
UNIVERSITY OF TWENTE 1

Multilabel Classification of Orchid Features based
on Deep Learning

C.A. Post (s2010771)
Enschede, Netherlands

June 26th 2020

Abstract—There are many different types of orchids, with
many inter-class similarities. Classifying them using the conven-
tional method of comparing the features to registered orchid
types is very time consuming. Thus it would be useful to
have an image based orchid feature classifier. In this paper
a single output multilabel classifier using transfer learning is
designed to classify six different orchid features. The design is
based on experiments on different loss functions, pre-trained
models, number of neurons in the dense layer, dropout rates
and fine-tuning. The final model uses an Xception model with
one untrainable layer as feature extractor. The classifier consists
of two dense layers with a dropout of 0.5 in between. The final
model gets a macro average f1-score of 0.85. The model is reliable
for the non-color features, however it doesn’t perform well on
some rare classes of the color features.

I. INTRODUCTION

The Orchidaceae are one of the two largest flowering plants
species, with 736 different recognized genera in 2015 [1]. The
Orchidaceae are not only popular as house plants but also have
economic importance. For example, the orchids from the genus
Vanilla fragrans are used to make vanilla extract, another type
of orchid has edible roots and some types are even used for
culinary medical purposes [2]. The classification of flowers
has been done by looking at the habitation, the morphological
structure and other features of the plant. Using the observations
a comparison can be made with the registered types and the
orchid can be classified. This is a time consuming task and
a lot of expertise is needed. Thus it would be very useful to
have an image based classifier. In recent years, research has
been done to let the computer do classification based on an
image. There are some difficulties within image recognition.
Images of the same flower might look very different because of
viewpoint variation, illumination conditions, scale variations,
occlusion and background clutter. Above all, no flower is
the same, so intra-class variation also needs to be taken into
account. Deep learning has proven to be successful in identi-
fying flower species [3]–[7]. Deep learning uses an artificial
neural network, in which a convolutional network can learn
to recognize features and the dense layers use these features
to classify the image. There are however still some challenges
within image based classification based on deep learning. The
first problem is the data imbalance in the datasets. If there is a
big difference between the minority and majority classes, the
neural network will under-classify the minority classes. For
example, suppose there are a hundred pictures of the colors
blue and red. Divided in 99 red and one blue sample. Then,

by always predicting red, the model easily obtains an accuracy
of 99%.

Another challenge is that properly training a convolutional
neural network (CNN) is very computationally demanding and
needs a large dataset. One common solution to this problem
is the use of transfer learning [8], in which a CNN is pre-
trained on a large dataset and can be re-trained on another
dataset. Another problem that occurs is over-fitting. When this
happens, the model is not generalizing anymore, but learning
each picture in the training set to achieve maximum accuracy.
If the model is too complex, over-fitting occurs, however if
the model is too simple, under-fitting occurs. Consequently
the model needs to be neither too complex nor too simple. All
these problems need to be taken into account while designing
a classifier based on deep learning.
In most research so far the species of the flower have been
classified for example on the 102 Oxford Flower Dataset [3]–
[5], using a multiclass classifier. Also specific research on
orchid species classification has been done [6], [7]. In contrast
to these classifiers that have the species as output, the classifier
described in this research predicts six features of orchids.
These are also the features, which taxonomists use to classify
orchids:

• The Color of the Flower
• The Color of the Labellum
• The Inflorescence
• The Texture of the Labellum
• The Labellum Characteristics
• The Number of Flowers

These features make up a total of 38 classes. The different
combination of these features make up certain species. With
the huge number of species within the orchid family, it would
be useful to not have to train on all the separate species,
but be able to classify them using the features. This way
less samples per species are needed. All the above mentioned
papers of flower classification use a multiclass classifier. There
are multiple labels in this research, so a multilabel classifier is
designed. This is a novel approach within flower classification.
This is a feasibility study with the goal of obtaining a classifier
that delivers the predictions of the orchid features, where each
class gets at least an f1-score of 0.80. The f1-score will be
explained in section IV-B. To achieve this goal, the following
research question and subquestions will be used:
How well can a single output multilabel orchid feature classi-
fier using transfer learning perform?



UNIVERSITY OF TWENTE 2

1) Can a cost sensitive loss function prevent under-
classifying of the minority classes?

2) Which pre-trained model performs best in classifying
orchid features?

3) Does changing the number of neurons in the dense layer
and the dropout value improve the performance?

4) Is there an improvement in performance by changing the
amount of trainable layers in the pre-trained model

5) Does using more data augmentation improve the perfor-
mance?

The structure of this paper is as follows: In section II, related
works is described. Section III describes the design of the
model, followed by the experiments and results in section IV.
This section also includes the analysis. Finally, the conclusion
including future works is found in section V.

II. RELATED WORK

A. ImageNet

ImageNet is a large scale image database [9]. This large
database makes it easier to make classification datasets to
experiment on. ImageNet also held the Large Scale Visual
Recognition challenge from 2010-2017 [10]. The goal of
these challenges was to classify and detect from hundreds
of object categories and millions of images. These challenges
yielded some very good deep neural network architectures, for
example the VGG16 [11], ResNet50V2 [12], Xception [13]
and InceptionV3 model [14]. These models can be reused for
feature extraction and classification purposes using a method
called transfer learning [8]. In transfer learning, a model
is trained on a large general dataset, like in the imagenet
challenges, to recognize certain features. These models can
then be re-trained to recognize related features on a smaller
dataset.

