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Abstract

Universities and other workplaces are becoming more and more international. This
calls for good communication and teamwork between international teams. How-
ever, people often fall back on their mother tongue when they cannot express them-
selves well enough in another language, thus speaking a language that most people
around them cannot understand. This linguistic ostracism could cause feelings of
social exclusion, anger and sadness, and even trust issues, instead of the social in-
clusion which should be aimed for when working together as a team. This paper
will endeavour to determine how, and to what extent, this social exclusion induced
by a language barrier reflects in neurophysiological signals (Electroencephalogram
(EEG), Heart Rate (HR), Galvanic Skin Response (GSR)). To this end, an experi-
ment has been conducted in which three participants worked together as a team to
solve seven small riddles. During this experiment, two participants communicated
with each other in a language the third participant did not understand, thereby
ignoring the third participant and causing feelings of social exclusion. Based on the
existing literature, it was expected that the two participants that could understand
each other and worked together as a team would show a higher level of synchronisa-
tion in the measured neurophysiological signals (EEG, HR, GSR) compared to the
socially excluded participant with either of the other two participants. The level
of synchrony for the EEG modality was computed using the Phase-Locking Value
(PLV) method and the synchrony for the HR and GSR modality was computed
with the Pearson Correlation Coefficient (PCC). The results showed that, out of
the three measured modalities, the EEG modality was best suited for measuring
this synchrony and social exclusion. The data was compared both per brain re-
gion (frontal, central, parietal, temporal, occipital) and per channel (32 channels).
For the regional comparison, the theta and alpha frequency bands had the strongest
result, while the gamma band achieved the strongest results for the channel compar-
ison. The statistical analysis indicates that the central brain region (and channel C4
in particular) looks the most promising, with statistically significant results before
False Discovery Rate (FDR) correction. Both the HR and GSR analyses indicate
that there is a difference between the socially excluded participant and the other
two participants although there is a large variability between the results. However,
these differences are only significant for a few individual experiments. Therefore,
even though the EEG, HR, and GSR results all indicate that there is indeed a differ-
ence in the synchrony between the socially excluded participant and the other two
participants, and that social exclusion can thus, to some extent, be measured using
these three modalities, further investigation is needed to draw definitive conclusions.
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1 Introduction

The world is becoming more and more international because it is a lot easier to travel in
this almost borderless world. This encourages many students to decide to study abroad.
Students want to learn more about a new country, escape their normal day-to-day lives,
explore new career opportunities, and doing that all while earning academic credits (Nyau-
pane et al., 2010). This is also a trend which can be seen in the Netherlands. The Univer-
sity of Twente even has an international student handbook to help international students
settle in their new temporary home (UTwente, 2018).

Since universities are so internationally oriented nowadays, it becomes very important that
communication occurs in a language everyone can understand. Luckily almost everyone
in the Netherlands can speak English. However, language differences can still form a
problem since people often switch back to their mother tongue when they, for example,
want to streamline communication or want to better express their emotions (Tenzer et al.,
2014). Nearly everyone has, at some point in their lives, experienced that people around
them talk to each other in a language they cannot understand (Williams, 2007).

How would it make students feel if they could not understand a word the people around
them were saying? This could make them feel socially excluded, ignored and less trusting
of those they cannot understand, instead of the social inclusion which should be aimed for.
Especially if students are supposed to work together as a team. With the increase in the
number of languages spoken at universities and other workplaces, there is a heightened
chance of this form of social exclusion, otherwise known as linguistic ostracism (Oshri
et al., 2008; Fiset and Bhave, 2019). This will cause increased feelings of sadness and
anger as well as a feeling of desynchronisation from their peers, making these students
less likely to engage in helping behaviours (Thau et al., 2007; Williams, 2007).

Even though social exclusion is, thus, arising more and more often in universities, it has
only been researched in workplace settings (Oshri et al., 2008; Fiset and Bhave, 2019; Thau
et al., 2007; Williams, 2007). Furthermore, the emotional impact of excluding students in
social interactions such as this has not been investigated using neurophysiological signals
(Electroencephalogram (EEG), Heart Rate (HR), and Galvanic Skin Response (GSR))
before. The fact that social exclusion, thus, has not been researched with regards to
EEG, HR, and GSR, makes it very interesting to investigate this psychological construct
to determine how social exclusion is reflected in these neurophysiological signals.

Previous research has shown that neural synchronisation in EEG is a good measurement
for social interactions such as the level of team coordination between individuals. This
neural synchronisation increases when communication between people is smooth and they
work together as a team (Cha and Lee, 2019). Consequently, when someone is ignored
and excluded during this teamwork (e.g. because they cannot understand the language
that is spoken) they should have a lower neural synchronisation with the people excluding
them compared to the people who are actually working together and understanding each
other.

People who are constantly being ignored by their peers will thus likely experience negative
feelings and (neural) desynchronisation from their supposed peers (Thau et al., 2007;
Williams, 2007; Cha and Lee, 2019). Since feelings and emotions can be reflected in the HR
and GSR of a person and the neural synchronisation is reflected in the brain, investigating
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EEG, HR and GSR while someone is linguistically ostracised will give an understanding
about how and to what extent social exclusion is reflected in these neurophysiological
signals (Ferdinando et al., 2014). Results could, therefore, show that there is an actual
neurophysiological reaction to being socially excluded.

The research above yields the following research question for this thesis:

How does social inclusion/exclusion induced by a language barrier reflect in neurophysio-
logical signals?

This research question can be answered by first answering the following sub-questions:

1. To what extent can a language barrier cause feelings of social exclusion?

2. To what extent is social inclusion/exclusion reflected in the synchrony between
individuals?

3. To what extent can social inclusion/exclusion be measured using EEG, HR, and
GSR?

So far, most EEG and other brain-imaging studies record the brain activity for one single
participant at a time. However, to study brain activity in participants during social inter-
actions such as this, it becomes necessary to simultaneously record the brain activity of
all interacting participants. This simultaneous brain-imaging of two or more participants
is called hyperscanning (Xie et al., 2019). Most previous hyperscanning studies have been
done with no more than two participants (Xie et al., 2019; Burgess, 2013). However, to
linguistically ostracise someone, two or more people are required to interact in a language
unfamiliar to the socially excluded person (Dotan-Eliaz et al., 2009). This means that,
to make it possible to study social exclusion, a many-to-one setting of at least three par-
ticipants is needed. Given the complexity of the recording and the synchronisation of the
three modalities (EEG, HR, GSR), this hyperscanning research will be conducted with
the minimum requirement of three participants, two of which will socially exclude the
third participant.

It is hypothesised that the two participants speaking the same language will have a high
brain-to-brain synchrony, while the socially excluded participant will have a lower level
of synchronisation with the other two participants. Furthermore, it is hypothesised that
heart rate and galvanic skin response will also reflect this synchrony.

Several contributions to the research field are made in this thesis. First of all, while this
form of linguistic ostracism has previously only been researched in workplace settings, this
study will investigate this form of social exclusion among students at a university (Oshri
et al., 2008; Fiset and Bhave, 2019; Thau et al., 2007; Williams, 2007). Furthermore,
this study will pioneer in using three neurophysiological signals (EEG, HR, and GSR)
to measure the psychological construct of feeling socially excluded by a language barrier.
Conversely, earlier research has only ever used surveys to measure social exclusion. Lastly,
previous research has mostly only conducted hyperscanning studies using two participants
while this research will be one of the first to simultaneously measure the data from three
participants during an experiment (Xie et al., 2019; Burgess, 2013).

This thesis describes the work that has been done to answer the research question posed
in this chapter. First, several studies related to hyperscanning, social exclusion, and team
coordination are reviewed. This literature review is divided into two parts: background
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(Section 2) and related work (Section 3). The pros and cons of several brain-imaging
techniques are discussed in Section 2.1.1. Furthermore, the differences and similarities
between hyperscanning and synchrony are explained in Section 2.1.2 while Section 2.1.3
will go into more detail about hyperscanning itself. In addition, neurophysiological signals
such as Heart Rate (HR) and Galvanic Skin Response (GSR) are examined in Section
2.2 for their potential added value in measuring synchrony. Moreover, Section 2.3 will
explain multiple ways to analyse hyperscanning data. Next, several hyperscanning studies
using EEG will be discussed in further detail in Section 3.1. Additionally, research about
combining EEG, HR, and GSR will be investigated in Section 3.2. Section 3.3 will then
correlate social inclusion/exclusion and language barriers to each other. Furthermore,
Section 3.4 will explain team coordination itself, as well as different paradigms for mea-
suring team coordination. The methodology for executing the research will be discussed
in Section 4 while Section 5 will show the results. Lastly, Section 6 will discuss the results
as well as the limitations and strengths of this research in addition to ideas for future
work, and Section 7 will conclude the findings of the research.
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2 Background

2.1 Brain-Imaging Techniques and Hyperscanning

In most brain-imaging studies, the activity of the brain during either a simple or complex
task has been recorded for one single participant at a time. However, to study brain
activity in participants who are interacting in cooperation or other social activities, it be-
comes necessary to simultaneously record the brain activity of all participants interacting
in these activities. Thus, hyperscanning becomes necessary for an experiment in which
someone is socially excluded from the activity.

This chapter will first briefly introduce EEG and other non-invasive brain-imaging tech-
niques, which is partly based on an overview by Czeszumski et al. (2020). Then, the dif-
ferences and similarities of hyperscanning and synchrony will be discussed. Afterwards,
hyperscanning will be explained in further detail by discussing several hyperscanning
studies.

2.1.1 EEG, MEG, fMRI & fNIRS: Pros and Cons

Electroencephalogram (EEG)
EEG is one of the oldest and perhaps one of the most widely used brain-imaging techniques
(Czeszumski et al., 2020; Burgess, 2013). It is an electrophysiological measurement tech-
nique which measures neural activity directly with the use of electrodes which are placed
on the scalp. These electrodes detect the variations of electrical potentials. An EEG
response which is aligned with a certain stimulus is called an Event-Related Potential
(ERP). The temporal resolution of these ERPs is higher than other methods (Michel
and Brunet, 2019). However, it is difficult to determine the exact location of the neural
activity which is causing the electric potentials because the electrodes are placed on the
scalp (Anderson, 2009; Anwar et al., 2016). This characteristic makes EEG best suited
for investigating the cerebral cortex rather than deep brain structures (Czeszumski et al.,
2020). While restricted movement used to be an issue for EEG, the development of new
technologies has greatly improved the mobility of EEG systems (Melnik et al., 2017).
This mobility, in addition to its great temporal resolution, makes EEG a great tool for
studying social interactions. After all, social interactions unfold at a fast scale and, thus,
require a method that is sensitive to it, allowing for a more precise type of brain-to-brain
analysis (Czeszumski et al., 2020; Dikker et al., 2017). Moreover, using EEG makes it
easier to measure more than two individuals at a time, which is very useful in hyperscan-
ning studies (Dikker et al., 2017). Lastly, perhaps the most key advantages of using EEG
are the availability of the (mobile) equipment, its relatively low price, and the fact that it
can be used in naturalistic experiment settings (Burgess, 2013; Czeszumski et al., 2020).

Magnetoencephalogram (MEG)
Similar to EEG, MEG is an electrophysiological measurement, but MEG measures mag-
netic fields produced by the electrical activity instead of electrical potentials. This varia-
tion of ERP offers a better spatial resolution than EEG. MEG is best at detecting activity
in the sulci of the cortex and is not very well suited for measuring activity in the gyri
or other places deep within the brain (Anderson, 2009; Anwar et al., 2016). Despite its
similar characteristics to EEG, MEG has much lower mobility which makes it less suited
to be used in hyperscanning studies which aim to research social interactions (Czeszumski
et al., 2020).
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Functional Magnetic Resonance Imaging (fMRI)
fMRI is a hemodynamic measurement technique and measures brain activity indirectly
through changes associated with blood flow. To achieve this, the Blood-Oxygenation-
Level-Dependent (BOLD) contrast is used which depicts changes in deoxyhemoglobin
concentration (Glover, 2011). Perhaps its most important advantage is the spatial res-
olution (usually around 3mm). Because of its great spatial resolution, fMRI is the best
method for localising neural activity in the brain (Czeszumski et al., 2020). However,
it is difficult to trace the time course of that localised activity (Anderson, 2009; Anwar
et al., 2016). Furthermore, because it uses blood flow for its estimation of neural activity,
its temporal resolution is not nearly as good as that of EEG and MEG (Glover, 2011).
Another disadvantage of fMRI is its very low mobility. Participants are required to stay
still and stable in a laying position during the experiment. This makes fMRI unsuitable
for studying social interactions in naturalistic settings (Czeszumski et al., 2020).

Functional Near-Infrared Spectroscopy (fNIRS)
Just like fMRI, fNIRS is a hemodynamic measurement technique as well. This tech-
nique indirectly measures brain activity through changes in the contrast between oxy-
genated (O2Hb) and deoxygenated (HHb) haemoglobin concentrations (Anwar et al.,
2016; Czeszumski et al., 2020). Similar to EEG, fNIRS is best suited for measuring
superficial brain areas with a low spatial resolution (1 cm) (Scholkmann et al., 2013).
Furthermore, its temporal resolution is lower than that of EEG. Nevertheless, fNIRS is
widely used in research studies because of its mobility and particularly because of its
resistance to motion artefacts. fNIRS is the best-suited method for experiments with a
lot of movement since fNIRS is not strongly influenced by the movements of participants.
This allows for even more naturalistic settings than the previous methods, especially when
studying social interactions which require actions from participants (Czeszumski et al.,
2020).

Figure 1 shows the different measuring equipment for (a) EEG, (b) MEG, (c) fMRI, and
(d) fNIRS.

(a) EEG (b) MEG

(c) fMRI (d) fNIRS

Figure 1: Brain-imaging measuring equipment
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2.1.2 Hyperscanning and Synchrony

Since hyperscanning and synchrony research are sometimes confused with each other and
both terms will be used in this thesis, it is important to first note the similarities and
differences between these terms.

Research by Cha and Lee (2019) has shown that neural synchronisation in Electroen-
cephalogram (EEG) increases when communication between people is smooth and they
work together as a team. This neural synchronisation can thus be used as a measure
of how well people work together as a team. It can be stood to reason that if someone
is ignored and socially excluded during teamwork (e.g. because they cannot understand
the language that the other people in their team are speaking), the neural synchrony
should be lower for this individual who is being ignored than the people who are working
together.

This neural synchrony refers to the similarities in the physiological responses of two or
more individuals (Stuldreher et al., 2019). While this can be measured by recording the
brain activity of individuals one at a time and seeing if they respond similarly based on
the same stimulus, individuals can also be measured simultaneously. When the brain
activity of two or more individuals is measured simultaneously, it is called hyperscanning
(Burgess, 2013).

One example of a study which investigated synchrony but did not use hyperscanning is
the study by Cohen and Parra (2016). In their study, they presented 72 participants
individually with simultaneous auditory narratives and visual animations while using
EEG to record the neural activity. Memory retention was tested three weeks later. Their
results showed that individuals with better memory retention had higher brain-to-brain
synchrony with their peers since their neural responses were more correlated.

Thus, even though hyperscanning can always be performed to discover synchrony between
individuals, synchrony does not always need to be measured by performing a hyperscan-
ning study. However, if the objective of a study is to measure synchrony during social
interaction, the use of hyperscanning becomes essential. After all, social interactions al-
ways involve two or more individuals interacting with each other and, thus, have to be
measured at the same time (Xie et al., 2019).
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2.1.3 Hyperscanning Studies

Hyperscanning is the simultaneous brain-imaging of two or more participants. The ob-
jective of hyperscanning studies is to determine how co-variations in the neural activity
between individuals are influenced by their behavioural and social interactions. These
co-variations in neural activity are also called hyperconnectivity. In most previous stud-
ies, hyperscanning has been done with no more than two participants, otherwise known
as dyadic hyperscanning. These studies have been used to examine the social interaction
between two participants (Xie et al., 2019; Burgess, 2013).

Several different methodologies (fMRI, fNIRS, MEG, EEG) can be used in order to demon-
strate brain-to-brain synchrony. This synchrony can then, in turn, be used to predict a
range of social and cognitive outcomes, such as communication quality (Dikker et al.,
2014; Stephens et al., 2010), social closeness (Bevilacqua et al., 2019; Dikker et al., 2017;
Parkinson et al., 2018), the degree of engagement in a task (Bevilacqua et al., 2019; Cohen
et al., 2018; Dikker et al., 2017; Cohen et al., 2017) and memory retention (Cohen et al.,
2018; Hasson et al., 2008; Cohen and Parra, 2016).

The first actual hyperscanning study was done by Montague et al. (2002). In this study,
Montague et al. (2002) used two linked Functional Magnetic Resonance Imaging (fMRI)
scanners in which they had two participants playing a children’s guessing game. To fur-
ther tackle the mobility problem, King-Casas et al. (2005) conducted a study using two
scanners (one in Texas and one in California) and connected them via the internet. Af-
terwards, studies were performed in facilities containing two scanners (Koike et al., 2016).
For example, Krueger et al. (2007) investigated the neural correlates of trust between
two people and discovered that trust is an essential social process which is involved in
all human interaction. Nevertheless, the lack of mobility and restriction of movement
and communication between participants is still a huge problem because they result in
very different experiment situations compared to real life. Furthermore, the complexity of
fMRI data needs a new type of analysis to answer questions about brain-to-brain relations
(Czeszumski et al., 2020). Besides, the cost of having multiple fMRI setups is very high,
making it not accessible and available for everyone (Wang et al., 2018). These restrictions
have resulted in the fact that fMRI hyperscanning studies have not been conducted that
often to investigate social interactions (Czeszumski et al., 2020).

Other studies, such as the one by Funane et al. (2011) have used Functional Near-Infrared
Spectroscopy (fNIRS) to investigate the relationship between brain-activation signals of
two participants and the performance of these participants when doing a cooperative-task.
Their results suggest that synchronised activation patterns of the participants cause better
performance when they have to cooperate during a task. Since then, there have been
many types of research that have adopted the fNIRS hyperscanning method (Czeszumski
et al., 2020). In a recent study by Reindl et al. (2018), they even developed a fNIRS
system for babies to study the brain functions that are related to parent-child interaction.
fNIRS is particularly useful when studying infants or children’s brain activation because
it is relatively more tolerant of movement artefacts than other methods. For this reason,
fNIRS is also a good method to apply to more naturalistic settings. Although fNIRS has
a relatively good temporal resolution, its spatial resolution is low which means that it has
a limited capability for detecting deep brain structures (Wang et al., 2018).
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Additionally, Baess et al. (2012) even demonstrated that it is feasible to perform hy-
perscanning with Magnetoencephalogram (MEG) by connecting and synchronising two
faraway neuromagnetometers. Furthermore, MEG hyperscanning has also been used to
research the interaction between mothers and their children (Hirata et al., 2014). In a
study by Mandel et al. (2016), the researchers used MEG to research speaker-listener
roles during natural conversation. In other research by Ahn et al. (2018) MEG was com-
bined with EEG in order to study verbal, inter-brain turn-taking. Boto et al. (2018) have
even developed a mobile MEG system, making MEG a more attractive choice for future
hyperscanning studies. However, these mobile systems are very new and more expensive
than regular MEG systems. Thus, MEG is still not very suitable for researching social
interaction in naturalistic settings, even though it does have better spatial resolution
(Czeszumski et al., 2020).

While previously highlighted research has shown that hyperscanning is possible with two
participants, the study by Xie et al. (2019) is one of the first and only studies which
aimed at revealing neural correlates of social interactions using a triadic (3-person) hy-
perscanning technique. Specifically, they used a Functional Magnetic Resonance Imag-
ing (fMRI) hyperscanning paradigm to measure the Blood-Oxygenation-Level-Dependent
(BOLD) signal of the participants while they were doing a joint drawing task. Their re-
sults showed increased synchrony of the Right Temporal-Parietal Junction (RTPJ) while
the participants were collaborating as a team. Furthermore, this increased synchrony
in the RTPJ was shown to be positively associated with the overall performance. This
shows that hyperscanning is also useful for revealing brain-to-brain synchrony of more
than two participants. Just like Xie et al. (2019), this research will also endeavour to use
hyperscanning for revealing brain-to-brain synchrony between three participants.

Even though fMRI, fNIRS and even MEG have been proven to be used successfully in
hyperscanning studies, most studies have relied upon EEG hyperscanning. After all,
equipment for EEG measurements is not only cheaper and more readily available in re-
search facilities than the equipment for these other methods, but it is also better suited
in settings which are more naturalistic because of its mobility (Burgess, 2013). This mo-
bility, in addition to its great temporal resolution and usefulness for studying more than
two individuals at a time, makes EEG hyperscanning a great tool for studying social
interaction (Czeszumski et al., 2020). The EEG brain-imaging technique has, therefore,
been chosen for the experiment in this thesis. Section 3.1 will go into more depth about
previous EEG hyperscanning studies.
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2.2 Heart Rate and Galvanic Skin Response

Humans are social creatures. A social connection or sense of belonging is even seen as
a fundamental human need. When people feel like there is a threat to their sense of
belonging (e.g. by being ignored and socially excluded) it could evoke powerful emotions
(Molden et al., 2009). The occurrence of social exclusion by feeling ignored because of
a language barrier could evoke a variety of negative emotions, such as anger, sadness,
disappointment, and fear (Williams, 2002). These emotions are the exact opposite (e.g.
happy, satisfied etc.) of what should be achieved in good team coordination situations in
which people feel socially included.

Figure 2: Arousal-Valence Model

It has been established that certain physiological signals have a strong correlation with
emotions (Ferdinando et al., 2014). Heart Rate (HR) and Galvanic Skin Response (GSR)
are two of these physiological signals which can be used to differentiate between emotions.
According to the Arousal-Valence model by Russell (1980), emotions usually have different
levels of arousal and valence (see Figure 2). Arousal is especially interesting since that
can be reflected in HR and GSR. After all, high HR and GSR mean a high level of
arousal which corresponds to the negative emotions associated with social exclusion, such
as anger. Conversely, low HR and GSR correspond to a low level of arousal and thus to the
positive emotions associated with social inclusion, such as feeling content (see Figure 2).
In addition to EEG, it would, therefore, be very interesting to use these two physiological
signals determine whether these signals are (de)synchronised in a similar way to the EEG
signal (e.g. the emotions between the two participants that can understand each other
will be synchronised while the emotions with the other participant will not be).
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2.3 Analysing Hyperscanning Data

The following sections will go into detail about the neural systems which are involved in
social interaction and which types of measurements there are for analysing hyperscanning
data and finding synchrony, particularly with regards to EEG hyperscanning data.

2.3.1 Neural Systems Involved in Social Interactions

In general, there are two main neural systems involved in brain-to-brain connections
which are made visible through hyperscanning: the Mirror Neuron System (MNS) and
the Mentalizing System (MS). The MNS includes the primary motor cortex as well as the
posterior parietal cortex while the MS consists of the Temporal-Parietal Junction (TPJ),
the precuneus and the Prefrontal Cortex (PFC). Figure 3 gives a visual representation of
these neural systems. Both systems play a vital role in social interactions. Therefore, this
section will now go into more detail about each of these systems (Wang et al., 2018).

