and Z is the privacy-
preserved release of W. The definition of the Markov chain provides us with an intuitive
understanding. The sequence of states shows that the observed data W is the result
of a transformation on the private and public variables X and Y. For example, the
transformation which obtains W from (X, Y) can be concatenation, e.g. medical
records consisting of diseases (Y) and Social Security Numbers (X). A less trivial
transformation of getting W from (X, Y) could be the construction of images with
faces. For example, such an image its private variable X can be a person’s identity
and the public variable Y can be the remaining information contained in the image
(such as: BMI, age, ethnicity and other relevant characteristics of the person). A
transformation on W consequently results in our released variable Z which preserves
the person’s characteristics but hides its identity. In the context of this paper, the
goal is to create a release mechanism that produces the output Z according to the
optimal privacy-utility trade-off.

Formally speaking, the Markov chain tells us that there are three probability distri-
butions: Pxy, Pw|x,y, Pzw. The probability of X and Y, the probability of W given
X and Y, and the probability of Z given W, respectively. Showing the probabilities of
the state transformations. The first two combined, results in Pxy Py xy = Pwxy,
and thus that the variables W, X, Y are jointly distributed according to a data model
Py xy over the space W x X' x V. Pz our release mechanism that produces the
release Z, specified by Pz with (W, X,Y,Z) ~ Py xyPzw. Thus, we have the
Markov chain as specified in (2.1). One should note, in practice, we never have access
to these probability distributions. Rather, we will have a set of samples as training,



6 Chapter 2. Background and Related Work

test or validation data of which we know that: (wj,z;,y:);—; ~ Pw.x,y. Here n is the
number of samples in our corresponding data-set. Finally, this data is used to infer
the variational approximation of Pz, i.e. the optimal privacy-preserving release
mechanism.

2.2 Notions of Privacy

By designing a privacy preserving release system, one should be mindful about the
possible knowledge adversaries may possess. In this section we formalize what it
means for data to preserve privacy, from a theoretical perspective: on perfect privacy,
Bayes-Optimal Privacy as well as a more practical bound: Linkage inequality.

2.2.1 Perfect Privacy

The best possible privacy is called perfect privacy, and is achieved if exactly no new
information is revealed when releasing the data Z:

P(X =2|Z =2)=P(X =2),Vz € Z, (2.2)

where new information indicates any information on X which can be revealed but was
not yet revealed. This shows that the probability of our private variable ‘X = x’ does
not change when Z is known. Generalizing this to the full set X results will state
that Z does not carry any information on X, i.e. I(X;Z) = 0 (as Mutual Information
explained in Section 2.3.1). However, our newly introduced variable Z should also
retain some utility of the original data. Otherwise, our new variable could be all
noise, preserving all privacy but be of no use to anyone. This brings us back to
the privacy-funnel as introduced in (1.1), and shows that I(X;Z) = 0 is usually not
achievable while also maintaining the utility of the original data.

2.2.2 Bayes-Optimal Privacy

As utility is a constraint for the optimizations to come, this paper requires a more
subtle definition of privacy than perfect privacy. Bayes-Optimal privacy as defined in
[10] is such an alternative. However, while it provides us good intuition on privacy, it
does not have practical benefit for our application. Still, this definition is important
to be mindful when considering the definition of privacy.

The foundation of this privacy definition uses the uninformative principle. This
principle states that the released data should provide the adversary with little to no
additional information beyond the background knowledge on the sensitive attributes.
To measure the realization of such principle we need to define the prior and posterior
probability.

Principle 1 Uninformative Principle: The published table should provide the adver-
sary with little additional information beyond the background knowledge. [10].

The prior probability is defined by «(z,y), and is intuitively defined as the prob-
ability of private variable X = x given public variable Y = y prior to observing the
released data. The posterior probability is the probability when the released data is
observed, defined by 5(z,y, Z).

Furthermore, this principle defines two types of disclosures: positive disclosures
and negative disclosures. Positive disclosures tell that the adversary can either identify
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the sensitive attribute with high probability: 5(z,y,Z) > 1—4J, for some small thresh-
old §. Or, for Negative disclosures, the adversary can eliminate a sensitive attribute
with high probability S(z,y, Z) < €, for some threshold e. However, the insight here is
that not all disclosures mean that this was due to an information leak in the released
data-set. Rather, information leakage is about differences in positive and negative
disclosures given the prior and posterior probabilities. Formally defined, this is the
uninformative principle. As an example, Let a prior probability a(z,y) = 0.8 and
0 = 0.3, so that the probability of our sensitive and identifying attribute is already
very likely, and thus the adversary can already be very certain about the values of
x and y. Now suppose that f(x,y,Z) = a(x,y) = 0.8. Again, the adversary is very
confident about the values of x and y. In fact, according to our definition of positive
disclosures, we have that f(z,y,Z) = 0.8 > 1 — 0.3. However, these values have
not taught the adversary any additional knowledge. Therefore, this is not due to an
information leak.

One of the ways to instantiate the uninformative principle is using (p1, p2)-privacy
breach definition. Let p; be a probability representing to the intuitive notion of ‘very
unlikely’ and let py correspond to the intuitive notion of ‘likely’. This definition
states that when: a(z,y) < p1 A B(z,y,Z) > p2 or a(x,y) > 1 — p1 A B(z,y,Z) <
1— po, privacy is breached [4]. However, other instantiations that bound the difference
between the prior and posterior definition in a Bayes-Optimal way also suffice to make
the uninformative principle measurable [10].

2.2.3 Linkage inequality

The problem with Bayes-optimal privacy is that it is unlikely that the data publisher
is aware of the full distribution, needed to compute the posterior B(y,z, Z). As an
alternative, the linkage inequality bound can be used to provide the necessary privacy
guarantees. Given a privacy-leakage measure J(X; Z), the data-processing inequality
states that if and only if for any A «+» B < C, e.g. (X,Y) < W « Z, that form a
Markov chain, we have that J(A; B) > J(A;C). In other words, the information of A
projected onto B is always more than the information of A projected onto C. Thus
processing A can only result in information losses, given the satisfaction of a Markov
chain. The linkage inequality, however, states that if and only if for any A <> B < C
that form a Markov chain, we have that J(B;C) > J(A;C).

Definition 1 Linkage Inequality: if and only if for any A < B < C that form a
Markov chain, we have that J(B;C) > J(A;C). [17]

This means that, in the context of this paper, if there exists some secondary
sensitive variable U which is transformable to X, then, for a Markov chain U <«
(X,Y) < W < Z, the information of U projected onto Z cannot be more than the
information of X projected onto Z. Thus, if the linkage inequality is satisfied, by
transforming our X to Z we no longer need to account for some secondary sensitive
variable U, as it is not possible for U to project more information onto Z than X.
This results in practical bounds. This, for example, is useful when there may be
unforeseen sensitive data correlated to our private variable X. Any privacy guarantees
provided for our private variable X, will be at least as valid for the unforeseen sensitive
data [17]. For symmetric privacy-leakage measures the linkage-inequality concept is
identical to the data-processing inequality. However, for asymmetric privacy measures,
this property is a distinct concept. [17]
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2.3 Measuring Privacy Leakage

In section Section 2.2 we discussed what one may hope for in terms of privacy when
transforming the data. Although this gives us practical privacy bounds, these state-
ments cannot be used for optimization. Where Bayes-Optimal Privacy is intractable
to compute, Linkage inequality is not more than a bound. In this section we inves-
tigate some information measures which can be used as objective functions. We will
not yet be able to estimate if any transformation will be obeying the uninformative
principle using one of these measures, or even Bayes-Optimal Privacy. However, the
properties of the functions defined below can already inform us whether it is satis-
fying the linkage inequality defined in Section 2.2.3, which protects us from leaking
information on unforeseen sensitive data.

The notation used in this section is identical to the one described in Section 2.1.
This means we have the observed data W consisting of private variable X and public
variable Y, i.e. (X,Y) > W. Finally, after some transformation on W we obtain Z,
T(W) = Z. For simplicity, in the subsections below we focus on privacy leakage only.
Although these functions may also apply to information leakage in general, we will
not be generalizing these formulas to include, possibly intended, leakages of Y on Z
albeit possible.

Finally, all leakage measures have a corresponding loss function. Intuitively speak-
ing, the loss functions are necessary to let machine learning models know the ‘right’
and ‘wrong’ solution. Ultimately, this allows the machine learning model to know how
to preserve privacy in released data.

2.3.1 Mutual Information

Mutual information is a tool to compute the amount of information which is shared
between two variables. It is used in the literature on privacy preservation in data
to measure the remaining utility and privacy after some transformation. This is
computed as follows, for two random variables X and Z:

I(X;2) 2 H(X) - H(X|Z). (2.3)

Here H(X) is the Shannon entropy of X, and H(X|Z) is the conditional entropy of X
given Z. For discrete variables, the Shannon entropy function returns the number of
bits needed to describe the variable X. For H(X) this means that the more values X
can take, the more ‘surprised’ one is for some value of X, and thus H(X) will be higher.
For conditional entropy H(X|Z), we see the ‘surprise’ of X to dependent on the given
value Z. Therefore, the more information Z caries on X, the less surprised one will be
about the output value. For example, if X = Z we know everything about X when we
know Z, and thus H(X|Z) = 0 gives that [(X;Z) = H(X). Conversely, if Z carries
no information on X, H(X|Z) = H(X), and thus I(X;Z) = H(X) — H(X) =0
(matching with our definition of perfect-privacy Section 2.2.1).

Intuitively, mutual information states the amount of information known of X given
the variable Z and vice versa. In [14], it is shown that the corresponding loss function
to minimize the mutual information in machine learning tasks is the log-loss [9]. Stated
in Definition 2.

