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Abstract

This work has investigated the effect of data augmentation on learning environ-
ment models for data-efficient reinforcement learning. Data augmentation has
received relatively little attention in reinforcement learning, compared to its
common occurrence in supervised learning. However, the invariance assump-
tions that allow the augmentation of images have long been recognized to be
usable for the simplification of reinforcement learning problems [1]. Recent
successes in applying data augmentation to model-free reinforcement learning
algorithms [2, 3] raised the question whether data augmentation could be ef-
fective enough to enforce these assumptions for learned environment models,
for an increase in data efficiency. This has been numerically investigated using
an algorithm that is currently among the state of the art for learning environ-
ment models, called the Recurrent State Space Model (RSSM). The use of data
augmentation was found to have no significant effects on the consistency of the
RSSM when faced with state-action sequences that have an equivalent reward
expectation.
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1 Introduction

Despite achieving impressive results [4, 5], deep reinforcement learning (RL)
algorithms are still considered to have poor data efficiency and generalization
abilities [6, 7]. That is, a difference is observed in train performance and test
performance. Minor perturbations in the input data are able to drastically influ-
ence model predictions [8], which is undesirable if such algorithms are deployed
in a real-world setting. To close the so called generalization gap between train
and test performance it is desirable to make the model invariant to these pertur-
bations. This is commonly illustrated as a bias-variance trade-off in the model
prediction error. Features that are irrelevant to the objective should be ignored
during prediction. However, this introduces a bias in the model and features
that are erroneously recognized as irrelevant increase the expected prediction
error instead. To create a proper model, the question is which features are most
informative for making the right predictions.
In deep reinforcement learning, the algorithm (or agent) is given the opportu-
nity to perform actions upon which it receives feedback from its environment,
i.e. it is allowed to query new data. This opportunity also brings a new chal-
lenge. Namely, the data distributions shifts based on the agent’s beliefs and
actions. The currently observed data might not be sufficient to solve the prob-
lem and active exploration is required. To increase the challenge even further,
RL agents are typically quite limited in their data collection, since this process
is time consuming and possibly expensive. Without introducing bias into the
model, there are simply too many possibilities to explore from the limited data
that is available. Luckily, useful biases are often known beforehand and can be
incorporated into the model. With these biases, agents might be able to more
robustly deal with ”unknown unknowns”. That is, variability in the data which
was not foreseen.
There are several ways of enforcing known biases into a model, and one of these
is data augmentation. Knowing the invariance of certain properties towards the
objective, these properties can be modified in existing data to create artificial
data points. These artificial data points are used to train the model, which is
then better able to recognize this invariance by making more effective use of the
data.
Model based reinforcement learning algorithms improve on data efficiency by
using a model of their surroundings. Decisions can then be based on simulated
data obtained from the environment model. A limitation, however, is that such
an environment model is not always available and difficult to build, since every-
thing the agent can encounter should be known and incorporated beforehand.
A more robust agent would be able to deal with challenges that were not an-
ticipated. A current challenge in reinforcement learning is to learn/build an
environment model from experience obtained from the real world [9, 10, 11, 12].
This is a difficult problem, since the object dynamics are often non-linear and
should be modelled from partial information of the environment. Current meth-
ods have been identified to overfit on the limited data that is available, and fail
to generalize to unseen data [13, 14, 15, 16]. This has led to a focus on finding
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ways to embed useful prior information about the world into models, so agents
are better able to recognize the structure of their surroundings. With the right
abstractions, many RL objectives can be simplified. Consider, for example, a
robot arm tasked with moving objects between arbitrary locations. In most
circumstances, it is reasonable to assume that the color of the object should not
affect this procedure. When such redundancies are known, data augmentation
can be used to generate artificial simulations based on existing data. This arti-
ficial data enforces a consistency in the model predictions when confronted with
such redundancies and is therefore considered a regularization procedure.
Given an environment model, planning was found to be an effective method
for action selection, in terms of data efficiency and asymptotic performance
[17, 7, 18]. Currently, an algorithm called PlaNet [19] is among the state of
the art approaches for planning using a learned environment model. In PlaNet,
a recurrent neural network architecture is used to construct an approximate
model of the environment. The PlaNet algorithm then uses the Cross-Entropy
Method (CEM) [20] to plan a trajectory in latent space, based on the predicted
rewards from a learned environment model. This model, named the Recurrent
State Space Model (RSSM), has been the basis of multiple state-of-the-art Re-
inforcement Learning algorithms [19, 21, 22] and uses an encoder to update its
internal state. Recent work, however, suggests that these encoders overfit on the
limited data that is available [3]. Data augmentation was applied to mitigate
this and was found to be surprisingly effective. Pre-existing model-free algo-
rithms, such as Soft Actor-Critic (SAC) and PPO were able to exceed model
based algorithms in terms of data efficiency and performance when combined
with data augmentation. This raises the question if data augmentation, when
applied to model-based RL algorithms, can be used to achieve the same increase
of performance. This forms the main focus of this research, namely
RQ 1: How does regularizing the Recurrent State Space Model used in PlaNet
through data augmentation affect its performance in terms of data efficiency
and asymptotic performance?
The following preliminary questions help to answer this, and are answered in
the Background and Methodology sections.

1.1 What is PlaNet?

1.2 What type of data augmentation should be used?

1.3 How can data augmentation be incorporated in the algorithm?

1.4 How can the model performance be evaluated?

The authors of PlaNet hypothesize that the algorithm can be improved by us-
ing a function that can estimate the utility of environment states/transitions
(called a value function), since it can be used during planning to take into ac-
count states beyond the planning horizon. Given the success of Kostrikov et al.
[3] in regularizing a value function through data augmentation, the secondary
research focus is
RQ 2: How does the regularization procedure implemented by Kostrikov et al.
affect the PlaNet algorithm when it is augmented with a value function?
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2 Background

This section gives an extensive overview of the concepts relevant to this work.
This makes the document relatively self-contained, but its purpose is also to
provide a good exercise for the author to gain a thorough understanding of the
topics. Readers that are already familiar with these concepts can safely skip it.
In control theory and reinforcement learning different notations are used for the
same concepts. In this document the reinforcement learning conventions are
followed.

2.1 Markov Decision Process

Decision problems where actions influence not just immediate rewards, but also
future rewards, are often framed as Markov Decision Processes (MDPs). An
MDP can be thought of of as an environment which is in some state. An agent
can select actions to perform in this environment. Executing these actions
allows the agent to change the environment state, as well as obtain a reward for
every action taken. The goal of the agent is to build a strategy that maximizes
the total reward obtained when executing actions in the environment. More
formally, an MDP M is defined as a 4−tuple M = 〈S,A,Ψ,P〉, where

• S - a set of possible states

• A - a set of possible actions

• Ψ ⊆ S ×A - a set containing permissible state-action pairs

• P(s′, r|s, a) - a transition function P : S × R × Ψ → [0, 1] giving the
probability of transitioning to state s′ ∈ S and obtaining reward r ∈ R,
given that the current state is s, action a is executed and (s, a) ∈ Ψ.

The agent thus interacts with the environment in discrete time steps. At each
step t the agent receives an environment state st based on which it selects an
action at. The agent executes at in the environment upon which it receives
environment state st+1 and a reward rt+1. The transitions satisfy the Markov
property, meaning that the transition probabilities from state st are not de-
pendent on previously encountered states. By sequentially selecting actions the
agent traverses a trajectory in the environment, which is a sequence

s0, a0, r1, s1, a1, r2, s2, a2, ...

MDPs are stochastic processes, and let St, At, Rt denote the random variables
corresponding to the state, action and reward at time t, respectively. Then

P(s′, r|s, a)
.
= p(St = s′, Rt = r|St−1 = s,At−1 = a)
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Also, let the following function denote the expected reward for some state tran-
sition

R(s, a)
.
= E[Rt|St−1 = s,At−1 = a]

=

∫
r∈R

∫
s′∈S

rP(s′, r|s, a)ds′dr

and let

P(s′|s, a)
.
=

∫
r∈R

P(s′, r|s, a)dr

denote the transition probabilities.
In the MDP framework, there are two sources of uncertainty when computing
a trajectory. When performing an action a in state s, the subsequent state s′

as well as the reward obtained are sampled from the transition function (i.e.
(s′, r) ∼ P(·, ·|s, a)). The agent has control over which action is selected at
each time step. However, it is often still in the agent’s best interest to do this
in a stochastic manner, making it the second source of uncertainty. To know
which action should be selected, the agent builds a policy π : Ψ → [0, 1]. For
any state s ∈ S, π(·|s) defines a probability distribution over all permissible
actions, which the agent can sample to perform action selection. Let St, At, Rt
denote the random variables corresponding to the trajectory’s states, actions
and rewards of step t, respectively.
The sum of rewards obtained from following a trajectory until time step T
starting from state st is referred to as the ’return’ Gt, where1

Gt
.
=

T∑
τ=t+1

Rτ

The goal of the agent is to find a policy π such that the expected return is
maximized. The expected return under some policy is an important concept
in reinforcement learning and is referred to as the value function vπ : S → R,

1When considering infinite trajectories a discount factor γ is used, such that the total re-

ward of infinite trajectories remains finite. The return is then defined as Gt
.
=

∞∑
τ=0

γτRt+τ+1.