Figure 3: Neural Systems Involved in Hyperscanning: MNS and MS

Mirror Neuron System (MNS)
When people imitate or mirror other people’s actions or movements, neurons in the MNS
are fired. This even happens when people are just watching actions or movements per-
formed by other people. The MNS consists of the Inferior Frontal Gyrus (IFG), the
Inferior Parietal Lobule (IPL), and the Superior Temporal Gyrus (STG). Both the IFG
and the IPL are related to language, motor and sensory detection (Wang et al., 2018).
The STG is able to provide additional and more sophisticated visual information. This
information can then be delivered to the IPL (Iacoboni and Dapretto, 2006).

Potential movements can then be executed once the IPL is activated. Additionally, the
IFG is also activated. This activation allows for manipulation of potential action which
can provide additional information. Such information could, for example, be the goal of
the action (Wang et al., 2018).
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One hyperscanning study which showed that MNS is involved in imitation is the study by
Dumas et al. (2010). This study showed that when two participants were synchronised in
their behaviours because they were imitating each other, their brains would also be tuned
to the same frequency. This meant that there existed a brain-to-brain synchronisation in
the alpha-mu band between the right centroparietal regions of the two participants.

Mentalizing System (MS)
Mentalizing is known as trying to understand other people’s intentions or emotions by
looking at their gestures, behaviours, and facial expressions. The two main brain regions
which are associated with this mentalizing process are the TPJ and the (dorsomedial)
PFC (Saxe, 2006).

In the study by Carter and Huettel (2013), it has become clear that the mentalizing
process consists of two steps. In the first step of this process, static social images will
be coded as a neural representation. In the second step, these encoded representations
are then used to generate moving social entities, which can be used for interpreting the
intention.

The TPJ is located between the temporal and parietal cortex and can be seen as a
boundary region between them (Wang et al., 2018). In a hyperscanning study by Tang
et al. (2016) it was shown that the interpersonal brain coherence of the right TPJ was
higher when participants were face-to-face than when they were blocked from each other.
This result demonstrated that the right TPJ is important for social interactions.

The PFC is responsible for regulation, planning and integration of information, as well as
other high cognitive functions. One study by Jiang et al. (2012) demonstrated evidence
that PFC is related to brain-to-brain synchronisation. They showed that inter-brain
coherence (for the left inferior frontal cortex) was higher when participants were having
face-to-face conversations than when they were back-to-back.

Both the MNS and MS neural systems are, thus, of particular interest in this thesis,
since these brain areas are most likely to show the brain-to-brain synchrony between the
participants.

18



2.3.2 Synchrony Measures

There are several different types of measurements which can be used to analyse hyper-
scanning data. These measurements can be divided into the following categories: cou-
pling/connectivity measures, correlation and dependence analysis, and the analysis of
information flow. These different types of measurements will now be explained in further
detail.

Coupling/Connectivity Measures
Methods in this category estimate the strength of coupling/connectivity between brains.
While they generally make calculations in the Fourier domain, they all differ in how
they combine different frequencies and the kind of normalisation they use. Examples of
coupling/connectivity measures are Phase-Locking Value (PLV), Phase Lag Index (PLI),
and phase coherence (Czeszumski et al., 2020).

PLV measures how two signals from two brains are phase-locked in a specific time window.
It was first introduced by Lachaux et al. (1999) and looks at whether the phase difference
varies across trials. This means that multiple trials are needed to compute the PLV. An
example of a study in which this method was used is the one by Dumas et al. (2010).
In this study, the PLV was computed for each pair (i, k) of electrodes between two EEG
caps. Electrode i and k represent the caps 1 and 2, respectively. This computation was
done for each frequency band according to the equation:

PLVi,k =
1

N

∣∣∣∣∣
N∑
t=1

expj(φi(t)−φk(t))

∣∣∣∣∣ (1)

where N is the number of samples considered in each time window, φ is the phase and ||
the complex modulus. Thus, the value of PLV is 1 if the two signals are in perfect sync (if
the phase difference does not vary across trials) and 0 if the signals are unsynchronised.

PLI is a very similar measure to PLV and was used in the study by Ahn et al. (2018)
for instance. Just like PLV, the value of the PLI is also 1 if two signals are in perfect
synchronisation and 0 if there is no coupling between the signals. Nevertheless, the way
it is computed is slightly different:

PLI = |〈sign[∆φ(tk)]〉| (2)

where ∆φ(tk) is a time series of phase differences between two signals with k = 1...N and
N being the number of samples (Stam et al., 2007).

However, while PLV suffers from the common source problem, PLI does not. Nevertheless,
because the sources are separated between brains in the case of hyperscanning studies,
both PLV and PLI should give the same results (Aydore et al., 2013).

Additionally, phase coherence is another measure related to phase or neural oscillations
synchronisation between brains. It measures the similarity between two signals. Thatcher
(2012) provides a good overview of the different phase coherence measures. Related to
phase coherence is the Wavelet Transform Coherence (WTC) which also measures the
coherence of two signals. This method is mostly used in fNIRS hyperscanning studies
such as the one by Cui et al. (2012). However, this method is also pretty common for
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studying brain-to-brain synchrony in other hyperscanning studies, although it is a more
complex method than PLV and PLI (Czeszumski et al., 2020).

The WTC of a time series xn of length N which is sampled from an underlying waveform
at equal time steps of size ∆t is computed using the following equation (Chang and Glover,
2010):

WTCX(n, s) =

√
∆t

s

N∑
n′=1

xnψ0[(n
′ − n)(

∆t

s
)] (3)

where n is a time index and s denotes the wavelet scale. ψ0 is a function which then
also needs to be chosen. The complex Morlet wavelet is often chosen (Chang and Glover,
2010):

ψ0(η) = π−1/4eiω0ηe−η
2/2 (4)

where ω0 represents the relative time and frequency resolution. WTCX(n, s) can then
be used to express the amount of power in x as a function of time and frequency, whose
angle represents the local phase. For hyperscanning, the cross-wavelet transform is needed
between two time series X and Y , which is defined as follows (Chang and Glover, 2010):

WTCXY (n, s) = WTCX(n, s)WTCY (n, s) (5)

All mentioned coupling/connectivity measures are measures of the similarity between two
neural signals from different brains. Such similarity is then interpreted as brain-to-brain
synchrony, otherwise known as inter-brain synchrony (Czeszumski et al., 2020).

Correlation and Dependence Analysis
The second category consists of measures which estimate the correlation between signals
from two brains to measure synchronisation. Different types of correlation measures
are applied to different brain-imaging techniques. These measures are mostly used for
analysing fMRI hyperscanning data. For fMRI, it is not the BOLD signal itself which
is used for the correlation analysis, but the regression model coefficients which represent
activations (Czeszumski et al., 2020). Thus, linear dependence is used to estimate the
relation between two measured brains. Koike et al. (2016), for example, have used this
measure for their analysis.

Cross-correlation in combination with Independent Component Analysis (ICA) decompo-
sition of the BOLD signal can also be used to further extend the dependence analysis of
fMRI data. For instance, the paper by Bilek et al. (2017) applied this analysis on joint
attention and interpreted the cross-correlation between two brain signals as information
flow.

According to Asuero et al. (2006), the co-variance between two signals x and y is a measure
of the correlation of the fluctuation. It can be computed using the following equation:

cov(x, y) =
1

n− 1

∑
(xi − x̄)(yi − ȳ) (6)
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However, the co-variance itself is often not a useful measure of correlation because its
value depends on the scales in which x and y are measured. It must be standardised
before it can be applied as a measure of correlation. If the co-variance is divided by the
product of the standard deviation of x and y, the correlation coefficient rxy is obtained.
A standard equation for the computation of the correlation coefficient rxy for two signals
x and y with a linear relationship is then as follows:

rxy =

∑
(xi − x̄)(yi − ȳ)√∑
(xi − x̄)2(yi − ȳ)2

(7)

Using the deviations of both signals x and y from the mean, the above part of the equation
measures the degree to which x and y vary together. The lower part of the equation
measures the degree to which x and y vary separately. Thus, a correlation coefficient
is obtained (Asuero et al., 2006). This correlation coefficient is known as the Pearson
Correlation Coefficient (PCC) (Benesty et al., 2009). The value of the Pearson Correlation
can range between -1 and 1, with 1 being the most correlated.

In EEG hyperscanning studies, different aspects of the EEG signal were used for the
correlation analysis. Thus, different values of an EEG signal can be used as values of x
and y in the equation above. Kawasaki et al. (2013), for example, used the correlation
between the theta and alpha frequencies while Kinreich et al. (2017) used alpha, beta and
gamma frequency bands. The correlations that are found in hyperscanning studies using
these kinds of measurements are interpreted as neural synchronisation between brains.

Information Flow
Previous categories focused on the analysis of synchrony and similarity. Besides these
two options, hyperscanning analysis can also be focused on the information flow from one
brain to another. Measurements which can be used are, for instance, Granger Causality
and Partial Directed Coherence (PDC) (Czeszumski et al., 2020). The study by Astolfi
et al. (2011) is one of the studies which applied these methods to estimate links between
brains of pilots who were cooperating with each other and found that causal links are
stronger during increased cooperation.

Baccalá and Sameshima (2001) defined PDC as:

PDCij(f) =
Aij(f)√
a∗j(f)aj(f)

(8)

where Aij(f) is an element of A(f). A(f) is a Fourier transform of Multivariate Autore-
gressive Model (MVAR) model coefficients A(t) in which aj(f) is the j-th column of A(f).
The * in the equation denotes the transpose operation.

Even though the causal links between brains can be estimated with these information
flow methods, it is important to understand the difference between information flow and
actual brain-to-brain synchrony. After all, the sensory input in both cases is identical
(Czeszumski et al., 2020).
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2.3.3 Most Common Measurements for EEG Synchrony

According to Burgess (2013), there are three main methods which have been used in EEG
hyperscanning studies to determine brain-to-brain synchrony between socially interacting
people: co-variance in amplitude or power, Partial Directed Coherence (PDC), and phase
synchrony (mostly by using Phase-Locking Value (PLV)). However, some studies have
used variations of these three main methods.

The most frequently used method is to show that there are adjacent or almost adjacent
changes/co-variances in EEG amplitude or power (see equations 6 and 7). This amplitude
or power is mostly estimated from event-related changes or Fast Fourier Transform (FFT).
However, showing that there are co-variances in the EEG amplitude or power is a weak
form of showing brain-to-brain synchrony since it is by no means conclusive (Burgess,
2013).

The second most commonly used method is the use of PDC (see equation 8). This
method was used in the first EEG hyperscanning study by Babiloni et al. (2006). PDC
is based on multivariate autoregressive modelling and Granger Causality and can show
the linear direction flow of information between two different systems. This makes PDC
ideally suited for determining inter-brain synchrony in a hyperscanning study in which one
person’s behaviour drives the behaviour of the other individual (Burgess, 2013). However,
PDC does have some limitations since the results of the use of PDC in hyperscanning
studies could not be replicated well (Konvalinka and Roepstorff, 2012).

The last most frequently used method involves measures of phase synchrony, with PLV
being the most common one (see equation 1). PLV is a statistical measure, introduced by
Lachaux et al. (1999), which can be used to research task-induced changes in synchronisa-
tions of neural activity. The value of PLV is close to 1 if the variability of the phase is very
small, otherwise, it is close to 0. This measure is well suited for capturing the rapid flow of
information that exists between people who are interacting in social situations (Burgess,
2013). For this reason, PLV is the most suitable brain-to-brain synchrony measurement
for measuring the level of social exclusion.

The Challenge of Interpreting Synchrony Correctly
Even though both PDC and PLV have been widely used for measuring brain-to-brain
synchrony between two or more people by measuring coupling between cortical oscillations
in the EEG, they actually measure different things depending on each case. The reason
why these measurements do not always measure the same thing is that they might be
measuring different kinds of synchronisation (Burgess, 2013). Additionally, this also makes
it difficult to relate the results from different studies (Czeszumski et al., 2020).

As can be seen in Figure 4, there are four different types of synchrony. Depending on
the context, each of these types of synchrony (except for (D)) might be of interest in a
hyperscanning study. Figure (A) shows reciprocal synchrony in which the pendulum of the
clocks are swinging in phase because there is a mutual influence between the two. Figure
(B) shows induced synchrony in which the phase of both pendulums are influenced by
a common external driver. In hyperscanning studies, this form of synchronisation might
occur if the participants simultaneously experience the same stimulus even though they
are not actually interacting (e.g. watching a movie together). Figure (C) shows driven
synchrony in which the pendulum of one clock influences the second pendulum without
there being any mutual influence. This is the type of coupling PDC is designed to identify.
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Figure (D) shows coincidental synchrony in which there is no coupling between the two
clocks but the pendulums are swinging in the same phase because they coincidentally have
the same frequency. Thus, simply observing a consistent phase does not mean that there
is any synchronisation or information exchange. Most hyperscanning studies, therefore,
do not simply measure phase coupling between individuals but also compare the degree
of coupling between different experimental conditions (Burgess, 2013). This is what this
thesis research will do as well since the coupling between the two participants who are able
to understand the same language will be compared with their coupling with the excluded
participant.

Figure 4: Four different types of synchrony

2.4 Preliminary Conclusions

The literature described throughout this chapter shows that while hyperscanning research
can be successfully performed using either MEG, fMRI, or fNIRS, the usage of EEG has
the most advantages. After all, its equipment is not only cheaper and more readily
available, it is also better suited for more naturalistic settings because of its mobility.
Moreover, this makes EEG ideal for studying more than two individuals at the same
time, which is necessary for studying social interactions in which someone is linguistically
ostracised. Therefore, the EEG brain-imaging technique has been chosen for the current
thesis research.

Furthermore, the research in this chapter indicates that the MNS and MS neural systems
are most likely to show the brain-to-brain synchrony between the participants. The
specific brain areas included in these neural systems are: the primary motor cortex,
the posterior parietal cortex, the TPJ, the precuneus and the PFC.

Lastly, the literature suggests that the PLV synchrony measure is best suited for measuring
EEG synchrony in the current study because of its ability to capture the rapid flow of
information which exists between socially interacting people. The PLV measure will,
therefore, be used to determine the level of neural synchronisation between participants.
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3 Related Work

3.1 Hyperscanning Studies Using EEG

To measure social exclusion during interactions, hyperscanning becomes necessary. After
all, social exclusion only occurs in many-to-one interactions and the simultaneous brain
imaging of two or more participants can only be done using hyperscanning (Xie et al.,
2019; Burgess, 2013). There are several brain-imaging techniques which can be used in
hyperscanning studies. However, as has been explained before, this chapter will focus on
hyperscanning studies using EEG in particular. There are several reasons for this; the
most important one being that EEG measurement equipment is more easily available than
for the other brain-imaging techniques. Therefore, this section will go into more detail
about the methodology and data analysis used in these studies. Part of these insights are
based on the overview by Czeszumski et al. (2020).

The first EEG hyperscanning study was done by Babiloni et al. (2006). It involved
five groups of four participants playing a cooperative card game. Cortical activity from
the EEG recordings was estimated by solving the associated linear inverse problem in the
following areas: frontal, prefrontal, and parietal cortical area. The functional connectivity
between the waveforms of the brain areas of the same participants has been computed
by using the Partial Directed Coherence (PDC) algorithm. In their analysis Babiloni
et al. (2006) used the beta frequency band, but the results were representative of the
results obtained in the other frequency bands as well. This study has revealed functional
links between prefrontal areas (especially with regards to the Anterior Cingulated Cortex
(ACC)) of the different participants while they are participating in the cooperative game.

While this research by Babiloni et al. (2006) was conducted in a lab with full control
over the environments, further developments of the EEG equipment made it possible
to conduct more naturalistic paradigms (Czeszumski et al., 2020; Melnik et al., 2017).
Lindenberger et al. (2009), for example, made it possible to perform EEG hyperscanning
on eight pairs of participants while they were playing a short melody on their guitars
together. Brain areas of interest in this study were the frontal, central, and temporal
areas. The fronto-central areas are associated with control and coordination of motor
activity for controlling the guitars. Furthermore, the temporal area has been shown to be
involved in music production and coordinated behaviour. Their analysis was restricted
to frequency bands below 20 Hz since this frequency range is important for interpersonal
action coordination. Brain-to-brain synchrony was analysed by the Phase Locking Index
(PLI) and Interbrain Phase Coherence (IPC). Their results showed that brain-to-brain
synchrony primarily involved fronto-central regions of the brain and was strongest in
the frequency range between 0.5 Hz and 7.5 Hz. Additionally, Mueller et al. (2013)
performed a similar study on musical improvisation with pairs of guitarists. Their results
also showed that inter-brain connections primarily involved lower frequency bands (e.g.
delta and theta).

Davidesco et al. (2019a) have performed an EEG hyperscanning study to record brain
activity from four students and a teacher at the same time to investigate whether brain-
to-brain synchrony can predict learning outcomes. To identify this brain-to-brain syn-
chrony, they looked at the alpha band (8-12Hz) because it has been shown to be the most
robust frequency range for brain-to-brain synchrony (Dumas et al., 2010). Davidesco
et al. (2019a) computed the Circular Correlation (CCorr) values for all combinations of
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electrodes across pairs of participants. Their results showed that synchrony in the al-
pha band predicted delayed memory retention while brain-to-brain variation in the alpha
band can be used to discriminate between retained or forgotten content. Davidesco et al.
(2019b) also conducted a very similar study using EEG hyperscanning in which they dis-
covered that brain-to-brain synchrony is a more accurate predictor for long-term memory
retention than individual measures.

Additionally, Kawasaki et al. (2013) conducted an EEG hyperscanning study with twenty
pairs of participants. These participants had to perform a speech task in which each of the
individuals in a pair alternatively pronounced letters of the alphabet. All individual par-
ticipants also performed the task with a machine that pronounced the letters (both before
and after the duo task). They conducted a wavelet analysis on the EEG data to char-
acterise the brain oscillatory activity. Their results showed that in human-human tasks,
speech rhythms were more likely to become synchronised than in the human-machine
tasks. Furthermore, the theta/alpha (6-12 Hz) amplitudes in the central and parietal
regions were significantly higher during the human-human tasks than the human-machine
tasks. Lastly, they discovered that brain-to-brain synchronisation is tightly linked to
speech synchronisation.

All these EEG hyperscanning studies have shown that EEG is a good tool which can be
used to map moment-to-moment interactions between individuals simultaneously. Fur-
thermore, the co-variations of the brain activations of these individuals were shown to be
correlated with social interaction and brain-to-brain synchronisation. Its high temporal
resolution is a big reason for this (Wang et al., 2018). Moreover, this previous EEG hyper-
scanning research showed that the most important brain regions for social interactions are
the frontal, parietal, central and temporal regions. Lastly, these studies have shown that
frequency bands below 12 Hz (e.g. alpha/theta/delta) are most important for studying
synchrony during social interactions.

Nevertheless, even though previous research has, thus, shown that the most important
brain regions are the frontal, parietal, central and temporal regions, and that the most
important frequency bands are below 12 Hz, it does not necessarily mean that it will be
the same for this thesis research. After all, the beta frequency band is relevant to active
thinking and the gamma frequency band for attention (Baumeister et al., 2008; Tatum,
2014). All brain regions and frequency bands will therefore be compared to each other
to determine if the current study will have similar findings as the previously mentioned
related work.
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3.2 Combining EEG, Heart Rate and Galvanic Skin Response

In this thesis, the approach is to measure social exclusion, not just by using Electroen-
cephalogram (EEG), but to combine it with Heart Rate (HR) and Galvanic Skin Response
(GSR) to determine the level of synchronisation. However, there have not been many
studies which combined EEG, HR and GSR data into a multi-modal system. Let alone
with regard to using this multi-model system to measure synchrony between individuals.
Nevertheless, this section will review some studies that have combined these modalities.

The research by Vecchiato et al. (2010) is one of these studies which did combine EEG,
HR and GSR. They used these modalities to measure changes in brain activity during
the observation of TV commercials. However, they did not actually combine these three
modalities into one single multi-modal system. Instead, they analysed EEG separately
from HR and GSR. Nevertheless, Vecchiato et al. (2010) did use the same measure for
all three modalities since they computed the z-score based on indices derived from the
three measurements. The obtained z-scores were divided into two groups: the group that
remembered the TV commercials they watched during the experiment and the group that
did not. Statistical analysis was then performed using the Analysis of Variance (ANOVA)
to determine whether there was a significant difference between the two groups for four
different frequency bands.

Das et al. (2018) combined the three modalities (although they used photoplethysmogram
instead of ECG) to improve stress detection. While this research did combine the features
of all three modalities, it was used in a classification system. While such a classification
system can indeed be used to detect differences between two groups, only a statistical
analysis can be used to prove or disprove a hypothesis. Thus, since the goal is to test the
hypothesis that there is a difference in synchrony between the social inclusion and social
exclusion condition, a statistical analysis is needed for now instead of a classifier.

Furthermore, Reinerman-Jones et al. (2011) compared different statistical analysis meth-
ods for the combination of neurophysiological signals (EEG, HR, and GSR) to determine
which method is best suited for each situation. In their research, they compared the
results of five different statistical analysis methods: correlation, ANOVA, Multivariate
Analysis of Variance (MANOVA), regression, and Discriminant Function Analysis (DFA).
The analyses used data which is computed from the change in power measured during the
task compared to the baseline. Reinerman-Jones et al. (2011) conducted the analysis with
the different measures (e.g. ANOVA etc.) for each of the different modalities (e.g. EEG,
heart rate etc.) as the dependent variable and the elicited emotion as the independent
variable. Their results show that, although they are limited in their ability for differenti-
ating between the results of the different modalities, the ANOVA and Correlation provide
direct methods for analysing neurophysiological data (Reinerman-Jones et al., 2011).

This last research by Reinerman-Jones et al. (2011) is probably the most useful to use
as reference for what is needed for measuring social inclusion/exclusion using these three
neurophysiological signals (EEG, HR, and GSR). However, it is still unclear how exactly
these three modalities can be combined to measure synchrony. One possible solution would
be to calculate the correlation/synchrony for the data from each of the three modalities
separately. High correlation/synchrony would then be expected in the social inclusion
condition for the two individuals who are working together. Low correlation/synchrony
with the other two individuals for the third individual who is socially excluded would
be expected in the social exclusion condition. Then, statistical analysis can be used
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to determine whether there is a significant difference in correlation/synchrony between
the conditions. Although Reinerman-Jones et al. (2011) concluded that computing the
correlation for their neurophysiological is a relatively weak method, it seems, nevertheless,
to be the most promising option for the HR and GSR data.

3.3 Social Inclusion/Exclusion and Language Barriers

To measure social exclusion it is essential to understand what exactly it means to be
socially excluded as well as what it means to be socially included. Social inclusion and
social exclusion are relatively new terms and are the inverse of each other. They first
started to be used in the 1990s. In these times, social exclusion was used in reference to
those excluded from the Social Contract (e.g. through lack of payment for their work).
The terms were later used in the European Union’s Lisbon Strategy of 2000 which made
them gain prominence (Piller et al., 2012). Social exclusion sometimes refers to the
absence of economic well-being (e.g. un- and underemployment) and the absence of civil
and social rights (e.g. healthcare and education) (Burchardt and Le Grand, 2002). In the
paper by Rawal (2008), social exclusion has been defined as ‘the process through which
individuals or groups are wholly or partially excluded from full participation in the society
within which they live’.