Definition 2 The loss function corresponding to mutual information is defined by the
log-loss function:
1

JMIX,Z) =log ————.
Xi2)=log o le)

(2.4)
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FIGURE 2.1: Mutual Information loss function (blue), and its deriva-
tive (orange).
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FIGURE 2.2: Maximal Leakage loss function (blue), and its derivative

(orange).
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Minimizing this function is identical to maximizing the mutual information between
X and Z. This loss function, and its derivative are displayed in Figure 2.1.

However, as we will elaborate in Section 2.3.2, this measure is made with the
entropy measure in mind. Entropy concerns itself about the minimal amount of bits
needed to describe the data, and may therefore not be the optimal starting point. An-
other thing to note is that it satisfies linkage inequality and data-processing inequality

[9].

2.3.2 Maximal Leakage

In [14] it is shown that the log-loss is the corresponding loss function of mutual in-
formation. Using Mutual Information, however, may not be the optimal strategy as
Shannon’s metric is created with another question in mind, namely, the minimum
number of bits required to describe the data. It, thus, does not consider the infor-
mation of some data leaked about its generator function. A metric created for this
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purpose is described by [8] and is called Maximal Leakage (MaxL). This measure
considers all possible functions that may have produced our private variable X, noted
by the space U. Intuitively speaking, this increased space gives a lot more reason to
believe privacy-sensitive information has been leaked. In turn, the privacy measure
appears to target privacy more careful, and therefore, expectedly, results in a better
privacy-utility trade-off.

It is shown that incorporation of having a space U of possible functions that
generate X leads to Maximal Leakage L. (X — Y) as information measure, and is
defined as follows (Using identical notation as in Section 2.3.1):

A maxp, | E[Py,(U|2)]
Loz, (X — Z)= sup lo 2.5
z{ ) ez maxy Py (u) (25)
For finite alphabets X and Z this simplifies to:
L(X — Z) =log Z max Py x(z|r). (2.6)

xEX Px (x)>0

In [9] the corresponding loss function to use in Machine Learning tasks is shown to
be the probability of error. Stated in Definition 3.

Definition 3 The loss function derived from mazximal leakage is equal to the proba-
bility of error:
JMaTL(X; Z) = 1 — Py z(xl2). (2.7)

This linear loss function is displayed in Figure 2.2.
It is proven in [17], that this measure satisfies the linkage inequality and data-
processing inequality.

2.3.3 a-leakage and Maximal a-leakage

The last measurement to discuss is proposed in [9], and are the leakage measures
a-leakage and Maximal a-Leakage. Below we will give some general information on
the interpretation of these measures and their formula’s. Finally, like the previous
measures, it ends with the loss function that corresponds to these measures, which is
the a-loss for both measures.

These measures are the results of generalizing the loss functions of Section 2.3.1
and Section 2.3.2. The a constant here is a tunable parameter between the mutual
information measure, for & = 1, and the maximal leakage measure, for & = oo (as
shown in [9]). Changing our a parameter may therefore allow us to achieve a more
fine-tuned privacy-utility trade-off.

In [9], they first study tunable leakage measures which can measure the inference
gain on a specific function U from the released data Z (2.8). In this function U is
treated as a known function which generates X:

a—1

maxp, E[Pg ,(X[Z) ]

Lo(X — Z) 2 2 log Xz - X|2 .
a—1 maxp_ E[Pg(X) ]

(2.8)
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FIGURE 2.3: Alpha-loss and alpha-loss derivative. Clearly indicating
its numeric sensitivity to values of a.

It is also shown to simplify to the Arimoto Mutual Information L4(X — Z) =
IA(X; Z)! for 1 < a < oo by [9]. However, they also wish to measure the inference
gain on any arbitrary attribute. For that purpose, Maximal a-Leakage is defined (2.9).

E?f’””()(—)Z)é sup Lq(U; 2).
U-X—-2

(2.9)

As noted by [9], both privacy leakage measures: a-leakage and Maximal a-leakage,
are related by the function defined in Definition 4.

Definition 4 The alpha loss is created to have a tunable parameter a which moves
from the mutual information (o =1) to maximal leakage (o = 00), and is defined by:

a—1

o a=1
JUX;Z) = —— (1= Pxz(afz) =) (2.10)

The minimization of the loss function defined in Definition 4 implies the optimal
decision by an adversary. Furthermore, this loss is designed to satisfy the following
equalities:

JMI(X7Z)7 a=1.
JOC(X;Z) — JMGIL(X;Z), o = oo, (211)
ﬁ(l—P)qz(w\Z)%l), 1<a<oo.

As depicted in Figure 2.3, for various values of alpha this loss function is a lot
more prone to numerical issues than the previous loss functions.

Finally, the properties of this function show that it satisfies the linkage inequality
and post-processing inequality.

2.4 Measuring Utility and Distortion

Just as for measuring privacy-leakage we lay-out measures to determine the distortion
or utility of the released data Z. In practice, however, the distortion measure is very
application dependent. Indeed, as general approach, one might attempt to keep as
much information of Y in the released set Z. This is done by using mutual information
(I(Y;Z)) as utility measure, like in the privacy-funnel (1.1). However, clearly, one
might be able to make a stronger constraint. Possibly in such a way that we can
remove more privacy-sensitive data without the cost of additional distortion. Rather

!For more information on Arimoto Mutual Information see [16]
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than ‘maintaining as much information as possible’, one might attempt to maintain
concrete and measurable parts of Y in Z.

In this section we therefore limit ourselves to the distortion measures relevant for
this paper (used in Chapter 3), in practice one would have to audit the best distortion
measure for their application. Note that, these distortion measures, are to be replaced
in formulas where the distortion measures are notated by d(y, z). All these distortion
measures are defined on single sample basis, i.e. defined for sample y; and its released
counterpart z;.

2.4.1 Hamming Distance

To measure distortion for discrete variables, we will be using hamming distance as
defined in (2.12). It simply counts the number of coordinates in which two binary
vectors differ. It is used in information theory, coding theory and cryptography:

m

hamming_distance(y;, 1) = Y _(i(j) # 2(j))1, (2.12)
J
where m is the number of dimensions of y; and z;. We will use this measure for our
bivariate binary experiments, where m = 1.

2.4.2 Mean Squared Error

For our multivariate Gaussian experiments we use the Mean Squared Error (MSE)
measure, which, identically to hamming distance, goes to zero if the two given sets
are equal [6]. It is given by:

TR ST
MSE(yuzz) = sz yzHQ‘ (2'13)
2.5 Generative Adversarial Networks

FIGURE 2.4: Visual representation of Generative Adversarial Network.

Gy
Generator | %= G(2:0q)
Z ——»
Network
De
Where the discriminator Discriminator .
receives alternating Z or x. NetWOIk P(I = real)

The Generative Adversarial System is originally used to estimate and sample from the
probability distribution of some data set. All methods discussed in this section are
discussed with the application of GANs, short for Generative Adversarial Networks,
[5] in mind. In [5] a composite of Neural Networks is defined in which two networks are
trained: Generator network and Discriminator network, depicted in Figure 2.4. The
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generator network is trained to capture the data distribution of the used data, where
the discriminator network is trained to discriminate a fake sample from a sample in the
actual data. The training of these networks is done in a minimax fashion, specifically,
to learn the distribution p, of some data x. A prior on input noise variables is defined
p-(z) which generates the input noise Z of the generator network. Consequently, a
mapping is represented as & = G(z;60), where Z is the generated output based on
the network parameters 6 and the input noise Z. The discriminator network takes as
input either the output of G(z;6) or an original x and outputs a scalar value between
zero and one. This value indicates the estimated probability of being a real sample,
]3(:1: = real; ¢) or P(ﬁ: = fake; ¢). Both of these networks undergo a training process
to optimize the results of the generator network. Doing so the discriminator network
is trained to maximize the probability of assigning the correct label to both real and
fake samples., i.e. D(x) = 1 and D(G(z)) = 0. Simultaneously, we train the generator
network to minimize the discriminator’s success of correctly guessing the generator’s
output as fake, i.e. we minimize log(1 - D(G(z))). This can be formalized in the
following minimax game [5]:

mén max Eompaara(@) 108 D()] + E.p_(2y[log(1 — D(G(2)))]. (2.14)

In Chapter 3 we investigate how to combine Generative Adversarial Networks and
privacy-leakage measures to create a privacy-preserving release mechanism.
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Chapter 3

Experiments for measuring
performance of privacy-leakage

In the context of the privacy-utility trade-off, we have a similar approach to GANs.
We introduce how GANs can be used in a privacy-preserving approach. Similar to
[14], we will outline a framework which focuses on the optimization of privacy given
a utility constraint. We will not restrict ourselves to using Mutual Information as
privacy-leakage measure (further elaborated in Chapter 4). Instead, we will be using
all the privacy measures defined in Section 2.3.

Identically to the GAN design, the network composition consists of two networks,
one we call the privatizer and one we call the adversary. Instead of generating seem-
ingly real samples, the goal of this design is to ‘privatize’ existing samples. This new
goal requires a new loss function, one that measures privacy, as described in Sec-
tion 2.3. This design is similar to the minimax design proposed by [5]. However,
as discussed in the introduction, it allows for the trivial solution of outputting just
noise by the privatizer. Outputting just noise is not useful, and therefore a prob-
lem. To address this problem utility is included in the loss function of the privatizer.
Incorporating utility, the generalized privacy-funnel result in:

min J(X;7), st. E[d(Y, Z)] < 6. (3.1)
Pyiwi(X,Y) oW Z
This is identical to Tripathy et al., however, generalized to J(X;Z), which is one of
the privacy-leakage measure as defined in Section 2.3. The distortion is defined by
d(Y,Z). And the constant ¢ specifies the distortion constraint for the privacy-utility
trade-off.