B. Flower Identification

The use of neural networks has proven to be successful
in flower classification tasks [3]–[7]. The Oxford Flower
Datasets [15] have been used to build flower classifiers. Using
this set, multiple solutions to make an accurate classifier were
invented.
One common solution is the use of pre-trained models. Xia
et al [3] successfully classifies flower species using transfer
learning on the inception-v3 model. Wu et al [4] showed
that the use of transfer learning increases the generalization
ability and the robustness of the model. The pre-trained
models implemented were the VGG16, VGG19, InceptionV3
and ResNet50. The use of these pre-trained models gave
a significant improvement in the accuracy of the flower
recognition.
Cibuk et al [5] uses two pre-trained models, AlexNet
and VGG16, to extract features. These features are then
concatenated and fed into a minimum redundancy maximum
relevance method to select the features. Finally, a support
vector machine (SVM) is used as classifier.

There are also some classifiers designed specifically for
orchid species. Sani et al [6], designed a neural network with

three hidden layers. This network is used to classify two
similar looking orchid species. Zhang et al [7] constructed
a large database with 2608 orchid species. The results show
that using joint learning of a deep neural network and a
tree classifier in an end to end fashion, achieves competitive
results in large-scale plant identification.

C. Imbalanced Dataset

Imbalanced datasets are still a challenging topic in image
based classification. Proposed methods to tackle this problem
can be divided into data-level and algorithm-level techniques
[16]. Data-level methods use pre-processing of the data, for
example by up- or under sampling. In case of multilabel classi-
fication, each sample can have multiple labels. By upsampling
an image with a specific label, the number of samples of other
labels also changes as they belong to the same image.

Algorithm methods modify the algorithm for handling the
class imbalance, for example by implementing class penalties
or weights. Most of these solution are based on cost sensitive
learning.
Wang et al [17] introduced the loss functions mean false error
(MFE) and mean false square error (MSFE), which are based
on the false positive error and the false negative error. By
computing the errors on different classes separately, the loss
becomes more sensitive to the loss of the minority classes.
The MSFE is an improved version of the MFE. The MFE is
not sensitive to the error of the positive class, whereas MSFE
minimizes the errors on the positive class and the negative
class at the same time.

Lin et al [18] introduced the Focal Loss. This loss function
adds a factor to the standard cross entropy function. This factor
makes it possible to put more focus on misclassified examples
and less focus on the relative loss of the well classified
examples.

III. ORCHID FEATURE CLASSIFIER DESIGN

The model needs to be able to classify all six labels properly.
There are two main options to design the model based on this:

• Making a multi-output multiclass model.
• Making a single output multilabel model.
Generally two methods are used within multilabel

classification: The Binary Relevance approach and the Label
Powerset method [19]. The latter makes each combination
of labels a separate class, and thus transforms the multilabel
model into a multiclass model. This results in having a lot of
classes, with few samples each.
The Binary Relevance approach makes each class into a
binary problem. This means the relationships between the
labels won’t be taken into account while making predictions.
For orchids, changing one class usually means having a
different species. Thus, it might be useful to not take the
relationships between the labels into account. As the rare
species might be predicted correctly if the model had enough
samples of all the features separately.
The multi-output multi-class model would need a separate
classifier for each label. The advantage is that of each label



UNIVERSITY OF TWENTE 3

Fig. 1. Block diagram of the model

only one class will be predicted positive and each classifier is
specialized in a certain feature. The multi-output multi-class
model and the single output multilabel model both seem
promising. In this research the single output multilabel is
used.
The design of this model is based on putting together existing
techniques. The proposed model consists of two parts: A
convolution neural network (CNN) used as a feature extractor
and a classifier. Two of the output features are colors, thus
the input needs to be an RGB image. A schematic of the
model can be seen in figure 1.

The first part of the model is the CNN. A CNN generally
consists of multiple convolutional and pooling layers. In the
convolutional layer a filter is applied over the input image.
The output of this layer is linear, thus at the end of the
convolutional layer an activation function is used to introduce
non-linearity. Common activation functions are Tanh, ReLu
and Sigmoid. By applying multiple filters, multiple features
can be extracted. The first convolutional layers extract the
low level features like edges. By having more convolutional
layers, middle and high level features can also be extracted.
In the CNN, a pooling layer is commonly used after the
convolutional layer. The role of the pooling layers is to reduce
dimensionality of the output of the convolution. This is done
to decrease the computational power needed to process the
data while maintaining spatial invariance.
As this research needs multiple features as output, a deep
CNN is deemed most suitable. However, a deep CNN
needs a lot of computational power and data to properly
train the model. Both of which are not available for this
research. Consequently, transfer learning will be used. Using
transfer learning a pre-trained model can be retrained. There
are multiple pre-trained models available trained on the
ImageNet data set. The pre-trained CNN can be fine-tuned
to recognize orchid features by making layers trainable. An
experiment will be performed on four different winners from
the ImageNet challenge to decide on a pre-trained model for
the final model.
After the CNN, fully connected layers are applied. In this
fully connected layer, also known as dense layer, all the

neurons are connected to all neurons of the previous layer.
The function of the dense layer is to classify the sample
based on the features extracted by the CNN. The proposed
classifier consists of two fully connected layers. First a flatten
layer is applied to get the right dimensions, followed by a
dense layer with a certain number of neurons. In between
the dense layers a dropout is applied to prevent over-fitting.
The last dense layer has 38 neurons, one per class. The
sigmoid activation function is used in the final layer. The
sigmoid function is chosen as the classes aren’t mutually
exclusive. The number of neurons in the first dense layer and
the dropout value might influence the performance and will
be decided on the basis of an experiment.