As can be seen, social exclusion (and thus social inclusion) is defined in a relatively
extreme, broadly societal and intercultural way. However, there are also more mellow
forms of social exclusion such as ignoring, excluding, and rejecting someone. As has been
argued by Williams (2007), nearly everyone has experienced this form of social exclusion
or isolation at some point in their lives. Another word for social exclusion in this context
is ostracism. When people are ostracised they can feel an increase in sadness and anger
because their needs of belonging, self-esteem, control and a meaningful existence are
thwarted (Williams, 2007).

One way of feeling excluded could arise because a non-mutually understood language is
spoken. This linguistic ostracism could arise at work, at school or any other place with
social interaction. Employees or students could perceive that others at work or school have
rejected and/or excluded them by using a language that they do not comprehend (however
unintentional it may be) (Fiset and Bhave, 2019). Moreover, social exclusion caused by
a language barrier occurs in many-to-one settings (Dotan-Eliaz et al., 2009). This means
that to linguistically ostracise someone, two or more people are required to interact in a
language unfamiliar to that person. Reasons for members of such multinational teams to
switch to their mother tongue when they are conversing with colleagues from their home
country are, for example, to streamline communication and to make it easier to express
emotions (Tenzer et al., 2014).

As discussed previously, with the increase in the number of languages spoken in workplaces
such as universities, there is a heightened prospect of linguistic ostracism. Employees,
students or peers who are linguistically ostracised will view themselves as members of a
linguistic outgroup. This linguistic outgroup is the exact inverse of the so-called linguistic
ingroup in which people converse in a language that everyone in the group understands.
Being part of such a linguistic ingroup is also called linguistic inclusion (Dotan-Eliaz
et al., 2009). Perceiving themselves as belonging to a linguistic outgroup will cause people
to perceive disidentification from their peers (Kulkarni, 2015; Voss et al., 2014). After
all, language acts as a primary method for communicating information. When you’re
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unable to understand what is communicated, it puts a significant strain on interpersonal
relationships (Kulkarni, 2015). Consequently, people feel a stronger connection to those
peers who are part of their linguistic ingroup than those of their linguistic outgroup.
This is in line with the ethnolinguistic identity theory (Fiset and Bhave, 2019). While
previous research has been mostly focused on linguistic ostracism in the workplace it can
be inferred that this would also cause problems for students or other people who need to
work as a team.

Furthermore, linguistic ostracism also affects trust formation. Henderson (2005) was
the first to have made this connection between language and trust formation, especially
with regards to teamwork. Cognitive and emotional reactions that people have to these
language barriers influence the perceived trustworthiness of their peers as well as their
intention to trust them (Tenzer et al., 2014). This is not at all favourable when teamwork
is required since trust is the most basic ingredient of team collaboration and coordination
(Kasper-Fuehrera and Ashkanasy, 2001).

Linguistic ostracism removes verbal social contact by using a non-mutually understood
language (Neeley et al., 2009). According to Robinson et al. (2013), ostracism can thus
be seen as an act of omission which violates social norms. However, linguistic ostracism is
unique in the sense that it is a usually non-purposeful form of ostracism (Robinson et al.,
2013). Therefore, linguistic ostracism may not be attributed to ill will (Ferris et al., 2017).

Nevertheless, this does not negate the fact that, when people are linguistically ostracised,
they will no longer experience the benefits of belonging to the ingroup. Such a benefit
is, for example, that they view their personal success and that of their peers as being
inevitably linked, which causes them to work harder (Fiset and Bhave, 2019). Thus,
when people feel part of the outgroup they will disidentify from their peers and make
fewer beneficial contributions to the team (Lauring, 2008). Furthermore, they will also
put a lower value on identifying themselves as being a member of their team (Tenzer et al.,
2014). They feel affronted and angry by their treatment and will likely engage in fewer
helping behaviours (Thau et al., 2007). It will be interesting to confirm these results and
find out whether this desynchronisation from their peers is also visible in the brain.
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3.4 Team Coordination

As has been said by Thau et al. (2007) and Lauring (2008), people who are socially
excluded will engage in fewer helping behaviours when working as a team. Conversely,
people who are socially included will work harder to reach success with their team (Fiset
and Bhave, 2019). This means that studying team coordination could reveal social exclu-
sion and inclusion during teamwork.

According to Gorman et al. (2010) team coordination consists of the dynamics of team
member interactions as well as the environmental dynamics (such as being in the same
team twice (intact teams) or in a different team the second time (mixed teams)) to which a
team is subjected. Their research showed that teams who did not have a history together
(mixed teams), were more adaptive to changes in the task. By coordinating as a team,
people can accomplish more than they would when working alone. Thus, the quote by
Aristotle “the whole is greater than the sum of its parts” fits perfectly in the context of
team coordination (Gorman, 2014).

Unlike normal coordination, which naturally happens when doing daily activities, team
coordination can be studied in a lab environment as well as in naturalistic settings. It is
related to the degree of common or complementary knowledge of team members. This is
called the shared-knowledge approach or shared mental model (DeChurch and Mesmer-
Magnus, 2010). Thus, a shared mental model of a team is a model in which the individual
mental models overlap or complement each other in terms of knowledge. This shared
mental model ensures that team members can describe and explain knowledge to each
other as well as predict each other. Therefore, it facilitates a team’s ability to coordinate
activities, which is directly related to team performance. Better team coordination means
better team performance (Gorman, 2014).

3.4.1 Brain-Imaging and Team Coordination

Team coordination has, of course, also been studied using brain-imaging techniques.
Likens et al. (2014), for example, have studied the neural signatures of team coordi-
nation by using multifractal analysis. They explored the behaviour of a team consisting
of six people while they were doing a Submarine Piloting and Navigation task. The data
showed the distribution of activity across all team members and was recorded by a nine-
channel EEG. The multifractal analysis was able to identify social patterns from the brain
activity of the individuals participating in this social interaction as a team (Likens et al.,
2014).

Additionally, Szymanski et al. (2017) researched how local and inter-brain phase syn-
chronisation correlates with better teamwork. In their study, they asked participants to
perform a visual search task while they were simultaneously measuring the participants
EEG. This task was to either be performed alone or in a duo. Both local phase syn-
chronisation, as well as inter-brain synchronisation, were found to be higher when the
participants worked together on the visual search task as opposed to when they did this
task individually. However, not all duos benefited from working together. This perfor-
mance gain (or lack thereof) was positively correlated with inter-team differences in local
and inter-brain phase synchronisation. The higher the phase synchronisation, the better
the team coordination and performance (Szymanski et al., 2017).
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3.4.2 Team Coordination Hyperscanning Paradigms

Several different paradigms have been used in hyperscanning studies about team coor-
dination and other social interactions. Overall, six different categories can be identified:
cooperation and competition tasks, imitation tasks, coordination tasks, eye contact/gaze
tasks, game theory/exchange tasks, and a natural scenario (Wang et al., 2018). While
this thesis research will focus on a cooperation task, this section will briefly explain all
the different kind of tasks that have been used in previous hyperscanning studies.

Cooperation and Competition Tasks
The first category (and category of choice) are cooperation and competition tasks. In these
kinds of tasks, participants need to achieve a certain goal cooperatively or competitively
(Wang et al., 2018). An example of a study in which such a task was used was in
the study by Cui et al. (2012). This study consisted of three conditions: cooperate,
competitive, and control. In the cooperate condition, both participants needed to press
a button as soon as possible after a certain cue. Their response time needed to be below
a threshold for both of them to score a point. If this was not the case they would both
receive nothing. In the competition condition, the participant that responded the fastest
received the point. In the control condition, just one of the participants needed to press
the button. Their results showed that coherence between signals (brain synchrony) in
the right superior frontal cortices increased during cooperation, but they did not increase
during competition.

Imitation Tasks
The second category consists of imitation tasks. In these tasks, participants need to
imitate the others’ movements and/or behaviours (Wang et al., 2018). For example,
Dumas et al. (2010) asked their participants to imitate the other participant’s meaningless
hand movements. With their research, they showed that brain-to-brain synchronisation
of the right centroparietal regions (at the alpha-mu band) and the interactional synchrony
were strongly correlated.

Coordination Tasks
The third category is the coordination tasks. In this category participants (two or more)
need to act in a synchronised way (Wang et al., 2018). Sometimes, people even do this
unconsciously, such as when footsteps are synchronised with the footsteps of a friend
while you are walking together (Yun et al., 2012). An example of a study in which a
coordination task is used is the research by Mu et al. (2016). In their study pairs of
participants were instructed to synchronise with each other by rhythmically counting in
their head. Their results showed greater brain-to-brain synchrony during the coordination
task (vs the control task).

Eye Contact/Gaze Tasks
The fourth category consists of eye contact or gaze tasks. In these kinds of tasks pairs
of participants are asked to look into each other’s eyes or look towards a certain object
(Wang et al., 2018). Eye contact is very important during non-verbal communication and
for inferring other’s intentions (Hirsch et al., 2017; Koike et al., 2016). One example of
research done with such a task was the study by Hirsch et al. (2017). In their research,
pairs of participants were asked to look into either each other’s eyes or into the eyes
of people in portraits. Their results showed that inter-brain coherence was significantly
greater in the eye-to-eye gaze condition compared to the eye-to-portrait gaze condition.
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Game Theory/Exchange Tasks
The fifth category is economic games involving game theory/exchange tasks. In such
tasks, one participant is given an economic offer while the other participant of the duo
needs to decide whether they want to take the offer or not. Exchange tasks mostly
involve a really basic type of social interaction in which social behaviour is exchanged for
some sort of reward (Wang et al., 2018). A good example of a game theory/exchange
task is the trust game. In this game, one of the participants needs to decide how much
money will be returned to their opponent. It was shown that for building a trustworthy
relationship, synchrony in the paracingulate cortex is critically involved (King-Casas et al.,
2005; Krueger et al., 2007).

Natural Scenario
The last category is a natural scenario. While the previously mentioned tasks can offer
good opportunities to research brain-to-brain synchrony during social interactions such
as team coordination, only natural scenario’s can offer a reflection of real-life situations
(Wang et al., 2018). An example of such a natural scenario is researched by Dikker et al.
(2017). Their study showed that students’ brain-to-brain synchrony was increased when
they were highly engaged in the teaching.

While all these team coordination paradigms can be used to measure brain-to-brain syn-
chrony, not all of them can be used to measure social exclusion that is caused by a language
barrier. After all, to socially exclude someone based on language, the task needs to be one
with many opportunities for conversations. This only leaves cooperation tasks and the
natural scenario as the best options. However, the natural scenario is extremely difficult
to research, making the cooperation task the chosen option for this thesis research.
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3.5 Preliminary Conclusions

The findings of the related work allow for some more preliminary conclusions to take
into account for this thesis research in addition to the preliminary conclusions from the
background research. First of all, from the hyperscanning studies using EEG, it can
be concluded that the most important brain regions for brain-to-brain synchrony are the
frontal, parietal, central, and temporal regions. This is somewhat in line with the findings
of Wang et al. (2018) about the two main neural systems that are involved in this brain-to-
brain synchrony. Furthermore, the literature suggests that the most important frequency
bands for showing this synchrony are below 12 Hz. All brain regions and frequency
bands will be compared to each other to determine if this thesis research will have similar
findings.

Furthermore, previous research shows that there have not been many studies which com-
bined EEG, HR, and GSR data into a multi-modal system. Nevertheless, the literature
indicates that computing the correlation between each of the three participants for the
data from the HR and GSR modalities (EEG synchrony will already be computed using
the PLV measure as explained in Section 2.3.3) will be the best solution. Thus, the PCC,
as defined in equation 7 will be used as the synchrony measure for the HR and GSR data.

Additionally, the literature about social exclusion induced by language barriers indicates
that people who are linguistically ostracised will feel affronted and angry by their treat-
ment and will likely engage in fewer helping behaviours. This thesis research will en-
deavour to confirm whether participants indeed feel socially excluded when they cannot
understand the language other participants are speaking and whether they appear to
engage in fewer helping behaviours. It will also be determined whether this desynchroni-
sation from their peers is visible in the measured neurophysiological signals (EEG, HR,
and GSR) as well.

Lastly, previous work suggests that studying team coordination could reveal social exclu-
sion and inclusion during teamwork. Thus, a team coordination hyperscanning paradigm
is needed to measure the social exclusion that is of interest in this thesis research. From
the six different task categories, it can be concluded that a cooperation task is the best
suited for studying social exclusion since such a task will give many opportunities for ver-
bal communications. A language-oriented cooperation task is thus chosen for the thesis
research.

The next chapter will describe how these conclusions are reflected in the experimental
setup and the following (pre-)processing steps that are needed for finding an answer to
the research question which has been proposed in the Introduction.

32



4 Methodology

A global graphical overview of the steps needed to (statistically) compare the synchrony
between the participants (for each of the modalities: EEG, HR, GSR) in the social inclu-
sion condition and the social exclusion condition is given in Figure 5.
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Figure 5: Global graphical overview of methodology

The remainder of this chapter will go into detail about the experimental setup, the partic-
ipants, the recording and synchronisation of data, and the (pre-)processing and analysis
of the acquired data as specified in the graphical overview (see Figure 5).

4.1 Experimental Setup

In order to determine how social exclusion/inclusion induced by a language barrier reflects
in EEG, HR, and GSR data, a cooperation task based experiment has been conducted.
For this experiment, the research by Szymanski et al. (2017) has been extended to groups
of three participants instead of two participants. However, some additional changes were
made to be able to answer the research question proposed in the Introduction. These
changes will be explained in more detail.

The basic setup of the experiment is as follows: three participants have formed a group
and worked together as a team (team coordination) to solve seven small riddles (the
reasoning behind this will be explained shortly). Two of the participants in the group
were able to speak a language that the third participant did not understand. These two
participants received an information brochure with all the details about the experiment,
while the third participant (who was socially excluded during the experiment) received an
information brochure which stated that the experiment was merely about measuring team
coordination. The two participants who spoke a different language were instructed that
when they communicate with each other, they only do so in their mother tongue language
that the other participant does not understand. They were tasked with trying to ignore
the other participant as much as possible while solving the riddles to induce a feeling of
social exclusion. If the socially excluded participant called them out on their behaviour,
the two other participants were instructed to acknowledge that, say sorry, switch back to
English for a little while and then slowly continue as they have been doing before. This,
thus, created a language barrier between the participants.
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Therefore, instead of having one condition in which the task is performed together in a
team of two with joined attention and another condition in which the task is performed
alone (as in Szymanski et al. (2017)), the first condition is now the part until the first
language switch during which the three participants jointly attend to the task, and the
second condition is the part in which the third participant was being excluded (as much
as possible) and working alone. This new first condition is thus the social inclusion, and
the second condition is when the third participant is socially excluded.

An extra control group in which the third participant is not ignored was not needed,
because the data before the first language switch can be used as data of a control group.
This control condition is used as a baseline and will be subtracted from the data after
the first language switch (the moment the two participants had switched to their mother
tongue) to get rid of individual bias and make the data more meaningful. The researcher
has manually pushed a button to insert a marker (thus splitting the data for the control
condition and experiment condition) at the time of the switch. The participants were also
video recorded during the experiment. These recordings are used to confirm when exactly
this switch happens.

Solving riddles has been chosen as the cooperation task (instead of the visual search
task in Szymanski et al. (2017)) for two main reasons: (1) they do not cause much
movement, thus lowering the chance of artefacts, and (2) it is a language-oriented task,
forcing the participants to actually communicate and making it more justifiable why two
of the participants of the team talk in a different language than the third. During the
experiment, the participants had a time limit (of 15 minutes) to solve these riddles to
make sure that the experiment did not go on indefinitely. After all, participants might
have become frustrated at some point if they could not figure out the riddles which could
have taken away from the actual purpose of the experiment: measuring social exclusion.
However, the most important reason for upholding this time limit is that the excluded
participant might feel uncomfortable during the experiment because he/she is ignored. A
time limit of 15 minutes has been chosen because the conducted pilot experiment showed
that the participants took around 10 minutes to solve the riddles. To account for the
fact that some participants might be a little slower than the pilot group, the time limit
of the experiment was set to 15 minutes. This time limit ensured that the discomfort
participants might have felt did not become too much. To further ensure the comfort of
the participants, other measures had also been taken (see Appendix A for details).

Participants were asked to solve the following riddles1:

1. What comes down, but never goes up?

2. I’m tall when I’m young and I’m short when I’m old. What am I?

3. What starts with the letter “t”, is filled with “t” and ends in “t”?

4. What occurs once in a minute, twice in a moment and never in one thousand years?

5. What is so delicate that saying its name breaks it?

6. What tastes better than it smells?

7. What goes up and never comes down?

1adapted from https://grouptravelleader.com/articles/group-game-10-riddle-challenges/
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Seating formations also play an important role in whether someone feels included or
excluded during a conversation. F -formations, for example, are defined as a spatial or-
ganisation of people gathered for conversation in which each member has an equal ability
to sense all other members (Zhang and Hung, 2016). Thus, for someone to feel exclud-
ed/ignored, a group formation was needed in which the socially excluded participant could
sense all other members, but the other members were not able to sense the excluded par-
ticipant. The participants were, therefore, seated in a U -formation at 1.5m distance from
each other (as per the Covid-19 protocol). In this U -formation, the two participants who
could speak the same language were seated at the ends of the U , facing each other. The
third participant who was verbally ignored was seated at the belly of the U , facing the
other two, while not being faced themselves. In practice, the U -formation is very similar
to a circle. However, the two participants that speak the same language faced each other
while they were discussing the riddles and, thus, turned their side toward the socially
excluded participant (see Figure 6).

Figure 6: Seating formation during the experiment. In this image, the socially excluded
participant is seated in the chair to the far left side (near the window).

Similar to Szymanski et al. (2017), the participants were wearing an EEG cap to measure
neural activity while they were solving the riddles. All channels have been recorded
because this study wants to compare the level of synchronisation across the different
regions of the brain (see Figure 7). This data can then be used to determine the level of
brain-to-brain synchrony that occurred (see Section 4.4). Furthermore, in addition to the
research by Szymanski et al. (2017), the participants were also wearing a wearable HR
and GSR sensor. This data will be used to determine whether the emotions the socially
excluded participant felt also differed from the other two (see Section 5).

After the experiment, a debriefing took place in which it was explained that the two par-
ticipants were tasked with ignoring the third participant and why. Furthermore, during
this debriefing, the socially excluded participant was asked to give post-experiment ap-
proval for the usage of their recorded data. After all, the socially excluded participants
were slightly deceived about the whole context of the experiment, making it necessary
to ask for approval to use their data again. Their anonymised data can be used in this
study as well as further research into this topic. All participants were also asked to fill
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Figure 7: Schematic of the five brain regions for a 32-channel EEG cap. The nine channels
in the red ellipse constitute the frontal region (F). The seven channels in the green ellipse
are divided into the central region (C). The nine channels in the yellow ellipse represent
the parietal region (P). The seven channels in the blue ellipse comprise the occipital region
(O). T3 and T4 in the grey circles are classified as the temporal region (adapted from Liang
et al. (2018)).

out a small questionnaire. The first two participants were given a questionnaire about
whether they felt a better connection to their partner in crime compared to the socially
excluded participant and about how they thought that participant was feeling2. The
socially excluded participant was given a questionnaire about whether they indeed felt
ignored/excluded3. These participants have also been asked when exactly they started
feeling excluded to confirm the assumption that the feeling of exclusion starts after the
first language switch. This has been done to form a baseline (social inclusion condition)
for the comparison of the EEG and other neurophysiological signals. Lastly, the socially
excluded participant was asked if they experienced something similar in their life before
in which they were excluded because of a language barrier.

This experiment has been approved by the Ethics Committee of the faculty of Electrical
Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente.
During the experiments, all Covid-19 related measures were taken into account by both
the researchers and the participants.

2https://forms.gle/TMnvwSKtxk4boGuUA
3https://forms.gle/AeqZm3UwwvsoJF3Q6
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4.2 Participants

To form the groups of three participants in which two of the participants speak another
language than the third (which the third participant also does not understand by hearing
it), a pre-experiment questionnaire4 about the language(s) people can speak and under-
stand has been conducted before making the actual experiment groups. After all, someone
can only feel linguistically ostracised (socially excluded) if they do not understand the
language the other two participants are speaking. Thus, to ensure that one of the par-
ticipants would not understand the language the other two participants could speak, the
pre-experiment questionnaire was needed to create experiment groups in which social ex-
clusion could actually occur. A total of 16 experiments have been conducted, comprising
of 48 participants in total. From these 48 participants, 21 were male and 27 were female.
All participants were either students of the University of Twente or PhD students. Unfor-
tunately, the data from one participant from each of the first three experiments was lost
because of a firewall issue. Thus, a total of 13 experiments, consisting of 39 participants
(16 male, 23 female) was left (see Table 1).

In this experiment, the researchers were, of course, bound by the available Nationali-
ties. Since the University of Twente is located in the Netherlands, near the border with
Germany, more than half of the participants are either Dutch or German (see Table 1).
Nevertheless, the researchers have striven to compose teams of as many different combi-
nations of nationalities as possible (see Table 2). This way the results of this research
will be applicable across many nationalities, and not just here in the Netherlands. Par-
ticipation was completely voluntary and all participants signed a consent form describing
the detailed experimental procedure. However, the participants which were to be socially
excluded received a slightly different consent form in which they were not informed that
the experiment was about measuring social exclusion induced by a language barrier. In-
stead, they signed a consent form thinking that the experiment was just about measuring
team coordination. After a debriefing of the actual goal of the experiment, these socially
excluded participants signed a post-experiment approval form, allowing the use of their
data.

4https://forms.gle/iREE5e5LZ8FSDduP7
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Nationality Male Female Total
Dutch 4 7 11
German 2 8 10
Italian 2 1 3
Romanian 2 1 3
Indian 2 0 2
Spanish 1 1 2
French 1 0 1
Irish 1 0 1
Zimbabwean 1 0 1
Finnish 0 1 1
Ukrainian 0 1 1
Chinese 0 1 1
Cameroonian 0 1 1
Singaporean 0 1 1
Total 16 23 39

Table 1: Nationalities of the participants

Excluded Participant Included Participants Language Spoken
German Dutch Dutch
German Dutch, Dutch+German Dutch
Romanian Dutch Dutch
Irish Dutch, German Dutch
Cameroonian Dutch Dutch
French German German
Finnish German German
Singaporean German German
Italian German, Dutch German
Dutch Spanish Spanish
Ukrainian Italian Italian
Chinese Romanian Romanian
Zimbabwean Indian Indian

Table 2: Nationality combinations and languages spoken during experiments (Note that
one participant had a double nationality and that two participants spoke in a another
language then expected based on their nationality. Nevertheless, these two participants
spoke the language they used in the experiment fluently).
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4.3 Recording and Synchronisation of Data

The Biosemi EEG system was used to record electrical activities for each participant with
a sampling rate of 2,048 Hz. 32 EEG electrodes were attached over the whole scalp (see
Figure 7). The Common Mode Sense (CMS) and Driven Right Leg (DRL) electrodes were
used for reference which drove the average potential of the participant. Furthermore, two
ECG electrodes were attached to the participant, one on the left collarbone and the other
on the right lower leg.