This constrained optimization problem can be transformed to an unconstrained
privacy-utility problem [14], as is shown in Chapter 4. We will be using this deriva-
tion and generalize the log-loss to any privacy-leakage related loss function. This
unconstrained optimization problem then results in:

min max E[J(X; Z)] + AE[d(Y, Z)]. (3.2)

Pziw Qx|z
Adding the delta-constraint into the formula of (3.1), the formula can be written as:

min max E[J(X; Z)] + A max(0, E[d(Y, Z)] — §)%. (3.3)

Pziw Qx|z

A visual representation of this design is depicted in Figure 3.1, and shows how the
losses for each network is computed.

Notable in this figure is that both the privatizer and adversary concern themselves
over the privacy leakage as this is exactly what defines their minimax game. The
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FIGURE 3.1: Data flow used in the training process of a privatizer
design originated from a Generative Adversarial approach.

adversary is updated only using the adversary loss, and the privatizer is updated only
using the privatizer loss. The idea behind the minimax game is that the adversary
improves the privatizer and vice versa. For this reason, both networks update their
weights according to the privacy leakage. Only, both networks use a different inter-
pretation. A good guess by the Adversary is considered “bad” for the privatizer, while
it is considered “good” for the adversary itself.

As mentioned in Sections 1.1-1.3, one of the concerns of this study is to measure
how the privacy is best maintained while retaining the utility of the data. As utility is
very application dependent, the privacy-measure doesn’t have to be, i.e. the diamond
node in Figure 3.1. In this chapter we conduct three types of experiments for each
privacy-leakage measure defined in Section 2.3. This means that every node displayed
in Figure 3.1 is defined, and will be discussed for each experiment. Except for the
diamond node, which is dependent on the privacy-leakage measure used in the system.

3.1 Experiment setup

To compare the performances of each GAN-inspired Privacy preserving release mech-
anism described in the literature, a set of experiments has been designed that can be
categorized in two types. Both types of experiments have a theoretical foundation,
and are described in Section 3.2 and 3.3. The types of data will determine a few
factors: the internal network architectures, the distortion measure and whether a loss
approximator is needed. Furthermore, within each type of data (Bivariate Binary or
Multivariate Gaussian), we created sub experiments which vary in their distribution
parameters. For each of those sub experiments we will be defining several utility con-
straints, defined by the A and 0 constants. Finally, besides the previously mentioned
factors, some experiment independent settings, the hyper-parameters, will determine
the final outcome of the experiment. For each experiment we have summarized these
values in table format. Each entry in this table is clarified in Table 3.1. The privacy-
leakage measure is a factor that will be added and elaborated in the corresponding
chapters, i.e. Chapter 4 and 5.

The validation and evaluation methodology are described in Section 3.4. This will
clarify two things: how the model is validated, and how the results are evaluated.
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TABLE 3.1: Description of the values used to summarize an experi-

ment.
Value Description
Data Type Bivariate Binary or Gaussian data

Distribution Parameters

The distribution parameters or reference to.

(A, 9)

The utility objective constants

No. Samples

The number of data-samples generated /used

No. Dimensions

The number of dimensions of one data-sample in the data-
set

No. Epochs

The number of epochs used to train the network

Batch size

The number of data-samples used per batch

Train/Test ratio

The ratio of samples used for training and testing.

Network architecture

The architecture function used to as the privatizer and
adversary network.

Distortion: d(Y, Z)

The distortion function used within the optimization pro-
cess of the network.

Privacy: J(X; Z)

The privacy measure used to update the privacy handling
of the network.

Loss approximation used

Is the loss function computationally tractable, or does the
experiment require the use of the universal approximator
approach as defined by Tripathy et al.

Weight Optimizer

The optimizer used to update the weights of the networks.
This defines how much of the current gradient is used to
update the network weights.

3.2 Synthetic Bivariate Binary Data

The first theoretical experiment is constructed to test the basic capabilities of the
architectures defined in the literature. Consequently, the results produced are easy to
interpret and verify. The experiment includes training the network with data sampled
from a bivariate binary distribution. The first part of the experiment factors are
depicted in Table 3.2. This table contains the factors which are identical for each sub
experiment of this section. The subsections below will add one of the missing values:

Distribution Parameters.

Furthermore, as mentioned in this table, the privatizer and adversary network
behavior is defined in Figure 3.2.
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TABLE 3.2: The architecture values used for the Bivariate Binary
Data experiment.

Data Type Bivariate Binary

(A, 0) A =500,6 =[0,0.1, ..., 1]

No. Samples 10000

No. Dimensions 2

No. Epochs 200

Batch size 200

Train/Test ratio 0.8/0.2

Network architecture Figure 3.2

Distortion: d(Y, Z) (2.12) (Hamming Distance)

Expected Loss approximation used | None.

Weight Optimizer Adam optimizer: «o = 0.001,
£(0.9,0.999), € = 1le — 08.

FIGURE 3.2: Synthetic Bivariate Binary Privacy-Preserving Architec-
ture.
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The design of the networks used is shown in Figure 3.2. This architecture is
completely noise free. This means no randomness is included in any part of the
network. We therefore define W as the only input, and the loss function is computed
through a sum over the possible outputs of Z, i.e. the sample-wise loss function further
explained in (4.5). The output of our network Py is considered as the probability of
outputting z = 1. For the adversary we will have the direct output of Py as input,
which is the probability of Py outputting a one.

To understand the behavior of each network architecture, we defined three distri-
butions to sample data from: completely correlated (Table 3.5), completely uncorre-
lated (Table 3.3) and random (Table 3.7). Within each table, the probabilities define
the dependence between the X and Y variable and thus their chance of occurring in
combination.
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3.2.1 Uncorrelated distribution

The first distribution we defined is completely uncorrelated between the X and Y
variables. These distribution parameters are shown in Table 3.3. Using a seed of 0,
we obtained a data-set with 4016 zero samples (50.2%) and 3984 one samples (49.8%)
in the training set. The test set includes 987 zero samples (49.35%) and 1013 one
samples (50.65%).

TABLE 3.3: This table contains a completely uncorrelated probabil-
ity distribution used for generating the bivariate binary data.

PX=2Y=y |Y=0|Y=1
X=0 025 | 0.25

X =1 0.25 0.25

TABLE 3.4: Uncorrelated Data Statistics:

Statistic Type Value

I(X:Y) 0

Train Y-samples Ratio (0s, 1s) | (50.2%, 49.8%)

Test Y-samples Ratio (0s, 1s) | (49.35%, 50.65%)

Train(X;Y) 1.79686¢-05

3.2.2 Correlated distribution

This distribution parameters (Shown in Table 3.5) show that the expected mutual
information of any data set generated with this distribution is 1. Furthermore, using
a seed of 0, we have 4058 zero samples (50.725%) and 3942 one samples (49.275%) in
the training set. The test set includes 1006 zero samples (50.3%) and 994 one samples
(49.7%).

TABLE 3.5: This table contains a completely correlated probability
distribution used for generating the bivariate binary data.

PX=yY=y|Y=0]|Y=1
X=0 0.5 0

X=1 0 0.5

TABLE 3.6: Correlated Data Statistics:

Statistic Type Value

I(X;Y) 1

Train Y-samples Ratio (0s, 1s) | (50.725%, 49.275%)

Test Y-samples Ratio (0s, 1s) | (50.3%, 49.7%)

Lirain(X;Y) 0.99993
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TABLE 3.7: This table contains a random probability distribution
used for generating the bivariate binary data.

P(X:x,Y:y)‘ Y =0 ‘ Y=1
X=0 0.2275677 | 0.29655611
X =1 0.24993822 | 0.22593797

3.2.3 Random distribution

To be able to reproduce the seed ‘0’ is used. This gives the distribution parameters
shown in Table 3.7, and results in an I(X;Y) = 0.004146702663409007. This shows
that there is not a strong relation between the variables X and Y. This leads to the
expectation that a lot of privacy could be maintained without a lot of loss in usability.
Concretely, the useful variable Y hardly has to change to keep the sensitive variable
X private.

TABLE 3.8: Random Data Statistics:

Statistic Type Value

I[(X;Y) 0.004146702663409007

Train Y-samples Ratio (0s, 1s) | (47.7125%, 52.2875%)

Test Y-samples Ratio (0s, 1s) | (47.85%, 52.15%)

Lirain(X;Y) 0.00386

The actual Mutual Information of the above probability distribution is computed
using the formula:

Y) = z,y) * lo Pry@y) —
6¥) = 3 Pt slos pHRE < HOO - HE). @)

As the output Z of the privatizer network is only a sample of the actual space,
we can only compute estimates of mutual information. Therefore, we also computed
the estimated value of mutual information, i.e. I (X;Y), by estimating the probability
distribution P(X,Y") through counting and using the formula described in (3.4). Using
our seed, it should be noted that we generated a data-set that consists of 3817 zero
samples (47.7125%), and 4183 one samples(52.2875%). The test data consists of
957 zero samples (47.85%), and thus 1043 one samples (52.15%). This produces
Lirain (X;Y) =0.00386 as the estimated mutual information given the training data.

3.2.4 Expected Outcome of Experiments

Given the bivariate binary data-set and our goal to minimize privacy leakage, we can
define expectations to use for verifying our results. Doing so we can use the formulas

for entropy (3.5):
1
H(X) = Zp(ﬁ) IOgﬁ

: (3.5)
TEX ( )

and discrete Mutual Information (3.4).

Each topology in these experiments use some input entry (W) consisting of a pri-
vate part and public part (e.g. X and Y respectively) and outputs a privacy preserving
version (Z). In each case we will attempt to minimize the privacy leakage of part Z on
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X and the distortion of Y in Z. Exploring the extreme cases, we ideally have either
complete privacy of X in Z or no distortion between Y and Z. This is analyzed below:
Exploring the zero-distortion case we need that:

Y =27
And thus, consequently:
I(X;Y)=1(X;2).

