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Pufferfish privacy when publishing on thematic maps

J.M. ter Steege∗

January, 2021

Abstract

Statistical disclosure control is essential to ensure the privacy of individuals in a data
set. Statistics of a data set can be visualized on thematic maps by colouring its geo-
graphic location. We will apply Pufferfish privacy to protect thematic grid maps by
adding appropriate noise. We come up with absolute and relative error protection
methods by applying the least necessary noise according to the Laplace distribution.
This way, the highest utility remains, while privacy is guaranteed. After observing
some unrealistic results, we have also developed a bounded privacy mechanism. Nu-
merical experiments show how the mechanisms act on different input parameters.

Keywords: Pufferfish privacy, statistical disclosure control, differential privacy, the-
matic maps, grid maps, absolute error protection, relative error protection, bounded
mechanism, Laplace distribution

1 Introduction

Statistical disclosure control is a critical technique in publishing data. It is of great value
to publish useful data, while it is crucial that no individual information can be with-
drawn from published data. Statistical disclosure control makes sure that sensitive data
are adjusted accordingly in order to protect personal information, while maintaining the
statistical utility. A logical step would be to add noise to or to remove outliers from raw
data, but this may result in non-representative outcomes, which is undesirable. Therefore,
a precise protection method is essential in order to optimize statistical publications.

Publication of data can be done in various ways. This research focuses on publishing on
thematic maps. This can be done by dividing the map in grids and colouring the grids
according to its statistical value. Figure 1 shows such a grid map of households in Enschede,
used by Statistics Netherlands (Dutch: Centraal Bureau voor de Statistiek, CBS). Some
of the cells in this figure are not coloured, due to its sensitivity: it is better to publish
nothing than vulnerable information. Therefore, the utility of this grid is not optimal and
thus can be improved. The goal of this research is to look into a different safe solution for
publishing thematic grid maps.

1.1 Related work

In principle, the publication of a grid map is very similar to publishing a table [5]: all
contributions in each grid cell get combined into one table value. After a table of u rows
and v columns is filled, its values will get shown as coloured cells, which will produce a
grid map of u cell rows and v cell columns. This means that tabular security is necessary
for the sake of protecting the grid. In this section, we will explain some of the previous
work and explain the possible improvements of preceding results.

∗Email: j.m.tersteege@student.utwente.nl
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Figure 1: Number of private households in Enschede, averaged over grid cells of
500 meter square (https://www.cbsinuwbuurt.nl)

Detailed research has been done into tabular statistical disclosure control [4]. Several sen-
sitivity rules were discovered and we will explain the most commonly used: the minimum
frequency rule checks if each table cell has at least n contributors. It makes sense that a
value that only has a few contributors is sensitive, so this rule eliminates that case. The
(n, k) dominance rule checks whether the n highest contributions do not exceed k% of the
total cell value. This one is comparable with the frequency rule, but now also checks if
there are enough contributors that jointly contributes at least k%. These rules are often
used in combination with other sensitivity rules.

More in-depth attention should be paid to the p%-rule. This rule indicates to what extent
an attacker can estimate another contribution in a table cell. The attacker can get this
estimation by subtracting his contribution from the total cell value, and use that result as
approximation. The p%-rule states that a cell may not be published if this approximation
is within p% of another contribution. The attacker would get a too close estimation of
another contributor, if this rule is not satisfied. Note that a p%-attacker can only disclose
information from the largest contributor in the cell, and that the attacker has to contribute
to the cell in order to get a close estimation.

Lastly, the (p, q)-rule is an extension on the p% rule. In this case, the (p, q)-attacker has
information about the lower bounds of each contributions, with relative error of at most
q%. The one exception is the contribution that the attacker wants to disclose. The attacker
can get an approximation by subtracting his contribution and all lower bounds of the other
contributions from the total cell value. If this approximation is within p% of the attacked
contribution, then the (p, q)-rule is violated and the table value is not safe to publish.

The exact details of the p% and (p, q)-rule can be found in [5], but it should become clear
that the conditions when these rules can be applied are limited: if an attacker does not
contribute to a cell, attacking in that cell can become hard, if not impossible. Besides,
only the largest contributor in each cell can be attacked. Lastly, a lower bound of the other
contributions in a cell is necessary in the second sensitivity rule. Not all of these conditions
are always applicable, so looking into other sensitivity rules will be really valuable.
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Once sensitive cells are observed, it is essential to protect the table cells accordingly. Here
are the most commonly used tabular protection methods: table restructuring makes sure
that different table cells are combined in order to protect its cells. The downside of this
method is that the total amount of cells decrease and less detailed information is given.
Cell suppression is applied in Figure 1 and makes sure that cells that are unsafe are not
published. This is even less desirable than table restructuring. The last noteworthy method
is additive rounding: this method makes sure that each original value gets rounded to the
closed value of a limited set of values. This way, it is only possible to know in which
interval the original value was. Although these protection methods work well, we will look
into other protection methods that do not use these, to hopefully increase the statistical
utility.

In more recent research, investigation has been initiated into statistical disclosure control
when publishing on thematic maps. The main goal of one of the previous research articles
was to look into ‘continuous visualisation on a geographic map, based on measurements
that were taken at finitely many points’ [5]. In this research, random noise from the nor-
mal distribution was added in order to protect sensitive data, according to the (p, q)-rule.
While the research goal of continuous visualisation is an extension compared to publishing
grid maps, it will be interesting to look into other sensitivity rules.

Another paper introduced the concept of differential privacy [3]. The goal of differential
privacy is to make sure that each individual that contributes to the cell has approximately
the same privacy that would follow as if that data point was excluded. That means that
the published statistic should not excessively rely on any of the data contributions. The
main result from this paper was to calculate the sensitivity of a data set, and to apply
noise according to its sensitivity. This proceeds into noise with high variance for data with
a few contributions and negligible noise for relatively safe information sources.