The EdaMove 4 system was used to record GSR data with a sampling rate of 32 Hz. Two
electrodes were placed on the palm of the non-dominant hand for each of the participants
and the device was placed on the wristband. The non-dominant hand was chosen to
minimise movement artefacts.

All EEG and ECG data were synchronised by the Lab Streaming Layer (LSL)5. The
three Biosemi devices were first connected to their own PC which then streamed the
data to the main PC which held the Lab Recorder. A keyboard was also connected to
this PC to synchronise pressed markers as well. These markers were used to indicate
the start of each new trial (new riddle) as well as each time the participants switched to
their mother tongue and back to English. This was done based on the observations from
the experimenter. Since the Edamove system is not compatible with the LSL system,
synchronisation of the GSR data with the EEG and ECG data has been done offline.

4.4 Pre-processing the Data

Before the analysis of the data was possible, pre-processing of the data was needed,
especially for the EEG data. To do that, the recorded data needed to be distributed
to the correct participant. Prior to the experiments, it had been decided to distribute
the data to the participants according to the seat arrangement. The socially excluded
participant was always directed to be seated at the same spot (with the same equipment),
making it easier to recognise which data belonged to them after extracting it from the
LSL recording (far left in Figure 6). Participant 1 and 2 were also always seated in the
same spot for each experiment (far right and front for participant 1 and 2, respectively
in Figure 6). However, they were not directed to their seats by the researcher and could
choose which of those two chairs they preferred. This section will go into detail about the
pre-processing steps that have been taken for the EEG, ECG, and GSR data.

5https://labstreaminglayer.readthedocs.io/index.html
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4.4.1 Electroencephalogram (EEG) data

Pre-processing of the EEG data has been done with MATLAB’s EEGLAB (Delorme
and Makeig, 2004) toolbox and according to an adaptation of Miyakoshi’s Pre-processing
Pipeline (Miyakoshi, 2020). The following overview shows the pre-processing steps that
have been taken. Each of these steps will be explained in further detail below:

1. Remove baseline

2. High- and low-pass filter the data

3. Remove bad channels

4. Interpolate all removed channels

5. Re-reference to the average

6. Run Independent Component Analysis (ICA) and remove noisy components

7. Correct noisy data using Artifact Subspace Reconstruction (ASR)

Step 1: Remove baseline
The DC offset can introduce large filter artefacts at the beginning and end of the signal.
Therefore, it is important that, prior to applying any filtering to the signal, the DC offset
is removed (Delorme, 2020). This is done by removing the baseline; the mean of the
complete trial.

Step 2: High- and low-pass filter the data
The next step is to high- and low-pass filter the data. Using a high-pass filter removes
the ‘baseline-drift’ in the data. A 1 Hz edge for the high-pass filter was used for two main
reasons:

• If the data is finite (as is the case), ICA is biased toward high amplitude.

• The EEG signal below 1 Hz could be contaminated by sweating etc. which affects
ICA.

At the same time, a low-pass butterworth filter with a cutoff frequency at 45 Hz was also
applied. This cutoff frequency was chosen because all important EEG frequency bands
(delta, theta, alpha, beta, gamma) fall within this 45 Hz range. Any frequency component
above this can, thus, be removed without any loss of information (Hasan et al., 2014).

Step 3: Remove bad channels
Removing the bad channels is a very important step when re-referencing to the average
(as was done in step 5). After all, the average reference is an average of all signals. Thus,
if you have noisy channels, including these channels in the average will introduce noise to
all channels (Miyakoshi, 2020).

For this step, automatic channel rejection in EEGLAB has been used. In total, 2-4
channels have been removed from the data of each of the participants. This was based
on either the Kurtosis (24 participants) or the Spectrum (15 participants) method. The
Kurtosis method is well suited for flat-line channels or channels with strong power-line
noise, while the Spectrum method is well suited for data with strong movement. The
threshold of the Kurtosis method ranged between a cutoff standard deviation of 2 and
5 (with one outlier at 9) and the threshold of the Spectrum method ranged between a
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cutoff standard deviation of 0.8 and 2. Channels were thus rejected if they had a higher
standard deviation than the specified threshold.

Step 4: Interpolate all removed channels
The next step is to interpolate all removed channels using the build-in function in EEGLAB
with the Spherical interpolation method. The adjacent channels (e.g. the two neighbour-
ing channels of the removed channels) are used to interpolate these missing channels.
This is done to minimise a potential bias in the next step in which the channels will be
re-referenced to the average. After all, if, for example, all rejected bad channels are only
from the left hemisphere, the average will be biased toward the right hemisphere. Inter-
polation of the channels ensured that there will be an equal number of channels in both
hemispheres again and, thus, prevented this bias from happening (Miyakoshi, 2020).

Step 5: Re-reference to the average
There are multiple ways to re-reference the data, but in this step, the average reference
is used. This referencing method is an approximation of the scalp potentials that is
independent of the reference location. It assumes that the positive and negative potential
changes balance each other out, which means that the scalp topography should sum
to zero. Average referencing enforces this. The average reference is also helpful for
suppressing line noise (Miyakoshi, 2020).

Step 6: Run ICA and remove noisy components
Running ICA on the 32-channel data resulted in 32 noisy components. Around 8 to 18 of
these components were rejected for each participant. This component rejection was done
based on the ICLabel (Pion-Tonachini et al., 2019) toolbox from MATLAB.

Figure 8: Example of data after running ICA and letting ICLabel determine which com-
ponents to reject (red components)
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There are seven different types of noisy components: brain ICs, muscle ICs, eye ICs, heart
ICs, line noise ICs, channel noise ICs, and other ICs. ICLabel rejected the components
if they were classified to contain more than 80% noise. Most components which were
removed were either muscle or eye ICs since other types of noise were already mostly
removed in the previous pre-processing steps. Figure 8 shows an example of components
which have been rejected by ICLabel. Furthermore, Figure 9 shows example data before
ICA component rejection while 10 shows a much cleaner signal after ICA component
rejection.

Figure 9: Example of data before ICA component rejection

Figure 10: Example of data after ICA component rejection

42



Step 7: Correct noisy continuous data using ASR
This last step is done because the data was still too noisy in some portions of the data
after the previous six steps. There were some short bursts of artefacts across the data
which needed to be removed to improve the analysis results. These noisy bursts have
likely been induced because of the re-referencing step (step 5). After all, small bursts of
noise in one single channel will now have been introduced in all other channels as well
because the average of all channels is used. One way get rid of this noise is by correcting
these noisy bursts using Artifact Subspace Reconstruction (ASR).

Miyakoshi (2020) suggested to use a standard deviation of 10-20 based on unpublished
research done by Nima (from the PREP pipeline (Bigdely-Shamlo et al., 2015)). After
testing, a standard deviation of 20 has been used. The bad portions of data (which
were above the threshold of the standard deviation of 20) were then corrected instead of
removed to make it easier to keep the data alignment between the participants (this is
simply a feature which can be selected when using the ASR function in EEGLAB). Figure
11 shows an example of how ASR corrected noisy data.

Figure 11: Example of data after data correction using ASR. Red shows the noisy data
while blue shows the corrected data.

4.4.2 Electrocardiogram (ECG) data

The first step for pre-processing the ECG data, is to acquire the HR data. This is done
by subtracting the two recorded ECG channels from each other.

Then, the HR data was pre-processed by detecting the noisy data based on a maximum
slope threshold (10000). The indices of this maximum slope and the signal portions
surrounding this high slope (1 s before and 1 s after the slope) were then replaced with
a NaN value. Lastly, these NaN values were then replaced again by linear interpolation
of the neighbouring data (the first data point before and after the missing value). If an
endpoint was missing, it was filled by the same value as the nearest non-missing value
(Cao et al., 2020).
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4.4.3 Galvanic Skin Response (GSR) data

The GSR data is first pre-processed in a similar way to the ECG data. Just like the
ECG pre-processing, noisy data is detected based on a maximum threshold (1 uS). The
bad signal indices which are below that threshold (and the surrounding area of 2 s before
and 2 s after) are replaced with NaN values, and these values were then replaced by
linearly interpolating the nearest data. The noisy data is removed because these noisy
portions mean a drop of the GSR signal to an ultra-low level, which can be an indicator
of connection loss of the electrode (Bakker et al., 2011).

Additionally, Savitzky-Golay filtering was applied with a cubic polynomial order and a
window length of 1 s to smooth the data (see Figure 12) (Savitzky and Golay, 1964). The
Savitzky-Golay filter was chosen because it is appropriate for preserving the amplitude of
the original curve while still smoothing the small noisy signals caused by the quantisation
error of the EdaMove 4 (Thammasan et al., 2020).

Figure 12: Example of GSR data before (blue) and after applying Savitzky-Golay filter
(red)

Furthermore, the GSR signal is composed of two components: the ‘tonic’ (fast-changing)
component and the ‘phasic’ (slow changing) component. The ‘phasic’ component is the
most relevant to the psychological factors (feeling exclusion) of interest, while the ‘tonic’
component might include noise which influences the signal (Thammasan et al., 2020).
After all, the ‘tonic’ component can change from 0 uS to 20 uS in a short time, but the
‘phasic’ component is often in the range of 0-5 uS. (Dehzangi et al., 2018). Therefore,
the ‘phasic’ component has been extracted from the raw GSR signal using the Ledalab
(version 3.4.9) toolbox (Benedek and Kaernbach, 2010). See Figure 13. As can be seen,
the data is smoother and much less noisy compared to the filtered data in Figure 12 which
included both the ‘phasic’ and ‘tonic’ component.
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Figure 13: Example of only the ‘phasic’ component of the GSR data

4.5 Analysis

To analyse the data, the level of synchronisation between the participants first needs to be
computed. For the EEG data, this will be done by calculating the Phase-Locking Value
(PLV) and for both the ECG and GSR data, this will be done based on calculating the
Pearson Correlation Coefficient (PCC). Both these measures and the reasoning for choos-
ing them will be explained in further detail below. Afterwards, the statistical analysis
measure which has been used to evaluate the results will be explained as well.

4.5.1 Compute level of Synchronisation

4.5.1.1 Phase-Locking Value (EEG data)

To analyse the EEG data, the Phase-Locking Value (PLV) (see equation 1) was used
since this measure is the best suited for capturing the rapid flow of information which
exists during social interactions such as solving riddles with a team (Burgess, 2013). It
is expected that the socially excluded participant will have a lower synchronisation with
both other participants (lower PLV value) and these two participants will have a higher
level of synchronisation with each other (higher PLV value). Thus, to test this hypothesis,
the PLV values need to be computed. This has been done in MATLAB in several steps
which will be explained below.

Step 1: Extract data
The data was extracted based on the first language switch. This was done based on the
first time the “M” was pressed on the keyboard, since the keyboard was synchronised
with the EEG (and ECG) data through the LSL system.

The 3 seconds before the language switch were used as a baseline and the 5 seconds after
the language switch was seen as the actual experiment. The first language switch has been
chosen because most socially excluded participants indicated in the post-questionnaire
that they started to feel excluded after the other two participants switched to their mother
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tongue. It is assumed that this feeling is strongest right after the first time this happens
so this should give the greatest difference in PLV value.

Step 2: Create pseudo-trials
The PLV computation only works if there are multiple trials. After all, the PLV measure
looks at whether the phase difference varies across trials (if it varies little the PLV is close
to 1) (Lachaux et al., 1999). Therefore, this cannot be done if the data only consists of
one single trial. Since the extracted data is very short and only part of one trial, this
calls for the usage of pseudo-trials. These pseudo-trials were created with a window of 1
second and an overlap of 0.5 seconds.

Step 3: Compute PLV
Previous EEG hyperscanning research showed that the most important brain regions for
social interactions are the frontal, parietal, central and temporal regions. Furthermore,
these studies have shown that frequency bands below 12 Hz (e.g. alpha/theta) are most
important for studying synchrony during social interactions (Babiloni et al., 2006; Lin-
denberger et al., 2009; Mueller et al., 2013; Davidesco et al., 2019a,b; Dumas et al., 2010;
Kawasaki et al., 2013).

Therefore, the channels in the 5 different brain regions have been compared to each other
to determine if these results can be confirmed. Moreover, the delta, theta, alpha, beta
and gamma frequency bands have also been compared to each other to determine if it is
indeed the case that the frequency bands below 12 Hz (e.g. delta, theta, alpha) will show
the synchrony most clearly. Thus, the PLV has been computed for each of the five brain
regions and the different frequency bands (delta, theta, alpha, beta, gamma) by using a
band-pass FIR filter for each of the frequency ranges.

The PLV computation6 has been done with three different methods:

M1. by first calculating the PLV value per channel for each participant combination and
then averaging the PLV value for each of the 5 brain regions (see Figure 7).

M2. by first averaging the EEG signal for each of the 5 brain regions and then calculating
the PLV per brain region for each participant combination.

M3. by calculating the PLV value per channel for each participant combination.

Step 4: Use only a subset of experiments
Additionally, 3 subsets of experiments have also been investigated to determine if those
subsets might improve the results:

1. All experiments in which the socially excluded participant indicated in the ques-
tionnaire to have felt “very excluded”

2. All experiments in which the excluded participant indicated in the questionnaire to
have felt either “excluded” or “very excluded”

3. All experiments in which the excluded participant indicated in the questionnaire
to have felt either “excluded” or “very excluded” AND the other two participants
indicated that they felt more connected to each other than to the socially excluded
participant (higher team coordination)

6code has been adapted from https://nl.mathworks.com/matlabcentral/fileexchange/31600-
phase-locking-value
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These subsets are chosen because when participants feel more excluded, it is assumed
that this will also be reflected in the lack of neural synchronisation to a greater degree.
Furthermore, when the non-excluded participants indicated that they felt more connected
to each other than to the socially excluded participant, it is assumed that they will
have a higher level of team coordination and will, thus, show a higher level of neural
synchronisation.

Step 5: Correct for baseline before language switch
While in the previous steps, only the PLV value from after the language switch has been
investigated, this step will be used to get rid of individual baselines. This should give a
clearer view of how the PLV value has changed after the language switch. It is expected
that the difference in PLV is greatest for the socially excluded participant and that the
PLV values of the other two participants should remain mostly the same before and after
the language switch.

Thus, to correct for the baseline, the mean PLV value from the 3 seconds before the
language switch has been subtracted from the PLV values from the 5 seconds after the
language switch. This should give a greater indication of the differences in synchronisation
between the participants.

4.5.1.2 Pearson Correlation (HR and GSR data)

The Pearson Correlation metric (see equation 7) was used to compute the level of syn-
chrony for the HR and GSR data since Correlation provides the most direct method for
analysing the synchrony between these two modalities (Reinerman-Jones et al., 2011).
The correlation for the data from both HR and GSR has been calculated for each pair
within the three participants. High correlation is expected for the two participants who
are working together while low correlation with the other two participants is expected for
the socially excluded participant.

Heart Rate (HR)
Before the PCC can be computed for the HR, the desired data window first needs to be
extracted. Again, this window is from 3 seconds before the first language switch until 5
seconds after the language switch.

Then, the Pan-Tompkins algorithm is applied to the extracted data to detect the peaks
and Inter-Beat Interval (IBI) in the data (Pan and Tompkins, 1985). Because time win-
dows of 3 and 5 seconds were chosen, the actual HR was not used, because the time
windows are simply too short (usually at least several minutes are needed). Thus, as an
alternative, the IBI is used instead. While these methods are not the same, they can both
be used to indicate emotions (Ravaja et al., 2006).

Afterwards, this IBI is re-subsampled to 2 Hz, resulting in an interpolated IBI. The idea
is that connecting all IBIs in the time series will result in time points that have values
of IBIs. This means that the intervals between the time points are unequal. A new
time series where time points are equally spaced (in this case every 0.5 seconds) are then
generated to calculate the interpolated IBI for a newly-sampled time point. This way, the
IBI time-series can be coupled point-wise across participants because they now have the
same sampling rate. It is now possible to calculate the PCC across participants.
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Figure 14: Example of heart rate peak detection depicted by the purple/pink circles (above)
and Inter-Beat Interval detection (below). The IBI is the part between the peaks (red
vertical stripes).

Furthermore, since the number of datapoints is still quite low in a time window of 5
seconds after the language switch, the results of this time window will be compared to a
larger time window of 10 seconds as well.

Galvanic Skin Response (GSR)
The only processing that needs to be done before the PCC can be calculated for the GSR
data is the extraction of the right part of the data. As has been said before, it was not
possible to synchronise the GSR data with the other data through the LSL. Therefore,
this step is a little more elaborate for the GSR data. Another problem is that the LSL
and GSR data timestamped their data in a completely different manner. The GSR data
used a datetime timestamp, while the LSL used something similar to UNIX time, but
started counting the time from the moment the PC turned on.

To synchronise the data and find the correct GSR timepoint for the first language switch,
the timestamp on which the LSL file was last modified was used. The number of seconds
between this last timestamp of the EEG data and the timestamp of the first language
switch was then calculated. By subtracting this number of seconds from the datetime
timestamp of the last time the LSL file was modified, the timestamp from the language
switch was acquired. The correct GSR data was then extracted by finding the closest
matching GSR timestamp to the timestamp that was previously found for the language
switch and getting the data from 3 seconds before the language switch and 5 seconds after
it. However, since the sampling rate of the Edamove device was 32 Hz (for which all data
points have an equal timestamp) it is possible that the datapoint indicating the language
switch could have been anywhere within this range of 32 data points. This means that
the synchronisation between the EEG/ECG data and the GSR data could have a small
error in accuracy (with a maximum difference of 1 second).
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4.5.2 Evaluation of Results

To evaluate the results and compute the statistical significance, the Permutation Test was
used. The Permutation Test is a non-parametric test that makes minimal assumptions
about the distribution of the data, unlike commonly used tests like the t-test or ANOVA
(Collingridge, 2013). Since the data is not normally distributed, the Permutation Test is,
thus, better suited for computing the statistical significance of the differences in synchrony.
Another advantage of the Permutation Test is that it can also be used on small sample
sizes such as this and that they usually have low false positive rates and high true positive
rates (Collingridge, 2013; Good, 2006).

The Permutation Test is a data-driven approach that uses all possible values of the test
statistic under random permutations of the data. This is done to obtain the distribution of
the test statistic under the null hypothesis (Legendre and Legendre, 1998). The resulting
p-value of the test is calculated by computing the proportion of the permutations where the
permutation test statistic is larger than the observed test statistic. If this p-value is below
the significance level of 0.05, the null hypothesis is rejected. The p-value is calculated with
a one-sided Permutation Test since it is assumed that the synchronisation/correlation of
the first two participants (sample 1) is higher than the synchronisation/correlation of the
excluded participant with both other participants (sample 2). Thus, the p-value is only
calculated based on the hypothesis that the mean of sample 1 is larger than the mean of
sample 2.

Lastly, when multiple hypothesis tests are executed simultaneously (as is the case, since
multiple comparisons of the five different brain regions as well as all 32 channels are
conducted), the number of p-values that are below the significance level due to sheer
chance increases. Even though the Permutation Test is shown to have a low false-positive
rate, it is still possible to have wrongful rejections of the null hypothesis (type I errors)
because of the multiple comparisons (Cohen et al., 1997). The False Discovery Rate (FDR)
correction is a way to correct for these types of errors, thus ensuring that the potentially
significant differences are actually significant and not just by chance (Genovese et al.,
2002).

In the next chapter, the PLV values of the different brain regions and frequency bands
will be compared to each other for the different methods (M1, M2, M3) which were used.
The Permutation Test (with 10000 permutations) was used to compute the p-values of the
best performing brain regions, channels and frequency band combinations. The results
are statistically significant (p < 0.05) if the PLV value from participant 1 and 2 (non-
excluded participants) is significantly higher than the PLV values from either of them with
the socially excluded participant. As for the HR and GSR data, the PCC was computed
and compared per experiment as well as for the dataset overall. The Permutation Test
(again with 10000) was used to see if there is a statistically significant (p < 0.05) difference
in the correlations between participant 1 and 2 (non-excluded participants) compared to
each of their correlations with the socially excluded participant.
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5 Results

5.1 Post-Experiment Questionnaire

In the post-experiment questionnaire, the socially excluded participants were asked if they
actually felt excluded (to determine if the experiment had the desired effect). Figure 15
shows that 4 out of 13 participants (31%) felt very excluded, 7 out of 13 participants felt
excluded (54%), and 2 out of 13 felt slightly excluded (15%). None of them indicated
that they felt neutral, or not excluded at all, which were the other two options.

Figure 15: Pie chart of post-experiment questionnaire results: Did you feel excluded?

To analyse the results from the EEG, HR, and GSR data, the level of synchronisation
between participant 1 and 2 (non-excluded participants) will be compared to the level of
synchronisation of both these participants with participant 3 (socially excluded partici-
pant).

5.2 Electroencephalogram (EEG) Analysis

The following sections will describe the results from the EEG analysis, both with and
without baseline correction. In the next section (without baseline correction), only the
PLV values in the 5 seconds after the first language switch are compared. Afterwards, the
analysis results when applying baseline correction will be described. To apply baseline
correction, the mean PLV of the 3-second window before the first language switch was
subtracted from the PLV values in the 5 seconds after the language switch.

5.2.1 Without Baseline Correction

As has been specified in Section 4.5.1.1, the EEG results are analysed both with and
without baseline correction. This section will give the results of the analysis on the PLV
values without baseline correction below.
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The PLV values have been calculated with three different methods (which have been
defined in step 3 from Section 4.5.1.1):

• The PLV value is first calculated per channel for each participant combination and
then an average PLV value is calculated for each of the five brain regions (according
to the schematic in Figure 7) → Method M1

• The data is first averaged for each of the five brain regions (according to the
schematic in Figure 7) and then the PLV value is calculated for each region →
Method M2

• The PLV value is calculated per channel for each participant combination→Method
M3

There are, thus, two methods for the PLV calculation on a regional level and one method
for the PLV calculation on a channel level. The two regional methods are discussed and
compared first.