In the case of perfect privacy we need that I(X; Z) = 0. However, this is only possible
when I(X;Y) = 0. Consequently, zero-distortion and perfect privacy is only possible
when X and Y are completely uncorrelated. Otherwise, there will be a Privacy-Utility
trade-off. In turn this means that, whenever I(X;Y’) > 0, the only solution for no
privacy-leakage, when working with 100% correlation data, requires for the release
variable to send out no information on X, i.e. H(X|Z) = H(X). This means that Z
is always outputting seemingly random values. The distortion is therefore expected
to be approximately random. Giving a hamming distance of roughly 0.5.

For any trade-off scenario, we allow some distortion and some privacy-leakage, the
results will likely depend on the used loss-function. However, for this simple data-type
we expect no big difference compared to the theoretical optimum.

3.3 Synthetic Multivariate Gaussian Mixture Data

Gaussian Mixture models have the potential to explain many complex distributions.
It is, therefore, a more realistic data set type. Further, the theoretical foundations
provides us the possibility to analyze. Within these experiments we defined two
sub experiments. The first experiment will have only variables uncorrelated to any
other variable, clarified in Section 3.3.1. The second sub experiment will have no
dependence between all the private variables, nor will there be dependence between
the public variables. This is further elaborated in subsection 3.3.2. Identically to
the bivariate binary case, 10000 samples have been generated for each scenario. The
training set includes 8000 of those samples, the remainder is used for the test set.
Each of these sub experiments is executed within a 2-dimensional (1 private, 1 public
variable) and 10-dimensional (5 private, 5 public) space. The experiment architecture
summary is defined by Table 3.9.

Depending on the number of dimensions the network either looks like Figure 3.3
for 2-dimensional data or like Figure 3.4 for 10-dimensional data. Two design choices
should be especially noted.

The first is the number of output neurons of the privatizer network. The output
dimension is an assumption on the optimal permutation of the released data. Further-
more, in more practical cases, there may not be a clear distinction between private
and public data. An example of this could be a face data-set. From this data-set
researchers may want to perform many tasks (e.g. ethnicity-detection, BMI-detection
etc.), however the identity of the persons in this data-set may be private. In this
scenario the identity of the person is mingled in the face of a person.

The second notable design choice is that only the diagonal of the (conditional)
covariance is estimated from the data. This design choice implies no dependence
between the private variables, which is an assumption to note. However, as we know,
is true for the experiments we are conducting.
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TABLE 3.9: The architecture values used for the Multivariate Gaus-
sian Data experiment.
Data Type (Multivariate) Gaussian
)\scalar =50
AT A=10
gscalar [0,0.2,0.4,0.6,0.8, 1, 2]
om [0,0.5,..., 5]
No. Samples 10000
No. Dimensions 2
No. Epochs 200
Batch size 200
Train/Test ratio 0.8/0.2

Network architecture

n = 10 — Figure 3.4, n = 2 — Figure 3.3

Distortion: d(Y, Z)

(2.13) (Mean Squared Error)

Privacy: J(X;Z2)

Experiment instantiation dependent

Expected Loss approximation used

Universal Approximator as defined in |14]

Weight Optimizer

Adam optimizer: o = 0.001, £(0.9,0.999),
e = le — 08.

FIGURE 3.3: Synthetic Multivariate Gaussian Privacy-Preserving Ar-
chitecture 2-dimensional.
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FIGURE 3.4: Synthetic Multivariate Gaussian Privacy-Preserving Ar-
chitecture 10-dimensional.
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3.3.1 Uncorrelated Gaussian Data.

Identically to the uncorrelated bivariate binary case, there are no relations between
any of the variables. This gives us a multivariate gaussian distribution: AN'(u =0,% =
I,)). To manage expectations we compute the actual mutual information, the actual
entropy of Y and the estimated mutual information of the generated 8.000 training
samples. Denoted in Table 3.10 and Table 3.11.

TABLE 3.10: Gaussian Uncorrelated Data Statistics, n = 2:

Statistic Type | Value
[(X;Y) 0

H(Y) 1.4189
Lirain(X5Y) 1.0133e—10

TABLE 3.11: Gaussian Uncorrelated Data Statistics, n = 10:

Statistic Type | Value
I(X;Y) 0

H(Y) 7.0947
Lirain(X;Y) 0.0013

These statistics clearly indicate that any delta-constraint (3.1) should be achiev-
able without substantial privacy costs.

3.3.2 Correlated Gaussian Data.

This sub experiment uses the bivariate and multivariate Gaussian parameters as iden-
tically described in Tripathy et al. two of their continuous example [14]. In this
bivariate scalar example a gaussian model is defined by N (p,Y), with parameters:



24 Chapter 3. Experiments for measuring performance of privacy-leakage

1 085
©x= [0.5 1 }

These parameters show the covariance between private X, and public Y to equal
0.85. And both variances equal to 1. Its data statistics are found in Table 3.12.

TABLE 3.12: Gaussian Related Data Statistics, n = 2:

Statistic Type | Value
I[(X;Y) 0.6410
H(Y) 1.4189
Train (X5 Y) 0.6498

In contrast to the uncorrelated example, this data will demand a bigger trade-off
in privacy to obtain the required utility. Therefore, small delta-constraints require
more privacy loss.

A more intricate example is their multivariate gaussian with gaussian model N'(u, X2),
with parameters:

o where p = [0.47,0.24, 0.85,0.07, 0.66].

Here, the first five variables are considered X, and thus private, and the last five
variables are Y, and are the sensitive or ‘useful’ variables. Interpretation of this
distribution concludes that the private variables are not dependent, and the same
holds for the useful variables. However, the first private variable has some correlation
with the first useful variable, this is denoted by p. Hence:

Vi,je(O,E)]Xi min Y} <— 3 #]

The data statistics that correspond to this data-type are displayed in Table 3.13:

TABLE 3.13: Gaussian Related Data Statistics, n = 10:

Statistic Type | Value
I(X;Y) 1.0839
H(Y) 7.0947
Lirain(X;Y) 1.1039

Finally, when considering the mutual information of this data distribution it is
computed using the formula described in Appendix A.2.2. This results in the ac-
tual mutual information I(X;Y) = 1.08389. However, as described earlier, we will
mostly be measuring the performance through estimates. Hence, we will be hav-
ing the estimated Mutual Information given the generated data. Which is equal:
Tirain(X;Y) = 1.09896.
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Note that, the fact that private and public variables between themselves are inde-
pendent is an assumption. This means that the results from this experiment tell us a
lot about practical data in which this assumption holds.

3.4 Validation and Evaluation

For each of the earlier described experiments we always have two goals. One is to
keep the released data as private as possible, and another to keep the released data
as useful as possible, i.e. distortion of Z is minimal given Y as actual data. For each
of the experiments above we will be measuring the privacy leakage using the formulas
in Section 2.3 and estimators in Appendix A.1l. Furthermore, the results are plotted
using Mutual Information and Utility for each experiment. By doing so we will be able
to compare and find a relation between the privacy-leakage functions through their
loss functions. This can only happen if the results are stable, and the privacy-utility
objectives should be identical. To indicate the stability we will show several runs,
and the average results for all runs will be used for the comparison. To have identical
training goals we shall specify the objective constants A and § to be identical for each
Privacy-Leakage experiment.

Considering that we have explained mutual information not to be the best measure
for privacy-leakage, the use of mutual information as validation and evaluation should
be enlightened. Computing Maximal Leakage and Maximal a-leakage is an intractable
operation, as the set of possible functions which can produce X is infinite. Although
we can compute a-Leakage, which is also equal to the Arimoto Mutual information
I&L‘(X ; Z), it only provides us with information on the leakage of X onto Z for some
specific generation function U. This does not tell us enough about the actual privacy-
leakage of X onto Z.

Therefore, although we do not consider this as an optimal solution, in order to
bring hard evidence, it is the best we can do, given the provided tools. Future work
might be able to improve on this specific issue. A result that we can hope for using
mutual information, is that each trained network results in a similar mutual infor-
mation between X and Z but a better utility. This way we will be able to show
that (Maximal) a-leakage measures as loss function result in a better privacy-utility
trade-off.
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Chapter 4

Reconstructing Privacy-Preserving
Adversarial Networks.

To study the performance of mutual information we will follow the same architecture
and approach as defined by [14]. In this section we will elaborate their approach on
the problem. This chapter is purely meant as to reconstruct the results of Tripathy et
al. Continuation of this work is found in Section 5.1. As this paper already described,
when using mutual information as privacy leakage measure, i.e. J(X;Z) in (3.1), it
results in the following constrained optimization problem (4.1):

min I(X;Z),st. Ed(Y,Z)] <. (4.1)
Prw:(X.Y) W2
As shown in [14], this function can be rewritten to the unconstrained optimization
problem identical to the minimax problem. The crucial insight is that:

—H(X|Z) = KL(Px|z||Qx/z) + E[log Q x|z (X|2)].

The Kullback-Leibler divergence is denoted by K L(-||-). Using this insight, the fact
that I(X;Z) = H(X) — H(X|Z) and by dropping the constant H(X), (4.1) is trans-

formed to a minimax formulation (similar to (2.14)):

min max E[log Qx| (X|2)] + AE[d(Y, Z)]. (4.2)
Pziw Qx|z
Here Py (2|w) = N(z; (u,3) = Fp), which implies that the privatizer network
P, parameterized by 0, is trained to learn the parameters of the distribution Py .
The same holds for Qxz = N(2;(p, ) = Qg), where the adversary network is
parameterized by ¢. In this case we assume the distributions to be a multivariate
Gaussian. Although this type of distribution has the capacity to imitate more com-
plex distributions, this will differ per experiment. In the bivariate binary case the
distribution will be simpler, which is explained in Section 4.1. The distortion term in
(4.2) has no explicit distortion constraint, however, as explained in (3.3), this can be
replaced with its explicit alternative, which is the exact loss function used to optimize
the privatizer network:

min max E[log Qx| 7(X|Z)] + Amax(0,E[d(Y, Z)] — 6)°. (4.3)

Pziw Qx|z

Here we see that the mutual information term corresponds to our mutual infor-
mation loss function (2.4):

max Ellog Q. 7(X|2)] = i Ellog W] = min E(0Z) (44)
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This function shows the minimization performed by the adversary. Having defined
our privacy-leakage term of the loss function, we will, per experiment, define the full
loss function in the following subsections.