The Pufferfish framework can be seen as a generalisation of differential privacy [6]. It uses
conditional probabilities to make it almost impossible to distinguish whether a statement
about an individual is true or false, when considering published data. Research into the
Pufferfish framework has barely taken place and thus Pufferfish framework applications
are lacking.

1.2 Goal and Outline

As a consequence of the limitations in the currently-used sensitivity rules and insufficient
research into implementing the Pufferfish framework to statistical databases, it is of great
value to take a close look into this. Therefore, the goal of this research is to create pro-
tected thematic grid maps on general finite measurements, where the protection is based
on the Pufferfish framework. The grid should not disclose detailed information about single
contributions, since these measurements can be seen as sensitive information. It will be
interesting to compare numerical results with other privacy techniques, in order to broaden
the toolbox of statistical disclosure control.

First, in Section 2, we will introduce the Pufferfish framework and the mathematical model.
In Section 3 we use theory to create mechanisms that generate protected grid maps. In
Section 4, we will apply boundaries to previous mechanisms, which will result in a new
bounded mechanism. Then, Section 5 shows the numerical results of the privacy mecha-
nisms. We will make some final remarks in Section 6.
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2 Model & preliminaries

First of all, the Pufferfish Framework is introduced. This framework will be applied as
privacy definition. The privacy mechanism coupled to this framework will be introduced
afterwards.

2.1 Privacy definition: the Pufferfish Framework

The Pufferfish Framework [6] relies on three parameters: a set of potential secrets S, a
set of discriminative pairs Spairs ⊆ S × S and a collection of data evolution scenarios D.
The potential secrets are in essence the set that a data curator tries to hide. A possible
attacker should not be able to get information si ∈ S, when evaluating the published data.
An example of this could be ‘individual h is in the data set’.

The discriminative pairs are the set that makes sure the potential secrets stay hidden. If
(si, sj) ∈ Spairs, then an attacker should not be able to distinguish whether statement
si or sj is true of the actual data set. Since si and sj should be indistinguishable, it
follows that si and sj are mutually exclusive: it cannot happen that both si and sj are
true, since then it is impossible to distinguish them. However, si and sj do not have to
be exhaustive, since it might as well be that both si and sj are not true. An example of
a discriminative pair is (‘individual h is not in the data set’, ‘individual h is in the data set’).

The data evolution scenarios is the set of probability distributions that a possible attacker
can apply to disclose the secrets S. The data curator wants to make sure that an attacker is
not able to retrieve the secrets, i.e. the attacker should not be able to distinguish between
statements si and sj ((si, sj) ∈ Spairs) when using distribution θ ∈ D. This intuition is
where the Pufferfish privacy is based on:

Definition 2.1 (ε-Pufferfish privacy). Given a set of potential secrets S, a set of discrim-
inative pairs Spairs, a set of data evaluation scenarios D, and a privacy parameter ε > 0, a
privacy mechanism M satisfies ε-Pufferfish(S,Spairs,D) if

i for all possible outputs ω ∈ range(M),

ii for all pairs (si, sj) ∈ Spairs of potential secrets,

iii for all distributions θ ∈ D for which P(si | θ) 6= 0 and P(sj | θ) 6= 0, the following
holds:

P (M(T) = ω | si, θ) ≤ eεP (M(T) = ω | sj , θ),
P (M(T) = ω | sj , θ) ≤ eεP (M(T) = ω | si, θ).

(1)

In words, this means that the probability distribution of the output ω should be relatively
stable, regardless of what potential secret is assumed to be true by an attacker. In this
way, it should be nearly impossible for attackers to receive any information about any
individual, which is the desired situation.
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Another way of understanding Equations 1 is by looking at its odds ratio [6]. With some
basic conditional probability theory, Equations 1 can be combined and rewritten as:

e−ε ≤ P (si |M(T) = ω, θ)

P (sj |M(T) = ω, θ)

/P (si | θ)
P (sj | θ)

≤ eε (2)

Close attention should be paid to Equation 2. It should become clear that strong privacy
implies that the boundaries in Equation 2 are close to one. This means that the numerator
and denominator should be relatively equal. Firstly, the fraction α = P (si|θ)

P (sj |θ) is just the
initial ratio that an attacker thinks si is α times more likely to be true than sj . On the
other hand, the fraction β = P (si|M(T)=ω,θ)

P (sj |M(T)=ω,θ) is the ratio that an attacker thinks si is β
times more likely to be true than sj , after observing published data ω. For Equation 2 to
apply, both α and β should be relatively equal, thus publishing ω should provide barely
any additional information for possible attackers. This way, no new information can be
disclosed after observing protected output ω.

In the Pufferfish framework, θ can be seen as all information that an attacker will apply, in
order to disclose personal data: think about prior knowledge and estimations of probability
distributions. With all of this combined, we will be able to produce Pufferfish private
mechanisms, but we will first describe the mathematical model.

2.2 Mathematical model

Throughout next sections, a lot of common notation will be used. In this section, some
general symbols are introduced, while the Pufferfish mechanisms are introduced in the next
section.

Let T = {t1, t2, . . . , tn} ∈ R be the measurements of each individual in the determined
data set. These measurements can vary from household income to gas consumption, and
from inhabitants to age. It should not matter what topic is desired to be published, the
corresponding output should be protected correspondingly. These measurements should
be coupled to their geographic location.

The aimed result should consist of a grid G. Let G consist of cells cu,v, where u and v
determine the geographic location of the cell. As mentioned, publishing a grid map is
almost similar to publishing a table, so initially G can be seen as a table. Each cell should
get a requested value, so let gu,v represent this value in each cell. These requested values
can vary from the total sum to the average, depending on the publicist’s preference, but
our aim will be to safely publish the average contribution per cell. This general statistic
will be a combination of each individual contribution ti in that cell.

A data curator, an official authority that issues statistics, determines the privacy definition.
This privacy definition controls the amplitude of the additional noise, depending on the
value of protection. The privacy mechanism M applies appropriate noise in order to satisfy
the privacy definition. The obtained output of this mechanism should be protected and is
denoted as M(T) ≡ ω.
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3 Theoretical analysis: Mechanism M

In this section, we will come up with two privacy mechanisms that both satisfy Pufferfish
privacy. Its algorithms to produce thematic grid maps will be applied later.

