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Abstract—This paper proposes to apply spectral minutiae
representation [1]–[7] and deep learning for fingerprint recog-
nition. Fingerprint is one important biometric feature, and its
recognition typically incorporates four steps: image acquisition,
processing, feature extraction and comparison. The powerful
functionality of deep learning in imaging processing makes it
plausible to recognize the fingerprint patterns. Conventionally,
deep learning has mainly been used to extract the minutiae
or the feature vectors from raw fingerprint images. There has
been no hybrid use of the two. In this paper, we propose to
use the spectral minutiae representation and the convolutional
neural network (CNN) in combine to advance direct matching
of spectral minutiae representation in fingerprint recognition.
In the proposed approach, a minutiae set is represented by
a spectrum with fixed size, specifically, this spectral minutia
representation converts a minutiae set into a 128×256 sized
magnitude spectrum. This spectrum serves as the input to CNN,
while the output of CNN is a 128-dimentional feature vector.
The fingerprint recognition is then completed by feature vector
comparison. In this paper, the CNN with 19 layers is used and the
whole network is trained by triplet loss. This proposed approach
makes the fingerprint recognition using CNN more efficient, as
no complicated pre-processing is needed compared to process
endowing raw image to CNN. The performance of the proposed
approach is compared to direct matching of complex spectral
minutiae representation [1].

Keywords—fingerprint recognition, spectral minutiae represen-
tation, convolutional neural network

I. INTRODUCTION

Biometric technology determines a person’s identity by
extracting and comparing human biological or behavioral
characteristics. As the possibility of hacker intrusion increases
with the development of IT technology [8], the interest in
biometric technology for authentication has also greatly in-
creased. In order to distinguish one person from the others,
we need a convenient, safe and effective identification technol-
ogy. Biometrics has the characteristics of portability, security,
distinctiveness and stability, which gives it strong advantages
compared with traditional identification technology such as
password recognition. Biometric technology can be divided
into behavioral features, which include signature and walking
rhythm and physiological features which include fingerprint,
iris and face recognition [4]. Physiological features have
been widely used in forensics, transaction authentication and
cellphone unlocking [9].

With the increasing use cases of fingerprint recognition, the
algorithm of fingerprint recognition is also being improved
gradually. Currently, minutiae-based fingerprint recognition
algorithms [10], [11] are the most traditional. The starting
points, end points, joint points and bifurcation points of
ridges are called minutiae. In general, minutiae-based fin-
gerprint recognition algorithm refers to the comparison of
the position and the direction of the minutiae extracted from
the fingerprint images. Good results have been obtained by
deep-learning based minutiae extraction [12]. However, in
different fingerprint images, different number of minutiae
can be extracted which means the minutiae sets used for
matching have different lengths. The number of extracted
minutiae may even vary if different images of the same identity
are used, as shown in figure 1. This problem leads to the
hard computation to compare two unordered sets of different
sizes. Spectral minutiae representation has been proposed to
solve this problem. It uses a fixed-size magnitude spectrum to
represent a minutiae set of a fingerprint image and compares
magnitude spectra to achieve fingerprint recognition. Another
approach to fingerprint recognition is to extract feature vectors
from the original fingerprint images by using deep learning
directly. These feature vectors are used to determine whether
the two fingerprints are from the same identity. This idea
was first proposed in [13], however, at that time, it was an
early stage of deep learning development, only fully connected
layers were used for image feature extraction. In 2019, Shervin
et al. applied a convolutional neural network to fingerprint
identification [14]. They preprocessed the original fingerprint
images with traditional image processing methods such as
desiccation and filtering, after which Resnet-50 is used to
extract feature vectors and the vectors are compared.

In this paper, we study to what extent deep-learning based
feature extraction can be applied successfully to spectral minu-
tiae images for fingerprint comparison. Using NIST Biometric
Image Software, we extract a minutiae set from every fin-
gerprint image. The complex spectral minutiae representation
(SMC) [1] is used to transform the position and direction of
the minutiae into a fixed-size image by means of a Fourier
transform. The fixed-size image is then used as the input of
the convolutional neural network to extract fixed size feature
vectors. Several similarity measures are used to compare the
feature vectors and these measures are compared here.



Fig. 1. Different images of the same identity have different numbers of
minutiae

In this paper, Darknet-19 [15] is used as the convolutional
neural network. It contains nineteen convolutional blocks and
one fully connected layer. For each convolutional block, there
is one convolutional layer, one activation layer and one batch
normalization layer. Triplet loss [16] is used as the loss
function to train all the parameters of the network.

The rest of the paper is organized as follows. Related work
and background theory is shown in Sec.II . Sec. III describes
the proposed method. Experiments are shown in Sec. IV. The
last part is the conclusion.

II. RELATED WORK AND BACKGROUND THEORY

A. Spectral Minutiae Representation

Fingerprint recognition is usually achieved by minutiae
comparison. Each minutia can be described by parameters
(x, y, θ) [17], where (x, y) is the location of the minutia in
Cartesian coordinate system. The orientation θ of a minutia
can be incorporated by using the spatial derivative of m(x, y) in
the direction of the minutia orientation. This is the reason that
minutiae-based fingerprint recognition has some drawbacks.
First of all, mostly, the numbers of minutiae extracted from
fingerprint images are different, so it is difficult to obtain a
fixed length feature. Secondly, the extracted minutiae are often
with different orders, and the corresponding relationship of the
minutiae is also unknown, therefore, comparing the minutiae
is hard. In addition, the translation or rotation of a fingerprint
image will also affect the comparison result. Spectral minutiae
representation can be used to solve these problems.