The model can be trained using different parameter settings.
The training process is based on changing the weights of our
model in order to try to minimize the amount of wrongly
predicted labels. The loss function is used to tell the model
how wrong the predictions are. To decide on a loss function
for this model, the best performing one will be decided on in
experiment 1. Based on the loss, the optimizer tells the model
how to change the weights for example by adding or subtract-
ing a certain value to the weights. The learning rate is used
to decide how much these weights are changed. By adding
data-augmentation each epoch each image is slightly changed
in for example the brightness or scale. This way the model
sees a slightly different image each time, which can prevent
over-fitting. The effect of using more data augmentation will
be experimented on in section IV-F.

IV. EXPERIMENTS AND RESULTS

The goal of the experiments is to find the optimal parameter
settings for the model. To build the model, the open source
machine learning system called Tensorflow [20] is used as
platform, with high level API Keras [21] running on top of
it. Keras is a deep learning API written in python. The first
experiment is performed to decide on an appropriate loss func-
tion. The second is done to find the most promising working
pre-trained model. In the third experiment, the number of
neurons of the first dense layer will be changed and different
dropout values will be tested on. The next experiment is



UNIVERSITY OF TWENTE 4

performed to fine-tune the model by changing the amount
of data augmentation, trainable layers and to see whether
changing the test set improves the performance. The final
experiment will test the reliability of the model.
After each experiment the most promising parameter is chosen
to continue on with to the next experiments. This decision is
based on the precision, recall and f1 scores, which will be
explained in subsection B. A more detailed explanation of the
experiments is given in the subsections.

The model as shown in figure 1 is used. The base model
used to start the first experiment with uses the VGG16 as
pre-trained CNN, with all layers untrainable. Followed by
a flatten layer. The first dense layer contains 512 neurons
with ReLu as activation function. The dropout is 0.5. The
last dense layer has 38 neurons, with sigmoid as activation
function. Adam is used as the optimizer and the binary cross
entropy as loss function. The input image has size 224x224x3.
The batch size is 64 and the training data is shuffled. The
model is trained for 60 epochs. All results are derived from
the independent test set using a threshold of 0.5.

The structure of this section is as follows: Subsection A
describes the data set used in the experiments. The second
subsection explains the evaluation methods used. Finally, all
the experiments will be elaborated on in their own subsections.
In the subsection of the experiment, first the experiment set-
up is explained, secondly the results are shown and lastly the
analysis is done.

A. Dataset

The Orchid Flower Dataset [22] is used to train and test the
model. This dataset consists of 7156 images of 156 different
orchid species. Some samples of the dataset can be seen in
figure 2. Every image has seven different labels: The Texture
of the Labellum, the Labellum Characteristics, Inflorescence,
Number of Flowers, Color of Flower, Color of the Labellum
and the Species. In this research only the features will be used.
In total there are 38 classes in these six features.
The data set is imbalanced, which means that there are some
underrepresented classes. The smallest class belongs to the
”color of flower” label, namely the class Brown with 15
images. The largest color of flower class consists of 1670
samples, which has over a hundred times more images than
brown. There are also some noisy images. For example a
random picture which shows no similarities to the flower it
is labeled to be, or an image of a spider, as can be seen in
the lower middle picture in fig. 2. There could also be some
wrongly labeled images. The images of this data set are varied
and show the orchids from different viewpoints, in different
background settings, with different brightness and for example
with insects on the flower. Some images show only the buds
of the orchids, whereas others show the flower in full bloom.
This also means that some images are labelled with having a
certain color, while there is no flower to be seen in the picture.
The bud is the only part shown and this might have a different
color than the flower. There are also drawings of the species
included in this dataset.

TABLE I
CONFUSION MATRIX

True/Predicted predicted negative predicted positive
Negative TN FP
Positive FN TP

B. Evaluation Method

The f1-score, along with the precision, recall and the
confusion matrix are used for evaluating the performance of
the model. Table I presents the confusion matrix, which is the
multilabel confusion matrix of scikit learn [23]. The confusion
matrix for binary classification consists of four variables:

1) True Positives (TP) :The amount of labels predicted
positive while in reality they are positive.

2) False Positive (FP) :The amount of labels predicted
positive while in reality they are negative.

3) True Negatives (TN) :The amount of labels predicted
negative while in reality they are negative.

4) False Negatives (FN) :The amount of labels predicted
negative while in reality they are positive.

The other evaluation methods are based on these four
variables, which each show a different relationship between
them [24]. The precision is the ratio between the correctly
predicted positive labels versus the total of predicted positive
labels, as defined in equation (1). When the precision is 1.00
all labels predicted positive are actually positive.

Precision =
TP

TP + FP
(1)

The recall is the ratio between the correctly predicted
positive labels versus the total of positive labels, as defined in
equation (2) When the recall is 1.00, no labels are predicted
negative while they should have been positive.

Recall =
TP

TP + FN
(2)

The f1-score is the harmonic mean between the precision
and recall, as defined in equation (3).

f1− score = 2
Precision ∗Recall

Precision+Recall
=

2TP

2TP + FP + FN
(3)

For multilabel classification the average score over the labels
can be calculated in different ways. The two ways used in this
paper are [23]:

• The ”macro” average calculates the scores for each label
and their unweighted mean.

• The ”micro” average calculates the scores by counting
the total amount of True negatives, False negatives, True
positives and False positives.