3.1 Privacy mechanism with absolute error

In order to get a privacy mechanism of protecting grid values, a few assumptions are nec-
essary. The first assumption is that the individual contributions ti ∈ cu,v are non-negative
and continuous. Another assumption is that a possible attacker does know whether indi-
vidual i contributes to gu,v, and is interested in its contribution. Since the contributions
are continuous, the probability that an individual i has exactly value ti is zero, so we have
to work with probabilities that ti is in an interval.

With this, we can already define potential secrets: Let σi,[x−c,x+c) be the statement ‘The
contribution of individual i is in the range [x− c, x+ c)’, i.e. ti ∈ [x− c, x+ c). This state-
ment is somewhat broad and should be chosen carefully, since it uses an absolute interval.
Imagine publishing grades of students, then an interval of one to ten covers all students,
but publishing income of individuals per year is not sufficient on that same interval. We
will first apply an absolute interval [x−c, x+c) and then improve that to a relative interval.

As initial potential secret that we try to hide, we get:

S =
{
σi,[x−c,x+c) : i ∈ cu,v, x > 0

}
(3)

As discriminative pairs, we will use neighbouring intervals, since these are mutually exclu-
sive, and attackers should have a hard time to differentiate whether someones contribution
is in one or the other neighbouring intervals.

Thus:

Spairs =
{
σi,[x−c,x+c), σi,[x+c,x+3c) : i ∈ cu,v, x > 0

}
(4)

Then for the evolution scenarios D, we’ll choose the set of all probability distributions that
distributes the measurements independently.

This results in:

D =


θ ≡ [f1, . . . , fn],

P (T | θ) =
∏
ti∈T

fi(ti),
(5)

With this choice of potential secrets S, discriminative pairs Spairs and data evolution sce-
narios D, we let |cu,v| ≡ n denote the amount of contributors in cell cu,v. Theorem 3.1
follows:
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Theorem 3.1 (Average of contributions with absolute error). With S and Spairs defined in
Equations (3) and (4), let D be the set of probability distributions specified in Equation (5).

The mechanism Mabs which returns X+

∑
i∈cu,v ti

n , where X has Laplace density nε
8c e
−nε|x|/4c,

satisfies ε-Pufferfish(S,Spairs,D).

Proof. We use ti as individual contribution of individual i in cell cu,v. Furthermore we
use fi(ti ∈ A) to represent the probability that ti is in the set A and fi(ti | A) the
conditional probability density of ti given ti ∈ A. Consider individual i, real value x, and
θ = [f1, . . . , fn] such that f1(t1 ∈ [x− c, x+ c)) 6= 0 and f1(t1 ∈ [x+ c, x+ 3c)) 6= 0. Then:

P (Mabs(T) = ω | t1 ∈ [x− c, x+ c), θ)

=

∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω −
n∑
i=1

ti
n

∣∣∣∣∣
)

×f1(t1 | t1 ∈ [x− c, x+ c))f2(t2) . . . fn(tn)

 dt1 dt2 . . . dtn

≥
∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣− nε

4c

∣∣∣∣x− t1n

∣∣∣∣
)

×f1(t1 | t1 ∈ [x− c, x+ c))f2(t2) . . . fn(tn)

 dt1 dt2 . . . dtn

(because: -
∣∣A− t1

n

∣∣ = -
∣∣A− x

n + x
n −

t1
n

∣∣ ≥ -
∣∣A− x

n

∣∣ - ∣∣xn − t1
n

∣∣ = -
∣∣A− x

n

∣∣ - ∣∣x−t1n

∣∣)

≥
∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣− nε

4c

c

n

)
×f1(t1 | t1 ∈ [x− c, x+ c))f2(t2) . . . fn(tn)

 dt1 dt2 . . . dtn

(because: t1 ∈ [x− c, x+ c), so |x− t1| ≤ c, thus -
∣∣x−t1

n

∣∣ ≥ − c
n)

=

∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣− ε

4

)
×f2(t2) . . . fn(tn)

 dt2 . . . dtn

(we cancel out c and n and the integrand no longer depends on t1.
It follows that we can cancel out

∫∞
−∞ f1(t1 | t1 ∈ [x− c, x+ c)) = 1)

=
nε

8c
e−ε/4

∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣
)

×f2(t2) . . . fn(tn)

 dt2 . . . dtn (6)
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Meanwhile,

P (Mabs(T) = ω | t1 ∈ [x+ c, x+ 3c), θ)

=

∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω −
n∑
i=1

ti
n

∣∣∣∣∣
)

×f1(t1 | t1 ∈ [x+ c, x+ 3c))f2(t2) . . . fn(tn)

 dt1 dt2 . . . dtn

≤
∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣+
nε

4c

∣∣∣∣x− t1n

∣∣∣∣
)

×f1(t1 | t1 ∈ [x+ c, x+ 3c))f2(t2) . . . fn(tn)

 dt1 dt2 . . . dtn

(because:
∣∣A− t1

n

∣∣ = ∣∣A− x
n + x

n −
t1
n

∣∣ ≥ ∣∣A− x
n

∣∣− ∣∣xn − t1
n

∣∣
thus -

∣∣A− t1
n

∣∣ ≤ − ∣∣A− x
n

∣∣+
∣∣x−t1

n

∣∣)
≤
∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣+
nε

4c

3c

n

)
×f1(t1 | t1 ∈ [x+ c, x+ 3c))f2(t2) . . . fn(tn)

 dt1 dt2 . . . dtn

(because: t1 ∈ [x+ c, x+ 3c), so |x− t1| ≤ 3c, thus
∣∣x−t1

n

∣∣ ≤ 3c
n )

=

∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣+
3ε

4

)
×f2(t2) . . . fn(tn)

 dt2 . . . dtn

(we cancel out c and n and the integrand no longer depends on t1.
It follows that we can cancel out

