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Abstract 

Hierarchical data structures are the norm in educational and social sciences. The 

intraclass correlation coefficient (ICC) quantifies the relative variation explained by clustering 

observations in groups (Snijders & Bosker, 2011). The ICC is used to measure the strength of 

the hierarchical dependence, but the ICC might have more to offer than its conventional use. 

The ICC is studied as a tool for the measurement for intra-group differences.  

In a simulation study, the performance of the ICC Bayes factor (BF) test of Mulder 

and Fox (2019) is examined for different sample sizes. For small sample sizes, the BF test 

showed accurate results. Furthermore, a real data trial run for the ICC test was performed on 

the FOCUS data (van Geel, Keuning, Visscher & Fox, 2016).  

The conclusion, the ICC does convey intra-group differences and offers additional 

information to the mean scores in nested data. Furthermore, the ICC test can process the ICC, 

even when it becomes negative, to a sufficient degree. Bearing in mind that, the evidence 

categories used and thus the BF values of the test require further investigation when testing 

the ICC.  

  



Introduction 

Within the social sciences, data often has a hierarchical structure (Paterson & 

Goldstein, 1991). Especially in academic areas such as student performance and/or growth, 

this hierarchical structure is the norm (Goldstein in Socha, 2013). It is important to account 

for this nested data structure in statistical tests (Dyer, Hanges & Hall, 2005; Socha, 2013). 

When a grouping effect is ignored the standard errors are generally too small, thus 

conclusions about the statistical significance of a treatment effect might be overestimated 

(Mulder & Fox, 2019). A grouping effect is present when the intraclass correlation coefficient 

(ICC) is greater or lower than zero, indicating the independence assumption is broken 

(Snijders & Bosker, 2011).  

The ICC was introduced by Fisher as a measure of reliability and has received 

attention as such in the research community (Bartko, 1976). However, it can also be used as a 

value for the degree of resemblance between groups nested in clusters (Snijders & Bosker, 

2011), in that context it is also known as the variance partitioning coefficients. The ICC, often 

written as ρ, quantifies the relative variation explained by clustering observations over the 

groups. In a standard two-level model, the ICC is the proportional variance explained by the 

second level (the group) in comparison to the total variance, as per the formula. 

ρ =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝
=  

τc

τc +   
 

When there are multiple sets of grouped observations, for instance children are nested in 

schools in each country, then the school will be referred to as a group and the country as a 

cluster. The ICC in cluster c indicates the proportion of variance explained by the grouping of 

observations in cluster c. The larger the ICC, the more variance is explained by the grouping 

of observations. An ICC of 1 indicates that all variance is explained by the groups.   

This structure can also be viewed as a three-level hierarchy, observations define level-

1 units, the groups level-2 units and the clusters the level-3 units (Hox, Moerbeek & van de 

Schoot, 2017). However, in this study, the level-3 units are not considered to be randomly 

sampled units and do not introduce another variance component. For example, a measurement 

(level-1 observation) of children who are nested within a family (level-2 groups). When 

different instruments are used, to measure the same construct, the families whose children are 

measured with the same instrument are assigned to cluster c. Then, the ICC of cluster c 

σ2
c   



represents the proportional variance explained by differences between families assigned to 

cluster c. This view on the hierarchical design is used in the current study. 

The ICC can offer additional information about intra-group differences on top of the 

mean component because, it deals with the ratio of between-groups variance and within-group 

variance. Which can show a change in e.g., the growth of a latent ability and on which level 

the growth was present. For instance, when groups receive a different treatment, then the ICC 

for groups receiving the same treatment indicates the presence of random variation in the 

treatment across groups. The treatment works better for some groups than for others. The 

difference in ICCs across groups receiving different treatments can be used to measure 

differences in the variability of the treatment effects.        