In this work, all environments are bounded with a maximal number of iterations. Thus only
the finite-horizon case is considered and γ is omitted.

9



where2

vπ(s)
.
= Eπ [Gt|St = s] (1)

= Eπ [Rt+1 +Gt+1|St = s] (2)

=

∫
a

π(a|s)
∫
s′

P(s′, r|s, a) [r + Eπ [Gt+1|St+1 = s′]] ds′da (3)

=

∫
a

π(a|s)
∫
s′

P(s′, r|s, a) [r + vπ(s′)] ds′da (4)

vπ(st) is here defined recursively in terms of vπ(st+1). This is referred to as
the Bellman equation for vπ. The value function conditioned on some action is
referred to as the action-value function qπ(s, a)

qπ(s, a)
.
=

∫
s′

P(s′, r|s, a) [r + vπ(s′)] ds′ (5)

s.t.

vπ(s) =

∫
a

π(a|s)qπ(s, a)da

2.2 Policy optimization in MDPs

The goal of an agent is to maximize the return, given the state that it is currently
in. An optimal policy π∗ should be found s.t.

π∗
.
= argmax

π
Eπ [G0] (6)

for any s0 ∈ S, at ∼ π(·|st) and st+1, rt+1 ∼ P(·|st, at). The value function
under the optimal policy is denoted v∗ (i.e. v∗

.
= vπ∗). When the state space

is discrete and the environment model is known explicitly, Value Iteration is
guaranteed to converge to the optimal policy π∗. However, these requirements
rarely hold and convergence might be slow. When it is possible to sample
experience from an environment model, but the state transition distributions
are not known explicitly, it is possible to use Monte Carlo methods to optimize
policies. This involves simulating a number of finite-length trajectories in the
environment model (with action selection under policy π) and using the observed
cumulative rewards to form an estimate of vπ. Let D be the length of these
trajectories and let rt:t+D denote the sequence of observed rewards for some
trajectory. The value function is then estimated by3

v̂π(st) =

t+D+1∑
τ=t+1

rτ (7)

2The integral is over all permittable (s, a) ∈ Ψ, rather than S ×A.
3A value function estimate is also commonly denoted by V in RL literature.
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where st is the starting state, at ∼ π(·|st) and st+1, rt+1 ∼ p(·|st, at). In this
estimate only a finite sequence of rewards is considered. Also, simulations have
to complete in order to be able to form an estimate. If we already have an
existing estimate of the value function, we can use this to bootstrap our new
estimate that does take into account all future states. That is, aD-step temporal
difference estimator can be used:

v̂π(st) =

t+D+1∑
τ=t+1

rτ + v̂π(st+D+1) (8)

The same temporal distance (TD) principle can be used to construct an esti-
mator for the action-value function q(s, a) (defined in Eq. 5).

q̂π(st, at) =

t+D∑
τ=t+1

rτ + q̂π(st+D, at+D) (9)

In practice, optimization using TD estimators was often observed to converge
faster than using Monte Carlo estimators, since it is not always required to
execute complete episodes until an estimate can be made [23].

2.3 MDP Homomorphisms

Many reinforcement learning objectives can be simplified by considering the
right abstractions. MDP homomorphisms [1] are a way to formalize this, where
MDPs with smaller state or action spaces are constructed using transformations
that preserve the original MDP dynamics. That is, given an MDP

M = 〈S,A,Ψ,P〉

and some state-action transformation function

ψ : S ×A → S̃ × Ã

a reduced MDP M̃ = 〈S̃, Ã, Ψ̃, P̃〉 can be constructed as long as the transition
reward expectations for both MDPs are equal, as well as the transition prob-
abilities between states s̃ and equivalent state sets in the original MDP. More
formally,

∀s∈S,a∈A P̃(s̃′|s̃, ã) =
∑

s′∈ψ∗(s̃′,ã)

P(s′|s, a) (10)

∀s∈S,a∈A R̃(s̃, ã) = R(s, a) (11)

where (s̃, ã) = ψ(s, a) and ψ∗(s̃, ã) denotes the set of states that ψ maps to
s̃. Since the state-action transformation is invariant w.r.t. the reward function
and the transition dynamics are preserved, a policy can be constructed in the
simpler MDP and can then be used to construct a policy that performs equally
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well in the original MDP [1]. To give a concrete example, consider a gridworld
with symmetry across a vertical axis where some goal state G should be reached
with as little steps as possible.

Figure 1: Gridworld example illustrating the reducibility of Reinforcement
Learning objectives. (Ravindran et al. [1])

Finding action-value estimations in the reduced MDP (right) is sufficient for
estimations in all states of the original MDP (left) if states and actions are
mirrored across the diagonal.

2.4 Partial Observability

In the real world, agents can rarely obtain all information about the environ-
ment state. Therefore, a generalization of MDPs was made, in which the 4-tuple
is extended with a function O(o|s, a) that gives the probability of receiving some
observation o when taking an action a in state s. At each time step, the agent
receives such an observation instead of all information about the environment
state. This generalization was therefore named ’Partially Observable Markov
Decision Process’ (POMDP). In a POMDP the agent generally cannot com-
pletely derive the environment state from observations alone, even with the
Markov assumption. The environment state cannot be measured directly and
some information remains hidden. The agent therefore has to use a probability
distribution of being in any possible state, given the history leading up to time
step t. This distribution reflects the agent’s belief about its surroundings and
is therefore often referred to as the belief of being in state st or

bel(st)
.
= p(st|o0:t, a0:t) (12)

where o0:t and a0:t are the sequences of observations and actions up to time t,
respectively. This is the belief of being in state st after making the observation
ot. This observation is obtained after executing action at so often it is useful
when planning actions to predict future states (prior to taking action at). This
is denoted as

bel(st)
.
= p(st|o0:t−1, a0:t) (13)
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2.5 Bayes Filter

The Bayes Filter is a general algorithm for computing the belief over possible
states. It does this by recursively computing bel(st) from bel(st−1) given the
applied action at and resulting observation ot. The filter is derived by induction,
where we assume prior belief bel(s0) is correctly initialized.
Suppose we’d like to know bel(st) for some st. We can apply Bayes Rule to
obtain4

p (st|o0:t, a0:t) =
p (ot|st, o0:t−1, a0:t) p (st|o0:t−1, a0:t)

p (ot|o0:t−1, a0:t)
= ηp (ot|st, o0:t−1, a0:t) p (st|o0:t−1, a0:t)

The Markov assumption tells us that if we know state st, the history leading up
to this state tells us nothing about the future. Therefore,

p (ot|st, o0:t−1, a0:t) = p (ot|st)

and

p (st|o0:t, a0:t) = ηp (ot|st) p (st|o0:t−1, a0:t)
= ηp (ot|st) bel (st)

The bel(st) term can be expanded by applying the rule of total probability and
conditioning on possible previous states st−1

bel (st) = p (st|o0:t−1, a0:t)

=

∫
p (st|st−1, o0:t−1, a0:t) p (st−1|o0:t−1, a0:t) dst−1

We can again simplify this expression by applying the Markov assumption,
namely that

p (st|st−1, o0:t−1, a0:t) = p (st|st−1, at)

Action at cannot be removed from the expression as it occurs after moving to
state st−1 and therefore still gives information about state st. The Bayes Filter
can now be expressed as the following update equations:

bel(st) = ηp (ot|st) bel (st) (14)

where

bel (st) =

∫
p (st|st−1, at) bel(st−1)dst−1 (15)

Any concrete implementation of the Bayes Filter requires additional assump-
tions about how to compute these probabilities. For example, a Kalman Filter
is a type of Bayes Filter for problems with linear dynamics.

4Since p(ot|o0:t, a0:t) is constant for all states st it does not affect the problem solution
and is denoted as η.
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2.6 Recurrent State Space Model

Generally, the environment dynamics will be highly non-linear and Kalman Fil-
ters cannot be used. A common approach is to use auto-encoders to update the
state belief distribution [24, 10, 12]. Auto-encoders are a type of neural network
architecture that are trained to represent their input as a low-dimensional repre-
sentation. That is, it attempts to capture the features that are most informative
about its input. The Recurrent State Space Model aims to learn a model of the
environment and uses an encoder to update its internal state. This internal state
cannot be observed from the environment directly and is thus inferred from the
observations. It is therefore called a latent state representation. The RSSM has
repeatedly formed the basis of state-of-the-art models in reinforcement learning
[19, 21, 22]. For some POMDP M = 〈S,A,Ψ,P,O〉 an approximate model
M̃ = 〈S̃, Ã, Ψ̃, P̃, Õ〉 is learned, where

• S̃ - is the set of possible latent states of the model. Since S is generally
not known, the number of dimensions of the latent states must be chosen.

• Ã - is the set of possible actions that can be applied to the model approx-
imation and is chosen to be equal to A.

• Ψ̃ - No restrictions are made for which actions can be applied to which
latent state, so Ψ̃ = S̃ × Ã.

• P̃ - controls the transitions between the latent states, given the chosen
actions. In the RSSM, the latent state s̃t ∈ S̃ consists of two components
(ht, zt). ht is the internal state of a recurrent neural network P̃det and
forms a deterministic component of s̃t. Based on ht, a stochastic state
model P̃sto(·|ht) generates the zt state component. That is, every time
step t, s̃t = (ht, zt) = (P̃det(ht−1, zt−1, at−1), P̃sto(ht)), corresponding to
Eq. 15 in the Bayes Filter. A separate reward model then computes the
reward rt based on s̃t.