∫∞
−∞ f1(t1 | t1 ∈ [x− c, x+ c)) = 1)

=
nε

8c
e3ε/4

∫
· · ·
∫ 

nε

8c
exp

(
−nε

4c

∣∣∣∣∣ω − x

n
−

n∑
i=2

ti
n

∣∣∣∣∣
)

×f2(t2) . . . fn(tn)

 dt2 . . . dtn (7)

Comparing Equations (6) and (7), we see that the only difference between them is the
constant multiplier outside the integral. Thus dividing, we get

P (Mabs(T) = ω | t1 ∈ [x− c, x+ c), θ)

P (Mabs(T) = ω | t1 ∈ [x+ c, x+ 3c), θ)
≥

nε
8c e

−ε
4

nε
8c e

3ε
4

= e−ε

What follows is

P (Mabs(T) = ω | t1 ∈ [x+ c, x+ 3c), θ) ≤ eεP (Mabs(T) = ω | t1 ∈ [x− c, x+ c), θ) (8)

A similar calculation results in

P (Mabs(T) = ω | t1 ∈ [x− c, x+ c), θ) ≤ eεP (Mabs(T) = ω | t1 ∈ [x+ c, x+ 3c), θ) (9)

We can repeat this calculation for any individual contribution ti, for other choices of
f1, f2, . . . fn and for other y, and so Mabs satisfies ε-Pufferfish(S,Spairs,D).
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Note that M(T) is continuous, so its probability is just the height of its density function.
Another observation is that the density function of the noise in Theorem 3.1 depends on
ε, n and c. The variance of this Laplace distribution X is var(X) = 32c2

ε2n2 . A relatively
small privacy parameter ε should result into undistinguishability, so strong protection is
necessary in order to control disclosure. For a relatively small amount of contributions
n, it follows that this data is really sensitive. That also means that strong protection is
essential. A small check by comparing small and large values of ε and n shows that the
small values yields higher variance. This means that the noise for small values of ε and n
will likely be more spread out, which should result in more total noise. The addition of
more noise results in more randomness and hence stronger privacy.

For the interval parameter c, it is what harder to see. With some rational thinking, it
makes sense that small values of c need strong protection, because the lower the c, the
more accurate an attacker can discover personal data. However, the intervals in Equa-
tions (8) and (9) are the probability conditions, so an attacker is most likely to see similar
outputs ω for the two small neighbouring intervals. Conversely, if the two neighbouring
intervals are larger, than the probability that the outputs ω differ is higher, because more
information is contained in a larger interval. This difference in outputs can disclose per-
sonal information and therefore, a large interval parameter c needs stronger protection.
Therefore, large values of c result in higher variance compared to a small value of c.

Protecting data with absolute error yields additive noise. Every cell in the grid map has
its own parameters, so any cell gets additive noise dependent on its sensitivity. This way,
every cell gets minimal, but appropriate noise, so the grid’s utility is as high as possible,
while privacy is ensured. Algorithm 1 shows the pseudocode how each cell gets protected
in order to satisfy Pufferfish privacy. Visual results of this algorithm will be shown in
Section 5.1.

Algorithm 1: Absolute error Pufferfish protection
Require: ε and c
Require: T = {t1, t2 . . . tn}: the real data
Require: r: cell size
for all cells cu,v do

n[u,v] ← count of ti in cu,v ;
mean[u,v] ← mean of ti in cu,v ;
noise[u,v] ← sample of distribution nε

8c e
−nε|x|/4c ;

end
return mean + noise
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3.2 Privacy mechanism with relative error

The result of Theorem 3.1 shows that the average of a data set is safe to publish, when
adding appropriate noise to protect neighbouring absolute intervals. However, it would be
more convenient to have neighbouring relative intervals, since that is applicable for any
data set, while absolute intervals might have less utility for certain data.

Therefore, we will use the relative interval [ky, y/k) with k ∈ (0, 1). For example, inves-
tigating an interval with a relative error of 10% gives k = 0.9. With this interval, the
potential secret and the discriminative pairs adjust according to this interval as well.

Adjusting the Pufferfish mechanism to relative error yields:

S =
{
σi,[ky,y/k) : i ∈ cu,v, y > 0

}
(10)

and

Spairs =
{
σi,[ky,y/k), σi,[y/k,y/3k) : i ∈ cu,v, y > 0

}
(11)

If ti ∈ [ky, y/k), then log(ti) ∈ [log(y) + log(k), log(y) − log(k)), so protecting y with a
relative error is the same as protecting log(y) with an absolute error. With this intuition
and the result of Theorem 3.1, Corollary 3.2 follows.

Corollary 3.2 (Average of contributions with relative error). With S and Spairs defined
in Equations (10) and (11), let D be the set of probability distributions specified in Equa-

tion (5). The mechanism which returns Y + log(

∑
i∈cu,v ti

n ) where Y has Laplace density
−nε

8log(k)e
nε|y|/4log(k), satisfies ε-Pufferfish(S, Spairs,D).

One of the main benefits of Pufferfish privacy is that its definition is robust to post-
processing [2]. That means that a Pufferfish private mechanism can be post-processed,
and then it still satisfies Pufferfish privacy. Therefore, applying the exponential function
of the mechanism of Corollary 3.2 also satisfies ε-Pufferfish(S, Spairs,D). This results in
the following:

Mrel ≡ eY+log(
∑
i∈cu,v ti
n

) = eY elog(
∑
i∈cu,v ti
n

) = eY
∑

i∈cu,v ti

n
(12)

Thus the mechanism Mrel that applies multiplicative noise to the average of a data set
satisfies ε-Pufferfish(S,Spairs,D) with relative error. Each cell will again get its own appro-
priate noise to optimize utility. The pseudocode of this mechanism is applied in Algorithm
2. Visual results of this algorithm will be shown in Section 5.2.