Furthermore, following the approach of Nielsen, Smink and Fox (2021) the ICC can 

become negative e.g., on occasions involving competition between groups for scares 

resources. Regrettably, few researchers are equipped to manage a statistical test despite a 

negative value and discard them by changing them to zero (Nielsen et al., 2021). This 

unknowingly leads to incorrect standard errors, Type-I errors and confidence intervals which 

can lead to wrong conclusions. Towards that end, the ICC should be carefully considered 

when used for hypothesis testing. Especially since ICC testing has only recently emerged in 

the field of statistics and therefore it must be further explored (Mulder & Fox, 2019: Zhang, 

2019).  

To explore the functionality of the ICC in hierarchical data analysis, the performance 

of the ICC test was examined through a simulation study. The ICC test is also tried on a real 

data study from van Geel, Keuning, Visscher and Fox (2016). The objective of this study is to 

examine whether the ICC test can be used to examine hypotheses based on the ICC.  

  



Method 

Background ICC test 

The object of the simulation study was to analyse the performance of the ICC test for 

different hierarchical data sets. In other words, how sensitive the ICC test is and if results lead 

to correct conclusions. For the confirmatory tests, data was generated for various ICCs. 

Special attention was given to scenarios where the ICC was zero or negative. Furthermore, the 

ICC test was tried on a real data study wherein a multilevel data structure was present. A 

linear mixed effects (LME) model was fitted to estimate between-cluster variance. The ICC 

test used the LME results to evaluate hypotheses about the ICC. In the real data trial run, a 

school intervention was performed to improve student achievement. The ICC of schools prior 

to and during the intervention were evaluated to examine the presence of an intervention 

effect across schools during the intervention period (FOCUS study of van Geel et al., 2016).    

The ICC test is a Bayes factor (BF) test and evaluates the data evidence of the null 

hypothesis against an alternative hypothesis. The BF is the ratio of marginal likelihoods of the 

data given the model in comparison to a competing model (Kosheleva, Kreinovich, Trung & 

Autchariyapantikul, 2019; Page & Satake, 2017). For example, if hypothesis A is compared to 

hypothesis B and the BF is 5 then hypothesis A is 5 times more likely under the data than 

hypothesis B. However, using the BF contrasts with the current standard in social sciences 

and related educational programs, the Null Hypothesis Statistical (or Significance) Testing 

(NHST). Its popularity has, among other reasons, come from its inclusion in standard 

statistical packages like SPSS (Andraszewicz et al., 2015; Quintana & Williams, 2018), 

unlike the BF.   

However, NHST has received criticism over the years. A fundamental problem is that 

NHST is based on two incompatible theories, the theories of Fisher and Neyman-Pearson 

(Page & Satake, 2017; Wasserstein & Lazar, 2016). Page and Satake (2017) describe that 

NHST is taught in academic settings as derived from one coherent theory, despite that the 

founders of the initial theories disputed the others approach. Furthermore, NHST is designed 

to find support for an alternative hypothesis. The NHST does not allow for a calculation of 

evidence in favour of the null hypothesis. However, the BF enables such findings (Hoijtink, 

Mulder, van Lissa & Gu, 2019). Especially when concerning the ICC, the accuracy of the BF 

is recommended over NHST (Mulder & Fox, 2019). 



Furthermore, Andraszewicz et al. (2015) and Page and Satake (2017) state that the use 

of p-values is sensitive to the intention of the sampling plan whereas the BF is not. In 

Bayesian analysis the interpretation of separate entities such as p-values is not necessary, 

which makes it less complicated to evaluate and thus less prone to interpretation mistakes 

(Kass & Raftery, 1995), if the prior probabilities were chosen after considering the empirical 

context of the hypotheses (Morey, Romeijn & Rouder, 2016). Often those prior probabilities 

are the default uniform priors i.e., all hypotheses have an equal prior probability (Hoijtink, 

Mulder, van Lissa & Gu, 2019).  