• Õ - a decoder that generates an observation based on the latent state s̃t.

Additionally, to update the state belief distribution prior to obtaining the ob-
servation from the environment (Eq. 14 of the Bayes Filter), an encoder model
q(s̃t|ht, ot) is used to reparameterize the distribution.

14



h1 h2 h3

a1 a2

z1 z2 z3

o1, r1 o2, r2 o3, r3

Figure 2: Dependency graph of the RSSM. The dotted arrows indicate the infor-
mation the encoder uses to update the prior belief distribution upon receiving
an observation.

The RSSM aims to mimic the environment and thus follows the POMDP struc-
ture. That is, at each time step an action at is provided by the agent and an
observation ot+1 and reward rt+1 are returned. The RSSM has an internal state
s̃t on which it bases the observations and rewards. The authors chose to split
the internal state into a deterministic part ht and stochastic part zt. The de-
terministic part is a hidden state of a recurrent neural network giving the state
transition model ht = P̃det(ht−1, zt−1, at−1). The stochastic state model then
gives zt ∼ P̃sto(·|ht). Based on this internal state s̃t = (ht, zt) an observation
model and reward model give ot ∼ Õ(·|s̃t) and rt ∼ R̃(·|s̃t), respectively.
The reward, observation and stochastic state model are all Gaussians parame-
terized by a neural network (see section 9). The former two have a fixed identity
covariance.

2.6.1 Training objective

To evaluate the environment model’s correctness, the log-likelihood of the data
given the current parameterization of the model is computed. This, however,
cannot be optimized directly, so it is common practice to consider a lower bound
(referred to as the evidence lower bound or ELBO) obtained through Jensen’s
inequality (see derivation below). Also, the importance sampling trick used
in Section 2.8 is used to express the bound in terms of our variational belief
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distribution q(s0:T |o0:T , a0:T ) =
T∏
t=1

q(st|st−1, at−1, ot):

ln p(o0:T , r1:T |a0:T ) = ln

∫ T∏
t=0

p(ot|st)p(rt|st)p(st|st−1, at−1)ds0:T

= lnEp(s0:T |a0:T )[
T∏
t=0

p(ot|st)p(rt|st)]

= lnEq(s0:T |o0:T ,a0:T )[
T∏
t=0

p(ot|st)p(rt|st)
p(st|st−1, at−1)

q(st|o0:t, a0:t−1)
]︸ ︷︷ ︸

Importance sampling

≥ Eq(s1:T |o0:T ,a0:T )[
T∑
t=0

ln p(ot|st) + ln p(rt|st) + ln
p(st|st−1, at−1)

q(st|o0:t, a0:t−1)
]︸ ︷︷ ︸

Jensen’s inequality (since the natural logarithm is concave)

=

T∑
t=0

Eq(st|o0:t,a0:t−1)[ln p(ot|st)] + Eq(st|o0:t,a0:t−1)[ln p(rt|st)]

+ Eq(st|o0:t,a0:t−1)[ln
p(st|st−1, at−1)

q(st|o0:t, a0:t−1)
]

=

T∑
t=0

Eq(st|o0:t,a0:t−1)[ln p(ot|st)]︸ ︷︷ ︸
−Lo

+Eq(st|o0:t,a0:t−1)[ln p(rt|st)]︸ ︷︷ ︸
−Lr

−KL(q(st|o0:t, a0:t−1)||p(st|st−1, at−1))︸ ︷︷ ︸
LKL

Since the observation model of the RSSM is modeled as a Gaussian with iden-
tity covariance, maximizing the log-likelihood is equivalent to minimizing the
mean squared error. The same holds for the reward model (see derivation be-
low). Together with the KL-divergence, these make up three loss components
Lo,Lr,LKL which are all weighted equally.

ln(p(rt|st)) = lnN (rt;µt, σ)

= ln

(
1

σ
√

2π
e−

1
2 ( rt−µtσ )

2
)

= ln(
1

σ
√

2π
) + ln(e−

1
2 ( rt−µtσ )

2

)

= ln(
1

σ
√

2π
)− 1

2

(
rt − µt
σ

)2

where µt is chosen by the RSSM based on state belief st and σ is set to 1.
Minimizing this expression is equivalent to minimizing the squared error up to
a constant.
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2.7 Bias-Variance Trade-off

The mean squared error (MSE) loss is often used to describe the bias-variance
trade-off also discussed in the introduction. By introducing biases in the model,
it can be more robust against variability in the data and decrease the expected
prediction error. First, we can rewrite the expected squared error given that we
are in some state st as follows:

Ert [(rt − µt)2|st] = Ert [r2t − 2rtµ2 + µ2
t |st]

= µ2
t − 2µtErt [rt|st] + Ert [r2t |st]

= µ2
t − 2µtErt [rt|st] + Ert [rt|st]2 + Var[rt|st]

= (µt − Ert [rt|st])2 + Var[rt|st]

It now becomes apparent that the best prediction we can hope to achieve is
µ̄t

.
= Ert [rt|st], minimizing the first term. The second term is independent of

the model prediction and is therefore irreducible. This is referred to as the
Bayes Error. If we now take the expectation of the loss expression w.r.t. the
state st we obtain

Est [(rt − µt)2] = Est [(µt − µ̄t)2 + Var[rt|st]]
= Est [µ2

t − 2µtµ̄t + µ̄2
t ] + Est [Var[rt|st]]

= µ̄2
t − 2µ̄tEst [µt] + Est [µ2

t ] + Est [Var[rt|st]]
= µ̄2

t − 2µ̄tEst [µt] + Est [µt]2 + Var[µt] + Est [Var[rt|st]]
= (µ̄t − Est [µt])2︸ ︷︷ ︸

Bias2

+ Var[µt]︸ ︷︷ ︸
Variance

+Est [Var[rt|st]]︸ ︷︷ ︸
Bayes Error

The expected loss is composed of three terms which each have their interpreta-
tion:

1. Bias - Difference between the expected model prediction and the target.
Measures how well the model captures relevant relations between features
in the dataset.

2. Variance - Measures how the choice of st affects the deviation from the
average model prediction and thus how sensitive the model is to some
selection of st.

3. Bayes Error - irreducible error component independent of the model pre-
dictions.

Choosing the right model amounts to a trade-off in expressivity (low bias),
while being robust against variation in the data (low variance). The derivation
is specific to the squared error loss, but the intuition remains useful for other
loss functions.
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2.8 Cross-Entropy Method

This section is a summary of an extensive tutorial on the cross-entropy method,
provided by De Boer et al. [25]. Its relation to finding optimal policies in MDPs
is described in subsection 2.8.1.

The cross-entropy method is an optimization method for estimating a quantity

` = E[H(X)] =

∫
H(x)f(x;u)dx (16)

where X is some random variable with known pdf f(·;u) parameterized by
parameter vector u. H(x) is some performance function (e.g. the total reward
obtained for performing some action x, in the reinforcement learning setting).
The most straightforward way of estimating ` is to take a crude Monte-Carlo
approach. That is, we take N random samples X1, ..., XN from f(·;u) and then
compute

ˆ̀=
1

N

N∑
i=1

H(Xi) (17)

A problem arises, however, if there are rare events that are influential to the
value of `. Then many simulations (samples from f(·;u)) are required to es-
timate ` accurately. An alternative approach is to use importance sampling.
That is, X1, ..., XN are sampled from a different pdf g on the same space and `
is evaluated using the (unbiased) likelihood estimator

ˆ̀=
1

N

N∑
i=1

H(Xi)
f(Xi;u)

g(Xi)
(18)

Under this different distribution g the probability of obtaining informative sam-
ples can be much higher and thus ` can be estimated more accurately with a
limited number of samples drawn. Now the question remains which distribution
g should be used. The Cross-Entropy Method is a way to iteratively select such
distributions. The optimal distribution g∗ would be

g∗(x) :=
H(x)f(x;u)

`
(19)

as this would just result in using ` as its own estimator. The problem is that this
value is unknown. What we can do, however, is to try to find some distribution
closest to g∗. The idea is to select some f(·;v) such that the distance between
f(·;v) and g∗ is minimized. The distance measure used is the Kullback-Leibler
divergence D(g∗, f(·;v)), which is defined as

D(g∗, f(·;v)) = Eg∗ ln
g∗(X)

f(X;v)
=

∫
g∗(x) ln g∗(x)dx−

∫
g∗(x) ln f(x;v)dx

(20)
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Since v does not influence the left term, minimizing D(g∗, f(·;v)) is equivalent
to minimizing the right term (−

∫
g∗(x) ln f(x;v)dx), which is also referred to

as the cross-entropy between g∗ and f(·;v). This is then equivalent to the
following maximization problem

max
v

D(v) = max
v

∫
g∗(x) ln f(x;v)dx

= max
v

∫
H(x)f(x;u)

`
ln f(x;v)dx

= max
v

∫
H(x)f(x;u) ln f(x;v)dx

Note that this does not depend on the unknown value `. The optimal set of
parameters v∗ = argmaxvD(v) can be estimated by taking random samples
X1, ..., XN from f(·;u) and solving

max
v

D̂(v) = max
v

1

N

N∑
i=1

H(Xi)f(Xi;u) ln f(Xi;v) (21)