Algorithm 2: Relative error Pufferfish protection
Require: ε and k
Require: T = {t1, t2 . . . tn}: the real data
Require: r: cell size
for all cells cu,v do

n[u,v] ← count of ti in cu,v ;
mean[u,v] ← mean of ti in cu,v ;
noise[u,v] ← sample of distribution −nε

8log(k)e
nε|y|/4log(k) ;

end
return enoise ×mean
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4 Theoretical analysis: Mechanism B

As will become clear in Section 5, we will notice two remarkable effects in the outputs ω of
mechanism M: firstly, in the protection method with absolute error, some cells will have
negative output, while it is assumed that all contributions are non-negative. Of course,
this is unrealistic, so this should be solved. Then in the relative error case, some noise
multipliers are significantly larger than others. This causes the grid to only show a few
large measurements, while the protected information of the other cells are barely visible:
the large measurements stretch out the legend bar which ensures that the majority of the
results are in a smaller colour range, thus reducing the distinction between these results.

In order to resolve these peculiarities, we will look into the possibility of bounding the
output results. That would mean that all protected negative values would be set to zero,
and that an upper bound will make sure all high values get reduced.

4.1 More Pufferfish privacy definitions

The Pufferfish privacy definition in Definition 2.1 relied on probability distribution. This
definition can be changed to its cumulative form, which makes it easier to work with when
introducing boundaries. Therefore, the new privacy definition that will be applied is as
follows:

Definition 4.1 (Cumulative ε-Pufferfish privacy). Given a set of potential secrets S, a set
of discriminative pairs Spairs, a set of data evaluation scenarios D, and a privacy parameter
ε > 0, a privacy mechanism M satisfies ε-Pufferfish(S, Spairs,D) if

i for all possible outputs ω ∈ range(M),

ii for all pairs (si, sj) ∈ Spairs of potential secrets,

iii for all distributions θ ∈ D for which P(si | θ) 6= 0 and P(sj | θ) 6= 0, the following
holds:

P (M(T) ≤ ω | si, θ) ≤ eεP (M(T) ≤ ω | sj , θ),
P (M(T) ≤ ω | sj , θ) ≤ eεP (M(T) ≤ ω | si, θ).

(13)

A small adaptation of the aforementioned privacy definition is (ε, δ)-Pufferfish privacy [2].
This definition uses two privacy parameters and has a bit more freedom than the case with
only one parameter. This results in less necessary noise which causes more utility, but also
a weaker privacy protection:

Definition 4.2 (Cumulative (ε, δ)-Pufferfish privacy). Given a set of potential secrets S,
a set of discriminative pairs Spairs, a set of data evaluation scenarios D, and privacy pa-
rameters ε > 0 and δ ∈ (0, 1), a privacy mechanism M satisfies (ε, δ)-Pufferfish(S,Spairs,D)
if

i for all possible outputs ω ∈ range(M),

ii for all pairs (si, sj) ∈ Spairs of potential secrets,

iii for all distributions θ ∈ D for which P(si | θ) 6= 0 and P(sj | θ) 6= 0, the following
holds:

P (M(T) ≤ ω | si, θ) ≤ eεP (M(T) ≤ ω | sj , θ) + δ,

P (M(T) ≤ ω | sj , θ) ≤ eεP (M(T) ≤ ω | si, θ) + δ.
(14)
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4.2 Bounding the output ω

Take the protection mechanisms M from Section 3. A rough visualisation of its cumulative
distribution of output ω will be as follows:

0

0.2

0.4

0.6

0.8

1

ω

C
D
F

(ω
)

Figure 2: Cumulative distribution of mechanism M

Now assume that output values ω cannot lie outside lower and upper boundaries L and U .
Applying these boundaries results in the new mechanism B of Equation (15). The rough
visualisation of its cumulative distribution is in Figure 3.

P (Babs/rel(T) ≤ ω) =


0 ω ≤ L
P (Mabs/rel(T) ≤ ω) L < ω < U

1 ω ≥ U
(15)
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Figure 3: Cumulative distribution of mechanism B
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The cumulative distribution function of mechanism B is discontinuous and has jumps at
ω = L and ω = U . These jumps are visible in Figure 3 and we will define its lengths in
Equations (16).

∆L = P (M(T) ≤ L)

∆U = P (M(T) ≥ U)
(16)

Theorem 3.1 states that mechanism M satisfies Definition 2.1. This is equal to satisfying
Definition 4.1, because in Theorem 3.1, the cumulative distribution functions of Definition
4.1 can be applied instead of the probability density functions. Mechanism B is a combi-
nation of this Pufferfish private mechanism and two boundaries. Therefore, the following
theorem follows:

Theorem 4.3 (Bounded mechanism). Given a set of potential secrets S, a set of discrimi-
native pairs Spairs and a set of data evaluation scenarios D, let M be an ε-Pufferfish(S,Spairs,D)
mechanism satisfying Equations (13) for ε > 0 and let δ be defined as max{∆U, eε∆L}. The
mechanisms Babs and Brel that are defined in Equation (15) satisfy (ε, δ)-Pufferfish(S,Spairs,D).

Proof. Since the cumulative distribution function of mechanism B is discontinuous, we
have to prove Pufferfish privacy for each continuous interval of ω, and then combine all
cases into a general solution for all cases.

Case 1: ω ∈ (−∞, L]
If ω ∈ (−∞, L], then:

0 = P (B(T) ≤ ω) ≤ P (M(T) ≤ ω)

and

P (M(T) ≤ ω) ≤ P (B(T) ≤ ω) + ∆L = ∆L

Combining these using ε-Pufferfish privacy of M results in:

P (B(T) ≤ ω | si, θ) ≤ P (M(T) ≤ ω | si, θ)

≤ eεP (M(T) ≤ ω | sj , θ) ≤ eεP (B(T) ≤ ω | sj , θ) + eε∆L

Therefore:

P (B(T) ≤ ω | si, θ) ≤ eεP (B(T) ≤ ω | sj , θ) + eε∆L (17)

A similar calculation results in

P (B(T) ≤ ω | sj , θ) ≤ eεP (B(T) ≤ ω | si, θ) + eε∆L (18)

Case 2: ω ∈ (L,U)
If ω ∈ (L,U), then:

P (B(T) ≤ ω | si, θ) = P (M(T) ≤ ω | si, θ)

and

P (B(T) ≤ ω | sj , θ) = P (M(T) ≤ ω | sj , θ)
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Therefore, using ε-Pufferfish privacy of M results in:

P (B(T) ≤ ω | si, θ) ≤ eεP (B(T) ≤ ω | sj , θ) (19)

and

P (B(T) ≤ ω | sj , θ) ≤ eεP (B(T) ≤ ω | si, θ) (20)

Case 3: ω ∈ [U,∞)
If ω ∈ [U,∞), then:

P (M(T) ≤ ω) ≤ P (B(T) ≤ ω) = 1

and

1−∆U = P (B(T) ≤ ω)−∆U ≤ P (M(T) ≤ ω)

Combining these using ε-Pufferfish privacy of M results in:

P (B(T) ≤ ω | si, θ)−∆U ≤ P (M(T) ≤ ω | si, θ)

≤ eεP (M(T) ≤ ω | sj , θ) ≤ eεP (B(T) ≤ ω | sj , θ)
Therefore:

P (B(T) ≤ ω | si, θ) ≤ eεP (B(T) ≤ ω | sj , θ) + ∆U (21)

A similar calculation results in

P (B(T) ≤ ω | sj , θ) ≤ eεP (B(T) ≤ ω | si, θ) + ∆U (22)

Combining the solutions of all intervals of ω results in a general solution for all possible ω.
This is possible for δ = max{∆U, eε∆L}, so B satisfies (ε, δ)-Pufferfish(S,Spairs,D).

Using the result of Theorem 4.3, a lower and upper bound can be applied in order to output
bounded results, while maintaining Pufferfish privacy. The downside of this mechanism is
that its privacy definition is weaker compared to the original mechanism M. Furthermore,
the privacy parameter δ depends on the output ω. This causes a privacy leakage, which
unfortunately can be exploited by a potential attacker.

4.3 Absolute error protection: worst case analysis

A solution to the privacy leakage from previous section is to determine an upper bound
on δ that will definitely satisfy. This upper bound δmax can be achieved by a worst case
analysis, where the probability that the outcome of the original mechanism is outside the
determined boundaries is the highest.

In Section 3.1, we made the assumption that all contributions ti are non-negative. For now
we will set the lower boundary at some Lt ≤ ti for all i. Additionally, we will also assume
that the contributions are upper bounded by some Ut ≥ ti for all i, i.e. all contributions
ti ∈ [Lt, Ut]. Later in this section, it will become clear why these boundaries are chosen.
Let the boundaries of mechanism Babs be defined as L ≡ Lt−γ < Lt and U ≡ Ut+γ > Ut
for γ > 0, as can be seen in Figure 4. Theorem 4.4 follows with this boundary parameter γ.

L Lt Ut U

Figure 4: Visualisation of the boundaries
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Theorem 4.4 (δmax with absolute error protection). With S and Spairs defined in Equa-
tions (3) and (4), let D be the set of probability distributions specified in Equation (5),
let Mabs be an absolute error ε-Pufferfish(S,Spairs,D) mechanism satisfying Equations (13)
for ε > 0 and let mechanism Babs be defined in Equation (15), which satisfies
(ε, δ)-Pufferfish(S, Spairs,D) for δ = max{∆U, eε∆L}. Then δmax ≡ eεP (X ≤ −γ) is an
upper bound of δ.

Proof. We will first look into the worst case scenario for the lower bound of mechanism
Babs, because this will yield the largest value of ∆L. This is the case when all individual
contributions are equal to Lt, i.e. ti = Lt ∀i. It immediately follows that the largest
value of ∆U is achieved when ti = Ut ∀i. We will apply this to mechanism Mabs(T) =
1
n

∑n
i=1 ti + X where X has Laplace density nε

8c e
−nε|x|/4c. In the worst case scenario, the

following happens with ∆L and ∆U from Equations (16):

∆L = P (Mabs(T) ≤ L) = P (
1

n

n∑
i=1

ti+ ≤ L) ≤ P (Lt+X ≤ L) = P (X ≤ L−Lt) = P (X ≤ −γ)

and

∆U = P (Mabs(T) ≥ U) = P (
1

n

n∑
i=1

ti+X ≥ U) ≤ P (Ut+X ≥ U) = P (X ≥ U−Ut) = P (X ≥ γ)

Note that X is just the Laplace density of Mabs, which in our case is symmetric around 0.
That means that ∆L ≤ P (X ≤ −γ) = P (X ≥ γ) ≥ ∆U . Since δ = max{eε∆L,∆U} and
eε > 1 for ε > 0, it follows that the upper bound on eε∆L will satisfy as an upper bound
on δ. Therefore, δmax = eεP (X ≤ −γ) can be seen as an upper bound on δ, since this is
the upper bound in the worst case scenario for both eε∆L and ∆U .

Note that each cell in the grid has its own δmax, since the amount of contributors n is not
equal in each cell. Therefore, we will define ∆ ≡ max

cu,v
δmax as the grid map upper bound

of δ.

We will apply Theorem 4.4 to several grid maps that result from Algorithm 1. We will
use γ = min

i
ti, which results in L = 0 and U = max

i
ti + min

i
ti. Visualisation of the new

mechanism Babs can be seen in Section 5.1.

4.4 Relative error protection: worst case analysis

Looking at Theorem 4.4, a similar result will follow for the relative error protection. The
same assumptions can be assumed with the exception of the defined L and U . Let the
boundaries of mechanism Brel be defined as L ≡ Lt

λ < Lt and U ≡ λUt > Ut for λ > 1, as
still can be seen in Figure 4. The following corollary follows:

Corollary 4.5 (δmax with relative error protection). With S and Spairs defined in Equa-
tions (10) and (11), let D be the set of probability distributions specified in Equation (5), let
Mrel be a relative error ε-Pufferfish(S, Spairs,D) mechanism satisfying Equations (13) and
let mechanism Brel be defined in Equation (15), which satisfies (ε, δ)-Pufferfish(S,Spairs,D)
for δ = max{∆U, eε∆L}. Then δmax ≡ eεP (Y ≤ log( 1

λ)) is an upper bound of δ.