Another feature of the BF is that it has the ability to change per added datum until it 

finally reaches a point where all factors point towards the most likely hypothesis. However, 

because not all sample sizes are big enough to reach this point some criteria rules of thumb 

have been agreed upon. In Bayesian analysis the consensus is that there is a minimum level of 

the BF necessary to decide if the evidence in support of a hypothesis is statistically strong 

enough. These thresholds for the evidence categories were devised by Jeffreys (1961). The 

language used in the original table of Jeffreys was adjusted by Andraszewicz et al. (2015) to 

be a bit shorter, which is why those terms were chosen (see Table 1). While anything higher 

or lower than 1 indicates a more probable hypothesis based on the data, the BF of between 3 

and 10 represents moderate evidence. Therefore, a BF of around 3 was chosen as an aiming 

point for confident results of the ICC test. 

 

Table 1 

Evidence Categories for the Bayes Factor BF12 (Adjusted From Jeffreys, 1961) 

Bayes factor BF12                Interpretation 

 > 100 Extreme evidence for M1 

30 - 100 Very strong evidence for M1 

10 - 30 Strong evidence for M1 

3 - 10 Moderate evidence for M1 

1 - 3 Anecdotal evidence for M1 

 1  No evidence 

1/3 - 1 Anecdotal evidence for M2 

1/10 - 1/3 Moderate evidence for M2 



1/30 - 1/10 Strong evidence for M2 

1/100 - 1/30 Very strong evidence for M2 

 < 1/100 Extreme evidence for M2 

Note. Reprinted from “An Introduction to Bayesian Hypothesis Testing for 

Management Research” by S. Andraszewicz, B. Scheibehenne, J. Rieskamp, 

R. Grasman, J. Verhagen, and E. J. Wagenmakers, 2015, Journal of 

Management, 41(2), p.521-543. 

 

The only caveat for interpreting the resulting values is that the true model needs to be 

included in the candidate models for the BF to be effective (Vrieze, 2012). While a true model 

can be present in a simulation study, the discussion on this caveat is beyond the scope of this 

paper please refer to Morey et al. (2016) for more insight. In this simulation study, all 

possible models were included to ensure effectiveness. The candidate models were hypothesis 

1 (H1) the ICC of cluster 1 is smaller than cluster 2 and hypothesis 2 (H2) the ICC of cluster 1 

and cluster 2 are equal. Lastly, the complement of H1, hypothesis 3 (H3) the ICC of cluster 1 

is greater than cluster 2.  

The BF is calculated by comparing all hypothesis with H1. This initially led to every 

BF to be 1 for H1. Therefore, the BF for H1 is computed with respect to H3. With that in 

mind, the BF and thresholds can be regarded as effective for this study.  

 

The ICC test  

The analyses were performed in the statistical software R (R Core Team, 2013). R-

code was made to simulate data, which were analysed using the lme4 package (Bates, 

Mächler, Bolker, & Walker, 2015). The package Bfpack (Mulder et al., 2019) was used to 

compute the ICC test, which can both be downloaded from CRAN. For the generation of data, 

the ICC was defined under the conceptual multilevel model. The Ycij  is the score for item j 

(j=0, …, n) of student i (i=1, …,N) within cluster c (c=1, …, C), which is represented as 

Ycij = µc + βcij + µci + εcij 

where µc is the average of all students in cluster c and µci the average of student i in cluster c. 

The student average in cluster c is assumed to be normally distributed with mean zero and 

variance τc. The βcij represents the difficulty of item j. Due to the positive sign, for higher β 



values the item becomes less difficult. The εcij is the error component, which is assumed to be 

independently and normally distributed with variance σ2. The item responses are nested 

within the student, and the student represents a group which are settled in cluster c. The ICC 

examined in this study represents the proportion of variance explained by the grouping of 

responses by students. Although this study is focused on an educational setting, this model 

and the ICC test could be applied to other nested data settings. 

 

Method of analysis  

The BF for the ICC was computed under various sample sizes, see Table 2. The group 

sizes were chosen to examine the performance of the ICC test for small sample sizes. As an 

exception, for N= 2, 50 observations were simulated for each group. This was done to imitate 

reality whereas the sample size becomes smaller usually more data is gathered per group. For 

the other sample sizes, 5 observations per group were simulated in the balanced design 

condition. Although these sample sizes are generally regarded as too small for ICC testing 

(Maas & Hox, 2005), the performance of the ICC test was examined for the small sample size 

condition. 