C. Experiment 1: Loss function

The aim of this experiment is to tackle the data imbalance
problem using different cost sensitive loss functions: The Focal
Loss, the Mean Squared Error (MSE) and the Binary Cross
Entropy (CE). For the Focal loss alpha is 0.25 and gamma is
2. The MSE and Binary CE loss functions are given weights



UNIVERSITY OF TWENTE 5

Fig. 2. Samples of the dataset

calculated by the compute class weight function of scikit-
learn [25]. These weighted and non-weighted loss functions
are compared. The number of labels never predicted positive
is added to see whether the model over-fits on the majority
classes. The results can be seen in table II

TABLE II
DIFFERENT LOSS FUNTIONS

Loss function f1 micro f1 macro Number of labels
never predicted positive

Binary CE 0.66 0.41 10
MSE 0.68 0.45 8
Focal Loss 0.65 0.42 7
Weighted binary CE 0.70 0.56 2
Weighted MSE 0.69 0.57 2

As expected, the focal loss performs better than the non-
weighted loss functions as it is designed specifically for data
imbalance. However only one value for gamma and alpha is
used in this experiment and might not be the optimal values.
It can be seen that the weighted loss functions have more
than three times as little classes that are always predicted
negative. This means that giving weights to the loss function
improves the number of positive predictions of the minority
classes. However it should be noted that in the test set this
time, there are some classes with very few samples. For
example the class brown, which only has 2 samples. There is
also another class with three samples and two other classes
with four samples. Thus the validity can be argued. However
looking at these results, it can be seen that the weighted
binary CE and MSE perform similarly. Consequently the
weighted binary CE was chosen arbitrarily to continue with.

D. Experiment 2: Pre-trained models

As aforementioned, it was decided that the test set did not
contain enough samples of certain classes to reliably give an
estimate of the performance. Thus the images of all classes
in the test set were increased to at least 10 images per
class, except for ”Brown”, which ended with seven images.
Otherwise the training amount would be insufficient. These
samples were taken from the training and validation set, which

resulted in a decrease of training samples, for example brown
only has six samples left. Consequently it was decided that
from now onward data augmentation will be used to rectify
this decrease of rare classes.
The aim of this experiment is to see whether a certain pre-
trained model performs better than the others. For the training
only the first layer was made untrainable.
The pre-trained models were imported from Keras applications
using the ImageNet weights. The chosen pre-trained models
are VGG16, Xception, InceptionV3 and ResNet50V2. Since
they all showed great capability in both the ImageNet Chal-
lenges and in other flower classification papers, as mentioned
in section II. The models were trained with a learning rate of
0.00005. The results can be seen in table III.

TABLE III
DIFFERENT PRE-TRAINED MODELS

pre-trained
model

Precision
macro

Recall
macro

F1
macro

lowest
precision

lowest
recall

VGG16 0.76 0.76 0.75 0.50, 0.53 0.20, 0.20
InceptionV3 0.80 0.74 0.75 0.00, 0.46 0.00, 0.31
ResNet50V2 0.82 0.71 0.73 0.57, 0.57 0.10, 0.14
Xception 0.86 0.77 0.79 0.59, 0.63 0.10, 0.30

Notable is that the first layer of the VGG16 model does
not contain any trainable parameters. To be able to compare
it better with the other models, the model was retrained with
three layers trainable. These had a similar number of untrain-
able parameters as the other models had with one untrainable
layer. This did improve the performance. However the results
were still worse than the Xception model. Interestingly enough
this shows that zero untrainable parameters performed worse
than a few untrainable parameters. In the fine tune section it
will be tested whether making more than one layer untrainable
also improves the final model. In the results it can be seen
that the Xception model outperforms all the other pre-trained
models. Thus the Xception model is deemed most promising to
continue with. The Xception model is the newest out of all four
models and according to the paper [13], it should outperform
the InceptionV3 model. In this research the performance is
measured specifically on flower feature recognition so the
results on the imagenet dataset could not be representative.



UNIVERSITY OF TWENTE 6

E. Experiment 3: Dense Layers & dropout rate

As a result of the previous experiment, the pre-trained
Xception model with one layer untrainable is used for this
experiment. All other configurations stay the same. Now the
model is first tested with a different number of neurons in the
first dense layer: 256, 512, 1024 neurons. The results can be
seen in table IV. Next the most promising number of neurons
is chosen and three different dropout rates are tested: 0.3, 0.5
and 0.7. The results are shown in table V.

TABLE IV
DIFFERENT AMOUNT OF NEURONS IN THE DENSE LAYER

Dense
Layers

Precision
macro

Recall
macro

f1
macro

f1
micro

Lowest
precision

Lowest
Recall

256 0.87 0.77 0.80 0.87 0.60,0.68 0.20,0.30
512 0.86 0.77 0.79 0.86 0.59,0.63 0.10,0.20
1024 0.87 0.77 0.80 0.86 0.60,0.70 0.20,0.30

TABLE V
DIFFERENT DROPOUT VALUES

Dropout Precision
macro

Recall
macro

f1
macro

f1
micro

Lowest
precision

Lowest
Recall

0.3 0.82 0.76 0.78 0.86 0.00,0.60 0.00,0.30
0.5 0.87 0.77 0.80 0.87 0.60,0.68 0.20,0.30
0.7 0.85 0.76 0.78 0.86 0.47,0.67 0.10,0.20

The results show an insignificant difference between the
different number of neurons. It was expected that a large
number of neurons might lead to quick over-fitting or a smaller
number could lead to under-fitting. It is also noteworthy that
the validation scores of the 256 and 1024 neurons models
reach convergence almost at the same epoch. As a result 256
neurons were chosen to continue with, as it decreases the
number of trainable parameters and thus decreases the training
time.
As can be seen in table V, there is an insignificant difference
between the different dropout values. Notable is that the lowest
value in recall and precision is 0.00 for the dropout of 0.3. This
means that one class is never predicted positive correctly. This
could be caused by the fact that a dropout of 0.3 isn’t enough
to prevent generalization errors. The regularization parameter
is maximum when the dropout is 0.5. Using that knowledge
and seeing as the difference between the dropout 0.5 and 0.7
is insignificant. It was chosen to continue with a dropout of
0.5.