The proof of Corollary 4.5 is exactly the same as the proof of Theorem 4.4, with applying
mechanism Mrel instead of mechanism Mabs. We will apply Corollary 4.5 to several grid
maps that result from Algorithm 2. We will use λ = 1.25, which results in L = min

i
ti/1.25

and U = 1.25 max
i
ti. Visualisation of the new mechanism Brel can be seen in Section 5.2.
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5 Numerical results

In this section, we will simulate several grid maps that would follow from applying the
protection methods from Sections 3 and 4. These privacy mechanisms satisfy Pufferfish
privacy, so these results will be shown with different parameters. We will also compare the
unprotected with the protected mappings. This comparison will be done using open data
from the R package ‘sdcSpatial’ [1]. Figure 5 shows each contributor’s geographic location
with its contribution, that will be plotted as a thematic grid map.

Figure 5: Used locations and measurement values

5.1 Absolute error protection

In Figures 6 and 7, we see several grid maps with cell length 500. Comparing Figure 6
and 7, the main result is that a larger interval parameter c, also results in higher variance
noise. This result is also clearly visible with different cell sizes when comparing Figure 8
and 9 and comparing Figure 10 and 11. This observation was expected as mentioned in
Section 3.1.

Comparing Figures 6, 8, 10 and comparing Figures 7, 9, 11, we see that larger cells, while
keeping the interval parameter the same, result in less additional noise in general. This
result was also expected, since larger cells result in more contributors per cell, so less pro-
tection is necessary.

Note that the bounded protection method Babs is a useful addition in Figures 6, 7 and
9. In the other figures, the unbounded protection method Mabs barely results in negative
values, so the bounded protection method is less important to apply in these cases: there
is hardly any difference between the grid maps of Mabs and Babs.

A worrying trend in the bounded protection method is the ∆. In Figures 6, 7, 8 and 9 the
value of ∆ is quite high, which barely provides privacy according to Equations (14). The
upper bound on δ has this value, because some cells still have zero contributions. This
problem is resolved when applying larger cell sizes, which is visible in Figures 10 and 11.
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(a) Unprotected grid map (b) = (C) - (A) Added noise of Mabs

(c) Protected grid map of mechanism Mabs (d) Protected grid map of mechanism Babs

Figure 6: Different grid maps with variables r = 500, ε = 0.1, c = 50, γ = 59.46
and ∆ = 0.536, getting protected to absolute error, according to the Pufferfish
privacy definition. The noise images satisfy density function nε

8c e
−nε|x|/4c

(a) Unprotected grid map (b) = (C) - (A) Added noise of Mabs

(c) Protected grid map of mechanism Mabs (d) Protected grid map of mechanism Babs

Figure 7: Different grid maps with variables r = 500, ε = 0.1, c = 100, γ = 59.46
and ∆ = 0.544, getting protected to absolute error, according to the Pufferfish
privacy definition. The noise images satisfy density function nε

8c e
−nε|x|/4c
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(a) Unprotected grid map (b) = (C) - (A) Added noise of Mabs

(c) Protected grid map of mechanism Mabs (d) Protected grid map of mechanism Babs

Figure 8: Different grid maps with variables r = 1000, ε = 0.1, c = 50, γ = 59.46
and ∆ = 0.536, getting protected to absolute error, according to the Pufferfish
privacy definition. The noise images satisfy density function nε

8c e
−nε|x|/4c

(a) Unprotected grid map (b) = (C) - (A) Added noise of Mabs

(c) Protected grid map of mechanism Mabs (d) Protected grid map of mechanism Babs

Figure 9: Different grid maps with variables r = 1000, ε = 0.1, c = 100, γ = 59.46
and ∆ = 0.544, getting protected to absolute error, according to the Pufferfish
privacy definition. The noise images satisfy density function nε

8c e
−nε|x|/4c
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(a) Unprotected grid map (b) = (C) - (A) Added noise of Mabs

(c) Protected grid map of mechanism Mabs (d) Protected grid map of mechanism Babs

Figure 10: Different grid maps with variables r = 2000, ε = 0.1, c = 50, γ = 59.46
and ∆ = 0.261, getting protected to absolute error, according to the Pufferfish
privacy definition. The noise images satisfy density function nε

8c e
−nε|x|/4c

(a) Unprotected grid map (b) = (C) - (A) Added noise of Mabs

(c) Protected grid map of mechanism Mabs (d) Protected grid map of mechanism Babs

Figure 11: Different grid maps with variables r = 2000, ε = 0.1, c = 100, γ = 59.46
and ∆ = 0.379, getting protected to absolute error, according to the Pufferfish
privacy definition. The noise images satisfy density function nε

8c e
−nε|x|/4c
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5.2 Relative error protection

In Figures 12 and 14, we can see that the relative error protection has a high chance to
‘explode’. The result of this ‘explosion’ is clearly visible in Figures 12b and 14b, where
some cells have a much larger noise multiplier than the rest. In the case of the relative
error of 5%, this causes the protected grid map to be useless to publish. With a relative
error of 1%, the noise multipliers are way lower, which results in the more useful protected
grid maps of Figures 13 and 15.

For larger cells, the aforementioned problem also has a smaller impact, which also results
in well-protected and useful grid maps, visible in Figures 16 and 17.

Note that the bounded protection method Brel of Figures 12 and 14 has changed in com-
parison with its unbounded protection method Mrel, but the utility of Figures 12d and
14d remains lower than preferred. In the other figures, the unbounded protection method
Mabs does not result in extremely high values, so the bounded protection method Babs is
not necessary to apply in these cases.

In Figures 16 and 17, it follows that ∆ = 0, since the grid maps of mechanisms Mrel and
Brel are the same. This is better than the absolute protection case, because the same hap-
pens in Figure 10, but there it follows that ∆ = 0.261. This difference can be explained
by the different mechanisms and the different methods of calculating δmax, according to
Theorem 4.4 and Corrollary 4.5.