 

Table 2 

Sample Sizes per Group (N) with Observations (n) and τ1 for Cluster 1 (C1) and τ1 Cluster 2 

(C2) over 500 Replications. 

Balanced data C1, C2 

N   n  (τ1, τ2)  

2,2  50,50  (.5,.5) (.3,.5) (.1,.5) 

5,5  5,5  (.5,.5)a (.3,.5) (.1,.5)b 

10,10  5,5  (.5,.5) (.3,.5) (.1,.5) 

50,50  5,5  (-.1,0) (0,.5) (-.1,.5) 

Unbalanced data C1, C2 

N  n for both clusters  (τ1, τ2) 

5,5  Centred around 20  (.3,.3) 

10,10  Centred around 20  (.3,.3) 



20,20  Centred around 20  (.3,.3) 

15,20  Centred around 20  (.5,.3) (.5,.1) 

aFor this condition, a similar condition was examined with a similar sample size of N= 5 with 

n= 10 observations and the τ of (.3,.3) for C1 and C2 respectively over 10,000 replications. 

bFor this condition, a similar condition was examined with a similar sample size of N= 5 with 

n= 10 observations, the same τ1 and τ2 were used over the 10,000 replications.  

The ICCs across clusters were centred around .3 to avoid lower-bound issues that 

normally arise when ICCs are close to zero. However, in educational research ICCs are often 

around .2 or lower (Hox & Maas, 2001). Therefore, special attention was paid to the small 

ICC values of around .1. For the balanced design condition, τ= .5 was examined to evaluate 

the accuracy of the test to detect differences between ICCs when they are high.  

Furthermore, following Nielsen et al. (2021), data was simulated with a negative ICC 

and one of zero in comparison to a high ICC, which are considered special ICCs. Another 

point of interest was imbalanced data. Imbalanced data sets were created by generating 

random missing number of observations, centred around 20 observations per group. 

Imbalance was studied further by varying the ICC values over different number of groups in 

the clusters (Table 2).  

For each condition, the recommended default uniform priors by Mulder and Fox 

(2019) were used. Data sets were generated and then the Bayes factors and posterior 

probabilities were computed for the considered hypotheses. The posterior probabilities were 

calculated for the hypotheses with the same reference category. The number of replications 

was at first limited to 500, due to the required computation time. However, to examine the 

sensitivity of the results to the 500 replications, several runs were made with 10,000 

replications. If the 10,000 replications were comparable to the cut-off points of the limited 

replications the study would be continued with 500 replications per condition.  

The percentages of the computed Bayes factors that pointed towards the correct 

hypothesis were also compared over the different sample sizes. This was done to evaluate if 

the chances of being pointed towards the correct hypothesis was high enough for the ICC test 

to be applied to the FOCUS data.  

  



Results 

By evaluating the BF over the various sample sizes and number of replications in 

simulating data the performance of the ICC test was examined. Towards that end, this study 

was done to see what the advantages are for testing ICCs. The average results of the different 

sample sizes (see Table 3) show that as the sample size increases the BF increases 

accordingly. Furthermore, the larger the difference in ICCs became between the two clusters 

the stronger the evidence pointed towards the correct hypothesis.  

However, in Table 3 it shows that discriminating between H1 and H2 proved to be 

rather difficult when the difference between τ1 and τ2 were small (.3,.5). As can also be seen in 

the changes in posterior probabilities. An explanation for this may be that the estimated 

values over the generated data contained more similar samples that made distinguishing 

difficult. For example, as data for hypothesis 1 and 2 occurred equally often after 500 

replications. When the averages were calculated, the differences were levelled out.  

Table 3 

Estimated Posterior Probability and Bayes Factor for Varying Sample Sizes Across 500 

Replications. Sorted per τ1 for Cluster 1 (C1) and τ2 Cluster 2 (C2). 