5.2.1.1 Regional Level

Frontal Central
D 1+2 0.3196 ± 0.0185 0.3230 ± 0.0108

1+3 0.3222 ± 0.0193 0.3210 ± 0.0106
2+3 0.3196 ± 0.0158 0.3178 ± 0.0127

T 1+2 0.3196 ± 0.0185 0.3230 ± 0.0108
1+3 0.3222 ± 0.0193 0.3210 ± 0.0106
2+3 0.3196 ± 0.0158 0.3178 ± 0.0127

A 1+2 0.3196 ± 0.0185 0.3230 ± 0.0108
1+3 0.3222 ± 0.0193 0.3210 ± 0.0106
2+3 0.3196 ± 0.0158 0.3178 ± 0.0127

B 1+2 0.3199 ± 0.0176 0.3222 ± 0.0103
1+3 0.3216 ± 0.0186 0.3200 ± 0.0099
2+3 0.3193 ± 0.0145 0.3170 ± 0.0114

G 1+2 0.3187 ± 0.0077 0.3187 ± 0.0083
1+3 0.3167 ± 0.0113 0.3146 ± 0.0078
2+3 0.3173 ± 0.0074 0.3142 ± 0.0071

Table 3: Mean and Standard Deviation of PLV values for each frequency band (D=delta,
T=theta, A=alpha, B=beta, G=gamma) and participant combination (3=excluded partic-
ipant). The bold/italic values indicate the frequency band and brain region combinations
for which the mean PLV value is higher for participant combination 1+2 (non-excluded
participants) than both other combinations. → Method M1

Tables 3 and 4 show the mean and standard deviations of the PLV values for all frequency
bands and participant combinations when using the two regional methods. Table 3 shows
the PLV values after using Method M1, while Table 4 shows the results from Method M2.
Only the results from the brain regions for which at least one frequency band showed that
the participant combination from participant 1 and 2 (non-excluded participants) had a
higher PLV value than both other combinations are included. The complete version of
Tables 3 and 4 with mean PLV values and standard deviations for all brain regions can
be found in B.1.
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Frontal Central Temporal
D 1+2 0.3178 ± 0.0301 0.3251 ± 0.0348 0.3162 ± 0.0185

1+3 0.3218 ± 0.0456 0.3325 ± 0.0340 0.3087 ± 0.0241
2+3 0.3198 ± 0.0442 0.3133 ± 0.0249 0.3052 ± 0.0255

T 1+2 0.3178 ± 0.0300 0.3250 ± 0.0346 0.3162 ± 0.0184
1+3 0.3218 ± 0.0454 0.3323 ± 0.0337 0.3087 ± 0.0239
2+3 0.3197 ± 0.0438 0.3135 ± 0.0250 0.3052 ± 0.0256

A 1+2 0.3178 ± 0.0298 0.3248 ± 0.0341 0.3162 ± 0.0181
1+3 0.3218 ± 0.0450 0.3317 ± 0.0330 0.3087 ± 0.0233
2+3 0.3194 ± 0.0430 0.3141 ± 0.0250 0.3050 ± 0.0256

B 1+2 0.3176 ± 0.0286 0.3238 ± 0.0316 0.3159 ± 0.0171
1+3 0.3221 ± 0.0426 0.3293 ± 0.0304 0.3094 ± 0.0199
2+3 0.3181 ± 0.0389 0.3168 ± 0.0250 0.3045 ± 0.0261

G 1+2 0.3244 ± 0.0160 0.3223 ± 0.0226 0.3184 ± 0.0207
1+3 0.3139 ± 0.0210 0.3215 ± 0.0205 0.3161 ± 0.0234
2+3 0.3161 ± 0.0224 0.3204 ± 0.0252 0.3012 ± 0.0163

Table 4: Mean and Standard Deviation of PLV values for each frequency band (D=delta,
T=theta, A=alpha, B=beta, G=gamma) and participant combination (3=excluded partic-
ipant). The bold/italic values indicate the frequency band and brain region combinations
for which the mean PLV value is higher for participant combination 1+2 (non-excluded
participants) than both other combinations. → Method M2

From Table 3 it can be seen that the PLV value from participant combination 1 and 2
(non-excluded participants) is higher than both other participant combinations for the
central brain region for all frequency bands (indicated in bold/italic). In the gamma
band, the PLV value from participant combination 1 and 2 is higher than both other
participant combinations for the frontal region as well.

Table 4 shows that the PLV value from participant combination 1 and 2 is higher than
both other participant combinations for the temporal region for all frequency bands. In
the gamma band, this is also the case for the frontal and central region. With Method
M1, the central region, thus, seems to be the most important region, while Method M2
indicates that the temporal region is the most relevant.

Furthermore, from both Tables 3 and 4 it can be seen that Method M1 has a much lower
standard deviation than Method M2, suggesting the robustness of M1 compared to M2.
Since Method M1 appears to be the best-suited method for the calculation of the PLV
value on a regional level (because of its low standard deviation), all following analyses
results on the regional level will be given using this method.

Another thing which should be noted from Tables 3 and 4 is that the overall mean PLV
value of all frequency bands and brain regions lies around +/- 0.32. Given that the PLV
value can range from 0 to 1, this value is quite low.
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Freq band Combination Region p-value
D 1+2/1+3 Central 0.322

1+2/2+3 0.135
T 1+2/1+3 Central 0.312

1+2/2+3 0.132
A 1+2/1+3 Central 0.321

1+2/2+3 0.131
B 1+2/1+3 Central 0.300

1+2/2+3 0.121
G 1+2/1+3 Central 0.101

1+2/2+3 0.080
1+2/1+3 Frontal 0.299
1+2/2+3 0.310

Table 5: p-values for the frequency bands (D=delta, T=theta, A=alpha, B=beta,
G=gamma) and regions for which the mean PLV value from participant combination 1
and 2 (non-excluded participants) is higher than both other combinations (3=excluded
participant) using Method M1 (according to Table 3). The bold/italic value indicates the
frequency band and brain region combination for which the p-value is closest to being
significant for both participant combination comparisons.

A Permutation Test (with 10000 permutations) was performed on the PLV values ac-
quired with Method M1. With this Permutation Test, the PLV values from participant
combination 1 and 2 (non-excluded participants) were compared with the PLV values
from both other participant combinations. Table 5 shows the p-values for all frequency
bands and brain regions for which the mean PLV value from participant combination 1
and 2 was higher than both other combinations.

As can be seen, none of the combinations of frequency bands and brain regions have
resulted in statistically significant differences (p < 0.05). However, the frequency band
and region for which the p-value is closest to being significant for both comparisons are
for the central region with the gamma frequency band (indicated in bold/italic). These
comparisons give p-values of p = 0.101 and p = 0.080 for the comparison of participant
combination 1 and 2 with combination 1 and 3, and the combination of 1 and 2 with 2
and 3, respectively. See Appendix B.1 for an overview of the p-values from both Method
M1 and Method M2.

A boxplot of this combination of Method M1 with the gamma frequency band is shown in
Figure 16. Note that the central region shows that the median PLV value of participant
combination 1 and 2 (non-excluded participants) is higher than both other combinations
and that this region appears to have just a small variation for all three combinations as
well. See Appendix B.1 for all other combinations of method (M1 and M2) and frequency
bands.
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Figure 16: Method M1: Gamma frequency band. Best performing combination for central
brain region.

5.2.1.2 Channel Level

The PLV values at channel level (Method M3) were also investigated and compared for
each of the five frequency bands. For these comparisons, the Permutation Test was once
again used to determine whether the differences between the participant combinations
were statistically significant.

Table 6 shows the channels which had at least one significant value (p < 0.05) after com-
paring the PLV value from participant combination 1 and 2 (non-excluded participants)
with either participant combination 1 and 3, or 2 and 3. Only those channels for which
the p-value from the other comparison was at least below 0.25 have been included in the
table (see Appendix B.2 for the table with the complete list of all channels for which at
least one p-value was significant).

In Table 6, it can be seen that only channel 23 (C4) is statistically significant when
comparing participant combination 1 and 2 with both other combinations. This is the
case for all frequency bands except the gamma frequency band. Both the delta and theta
frequency bands have the lowest p-values (p = 0.017, p = 0.022 and p = 0.019, p =
0.020, respectively) and have, thus, performed best. These results are in contrast with
the results obtained at the regional level, where the best performing frequency band was
the gamma band. Nevertheless, both analyses at the regional level as well as at channel
level show that the central region has the best results. After all, channel C4 is also located
in the central region (see Figure 7).
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Freq band Combination Channel p-value
D 1+2/1+3 21 (CP6) 0.038

1+2/2+3 0.215
1+2/1+3 23 (C4) 0.017
1+2/2+3 0.022

T 1+2/1+3 21 (CP6) 0.035
1+2/2+3 0.21728
1+2/1+3 23 (C4) 0.019
1+2/2+3 0.020

A 1+2/1+3 21 (CP6) 0.039
1+2/2+3 0.212
1+2/1+3 23 (C4) 0.020
1+2/2+3 0.021

B 1+2/1+3 21 (CP6) 0.046
1+2/2+3 0.191
1+2/1+3 23 (C4) 0.020
1+2/2+3 0.022

G 1+2/1+3 19 (P4) 0.127
1+2/2+3 0.017
1+2/1+3 26 (FC2) 0.038
1+2/2+3 0.058

Table 6: p-values for the frequency bands (D=delta, T=theta, A=alpha, B=beta,
G=gamma) and channels for which the mean PLV value from participant combination
1 and 2 (non-excluded participants) is higher than both other combinations and the other
p-value was below 0.25 (3=excluded participant). The bold/italic values indicate the chan-
nels for which both comparisons are statistically significant.

However, after False Discovery Rate (FDR) correction, none of these results remain signif-
icant. This is even the case after using just a subset of the cleanest (least noisy) channels
to reduce the number of multiple comparisons.

See Appendix B.2 for boxplots from the PLV values from all channels for each of the fre-
quency bands. Each of these figures also contains the p-values per participant combination
comparison for each channel.
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5.2.1.3 Regional Level: Subsets

As has been explained in Section 4.5.1.1, the effect of using 3 different subsets of ex-
periments have also been investigated to determine if those subsets might improve the
results:

1. All experiments in which the excluded participant indicated in the questionnaire
to have felt “very excluded”: 4 experiments in total (see Figure 15). → Very
Excluded (VE)

2. All experiments in which the excluded participant indicated in the questionnaire to
have felt either “excluded” or “very excluded”: 11 experiments in total (see Figure
15). → Excluded (E)

3. All experiments in which the excluded participant indicated in the questionnaire to
have felt either “excluded” or “very excluded” AND the other two participants indi-
cated that they felt more connected to each other than to the excluded participant
(higher team coordination): 6 experiments in total. → Excluded+Connected
(EC)

For these results, only the best performing combinations from the analysis at regional level
(Method M1 with gamma frequency band) were used, as has been shown in Section 5.2.1.1.
Once again, only the results are given for the brain regions in which there was at least one
subset (or for all experiments) where the PLV value from participant combination 1 and 2
(non-excluded participants) was higher than the PLV value from both other combinations.

Subset Frontal Central Parietal
all 1+2 0.3187 0.3187 0.3208

1+3 0.3167 0.3146 0.3210
2+3 0.3173 0.3142 0.3182

VE 1+2 0.3239 0.3187 0.3191
1+3 0.3178 0.3179 0.3161
2+3 0.3187 0.3113 0.3167

E 1+2 0.3198 0.3197 0.3219
1+3 0.3192 0.3154 0.3219
2+3 0.3162 0.3143 0.3174

EC 1+2 0.3233 0.3161 0.3177
1+3 0.3216 0.3179 0.3183
2+3 0.3189 0.3146 0.3180

Table 7: Mean of PLV values per brain regions for each subset (VE=Very Excluded,
E=Excluded, EC=Excluded+Connected) and each participant combination (3=excluded
participant). Results are only shown from the gamma frequency band with Method M1.
The bold/italic values indicate the frequency band and brain region combinations for which
the mean PLV value is higher for participant combination 1+2 (non-excluded participants)
than both other combinations.

Table 7 shows the mean PLV values for the three subsets as well as when all experiments
are used. It is shown that for the ‘VE’ subset (only experiments with participants who
felt very excluded), there are more regions for which the mean PLV value of participant
combination 1 and 2 (non-excluded participants) is higher than both other combinations:
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frontal, central and parietal (instead of just frontal and central). The same holds for
the ‘E’ subset with all experiments in which the socially excluded participant indicated
to either feel excluded or very excluded. For the ‘EC’ subset (experiments in which the
socially excluded participant felt (very) excluded and the other two participants felt more
connected to each other) the results have not improved, with only the frontal region
having a higher mean PLV.

Subset Combination Region p-value
all 1+2/1+3 Frontal 0.299

1+2/2+3 0.310
1+2/1+3 Central 0.101
1+2/2+3 0.080

VE 1+2/1+3 Frontal 0.248
1+2/2+3 0.156
1+2/1+3 Central 0.452
1+2/2+3 0.054
1+2/1+3 Parietal 0.272
1+2/2+3 0.324

E 1+2/1+3 Frontal 0.445
1+2/2+3 0.134
1+2/1+3 Central 0.109
1+2/2+3 0.052
1+2/1+3 Parietal 0.491
1+2/2+3 0.055

EC 1+2/1+3 Frontal 0.391
1+2/2+3 0.133

Table 8: p-values for the gamma frequency band and regions for which the mean PLV
value from participant combination 1 and 2 (non-excluded participants) is higher than both
other combinations (3=excluded participant). Significance values are shown for each sub-
set (VE=Very Excluded, E=Excluded, EC=Excluded+Connected). The bold/italic value
indicate the best performing subset and brain region combination.

The Permutation Test was performed once more to determine if these differences are
significant. Table 8 shows the p-values for the subsets and regions for which participant
combination 1 and 2 (non-excluded participants) had a higher mean PLV value compared
to the other two combinations. From this table, it can be seen that subset ‘E’ (all
experiments in which the socially excluded participant felt (very) excluded) performed
best. In the central region, the results were slightly better than when all experiments were
used. However, the p-values still are not statistically significant, although the comparison
between participant combination 1 and 2 with 2 and 3 comes very close (p = 0.109 and
p = 0.052). Figure 17 shows the boxplot of subset ‘E’ with the gamma frequency in
which the PLV values were calculated with Method M1. Boxplot figures for the other two
subsets can be found in Appendix B.3.

57



Figure 17: Subset ‘E’ (Excluded) with gamma frequency band: all experiments in which
the excluded participant actually felt (very) excluded. Best performing combination for
central brain region.

5.2.1.4 Channel Level: Subsets

With these three subsets, the PLV values at channel level were also investigated and
compared for the delta and theta frequency bands (the best performing frequency bands
at channel level as shown in Section 5.2.1.2). Tables 9 and 10 show the channels which
had at least one significant value after comparison with either participant combination 1
and 3, or 2 and 3 for frequency band delta and theta, respectively. Only those channels for
which the p-value from the other comparison was at least below 0.25 have been included
in the tables (see Appendix B.4 for the table with the complete list of all channels for
which at least one p-value was significant).

Tables 9 and 10 show the p-values for the three subsets using the delta and theta frequency
band, respectively. It is shown that none of the subsets have a channel with a significant
statistical difference for both comparisons, while channel 23 (C4) is significant for when
all experiments are used. Nevertheless, channel C4 is still important when looking at the
three subsets as well (with channel C4 being almost significant for subset ‘E’ and ‘EC’).
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Subset Combination Channel p-value
all 1+2/1+3 21 (CP6) 0.038

1+2/2+3 0.215
1+2/1+3 23 (C4) 0.017
1+2/2+3 0.022

VE 1+2/1+3 16 (Oz) 0.204
1+2/2+3 0.035
1+2/1+3 17 (O2) 0.015
1+2/2+3 0.073
1+2/1+3 23 (C4) 0.216
1+2/2+3 0.043

E 1+2/1+3 23 (C4) 0.068
1+2/2+3 0.035

EC 1+2/1+3 23 (C4) 0.077
1+2/2+3 0.006

Table 9: p-values for the delta frequency band and channels for which the mean PLV
value from participant combination 1 and 2 (non-excluded participants) is higher than
both other combinations (3=excluded participant). Only those channels for which the p-
value from both comparisons was at least below 0.25 are included. Significance values
are shown for each subset (VE=Very Excluded, E=Excluded, EC=Excluded+Connected).
The bold/italic values indicate the channels for which both comparisons are statistically
significant.

Subset Combination Channel p-value
all 1+2/1+3 21 (CP6) 0.035

1+2/2+3 0.217
1+2/1+3 23 (C4) 0.019
1+2/2+3 0.020

VE 1+2/1+3 16 (Oz) 0.195
1+2/2+3 0.034
1+2/1+3 17 (O2) 0.016
1+2/2+3 0.070
1+2/1+3 23 (C4) 0.219
1+2/2+3 0.044

E 1+2/1+3 23 (C4) 0.070
1+2/2+3 0.041

EC 1+2/1+3 23 (C4) 0.076
1+2/2+3 0.006

Table 10: p-values for the theta frequency band and channels for which the mean PLV
value from participant combination 1 and 2 (non-excluded participants) is higher than
both other combinations (3=excluded participant). Only those channels for which the p-
value from both comparisons was at least below 0.25 are included. Significance values
are shown for each subset (VE=Very Excluded, E=Excluded, EC=Excluded+Connected).
The bold/italic values indicate the channel for which both comparisons are statistically
significant.
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When looking at the number of channels which meet the requirements of one comparison
being significant and the other one at least being below 0.25, it can be observed that
subset ‘VE’ has more channels in total for which the requirements are met. Conversely,
subset ‘E’ and ‘EC’ have fewer channels for which one of the comparisons is statistically
different (and p < 0.25 for both comparisons). Another thing to note is that, for subset
‘VE’, the other two channels besides channel C4 which meet the set requirements (channel
16 (Oz) and channel 17 (O2)) are both from the occipital region instead of the central
region.

All boxplot figures of these subsets can be found in Appendix B.4.

5.2.2 With Baseline Correction

Now that all EEG results without correcting for the baseline from before the language
switch have been explored, the results after baseline correction will be described.

5.2.2.1 Regional Level

Since it was shown that Method M1 has a much lower standard deviation than Method
M2 (see Section 5.2.1.1), only the first method was once again used to compare the five
brain regions and frequency bands after baseline correction. Table 11 shows the baseline-
corrected mean PLV values for the brain regions and frequency bands computed with
M1.

Frontal Central Parietal Temporal Occipital
D 1+2 -0.1255 -0.1221 -0.1267 -0.1313 -0.1223

1+3 -0.1321 -0.1332 -0.1293 -0.1311 -0.1173
2+3 -0.1300 -0.1319 -0.1323 -0.1397 -0.1356

T 1+2 -0.1255 -0.1221 -0.1267 -0.1313 -0.1223
1+3 -0.1320 -0.1332 -0.1293 -0.1311 -0.1173
2+3 -0.1300 -0.1319 -0.1322 -0.1397 -0.1356

A 1+2 -0.1255 -0.1220 -0.1266 -0.1313 -0.1223
1+3 -0.1320 -0.1331 -0.1293 -0.1310 -0.1173
2+3 -0.1300 -0.1318 -0.1322 -0.1397 -0.1355

B 1+2 -0.1250 -0.1227 -0.1260 -0.1321 -0.1220
1+3 -0.1325 -0.1341 -0.1297 -0.1328 -0.1185
2+3 -0.1302 -0.1325 -0.1323 -0.1391 -0.1359

G 1+2 -0.1270 -0.1271 -0.1249 -0.1335 -0.1272
1+3 -0.1353 -0.1374 -0.1310 -0.1347 -0.1283
2+3 -0.1329 -0.1360 -0.1320 -0.1423 -0.1342

Table 11: Mean of baseline corrected PLV values for each frequency band (D=delta,
T=theta, A=alpha, B=beta, G=gamma) and participant combination (3=excluded partic-
ipant). The bold/italic values indicate the frequency band and brain region combinations
for which the mean PLV value is higher for participant combination 1+2 (non-excluded
participants) than both other combinations. → Method M1, with baseline correction.
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As can be seen in Table 11, all mean PLV values are slightly negative. This shows that
the PLV value was higher before the language switch, for all participant combinations.
Furthermore, the PLV value from participant combination 1 and 2 (non-excluded partic-
ipants) is higher than both other participant combinations for the frontal, central, and
parietal brain regions for all frequency bands. In the beta and gamma band, the PLV
value from participant combination 1 and 2 is higher than both other participant combi-
nations for the temporal region as well. Lastly, for the gamma band, this is also the case
for the occipital region.

Table 12 shows the p-values for all frequency band and brain region combinations that
had a higher PLV value for participant combination 1 and 2 (non-excluded participants)
compared to the other two combinations. These p-values were again computed using the
Permutation test with 10000 permutations.

From Table 12 it can be seen that the comparison for all participant combinations is sig-
nificantly different (p < 0.05) in the central region for both the beta and gamma frequency
bands. For the gamma band, this statistical significance is the greatest. These results are
in line with the results from the regional analysis without baseline correction (see Section
5.2.1.1). However, in contrast to the results achieved without baseline correction, these
results are statistically significant. In the central region, these comparisons give p-values
of p = 0.006 and p = 0.010 for the comparison of participant combination 1 and 2 (non-
excluded participants) with 1 and 3 and the combination 1 and 2 with 2 and 3 (each of
the non-excluded participants with the socially excluded participant), respectively. Even
though the delta, theta and alpha frequency bands are not statistically significant for both
comparisons in the central region, they are almost significant (one of the p-values even is
significant). This is in great contrast for the p-values for the other regions, showing that
the central region has the best results overall.

However, after applying the False Discovery Rate (FDR) correction, none of these results
remain significant. This is even the case after using a subset of the regions (the occipital
region is discarded since it is the least important according to the literature) to reduce
the number of multiple comparisons.

Figure 18 shows the boxplot of the gamma frequency band with all brain regions. See
Appendix B.5 for boxplot figures of all other combinations as well.
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Freq band Combination Region p-value
D 1+2/1+3 Frontal 0.267

1+2/2+3 0.322
1+2/1+3 Central 0.044
1+2/2+3 0.058
1+2/1+3 Parietal 0.306
1+2/2+3 0.175

T 1+2/1+3 Frontal 0.271
1+2/2+3 0.320
1+2/1+3 Central 0.049
1+2/2+3 0.057
1+2/1+3 Parietal 0.306
1+2/2+3 0.167

A 1+2/1+3 Frontal 0.261
1+2/2+3 0.319
1+2/1+3 Central 0.047
1+2/2+3 0.059
1+2/1+3 Parietal 0.313
1+2/2+3 0.171

B 1+2/1+3 Frontal 0.221
1+2/2+3 0.278
1+2/1+3 Central 0.034
1+2/2+3 0.047
1+2/1+3 Parietal 0.250
1+2/2+3 0.128
1+2/1+3 Temporal 0.480
1+2/2+3 0.141

G 1+2/1+3 Frontal 0.069
1+2/2+3 0.101
1+2/1+3 Central 0.006
1+2/2+3 0.010
1+2/1+3 Parietal 0.102
1+2/2+3 0.041
1+2/1+3 Temporal 0.434
1+2/2+3 0.105
1+2/1+3 Occipital 0.439
1+2/2+3 0.082

Table 12: p-values for the frequency bands (D=delta, T=theta, A=alpha, B=beta,
G=gamma) and regions for which the mean PLV value from participant combination 1
and 2 (non-excluded participants) is higher than both other combinations (3=excluded
participant). The bold/italic values indicate the channels for which both comparisons are
statistically significant. With baseline correction.
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Figure 18: Method M1: Gamma frequency band. Best performing combination for central
brain region after baseline correction.

5.2.2.2 Channel Level

The results at channel level were also investigated. Table 13 shows all channels which had
at least one significant value after comparison with either participant combination 1 and
3, or 2 and 3. Only those channels for which the other p-value was at least below 0.25
were included in the table. The complete table (divided over two tables) can be found in
Appendix B.6.

Table 13 shows that channel 23 (C4) is statistically significant when comparing participant
combination 1 and 2 (non-excluded participants) with both other combinations. This is
the case for all frequency bands except the gamma frequency band. For the gamma
band, channel 26 (FC2) is the only channel which is statistically significant. Both these
significant channels are located in the central region of the brain. For channel C4, both the
theta and alpha band show the greatest significance. This is slightly different compared to
the analysis of channel level results without baseline correction since the delta and theta
band were the frequency bands that showed the greatest significance there (see Section
5.2.1.2).