Location-based spectral minutiae representation (SML) [2]
only uses the location information of the minutiae. In the
spatial domain, every minutia is represented by a Dirac
pulse. Given Z minutiae, these minutiae are represented by
mi(x, y) = δ(x − xi, y − yi), i = 1...Z, where (xi, yi) is
the location of the i-th minutia in the fingerprint image. The
Fourier transform of mi(x, y) is given by:

F {mi(x, y)} = exp(−j(wxxi + wyyi)) (1)

where ωx and ωy are the spatial frequencies in x and y
direction, respectively. Therefore, the location-based spectral
minutiae representation can be defined as:

ML(wx, wy) =

Z∑
i=1

exp(−j(wxxi + wyyi)) (2)

In order to reduce the sensitivity to small variations in
minutiae locations in the spatial domain, a Gaussian low-pass
filter is used to attenuate the higher frequencies. Then the
magnitude of M is:
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where σ is the standard deviation of the Gaussian filter.
After these transforms, the magnitude of M has become trans-
lation invariant. Finally, the magnitude spectrum is re-mapped
to a polar-logarithmic grid to make the rotation and scaling
of the input become translations. The result of SML is shown
in figure 2. And in figure 2 (b), the horizontal axis represents
the rotation angle of the spectral magnitude; the vertical axis
represents the frequency of the spectral magnitude.

Fig. 2. Example of minutiae magnitude spectrum using SML. (a) is a given
fingerprint image, (b)is the magnitude spectrum of (a) sampled on a polar-
logarithm grid

Orientation-based spectral minutiae representation (SMO)
[3] not only uses the location information of the minutiae,
but also the orientation information. Thus, to every minutia
in a fingerprint, a function mi(x, y, θ) is assigned being the
derivative of mi(x, y) in the direction θi, such that

F {mi(x, y, θ)} = j(wxcosθi+wysinθi)exp(−j(wxxi+wyyi))
(4)

And then, as in SML, a Gaussian filter is used and the
magnitude of the spectrum yields is kept
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As with the SML algorithm, the magnitude spectrum is
also re-mapped into the polar-logarithmic grid. And the result
of SMO is shown in figure 3. And in figure 3 (b), the
horizontal axis represents the rotation angle of the spectral
magnitude; the vertical axis represents the frequency of the
spectral magnitude.

Fig. 3. Example of minutiae magnitude spectrum using SMO. (a) is a given
fingerprint image, (b)is the magnitude spectrum of (a) sampled on a polar-
logarithm grid

SMO did not show better results than SML, even though
SMO incorporates the orientation of minutiae [3]. That is be-
cause in SMO, the orientation of the minutiae is incorporated
as a derivative of the delta function, which amplifies the minu-
tiae noise in the high frequency part of the SMO. Therefore, a
Gaussian kernel with higher σ is needed for SMO to attenuate
the noise in higher frequencies. However, the high frequency
part also contains discriminative information, especially when
the minutiae are of good quality. Another spectral minutiae
representation called complex spectral minutiae representation
(SMC) [1] compensates for these limitations, and it shows
better performance than SML and SMO. Therefore, SMC is
used for spectral minutiae representation in this paper, and it
is described in more detail in Sec.III.

B. Neural Networks

Convolution is an important component of neural networks.
The name of convolutional neural network comes from its
convolutional operation. The main purpose of convolution is
to extract features from the input images. Convolution can
learn image features from a small piece of input data, and
preserve the spatial relationship between pixels. The convolu-
tion used to process images in a convolutional neural network
is usually a two dimensional convolutional computation. For a
two dimensional convolutional computation, the convolutional
kernel can only slide on the direction of x and y, but not on the
depth(channel). Convolutional kernel defines a certain pattern,
and the convolutional (correlation) operation is to calculate the
similarity between each position of the image and the pattern.
The more similar the current position is to the convolutional
kernel, the stronger the response would be. Therefore, the
feature map which is the result of the convolutional operation
can represent the output of the feature extraction. The value of
the response is the sum of the product of the kernel weights
and its corresponding pixel value on the input image, which
can be represented by (6)

convx,y =

p×q∑
i

wivi (6)

where x, y are the coordinates of the input image, p× q is
the size of the kernel, vi is the value of pixel and wi is the
weight of the kernel. The progress can be shown in figure 4.

Fig. 4. The process of convolutional response calculation

Besides, network structure is an important factor in the
effect of feature extraction. A multi-layer perceptron flattens
all the pixels in an image into a long vector for feature
extraction. However, this method has some limitations. Each
entry of the vector is multiplied by a parameter, which results
in too many parameters. The network trains slowly and is
susceptible to overfitting. Convolutional neural networks [21]
try to solve this problem. It shares weights resulting in an
major parameter space reduction. Different structures of the
convolutional layers will have different effects. Several classi-
cal convolutional neural networks are introduced as follows.

Lenet-5 [22] is a simple and basic network structure. It
contains three convolutional layers having sigmoid activation
functions to extract spatial features, and contains two pooling
layers to down sampling. Finally, it contains two-layer fully
connected structure is used to classify the features. The size
of the output is in relation to the number of classes.

Deep-learning based image recognition was first proposed
in Alexnet [23] in 2012. It contains eight layers for feature
extraction. The first five layers are convolutional layers, and
the first two layers and the fifth layer are followed by a
pooling layer. The last three layers are fully connected layers.
In order to facilitate the calculation, the model is divided into
two blocks at the first two layers, and then the feature maps
are concatenated to extract the overall features at the third
convolutional layer. In addition, the network uses ReLU as the
activation function to improve the network computing speed,
and dropout is used to reduce the possibility of over fitting.

The VGG network [24] is an enhanced version of Alexnet.
It emphasizes the depth of convolutional neural network in
network design. The depth of the network is increased to 19
layers. The VGG network demonstrates that a good result can



be achieved by very small convolutional kernels if the whole
structure of the network is deep enough. It also demonstrates
that an effective way to improve network performance is
to deepen the network structure. Even though this method
increases the complexity of the network and, hence, the
computational load, it enables the network to solve more
complex problems. According to this paper, two convolutional
layers with a kernel size of 3×3 have the same receptive field
(the area mapped on an original image by a point on the
feature map) of one convolutional layer with a kernel size
of 5×5; three convolutional layers with a kernel size of 3×3
have the same receptive field of one convolutional layer with
a kernel size of 7×7. In order to increase the depth of the
network, in VGG network, two convolutional layers with a
kernel size of 3×3 are used to replace the one 5×5-kernel
size convolutional layer, and three convolutional layers with
a kernel size of 3×3 are used to replace one convolutional
layer with a kernel size of 7×7. This makes the number of
parameters smaller, saves computing resources and decreases
the possibility of overfitting.