τ C1,C2 .5,.5  .3,.5  .1,.5 

Hypothesis N2n50 N5n5 N20n5  N2n50 N5n5 N20n5  N2n50 N5n5 N20n5 

Posterior probability           

H1 0.334 0.320 0.241  0.337 0.342 0.311  0.356 0.400 0.578 

H2 0.352 0.415 0.548  0.361 0.416 0.553  0.376 0.412 0.369 

H3 0.314 0.265 0.211  0.302 0.242 0.136  0.268 0.188 0.053 

Bayes Factor           

H1 1.003 1.041 1.001  1.056 1.174 1.571  1.231 1.558 5.307 

H2 1.082 1.440 2.617  1.106 1.364 2.378  1.114 1.292 1.123 

H3 0.997 0.960 0.999  0.947 0.851 0.637  0.812 0.642 0.188 

Note. The BF is calculated by comparing the likelihood of a hypothesis (H2,H3) in 

comparison to the H1, and the BF for H1 represents H1 in comparison to H3. N represents 

number of groups, n the number of observations per group. 



To confirm that the number of replications was sufficient to grasp the pattern of the 

ICC test similar parameters were used for the generation of 10,000 replications. A comparison 

was drawn between the larger data set with N= 5 along 10 observations, with τ1= .1 and τ2= .5 

(Figure 1). For the smaller data set N= 5 with 5 observations was used (Figure 2). The results 

did not change with an increase in replications. As illustrated by the Figures, the pattern 

became more detailed as the number of replications increased, while the cut-off points 

between hypotheses remained constant. The same was true for the comparison with equal 

ICCs per cluster, τ= .3 in the larger data set and τ= .5 in the smaller one. Therefore, it was 

concluded that the 500 replications were sufficient for this study to draw valid conclusions.   

Figure 1. The BF results for the three hypotheses plotted against the difference in estimated 

ICCs of cluster 2 and 1 for 10,000 replications. 

 



 

Figure 2. The BF results for the three hypotheses plotted against the difference in estimated 

ICCs of cluster 2 and 1 for 500 replications.  

When looking at the special ICCs the averages became prominent (see Table 4). 

Because the ICC test was seen to not only process negative ICCs but also favour the 

hypothesis as predicted under the parameters. In the terms of the evidence categories the ICC 

test found at least strong evidence and extreme evidence for the H1. This feature 

distinguished the ICC test from other tests which restrict the ICC to be positive and can only 

process it in that manner.  

 

Table 4 

Estimated Posterior Probability and Bayes Factor for a Sample Size of 50 Groups (N) with 5 

Observations (n). Sorted per τ1 for Cluster 1 (C1) and τ2 Cluster 2 (C2). 

 N50n5 

τ C1,C2 -.1,0  0,.5  -.1,.5 

Hypothesis      

Posterior probability 



H1 0.573  0.969  0.999 

H2 0.411  0.029  .000 

H3 0.017  0.002  .000 

Bayes Factor 

H1 10.29  251.5  1.11×105 

H2 1.977  0.065  .000 

H3 0.097  0.004  .000 

 

To further examine the performance of the ICC test unbalanced designs were 

investigated. Starting with inequal number of observations per group and τ= .3 for both 

clusters (see Table 5). The results were comparable to those obtained under the balanced 

design with τ= .5 for both clusters (see Table 3). The more data that was available the more 

evidence was found for the correct hypothesis, as could be explained by the reduction in 

sampling error. 

In Table 6 the results of unequal group sizes across clusters are depicted. Here, the 

difference between the τ1= .5 and τ2= .3 was not well detected. The BF supported, to a higher 

degree, H2 than the correct H3. This was most likely due to the amount of data sets which 

convey equality of the ICCs. Still, as the difference between the ICCs increased in the second 

column the BF pointed towards the correct hypothesis.   

 

Table 5 

Estimated Posterior Probability and Bayes Factor for 500 Replications for an Unbalanced 

Design by Inequal Number of Observations. Sorted per Sample Size for Cluster 1 (C1) and 

Cluster 2 (C2) Respectively. 