Even though these results are better than the analysis results without baseline correction,
none of these results remain significant after applying FDR correction. This is even the
case after using a subset of the cleanest (least noisy) channels to reduce the number of
multiple comparisons.

The boxplot figures with an overview of the channel results of all frequency bands can be
found in Appendix B.6.
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Freq band Combination Channel p-value
D 1+2/1+3 6 (FC5) 0.043

1+2/2+3 0.182
1+2/1+3 21 (CP6) 0.003
1+2/2+3 0.140
1+2/1+3 22 (CP2) 0.049
1+2/2+3 0.201
1+2/1+3 23 (C4) 0.010
1+2/2+3 0.007

T 1+2/1+3 6 (FC5) 0.044
1+2/2+3 0.180
1+2/1+3 21 (CP6) 0.004
1+2/2+3 0.142
1+2/1+3 22 (CP2) 0.043
1+2/2+3 0.207
1+2/1+3 23 (C4) 0.008
1+2/2+3 0.007

A 1+2/1+3 6 (FC5) 0.044
1+2/2+3 0.177
1+2/1+3 21 (CP6) 0.004
1+2/2+3 0.139
1+2/1+3 22 (CP2) 0.047
1+2/2+3 0.206
1+2/1+3 23 (C4) 0.009
1+2/2+3 0.006

B 1+2/1+3 6 (FC5) 0.040
1+2/2+3 0.195
1+2/1+3 21 (CP6) 0.005
1+2/2+3 0.125
1+2/1+3 23 (C4) 0.009
1+2/2+3 0.009

G 1+2/1+3 19 (P4) 0.069
1+2/2+3 0.008
1+2/1+3 20 (P8) 0.036
1+2/2+3 0.063
1+2/1+3 26 (FC2) 0.015
1+2/2+3 0.035
1+2/1+3 29 (AF4) 0.239
1+2/2+3 0.017

Table 13: p-values for the frequency bands (D=delta, T=theta, A=alpha, B=beta,
G=gamma) and channels for which the mean PLV value from participant combination
1 and 2 (non-excluded participants) is higher than both other combinations and the other
p-value was below 0.25 (3=excluded participant). The bold/italic values indicate the chan-
nel for which both comparisons are statistically significant. With baseline correction.
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5.2.3 Summary of Main EEG Results

The multiple EEG analyses above were quite extensive. Therefore, the main results of
these analyses will now be provided in a short summary.

All EEG data analysis results indicate that the central brain region has the most promising
results. This is shown both at the regional level as well as at channel level since the most
significant channel (C4) is part of the central region as well. Furthermore, the frequency
band with the strongest result is not the same for the regional level and channel level
comparison. For the regional level analysis, the best results are achieved with the gamma
frequency band, and for the channel level, the best results are achieved with either the
theta or alpha frequency bands.

Lastly, while the usage of subsets of experiments only slightly improved the results, a
clear improvement was found when analysing baseline-corrected PLV values. The central
region with the gamma frequency band now showed a significant difference between the
PLV values from participant combination 1 and 2 (non-excluded participants) with both
other combinations (p = 0.006, p = 0.010). This improvement was also found at channel
level since channel C4 in the theta frequency band now showed a significance level of p =
0.008 and p = 0.007 compared to the significance level of p = 0.019 and p = 0.020 from
before the baseline correction. However, none of these results remain significant after
FDR correction.
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5.3 Heart Rate (HR) Analysis

For the heart rate IBI analysis, the Pearson Correlation Coefficient (PCC) results for a
5-second and 10-second time window were compared. Then, the trend of the curve of the
data was examined as well.

5.3.1 Correlation 5-Second Time Window

First, the results for the 5-second window will be described. Table 14 shows the mean
correlation values for the 5-second time window for each of the 13 experiments, as well as
the overall mean.

Experiment Correlation 1+2 Correlation 1+3 Correlation 2+3
1 -0.6430 -0.0989 0.3287
2 0.5019 -0.1231 0.1563
3 0.2639 -0.9554 -0.0762
4 -0.8882 -0.9005 0.7923
5 0.9605 0.9651 0.9753
6 0.2714 -0.7897 0.2871
7 -0.4627 0.1040 -0.4971
8 -0.4917 0.6895 0.1698
9 -0.9661 -0.5925 0.7164
10 0.1449 -0.8110 0.4079
11 -0.7969 -0.8087 0.8152
12 0.8210 -0.8302 -0.9357
13 0.7125 0.8566 0.6596
Mean Correlation -0.0440 -0.2535 0.2923

Table 14: IBI correlation values for each participant combination in the 13 experiments
(time window: 5 sec). The bold/italic values indicate the experiments for which the mean
correlation is higher for participant combination 1+2 (non-excluded participants) than
both other combinations.

As can be seen in Table 14, the correlation from participant 1 and 2 (non-excluded par-
ticipants) is only higher than both other combinations for experiment 2, 3, and 12. In
fact, the mean correlation between participant 1 and 2 is even negative. Overall, there
is quite a lot of variance between the experiments. The p-values (once again computed
using the Permutation Test with 10000 permutations) which have been calculated for
the comparison between these mean correlation values are not significant at all with p =
0.2191 and p = 0.9133 for the comparison between participant 1 and 2 with 1 and 3, and
1 and 2 with 2 and 3, respectively.

Thus, it was also investigated whether significance could be found at an experiment level.
Table 15 shows the p-values for each experiment and participant combination. It can
be seen that the experiments for which the correlation from participant 1 and 2 (non-
excluded participants) is higher than the other two combinations (experiment 2, 3, 12),
this difference is significant (p < 0.05).
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Experiment Combination 1+2/1+3 Combination 1+2/2+3
1 0.4985 0.4968
2 0.0001 0.0001
3 0.0001 0.0001
4 0.0001 0.5041
5 0.4910 0.4969
6 0.0001 0.4992
7 0.4968 0.0001
8 0.4988 0.5011
9 0.5007 0.5032
10 0.0001 0.5106
11 0.0001 0.4889
12 0.0001 0.0001
13 0.5005 0.001

Table 15: IBI p-values for each participant combination in the 12 experiments (time
window: 5 sec). The bold/italic values indicate the experiments for which the mean corre-
lation is significantly higher for participant combination 1+2 (non-excluded participants)
compared to both other combinations.

5.3.2 Correlation 10-Second Time Window

Experiment Correlation 1+2 Correlation 1+3 Correlation 2+3
1 -0.6188 -0.3637 0.3227
2 0.0820 0.1280 0.2624
3 -0.2476 -0.6312 -0.0920
4 -0.5875 -0.4954 0.6891
5 0.8147 0.4524 0.2907
6 -0.4016 -0.5325 0.6997
7 0.5911 0.4575 0.2056
8 -0.8281 0.7956 -0.4460
9 -0.8032 0.2826 0.2892
10 0.1894 -0.6250 0.0716
11 0.1227 -0.1688 0.7084
12 -0.2824 -0.3851 -0.2859
13 0.4995 0.5571 -0.0993
Mean Correlation -0.1131 -0.0406 0.2012

Table 16: IBI correlation values for each participant combination in the 13 experiments
(time window: 10 sec). The bold/italic values indicate the experiments for which the
mean correlation is higher for participant combination 1+2 (non-excluded participants)
than both other combinations.

Then, the correlation values for the 10-second time window were examined. Table 16
shows the correlation values for each participant combination in the 13 experiments as
well as the overall mean, but now for this larger time window of 10 seconds. As can be seen,
the correlation from participant 1 and 2 (non-excluded participants) is only higher than
both other combinations for experiment 5, 7, 10, and 12. In fact, the mean correlation
between participant 1 and 2 is even the most negative of them all, and more negative

67



than the results from the 5-second window as well. Overall, there is once again quite a
lot of variance between the experiments. The p-values which have been calculated for the
comparison between these mean correlation values are even worse than for the 5-second
window, and thus not significant at all; p = 0.6339 and p = 0.9485 for the comparison
between participant 1 and 2 with 1 and 3, and 1 and 2 with 2 and 3, respectively.

Similarly to the 5-second window, it was investigated whether significance could be found
at an experiment level for this 10-second window. Table 17 shows the p-values for each
experiment and participant combination. The experiments for which the correlation from
participant 1 and 2 (non excluded participants) is higher than the other two combina-
tions (experiment 5, 7, 10, 12), is a significant difference (p < 0.05). These experiments
are almost completely different from the results with the 5-second time window. Only
experiment 12 is statistically significant for both time windows.

Experiment Combination 1+2/1+3 Combination 1+2/2+3
1 0.4982 0.4998
2 0.5031 0.4983
3 0.0001 0.4995
4 0.5059 0.4954
5 0.0001 0.0001
6 0.0001 0.4966
7 0.0001 0.0001
8 0.4928 0.5029
9 0.4997 0.5041
10 0.0001 0.0001
11 0.0001 0.5013
12 0.0001 0.0001
13 0.5057 0.001

Table 17: IBI p-values for each participant combination in the 12 experiments (time win-
dow: 10 sec). The bold/italic values indicate the experiments for which the mean corre-
lation is significantly higher for participant combination 1+2 (non-excluded participants)
compared to both other combinations.

5.3.3 Trend of IBI Curve

Additionally, the IBI value curve from the three participants was compared for both time
windows. For this comparison, experiment 12 was chosen to depict a scenario in which
participant 1 and 2 (non-excluded participants) had a higher correlation than both other
combinations. See Figure 19. This was the only experiment for which this was the case
for both time windows (as shown in Tables 14 and 16). Conversely, experiment 8 was
chosen to depict a scenario in which participant 1 and 2 had a low correlation. See Figure
20.
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(a) 5-second window (b) 10-second window

Figure 19: IBI data from the three participants for the (a) 5-second time window and the
(b) 10-second time window from experiment 12 (high correlation). The blue line indicates
participant 1, the yellow line is for participant 2, and the red line indicates participant 3
(excluded participant).

Figure 19 (a) shows that the IBI from participant 1 starts at the second-highest position
and stays relatively constant throughout the 5-second time window, with only a slightly
decreasing arch (which also increases a fraction just before the halfway point of the time
window). The IBI from participant 2 starts the highest, then goes down, and finally
results in still being the highest IBI. Lastly, the IBI from participant 3 (socially excluded
participant) starts at the lowest position and steadily goes up, ending up with the same
IBI value as participant 1. As can be seen, the trend from the curve of participant 1 and
2 is relatively similar (with IBI values which are quite close together as well), resulting in
a high correlation between these two participants. Conversely, the curve from participant
3 goes in a completely different direction, resulting in a low correlation with both other
participants.

In Figure 19 (b), the trend from participant 1 mostly continues in the larger time window
(with some slight fluctuations), ending up with the highest IBI. The IBI from participant
2, on the other hand, goes up again near the middle of the time window and has a steep
decline near the end, making it end up with the second-highest IBI. Lastly, the IBI from
participant 3 decreases right in the middle of the larger time window and then goes up a
bit again near the end, but it still ends up with the lowest IBI (although not by much).
This means that throughout both time windows, the third (excluded) participant has a
faster heart rate than the other two participants since the IBI is lower (shorter).
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(a) 5 second window (b) 10 second window

Figure 20: IBI data from the three participants for the (a) 5 second time window and the
(b) 10 second time window from experiment 8 (low correlation). The blue line indicates
participant 1, the yellow line is for participant 2, and the red line indicates participant 3
(excluded participant).

Figure 20 (a) shows that the IBI from participant 1 starts the lowest (although almost
similar to participant 2), goes up, goes down a bit, and then goes up in a steep arch,
ending up with the highest IBI (together with participant 3). The IBI from participant 2
steadily increases and then has a small dip near the end, making it end up with the lowest
IBI. Lastly, the IBI from participant 3 (socially excluded participant) starts the highest
and keeps steadily increasing until it ends up with the same highest IBI as participant
1. As can be seen, the curves from all three participants are quite different, causing low
correlation overall.

In Figure 20 (b) it can be seen that the trend from participant 1 continues and then has a
small dip before evening out to result in the highest IBI. The IBI from participant 3 also
continues to increase more and then decreases, making it end up with the second-highest
IBI. The IBI from participant 2, on the other hand, decreases even more, then evens out
a little, only to have a small dip and ending in an increasing arch. However, its IBI is
still the lowest out of the three participants. This means that in this case one of the
participants who is excluding someone actually has a higher heart rate than the excluded
participant themselves.

When comparing Figures 19 and 20 it becomes clear that there is quite a lot of variance
between the experiments. Furthermore, both figures show that there is a fairly large
change after the end of the 5-second time window, which might indicate that there is a
delayed reaction and that the 10-second window is, thus, better suited for capturing the
IBI from the three participants.
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5.4 Galvanic Skin Response (GSR) Analysis

For the GSR analysis, the correlation and the trend of the curve were also examined, but
now only with a time window of 5 seconds.

5.4.1 Correlation

Figure 18 shows the mean correlation values for each participant combination for the 12
remaining experiments (experiment 6 was discarded because of data loss) as well as the
overall mean correlation value.

Experiment Correlation 1+2 Correlation 1+3 Correlation 2+3
1 0.0144 0.9141 0.0018
2 0.9864 0.9969 0.9718
3 -0.1662 -0.2618 0.9551
4 0.4040 -0.1828 0.0286
5 0.9620 -0.0248 -0.1386
7 -0.8398 -0.7228 0.8644
8 0.1826 -0.7065 -0.2603
9 0.7845 -0.7727 -0.9769
10 -0.8861 0.9396 -0.8205
11 0.7250 0.9742 0.7929
12 -0.4448 -0.9873 0.5434
13 0.0177 0.1858 0.7793
Mean Correlation 0.1450 0.0293 0.2284

Table 18: GSR correlation values for each participant combination in the 12 experiments
(experiment 6 was discarded because of data loss). The bold/italic values indicate the
experiments for which the mean correlation is higher for participant combination 1+2
than both other combinations.

As can be seen in Table 18, the correlation from participant 1 and 2 (non-excluded partic-
ipants) is only higher than both other combinations for experiment 4, 5, 8 and 9. Similar
to the IBI data, there is quite a lot of variance between the experiments for the GSR data.
The p-values which have been calculated for the comparison between these mean correla-
tion values are not significant with p = 0.3372 and p = 0.6178 for the comparison between
participant 1 and 2 with 1 and 3, and participant 1 and 2 with 2 and 3, respectively.

Thus, it was investigated whether significance could be found at an experiment level.
Table 19 shows the p-values for each experiment and participant combination. The ex-
periments for which the correlation from participant 1 and 2 (non-excluded participants) is
higher than the other two combinations (experiment 4, 5, 8, 9), actually show a significant
difference as well (p < 0.05).
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Experiment Combination 1+2/1+3 Combination 1+2/2+3
1 0.5028 0.0001
2 0.4986 0.0001
3 0.0001 0.4982
4 0.0001 0.0001
5 0.0001 0.0001
7 0.5003 0.5001
8 0.0001 0.0001
9 0.0001 0.0001
10 0.4978 0.5121
11 0.4936 0.5045
12 0.0001 0.5001
13 0.5033 0.5052

Table 19: GSR p-values for each participant combination in the 12 experiments. The
bold/italic values indicate the experiments for which the mean correlation is significantly
higher for participant combination 1+2 compared to both other combinations.

5.4.2 Trend of GSR Curve

The trend of the GSR signal after the language switch was also investigated (see Figure
21). As can be seen, participant 3 (socially excluded participant) shows a much more
negative trend than the other two participants. Their GSR signal is much more flat in
comparison (although this is slightly less so for the second participant). However, the scale
of the y-axis of participant 1 is much larger, showing much greater variance. Therefore,
Figure 22 also shows the GSR signals for the three participants on the same y-axis scale.
Here, it can be seen that participant 1 actually has the greatest (negative) slope and the
GSR signals for participant 2 and 3 are flatter. To show this, the directionality of the
slope from the three mean signals was computed by fitting a linear polynomial on the
data of all experiments and then averaging this direction. The direction of the slope of
participant 1 is -0.0025, for participant 2 it is -0.0016 and for participant 3 it is -0.0013.

Then, the curves of one experiment for which participant 1 and 2 had a high correlation
and one experiment with low correlation were examined (see Figure 23). In 23 (a), it can
be seen that both the GSR from participant 1 and 2 (non-excluded participants) show a
similar curve and decrease during the 5-second time window, while the GSR from partici-
pant 3 (socially excluded participant) slightly increases. This increased skin conductance
response shows that the excluded participant has a higher sweat gland activity which
indicates a higher level of arousal. Conversely, in 23 (b), participant 1 and 3 show the
most similar curve (only slightly decreasing) while the curve from participant 2 decreases
much more. This means that participant 1 also has an increased level of arousal.
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(a) (b)

(c)

Figure 21: Mean and standard deviation of the GSR data of the three participants. (a)
shows the data from participant 1, (b) from participant 2, and (c) from participant 3
(socially excluded participant). The blue lines indicate the language switch. These are 2
lines because the language switch can vary somewhere between that 1-second window.
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(a) (b)

(c)

Figure 22: Mean and standard deviation of the GSR data of the three participants plotted
on the same y-axis. (a) shows the data from participant 1, (b) from participant 2, and
(c) from participant 3 (socially excluded participant). The blue lines indicate the language
switch. These are 2 lines because the language switch can vary somewhere between that
1-second window.
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(a) High correlation (experiment 9) (b) Low correlation (experiment 10)

Figure 23: GSR data from the three participants for (a) an experiment with high cor-
relation and (b) an experiment with low correlation. The blue line indicates participant
1, the yellow line is for participant 2, and the red line indicates participant 3 (excluded
participant).
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6 Discussion

The international world we live in makes it crucial to understand each other and not
exclude anyone by linguistically ostracising them from participating in teamwork. In this
thesis, one of the first hyperscanning studies with three participants has been conducted.
In this hyperscanning study, the first steps have been taken to measure this language
induced feeling of social exclusion. This chapter provides a discussion of the results that
were generated by this research. The results of the statistical analyses of the EEG, HR,
and GSR data are discussed and compared with the existing literature. Furthermore,
the contributions and limitations of this research, along with recommendations for future
work on this topic are provided.

6.1 Statistical Analyses

Before the statistical analyses took place, the effect of the imposed language barrier on
inducing a feeling of social exclusion for one participant in each experiment was verified.
The results from the post-experiment questionnaire showed that out of the 13 socially
excluded participants, 4 felt very excluded, 7 felt excluded and 2 felt slightly excluded.
All socially excluded participants, thus, actually felt excluded. Therefore, the language
barrier from the other two participants talking in a language the excluded participant
could not understand actually had the “desired” effect for this experiment.

This thesis proposed three modalities to measure this feeling of social exclusion: Elec-
troencephalogram (EEG) data, Heart Rate (HR) data, and Galvanic Skin Response (GSR)
data. Social exclusion was hypothesised to be reflected in the lack of synchronisation in
the data, and that the two participants who are excluding the other participant will thus
have a higher level of synchronisation with each other.

6.1.1 Electroencephalogram (EEG)

The statistical analysis of the EEG data was done on both a regional level and channel
level by comparing the Phase-Locking Value (PLV) values for the level of synchronisation
between the participants. These analyses were performed both with and without baseline
correction. A summary of the analyses results will first be given before the findings will
be related to the existing literature.

6.1.1.1 Regional Level

The results of the analysis at the regional level using Method M1 (first calculating PLV
per channel and then averaging for each of the five brain regions) indicate that the cen-
tral brain region shows the most promising results since the PLV value from participant
combination 1 and 2 (non-excluded participants) is higher than the PLV value from both
other combinations in this region. This is the case across all five frequency bands (see
Table 3). Conversely, when using Method M2 (first averaging the EEG data for each of
the brain regions and then calculating the PLV value) the temporal region has the best
results for all frequency bands (see Table 4). The gamma frequency band showed the
best results for both methods. The overall mean PLV value from all frequency bands and
brain regions lies around +/- 0.32 out of 1.
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Furthermore, the results show that Method M1 has a much lower standard deviation than
the second method (see Tables 3 and 4). This suggests that Method M1 is a more robust
method for the PLV calculation across regions. All further regional analyses results have
therefore used this method of PLV calculation.

Statistical analyses of the results without baseline correction show that even though sev-
eral frequency band and brain region combinations have a higher PLV value for participant
combination 1 and 2 (non-excluded participants), none of these are significantly differ-
ent (see Table 5). Using a subset of the experiments in which the excluded participant
indicated to have felt either “excluded” or “very excluded” slightly improved the results
in the central region. However, the results from comparing the PLV value participant
combination 1 and 2 with the PLV values from the socially excluded participant with the
other two participants were still not statistically significant (see Table 7).

Conversely, the statistical analysis of the EEG results when computing the PLV value
after correcting for the baseline from before the language switch, actually did show a
significant difference in the central region for the beta frequency band and the gamma
frequency band. While both these comparisons were statistically significant, the results
from the gamma frequency band had greater significance (p = 0.006, p = 0.010 compared
to p = 0.036, p = 0.047)). However, after applying the False Discovery Rate (FDR)
neither of these results remain significant.

Interestingly, the results show that the PLV values after baseline correction are slightly
negative for all participant combinations (see Table 11). This shows that all participants
were affected by the language switch. While it was expected for participant combinations 1
and 3 as well as 2 and 3, because the assumption was that the socially excluded participant
(participant 3) would have the greatest change in PLV value, it is clear that this also
happened for the other two participants. One possible explanation for this is that most
of these participants mentioned that they were a little uncomfortable and nervous that
they had to exclude a participant. This might have led them to focus on other things
than team coordination with each other, thus decreasing the PLV level and, thereby, the
synchronisation, between them.

6.1.1.2 Channel Level

Subsequently, the PLV values at channel level were also investigated. Results show that
only channel C4 is statistically significant when comparing the PLV value of participant
1 and 2 (non-excluded participants) with the other two combinations. This is the case
for all frequency bands, except the gamma frequency band. Instead, the delta and theta
frequency bands performed best with p-values of p = 0.017, p = 0.022 and p = 0.019, p
= 0.020 for the delta and theta frequency bands, respectively (see Table 6). However, the
statistical significance of this channel does not hold after FDR correction.

On a channel level, the results were also greatly improved after baseline correction, with
the results showing greater statistical significance. In total, there are also more channels
for which one of the combinations shows statistical significance. However, for the delta,
theta, alpha, and beta frequency bands, it is still only channel C4 which shows statistical
significance for both comparisons. Interestingly, it is channel FC2 (and not channel C4)
which shows statistical significance in the gamma frequency band (see Table 13). Never-
theless, both of these channels belong to the central brain region. The theta and alpha
band both show the greatest significance (p = 0.008, p = 0.007 and p = 0.009, p = 0.006,
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respectively). However, these results do not remain significant after FDR correction as
well. This is even the case after using just a subset of the least noisy channels to reduce
the number of multiple comparisons.