A peculiarity occurs in Figures 13 and 15, where the unbounded and bounded grid maps
are the same, but it follows that ∆ 6= 0. It appears that some cells in Figures 13c and 15c
are zero, while the lower bound is higher. Therefore, these cells get valued as the lower
bound and thus ∆ > 0.

Comparing the absolute noise protection with the relative noise protection, the main dif-
ference is that the absolute protection method is still significant with small cell sizes,
especially after applying the boundaries. Both protection methods are useful with large
cell sizes, and the bounded mechanism is barely necessary in that case. When the bounded
mechanism is necessary, it appears that the upper bound on δ is quite large. This freedom
in the privacy definition results in less protected contributors, and thus these grid maps
are still quite sensitive to disclose individual information.
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(a) Unprotected grid map (b) = (C) / (A) Multiplicating noise of Mrel

(c) Protected grid map of mechanism Mrel (d) Protected grid map of mechanism Brel

Figure 12: Different grid maps with variables r = 500, ε = 0.1, k = 95, λ = 1.25
and ∆ = 0.496, getting protected to relative error, according to the Pufferfish
privacy definition. The noise images satisfy density function −nε

8logke
−nε|x|/4logk

(a) Unprotected grid map (b) = (C) / (A) Multiplicating noise of Mrel

(c) Protected grid map of mechanism Mrel (d) Protected grid map of mechanism Brel

Figure 13: Different grid maps with variables r = 500, ε = 0.1, k = 99, λ = 1.25
and ∆ = 0.317, getting protected to relative error, according to the Pufferfish
privacy definition. The noise images satisfy density function −nε

8logke
−nε|x|/4logk
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(a) Unprotected grid map (b) = (C) / (A) Multiplicating noise of Mrel

(c) Protected grid map of mechanism Mrel (d) Protected grid map of mechanism Brel

Figure 14: Different grid maps with variables r = 1000, ε = 0.1, k = 95, λ = 1.25
and ∆ = 0.496, getting protected to relative error, according to the Pufferfish
privacy definition. The noise images satisfy density function −nε

8logke
−nε|x|/4logk

(a) Unprotected grid map (b) = (C) / (A) Multiplicating noise of Mrel

(c) Protected grid map of mechanism Mrel (d) Protected grid map of mechanism Brel

Figure 15: Different grid maps with variables r = 1000, ε = 0.1, k = 99, λ = 1.25
and ∆ = 0.317, getting protected to relative error, according to the Pufferfish
privacy definition. The noise images satisfy density function −nε

8logke
−nε|x|/4logk
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(a) Unprotected grid map (b) = (C) / (A) Multiplicating noise of Mrel

(c) Protected grid map of mechanism Mrel (d) Protected grid map of mechanism Brel

Figure 16: Different grid maps with variables r = 2000, ε = 0.1, k = 90, λ = 1.25
and ∆ = 0, getting protected to relative error, according to the Pufferfish privacy
definition. The noise images satisfy density function −nε

8logke
−nε|x|/4logk

(a) Unprotected grid map (b) = (C) / (A) Multiplicating noise of Mrel

(c) Protected grid map of mechanism Mrel (d) Protected grid map of mechanism Brel

Figure 17: Different grid maps with variables r = 2000, ε = 0.1, k = 95, λ = 1.25
and ∆ = 0, getting protected to relative error, according to the Pufferfish privacy
definition. The noise images satisfy density function −nε

8logke
−nε|x|/4logk
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6 Discussion & Conclusion

In this paper we looked into the application of the Pufferfish framework when publishing
thematic grid maps. Using Laplace distributions, we found the minimal, but appropriate
noise that is necessary to protect data. In this way, the utility of the data will remain as
high as possible, while all contributing individuals are protected accordingly.

The first protection method made use of additive noise. With this noise, it would be impos-
sible for an attacker to disclose any additional information. The output created with this
method was protected well enough, that none of the published statistics overly depends
on one of the contributions. This was done using conditional probabilities, where only
the condition changed what statement about the data is assumed to be true. An attacker
cannot gain additional information by observing the published data.

The main disadvantage of this method is that we have to choose the interval sizes carefully.
This is dependent on what kind of data we want to publish, while it would be more ideal to
have a general protection method. Hereby, the idea of protection with relative error arose.
We noticed that relative protection can be rewritten as an additive case with logarithmic
scale, so with a bit of rewriting, we found a method that secures with relative error. This
method also satisfied Pufferfish privacy due its robustness to post-processing.

For both methods, we were able to create thematic grid maps. We compared different
input parameters with each other, and we noticed that the protection methods worked as
expected. For several combinations of input parameters, we saw that its protected grid
had high utility, while being safe to publish.

Both absolute and relative protection has its setbacks. Neither negative, nor extremely
positive values were expected, which caused some grid maps to be less realistic or useless.
We created another privacy mechanism by bounding the results in order to tackle this prob-
lem. This new mechanism satisfied a weaker Pufferfish privacy definition. This bounded
mechanism increased utility in the absolute error protection method by quite a bit. In the
relative case, utility also got higher, but there is quite some room for improvement in this
case.

Further research can be done into applying Pufferfish privacy with different data sets. Due
to time constraints, we were only looking at one data set, while possibly other observations
can be found by using other measurements.

Next to that, more investigation can be done into optimizing the utility of the bounded
privacy mechanisms. Combining Pufferfish privacy with some sort of minimum frequency
rule from Section 1.1 can improve privacy guarantees by quite a bit. Ideally, the relative
error protection should be applicable to thematic maps with small cell sizes, so looking
into this can be really valuable.

Finally, combining Pufferfish privacy with the tabular protection methods from Section 1.1
could be an improvement. This way, more global grid privacy can be guaranteed, while
its utility reduction can be minimal. The current numerical results made use of additive
rounding, but its additional protection was not taken into account. Therefore, further
research can be done to investigate in this privacy gain.
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