The Siamese network [25] is a network structure used to
measure the similarity of two inputs. It maps two inputs
onto two vectors(Gw(x)) by two networks that share weights,
and uses the distance (L1 norm) between the two vectors to
represent the difference between the two inputs. The structure
is shown in the figure 5.

Fig. 5. The structure of Siamese Network

C. Loss Function

For image classification and recognition, in addition to
improving the network structure, choosing an appropriate loss
function will also bring great benefits to the result. As for the
influence of the loss on the network, the most intuitive way
is to update the parameters of the network by calculating the
loss and then apply propagation. Different loss functions can
make the model focus on learning different characteristics of
data, and better extract this ”unique” feature. Therefore, loss
plays a guiding role in the process of network optimization.

A contrastive loss function [25] has been proposed for
Siamese network. This loss function can effectively deal with
the relationship between paired data in Siamese network. The
expression of the contrastive loss is as follows:

L(W, (Y,X1, X2)) =
1

2N

N∑
n=1

Y D2
w+(1−Y )max(m−Dw, 0)2

(7)
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1 −Xi

2)2)
1
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Dw is the euclidean distance (L2 norm) between two input
vectors X1 and X2. Y is the label of whether the two
samples match, Y = 1 means matching while Y = 0 means
mismatching. N is the number of samples. m is a distance
threshold set for the unmatched samples. If the distance of the
unmatched samples is large enough, the loss is 0.

Softmax loss (9) is a popular loss function for classification
problems.

Ls = − 1

m

m∑
i=1

log

(
exyi∑n
j=1 e

xj

)
(9)

where xj represents the output of a fully connected layer,
the proportion of xyi must be increased, so that the trained
parameters can make more samples fall into the decision
boundary of its class. However, softmax loss function mainly
considers whether the samples can be classified correctly, and
lacks the constraints of the distance of intra class and inter
classes.

Centerloss is used to reduce the distance of intra classes
[26]. Centerloss randomly initializes a center point for each
class, and calculates the distance between each sample and
its corresponding center point, and then the parameters are
updated gradually through back-propagation to decrease the
distance.

L = Ls + Lc = − 1

m
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T
yi
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j=1 e
WT

j xi+bj

)
+
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2

m∑
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‖xi − cyi‖
2

(10)

Centerloss (10) adds penalty to the intra class samples with
large distance, which makes the intra class distance compact
during training.

The network trained by centerloss can make the intra class
distance more compact, but it cannot increase inter class
distance. In Arcface [27], a new loss function is proposed,
which can not only reduce the intra class distance, but also
increase the inter class distance, which further improves the
classification effect. The loss of Arcface is based on the
softmax loss. It can be found that WT

yixi =
∥∥WT

yi

∥∥ ‖xi‖ cos θ.
If the bias b is ignored, the result depends on the angle θ.



In order to increase the distance of different classes, an extra
angle t is added.

LArcface =

− 1

m

m∑
i=1

log

(
es(cos(θyi+t))

es(cos(θyi+t)) +
∑n
j=1,j 6=yi e

s·cos θj

)
(11)

The extra angle t can be considered as a margin between
different classes. The Angle interval between the different
classes is at least equal to this extra angle, which makes the
intra class distance more compact and increases the inter class
distance.

D. Classifier

Classifiers calculate the similarity score and compare it
with a threshold to classify the fingerprint. Many classifiers
are based on vectors comparing. The difference between two
vectors is compared. The greater the difference, the smaller
the similarity.

Euclidean distance is a commonly used distance definition,
which describes a kind of distance between two vectors in m-
dimensional space, or the length of the vector (i.e. the distance
from the vector to the origin). Given two vectors x, y, the
distance between them is given by:

d(x, y) =

√√√√ m∑
i=0

(xi − yi)2, (12)

with m the dimension of the vectors. When Euclidean
distance is used to express similarity, (13) can be used, the
smaller the distance, the greater the similarity.

sim(x, y) =
1

1 + d(x, y)
(13)

Pearson correlation coefficient uses linear correlation be-
tween vectors to express similarity. It can be defined as:

s(x, y) =
n
∑

xy−
∑

x
∑

y√
n
∑

x2 − (
∑

x)2
√
n
∑

y2 − (
∑

y)2
(14)

The closer the score to 1, indicating that the higher the
similarity between the two vectors.

Log likelihood ratio can also be used to measure the
similarity of two vectors [28]. Given two feature vectors x and
y, two hypotheses can be formulated. Hs: the two vectors are
from the same identity, Hd: the two vectors are from different
identities. Given these two hypotheses, the likelihood ratio is
defined as:

l(x, y) =
P (
(x

y

)
| Hs)

P (
(x

y

)
| Hd)

(15)

During feature reduction based on principal compo-
nent analysis and linear discriminant analysis, whitening
transforms(WH ,WL) is applied to the vectors x and y, and
then u, d, v are obtained by a singular value decomposition.

D is the number of singular value vi on the diagonal of the
diagonal matrix d. ∆DIF and ∆SUM can be defined as (16)
and (17).

∆DIF,i =
vi

vi − 1
, i = 1, ..., D (16)

∆SUM,i =
vi

vi + 1
, i = 1, ..., D (17)

Under the assumption that the feature have Gaussion dis-
tributions, after the feature reduction and ignoring some con-
stants, the similarity score can be denoted as:

s(xc, yc) = −
D∑
i=1

vi
1− vi

(xc,i − yc,i)
2+

D∑
i=1

vi
1 + vi

(xc,i + yc,i)
2

(18)

The block diagram of the similarity score according to (18)
is shown in figure 6.

Fig. 6. Block diagram of calculating the similarity [28]

Finally, the complete expression for the log-likelihood ratio,
including all the ignored constants is

log(l(xc, yc)) = −1

2

D∑
i=1

log(1− v2i ) +
1

4
s(xc, yc) (19)

Direct matching [1] is a way to get the similarity score
of SML, SMO and SMC. Suppose R(m,n) and T (m,n) are
the minutiae spectra of the reference fingerprint and the test
fingerprint on the polar-logarithmic(or polar-linear) grid, re-
spectively. Both R(m,n) and T (m,n) are normalized to have
zero mean and unit energy. The two-dimensional correlation
coefficient (14) between these two spectra can be used as the
similarity score.