4.1 Bivariate Binary Data using Mutual Information Re-
lease Mechanism

Recall that our first experiment is applying the architectures on binary bivariate
data W <« (X,Y). In our experiments we consider X to be private and Y to be
public. Furthermore, as mentioned in Section 3.2, we generated three types of data:
completely correlated, completely uncorrelated & random (i.e. barely correlated).
Each of these distributions have a MI of: 1, 0 and 0.0041.

As shown in the loss function, there are two constants which define the focus of
distortion term. The lambda parameter defines the focus on the term within the loss,
and delta defines the maximal constraint we allow without penalty. This loss function
is exactly used to train the privatizer network, its algorithm depicted in Algorithm 1
in Appendix B. For the adversary the loss function is similar. Yet, the principle is
different. Instead of minimizing the privacy leakage, we now want to maximize it. As
a result the adversary algorithm turns out as shown in Algorithm 2 in Appendix B,
without distortion term, and the if statement concerning the current value of x, is
reversed. In both algorithms, W; is the ith entry of the dataset (including both X
and Y), A defines the extra unconstrained problem parameter as defined in (4.3) and
0 defines the distortion constraint allowed by the network. The privatizer network
defines the trained privatizer network so far (time step ¢). This algorithm is formally
defined using Equation (4.5). !

bin(6:0) = Y _[Po(z|wi) log Qp(x;]2)] + Amax(0, Y [Py(=|wi)d(yi, 2)] — 6)*

z2EZ z€Z
= [Po(z|wi) log Qy(wi|2)] + Amax(0, Py(Z # y;|wi) — 5)° (4.5)
z€EZ

One should note that we have deviated slightly from [14] as we suspect a typo in their
notation. In such that the distortion term is probably more effective in (4.5) than in
the original:

bin(0:0) =Y _ Po(z|wi)(log Qu (il ) + Amax(0, d(yi, =) — 6)*)
2€EZ

The loss function, combined with the network definitions in Figure 3.2, complete
our figure for the Using Mutual Information as privacy leakage for Binary Bivariate
data Experiment. The result is depicted in Section 4.1, this process is identical to the
algorithmic views of Algorithm 1 and Algorithm 2 in Appendix B.

Regarding this loss function, we like to add that in order to compute the log-
likelihood it was necessary to add some € ~ 0 to prevent numerical errors in the
pytorch library. In this case € = le — 7 is chosen. Therefore, we replace the log-
likelihood with log[Qg(x;|2) + €] in the first term of the loss function.

'The source code of these algorithms are found at: github.com/maxxiefjv/privpack [15]
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FIGURE 4.1: Visual representation of the (4.5) bivariate binary data-
flow used in the training process of a release mechanism using mutual
information and Hamming distance.

Results

As discussed in Section 3.2.4, we have the expectation that for high distortion-constraints,
low privacy-leakage should be obtainable. In this section we discuss the results ob-
tained by the network described in Section 4.1 trained by the data generated as
explained in Section 3.2, and compare the results with our stated expectation.

e For completely correlated data X and Y, the mutual information between Y and
Z equals that of X and Z. Therefore, any delta-constraint smaller than random
(hamming distance sample mean of 0.5) will directly increase the privacy-leakage
of X onto Z.

e For slightly correlated data X and Y, we expect the privacy-leakage to be defined
by the set distortion constraint. Close to the theoretical optimum.

e For uncorrelated data X and Y, we expect no privacy leakage for any defined
distortion constraint.

Besides the above expectations we are interested in the stability of the network, i.e.
do two independent runs learn the same trade-off.

In Figure 4.2 we have depicted the trade-offs defined by the model defined in
Section 4.1 when trained on completely correlated data. As mentioned in our first
point above, we expect to see a direct influence of the delta-constraint to the mutual
information of X and Z. Looking at the averages (Figure 4.2a), this is clearly true
for delta-constraints: [0-0.4]. However, starting from delta=0.5 a fluctuation starts
to appear. This is clearly not the result we would expect, the result we expected
is however visible in Figure 4.2a as the “approx ideal I(X;Z)”. This round shows the
result that we expect: the less strict the constraint on Y and Z, the less information
is shared between our variables X and Z.

For the Hamming distance we have drawn the expected line in Figure 4.2a. Just
as the mutual information line, the results are nowhere close to our expectations.
However, again, looking at the round 0 of Figure 4.2c, we see that that line is the
most corresponding with our expectation.
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FIGURE 4.2: Graphs on the correlated data. Depicted is the aver-
age line for Mutual Information, multi-round outputs for I(X;Z), and
multi-round outputs for hamm(Y;Z). Respectively. A=500

For the correlated data we can therefore state that the result have a high variance
for both the mutual information and Hamming distance. Supporting this claim is that
each individual run using mutual information gave a seemingly significant difference
in the resulting graphs. However, all these runs are not depicted in this thesis.

For the uncorrelated data, we clearly do not expect any leakage of Z on X. We
expect that the network learns to drop any knowledge of X dimension on the released
data. Then, according to the data-processing inequality, Z cannot contain information
on X. Looking at the results in Figure 4.3, we clearly see that the mutual information
of X and Z is always close to 0. Our expectation therefore meets the results concerning
mutual information.

The optimal solution for the network is to output Y at any point. We therefore
might expect that the Hamming distance is zero at each point. However, the actual
results are obviously the result of our loss function. Which, for a delta-constraint
larger than 0.5, does not get penalized enough to know how to reduce the error. The
distortion part, second term, of the loss function therefore shows our expectation.
For random weights, i.e. random guessing, we do not expect the expected Hamming
distance to be higher or lower than a half. Also, with this respect, the results seem
to meet at least our expectations. Although on average, it performs a little better
than these expectations. Looking at the individual runs (Figure 4.3c) however that
seems to be a matter of chance, as individual runs can also perform a little worse than
expected.

Concluding the mutual information results on uncorrelated data we therefore say
that it meets our the expectations. However, Figure 4.3c, show that the learning
process does not seem to be very stable.

The random distribution should perform almost identical to the uncorrelated data
due to the nature of the distribution, i.e. I(X;Z)=0.004. Looking at the graphs in
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Figure 4.4, we see this to be true. An unstable network, but capable of optimal results
regarding privacy-leakage.

Finally, the results using Stochastic Gradient Descent rather than Adam optimizer
seem to be a lot more stable.
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4.2 Multivariate Gaussian Data using Mutual Informa-
tion Release Mechanism

We have not elaborated the use of a universal approximator in Section 3.3, which
we are using for Gaussian data (as mentioned in Table 3.9). This becomes especially
apparent when looking at the full loss function, which shows we sample k release
samples from the privatizer network and approximate the expected loss:

7
‘Cgauss

— 62 (4.6)

k
Z log Q4 (il ;)] + Amax(0

k
Z Iy — Zm

This sampling is possible because of the noise we added to the privatizer network
(the €; in Figure 3.4 and Figure 3.3). Furthermore, the distortion measure as defined in
Section 2.4.2 is used to measure the distortion of y in 2; ;. An algorithmic perspective
of this loss function is displayed in Algorithm 3 of Appendix B. The same process
is also depicted visually in Section 4.2. In this function and algorithm k defines the
number of samples drawn from the privatizer given one input entry.

Similar to (4.5), note that we have deviated slightly from [14] as we suspect a typo
in their notation. In such that the distortion term is probably more effective in (4.6)
than in the original:

w\»—t
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Z log Qg (xilzi ;) + Amax(0, ||y; — 2 ;
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FIGURE 4.5: Visual representation of the Equation (4.6) multivariate
Gaussian data-flow used in the training process of a release mechanism
using mutual information and mean squared error.

As will be apparent in Section 4.2.1, the results achieved by applying this loss
function are not as promising as we might have hoped. How the results are achieved
is determined as future work.

4.2.1 Results

Identically to Section 4.1, we have expectations of the optimal performance given the
used data distribution and its mutual information. In this section we will compute
and discuss the following values:

e The mutual information between X and Z, which we expect to be close to zero
as the delta-constraint allows.

o We expect the delta-constraint to be the determining factor for the amount of
mutual information between X and Z.

In Figure 4.6 and Figure 4.7 we have shown the achieved results. Clearly the
results are nowhere near the expected values. For the uncorrelated 1 dimensional
data, the mutual information appears to be having the correct value. However, as the
distortion is a lot higher than the set distortion constraint, we consider these values
to be the result of random weights rather than a correct global minimum. The same
holds for the remaining figures. The PPAN data should have the mutual information
be highly dependent on the set distortion constraint as deducted from Table 3.12. The
networks where n=10 are nowhere near any expectations. Due to these clearly wrong
results, we will not yet discuss the points described in the list above. However, these
points will be discussed in Section 5.1, where an improved version is shown.

4.3 Evaluation

Evaluating the binary networks we see that the loss function does not seem to provide
stable results. When investigating the training process, we conclude that the networks
are converging. Therefore, suspected is that the networks are stuck in a local optimum.
As a result we suspect that this loss function is too complex for this simple dataset,
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Plot of Privacy-Utility Tradeoffs for networks trained using mutual information as loss function
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FIGURE 4.6: Image showing the results when reconstructing the 1-
dimensional Gaussian scenario from the original PPAN paper.
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FIGURE 4.7: Image showing the results when reconstructing the 5-
dimensional Gaussian scenario from the original PPAN paper.

and therefore very dependent on either the data-sequence used to train the data, or
the initial weights of the network. However, as explained in Section 5.1, these struggles
are easily overcome when weight decay is applied.