However, we run into the same problem. Namely, that the probability of in-
formative events occurring can be very small and that we therefore need many
samples to accurately estimate v∗. We can use the importance sampling trick
again, and introduce a different distribution f(·;w) which can be sampled from
and estimate v∗ using

max
v

D̂(v) = max
v

1

N

N∑
i=1

H(Xi)
f(Xi;u)

f(Xi;w)
ln f(Xi;v) (22)

where X1, ..., XN are sampled from f(·;w). The parameters w are updated
in an iterative manner to be the current best estimate of v. First, we sample
X1, ..., XN from initial configuration f(·;w0) = f(·;u). Then we create an or-
dering of the samples, based on how well they score on the performance function
H. We then select the top K samples with 0 < K < N and let w1 be the set of
parameters which is optimal for estimating that X scores as well as the closest
samples. That is, if X(k) for 1 ≤ k ≤ K denote top K samples, then w1 is
selected by trying to maximize

w1 = argmax
v

1

K

K∑
k=1

H(X(k))
f(X(k);u)

f(X(k);w0)
ln f(X(k);v) (23)

Now, hopefully, under f(·;w1) the quantity ` can be estimated more accurately.
If we then sample f(·;w1) N times and select the K closest samples, we can
follow the same process to obtain an even better set of parameters w2. This
process continues for a fixed number of iterations.
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2.8.1 Relation to policy optimization in MDPs

The Cross-Entropy Method can be used to learn policies for maximizing rewards
in MDPs. A randomly initialized policy is constructed and iteratively updated
to obtain higher rewards from the trajectories that are sampled. Let D be the
number of steps simulated in a trajectory and let X be a random variable over
possible action sequences at:t+D in the trajectories. Then f(X;w0) is randomly
initialized as some pdf over the action sequences, making it the initial policy.

f(X;w0) is sampled for N action sequences a
(n)
t:t+D. Each of the action sequences

is executed in the environment model to obtain reward sequences r
(n)
t+1:t+D+1.

Each action sequence is evaluated by the performance function, which in this

case is an estimate of the value function: H(at:t+D) = v̂π(st) =
t+D+1∑
τ=t+1

rτ .

The K action sequences that perform best are used to update the policy param-
eters through Eq. 23. Under this policy the same procedure can be repeated
until convergence.

2.9 Data Augmentation

Data augmentation is the process of creating artificial data samples based on
existing samples obtained from the true data distribution. These samples can
be created by modifying the original samples in ways that do not change its
corresponding model target output. For example, in image classification prob-
lems, sample images can be augmented by shifting the image for some number
of pixels. For most classification problems, the target label will remain the same
for the newly created image, therefore extending the available dataset. In re-
inforcement learning, the objective (Eq. 6) is to find a policy that maximizes
the value function vπ(s). Let φ : S × T → S denote a function that creates an
augmented environment state s.t.

vπ(s) = vπ(φ(s, ν)), for all s ∈ S and ν ∈ T . (24)

Here, ν denotes a parameterization of φ, taken from the set of possible parame-
terizations T . φ can be used to generate additional data samples for training a
value function estimator, assuming that it is invariant w.r.t. the value function
or similarly, the action-value function:

qπ(s, a) = qπ(φ(s, ν), a), for all s ∈ S, a ∈ A, and ν ∈ T , (25)

Alternatively, data augmentations can be defined over state-action pairs rather
than single states:

qπ(s, a) = qπ(ψ(s, a, ν)), for all s ∈ S, a ∈ A, and ν ∈ T , (26)

where ψ : Ψ × T → Ψ augments state-action pairs, rather than states. This
broadens the space of possible data augmentations, since it is a generalization
of Eq. 25. The chosen augmentations π or ψ can then be used to generate
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value estimates with lower variance, by averaging over multiple states that are
assumed to have equal expected return.

q̂π(s, a) ≈ 1

M

M∑
m=1

q̂π (φ (s, νm) , a) where νm ∈ T (27)

2.9.1 Regularization

The PlaNet algorithm plans in the RSSM using the cross-entropy method to
select actions for data collection. Given any data augmentation ψ with invari-
ance w.r.t. the state-action value (i.e. Eq. 26), an estimator for q(s, a) can be
regularized by averaging over the newly generated samples, resulting in a lower
variance estimate:

q̂π(s, a) ≈ 1

M

M∑
m=1

q̂π (ψ (s, a, νm)) where νm ∈ T (28)

There are several ways in which this estimate can be used in the PlaNet algo-
rithm:

1. The RSSM is trained using stochastic gradient descent, requiring sample
episodes obtained from the true environment. The most obvious use of
data augmentation is to generate artificial sample episodes from existing
ones, effectively increasing the amount of data available. Important to
note, however, is that the same parameterization ν should be used for all
time steps in the trajectory, since the transition function is otherwise not
accurately represented.

2. A TD estimator (Eq. 9) can regularized by substituting Eq. 28 to obtain

q̂π(st, at) =

t+D∑
τ=t+1

rτ +
1

M

M∑
m=1

q̂π (ψ (st+D, a, νm)) (29)

When this estimator is used in the CEM, additional states are generated
at the end of the trajectory, which are equivariant w.r.t. the q-function
according to the definition of ψ. This estimate is less sensitive to inaccu-
racies in the action-value function model.

3. The learned action-value function q̂π(s, a; θ) parameterized by θ is trained
using SGD as well. Given q-value targets yi for state action pair (si, ai),
the model parameters are updated using

θ ← θ − α∇θL(q̂(si, ai; θ), yi) (30)

where α is a learning rate parameter. The state action pair (si, ai) and
target yi are obtained from a dataset D. Namely, a tuple (si, ai, ri, s

′
i, a
′
i)
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from D contains state action tuple (si, ai), the resulting reward ri and sub-
sequent state action tuple (s′i, a

′
i). The target value yi is usually computed

using
yi = ri + q̂π(s′i, a

′
i; θ) (31)

This can, however, also be regularized by substituting Eq. 27, to obtain

yi = ri +

M∑
m=1

q̂π (φ (s′i, νm) , a′i) (32)
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3 Related Work

Current model free reinforcement learning algorithms, such as PPO [26], TRPO
[27], DDPG [28] and SAC [29], are able to build policies for complex tasks, but
require many samples from the environment [7, 30, 6]. Model based reinforce-
ment learning improves sample efficiency by using a model of the environment
to obtain simulated data [31, 17, 32, 33]. Current work focuses on building algo-
rithms that learn an environment model from the observations that they obtain
from their surroundings. Many different approaches are taken, such as building
locally linear approximations and using Kalman filters or LQR for optimal con-
trol in these approximations [34, 35, 36, 37, 38]. Others use Gaussian processes
to model the environment dynamics [17, 39, 40]. Advantages of these methods
is that they are simple and data efficient, because of the strong assumptions
they make of their surroundings [41, 32]. They are also less expressive, however,
when compared to models based on neural networks. These models are able to
represent the environment more accurately, but require much more data and
training time to do so. The models were observed to overfit on the limited data
available in the RL setting [32, 3]. What the methods have in common is that
they all base action selection on an approximation of the environment. This in-
troduces a bias toward the environment model, rather than the real environment
[17, 42]. Therefore, model based RL often has lower asymptotic performance
when compared to model free RL with sufficient data [32, 18]. Chua et al. [32]
observe that the quality of the learned environment model is crucial for the
performance of model based RL methods.

3.1 Planning in learned environment models

In terms of data efficiency and asymptotic performance, model predictive control
(MPC) in the learned environment models has shown to be a promising method
for control [43, 17, 7, 18]. The authors of PETS [32] claim their model requires 8
times less data than SAC, and 125 times less than PPO (which are both model
free methods). Using uncertainty estimates in their environment model, they
were able to deal with model approximation errors while planning. POPLIN
[7] was shown to be even more data efficient, by using policy networks for
planning, rather than sampling random sequences. Currently, PlaNet [19] is
considered among the state-of-the-art model based RL algorithms for control.
PlaNet learns a non-linear recurrent state-space model (RSSM) and uses model-
predictive control to do planning in latent space. More specifically, they use
the Cross-Entropy method (CEM) to simulate trajectories in the latent space
model and select an optimal one. A downside of this is that, since the planning
relies on rollouts with a limited number of steps, the computed policy is only
suitable in a finite horizon. This limitation has been observed by multiple people
[42, 44, 18]. The authors of PlaNet claim this could be mitigated by training a
neural network to learn the value function, as it tries to predict the expected
cumulative reward obtained after reaching each state. To our knowledge this
has not been tried.
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3.2 MDP homomorphisms

Learned environment models aim to find a simplified and lower-dimensional rep-
resentation that is equally useful for policy optimization in the original environ-
ment. Therefore, it omits information that is not influential to the performance
of the policy (i.e. the value function). ’Naive’ approaches in which encoders at-
tempt to learn useful abstractions were shown to overfit on the data [3]. A more
explicit definition of what constitutes a useful abstraction was made through
MDP homomorphisms [1, 45], in which the invariance of certain state-action
pairs w.r.t. the value function is used to minimize the MDP5. This invariance
property is also used in data augmentation to generate new samples [3, 2]. Con-
structing algorithms to find MDP homomorphisms is a difficult problem and
remains an active focus of research [46, 47, 48], as well as ways of enforcing the
invariance properties in deep RL [49].