In practice, rotation, translation and scaling may exist in
the original fingerprint images which is caused by the sensor
used to acquire the fingerprints. Since the magnitude spectrum
is translation invariant, some methods should be used to
compensate for the rotation and the scaling. As a magnitude
spectrum is mapped onto a polar-logarithmic (or polar-linear)
grid, angle is represented by the horizontal axis while scaling
is represented by the vertical axis. The scaling becomes the
shift in the vertical direction, and the rotation becomes the
circular shift in the horizontal direction. Keep the magnitude
spectrum of reference image R(m,n) unchanged, and denote



T (m−i, n−j) as a shifted version of T (m,n), with a shift of
i in the vertical direction and a circular shift j in the horizontal
direction. Then, the correlation coefficient between R and T
is defined as:

C(R,T ) (i, j) =
1

MN

∑
m,n

R (m,n)T (m− i, n− j) (20)

Most of time, the scaling of the original fingerprint can be
compensated for on the level of the minutiae sets [31]. Then,
i in (20) can be set to zero. We chose to test rotations from
-15 units to +15 units in steps of 3 units, which corresponds
to a range from −10◦ to +10◦ in steps of 2◦. The maximum
score (21) of these correlation coefficient between R and T
is used as the similarity score of the reference fingerprint and
the test fingerprint.

SR,T = maxj

{
C(R,T ) (0, j)

}
(21)

with j = 3k for k = −5...5.

III. THE PROPOSED APPROACH

A. Problem Statement

In the field of fingerprint recognition, many algorithms
based on minutiae comparison [4]–[6] have achieved good per-
formance, and currently the algorithms based on deep learning
attract more and more attention. This paper mainly wants to
investigate whether the combination of these two algorithms
can improve the performance of fingerprint recognition. In
this paper, we use complex spectral minutiae representation
(SMC) [1] to express the information of the minutiae, and
the magnitude spectrum is considered as the input of deep
learning for feature extraction. The similarity score of feature
vectors extracted by the convolutional neural network is used
as the decision criterion of fingerprint recognition. The specific
framework is shown in figure 7.

As can be seen from the figure, the method proposed
in this paper can be divided into four parts. The first part
is minutiae extraction of fingerprint images. In this paper,
Mindtct minutiae detector in the open source NIST biometric
image software is used to automatically locate and record
the minutiae in a fingerprint image. The coordinates and
orientations of the minutiae are collected. In the second part,
the complex spectral minutiae representation [1] is used to
process the extracted coordinates and orientations of minutiae,
and then the magnitude spectrum is obtained. The third part is
feature vector extraction based on deep learning. The spectrum
obtained from the second part is used as the input of the
network structure. After the calculation of the deep convolu-
tional neural network, the spectrum is transformed into a 128-
dimensional feature vector. The fourth part is the comparison
of feature vectors. The classifier is used to compare the two
vectors, and then the fingerprint is identified by scoring.

Fig. 7. The framework

B. Complex Spectral Minutiae Representation

The spectral minutiae representation is based on the shift,
scale and rotation properties of the two-dimensional contin-
uous Fourier transform. Given an input signal f (~x) , ~x =
(x, y)

T (superscript T denotes the transpose of a vector ), its
continuous Fourier transform is

F {f (~x)} = F (~w) =

∫
~xεR

f (~x) exp(−j ~wT~x)d~x (22)

with ~w = (wx, wy)
T . The Fourier transform of a translated

f (~x) is

F {f (~x− ~x0)} = exp(−j ~wT ~x0)F (~w) (23)

in which ~x0 = (x0, y0)
T the translation vector. The Fourier

transform of an isotropically scaled f (~x) is

F {f(a~x)} = a−2F (a−1 ~w) (24)

with a (a > 0) the isotropic scaling factor. The Fourier
transform of a rotated f (~x) is



F {f (Φ~x)} = F (Φ~w) (25)

with
Φ =

(
cosφ − sinφ
sinφ cosφ

)
(26)

Here Φ is the (orthonormal) rotation matrix, and φ is the
(anticlockwise) rotation angle of f (~x).

It can be seen from (23) that if only the magnitude of the
Fourier spectrum is retained, the representation of the input
signal is translation invariant. Furthermore, from (24) and
(25), it follows that scaling and rotation of the input signal
results in a scaled and rotated Fourier spectrum. However,
in most fingerprint databases, there is no scaling difference
between the fingerprints, or the scaling can be compensated
for on the level of the minutiae sets [31], and some additional
operations are performed to reduce the effect of the rotation.
Besides, SMC is sampled in a polar-linear grid. Compared
with sampling in a polar-logarithmic grid, it provides more
information in the higher frequency part.

There are three steps to convert the minutiae of a fingerprint
into complex spectral minutiae representation. First of all, for
each minutia, it is considered as a Dirac pulse, mi(x, y) =
δ(x−xi, y−yi), i = 1...Z, where (xi, yi) is the location of the
i-th minutia in a fingerprint image. A complex amplitude ejθi
represents the minutia orientation. Then the Fourier transform
of mi(x, y) is given by:

F {mi(x, y)} = exp(−j(wxxi + wyyi) + jθi) (27)

Secondly, the complex spectral minutiae representation is:

MC(wx, wy) =

Z∑
i=1

exp(−j(wxxi + wyyi) + jθi) (28)

Finally, the continuous spectra SMC needs to be sampled
on a polar-linear grid. A polar mapping transforms rotation to
circular shift in the horizontal direction. In the radial direction
λ, we use M = 128 samples between λ1 = 0.05 and λh = 0.58.
In the angular direction β, we use N = 256 samples uniformly
distributed between β = 0 and β = 2π.

Examples of the minutiae spectra achieved with SMC are
shown in figure 8. For each spectrum, the horizontal axis
represents the angle of the spectral magnitude (from 0 to
2π); the vertical axis represents the frequency of the spectral
magnitude (the frequency increases from top to bottom).