Concerning the Gaussian networks the results are not close to the expected results.
The cause is yet to be determined exactly and is currently considered future work.
However, in Section 5.1 an improved version is proposed that uses weight decay.

4.4 Discussion

Unclear in the paper of [14], is why they deviate from the default GAN approach
as defined by [5]. Instead of only inputting noise into the network and outputting a
real looking sample, they approach the problem by directly learning the distribution
parameters of Pzyy. Only when they find the need to sample from this distribution
they add noise to the input, which also includes w;, and consequently approach output
z directly.

Finally, the paper of Tripathy et al. seems challenging to reproduce, likely as a
result of lack on details. Such details are important due to the unstable nature of
GAN architectures. Such details can be provided with either code, pseudo-code or a
detailed overview such as a table. Two questions that arise are about the stability of
the networks, and the regularization used to control the instability.

Furthermore, we suspect a mistake in the loss function E"éli s.(0, ¢) function defined
in [14] on page 5 right column. Expectation over the second term seems incorrect, our
expected version of the formulation is defined in (4.5) and (4.6).

Finally, investigation suggests that the optimizer-loss function combination has
a crucial role in the results. When implementing the same loss function using the
Stochastic Gradient Descent (SGD) optimizer, we find that a better trade-off is found.
However, as we restrict ourselves to one and the same optimizer throughout this paper



4.4. Discussion 35

we won’t go into detail. However, a short insight to these results are discussed in
Chapter 6.
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Chapter 5

Implementing Privacy-Preserving
Release Mechanisms using other
privacy measures

This chapter contains the continuation of Tripathy et al. It therefore contains some
answers on the questions described in Section 4.4 in Section 5.1. Furthermore, we de-
scribe the results when applying Maximal Leakage, a-Leakage and Maximal a-Leakage
as loss function in Section 5.2 and Section 5.3. This means that this chapter contains,
for each experiment described in Chapter 3, a description of the implementations for
the remaining privacy measures. This is the final step completing all the nodes of
Figure 3.1. Besides the privacy-loss function, we will also discuss the architectures as
a whole.

5.1 Revised Mutual Information

In Chapter 4 we have discussed the implementations of mutual information as loss
function for Gaussian and binary data. As observed in Section 4.2, the implementation
of the Gaussian networks is nowhere near the expected performance. In this section we
re-examine the implementation of Section 4.2 with a focus on the hyper-parameters in
order to pursue an improved version. As noted in Section 4.4, some experimentation
suggested a large correlation between the used loss function and the stability and
output of the networks. The results when using the SGD loss on mutual information
and binary data suggest that this loss function supports a more stable output. A
result independent of the starting weights and training data. When applied on the
Gaussian networks, however, this results in numerical issues. As this loss function is
not dependent on the previous gradients, in contrast to the Adam optimizer, gradient
clipping of 0.5 is added. Having resolved the numerical issues, the results are still
nowhere near the expectations. Inspection of the weights shows that these are growing
as a function of the number of epochs, rather than the optimal solution. This supports
the final decision of weight decay. These adjustments result in the values shown in
Figure 5.2 for 1-dimensional Gaussian networks, and in Figure 5.3 for 5-dimensional
Gaussian networks. Finally, as the addition of weight decay promises better results,
we decided to apply the same to the binary networks. These results are shown in
Section 5.1.1.

5.1.1 Results

As mentioned in Section 4.2.1, the results which couldn’t have been obtained without
weight decay are discussed in this section. First to mention, however, are the results
shown in Section 5.1.1. These results show even more promising results with weight
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decay. It perfectly matches the ideal hamming line. However, comes with the unin-
tended consequence of not being able to obtain a hamming distance of 0 and mutual
information of I(X;Z) = 1 for the correlated scenario. Identically, for the uncorre-
lated case, where I(X;Y") = 0, a hamming distance of 0 cannot be obtained either. A
reasonable explanation, we have not yet found.

For the Gaussian networks we will support the results by discussing the expecta-
tions using the list below, as defined in Section 4.2.1.

e The mutual information between X and Z, which we expect to be close to zero
as the delta-constraint allows.

e We expect the delta-constraint to be the determining factor for the amount of
mutual information between X and Z.

For both cases, Gaussian-1 and Gaussian-5 networks, we see that the maximal
mutual information between X and Z is achieved when the distortion=0. This means
that the Gaussian-1 network gives an I(X; Z) ~ 0.6498, and the Gaussain-5 networks
results in an [(X; Z) ~ 1.1039 when the distortion constraint is set to 0. Furthermore,
we see that the distortion seems to be lower at than the delta constraint for larger
delta constraints. This is probably due to some local optimum in which it is stuck.
Some more regularization may be the solution, but this problem needs to be further
analyzed to deliver the appropriate solution. Finally, we expect the delta-constraint
to be the determining factor for the mutual information between X and Z, which is
clearly visible in these results. A smaller delta constraint results in a higher mutual
information between X and Z.
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FIGURE 5.3: Image showing the results after adjusting the hyper-
parameters of the 5-dimensional Gaussian network
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5.2 Maximal Leakage

This section shows the results of the experiments defined in Chapter 3, using Maximal
Leakage as loss function Section 2.3.2. As this loss function is defined for discrete data,
we have not implemented the Gaussian network using this loss function.

5.2.1 Optimizing the release of Bivariate Binary Data

Minimizing Maximal Leakage should minimize the loss of privacy from X onto Z,
incorporating all possible generation functions of X. Recall that our loss function for
MaxL is equal to the probability of error (2.7), and that we measure the distortion of
our binary data using hamming distance (2.12). Equally, to the minimization of the
mutual information loss we have the following resulting minimax objective:

min max E[Qy|7(X|Z) — 1] + Amax(0,E[d(Y, Z)] — 6)°. (5.1)

Pziw Qx|z
As a result, the adversary objective can be written as:

max E[Qx|z(X|Z) — 1] = min E[l — Qxz(X|2)] = min EJY***(X;2)]  (5.2)

Qx|z Rx|z Q@x|z

This loss function is visually represented in Figure 5.4. Clearly, this is almost iden-
tical to the mutual information loss function except for the diamond node. This also
means that for the experiments to come, nothing is different to the mutual information
experiments.

Results

Just as for the mutual information experiments the expectations are almost identical.
However, the loss function is linear instead of nonlinear. This makes the function less
complex, as shown in Figure 2.2. We suspected the mutual information loss function
to be overly complex, in such a way that it gets stuck in local optima Section 4.1.
Therefore, a linear function may improve the results. Other than that we will repeat
the expectations from Section 4.1:

e For completely correlated, any delta-constraint lower than one will directly in-
crease the privacy-leakage of X onto Z.

e For slightly correlated, we expect the privacy-leakage to be proportionally de-
fined by the set distortion constrained.
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FIGURE 5.4: Visual representation of the (4.5) bivariate binary data-
flow used in the training process of a release mechanism using mutual
information and hamming distance.

e For uncorrelated data X and Y, we expect no privacy leakage for any defined
distortion constraint.

Looking at the correlated data, we see a nice, however not optimal, fit to the
ideal hamming line, also visible in this picture is the monotonically decreasing mutual
information. These results therefore seem like an almost perfect result. Validating the
results, we look at the stability of the networks in Figure 5.5b and Figure 4.2c. Both
of these images clearly indicate a stable training process, finding the global optimum.

For uncorrelated data, we may have suspected a better fit for the hamming distance
as it has complete freedom. However, the mutual information line seems to be the
result of forgetting the private input X, which is as expected. In Figure 5.6¢ we find
less stable results than for the correlated alternative. This inconsistency starts from
delta=0.4 and up, and may be the result of its freedom and thus more local optima.
Figure 5.6b shows consistent and stable mutual information per round.

The random data is almost identical to the uncorrelated data, and so are the
results.
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FIGURE 5.5: Graphs on the correlated data. Depicted is the aver-
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5.3 a-Leakage and Maximal a-Leakage

The final privacy-leakage measure applied is the alpha-loss. This loss function, as
explained in Section 2.3.3, is a loss function parameterized by ov. Where lim,_,; (2.8) &~
JMI(X; Z) and limg— 00 (2-8) = JMaL(X; Z). This section will validate and evaluate
the results for different alphas a € (1, 00| given the scenarios as defined in Chapter 3.

5.3.1 Optimizing the release of Bivariate Binary Data

Minimizing the alpha-loss has a similar structure to the loss functions defined before.
We have two terms, the first concerning itself over the alpha-loss, and the second on
the distortion measure. For the binary data, the distortion measure is the hamming
distance. So, similar to the minimization of maximal leakage we get the unconstrained
minimax objective defined by:

pin e [ - - (Pxjz(x]2)° = 1)) + Amax(0,E[d(Y; 2)] - 6)%.  (5.3)

As a result, the adversary objective can be written as:

(0% a—1 a—1
max E|l——(Pxz(x|z) @ —1)] = min E 1—Pyz(z|z) " )] = min E[JM*l (X Z
s L (Prz(al2) S =) = gnin E[21 (1=Pz(al2) )] = i B (X 2)
(5.4)

Visually represented in Section 5.3.1. Again, with no difference other than the
privacy-leakage measure.
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FIGURE 5.9: Mutual information graphs on the correlated data for
alpha-loss. Depicted is mutual information for networks trained on
small alphas in picture A: [1.001, 1.005, 1.01, 1.05, 1.1, 1.15, 1.2] and
big alphas in picture B: [2, 100, 500, 1000, 5000, 10000, 100000]. A=500

Results

Clearly, for the alpha-loss we would expect the same results as for mutual information
and maximal leakage given such a trivial data-set. However, as the uncorrelated
data experiments and random data experiments have similar behavior to the mutual
information and maximal leakage, we have chosen to focus on the alpha-loss network
trained on correlated data. Where we expect that, as remarked in (2.11), that small
alphas should more behave like mutual information as loss, and big alphas should
behave as maximal leakage. We have generated 16 networks, each network trained 3
times using a K-fold approach. The average results of these trainings are shown in
Figure 5.9 and Figure 5.10.