3.3 Data augmentation

Data augmentation is a commonly used technique in supervised learning for
regularization of neural networks [50, 51, 52]. The early successes of convo-
lutional neural networks (such as AlexNet [53]) already showed the beneficial
effects of using augmented images during training. Augmentation can be used
to generate synthetic data that can resolve class imbalance in datasets or just
increase the dataset size [54]. A wide variety of augmentations have been used,
such as flipping, cropping, translation, rotation, recoloring and noise injection
[55]. Compositions of augmentation functions are often valid augmentations
as well, making the collection of possible augmentations extensive. Since the
applicability of augmentations is also dependent on the problem being solved,
choosing the right augmentations is a complex task. This motivates the use of
adversarial training, such as GANs, in which a model is tasked specifically with
finding effective augmentations [56, 57]

3.3.1 Data augmentation in reinforcement learning

Many reinforcement learning algorithms successfully apply convolutional neural
networks for identifying features in state observations and use these to con-
struct policies [4, 5, 28]. These methods, however, still do not perform well in
terms of data efficiency and their ability to generalize to new environments [2].
An extensive period of data collection is needed to obtain good policies. Data
augmentation has traditionally been recognized as a method of improving data
efficiency of CNNs. Early successful applications of CNNs (LeNet [51], AlexNet
[53]) already made use of augmented data to force the network to be invariant to
certain transformations (e.g. rotation, reflection). Also, the image’s invariance

5For example, consider a grid maze that is symmetrical along some axis. Solving the maze
on one side also gives the solution on the other side, since the solution can be mirrored.
This means the state-action pairs of these solutions are invariant to the mirroring procedure.
Knowing this invariance, policies in a MDP homomorphism can be ’lifted’ to policies in the
original MDP with equal performance.
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to spatial shifts is the main motivation behind CNN architectures. Recent work
suggests that data augmentation is undervalued in the reinforcement learning
setting. Kostrikov et al. [3] surpass the state of the art algorithms by simply
regularizing a soft actor-critic’s action value model through data augmentation.
Laskin et al. [2] introduce RAD, a module for data augmentation in reinforce-
ment learning, with which they show that RL significantly benefits from aug-
mented data. Another recently introduced model called CURL (Srinivas et al.
[58]) achieves better data efficiency by making use of data augmentation. Ear-
lier work by Cobbe et al. [13] tries to quantify the generalization ability of RL
algorithms using their CoinRun environment. They show several regularization
methods, including data augmentation, improve generalization in RL. However,
why certain data augmentation procedures are effective remains unclear.
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4 Methodology

This section covers the approach taken in this research to investigate the research
questions, with the primary focus being:
RQ 1: How does regularizing the Recurrent State Space Model used in PlaNet
through data augmentation affect its performance in terms of data efficiency
and asymptotic performance?
To address this, some preliminary questions are discussed, namely

1.1 What is PlaNet? (Section 4.1)

1.2 What type of data augmentation should be used? (Section 4.2)

1.3 How can data augmentation be incorporated in the algorithm?
(Section 4.2.3)

1.4 How can the model performance be evaluated? (Section 4.3)

The secondary focus of this research is as follows:
RQ 2: How does the regularization procedure implemented by Kostrikov et al.
affect the PlaNet algorithm when it is augmented with a value function?
If the algorithm can learn a value function model to optimize over the expected
return rather than a finite sequence of rewards the value function can be regu-
larized through data augmentation in the same way that proved successful for
Kostrikov et al. [3].
Section 4.4 describes the experiments that are done to investigate these ques-
tions. First, the general setup of the algorithm is covered.

4.1 PlaNet

The PlaNet algorithm uses the Cross-Entropy Method to plan in a learned en-
vironment model called the Recurrent State Space Model (RSSM). The actions
that obtained the highest rewards in the RSSM are selected to be executed in
the real environment. At every time step, the agent plans ahead to select an
action. The trajectories that follow from this are used as data to improve the
RSSM. The improved RSSM can then be used to collect better data samples
through more informative planning. The PlaNet pseudocode can be found in
Appendix 10. The Cross-Entropy method is used to plan in the environment
models and is explained in Section 2.8. The policy distribution is chosen to
be Gaussian and iteratively reparameterized accordingly. Pseudocode can be
found in Appendix 10. The RSSM is summarized in section 2.6 with appendix
9 provides additional details regarding the design choices and implementation
of the RSSM.

4.2 Data Augmentation

This section covers how data augmentation is applied in the PlaNet algorithm.
The procedures used for augmentation are described, as well as how the aug-
mented data is used.
First, it should be noted that what constitutes as a valid data augmentation
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procedure depends on the agent objective. In this work the problem of balanc-
ing an inverted pendulum is considered. At each time step, the agent is allowed
to apply a torque at the base of the pendulum and receives a reward based on
the angle the pendulum makes with the upright position. Smaller angles result
in larger rewards. The agent also obtains an observation giving information
about the environment state. This environment state is described by the angle
of the pendulum, as well as its velocity and acceleration. However, these are
not observed directly and should thus be inferred from the observations.

4.2.1 Mirror Augmentation

The balancing objective is invariant to mirroring across the vertical axis (Figure
3). The angle that the pendulum makes with the upright position does not
change, and therefore also the reward at each time step. When actions are
mirrored as well, complete episodes of data can be augmented this way. The
”mirror” data augmentation is therefore one of the procedures used in this
research. That is, when data is sampled from the replay memory, there is a 0.5
probability that it will be mirrored.

Figure 3: Example of state-action based data augmentation on a pendulum envi-
ronment. Despite being two different states, the rewards obtained are equivalent
if the actions are mirrored, effectively doubling the data that is available.

4.2.2 Translate Augmentation

One of the papers introducing the spike of interest in data augmentation evalu-
ated several data augmentation procedures and provided a module (RAD) with
implementations of these procedures [2]. The observation-based augmentations
tested included rotation, translation, flipping, cropping, cutouts and various col-
oring schemes. The environment states were augmented by addition of Gaussian
noise and random scaling. From their experiments, random translation (Fig-
ure 4) was found to be most effective by a large margin. It is, however, not
clear why this augmentation procedure was more effective. The random trans-
late procedure is therefore chosen as the second data augmentation used in this
research.
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Figure 4: Random translate data augmentation procedure. The original image
(left) is placed randomly in a black square (right). The original image retains
its size so the augmented image is larger. The encoder architecture is chosen
such that applying the convolutional layers on both image sizes gives 256 2x2
feature maps for encodings of the same size.

4.2.3 Regularization

As described in Section 2.9.1, there are various ways in which data augmentation
can be incorporated into the PlaNet algorithm. The primary distinction is that
data augmentation can be used during train time for generating additional data,
or during test time for variance reduction of the CEM rollouts. In this work, we
use data augmentation during train time. The model is trained using gradient
descent while averaging gradients over augmented sample trajectories.

4.3 Evaluation

To evaluate the performance of reinforcement learning algorithms, several bench-
marks were introduced. These typically consist of various toy problems that the
agent needs to solve, each with different challenges. The PlaNet algorithm was
originally tested on six control tasks of the DeepMind control suite [59]. Re-
cently, this benchmark was extended to 20 environments with the introduction
of the Dreamer algorithm [21], for a more thorough evaluation. All environments
in these benchmarks are based on the MuJoCo physics engine. Being unable
to obtain a license for MuJoCo, this research was restricted to the use of other
environments in the commonly used OpenAI Gym [60]. More specifically, we
evaluate the RSSM on the pendulum environment, for its simplicity and clear
invariance towards mirroring over a vertical axis (see Figure 3).
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4.4 Experiment Setup

This section provides a description of the setup of the experiments that were
run during this research. Additional settings and hyperparameters can be found
in Appendix 9.
Due to practical considerations the experiment setup has been limited in some
aspects. With the primary limitation being the computation power available,
the experiments were designed accordingly. Data collection was chosen to hap-
pen under a uniformly random policy, rather than the CEM. The CEM is only
used to evaluate the model performance. This does mean that the agent is not
able to explicitly search for data with a high reward expectation, and limits
the agent’s ability to deal with sparsity in the environment’s reward function.
However, with planning being the most demanding procedure in terms of com-
putation, this does save a lot of time. Furthermore, the effectiveness of data
augmentation when learning environment models can still be investigated.

4.4.1 Experiment 1 - Performance Upper Bound

To obtain an upper bound of the performance of the algorithm the CEM is used
to plan in the true pendulum environment model. No environment approxima-
tion is learned, but a baseline is formed for what could be achieved in a perfect
model.

4.4.2 Experiment 2 - Environment Model and Data Augmentation

In this experiment, the environment model approximations (RSSMs) are learned
with and without the use of data augmentations. The ”mirror” and ”translate”
augmentations are considered separately. The data used to train the RSSM
consists of 1000 episodes which are sampled from the true environment model
under a uniformly random policy and stored in a dataset. Each model is trained
using 200 iterations of gradient descent (see Section 2.6.1). The model is then
evaluated by using the CEM to plan in the model approximation, to select
actions in the true environment. The sum of rewards (or return) obtained from
the true environment shows the performance of the algorithm.
Hafner et al. assume an initial state when collecting the data for training,
such that the initialization of the latent state of the RSSM corresponds to this
initial state. Since this assumption is not compatible with some of the data
augmentations used, random initial states are used. Instead, the encoder sets
the state using the initial observation.