C. Network

The deep convolutional neural network takes the magnitude
spectra as the input to extract the features from the spectra
and then get feature vectors. The network structure used
in this paper is darknet-19 [15], which is composed of 19
convolutional blocks and one fully connected layer. For the
dataset used in this paper, the 19-layer convolutional structure
is appropriate. Because the training dataset is relatively small,
the 19-layer convolutional structure is neither too complex,

Fig. 8. The spectra of SMC. (a) and (b) are the SMC spectra from different
fingerprint images of the same identity; (c) and (d) are the SMC spectra from
different fingerprint images of the same identity.

resulting in a quick overfitting, nor too simple, making it
difficult for the network to extract the features from the
magnitude spectra.

As mentioned in Sec.II the essence of convolution is linear
computation. In order to increase the nonlinear ability of
feature extraction and increase the diversity of expression of
the features, a layer of activation function is often added
behind the convolutional computation. The activation function
used in this paper is the Parametric Rectified Linear Unit
(PReLU) function [30]. PReLU has made some improvements
to Rectified Linear Unit (ReLU) [29]. In ReLU, when the input
is less than zero, the output values are all set to be zero, which
will cause some data missing. PReLU adds a variable slope at
the negative half axis to ensure the integrity of the data. The
functions of ReLU and PReLU are shown in figure 9.

Fig. 9. The contrast of ReLU and PReLU

where a is the varialbe slope, which will be updated during
the training process. After the covolutional operation, the
values of the data will be changed, and the distribution of
the outputs are different with the inputs, so the training
convergence is slow. Generally, the values would be very large
or very small, which results in the convergence of deep neural
network slower and slower, and batch normalization is used
to force the distribution of input values of any layer back to



the standard normal distribution with mean value of zero and
variance of one. In other words, by using batch normalization,
the increasingly biased distribution is forced to be pulled
back to the standard distribution. The training convergence
speed will be faster, and the problem of gradient vanishing or
explosion can be solved at the same time.

A convolutional block (figure 10) is composed of one
convolutional layer, one activation operation and one batch
normalization operation. The convolutional block is taken as
the basic unit of the network structure.

Fig. 10. The convolutional block

In addition to the convolutional blocks, there are some max
pooling layers in the network, which can reduce the size of
the feature maps, improve the computing speed, and improve
the robustness of the extracted features. In this paper, a 2 × 2
max pooling kernel is used, that is, only the maximum value
of 4 pixels is kept. The process can be shown in figure 11.

Fig. 11. The process of maxpooling

After all the convolutional blocks, there is a fully connected
layer to convert the (channel, height, width) format into a 128
dimensional vector. The overall structure of the network can
be shown in figure 12 and figure 13.

D. Loss Function

Triplet loss was first proposed in Facenet [16]. In this paper,
triplet loss is used to train the embedding of the magnitude
spectra. In a well-trained embedding space, similar images

Fig. 12. The overall structure of the network

Fig. 13. The structure of convolutional network and fully connected layer

have similar results, therefore, the embedding space can be
used to estimate whether the magnitude spectra belong to the
same identity. In order to get a standard embedding space,
the main goal of triplet loss is to: a). make the distance of
the samples with the same identity as close as possible in the
embedding space, and b). make the distance of the samples
with different identities as far as possible in the embedding
space. In order to achieve b), an extra margin is needed. So,
the basic idea of triplet loss is to make the sum of the margin



and the distance between the samples of the same identity less
than the distance between the samples of different identities.

A triple (A,P,N) consists of a randomly selected feature
vector A (Anchor), another feature vector P (Positive) sharing
the same identity as A, and a feature vector N (Negative)
having an identity unequal to A and P . The distance of each
two vectors can be define as:

d(a, b) =
∥∥f(xai )− f(xbi )

∥∥2
2

(29)

The triplet loss can be defined as:

L = max(d(A,P )− d(A,N) +margin, 0) (30)

In the training process, the loss should be minimized, and
after optimizing, the distance between the anchor A and the
positive P is close to zero and the distance between the anchor
A and the negative N is close to margin. The process is shown
in figure 14.

Fig. 14. The training process of triplet loss [16]

The triples can be divided into the following three cate-
gories:

Easy triplet : for some (A,P,N), the sum of the margin and
the distance between Anchor and Positive always less than the
distance of the Anchor and the Negative. These triples do not
need to be used during training.

Semi-hard triplet: the distance between the Anchor and the
Positive is less than the distance between the Anchor and
the Negative, and at the same time, the distance between the
Anchor and the Negative is less than the sum of the margin
and the distance of Anchor and Positive. It means sometimes
the fingerprints can be classified, but the distance between the
feature vectors with the same identity is not small enough
or the distance between the feature vectors with different
identities is not big enough .

Hard triplet : the distance of the Anchor and the Negative
is less than the distance of the Anchor and the Positive. For
these triples, they should be trained more.

In order to create a more discriminative embedding space,
hard triplets and some semi-hard triplets are used during
training stage. There are two methods to train the network.
One is called online training and the other one is called offline
training.

Offline training : Consider every feature vector in the dataset
as an Anchor and find all easy triplets, semi-hard triplets and
hard triplets. Only hard triplets are used for training. As the
parameters of the network are updated over time, the feature
vectors of the fingerprints will change, and the distances
between the different vectors will also change. Therefore, all

triplets need to be reclassified, and hard triplets need to be
updated after a few epochs of training. In order to be able
to train continuously and get the appropriate parameters, the
other training method: online training is used in this paper.

Online training is based on batch training. In the process of
training, consider each sample of the feature vectors in a batch
as an anchor, and then find its hardest positive (the positive
sample with the furthest distance from the anchor) and hardest
negative(the negative sample with the nearest distance from the
anchor) to form a triplet, and use all the triplets to calculate
the loss.