F. Fine-tuning

These experiments are performed in order to fine-tune the
model. First, extra data augmentation is used. Second, a
different number of untrainable layers is experimented on.
Lastly, the test set is analysed in order to see what goes wrong
with the lowest scoring classes. Then, the samples of the test
set are interchanged with samples of the training and validation
set and the model is trained again on these new datasets.

1) Extra Data Augmentation: This experiment is performed
in order to improve the performance of the model even
further. In this experiment the amount of data augmentation is
increased. The results can be seen in table VI.

TABLE VI
EXTRA DATA AUGMENTATION

Data
augm.

Precision
macro

Recall
macro

f1
macro

f1
micro

Lowest
precision

Lowest
Recall

Usual 0.87 0.77 0.80 0.87 0.60,0.68 0.20,0.30
Extra 0.85 0.80 0.81 0.87 0.57,0.66 0.30,0.38

Table VI shows that there is very little difference on the
overall performance between the original amount of data
augmentation and the extra data augmentation. This could be
because the original amount of data augmentation was already
enough to change the pictures and the extra augmentation
does not make that much of a difference anymore. What
can be noticed is that there is less difference between the
recall and precision. This means that there is a better balance
between the false negatives and false positives. High precision
means that most of the predicted positive labels are actually
positive and a high recall tells that the number of correctly
positive predicted samples is close to the number of true
positives. Both of which is needed. Although there is only a
slight difference in performance, it was decided to continue
with the extra data augmentation.

2) Untrainable layers: In this experiment more layers are
made untrainable. This improved the performance of the
VGG16 model as mentioned in experiment 2. By making more
layers untrainable, it might make the model less prone to over-
fitting. The number of trainable parameters was made two and
five times as big, which means that it will be tested with 1,
13 and 25 untrainable layers. The extra data augmentation is
used too. The results can be seen in table VII.

TABLE VII
DIFFERENT AMOUNT OF TRAINABLE LAYERS

Layers
Untrain-
able

Precision
macro

Recall
Macro

f1
macro

f1
micro

Lowest
precision

Lowest
Recall

1 0.85 0.80 0.81 0.87 0.57,0.66 0.30,0.38
13 0.85 0.78 0.79 0.85 0.55,0.60 0.20,0.30
25 0.84 0.78 0.79 0.85 0.57,0.67 0.30,0.30

Looking at the performance of the different number of
untrainable layers, it can be seen that there is a slight decrease
in performance. It should be noted however that the number
of trainable parameters is 0.26%, 0.52% and 1.17% of the
total number of trainable parameters of the Xception model
respectively. The difference in percentage of untrainable
layers in the whole model is very small. Furthermore the
performance between 13 and 25 untrainable layers is very
similar, thus it cannot be said that the reason for the decrease
is having more layers untrainable. In future works it might
be worth it to test whether making half or almost all layers
untrainable will make a significant diffence, as it would
decrease the training time significantly. For now, the one
layer untrainable performed best. Consequently, this was
chosen to be used in the final model.

3) Low scoring classes: The final model is decided on:
An Xception model is used as pre-trained CNN, with one



UNIVERSITY OF TWENTE 7

Fig. 3. Samples of the different groups belonging to the class Yellow

layer untrainable. Followed by a flatten layer. The first dense
layer has 256 neurons and the dropout is 0.5. Extra data
augmentation is used and all the other parameters are as
described in the beginning of this section. While looking at
the results, it is clear that the model has most trouble with
predicting certain colors. To see whether the cause is the model
or the test-set, the following experiment is performed.
For this experiment the classes of the ”color of flower” label
with an f1-score of less than 0.70 are used. First, the images
of the training and test set of these classes are compared.
The first thing noticed is the way the data sets are divided:
The first 70% is of the training set, the next 20% of the
validation set and the last 10% of the test set. So suppose
in a certain class there are 100 photos named 1.jpeg until
100.jpeg, then up to 70.jpeg is part of the training set, 70-
90.jpeg of the validation and 90-100.jpeg is part of the test
set. The data set consists of sequences of images of the same
flower from different viewpoints, brightness and either more
zoomed in or out. This could result in training on a sequence
of images of one flower, and then testing on a completely
different flower. So the hypothesis is that the way the images
are divided over the test, validation and training set, makes the
performance go down. To see whether this hypothesis is right,
the following is done: First, all images of a certain color class
were gathered. Next the similar looking images were grouped.
This grouping was done by looking at what the flowers looked
like, in which setting they are and the viewpoint of the pictures.
The similarities are also based on the species. An example of
some of the different groups belonging to the color yellow can
be seen in figure 3.

Next, the samples of each group were split between the
training, validation and test set. Using this new data set, the
model was trained again. Next, half of the samples in this new
test set was swapped with samples from the new training set.
The model was trained again using this new data set. As all

the lowest predicted classes were minority classes, the model
was trained again on not only the training augmented with the
validation set. The results can be seen in table VIII.