4.4.3 Experiment 3 - Test for Invariance

To evaluate how well the models respect the invariance property used to perform
data augmentation, the difference between reward predictions of invariant state-
action pairs is considered. That is, the learned environment model is presented

with a trajectory of (st, at) pairs to give reward predictions r̃
(1)
t+1. Subsequently,

the model is given a trajectory that consists of ψ(st, at), which are state-action
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pairs that have an equal reward expectation. For this trajectory, the model will

give predictions r̃
(2)
t+1, from which a difference is computed: ∆r̃t = r̃

(1)
t − r̃

(2)
t .

A trained model in which the invariance property ψ is embedded will give a re-
ward difference ∆r̃ = 0. The question this experiment tries to answer is whether
there is any difference between the ∆r̃ of models trained with or without data
augmentation.
To mitigate the effects of randomness in weight initialization and the optimiza-
tion procedure, six models are trained and evaluated both with and without
data augmentation. Due to constraints in computation power, the models were
downscaled in comparison to experiment 2. The hyperparameters of the down-
scaled models can be found in appendix 9.3.

4.4.4 Experiment 4 - Value Function

The algorithm is tasked with training the RSSM as well as a value function
model. This model is used during planning using the CEM. The value function
model is trained both with and without data augmentation.
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5 Results and Discussion

This section presents the results obtained from the experiments run during
this research. All run log files remain existent and consist of the rewards and
observations obtained and predicted during evaluation, as well as training6.
Additional information regarding hyperparameters can be found in Appendix
9.

5.1 Experiment 1 - Performance Upper Bound

To form a baseline, the Cross-Entropy Method is used to plan in the true en-
vironment model. At each environment step, 1000 simulations in the true pen-
dulum environment model are executed. The cumulative rewards of all trajec-
tories is used to reparameterize the policy distribution. Since the objective of
the learned environment model is to accurately represent the true model, any
deviations will generally decrease performance during planning.

1 40 80 120 160 200
−15

−10

−5

0

t

r t

Figure 5: Rewards over time for an agent using the Cross-Entropy Method to
solve the Pendulum environment. Actions are planned using simulations in the
true environment model. Results are averaged over 10 episodes. In each of the
episodes, the CEM requires one swing (causing the initial decrease of rewards)
from the initial state to balancing the pendulum while obtaining rewards around
0.

6Model weights and datasets have been periodically saved, and can be obtained by con-
tacting the author.
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5.2 Experiment 2 - Environment Model and Data Aug-
mentation

The RSSM has been trained on a simple but commonly used OpenAI bench-
mark for reinforcement learning, where the goal is to balance a pendulum. The
PlaNet agent selects actions by planning in the learned environment model,
that is trained to mimic the pendulum. The environment reward function is
based on the angle the pendulum makes with the upright goal state, mean-
ing there is an invariance towards mirroring the pendulum over a vertical axis.
Trajectories sampled from the true environment model could therefore be aug-
mented/mirrored to create artificial trajectories with equal reward expectation.
Multiple RSSMs were trained both with and without the use of these artificial
trajectories, to observe their effects. A random translation procedure has been
tried as well, given its success in related work.

5.2.1 Model Predictions

To get a general impression of the RSSM prediction quality some examples are
shown here, before presenting the evaluation results in Section 5.2.2. The trained
environment model is able to accurately predict the rewards and observations
of the true pendulum environment. Figure 6a shows the predicted reward signal
r̃ compared to true reward r for some evaluation episode. Figure 6b shows the
RSSM is able to reconstruct the observations based on its latent state s̃t. This
ability was verified to be still present when the agent is confronted with more
complex observations (such as the Cheetah environment). It is important to
note that the encoder/decoder structure of the RSSM forces a reconstruction
from s̃t.
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(a) True rewards r and predicted rewards r̃
during one episode when evaluating the RSSM

trained using data augmentation.

(b) True observation (left) and
predicted observation (right) of the

RSSM in both the OpenAI pendulum
environment and the Cheetah

environment of the Control Suite
benchmark.

Figure 6: Examples of observation and reward predictions given by the RSSM.

5.2.2 Evaluation Results

Table 1 shows the cumulative reward obtained during 20 evaluation runs for
each of the trained models. The model trained without data augmentation is
labeled ”no aug”. ”translate” and ”mirror” refer to the random translate and
mirror procedure described in Section 4.2, respectively. All three models were
trained on the same number of (possibly augmented) sample episodes. Data
augmentation does, however, increase the number of data samples that can be
used for training. Since the mirror augmentation procedure effectively doubles
the available data, another model was trained using all samples and was labeled
”mirror(2x)”.
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G
(1)
0 G

(2)
0 G

(3)
0 G

(4)
0 G

(5)
0 G

(6)
0 G

(7)
0 G

(8)
0

no aug -923.5 -1008.9 -1008.8 -1042.6 -885.9 -870.8 -1058.1 -1155.6
translate -860.0 -976.1 -981.4 -856.7 -792.9 -990.5 -965.6 -855.5
mirror -994.6 -1176.3 -853.4 -1055.8 -987.8 -780.1 -917.9 -1192.2

mirror(2x) -1073.2 -1088.5 -1186.2 -1295.8 -1084.4 -1186.2 -1191.3 -1213.6

G
(9)
0 G

(10)
0 G

(11)
0 G

(12)
0 G

(13)
0 G

(14)
0 G

(15)
0 G

(16)
0

no aug -952.6 -978.5 -978.7 -735.4 -956.3 -778.0 -369.8 -1152.2
translate -860.7 -975.8 -885.5 -899.9 -980.5 -995.4 -960.6 -1079.1
mirror -987.1 -1090.7 -1073.0 -907.1 -963.8 -1196.5 -969.4 -968.3

mirror(2x) -1260.2 -1179.1 -1082.0 -1185.2 -1259.6 -1082.4 -1301.4 -1022.9

G
(17)
0 G

(18)
0 G

(19)
0 G

(20)
0 mean stdev

no aug -976.4 -902.7 -748.6 -1092.7 -928.8 176.2
translate -973.9 -858.1 -869.9 -980.6 -929.9 71.5
mirror -1042.4 -979.9 -1069.3 -991.0 -1020.2 92.5

mirror(2x) -1169.1 -1183.4 -1307.9 -1190.2 -1177.1 83.1

Table 1: Sum of obtained rewards (i.e. return Gt) starting from initial state
s0 for multiple learned environment models, each trained with different data
augmentation procedures (no aug, translate, mirror). Results are shown for 20
evaluation episodes for each model.

Given these results, we would like to draw conclusions which model performed
better. In related work on Reinforcement Learning, these are typically drawn
based on evaluation runs of various benchmarks and there is no consensus about
how many runs are required for these conclusions to be meaningful. Colas
et al. [61] empirically investigate statistical tests for their applicability and
statistical power (i.e. true positive rate of rejecting the null hypothesis) in RL
and recommend the Welch t-test based on their findings. A sample size of 20
was required to reach a statistical power of 0.8 with effect size7 of 1. It should
be noted however, that the Welch t-test does assume that the return Gt of
both algorithms is normally distributed, but does not assume equal variance.
This assumption generally cannot be made in the RL setting, but Colas et al.
observed robustness against the violation of this assumption in a similar setting
(see Figure 7). Evaluation of this claim is outside the scope of this research,
which is why we present an interpretation based on their findings.

7where effect size ε =
|∆µ|√

(σ2
1+σ2

2)/2
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(a) No aug (b) Translate

Figure 7: Histograms of the 20 return values obtained for the models trained
without data augmentation and with the ”translate” data augmentation (as
reported in Table 1). A visual inspection of the returns does not indicate nor-
mality of the distributions, as assumed in the Welch t-test. Figure (b) suggests
a multi-modal distribution which likely corresponds to the number of times the
agent drops the pendulum. Colas et al. did, however, also evaluate the Welch
t-test with multi-modal (mixture of normal) distributions.

5.2.3 Statistics and Interpretation

The trained environment models were compared using the Welch t-test and
the results are presented in this section. In each of the comparisons our null
hypothesis states that the compared algorithms perform equally (i.e. give equal
expected return in the evaluation runs). Our alternative hypothesis states there
is a difference in performance, which could be better or worse, which is why a
two-sided test is used. Based on the (N=20) samples in Table 1,

• Comparing ”no aug” and ”translate” gives a t-statistic of 0.026 and p-value
(i.e. probability of observing the data given our null hypothesis) of 0.979,
meaning the test confidently states there is no difference in the expected
return obtained from both algorithms. When looking at Table 1, some
interesting observations can be made. Comparing the first 9 samples does
indicate a preference towards the model trained with the ”translate” data
augmentation. In fact, had we only considered these samples, the Welch
t-test would give a p-value of 0.045, and would result in rejecting the null
hypothesis (with the commonly used threshold value of 0.058). This clearly
demonstrates the importance of a large sample size when comparing these
algorithms, but also suggests larger sample sizes might be required than
reported by Colas et al. [61]. Evaluation run 15 of the ”no aug” model is
a strong influence in the contrasting conclusions. It is the only run (of 80
runs) in which the agent balances the pendulum upright throughout the
entire episode, resulting in a high cumulative reward.