The distance between the anchor and its hardest positive and
the distance between the anchor and its hardest negative can
be found according to the matrix of the batch. These distances
can be calculated as follows: Given a batch of feature vectors
with batch size n, the batch can be expressed as,

~v1
~v2
...
~vn

 (31)

the square of the vector is taken and expand it into an n×n
matrix, 

|~v1|2 |~v1|2 ... |~v1|2

|~v2|2 |~v2|2 ... |~v2|2
... ... ... ...

| ~vn|2 | ~vn|2 ... | ~vn|2

 (32)

,
then get the sum of the matrix and its transpose matrix, and

subtract two times of the dot product of the vectors(31) and
the vectors’ transpose, then the matrix is,


|~v1|2 − 2v1 · vT1 +

∣∣∣~v1T ∣∣∣2 ... |~v1|2 − 2v1 · vTn +
∣∣∣ ~vnT ∣∣∣2

|~v2|2 − 2v2 · vT1 +
∣∣∣~v1T ∣∣∣2 ... |~v2|2 − 2v2 · vTn +

∣∣∣ ~vnT ∣∣∣2
... ... ...

| ~vn|2 − 2vn · vT1 +
∣∣∣~v1T ∣∣∣2 ... | ~vn|2 − 2vn · vTn +

∣∣∣ ~vnT ∣∣∣2


(33)

,
it can be found that each entry of the matrix is the square

of the distance of two vectors. Take the square root of each
entry, and the distance can be obtained(34).



√
|~v1 − ~v1|2

√
|~v1 − ~v2|2 ...

√
|~v1 − ~vn|2√

|~v2 − ~v1|2
√
|~v2 − ~v2|2 ...

√
|~v2 − ~vn|2

... ... ... ...√
| ~vn − ~v1|2

√
| ~vn − ~v2|2 ...

√
| ~vn − ~vn|2

 (34)

For each row in this matrix(34), find all positive samples
and all negative samples of the corresponding vector, and then
find the hardest positive from the positive samples and find
the hardest negative from the negative samples. Therefore, the
triplet becomes (Anchor, Hardest Positive, Hardest Negative).



Besides, the distance can be selected from the matrix (34)
directly. Using (30) for a single triplet, we define the batch
loss is

L =

n∑
i=0

max (d (Anchori, HardestPostivei)−

d (Anchori, HardestNegative) +margin, 0)

(35)

E. Classifier

Cosine similarity, also known as cosine distance, is a
measure of the difference between two individuals by using the
cosine value of the angle between two vectors in vector space.
Cosine similarity is suitable for the similarity calculation of
high dimensional vectors.

Given two vectors, (36) can be used to define the cosine
similarity (37). The value of the cosine similarity is between
-1 and 1. -1 is the most dissimilar case (”π” radians), 1 is the
most similar case (~a = λ~b, with λ > 0).

~a ·~b = ‖a‖ ‖b‖ cos θ (36)

similarity = cos θ =
a · b
‖a‖ ‖b‖

=

∑n
i=1 aibi√∑n

i=1(ai)2
√∑n

i=1(bi)2

(37)

In our experiment, the cosine similarity of two fingerprint
images represented by two feature vectors are calculated, and
then the value of cosine similarity is used to achieve fingerprint
recognition.

If the cosine similarity of two feature vectors is greater
than or equal to a certain threshold, it can be considered
that the fingerprint images represented by the two feature
vectors belong to the same identity, if the cosine similarity
of the feature vectors is less than the threshold value, the
fingerprint images represented by the two feature vectors
belong to different identities.

IV. EXPERIMENTS

In this section, we will introduce the dataset used in the
experiments, the process of four experiments and the results
of these experiments.

A. Dataset

MCYT fingerprint database [19] is proposed and imple-
mented by the Biometric Research Laboratory - ATVS of
the Universidad Politecnica de Madrid. Two different devices:
Digital Persona UareU (256x400 8-bit 500 dpi) and PRECISE
BIOMETRICS SC-100 (300x300 8-bit 500 dpi) were used to
collect fingerprints. 434 subjects from four different schools
participated in the fingerprint collection. For each device and
each subject, ten fingers were used. Consider each finger as an
identity, for each identity, twelve samples were collected. All
fingerprint images are grayscale images, and the fingerprints
can be displayed in figure 15 and 16.

Fig. 15. The fingerprint images collected by Digital Persona UareU

Fig. 16. The fingerprint images collected by Precise Biometrics SC-100

The DB2 of FVC2002 [20] and FVC200 are also used in
the experiment. These fingerprints are collected by the optical
sensor ”U.are.U 4000” by Digital Persona. For both FVC2002
and FVC200, each dataset contains 100 identities and for each
identity, there are eight samples.

According to the above introduction to the two databases,
there are about 104160 images in MCYT database and there
are about 1600 images in the two FVC databases. In order to
ensure the balance between the two databases, we take all FVC
fingerprint images and a part of MCYT fingerprint images
as our dataset. It can be found that in figure 15 and figure
16, thumb images always have different shape with others, so
we drop all the thumb images in our dataset. The dataset is
divided into training dataset, validation dataset and test dataset.
In the training set, there are 3360 images from MCYT and
FVC. 2040 images are from MCYT database (170 identities,
and 12 samples for each identity), while 1320 are from FVC
databases (165 identities, and 8 samples for each identity).
In the validation dataset, there are 200 images. 120 images
are from MCYT database (10 identities, and 12 samples for
each identity), while 80 images are from FVC databases (10
identities, and 8 samples for each identity). In the testing
dataset, there are 500 images. 300 images are from MCYT
database (25 identities, and 12 samples for each identity),
while 200 images are from FVC databases (25 identities, and
8 samples for each identity). In order to compensate for the



bias caused by the rotation of the fingerprints in the process
of SMC, some rotated fingerprints are added into the training
set. Two samples for each identity in the training dataset
are selected and then rotated with a small and randomly-
selected angle (from −15◦ to 15◦) to obtain two new images.
Therefore, there are 4030 images in total for training.

B. Experiment Setting

We use direct matching of SMC as our baseline experiment
to compare with the methods we proposed in this paper.

1) Baseline experiment: For the direct matching of SMC,
there is no training process, so only testing set is used. Extract
the minutiae sets of these fingerprint images, and convert these
minutiae sets into magnitude spectra. For each two magnitude
spectra, the similarity score is calculated according to (20)
and (21). Set a threshold, if the similarity score is greater
than the threshold, the two fingerprints belong to the same
identity. If the similarity score is less than the threshold, the
two fingerprints belong to different identities.

The methods we proposed in this paper consists of four
parts: (1) minutiae extraction; (2) complex spectral minutiae
representation; (3) feature extraction by using deep learning;
(4) feature vector comparison by using classifier.