TABLE VIII
THE SCORES OF THE LOWEST PREDICTED COLOR OF FLOWER CLASSES

BEFORE AND AFTER SWITCHING SAMPLES

Color f1
original

f1
switch
1

f1
switch
2

f1
switch
val1

f1
switch
val2

YellowPurple 0.63 0.88 0.79 0.85 0.88
Yellow 0.67 0.85 0.76 0.88 0.82
PinkWhite 0.53 0.76 0.67 0.82 0.74
GreenYellow 0.63 0.83 0.82 0.89 0.92
GreenWhite 0.53 0.62 0.82 0.76 0.76

It can be seen that the scores significantly improve by
switching samples per group. Which implies that the model
performs well, as long as the test and training set have similar
looking pictures. The first switch was done by dividing the
similar looking pictures over the training, validation and test
set. However in the second switch half of the samples were
arbitrarily swapped. As a consequence, the lower performance
of the second set could be explained by the fact that there
are less similar looking images in the test and training set.
Furthermore it should be noted that although the samples are
labeled a certain color, it doesn’t mean that just looking at the
color always works. There are for example photos of just the
buds, which don’t always have the color of the flower. Some
photos are located in a forest, in which some are zoomed in
on the flower and some plants only make up a very small
part of the image. In the latter the background noise could
play a big role in predicting the images wrongly. Furthermore
the significant difference in performance by swapping some
samples could be caused by the few amount of samples in
these classes. After the grouping was done, there were multiple
groups with less than 6 samples. So all these six samples



UNIVERSITY OF TWENTE 8

could end up being in the test and validation set. As can
be seen in fig. 3, even within a group with very few test
samples, there is a variety of different looking flowers, which
are also shot at different viewpoints and angles. This means
that there are very few similar samples to train and test on.
There is also still a difference in performance between the
classes, for example GreenYellow got good scores twice after
the switching, while GreenWhite got two very different scores.
This can be explained by looking at the groups. GreenYellow
has a high number of samples per group, with only two groups
containing less than 10 samples. In comparison GreenWhite
its biggest group contains 18 samples and all other groups less
than 7 samples. When the model is trained on both the training
and validation set, the performance improves as expected. This
again shows that the low performance is caused by too few
samples to train on.

G. Reliability
Using the acquired knowledge that swapping images of

the training set and test set improves the performance, the
final experiment will check the reliability of the model. This
experiment is performed to see the influence of randomly
switching half of the test set with samples of the training set.
The switching is done per species, to make sure all classes
keep the same amount of test samples. The first set was made
by changing all the even numbered images from the test set
with even numbered images from the training set. If there
was only one sample of the species in the test set, it would
be changed with a even numbered sample of the training set
regardless the test sample number being even or uneven.
The second set was made by switching the uneven numbered
samples of the test set with uneven numbered samples of the
training set. If there was only one sample of the species in
the training set, then this time this species would be swapped
with a sample from the validation set.
The third set was randomly switched. In table IX, the aver-
age scores of each class are shown with the deviation: the
difference between the average and the lowest/highest score.

The table shows that the overall performance only changes
slightly, with a maximum deviation of 0.01. Now let’s look at
each label separately.

1) Texture of the labellum: The ”No Spot” class is the
majority class with 676 test samples, in contrast to the 171 test
samples in the ”Spot” class. The model predicts ”No Spot”
very well and reliably. The ”Spot” class also gets predicted
well, however significantly less than the ”No Spot”. The
deviation is also higher, especially for the recall. The lower
recall makes sense as it is a minority class. This would imply
that the model predicts ”Spot” as positive less often than it
should.

2) Labellum Characteristics: In this label, all the classes
are predicted with an f1-score of at least 0.83. The scores of
”Lobed”, ”Pouched” and ”Simple” show very little deviation,
whereas ”Fringed” has considerably more deviation. Again the
class with the most deviation in the scores is the minority class
of the label. ”Fringed” only has 71 samples whereas the second
smallest class has 176. This also implies that the model is still
not fully capable of handling imbalanced data.

TABLE IX
THE AVERAGE SCORES PER CLASS WITH DEVIATION

Label Class Precision Recall f1-score
Texture of the
Labellum Spot 0.88± 0.03 0.84± 0.06 0.86± 0.03

No spot 0.96± 0.01 0.97± 0.01 0.96± 0.01
Labellum
characteristics Fringed 0.88± 0.06 0.85± 0.07 0.87± 0.04

Lobed 0.90± 0.01 0.91± 0.01 0.91± 0.01
Pouched 0.92± 0.02 0.93± 0.02 0.92± 0.02
Simple 0.87± 0.03 0.88± 0.01 0.88± 0.01

Inflorescence Panicle 0.90± 0.02 0.79± 0.04 0.84± 0.02
Raceme 0.92± 0.01 0.95± 0.02 0.93± 0.02
SingleOrPair 0.96± 0.02 0.94± 0.01 0.95± 0.01
Spike 0.85± 0.02 0.86± 0.02 0.86± 0.02

Number of
Flowers A few 0.80± 0.02 0.84± 0.03 0.83± 0.02

Many 0.88± 0.01 0.89± 0.01 0.88± 0.02
SinglePair 0.96± 0.02 0.94± 0.01 0.95± 0.01