6.1.1.3 Overall Conclusions and Comparison to Literature

From this EEG data analysis it is clear that the central brain region has the most promis-
ing results. This is shown in both the statistical analysis at regional level as well as at
channel level since channel C4 (the most significant channel) is part of the central region.
These results are somewhat similar to the results from Lindenberger et al. (2009) since
their research showed that brain-to-brain synchrony primarily involved the fronto-central
regions of the brain. Furthermore, Lindenberger et al. (2009) used the PLI method to
compute brain-to-brain synchrony, which is a very similar measure to the PLV measure
used in this thesis research and should give the same results when the sources of the
data are separated between brains (Aydore et al., 2013). However, the performed task
was completely different, since the participants were asked to play guitar together in the
research by Lindenberger et al. (2009). Social exclusion was, thus, not involved in this
experiment at all. Moreover, these findings are also somewhat in line with the findings
from Wang et al. (2018). After all, channel C4 is part of the Mirror Neuron System (MNS)
since it is located on the primary motor cortex (Wang et al., 2006). The research by Wang
et al. (2018) showed that the brain areas in the MNS (and MS) neural systems are most
likely to show brain-to-brain synchrony, which matches the findings in this thesis research.
Furthermore, since the experimental task and subsequent feelings of social exclusion are
all language-based, it is also interesting to note that the primary motor cortex is related
to language (Wang et al., 2018).

Interestingly, the frequency band with the strongest result is not the same for the regional
level and channel level. For the regional level, the best results are achieved with the
gamma frequency band, while the channel level achieved the best results with either the
theta or alpha frequency bands. Although the results at channel level are, thus, in stark
contrast with the results on a regional level, they are more in line with previous research.
After all, previous research showed that the frequency bands below 12 Hz (delta, theta,
alpha) show the strongest brain-to-brain synchrony (Babiloni et al., 2006; Czeszumski
et al., 2020; Mueller et al., 2013; Davidesco et al., 2019a,b; Kawasaki et al., 2013). These
results are to be expected since these studies also investigated brain-to-brain synchrony at
channel level instead of at a broader regional level. It seems that averaging over multiple
channels to investigate the brain region more broadly caused the frequency band for which
the synchronisation was sensitive to become much higher. Nevertheless, these studies did
not investigate social exclusion or another psychological construct. Instead, they studied
other social interactions, such as cooperation during a card game, simultaneous guitar
playing, and speech tasks (Babiloni et al., 2006; Czeszumski et al., 2020; Mueller et al.,
2013; Davidesco et al., 2019a,b; Kawasaki et al., 2013).

Even though the EEG results from this research are not significant there is at least an
indication that the central brain region in combination with the gamma frequency band
at the regional level and theta/alpha frequency band at the channel level is the most
important when comparing brain-to-brain synchrony after social exclusion. Nevertheless,
this is merely an indication and is, unfortunately, not proven yet with this research. This
exact combination of results cannot be compared to the literature since, to the best of
the researchers’ knowledge, no previous work has ever investigated the effect of social
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exclusion on the brain-to-brain synchrony in an EEG hyperscanning study such as this.
However, the brain-to-brain synchrony for social inclusion (team coordination) situations,
have been investigated using EEG hyperscanning studies before. An example of such a
study is the study by Szymanski et al. (2017), although their experimental setting was
slightly different since they had participants perform a visual search task. Their findings
show similar results to the ones indicated by the current research since they have shown
that the brain-to-brain synchrony was also highest in the central region with the theta
(and delta) frequency band. These results give further indication that the central brain
area is important for showing high brain-to-brain synchrony when people are socially
included as well as the lack thereof when people are being socially excluded.

One possible reason for the lack of significance in the research results could be found in the
low average PLV value (+/- 0.32) that was calculated in this research. Other literature
has shown much higher PLV values of at least 0.6 on average (Jian et al., 2017; Wang
et al., 2006). While Wang et al. (2006) had some results with similar PLV values, their
research also had much higher PLV values of around 0.85. The current research was far
from reaching PLV values as high as that. This suggests that a psychological construct
such as social exclusion (instead of other social interactions) might simply be much harder
to quantify using brain-to-brain synchrony measures such as this.

A possible cause for this low PLV might be because of the pseudo-trials that needed to
be created to compensate for the fact that PLV computation does not work with only one
single trial (as was the case because of the short time window) (Lachaux et al., 1999).
If multiple “real” trials could have been used, then every trial would presumably show a
similar synchronisation trend across each trial. After all, the idea of using trials is that a
certain “action” is repeated for each trial and that a similar trend should be shown across
all these trials. With these pseudo-trials on the other hand, this similar synchronisation
trend would be much less pronounced since that “action” is not repeated for each trial.
Instead, only a small segment of the “action” would be used for each of the pseudo-trials
because a sliding time window is used to create these pseudo-trials. If there is a lot of
variance during the time window, the PLV computation across these pseudo-trials would
result in a low PLV value. Gysels and Celka (2004) also used a sliding time window to
create pseudo-trials for their PLV calculation, although their purpose was to determine
the usefulness of synchronisation in classifying mental tasks. However, in contrast to the
results acquired by this thesis research, Gysels and Celka (2004) found PLV values of
around 0.6 which is similar to the findings from Jian et al. (2017) and Wang et al. (2006).
This would imply that the use of pseudo-trials does not influence the resulting PLV values
(or at least not by much). This makes it less credible that the PLV values are this low
because of the use of pseudo-trials. The most credible explanation for these low PLV
values is, thus, still the suggested theory that social exclusion is simply much harder to
quantify using such brain-to-brain synchrony measures.

6.1.2 Heart Rate (HR)

For the heart rate analysis, a 5-second and 10-second window after the first language
switch were compared to each other. The results show that the correlation from partic-
ipant 1 and 2 (non-excluded participants) is only higher than the correlation from the
other two participant combinations for experiment 2, 3, and 12 in the 5-second window
and experiment 5, 7, 10, and 12 in the 10-second window. For these individual exper-
iments, the differences are statistically significant (p = 0.0001 for both comparisons).
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Thus, only experiment 12 is significant for both time windows. Conversely, the mean
correlation values from all experiments are far from having a statistically significant dif-
ference since the correlation from participant 1 and 2 (non-excluded participants) is only
the second-highest for the 5-second window, and the lowest for the 10-second window (as
opposed to the expected highest correlation). Moreover, the overall mean correlation is
even negative for these non-excluded participants (see Tables 14 and 16). This suggests
that the (mean) IBI correlation values for each participant combination are not a very
good representative for the synchronisation between participants. One possible explana-
tion for this lack of consistent correlation for the participant combinations could be the
large variation between all experiments; only a small number of experiments show a pos-
itive correlation for the non-excluded participants while the rest of the experiments even
show varying degrees of negative correlations. This large variation could indicate that IBI
correlation might not be sufficient for comparing HR synchronisation from an experiment
in which social exclusion is measured. These results are in contrast to the research by
Reinerman-Jones et al. (2011) which suggested that correlation was a good measurement
for detecting synchrony between HR data.

Nevertheless, the results suggest that there is at least an indication that social exclusion
might be able to be measured using HR. After all, the analysis results from experiment
2, 3, and 12 for the 5-second window, and experiment 5, 7, 10, and 12 for the 10-second
window showed the synchronisation as expected. Even though there are clear differences
between the two time windows, both show that the socially excluded participant had the
lowest IBI, indicating a faster heart rate (see Figure 19). This faster heart rate indicates
higher arousal for this excluded participant which, in turn, could indicate that they were
feeling more negative emotions such as anger or anxiety because of the social exclusion
which they were experiencing, as is shown in Figure 2 (Molden et al., 2009). This is in line
with previous work from Williams (2002) which researched the emotions social exclusion
could evoke.

The fact that there is quite a change in the trend of the IBI curve after the 5-second time
window (and is still changing quite a bit in the 10-second time window), suggests a delay
of several seconds (or more) before the effect of the exclusion is shown in the heart rate.
Perhaps this also means that the correlation measure actually could indicate synchrony,
but that it needs to be computed for IBI data over a later and/or longer time window. If
that were the case, the findings would be in line with the work by Reinerman-Jones et al.
(2011).

However, most previous literature analysed the HR data based on the HRV instead of
the IBI (Acharya et al., 2006). The reason that this was not done in the current study
is because it was not possible since the used time windows were too short. If it is indeed
the case that a longer time window is needed to reliably use the PCC method to measure
synchrony, then using HRV might be better suited.

6.1.3 Galvanic Skin Response (GSR)

The results of the GSR analysis showed that the mean correlation of participant 1 and 2
(non-excluded participants) is higher than the other two combinations for experiment 4, 5,
8, and 9. The differences within these experiments are statistically significant as well (with
p = 0.0001 for both comparisons). See Tables 18 and 19. However, these experiments are
completely different from the significant experiments after HR analysis (2, 3, 12 and 5, 7,
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10, 12). Only experiment 5 is also significant for the 10-second window in the HR analysis.
Furthermore, the mean correlation from participant 1 and 2 across all experiments is only
the second-highest, and not the highest as was expected. Similar to the HR analysis
results, these results suggest that the (mean) GSR correlation values for each participant
combination are not a very good representative for synchrony between participants. This
is once more in contrast with the findings by Reinerman-Jones et al. (2011) since their
overview of the comparison between several different statistical analysis methods showed
that correlation (and ANOVA) provide the best direct methods for analysing physiological
data such as HR and GSR.

Additionally, the trend of the GSR signal after the first language switch was also investi-
gated. At first glance, it appeared that the socially excluded participant had a much more
negative trend than the other two participants (see Figure 21). However, after calculating
the directionality of the curve and plotting the GSR signals of the three participants on
the same scale, it became clear that participant 1 actually had the most negative direc-
tionality and that the direction of the curve of the socially excluded participant was the
most positive (or least negative). See Figure 22. This suggests that the directionality
of the curve might have influenced the correlation between the participants, causing the
measure not to work as expected. Nevertheless, when participant 1 and 2 (non-excluded
participants) had a higher correlation to each other (experiment 4, 5, 8, 9), the GSR curve
from the socially excluded participant increases during the analysed time window. This
increased skin conductance response shows that the socially excluded participant has a
higher sweat gland activity which indicates higher arousal and could thus indicate more
negative emotions (Molden et al., 2009).

However, even though the literature suggests that skin conductance measures are generally
regarded as the most sensitive of emotional arousal such as this (Frazier et al., 2004), the
results from the HR analysis were actually more in line with expectations. After all,
the findings from the GSR analysis show that experiment 4, 5, 8, and 9 are significantly
different, while two of socially excluded participants in these experiments indicated that
they only felt slightly excluded. Conversely, for the HR analysis, the socially excluded
participant indicated to have felt very excluded for two of these experiments and excluded
for the rest of these experiments (2, 3, 12 and 5, 7, 10, 12).

6.2 Contributions

There are several contributions made by this thesis research. First of all, this study
has pioneered in using three neurophysiological signals (EEG, HR, and GSR) to measure
feelings of social exclusion induced by a language barrier. Until now, such psychological
constructs had not been investigated by actually measuring neurophysiological signals.
Instead, earlier research has only ever used surveys to measure social exclusion. Fur-
thermore, previous research has mostly only conducted hyperscanning studies using two
participants while this thesis research has been one of the first to simultaneously measure
the data from three participants during an experiment (Xie et al., 2019; Burgess, 2013).
Lastly, while social exclusion has previously only been researched in workplace settings,
this study has investigated social exclusion among students at a university (Oshri et al.,
2008; Fiset and Bhave, 2019; Thau et al., 2007; Williams, 2007).
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6.3 Limitations

From the results that have been discussed, it can be concluded that there are still some
limitations and possibilities for future work when it comes to measuring social exclusion.
First of all, perhaps the most obvious limitation is the number of experiments that have
been conducted. This is especially the case because of the data loss of the first three
experiments, leaving only 13 experiments in total. If there are more experiments the
results could be different and the conclusions will be more meaningful.

Furthermore, another limitation is the high level of variance between the experiments.
One explanation for this might be that not all the participants that spoke in their mother
tongue excluded the third participant quite as much. Sometimes, one of the two par-
ticipants tried to give a brief summary to the socially excluded participant after their
discussion was over, while others only reacted to the socially excluded participant when
they directly asked them to speak in English again. Furthermore, the reactions from the
socially excluded participant also differed from person to person. Some went completely
quiet after the first two riddles and did not engage in helping behaviours anymore, while
others kept trying to insert themselves into the conversation. This last group indicated
that something similar to this has happened to them before and that they were simply
used to it. Inserting themselves is the only way in which they can take part in the discus-
sion in such cases. However, that does not lessen the fact that they felt socially excluded.
Nevertheless, this might not be a problem which can easily be overcome. People are all
different and will thus also always react differently in situations such as this.

Additionally, the experimental situation in which the feeling of social exclusion was in-
duced is, of course, different from the natural scenario. This is especially the case for the
two participants who are excluding the other participant. After all, linguistically ostracis-
ing someone usually happens involuntarily (Robinson et al., 2013), while it is done on
purpose in this experiment. While it might have the same effect on the socially excluded
participant, some of other two participants have indicated to have felt uncomfortable and
guilty while doing it (conversely, some indicated to have even enjoyed it). This might
have influenced the level of team coordination between them as well since they might
have been a little too worried about their task of excluding the other participant. Nev-
ertheless, they both needed to do that so it could also be argued that they at least felt
similarly and should still have a greater level of synchrony with each other than with the
excluded participant. Additionally, they have a shared goal of excluding the other par-
ticipant for which it might be argued that their level of synchronisation should increase
as well. Furthermore, the socially excluded participant sometimes guessed that there was
at least something going on because the researchers did not step in to ask the other two
participants to switch back to English. Perhaps it might have been better to at least say
that they should switch back to English a couple of times during the experiment (and
telling them that they should basically just ignore the researcher when that happens) to
make the socially excluded participant less suspicious. This could be investigated in a
future study. Of course, investigating a natural scenario would be most desirable, but it
is not actually possible to have a completely natural scenario. After all, it has to happen
in a research environment since the participants need to be equipped with the sensors.
Furthermore, when people are specifically asked to work together to solve a task, they
probably will not switch over to their mother tongue during that time. Unless, of course,
the task is so difficult or emotional that they cannot express themselves in English (Tenzer
et al., 2014).
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Moreover, participant 1 and 2 (non-excluded participants) were now determined based
on the seat arrangement. This way, participant 1, 2, and 3 were measured with the same
measuring equipment across all experiments. However, there might have been a better
way to determine who participant 1 and 2 were. Perhaps, it could have been decided based
on who took the lead in solving the riddles the most. The one who took the lead the most
could, for example, be participant 1. Nevertheless, the goal is to see that the synchrony
between participant 1 and 2 is higher than the synchrony of both other combinations.
This means that deciding who from the two participants speaking in their mother tongue
is participant 1 and who is participant 2 should not matter. Even so, another division of
participant 1 and 2 could have potentially improved the results, since it is now often the
case that participant 2 and 3 have a high level of synchrony. However, these results would
not necessarily have been meaningful, because seat arrangement should not matter.

Lastly, it was assumed that the PLV value becomes lower for each trial (each riddle). After
all, the first time people switch language, the surprise effect would be the strongest. This
feeling of exclusion might change over time, and it is, thus, expected that the contrast in
PLV becomes smaller in the later trials, since people would have basically gotten used to
being socially excluded. However, this assumption was not confirmed. Therefore, it would
be interesting to compare the data (from the HR and GSR data as well) from the first
language switch to the last language switch in another study, to see if this assumption is
true.

6.4 Recommendations for Future Work

Based on the limitations described above, several recommendations for future work can
be made. A first recommendation would be to verify and improve the results of this thesis
by conducting the experiments with more participants. Data from more participants will
make the statistical analyses, and thus the results, more reliable and meaningful than
they are now.

Furthermore, there were quite a lot of individual differences between the socially ex-
cluded participants in the way how they reacted to the social exclusion. Some people
fell quiet relatively quickly and engaged in fewer helping behaviours while others kept
inserting themselves into the conversation. It would be interesting to see if dividing these
participants into two groups (people who become quiet and people who keep inserting
themselves) could resolve the issue of variation. It is therefore recommended to study the
differences in the level of social exclusion between the participants who insert themselves
into the conversation as opposed to the participants who stay quiet.

Another recommendation would be to conduct the experiment in a more natural setting.
While a completely natural scenario is not possible, the occurrence of the language barrier
could arise more naturally. Since the switch to the mother tongue usually happens in a
non-purposeful way, simply because it is easier to express yourself in your own language
when something difficult needs solving (Robinson et al., 2013), it would be interesting to
conduct an experiment with a very difficult language-oriented task. This would hopefully
cause the language barrier to arise involuntarily. There are two main advantages to this:
(1) the two participants who are excluding the other participant would not constantly
think and worry about it (which might have influenced the results), and the socially
excluded participant would become less suspicious because of this more natural language
barrier. However, beware that this kind of experiment could be a hit or miss scenario
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since it is possible that a language barrier does not occur in every conducted experiment.
In such a scenario, movement artefacts could also play a larger role, since people will likely
move around more if they are to behave as natural as possible. Perhaps the use of fNIRS
brain-imaging equipment instead of EEG would be preferable in such a case because of
its greater resistance to motion artefacts (Czeszumski et al., 2020).

Additionally, the PLV value that was computed per region was based on all the channels
in that region (no matter if the first (M1) or second method (M2) was used). Even
though all channels have been extensively pre-processed, some channels are still noisier
than others. Therefore, it might be interesting to pick only the two cleanest (least noisy)
channels per region for each participant, and only use those representative channels to
compute the PLV values. This might improve the results since only the best channels are
used. This will at least make the regional results more reliable, since there will be less of
a chance of achieving synchrony by luck, simply because of noise.

Moreover, since the PLV values were quite low in comparison to other researches (Jian
et al., 2017; Wang et al., 2006; Gysels and Celka, 2004) it is advised to investigate whether
another EEG synchrony measure would improve these results. Partial Directed Coherence
(PDC) for example, is a frequently used synchrony measure (Burgess, 2013) which could
potentially lead to improvements in the significance level of the comparisons of the non-
excluded participants with the socially excluded participant. This method is more focused
on the causal links and information flow between brains (Czeszumski et al., 2020). This
PDC algorithm has been successfully used by Babiloni et al. (2006) to measure brain-to-
brain synchrony between participants.

Furthermore, the results from the HR data suggested that there might be a delay in
the expected IBI response. Another recommendation is therefore to increase the window
length of the analysis and to start this time window several seconds after the language
switch. However, if an even larger time window of several minutes would be used, the
use of Heart Rate Variability (HRV) instead of IBI could potentially improve the results
even more since most previous research also uses this method (Acharya et al., 2006). It
would thus be recommended to use HRV instead of IBI. Increasing the window length
should ensure that there is enough information available to calculate the HRV. Much more
research into the emotional arousal indicated by the HR have been conducted using HRV
(Acharya et al., 2006) so using the HRV will likely improve the reliability of the results.
As for the GSR data, correlation showed to not be a very good measure for synchrony.
Since there are many other different measures to analyse GSR data, it might be better
to use such an other measure. For example, it might be interesting to look into detecting
the peaks of the SCR and compare those peaks across participants.

Lastly, while this research looked at the synchronisation from each of the three modalities
(EEG, HR, GSR) separately, future work could also focus on actually combining these
three modalities into a multi-modal system to improve the measurement of social exclu-
sion. An interesting way to do this would be to make a classification system to classify
social exclusion. The synchrony measures that have been used in this thesis research,
in addition to other signal features, could potentially be used as input features for such
a classification system. How well this classifier performs will indicate how well social
exclusion can be measured using these neurophysiological signals.
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7 Conclusion

In this thesis, one of the first hyperscanning studies with three participants has been
conducted to answer the following main research question:

How does social inclusion/exclusion induced by a language barrier reflect in neurophysio-
logical signals?

This chapter provides the conclusions that can be drawn from the research described in
this thesis. As has been specified in the Introduction, the main research question has
been divided into three sub-questions, which will be answered one by one.

To what extent can a language barrier cause feelings of social exclusion?

Through the results of a post-experiment questionnaire, it was found that, out of the 13
socially excluded participants, 4 felt very excluded, 7 felt excluded, and 2 participants felt
slightly excluded. None of them selected one of the other two possibilities (neutral, not
excluded at all). All socially excluded participants, thus, indicated that they actually felt
excluded. From this, it can be concluded that social exclusion can be reliably induced by
a language barrier.

To what extent is social inclusion/exclusion reflected in the synchrony between individuals?

Even though the feeling of social exclusion was successfully induced, it is not reflected
very well in the synchrony between the participants. The EEG synchrony computed with
the PLV measure was relatively low overall, with a mean value around +/- 0.32 out of 1.
The greatest synchrony difference between the socially excluded participant and the other
two participants was found in the central region of the brain with the gamma frequency
band for the regional comparison and the theta or alpha frequency bands for comparison
at channel level. While these results were significant before FDR correction, they do not
remain significant after correction. Nevertheless, there is at least an indication that the
central brain region is the most important when comparing brain-to-brain synchrony after
socially excluding someone.

Furthermore, the overall HR and GSR synchrony between the participants, computed
with the PCC, was not a good indication of the social exclusion felt by the socially ex-
cluded participants. The mean correlation between the two non-excluded participants
across all experiments was not even the highest (and sometimes even negative) despite
the expectation that it would be, and was, thus, not significantly higher as well. The HR
and GSR results only show a significant difference in synchrony for a few individual ex-
periments. Thus, there is merely an indication that social inclusion/exclusion is reflected
in the synchrony between individuals and it is not proven yet with this research.

To what extent can social inclusion/exclusion be measured using EEG, HR, and GSR?

Since social inclusion/exclusion was not reflected well in the synchrony between individ-
uals, and this synchrony was based on the measured EEG, HR, and GSR data, it can be
concluded that social inclusion/exclusion was not measured well using these three modal-
ities in this thesis research. Out of the three modalities used in this research, the best
results for measuring social inclusion/exclusion are achieved with the EEG modality, al-
though, as has been discussed, these results are not significant. However, this does not
necessarily mean that EEG, HR and GSR cannot be used to measure social inclusion/ex-
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clusion at all. Several recommendations for improvements have already been discussed
in Section 6.4. For example, the usage of a different EEG synchrony measure (such as
PDC), using HRV instead of IBI, and detecting and comparing the SCR instead of just
looking at the GSR correlation. These changes could potentially improve the extent to
which social inclusion/exclusion can be measured using EEG, HR, and GSR.

In conclusion, the fact that there is a significant difference in the PLV values of the EEG
data before the calculation of the FDR could at least be an indication that it might
be possible to use the PLV values to measure synchrony and, thereby, social exclusion.
Furthermore, the HR and GSR data also indicate that there is at least some difference
between the data from the socially excluded participants compared to the other two par-
ticipants. However, further investigation is needed to make any meaningful and definitive
conclusions about the extent that social exclusion induced by a language barrier can be
measured with these three neurophysiological signals.
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A Measures for Reducing Discomfort

As has been stated, it is possible that participants might feel uncomfortable because of
the social exclusion taking place. However, in order to mitigate this effect, a time limit
for the experiment will be set at 15 minutes. This should give ample time to achieve the
desired data as well as minimise the time participants could be feeling uncomfortable.
Knowing the full extent of the experiment, as well as the fact that the experiment only
takes 15 minutes, there is no reason for the two participants who will ignore the third
participant during communication with each other to feel so uncomfortable that they wish
to withdraw. Furthermore in order to make the discomfort for the third participant as low
as possible, every time a new riddle is addressed (there are seven in total) this is spoken
aloud in English, so everyone can understand it. This should reduce the level of discomfort
before the third person is ignored again during the largest bulk of communication for
solving the riddle. Nevertheless, if it should happen that the third participant still feels
so uncomfortable that he/she wishes to withdraw, they are, of course, free to do so. This
just means that the experiment will have to be repeated with new participants.