In the process of training, there are only the first three
steps and no process of comparison. In the first step, 3360
fingerprint images can be considered as the input of minutiae
extraction, then the output of this part are 3360 minutiae sets,
in each minutiae set, there is the information of the minutiae
of the fingerprint, which contains the coordinates and the
orientations. Before the step of complex spectral minutiae
representation, two samples of each identity are randomly
selected, and then the minutiae sets of these two samples are
rotated with a very small angle. The rotated minutiae sets are
also added to the dataset for training. Therefore, there are 4030
minutiae sets in total as the input of complex spectral minutiae
representation. The rotation is calculated as follows (38).

x = x′cos(θ)
y = y′cos(θ)
θ = θ′ + α
− π

12 < α < π
12

(38)

In the second step, each minutiae set is converted into a
fixed-size magnitude spectrum by complex spectral minutiae
representation. For validation dataset, we use the raw finger-
print images. Extract the minutiae sets and convert them into
magnitude spectra. We train the network by using training
dataset and observe the loss curve (figure 17) of the training
dataset and the validation dataset. It can be found that the
loss curve of the validation dataset reached its lowest point
at around 30th epoch. Therefore, the network parameters of
30th epoch training were selected as the final parameters in
our experiments.

When testing, consider the two samples for recognition
as reference fingerprint and test fingerprint. The reference
fingerprint is used as a baseline, and the test fingerprint is
used to compare with the reference fingerprint. During the

Fig. 17. The loss graph of the train set and the validation set after 88 epochs
training

testing process, we conducted three experiments to compare
the results of these three experiments to see if they could
improve the result of baseline experiment.

2) Experiment I: The testing process is as follows: first
of all, extract the minutiae of the reference fingerprint and
the test fingerprint. Secondly, the minutiae sets of the two
fingerprints will be represented by the spectra. And thirdly,
the convolutional neural network is used to extract the feature
vectors of the reference magnitude spectrum and the test
magnitude spectrum. Finally, these two vectors are compared
by using cosine similarity and then a score is obtained. This
score is used to compare with the threshold, and it can be
determined that whether the reference fingerprint and the test
fingerprint belong to the same identity.

However, in the process of fingerprints collection, the ro-
tation of the fingerprints still exist (for example, depending
on the sensor that is used to acquire an image). Additional
measures aiming to compensate for the rotation can be taken
to check whether it is useful of improving the performance of
the fingerprint recognition system. Then we have Experiment
II.

3) Experiment II: When this rotation is applied to the test-
ing process, it can be described as follows: Step 1: extract the
minutiae sets from the original fingerprint images of reference
fingerprint and test fingerprint; Step 2: these two minutiae sets
are represented by two magnitude spectra by using complex
spectral minutiae representation. Keep the reference spectrum
unchanged, rotate the test spectrum for several times. As the
minutiae set is remapped to the polar-linear grid after Fourier
transform, the rotation of the fingerprint image becomes circu-
lar shift in the horizontal direction on the magnitude spectrum.
If T (m,n) is used to represent the magnitude spectrum,
T (m,n − j) can be used to represent the the circular shift
of the spectrum, where m and n are the coordinates of the
spectral representation and j (−15 < j < 15, step = 3) is
the shift. This circular shift is the same as the rotation of the



original fingerprint image with the angle from −10o to +10o

in steps of 2o. After the circular shift, we have 11 test spectra
to compare with the reference spectrum; Step 3: the reference
spectrum and the 11 test spectra are forward to the network as
inputs, then the feature vector of the reference spectrum and
the feature vectors of the test spectra can be obtained; Step 4:
the feature vector of the reference spectrum is compared with
the feature vectors of the test spectra, and 11 scores are got
by using cosine similarity. The highest score will be selected
as the final score of this testing process. This score will also
be used to compare with the threshold we set.

4) Experiment III: Since the log likelihood ratio has
achieved good performance in many fields such as face
recognition, we also apply the log likelihood ratio as the
classifier to recognize the two vectors which are obtained
from the convolutional neural network. According to the log
likelihood ratio, the classifier needs to be trained first to get
some parameters(described in Sec.2), then it can be used for
feature vector comparison.

There are still four steps for fingerprint recognition. Firstly,
extract the minutiae sets of the reference fingerprint and the
test fingerprint; Secondly, the minutiae sets are converted to
two spectra by using SMC; Thirdly, two feature vectors are got
from the convolutional neural network; Finally, in order to use
the log likelihood ratio as classifier, these two vectors should
be concatenated. For example, two vectors of size 128×1 are
concatenated to a vector of size 256× 1. Then the similarity
score can be calculated by LLR. A threshold is also used to
compare with the similarity score.

C. Result

The performance of a fingerprint recognition system can
be evaluated by means of several measures. The receiver
operating characteristics (ROC) curve and the equal error rate
(EER) are used in this paper. Some concepts about these
measures are described as below.

During the testing process, four situations will occur when
achieve fingerprint recognition, and it can be shown in the
confusion table (tableI).

TABLE I
CONFUSION TABLE

Actual Prediction
Positive Negative Total

Positive True Positive False Negative Actual Positive
Negative False Positive True Negative Actual Negative
Total Predicted Positive Predicted Negative

Compare the reference fingerprint and test fingerprint, four
kinds of results will occur.

• The reference and the test are with the same identity.
After using the fingerprint recognition system, it is predicted
that these two fingerprints are from the same identity. It
means that the system predicts correctly. This case can be
represented by True Positive in table I.

• The reference and the test are with the same identity.
After using the fingerprint recognition system, it is predicted
that these two fingerprints are from different identities. It
means that the system makes a wrong prediction. This case
can be represented by False Negative in table I.

• The reference and the test are with different identities.
After using the fingerprint recognition system, it is predicted
that these two fingerprints are from the same identity. It
means that the system makes a wrong prediction. This case
can be represented by False Positive in table I.

• The reference and the test are with different identities.
After using the fingerprint recognition system, it is predicted
that these two fingerprints are from different identities. It
means that the prediction of the system is correct. This case
can be represented by True Negative in table I.

When the reference and the test are from the same identity,
this kind of pairs can be represented by Actual Positive in table
I, and they are also called genuine pairs. When the reference
and the test are from different identities, this kind of pairs can
be represented by Actual Negative in table I, and they are also
called impostor pairs.