Color of
Flower Brown 0.94± 0.11 0.43± 0.28 0.55± 0.12

Green 0.80± 0.05 0.92± 0.01 0.86± 0.03
GreenBrown 0.88± 0.03 0.92± 0.02 0.90± 0.02
GreenWhite 0.97± 0.05 0.74± 0.18 0.83± 0.09
GreenYellow 0.84± 0.16 0.84± 0.07 0.83± 0.07
Orange 0.93± 0.07 0.93± 0.07 0.93± 0.07
Pink 0.90± 0.01 0.97± 0.02 0.93± 0.01
PinkWhite 0.73± 0.07 0.53± 0.26 0.60± 0.16
Purple 0.85± 0.03 0.75± 0.05 0.80± 0.03
PurpleWhite 1.00± 0.00 0.96± 0.06 0.98± 0.03
Red 0.84± 0.04 0.79± 0.12 0.81± 0.08
White 0.87± 0.04 0.93± 0.03 0.89± 0.03
Yellow 0.82± 0.18 0.63± 0.05 0.71± 0.04
YellowBrown 0.83± 0.01 0.88± 0.04 0.85± 0.03
YellowPurple 0.80± 0.04 0.87± 0.04 0.83± 0.03

Color of the
labellum BluePurple 0.79± 0.06 0.79± 0.07 0.79± 0.05

GreenCL 0.74± 0.04 0.89± 0.03 0.80± 0.02
OrangeCL 0.92± 0.08 0.93± 0.07 0.93± 0.07
PinkRed 0.88± 0.02 0.90± 0.03 0.89± 0.02
PinkRedWhite 0.91± 0.04 0.84± 0.06 0.87± 0.05
PurpleYellow 0.98± 0.03 0.97± 0.03 0.97± 0.03
WhiteCL 0.88± 0.04 0.91± 0.02 0.89± 0.02
WhiteYellow 0.94± 0.11 0.45± 0.05 0.61± 0.06
YellowCL 0.79± 0.05 0.81± 0.05 0.80± 0.01
YellowCLBrown 0.91± 0.03 0.94± 0.06 0.89± 0.07

Total
Average Macro avg 0.88± 0.01 0.85± 0.01 0.85± 0.01

3) Inflorescence: All inflorescence labels achieve an f1-
score of at least 0.82. ”Panicle” is the minority class of
this label, with 27 samples versus the second smallest class
”Spike” with 166 samples. The highest deviation is again in
the minority class, however it is still only 0.04. ”Panicle” is
also the class with the lowest scores, similar to the minority
classes of the previous two labels.

4) Number Of Flowers: The Number of Flower classes are
predicted well consistently with a maximum deviation of 0.03.
Interestingly enough, this time the minority class has the best
performance. This could be because the ”SinglePair” feature is
easier to recognize for the model. By looking at the evaluation
on the training set, it can be seen that the ”SinglePair” class
has scores of 1.00, whereas ”A Few” has a precision of 0.97
and ”Many” has scores of 0.99. Thus, these other two classes
probably contain some difficult to identify samples. These
samples could be noisy samples. The other reason could be
that the difference in samples between the classes is relatively
small compared to the difference in the other models.



UNIVERSITY OF TWENTE 9

5) Color of Flower: Although the majority of the scores
is above the 0.80, this label contains the worst performing
class and also the biggest deviations. This is also the label
with the largest number of classes, and the biggest difference
in the number of samples per class. It can be observed that
the majority classes perform well and have a relative small
deviation compared to the rare classes. All the low scoring
classes belong to the minority classes. However, there are
also minority classes that perform well with relatively low
deviation, for example ”PurpleWhite” and ”YellowPurple”.
This could be because these features don’t look similar to
other features for the model and are thus easy to classify. It
could also be because the images within these classes look
more alike than the images of the other minority classes,
which makes switching the images have less influence on the
performance. The big deviations are caused by the low number
of samples. If the number of samples is very low, the difference
that one wrong predicted sample makes, is significantly bigger
than in a class with a high number of samples.

6) Color of the Labellum: This label has a relatively
big number of classes, similar to the color of flower label.
The lowest scoring classes are again the minority classes.
”WhiteYellow” is the smallest class with 10 samples, followed
by ”PurpleYellow” with 20 samples. The very low recall of
”WhiteYellow” can be explained by the number of training
samples. WhiteYellow only has 11 training samples, whereas
the second smallest number of training samples is 78 for
”PurpleYellow”.
Looking back at all the separate labels, it shows that the model
is not able to reliably predict some minority classes. This can
be caused by the lack of ability of the model to handle data
imbalance, and the lack of samples in the data set.

V. CONCLUSION

In this paper the difficulties of image based classification
and the importance of flower classification were discussed. The
aim of this study was to see how well a classifier based on
deep learning could predict the six different orchid features.
The goal was to reach a f1-score of at least 0.80 per class.
The final model was designed to see how well a single output
multilabel classifier can perform. This design was based on
experiments on different loss functions, pre-trained models
with different number of trainable layers, number of neurons
in the first dense layer and the dropout value inbetween the
dense layers.

The final model consists of a pre-trained Xception model,
with 1 layer untrainable. Followed by a flatten layer, a dense
layer with 256 neurons, a dropout of 0.5 and a final dense
layer with 38 neurons using the sigmoid activation function.
The loss function used to train the model is a weighted binary
CE.
This final model predicts all classes of the non-colored labels
reliably with a f1-score of at least 0.81. The predictions of
the color labels are less reliable and contain classes with f1-
scores less than 0.80. The weighted loss function did improve
the performance on the minority classes, however there is still
a trend in the results where the lowest scores are from the

rare classes. Thus the model is still not able to fully handle
the data imbalance. For the feature extraction, the Xception
model performed better than the VGG16, ResNet50 and the
InceptionV3 model. Changing the number of neurons and the
dropout value showed an insignificant difference in f1-scores.
Also changing the number of trainable layers did not improve
the model. More data augmentation did not have a significant
effect on the overall performance. The division of the samples
over the test, training and validation set showed to have a
significant influence on the performance. The model its overall
performance is well, however there are still some classes with
fairly low and unreliable scores. These classes all have few test
and training samples. The cause of these low scores is probably
the lack of training and test samples in combination with the
model not being able to completely tackle data imbalance.
This means that the model might predict all these features
well, if more samples of these rare classes were used. At least
the results would be more reliable with more samples and the
performance can be properly evaluated.