8Multiple hypotheses are tested using the same data and thus the α-value should be
adapted. This is reflected on after presenting the test results.
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• Comparing the ”no aug” and ”mirror” models gives t= 2.053 and a p-value
of 0.049, meaning the null hypothesis could be rejected and the alternative
hypothesis is favored. It should be noted, however, that this alternative
hypothesis states that the two environment models do not perform equally
w.r.t. expected return. With a one sided test (with alternative hypothesis
that ”mirror” is worse than ”no aug”) the rejection threshold would have
to be adjusted, meaning the null hypothesis would not be rejected. The
observed means do indicate that the ”mirror” model performs worse than
the ”no aug” model.

• Comparing the ”no aug” and ”mirror(2x)” models gives t= 5.698 and a
p-value of 0.000005, meaning for both the one-sided and two-sided test the
null hypothesis can be rejected. The ”mirror(2x)” model performs worse
than the model trained without data augmentation.

An alternative test that does not assume normality of the distributions is a
permutation test. This test was also included in the comparison made by Colas
et al, but their results favored the Welch t-test. However, to validate the results
a permutation test was performed as well, giving practically equivalent p-values
of 0.979, 0.041, 0.000005 for the three comparisons, respectively.
Each of the models trained using data augmentation does show a decreased
variance compared to the non-augmented model. The Levene’s test for equal
variances with non-normal distributions obtained the following:

• The return values obtained for the ”no aug” and ”translate” models result
in a w-statistic of 3.071 with p-value 0.088.

• Comparing the ”no aug” and ”mirror” models give a w-statistic of 2.045
with p-value 0.161.

• Lastly, ”no aug” and ”mirror(2x)” give a w-statistic of 2.782 with p-value
0.104.

Despite having a reduction in variance for each of the data augmentation proce-
dures, none of the p-values pass the 0.05 threshold commonly used for rejecting
the hypothesis that the models have equal variance. With more evaluation runs
this would likely be possible, since data augmentation is already established as
a variance reduction technique [55].
Furthermore, since multiple hypotheses are tested on the same data, the prob-
ability of obtaining a false positive result increases and the α threshold should
be changed to compensate for this. Using Bonferroni correction, the threshold
is divided by the number of hypotheses that are tested, which is 9. This gives
α = 0.05/9 ≈ 0.0055, meaning that only the hypothesis that ”no aug” and
”mirror(2x)” perform equally well can be rejected.
Given these results, it should be noted that there are some factors that could
not be accounted for in the experiments due to constraints in the computation
available. Each of the trained models was evaluated using 20 episodes. Vari-
ability in the weight initializations, data collection or optimization procedure
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affects the quality of the model. Ideally, the model would be evaluated using
newly trained models for each run.
One explanation for the difference in results between various data augmentation
schemes could therefore be the difference in model initializations. Experiment
3 was designed to investigate this claim, where reducing the model size allows
more models to be trained. The worse performance during extended training
with data augmentation could also be caused by overfitting on the limited data
in replay memory. This could be verified by training models without data
augmentation for an extended number of iterations as well, and see if they show
similar worse performance. However, the fact that the models trained with
an equal number of data points showed worse performance indicates that the
data augmentation procedure is the culprit. It should also be noted that the
”mirror(2x)” models are ”mirror” models that are trained for an extended time
period. That is, they are the same instance with the same (possibly bad) weight
initialization.
Laskin et al. [2] compared different data augmentation procedures and show
the ”translate” procedure to be most effective. In our experiments, it did not
produce a beneficial effect. This could be due to the augmentation being less ef-
fective on this particular model or problem that is solved. Laskin et al. compare
the different augmentations on one environment using one algorithm and it is
not clear why the random translate augmentation should be effective. The pen-
dulum environment is simple compared to many RL benchmarks and it could
be that augmenting existing data samples does not provide extra information
about the solution space. Data augmentation removes the independence be-
tween samples in the dataset, changing the data distribution. The goal of this
dependence is to make it more apparent to the model during training, if the
relation is otherwise not well represented in the dataset. It could be, however,
that in the pendulum problem the data collected under a uniformly random
policy was already informative enough for data augmentation to have any ef-
fect. As noted before, the first 9 evaluation runs of the model trained with the
”translate” procedure did indicate a beneficial effect, which disappeared when
extending the number of evaluation runs. This was, however, mainly caused
by one ”outlier”, in which the model trained without data augmentation man-
aged to balanced the pendulum perfectly throughout the entire episode. This
further illustrates the variance between evaluation runs and their effects on the
conclusions that are drawn. It also raises the question whether this outlier was
coincidental or does reflect the performance of the environment model. It also
indicates that, for these questions to be answered, a sample size of 20 runs is
not enough. All models trained with data augmentation did show a reduction
in the variance between evaluation runs.

5.3 Experiment 3 - Test for Invariance

To test how well the learned environment models respect the invariance prop-
erty of some augmentation procedure, the difference in predictions (∆r̃t) for
trajectories with equal reward expectation was considered. Six models were
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trained without using data augmentation on the pendulum environment. An-
other six models were trained using the ”mirror” augmentation procedure, in
which some trajectories were mirrored when sampled from the dataset. The
question is whether explicitly using the invariance property to generate data
samples is reflected in the learned environment model. Each of the trained
models is evaluated for five episodes, for a total of 30 evaluation runs for each
model type.
The mean difference in rewards for all model predictions were 0.10324 and
0.10319 for the models trained without and with data augmentation, respec-
tively. They are practically equal, which is reflected by the following tests that
were performed:

• Welch t-test: Gives t = 0.0316 with p-value 0.975 when testing whether
there is a difference between ∆r̃ for both models.

• Permutation testing gave p = 0.975, meaning both tests confidently show
the null hypothesis should not be rejected and both models respect the
mirroring invariance equally well, despite the use of data augmentation.

To evaluate the effects of initializations on the model, each of the 6 × 2 down-
scaled models were evaluated for three episodes using the CEM. The obtained
returns are presented in table 2.

G
(1)
0 G

(2)
0 G

(3)
0 G

(4)
0 G

(5)
0 G

(6)
0

no aug -1336.1 -1369.8 -1006.6 -885.7 -1110.3 -1112.9
mirror -1113.1 -1113.4 -1573.6 -1640.9 -1140.9 -1197.3

G
(7)
0 G

(8)
0 G

(9)
0 G

(10)
0 G

(11)
0 G

(12)
0

no aug -1368.4 -1451 -1042.7 -1027.1 -1472.3 -1406
mirror -1100.7 -1105.2 -1103 -1120.6 -1102.7 -1104.3

G
(13)
0 G

(14)
0 G

(15)
0 G

(16)
0 G

(17)
0 G

(18)
0

no aug -1349.7 -1004.5 -1099.9 -1349.1 -1082.1 -1416
mirror -1147.9 -1627.3 -1188.1 -1131.6 -1099.6 -1158.4

Table 2: Return values G0 obtained when evaluating the downscaled RSSM for
18 runs.

Again, there is a high variance between evaluation runs. The sample means are
−1216.2 and −1209.4 for ”no aug” and ”mirror”, respectively. Testing for the
inequality of the expected return gives

• Welch t-test: t = −0.107 with p-value of 0.915

• Permutation test: p-value of 0.915

These values contrast the results of experiment 2, since they give an indication
that there is no difference in expected return. This also suggests that the dif-
ference observed in experiment 2 is not due to the effect of data augmentation.
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5.4 Experiment 4 - Value Function

The experiment showed that training a value function in conjunction with the
RSSM in the way presented in this work proved to be unstable. Value function
predictions quickly diverged to become unrealistic and not applicable for plan-
ning. The PlaNet algorithm thus is not compatible with using a learned value
function in the way that is presented in this work, regardless of the use of data
augmentation.
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6 Conclusion

The primary focus of this work has been to investigate the effects of data aug-
mentation for regularizing learned environment models in reinforcement learn-
ing. More specifically,
RQ 1: How does regularizing the Recurrent State Space Model used in PlaNet
through data augmentation affect its performance in terms of data efficiency
and asymptotic performance?
Recurrent State Space Models were trained with and without data augmentation
on a simple and commonly used RL benchmark, in which an inverted pendulum
is balanced. From our experiments, no significant difference was found between
the expected sum of rewards obtained when planning with models trained with
or without data augmentation. This applied to all augmentation procedures that
were evaluated and stands in contrast with the results of related work [3, 2]. In-
terestingly, the first 9 runs gave an indication that data augmentation performed
better, and the Welch t-test confirmed this. However, with a larger sample size
(of 20, as recommended by Colas et al. [61],) these indications were shown to
be false. This illustrated the importance of a large sample size when comparing
RL algorithms, since the variance between different runs can be large. Care
should be taken to perform enough runs to draw conclusions with enough sta-
tistical power, in order not to overfit our findings on coincidental results. When
looking at the differences between predictions for reward-invariant state-action
pairs, there was no difference between the models trained with or without data
augmentation. From this we conclude they both respect the invariance prop-
erty that data augmentation aims to enforce equally well. Each of the models
trained with data augmentation did show a reduced variance in their evaluation
runs. It is surprising that this did not result in an improved performance of
the CEM when planning actions, since high variance (w.r.t. properties that are
invariant w.r.t. the reward function) in simulated trajectories is a general issue
of Monte-Carlo type algorithms. This raises the question if the regularization
of the environment model resulted in variance reduction w.r.t. properties that
are relevant to the planning procedure and that test-time data augmentation
might be more effective.