Probably the most interesting part to be seen in this figure is the resemblance
between the small alpha losses and mutual information losses, and the big alpha
losses with maximal leakage. Where the small alphas show a very non-monotonic
curve, the big alphas show a very steady curve. Especially for the values of o €
[100, 500, 1000, 5000, 10000]. Further investigation of these big alphas with correlated
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picture B: [2, 100, 500, 1000, 5000, 10000, 100000]. A=500

data is shown in Figure 5.11a and Figure 5.11b. This shows a steady curve inde-
pendent of the training round, identically to maximal leakage. The remaining figures
Figure 5.11c and Figure 5.11d, show results analogous to mutual information. Both
of these results, are as expected. Both for the stability of training and the results are
almost identical. Similarly, in Figure 5.12 these inspections are shown for uncorre-
lated data. Although these results are not as stable as those in Figure 5.11, this is

expected due to the additional freedom that is inherent to the uncorrelated nature of
the problem.

Yet, identically to mutual information and maximal leakage, the results are com-
pletely different when using the SGD optimizer. Where mutual information seems to
perform better and equal to the maximal leakage performance using SGD. However,
maximal leakage seems to perform worse.
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Chapter 6

Discussion

Throughout this thesis several points of discussion become apparent. In this chap-
ter we discuss these points. Specifically, we will discuss our validation method in
Section 3.4 and the difference of using the Adam optimizer and Stochastic Gradient
Descent optimizer. Furthermore, some remarks are made on the implementation for
the Gaussian networks. Finally, we would like to argue for the importance of supply-
ing code to any practical results and add some remarks on the practical applications
this thesis may support in practice. Future work regarding this thesis is discussed in
Chapter 7.

6.1 Mutual Information as evaluation method

As mentioned, mutual information is used as validation method for each privacy-
leakage measure. Mainly due to the intractability of computing the maximal-leakage,
alpha-leakage and maximal alpha-leakage directly. This results in limited validations
based on the results. As a result, it is difficult to argue that the alpha-loss or MaxL
loss functions perform better when they obtain the same privacy-utility trade-off given
a delta constraint. However, in this work it appears that the privacy-utility trade-off
is different for different loss functions. Furthermore, this also indicates the instability
of the networks. Therefore, it is useful to use such a measure for such validations
although one should be careful about drawing conclusions.

6.2 Generative Adversarial Network Optimizers

Additional discussion arises by experimenting on the optimizer. It appears to have a
large impact on the eventual results. It seems that using the Stochastic Gradient De-
scent optimizer, roughly no difference is shown for the bivariate binary data networks
trained on mutual information, maximal leakage or alpha-leakage. In Figure 6.1 we
show these differences for the mutual information and maximal leakage loss. In the
first row the results of the Adam optimizer are shown, and in the second row the
results using the Stochastic Gradient Descent optimizer. Both trained on correlated
data and uncorrelated data.

It appears that the Adam optimizer boosts the performance of the maximal leakage
loss, however, has a lot more trouble finding the global optimum for the mutual
information loss; log loss. Initial thought may argue that the maximal leakage is linear,
and the log-loss is therefore a lot more complex. However, as we show in Figure 6.2, the
alpha loss has the same behavior, yet is probably the most complex function. For small
alphas, the behavior is similar to the mutual information loss. Clearly visible when
using the Adam optimizer. For large alphas the behavior is similar to the maximal
leakage loss. Interestingly enough, the maximal leakage curve behavior is substantially
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FIGURE 6.1: Image showing the differences of SGD and Adam in
maximal leakage and mutual information.

different when using the SGD optimizer. The Adam optimizer is a complex optimizer,
identifying the factor causing this difference in behavior is therefore not evident.

Concerning the bivariate binary data, another experiment could include maintain-
ing the dimensions so that the number of output dimensions equals two. And see if
the network itself learns to drop one dimension, i.e. always output the same value at
one of the outputs.

6.3 Using a-loss and MaxL-loss for Gaussian networks

As a matter of experiment, and although the working has not been proven, we have
experimented with the usage of alpha-loss and MaxL loss on Gaussian networks. How-
ever, as visible in figures Figure 6.3, they do not show promising results when combined
with the hyper parameters, topologies and regularization described in Chapter 5. How-
ever, it does show affect in the correlated case. Because of those effects, and because
it does show good results for binary data, this should be part of some future work in
which alpha-loss and maximal leakage are further analyzed for continuous data.

6.4 Notes on the implementation of the networks.

Regarding the Gaussian networks, there appeared to be a substantial amount of nu-
merical issues when training. One of specific issue to note is that when training the
Multivariate Gaussian Parameters of the adversary, they tend to approach to zero.
This causes numerical issues as we cannot use a multivariate normal distribution with
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the ¥ diagonal all zeros. Therefore, I have chosen to reset the adversary Parameters
and recompute a potential distribution.

In addition, I would like to note and plead for the necessity of code-sharing when
presenting practical results in a paper. It appears a crucial step for a swifter re-
search environment. This paper the used code visible in [15]. This GitHub repository
contains code for creating the systems shown in this paper, with an application.

6.5 Working with Privacy-Preserving Systems

Finally, the work presented in this paper is part of the progress made in privacy-
preserving systems as introduced in Chapter 1. In the essence this thesis provides
practical and theoretical support for future privacy-preserving systems. This work
shows the possibility of using privacy-preserving systems for low dimensional con-
tinuous data and discrete data. For such systems one has to be careful about the
regularization used, as the stability of the network is highly depended on regular-
ization methods. Furthermore, this work combines the discussion on privacy-leakage
measures with a practical implementation. What is shown is that maximal leakage is
more stable than mutual information when using the Adam optimizer without regular-
ization methods. As a result, this thesis gives reason to identify Maximal Leakage and
alpha-loss as a measure for continuous data. The validation in this thesis concerning
the optimal performance, however, is achieved with mutual information. Although,
as explained in Section 3.4, validation using Maximal Leakage would be preferred.
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Chapter 7

Conclusions and Future Work

We finalize this thesis with the drawn conclusions given the results shown in Chapter 4
and Chapter 5. The conclusions below include the practical validation and evaluation
of mutual information, maximal leakage and alpha-loss.

e Mutual information as loss function is not by itself a stable loss function. How-
ever, appears more stable when using SGD as optimizer or in combination with
weight decay.

e Maximal leakage as loss function indeed also minimizes the shared information
between private variable X and released variable Z for discrete data.

e Maximal leakage approaches the distortion constraint for each delta constraint
when trained on the correlated data. Although sometimes it has a smaller
distortion, which raises the question if the right optimal privacy-utility trade-off
has been obtained given the provided delta-constraint.

e All loss functions defined in Section 2.3 have the complexity to minimize the
mutual information between the release variable and the private variable for
discrete data.

e For (almost) uncorrelated data the optimal privacy-utility trade-off means I(X; Z) =
0 and hamm(X,Y) = 0. However, loss functions are incapable of finding this
optimum when it has too much freedom. Regardless of the loss function used.
Yet, each network and loss function finds the solution where I(X;Z) = 0 for
(almost) uncorrelated data.

e What can be stated is that the theoretical proof of Liao et al., shown in (2.11),
is shown to be true in practice [9]. Larger values of alpha correspond with
a privacy-utility trade-off curve similar to maximal leakage. And the smaller
values correspond to the mutual information trade-off curve.

Concluding the work it seems that, although almost no difference is shown using
SGD optimizers, maximal leakage is a more stable loss function to minimize privacy
loss. As we stated in Section 3.4, the only way to draw conclusions using mutual
information as validation method, is when maximal leakage shows the same or better
results. As this is true, we can conclude that maximal leakage is in fact a more
stable way to approach privacy-preserving release mechanisms for a system as trivial
as binary bivariate data. Obviously, it may be true that better hyper-parameters
for the adversary and privatizer network may result in better results for the mutual
information loss. However, given a straightforward network setups, maximal leakage
performs better and is, in that case, favorable over mutual information. To learn more
about the strengths of the MaxL and a-loss functions, future work on high dimensional
discrete data is required.
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However, no conclusions like these can yet be drawn for Gaussian networks. We
have shown in Section 5.1 that at least the weight decay regularization method is
required to make the loss function of mutual information work. However, the curves
shown in Figure 5.2 and Figure 5.3 are still not as optimal as the curves shown in
the paper of Tripathy et al. To make conclusions concerning maximal leakage and
alpha-loss on continuous data, future work is required on several aspects. In terms
of getting the networks to work, the first question for future work is regarding the
maximal leakage loss function for continuous variables? In terms of validation for
these types of networks it would be of great help if a tractable alternative for maximal
leakage, alpha-leakage and maximal alpha-leakage is identified.

Future work includes the study on the influence of the optimizer on the chosen loss
function. To be specific, why are the results of the mutual information and maximal
leakage in combination with SGD almost inseparable, but when used in combination
with the Adam optimizer clearly distinct.