A. Future works

The current model is not good enough in the prediction of
some of the rare classes. This could be solved by augmenting
the data set with more samples of the minority classes. This
way the test scores will be more reliable and the model
can properly train on a range of different looking images in
that class. Furthermore, the weights within the loss function
could be optimized, which would probably imply giving the
minorty classes more importance than the current model
does. According to Wang et al [17], the MFE and MSFE
perform better than the mse loss function. The weighted
mse and binary cross entropy performed similarly. Thus by
implementing MSFE the performance on the minority classes
could improve.
T-SNE could also be used to visualize the dataset, such that it
can be seen which classes look similar and are more easily be
confused by the model [26]. Also the noisy samples should
be removed from the dataset. To improve the efficiency of
the training, it could be tested whether the model performs
similarly with only a few layers trainable. Furthermore a
segmentation system can be designed, such that only the
relevant parts of the image are used as input.

Instead of using a multilabel classifier, a multi-output mul-
ticlass model could be used as well. The use of segmentation
to extract only a certain feature from the flower could increase
the performance, as it greatly decreases the background noise.
Furthermore using a multiclass classifier, the data imbalance
problem could be solved by using data level techniques or
ensemble techniques, as described in [16].

When a good enough performance on the feature classifier is
achieved, a species classifier can be added to the model. This
classifier can use the predicted features to predict to which
species it belongs to by using for example a support vector
machine. Next, this model could be applied to make a real
life application, for example a smart phone app. In which you
could make a photo of the orchid and the species get returned.



UNIVERSITY OF TWENTE 10

REFERENCES

[1] J. V. F. A. M. P. G. S. C. v. d. B. A. S. Mark W. Chase, Kenneth
M. Cameron, “An updated classification of orchidaceae,” Botanical
Journal of the Linnean Society, vol. 177, pp. 151–174, 2 2015.

[2] O. Sharma, The title of the work. 7 West Patel Nagar, New Delhi 1
10 008: Tata McGraw-Hill Publishing Company Limited, 17 ed., 2007.
page 396.

[3] Xiaoling Xia, Cui Xu, and Bing Nan, “Inception-v3 for flower classi-
fication,” in 2017 2nd International Conference on Image, Vision and
Computing (ICIVC), pp. 783–787, 2017.

[4] Y. P. C. Y. Yong Wu, Xiao Qin, “Convolution neural network based
transfer learning for classification of flowers,” 2018 IEEE 3rd Interna-
tional Conference on Signal and Image Processing (ICSIP), 2018.

[5] M. Cıbuk, U. Budak, Y. Guo, M. C. Ince], and A. Sengur, “Efficient deep
features selections and classification for flower species recognition,”
Measurement, vol. 137, pp. 7 – 13, 2019.

[6] M. M. Sani, S. B. Kutty, H. A. Omar, and I. N. M. Isa, “Classification
of orchid species using neural network,” in 2013 IEEE International
Conference on Control System, Computing and Engineering, pp. 586–
589, 2013.

[7] H. Zhang, G. He, J. Peng, Z. Kuang, and J. Fan, “Deep learning of
path-based tree classifiers for large-scale plant species identification,”
in 2018 IEEE Conference on Multimedia Information Processing and
Retrieval (MIPR), pp. 25–30, 2018.

[8] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on
deep transfer learning,” in ICANN, 2018.

[9] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[10] D. J. S. H. e. a. Russakovsky, O., “Imagenet large scale visual recogni-
tion challenge.,” Int J Comput Vis, vol. 115, pp. 211–252, 2015.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” CoRR, vol. abs/1603.05027, 2016.

[13] F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” CoRR, vol. abs/1610.02357, 2016.

[14] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” CoRR,
vol. abs/1512.00567, 2015.

[15] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” in Indian Conference on Computer Vision,
Graphics and Image Processing, Dec 2008.

[16] K. Johnson, J.M., “T.m. survey on deep learning with class imbalance,”
Journal of Big Data, vol. 6, no. 27, 2019.

[17] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. Kennedy, “Training
deep neural networks on imbalanced data sets,” pp. 4368–4374, 07 2016.

[18] T. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” CoRR, vol. abs/1708.02002, 2017.

[19] J. Read and F. Pérez-Cruz, “Deep learning for multi-label classification,”
ArXiv, vol. abs/1502.05988, 2015.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[21] F. Chollet et al., “Keras.” https://keras.io, 2015.
[22] D. Apriyanti, L. Spreeuwers, P. Lucas, and R. Veldhuis, “Orchid Flowers

Dataset,” 2020.
[23] L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel,

V. Niculae, P. Prettenhofer, A. Gramfort, J. Grobler, R. Layton, J. Van-
derPlas, A. Joly, B. Holt, and G. Varoquaux, “API design for machine
learning software: experiences from the scikit-learn project,” in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning,
pp. 108–122, 2013.

[24] A. Tharwat, “Applied computing and informatics,” tech.
rep., Frankfurt University of Applied Sciences, 2018.
https://doi.org/10.1016/j.aci.2018.08.003.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,”
Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.