Concurrently with Laskin et al, Kostrikov et al. successfully applied data aug-
mentation in reinforcement learning by regularization of a learned action-value
function. The authors of PlaNet hypothesized that using a value function dur-
ing planning could improve its performance. In this work, we investigate this
claim as a secondary research focus, namely
RQ 2: How does the regularization procedure implemented by Kostrikov et al.
affect the PlaNet algorithm when it is augmented with a value function?
Adding a value function to the RSSM training objective to be used during plan-
ning was found to be unstable in the approach taken in this work. The PlaNet
algorithm therefore cannot be regularized in the same manner implemented by
Kostrikov et al. A more successful approach was taken by Hafner et al. when
applying an actor-critic agent on the RSSM [21]. Their agent, called Dreamer, is
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better able to deal with long-horizon challenges in RL benchmarks. Therefore,
applying data augmentation on Dreamer might prove more effective.

Further recommendations for future work include the use of various data aug-
mentation procedures on different RL benchmarks, since it is not clear which
augmentations are effective for a given problem. This could also give insight to
what is required to develop algorithms that have better generalization perfor-
mance. Related work already explores the possibility of automatically search-
ing augmentations that are useful when solving a problem by modeling it as a
multi-armed bandit problem [62]. This does still require the manual selection
of a number of data augmentations. To automate the process of finding useful
augmentations an approach based on GANs might prove useful, such as used by
Zhu et al. [57]. The idea of learning world models to generate artificial episodes
of data could also be seen as a form of data augmentation.
Furthermore, there is no consensus on how to properly evaluate RL algorithms.
In this work we observed that with 20 runs for each model, which is extensive by
RL standards, the effects of single runs can be quite influential in the outcome
of statistical tests. To not be mislead by coincidental results, we argue that
work on how to compare RL algorithms with sufficient statistical power would
be valuable.
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7 Appendix - Notation Overview

Symbol Description Symbol Description
t Time step φ State transformation
T Trajectory length ψ State-action transformation

s, st
Environment state
(at some time t) ν

Parameterization of
some transformation

a, at
Action

(at some time t) T
Set of possible

parameterizations ν

r, rt
Reward

(at some time t) M
Number of augmented

samples used

o, ot
Observation

(at some time t)

ot:t+τ
Observations obtained

from step t to step t+ τ

St
Random variable of

the environment stat

At
Random variable of
the chosen action

Rt
Random variable of

the reward

Ot
Random variable of

the observation
S State space
A Action space
Ψ Permittable state-action pairs

P(s′, r|s, a) Transition function
O(o|s, a) Observation function
M (PO)MDP
Gt Return/ sum of reward

π(a|s) Policy
vπ(s) Value function
qπ(s, a) Action-value function

bel(s)
State belief distribution
given the observations

bel(s)

State belief distribution
prior to

most recent observation
D Planning horizon
I Nr. of policy updates
J Nr. of candidate trajectories
K Nr. of top candidates

Table 3: Table containing the notations used in this document.
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8 Appendix - Implementation

The implementation of the experiments that were run can be found here9. All
experiments were executed by running main.py under different hyperparame-
ters.

9https://github.com/ronvree/DataAugmentationInMBRL
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9 Appendix - Additional Hyperparameters &
Implementation Details

All hyperparameters for each run are automatically logged by the implementa-
tion and can therefore also be found in the experiment log.

9.1 CEM

Description Parameter Value Original Value
Planning horizon D 12 12

Nr. of optimization iterations I 10 10
Nr. of candidates J 100 1000

Nr. of top candidates K 10 100

Table 4: Cross-Entropy Method hyperparameters. The ”Original Value” column
refers to the values used in the paper that introduced the RSSM. The number of
candidate action sequences that are evaluated is reduced because of the limited
computing power available.

9.2 Recurrent State Space Model

All hyperparameters in the RSSM are the same as in the original paper.

9.2.1 State model

The RSSM’s belief state consists of two components (i.e. s̃t = (ht, zt)). ht ∈
R200 is a hidden state of recurrent neural network and forms a deterministic
component of the belief state. Based on ht, a Gaussian distribution with mean
and variance parameterized by a dense neural network is sampled for a stochastic
belief state component zt ∈ R30. The RNN is implemented as a GRU [63] with
an initial state h0 of all zeroes.

9.2.2 Reward model

The reward model consists of a Gaussian distribution with mean parameterized
by a neural network and a variance of 1. The neural network is a simple dense
network with two hidden layers of size 200. Given a belief state s̃ it outputs a
predicted reward r ∈ R.

9.2.3 Observation model

The observation model Õ acts as a decoder and generates observations given the
current belief state s̃t = (zt, ht). First, a dense layer concatenates the (ht, zt)
vectors to create an encoding in R1024. A 4-layer deconvolutional network trans-
forms this encoding to a 64x64 RGB image. This parameterizes the mean of a
Gaussian with identity covariance.
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9.2.4 Encoder

The encoder is modeled as a diagonal Gaussian with mean and covariance pa-
rameterized by a convolutional neural network. The network consists of four
convolutional layers that transform the input image to 256 4× 4 feature maps,
which form a 1024-dimensional encoding of the observation. This is concate-
nated with the state belief prior and passed through a dense net to obtain the
belief posterior.

9.2.5 Training procedure

The RSSM is trained using batches of episode data sampled from the experience
replay. The loss is computed over the complete episode. That is, the chunk
length parameter is set to T , the total episode length.

Description Parameter Value Original Value
Chunk length L 200 50

Batch size B 32 32
Number of batches C 50 200

Learning rate α 10−3 10−3

Adam epsilon ε 10−4 10−4

Table 5: RSSM training procedure hyperparameters.

9.3 RSSM (Downscaled)

To reduce the time required to train the RSSM model a downscaled version has
been used as well. The differences are highlighted here.
The latent state of the RSSM has its dimensions reduced. The GRU hidden
state (ht) is 32-dimensional, rather than 200. The stochastic state component
zt consists of 16 values, rather than 30. The observation encodings are reduced
to R256. Furthermore, all dense layers in the state, observation and reward
models contain 32 neurons rather than 200.

9.4 Action-Value Model

The action-value function model was implemented as a dense neural network
with two hidden layers of size 200 and relu activation. Is input was a vector in
which the RSSM belief state s̃t and action at were concatenated.
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10 Appendix - Pseudocode

10.1 Cross-Entropy Method

Algorithm 1: Planner algorithm using the Cross-Entropy Method (see
Section 2.8.1), with the adaptation in blue

input :
D Planning horizon distance M̃ Environment model
I Optimization iterations
J Candidates per iteration
K Number of top candidates to fit

1 Initialize factorized belief over action sequences f(at:t+D)← N (0, I)
// Perform optimization iterations as defined in Eq. 22

2 for optimization iteration i=1..I do
// Evaluate J action sequences from the current policy

3 for candidate action sequence j=1..J do
// Sample the policy

4 a
(j)
t:t+D ∼ f(at:t+D)

5 Obtain o
(j)
t+1:t+D, r

(j)
t+1:t+D by executing a

(j)
t:t+D−1 in the

environment model M̃
// Estimate the return G from the trajectory

// Following Monte Carlo estimation or Eq. 9

6 G(j) =
∑t+D
τ=t+1 r

(j)
τ +q̂π(s

(j)
t+D, a

(j)
t+D; θ)

7 end
// Re-fit the policy to the K best sequences (Eq.23)

8 K ← argsort
({
G(j)

}J
j=1

)
9 µt:t+D = 1

K

∑
k∈K

a
(k)
t:t+D

10 σt:t+D = 1
K−1

∑
k∈K

∣∣∣a(k)t:t+D − µt:t+D
∣∣∣

11 f (at:t+D)← N
(
µt:t+D, σ

2
t:t+DI

)
12 end
13 return first action mean µt
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10.2 PlaNet

Algorithm 2: Main loop

input :
B Batch size M True environment model

S Seed episodes M̃ RSSM
C Nr. of samples p(ε) Exploration noise
L Chunk length
α Learning rate

1 Initialize dataset D with S random seed episodes
2 Initialize model parameters θ randomly
3 while not converged do

// Model fitting using Minibatch Gradient Descent

4 for update step c = 1..C do

5 Draw sequence chunks {(ot, at, rt)L+kt=k }Bi=1 ∼ D uniformly at
random from the dataset

6 Compute loss L(θ) as described in section ??
7 Update model parameters θ ← θ − α∇θL(θ)

8 end
// Data collection

9 o0 ← env.reset()

10 bel(s̃0)← RSSM.reset()
11 for time step t = 0..T do
12 Use the obtained observation ot and encoder q to update the

RSSM state belief distribution from bel(s̃t) to bel(s̃t) (Eq. 14)
// Select action using the CEM, based on the current

state belief

13 at ← planner(bel(s̃t)), See Algorithm 1
14 Add exploration noise ε ∼ p(ε) to the action

// Execute the action in the environment model

15 rt+1, ot+1 ← env.step(at)
// Execute the action in the learned environment model

16 bel(s̃t+1)← RSSM.step(at)

17 end

18 D ← D ∪ {(ot, at, rt+1)Tt=1}
19 end
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