The researchers realise that there is still a possibility that the participants (and the third
participant in particular) could feel discomfort and stress. While this experiment setting
is necessary to get the desired response from the participants, extra measures have been
taken to ensure that this discomfort and stress will not lead to problematic situations.
In addition to the time limit of 10 minutes and the switch back to English for every new
riddle the level of discomfort has been minimised for the participants in the following
three ways:

• The Informed Consent Form and Information Brochure both already indicate that
there could be some discomfort during the execution of the task. This way, the
participants are at least partly prepared for any feelings of discomfort they may
have

• During the experiment, there is a stop protocol in place. Both the researcher and
supervisor will be nearby at all times to observe the participants and determine
whether the participants are feeling too uncomfortable (even though this is not
expected). Signs that show discomfort that will be watched out for are: leaning
away, a frown, tense or crossed arms, covering the neck dimple (or grabbing a
necklace), rubbing of the forehead, and neck touching . Taking these, and other,
signs into account, the researchers will continuously estimate whether it is necessary
to ask the participants if he/she still wants to continue. After a continuation of the
experiment, if one of these signs has occurred multiple times (or multiple signs have
occurred), the experiment will be stopped immediately.

• After the experiment, the participants (with the third participant in particular)
will be debriefed about the true purpose of the experiment and the researchers
will apologise for the, unfortunately, necessary experiment setting. In addition to
that, the participants will also have the opportunity to give their opinion and other
thoughts about the experiment. The third participant will also be asked if they
still consent their data being used for the study (see Post Experiment Approval
document)

Thankfully, executing the stop protocol has been necessary during any of the experiments.
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B Extra Figures and Tables

B.1 Regional Level Without Baseline Correction

Frontal Central Parietal Temporal Occipital
D 1+2 0.3196 ± 0.0185 0.3230 ± 0.0108 0.3184 ± 0.0106 0.3138 ± 0.0120 0.3228 ± 0.0253

1+3 0.3222 ± 0.0193 0.3210 ± 0.0106 0.3249 ± 0.0133 0.3231 ± 0.0221 0.3369 ± 0.0367
2+3 0.3196 ± 0.0158 0.3178 ± 0.0127 0.3174 ± 0.0079 0.3099 ± 0.0170 0.3141 ± 0.0182

T 1+2 0.3196 ± 0.0185 0.3230 ± 0.0108 0.3184 ± 0.0106 0.3138 ± 0.0120 0.3228 ± 0.0253
1+3 0.3222 ± 0.0193 0.3210 ± 0.0106 0.3249 ± 0.0133 0.3231 ± 0.0221 0.3369 ± 0.0367
2+3 0.3196 ± 0.0158 0.3178 ± 0.0127 0.3174 ± 0.0079 0.3099 ± 0.0170 0.3141 ± 0.0182

A 1+2 0.3196 ± 0.0185 0.3230 ± 0.0108 0.3184 ± 0.0106 0.3138 ± 0.0120 0.3228 ± 0.0253
1+3 0.3222 ± 0.0193 0.3210 ± 0.0106 0.3249 ± 0.0133 0.3231 ± 0.0221 0.3369 ± 0.0367
2+3 0.3196 ± 0.0158 0.3178 ± 0.0127 0.3174 ± 0.0079 0.3099 ± 0.0170 0.3141 ± 0.0182

B 1+2 0.3199 ± 0.0176 0.3222 ± 0.0103 0.3189 ± 0.0104 0.3128 ± 0.0128 0.3229 ± 0.0235
1+3 0.3216 ± 0.0186 0.3200 ± 0.0099 0.3244 ± 0.0123 0.3213 ± 0.0212 0.3356 ± 0.0346
2+3 0.3193 ± 0.0145 0.3170 ± 0.0114 0.3172 ± 0.0071 0.3104 ± 0.0154 0.3136 ± 0.0169

G 1+2 0.3187 ± 0.0077 0.3187 ± 0.0083 0.3208 ± 0.0078 0.3122 ± 0.0196 0.3186 ± 0.0134
1+3 0.3167 ± 0.0113 0.3146 ± 0.0078 0.3210 ± 0.0093 0.3173 ± 0.0194 0.3237 ± 0.0208
2+3 0.3173 ± 0.0074 0.3142 ± 0.0071 0.3182 ± 0.0045 0.3079 ± 0.0140 0.3160 ± 0.0123

Table 20: Mean and Standard Deviation of PLV values for each frequency band
(D=delta,T=theta,A=alpha,B=beta,G=gamma) and participant combination (3=excluded
participant). The bold/italic values indicate the frequency band and brain region combi-
nations for which the mean PLV value is higher for participant combination 1+2 (non-
excluded participants) than both other combinations. → Method M1
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Frontal Central Parietal Temporal Occipital
D 1+2 0.3178 ± 0.0301 0.3251 ± 0.0348 0.3208 ± 0.0256 0.3162 ± 0.0185 0.3248 ± 0.0401

1+3 0.3218 ± 0.0456 0.3325 ± 0.0340 0.3213 ± 0.0338 0.3087 ± 0.0241 0.3363 ± 0.0575
2+3 0.3198 ± 0.0442 0.3133 ± 0.0249 0.3267 ± 0.0350 0.3052 ± 0.0255 0.3071 ± 0.0246

T 1+2 0.3178 ± 0.0300 0.3250 ± 0.0346 0.3210 ± 0.0254 0.3162 ± 0.0184 0.3248 ± 0.0398
1+3 0.3218 ± 0.0454 0.3323 ± 0.0337 0.3213 ± 0.0336 0.3087 ± 0.0239 0.3361 ± 0.0573
2+3 0.3197 ± 0.0438 0.3135 ± 0.0250 0.3265 ± 0.0348 0.3052 ± 0.0256 0.3071 ± 0.0245

A 1+2 0.3178 ± 0.0298 0.3248 ± 0.0341 0.3212 ± 0.0251 0.3162 ± 0.0181 0.3248 ± 0.0392
1+3 0.3218 ± 0.0450 0.3317 ± 0.0330 0.3212 ± 0.0331 0.3087 ± 0.0233 0.3359 ± 0.0568
2+3 0.3194 ± 0.0430 0.3141 ± 0.0250 0.3261 ± 0.0343 0.3050 ± 0.0256 0.3071 ± 0.0242

B 1+2 0.3176 ± 0.0286 0.3238 ± 0.0316 0.3221 ± 0.0237 0.3159 ± 0.0171 0.3248 ± 0.0360
1+3 0.3221 ± 0.0426 0.3293 ± 0.0304 0.3198 ± 0.0302 0.3094 ± 0.0199 0.3347 ± 0.0536
2+3 0.3181 ± 0.0389 0.3168 ± 0.0250 0.3246 ± 0.0311 0.3045 ± 0.0261 0.3075 ± 0.0222

G 1+2 0.3244 ± 0.0160 0.3223 ± 0.0226 0.3196 ± 0.0166 0.3184 ± 0.0207 0.3198 ± 0.0179
1+3 0.3139 ± 0.0210 0.3215 ± 0.0205 0.3060 ± 0.0191 0.3161 ± 0.0234 0.3208 ± 0.0337
2+3 0.3161 ± 0.0224 0.3204 ± 0.0252 0.3219 ± 0.0231 0.3012 ± 0.0163 0.3134 ± 0.0159

Table 21: Mean and standard Deviation of PLV values for each frequency band
(D=delta,T=theta,A=alpha,B=beta,G=gamma) and participant combination (3=excluded
participant). The bold/italic values indicate the frequency band and brain region combi-
nations for which the mean PLV value is higher for participant combination 1+2 (non-
excluded participants) than both other combinations. → Method M2
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Method Freq band Combination Region p-value
1 D 1+2/1+3 Central 0.32217

1+2/2+3 0.13459
T 1+2/1+3 Central 0.31187

1+2/2+3 0.13229
A 1+2/1+3 Central 0.32067

1+2/2+3 0.13079
B 1+2/1+3 Central 0.29977

1+2/2+3 0.12099
G 1+2/1+3 Central 0.10129

1+2/2+3 0.080092
1+2/1+3 Frontal 0.29857
1+2/2+3 0.31037

2 D 1+2/1+3 Temporal 0.19888
1+2/2+3 0.11289

T 1+2/1+3 Temporal 0.19348
1+2/2+3 0.11339

A 1+2/1+3 Temporal 0.18378
1+2/2+3 0.11169

B 1+2/1+3 Temporal 0.19598
1+2/2+3 0.10699

G 1+2/1+3 Temporal 0.39106
1+2/2+3 0.01229
1+2/1+3 Frontal 0.077792
1+2/2+3 0.14419
1+2/1+3 Central 0.46815
1+2/2+3 0.42146

Table 22: p-values for the frequency bands and regions for which the mean PLV value from
participant combination 1 and 2 is higher than both other combinations. The bold/italic
value indicates the frequency band and brain region combination for which the p-value is
closest to being significant for both participant combination comparisons.
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Figure 24: Method M1: Delta frequency band

Figure 25: Method M1: Theta frequency band
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Figure 26: Method M1: Alpha frequency band

Figure 27: Method M1: Beta frequency band
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Figure 28: Method M1: Gamma frequency band

Figure 29: Method M2: Delta frequency band
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Figure 30: Method M2: Theta frequency band

Figure 31: Method M2: Alpha frequency band
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Figure 32: Method M2: Beta frequency band

Figure 33: Method M2: Gamma frequency band
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B.2 Channel Level Without Baseline Correction

Freq band Combination Channel p-value
D 1+2/1+3 5 (FC1) 0.68123

1+2/2+3 0.023898
1+2/1+3 21 (CP6) 0.037796
1+2/2+3 0.21478
1+2/1+3 23 (C4) 0.016898
1+2/2+3 0.021698
1+2/1+3 29 (AF4) 0.66843
1+2/2+3 0.028897

T 1+2/1+3 5 (FC1) 0.69543
1+2/2+3 0.021798
1+2/1+3 21 (CP6) 0.035396
1+2/2+3 0.21728
1+2/1+3 23 (C4) 0.019198
1+2/2+3 0.019598
1+2/1+3 29 (AF4) 0.62614
1+2/2+3 0.024698

A 1+2/1+3 5 (FC1) 0.69023
1+2/2+3 0.023598
1+2/1+3 21 (CP6) 0.039096
1+2/2+3 0.21188
1+2/1+3 23 (C4) 0.020298
1+2/2+3 0.021498
1+2/1+3 29 (AF4) 0.61864
1+2/2+3 0.024798

B 1+2/1+3 5 (FC1) 0.62514
1+2/2+3 0.021098
1+2/1+3 16 (Oz) 0.47145
1+2/2+3 0.047195
1+2/1+3 21 (CP6) 0.045795
1+2/2+3 0.19288
1+2/1+3 23 (C4) 0.020298
1+2/2+3 0.021598
1+2/1+3 29 (AF4) 0.61114
1+2/2+3 0.018598

G 1+2/1+3 19 (P4) 0.12719
1+2/2+3 0.017098
1+2/1+3 26 (FC2) 0.037696
1+2/2+3 0.058394
1+2/1+3 29 (AF4) 0.43766
1+2/2+3 0.026897

Table 23: p-values for the frequency bands and channels for which the mean PLV value
from participant combination 1 and 2 is higher than both other combinations. The bold/i-
talic values indicate the chan- nels for which both comparisons are statistically signi
cant.
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Figure 34: All channels: Delta frequency band
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Figure 35: All channels: Theta frequency band
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Figure 36: All channels: Alpha frequency band
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Figure 37: All channels: Beta frequency band
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Figure 38: All channels: Gamma frequency band
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B.3 Regional Level Without Baseline Correction: Subsets

Subset Frontal Central Parietal Temporal Occipital
all 1+2 0.3187 ± 0.0077 0.3187 ± 0.0083 0.3208 ± 0.0078 0.3122 ± 0.0196 0.3186 ± 0.0134

1+3 0.3167 ± 0.0113 0.3146 ± 0.0078 0.3210 ± 0.0093 0.3173 ± 0.0194 0.3237 ± 0.0208
2+3 0.3173 ± 0.0074 0.3142 ± 0.0071 0.3182 ± 0.0045 0.3079 ± 0.0140 0.3160 ± 0.0123

VE 1+2 0.3239 ± 0.0095 0.3187 ± 0.0026 0.3191 ± 0.0086 0.3103 ± 0.0247 0.3197 ± 0.0168
1+3 0.3178 ± 0.0142 0.3179 ± 0.0081 0.3161 ± 0.0059 0.3248 ± 0.0224 0.3253 ± 0.0075
2+3 0.3187 ± 0.0060 0.3113 ± 0.0081 0.3167 ± 0.0037 0.3006 ± 0.0146 0.3119 ± 0.0111

E 1+2 0.3198 ± 0.0079 0.3197 ± 0.0076 0.3219 ± 0.0078 0.3110 ± 0.0200 0.3201 ± 0.0130
1+3 0.3192 ± 0.0104 0.3154 ± 0.0080 0.3219 ± 0.0100 0.3206 ± 0.0179 0.3246 ± 0.0226
2+3 0.3162 ± 0.0069 0.3143 ± 0.0073 0.3174 ± 0.0045 0.3064 ± 0.0126 0.3166 ± 0.0133

EC 1+2 0.3233 ± 0.0083 0.3161 ± 0.0046 0.3177 ± 0.0076 0.3043 ± 0.0214 0.3202 ± 0.0130
1+3 0.3216 ± 0.0126 0.3179 ± 0.0092 0.3183 ± 0.0075 0.3229 ± 0.0232 0.3339 ± 0.0252
2+3 0.3189 ± 0.0052 0.3146 ± 0.0082 0.3180 ± 0.0035 0.3037 ± 0.0136 0.3173 ± 0.0130

Table 24: Mean and standard deviation of PLV values per brain regions for each subset
(VE=Very Excluded, E=Excluded, EC=Excluded+Connected) and each participant com-
bination (3=excluded participant). Results are only shown from the gamma frequency
band with Method M1. The bold/italic values indicate the frequency band and brain region
combinations for which the mean PLV value is higher for participant combination 1+2
(non-excluded participants) than both other combinations.

Figure 39: Subset VE with gamma frequency band: all experiments in which the excluded
participant actually felt very excluded.
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Figure 40: Subset E with gamma frequency band: all experiments in which the excluded
participant actually felt (very) excluded. Best performing combination for central brain
region.

Figure 41: Subset EC with gamma frequency band: all experiments in which the excluded
participant actually felt (very) excluded and the other two participants felt most connected
to each other.
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B.4 Channel Level Without Baseline Correction: Subsets

Subset Combination Channel p-value
all 1+2/1+3 5 (FC1) 0.68123

1+2/2+3 0.023898
1+2/1+3 21 (CP6) 0.037796
1+2/2+3 0.21478
1+2/1+3 23 (C4) 0.016898
1+2/2+3 0.021698
1+2/1+3 29 (AF4) 0.66843
1+2/2+3 0.028897

VE 1+2/1+3 5 (FC1) 0.51665
1+2/2+3 0.0050995
1+2/1+3 16 (Oz) 0.20428
1+2/2+3 0.035396
1+2/1+3 17 (O2) 0.015098
1+2/2+3 0.073093
1+2/1+3 18 (PO4) 0.53225
1+2/2+3 0.016398
1+2/1+3 23 (C4) 0.21618
1+2/2+3 0.043096
1+2/1+3 29 (AF4) 0.42206
1+2/2+3 0.0082992

E 1+2/1+3 5 (FC1) 0.75212
1+2/2+3 0.026597
1+2/1+3 6 (FC5) 0.052395
1+2/2+3 0.28217
1+2/1+3 16 (Oz) 0.46585
1+2/2+3 0.046695
1+2/1+3 19 (P4) 0.66233
1+2/2+3 0.016998
1+2/1+3 23 (C4) 0.068093
1+2/2+3 0.035296
1+2/1+3 29 (AF4) 0.74453
1+2/2+3 0.010699

EC 1+2/1+3 5 (FC1) 0.71673
1+2/2+3 0.00072993
1+2/1+3 23 (C4) 0.076592
1+2/2+3 0.0060994
1+2/1+3 29 (AF4) 0.80492
1+2/2+3 0.024098

Table 25: p-values for the delta frequency band and channels for which the mean PLV
value from participant combination 1 and 2 (non-excluded participants) is higher than
both other combinations (3=excluded participant). Significance values are shown for each
sub-set (VE=Very Excluded, E=Excluded, EC=Excluded+Connected). The bold/italic
value indicate best performing subset and brain region combination.
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Subset Combination Channel p-value
all 1+2/1+3 5 (FC1) 0.69543

1+2/2+3 0.021798
1+2/1+3 21 (CP6) 0.035396
1+2/2+3 0.21728
1+2/1+3 23 (C4) 0.019198
1+2/2+3 0.019598
1+2/1+3 29 (AF4) 0.62614
1+2/2+3 0.024698

1 1+2/1+3 5 (FC1) 0.51515
1+2/2+3 0.0038996
1+2/1+3 16 (Oz) 0.19478
1+2/2+3 0.033797
1+2/1+3 17 (O2) 0.016398
1+2/2+3 0.070093
1+2/1+3 18 (PO4) 0.52815
1+2/2+3 0.013999
1+2/1+3 23 (C4) 0.21868
1+2/2+3 0.043596
1+2/1+3 29 (AF4) 0.42256
1+2/2+3 0.010099

2 1+2/1+3 5 (FC1) 0.74363
1+2/2+3 0.027897
1+2/1+3 16 (Oz) 0.46145
1+2/2+3 0.049995
1+2/1+3 19 (P4) 0.67923
1+2/2+3 0.015498
1+2/1+3 23 (C4) 0.070193
1+2/2+3 0.041196
1+2/1+3 29 (AF4) 0.74843
1+2/2+3 0.010399

3 1+2/1+3 5 (FC1) 0.71283
1+2/2+3 0.010499
1+2/1+3 23 (C4) 0.076492
1+2/2+3 0.0058994
1+2/1+3 29 (AF4) 0.80342
1+2/2+3 0.023498

Table 26: p-values for the theta frequency band and channels for which the mean PLV
value from participant combination 1 and 2 (non-excluded participants) is higher than
both other combinations (3=excluded participant). Significance values are shown for each
sub-set (VE=Very Excluded, E=Excluded, EC=Excluded+Connected). The bold/italic
value indicate best performing subset and brain region combination.
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Figure 42: Delta frequency band: All channels, subset VE
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Figure 43: Delta frequency band: All channels, subset E
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Figure 44: Delta frequency band: All channels, subset EC
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Figure 45: Theta frequency band: All channels, subset VE
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Figure 46: Theta frequency band: All channels, subset E
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Figure 47: Theta frequency band: All channels, subset EC
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B.5 Regional Level With Baseline Correction

Figure 48: Method M1: Delta frequency band. Best performing combination for central
brain region after baseline correction.

Figure 49: Method M1: Theta frequency band. Best performing combination for central
brain region after baseline correction.
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Figure 50: Method M1: Alpha frequency band. Best performing combination for central
brain region after baseline correction.

Figure 51: Method M1: Beta frequency band. Best performing combination for central
brain region after baseline correction.
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Figure 52: Method M1: Gamma frequency band. Best performing combination for central
brain region after baseline correction.

B.6 Channel Level With Baseline Correction
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Freq band Combination Channel p-value
D 1+2/1+3 5 (FC1) 0.45455

1+2/2+3 0.010699
1+2/1+3 6 (FC5) 0.042696
1+2/2+3 0.18208
1+2/1+3 19 (P4) 0.41666
1+2/2+3 0.044596
1+2/1+3 21 (CP6) 0.0032997
1+2/2+3 0.13999
1+2/1+3 22 (CP2) 0.048895
1+2/2+3 0.20118
1+2/1+3 23 (C4) 0.010399
1+2/2+3 0.0065993
1+2/1+3 29 (AF4) 0.44946
1+2/2+3 0.019198

T 1+2/1+3 5 (FC1) 0.45115
1+2/2+3 0.011399
1+2/1+3 6 (FC5) 0.043996
1+2/2+3 0.18048
1+2/1+3 19 (P4) 0.41686
1+2/2+3 0.040796
1+2/1+3 21 (CP6) 0.0035996
1+2/2+3 0.14199
1+2/1+3 22 (CP2) 0.042996
1+2/2+3 0.20688
1+2/1+3 23 (C4) 0.0083992
1+2/2+3 0.0068993
1+2/1+3 29 (AF4) 0.45895
1+2/2+3 0.016598

A 1+2/1+3 5 (FC1) 0.45475
1+2/2+3 0.012999
1+2/1+3 6 (FC5) 0.043696
1+2/2+3 0.17728
1+2/1+3 19 (P4) 0.42176
1+2/2+3 0.044096
1+2/1+3 21 (CP6) 0.0035996
1+2/2+3 0.13889
1+2/1+3 22 (CP2) 0.046895
1+2/2+3 0.20588
1+2/1+3 23 (C4) 0.0089991
1+2/2+3 0.0064994
1+2/1+3 29 (AF4) 0.44836
1+2/2+3 0.020698

Table 27: p-values for the delta, theta and alpha frequency bands and channels for which
the mean PLV value from participant combination 1 and 2 is higher than both other
combinations. With baseline correction.
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Freq band Combination Channel p-value
B 1+2/1+3 5 (FC1) 0.37456

1+2/2+3 0.009599
1+2/1+3 6 (FC5) 0.040296
1+2/2+3 0.19518
1+2/1+3 16 (Oz) 0.29377
1+2/2+3 0.028297
1+2/1+3 19 (P4) 0.36706
1+2/2+3 0.028297
1+2/1+3 21 (CP6) 0.0054995
1+2/2+3 0.12529
1+2/1+3 23 (C4) 0.0089991
1+2/2+3 0.0089991
1+2/1+3 29 (AF4) 0.44466
1+2/2+3 0.015198

G 1+2/1+3 3 (F7) 0.028597
1+2/2+3 0.37386
1+2/1+3 7 (T7) 0.53035
1+2/2+3 0.042196
1+2/1+3 8 (C3) 0.044096
1+2/2+3 0.34777
1+2/1+3 17 (O2) 0.27057
1+2/2+3 0.026697
1+2/1+3 19 (P4) 0.069093
1+2/2+3 0.0080992
1+2/1+3 20 (P8) 0.036396
1+2/2+3 0.062594
1+2/1+3 26 (FC2) 0.014999
1+2/2+3 0.035096
1+2/1+3 29 (AF4) 0.23908
1+2/2+3 0.016698

Table 28: p-values for the beta and gamma frequency bands and channels for which the
mean PLV value from participant combination 1 and 2 is higher than both other combi-
nations. With baseline correction.
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Figure 53: All channels: Delta frequency band. With baseline correction
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Figure 54: All channels: Theta frequency band. With baseline correction
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Figure 55: All channels: Alpha frequency band. With baseline correction
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Figure 56: All channels: Beta frequency band. With baseline correction
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Figure 57: All channels: Gamma frequency band. With baseline correction
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