True match rate (TMR) [18] is the ratio of the number of
True Positive cases and the number of Actual Positive cases.
It can be represented by (39).

TMR =
TP

TP + FN
=

Genuine(score ≥ threshold)

Genuine Pairs
(39)

False match rate (FMR) [18] is the ratio of the number of
False Positive cases and the number of Actual Negative cases.
It can be represented by (40).

FMR =
FP

FP + TN
=

Impostor(score ≥ threshold)

Impostor Pairs
(40)

False non-match rate (FNMR) is the ratio of the number of
false negative cases and the number of actual positive cases.
It can be represented by (41), which is equal to 1− TPR.

FNMR =
FN

TP + FN
=

Genuine(score < threshold)

Genuine Pairs
(41)

The ROC curve is drawn with FMR as the horizontal axis
and TMR as the vertical axis. The ROC curve is threshold
independent and it presents the performance of the fingerprint
recognition system under different threshold settings. In the
process of fingerprint recognition to determine whether two
fingerprints belong to the same identity, different thresholds
are set. Each threshold corresponds to a TMR and a FMR,
that is, a corresponding point on the ROC curve. The greater
the TMR and the smaller the FMR, the better the performance
of the recognition system. Therefore, the closer the ROC curve
is to the point (0,1) in the figure, the better the performance
of the fingerprint recognition system will be.



Equal Error Rate is the common value of FMR and FNMR
when the FMR and FNMR are equal. The smaller the EER,
the better the performance of fingerprint recognition system.

In order to know whether adding deep learning to the
complex spectral minutiae representation can improve the
performance of fingerprint recognition system, we will com-
pare the ROC curve and the EER of the three experiments
mentioned above and Baseline Experiment.

In Experiment I, cosine similarity is used as the classifier,
and no rotation process is used during testing. The ROC curve
of Baseline Experiment and Experiment I is shown in figure
18.

Fig. 18. The red line is the ROC curve of Baseline Experiment; the blue
line is the ROC curve of experiment I

In figure 18, it can be found that compared with Baseline
Experiment, Experiment I has some improvement.

In Experiment II, circular shift is applied to the complex
spectral minutiae representations before the feature extraction
of convolutional neural network. Then the ROC curve of
Baseline Experiment, Experiment I and II is shown in figure
19.

In figure 19, it can be found that the performance of
Experiment II is still better than the performance of Baseline
Experiment, but worse than Experiment I. According to the
ROC curve of Experiment I and Experiment II, we can derive
that when the similarity scores of the reference fingerprint
and the test fingerprints with circular shift on are calculated,
and the maximum score is kept, the influence on the impostor
pairs is greater than the influence on the genuine pairs. The
increase of the number of the False Positive cases predicted
by the fingerprint recognition system is more than the increase
of the number of the True positive cases. In our case, circular
shift on the complex spectral minutiae representations does
not help to improve the performance.

In Experiment III, log likelihood ratio is used as the
classifier during the testing process. The comparison of the
ROC curves of the four experiments is shown in figure 20.

It can be found in figure 20, Experiment I still has the

Fig. 19. The red line is the ROC curve of Baseline Experiment; the blue
line is the ROC curve of Experiment I; the green line is the ROC curve of
Experiment II

Fig. 20. The red line is the ROC curve of Baseline Experiment; the blue
line is the ROC curve of Experiment I; the green line is the ROC curve of
Experiment II; the black line is the ROC curve of Experiment III

best performance among these four experiments. When FMR
is smaller than 0.2, the performance of Experiment II and
Experiment III are almost the same, but when FMR is greater
than 0.2, Experiment II performs better than Experiment III.

Equal error rates of the four experiments are also compared,
the values can be shown in table II.

TABLE II
THE COMPARISON OF EQUAL ERROR RATE

Experiment Equal Error Rate
Baseline Experiment 0.22999626
Experiment I 0.18640349
Experiment II 0.20953675
Experiment III 0.21226133

The comparison result of EER is almost the same as
the comparison result of ROC curve. Experiment I has the



best result. The performance of Experiment II is better than
the performance of Experiment III. All the results of the
experiments we proposed in this paper is better than the result
of Baseline experiment.

V. CONCLUSION

Spectral minutiae representation solves some problems of
minutiae-based fingerprint recognition such as the difficulty
of comparing different numbers and the dislocation of the
minutiae. The process of fingerprint recognition using spec-
tral minutiae representation is to calculate the correlation
coefficient between the spectra of the reference fingerprint
and the test fingerprint as the similarity score. In this paper,
the spectral minutiae representation is combined with deep
learning, the convolutional neural network is used to extract
feature vectors from the spectral minutiae representations,
and then the feature vectors can be used to represent the
original fingerprints. Therefore, the pointwise comparison of
the spectra is converted to the similarity calculation of two
vectors. In this paper, three experiments are implemented to
observe whether the combination of the spectral minutiae
representation and deep learning can improve the performance
from the direct matching of spectral minutiae representation.
In Experiment I, cosine similarity is used as the classifier to
calculate the similarity score of two vectors which represent
the reference fingerprint and the test fingerprint. In Experiment
II, circular shift is used on the test spectrum to compensate for
the rotation of the fingerprint image. Then cosine similarity is
still used to calculate the similarity scores, and the maximum
score is selected as the final score of the two fingerprints.
In Experiment III, log likelihood ratio is used as classifier to
compare two vectors of the reference fingerprint and the test
fingerprint, and then similarity score is obtained. The ROC
curve and EER are used to evaluate the three experiments
and the direct matching of SMC. Experiment I shows the best
performance. Experiment II performs better than Experiment
III. All these experiments perform better then direct matching
of SMC.

Even though the convolutional neural network transforms
a magnitude spectrum with size 128×256 into a feature
vector with size 1×128, like feature reduction, it extracts the
global features of the spectrum and performs better than the
pointwise comparison. Further research can be carried out in
the direction of deep learning and log likelihood ratio classifier.
On the one hand, more complex network structure such as
Resnet [32] can be tried; more loss functions and optimizers
can be tried to train the network; the dimension of the feature
vectors can be increased, on the other hand, more data can be
used to train the LLR classifier and get the more appropriate
parameters for testing. These methods can be used to find
whether the performance will be improved.
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