 τ .3,.3 

N C1,C2 5,5  10,10  20,20 

Hypothesis      

Posterior probability 

H1 0.314  0.276  0.239 



H2 0.408  0.474  0.558 

H3 0.278  0.250  0.203 

Bayes Factor 

H1 1.005  0.972  1.016 

H2 1.399  1.943  2.724 

H3 0.996  1.029  0.984 

 

Table 6 

Estimated Posterior Probability and Bayes Factor for 500 Replications for an Unbalanced 

Design by Inequal Number of Observations. Sorted per τ1 for Cluster 1 N= 15 (C1) and τ2  for 

Cluster 2 N= 20 (C2). 

                           N15,20 

τ C1,C2 .5,.3  .5,.1 

Hypothesis     

Posterior Probability  

H1 0.236  0.276  

H2 0.434  0.201  

H3 0.330  0.538  

Bayes Factor  

H1 0.707  0.538 

H2 2.061  0.940 

H3 1.414  1.860 

 

To make an overview of the simulation results, the percentage of times the ICC test 

asserted the correct hypothesis was computed. From the evidence categories, the middle 

ground of no evidence could be extended to include anecdotal evidence. Because virtually no 

sample size created a perfect 1 fitting in the “no evidence” category from Table 1. Thus, the 

grey area of anecdotal evidence had to be further examined in this study.   



When examining the data, the ICC test had most difficulty with judging the data given 

equal ICCs per cluster, in four of the six sets it leaned towards the incorrect hypothesis, but 

only for less than 3,6% of the 500 replications. Out of these four, three were in the unbalanced 

data sets regarding random number of observations with equal ICCs. The only other instance 

was, again, over the unbalanced clusters and number of observations with τ1= .5 and τ2= .3, 

with 4%. However, these incorrect results were only situated in the moderate evidence 

category. In summary, the ICC test either points towards the correct hypothesis or has trouble 

choosing between hypotheses with moderate or stronger evidence.  

The FOCUS data was used as a trial run for the ICC test to illustrate the performance 

on real data. When looking at the FOCUS data the ICC test found the same results as in the 

original paper, there was a positive intervention effect and the extent differed over schools 

(van Geel et al., 2016). This could be concluded only by looking at the changes in ICCs 

between prior to (cluster 1) and during (cluster 2) the intervention. All random intercept 

variances decreased meaning the schools differentiated to a higher degree (see Table 7), that 

in combination with the mean increase in ability scores per grade (please refer to van Geel et 

al., 2016) substantiates the hypotheses without the BF.  

 

Table 7 

Random Intercept Variances and Standard Deviations (SD) FOCUS data. With Prior to 

Intervention (C1) and During Intervention (C2) over N= 97 Schools and n= 59.208 

Observations in Total Sorted per Grade. 

Variance (SD)  Prior to Intervention  During Intervention 

School grade     

Grade 3  30.05 (5.48)  26.18 (5.12) 

Grade 4  24.10 (4.91)  18.08 (4.25) 

Grade 5  19.77 (4.45)  14.45 (3.80) 

Grade 6  31.17 (5.58)  16.39 (4.05) 

Grade 7  20.45 (4.52)  10.20 (3.19) 

Grade 8  19.92 (4.46)  11.62 (3.41) 

Total residual  186.83 (13.67)   

 



Discussion 

The question whether intra-class differences can be properly found and judged with 

testing the intra-class correlation coefficient lies in the middle. On the one hand, the ICC test 

from Mulder and Fox (2019) processed imbalanced data to a similar degree as that of the 

balanced data, removing the need for pair-wise exclusion in cases of drop-out, therefore 

having the ability to preserve more data than other statistical tests. Furthermore, the ICC test 

can, unlike most tests, process the ICC whether it was negative or zero. This feature 

contributes to the accessibility of processing those special ICCs and awareness about them.  