In addition, all privacy-leakage measures should be tested in a practical setting. An
example of such a setting would be face recognition, BMI detection or other scenarios
where one or multiple specific attributes should be visible, but all other attributes

should be difficult.
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Appendix A

Estimators

A.1 Data Distribution Estimators

As, we will not be in possesion of the actual distributions of the output data, as the
needed Py in Section 2.3, we will have estimators to estimate these distributions in
order to compute the privacy-leakage for some validation set. Below we will define two
estimators, that are capable of estimating the distribution. One for bivariate binary
data, and one for multivariate gaussian data. Where the last is used for the last two
experiments as defined in Chapter 3.

A.1.1 Estimating on Bivariate Binary Data

For binary data we need to estimate the distribution by counting. This is used in the
first experiment as explained in Section 3.2. This estimation is shown in the formula:

. 1 &
P(S=s5V=uv)= EZ(SiZSAUi:v)l' (A.1)
(2
Where n is the number of samples in matrices S and V. This formula is then used
to compute the distribution in Table A.1.

TABLE A.1: This table displays how the formula in Equation (A.1)
results in our estimated distribution

P(S=sV=1) | V=0 | V=
S=0 P(S=0,V=0)| P(S=1,V =0)
S=1 P(S=1,V=0)| P(S=1,V =1)

A.1.2 Estimating parameters of Multivariate Gaussian Data

Our last two experiments are both implied (explicitly and implicitly) to be of multi-
variate gaussian form: W ~ N (u, X). Therefore, to estimate these distributions after
applying our privacy-preserving transformation, we need to estimate g and > given
our released data Z and private data X. So that, in turn, we can also estimate the
privacy-leakage measures as described in Section 2.3. Doing so requires the following
two formulas:

> (i, z) (A.2)

%

SEE

f =
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Where n is the number of samples in matrix X.

> = Z((ﬂ«”z’a zi) — 1)’ (A.3)

)

1
n
A.2 Estimating Mutual Information

To measure the performance of our networks we have computed mutual information,
and is used as the main form of validation. We have used two estimators for mutual
information. For binary data and gaussian data. In the following sections the formulas
for each data type is explained.

A.2.1 Estimating Mutual Information on Binary data

To estimate mutual information on binary data we have used the functions for entropy,
and mutual information given the estimated parameters of the distribution. So we
have used (3.4), where every probability is replaced with the estimated alternative
from (A.1).

A.2.2 Estimating Mutual Information on Gaussian data

To estimate the mutual information we have used the formula defined in [14]. And is
defined by:

. by
I[(X;Y) =05log 2 (A.4)
Yx|yl

Where 3 x|y is computed using the schur-complement of the defined covariance
matrix (A.5).

schur(Y) = Lyjy = 11 — 21282930 (A.5)
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Appendix B

Pseudo-Algorithms

In this appendix the algorithms used to perform the optimisations are displayed.
These algorithms do not include the epoch and iteration loop. Nor do they include
the optimizer function. They are solely focused on the implementation of the privacy
leakage measures in a practical environment.

B.1 Binary network Algorithms

Algorithm 1 Privatizer criterion binary case, stochastic version.

1: Input: Privt, Advt, W;, \,5. > Adversary and Privatizer denoted at timestep t
2: Output: E,[likelihood + distortion]-loss.

3: expected likelihood = 0
4: expected distortion =0
5. for z € {0,1} do

prob_z given w = Privi(x) > Privt is trained to output: Py(Z = 1|W};)
if 2 =0 then
prob_z given _w =1 — Privt(z)

N

9: log_lik_Xi_giv_z = log(Adv'(z))> Adv' is trained to output: Py(X = 1|2)
10: if z =1 then
11: log lik _Xi_giv_z =log(l — Advt(2))

12: expected likelihood += prob_z given wxlog lik_Xi_ giv_z
13: expected _distortion += prob_z given w x (y; # z)1
return expected_likelihood + X\ * max(0, (expected_distortion — §)?)
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Algorithm 2 Binary Loss function adversary

1: Input: Privt, Advt, W;,\,5. > Adversary and Privatizer denoted at timestep t
2: Qutput: E,[likelihood]-loss.

3: expected likelihood = 0
4: for z € {0,1} do

5: prob_z given _w = Privt(x) > Privt is trained to output: Pp(Z = 1|W;)
: if z =1 then
prob_z given _w =1 — Privt(z)

: log_lik_Xi_giv_z = log(Adv'(z)) > Adv' is trained to output: Py(X = 1|z)
9: if £ =0 then
10: log lik Xi giv_z =log(l — Adv'(2))

11: expected _likelihood += prob_z given w * (—log lik Xi_giv_2)

return expected likelihood

B.2 Gaussian network Algorithms

Algorithm 3 Gaussian Loss function privatizer.

1: Input: Privt, Advt, W;,\,5. > Adversary and Privatizer denoted at timestep t
2: Qutput: E[likelihood + distortion] — loss.

3: expected likelihood = 0
4: expected_ distortion =0

5: for z GA{Privt(Wi, ¢)|e € Uniform[—1,1]}* do
(i1, %) = Adv'(2) ) > Adversary at timestep t
Qx|z(xilz) = N(z; (i1, %))

8: expected_distortion += L1||Z —Y|[3
expected_likelihood += log(Qx|z(z[2))

10: expected distortion = %expected_distortion
11: expected likelihood = %expectedilikelihood
return expected_likelihood + \ * max(0, expectedgistortion — §)?
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Algorithm 4 Gaussian Loss function adversary.

1: Input: Privt, Advt, W;, \,5. > Adversary and Privatizer denoted at timestep t
2: Output: E,[likelihood] — loss.

3: expected_likelihood = 0

4: for z € {Priv'(W;, e)le
5: (f, %) = (Adv( )[: 5], diag((Adv’
© o Qxz(wilz) = N(z; (4, X))

T: expected_likelihood += —log Qx|z(7|2)

€ Uniform[—1,1]}* do
(2)[5:]) ))

return %e:ﬂpected_lik‘elihood
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Appendix C

Lambda oriented Binary results

In this section you can find the behavior for different values of lambda. As you can
see, it mostly emphasizes the distortion constraint. For larger values of A, the error is
bigger for smaller errors. In conclusion, to accomplish the delta-constraint the lambda
value should be high enough. However, for values too large one needs to be mindful
about possible numerical issues.
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FiGURE C.1: Graphs on the correlated data. Showing delta-
constrains behavior with different lambdas.
TABLE C.1: Results Binary Synthetic correlated Data.
A\ 5 Training data Testing data
Itr(X;Z) Itr(y; Z) E[dtr(}/a Z)] Ite(X;Z) Ite(y; Z) E[dte(Ya Z)]
500 1 0.0028 0.0028 0.532 0.0014 0.0014 0.521
500 0.5 0 0 0.497 0.0028 0.0028 0.469
500 0.1 0.524 0.524 0.102 0.5534 0.5534 0.093
500 0 0.8462 0.8462 0.022 0.8369 0.8369 0.024
) 1 0 0 0.495 0 0 0.499
) 0.5 0 0 0.491 0.0013 0.0013 0.522
) 0.1 0.272 0.272 0.204 0.28 0.28 0.2
) 0 0.38 0.38 0.162 0.3642 0.3642 0.166
1 1 0 0 0.506 0 0 0.511
1 0.5 0 0 0.493 0 0 0.501
1 0.1 0.066 0.066 0.351 0.0748 0.0748 0.34
1 0 0.088 0.088 0.3288 0.082 0.082 0.334
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FiGure C.2: Graphs on the uncorrelated data. Showing delta-
constrains behavior with different lambdas.

TABLE C.2: Results Binary Synthetic uncorrelated Data.

\ 5 A TrAaining data ) T?sting data

Itr(X;Z) Itr(Y;Z) E[dtT(Ya Z)] Ite(X;Z) Ite(Y;Z) E[dte(yv Z)]
500 1 0.003 0.006 0.532 0.0027 0.006 0.526
500 0.5 0 0.001 0.478 0.0001 0.006 0.456
500 0.1 0 0.525 0.102 0.001 0.506 0.108
500 O 0 0.782 0.035 0.0004 0.779 0.036
5 1 0.0004 0.002 0.516 0.0018 0.0019 0.52
5 0.5 0 0.007 0.45 0.0007 0.003 0.467
5 0.1 0.0002 0.538 0.099 0 0.544 0.096
5 0 0 0.776 0.096 0 0.779 0.036
1 1 0 0.0012 0.48 0.0006 0.0055 0.4575
1 0.5 0.0004 0.0046 0.46 0.002 0.0092 0.443
1 0.1 0.0004 0.5422 0.0965 0.0008 0.56 0.091
1 0 0 0.7835 0.0345 0.0004 0.7763 0.036
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FiGURE C.3: Graphs on the random data. Showing delta-constrains
behavior with different lambdas.
TABLE C.3: Results Binary Synthetic random Data.
A\ 5 Training data Testing data
Itr(X;Z) Itr(y; Z) E[dtr(}/a Z)] Ite(X;Z) Ite(y; Z) E[dte(Ya Z)]

500 1 0.002 0.3846 0.162 0.0025 0.3591 0.17
500 0.5 0.0015 0.0021 0.4734 0.0036 0.0032 0.467
500 0.1 0.0035 0.515 0.1048 0.001 0.5427 0.096
500 0 0.0044 0.787 0.0034 0.0054 0.805 0.03
) 1 0.0028 0.0792 0.336 0.0023 0.0705 0.346
) 0.5 0.0027 0.0177 0.421 0.0036 0.0234 0.41
) 0.1 0 0.5846 0.089 0 0.5846 0.084
) 0 0.003 0.7912 0.033 0.0028 0.7896 0.033
1 1 0.0012 0.1006 0.3234 0.0025 0.1119 0.313
1 0.5 0.0023 0.0548 0.366 0.0013 0.0581 0.364
1 0.1 0.001 0.5889 0.0823 0.0005 0.6073 0.077
1 0 0.0004 0.7288 0.0464 0 0.6937 0.0545
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