Furthermore, the ICC test either chose the correct hypothesis or has difficulty deciding 

between the compared hypotheses. When looking at the percentages the ICC test rejected the 

right hypothesis, within the frequentist α= 0.05 criterion, in only 3,6% of the cases. The 

threshold used was that of pointing towards the correct hypothesis, deeming anything above a 

BF of 1 as enough. This revised aiming point became the threshold for the Type-I Error 

because the lack of other ICC tests to compare to. However, although this frequentist 

threshold for the Type-I error is more easily applied than the corresponding Type- II error in 

Bayesian statistics, further research should be done on the power of the ICC test. Moreover, 

given the small sample sizes, the context in which these results occurred matters more than set 

criterion in other tests. The increase in posterior probability as the sample size increases (see 

Table 3 & 5) shows that the evidence for the correct hypothesis increased due to the lessening 

of sampling errors. Because the sampling error influences the power, this threshold is set until 

other tests or studies on these sample sizes have been conducted that promote another 

threshold.  

The meaning of the BF was initially derived from the evidence categories 

(Andraszewicz et al., 2015). However, those categories might not do justice to the intricate 

ICC test. Especially since the ICC test produced a high rate of accuracy at this point in time, 

in this relatively new field of testing ICCs. Over such small sample sizes anything including 

anecdotal evidence and stronger evidence could be considered as either correct or incorrect. 

Therefore, it might be interesting to further study the evidence categories to judge the BF per 

sample size. 

On the other hand, while true for virtually all statistical tests, small sample sizes distort 

the realized parameters of generated data in comparison to the true parameters. The 

percentages of incorrectly supported hypotheses could suggest that the ICC test might have 



had to judge unfortunate data sets. Over the 500 replications the minority of data could 

support, the initially perceived as incorrect results, the unlikely hypothesis given the 

parameters. Furthermore, the general downside of small sample sizes i.e., the less data the 

greater the chance of no distinction between hypotheses has influenced this study. Both these 

downsides of small sample sizes could explain the difficulties the ICC test had choosing the 

correct hypothesis.  

In Figure 1 and 2 it can be seen that the BF is not symmetric around the point zero on 

the x-axis when τ1 is equal to τ2. There is a lower bound for the ICCs and therefore the τ1- τ2 

cannot become more negative at a certain point, however the evidence in favour of H1 rapidly 

increases due to the lower bound. At the other end of the scale, when τ1 - τ2 is high, the lower 

bound does not effect the term as much, since τ2 does not reach the lower bound quickly and 

also τ1 is greater than zero. Then, even higher values for τ1- τ2 do not rapidly increase the 

evidence in favour of H3. Therefore, the evidence in favour of H3 is more stretched out on the 

x-scale.    

In future work the longitudinal setting can be examined via ICC testing. While this 

simulated data was generated with a cross sectional study design in mind, much like the 

FOCUS data, it would be interesting to see if the ICC test can also perform well in a 

generated longitudinal setting. Preferably a smaller data set will also be generated for that 

setting to compare it with current results. Afterwards bigger sample sizes can be tried as well, 

to prevent the issues mentioned above. It is most likely that also in that setting the ICC test 

will be able to distinguish intra-group differences by examining the ICC. The ICC can be 

computed over the time points, because those can be viewed as the cluster where the 

participants are the groups in which the measurement scores are nested.  

Another aspect that the FOCUS data offered was that of real data, the ICC test should 

be further explored over other real datasets. The ICC test while not being able to have the BF 

assert the correct hypothesis proved that, by combining the significant mean score difference 

(van Geel et al., 2016) with the changes in variance, the ICC does offer additional 

information. This underlines the reason to continue research in the field of ICC testing.  

In conclusion, hierarchical data can be tested with the ICC. Changes in the ICC do 

point towards intra-group differences, which can suggest an intervention effect and on which 

level in the model the intervention has effect. The ICC test demonstrated that the BF can be 

employed on ICC testing and that the ICC conveys additional information to the mean scores. 



However, the sample size and evidence categories of the BF require the researcher to judge 

the outcomes per study to a higher degree than what is commonplace in the frequentist 

approach. Therefore, more studies should be conducted in ICC hypothesis testing. 
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