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Chapter 1

Introduction

From pharmaceutical employees stealing drugs, heroin disappearing from police
evidence lockers prior to trials and disgruntled contractors releasing personal credit
card information 1: small security holes can have large consequences for organiza-
tions. One of the central pillars of organizational security is physical access control.
Physical access control protects people and resources against unauthorized access
and the disastrous consequences which could stem from it.

The goal of physical access control is to manage who can access a location and
when. When we talk about physical access control systems, we usually denote
electronic access control systems in which people use an identifier, such as an ID
badge, to gain access to locations protected by measures, such as electronic door
locks. The person trying to get access could be an employee, a contractor or a visi-
tor. The location they are trying to access could be a site, a building or a single room.

Managing physical access control systems is a complex task. As organizations
change and so does the world around them, their security systems must adapt to
their changing needs. While establishing an initial access control policy is relatively
easy, evolving it is much harder. Not only can these policies be very intricate and
convoluted, underlying policy invariants are also often implicit or written down out-
side of the system. These characteristics make it difficult to foresee and assess the
influence of a change in the system or modification of the policy. This is dangerous
since a misconfigured access control system poses a security risk and can render
employees unable to perform their daily tasks.

Nedap has also identified the problems above and is actively working towards ways

1examples based on anonymized incidents presented in https://www.securityinfowatch.com/

access-identity/article/12293604/fixing-the-gaps-in-your-pacs (accessed on 22-1-2021)

1
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to help security officers tackle the complexity. They have a department that builds
software and hardware for physical access control systems 2. At the time of writing,
they have set up an R&D team to develop the next generation of physical access
control software.

Among other things, they have developed a robust access control authorization
model formalism called bi-sorted role-based access control (RBÄC) [1] to allevi-
ate some of the burdens. Authorization models are consulted to determine whether
somebody should be granted or denied access when requested. RBÄC is a frag-
ment of role-based access control (RBAC) [2], implying that RBÄC might be directly
used with existing RBAC implementations [1]. The idea behind RBAC and RBÄC is
that a security officer can govern what people, also called users, can access by as-
signing roles to users (e.g. receptionist, security guard, contractor or a visitor), and
controlling what permissions users with these roles should have (e.g. what locations
they should be able to access).

Another way of tackling the complexity is through formal verification. Access control
policy verifiers can be used to check that a policy does not contain security or con-
figuration mistakes. In our research, we would like to help Nedap facilitate physical
access control policy evolution through formal verification by checking policy invari-
ants on authorization models, also commonly known as authorization constraints.

Problem Statement

Unfortunately, most existing access control policy verifiers are not designed to ana-
lyze evolving policies. They analyze policies in their entirety (e.g., all verifiers shown
in the recent survey paper [3]). In practice, this means that the entire policy and all
policy invariants have to be reverified from scratch after each small change. This is
often unnecessary and highly inefficient when dealing with evolving policies.

We believe a better approach would be to verify policies incrementally, i.e. to re-
use intermediary computations and results from previous verifications. This would
make it is possible to limit the set of computations to redo; constraints to recheck;
and/or the set of model entities to reconsider upon a change. We argue that there-
fore incremental verification would be a much more efficient way to verify evolving
policies. Thus in this research, we will explore the following problem:

2https://www.nedapsecurity.com/nl/

2
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Problem Statement: How can we incrementally verify authorization constraints on
realistic RBÄC-inspired evolving physical access control systems?

To the best of our knowledge, incremental verification has only been sparingly ex-
plored in the domain of access control verification [4] [5] [6] and never in the domain
of physical access control verification. However, it has been successfully applied in
many other application areas such as in: product line engineering configuration ver-
ification [7] [8], OCL checking [9] [10], validation of XML documents against DTDs
[11] [12] and program analysis [13].

Concretely, we will thus help Nedap facilitate physical access control policy evo-
lution by defining an RBÄC-inspired authorization model and showing how realistic
evolving physical access control systems captured in that model can be verified.
Specifically, we are going to focus on checking changes will not violate authoriza-
tion constraints. This will help security officers to foresee and assess if a change
introduces security/configuration mistakes (through pre-defined authorization con-
straints) and if policy invariants which would previously be written down outside are
still respected (through user-defined authorization constraints). Ideally, security of-
ficers would be able to continuously verify the authorization model and get quick
feedback after each change.

Research Questions

The main problem can be subdivided into three separate yet connected problems.
These smaller problems naturally lead us to our research questions.

Incremental Authorization Constraint Verification

The first problem is that the authorization constraints should be incrementally ver-
ified. Incremental graph pattern matching has achieved notable success to incre-
mentalize verification and other types of analysis in multiple domains [10] [13] [14].
We will explore if this technique is also suitable to verify authorization constraints.
We will do this with the help of VIATRA, an open-source incremental model query
and transformation framework based on graph patterns [15]. Thus, our first research
question will be:

RQ1: Can we verify authorization constraints incrementally with graph patterns?

We do not know of any prior research in which incremental graph pattern match-

3



ing has been used to verify authorization constraints. To the best of our knowledge,
it has only been used to operationalize access control policies [16] [17].

We will explore if common authorization constraint types from the literature and
domain-specific authorization constraint types (established in collaboration with Nedap)
we expect security officers want to verify can be incrementally verified with the help
of this framework. When an authorization constraint is violated, we want to be able
to find all reasons why that constraint is violated. When the authorization model
is changed, we want to be able to detect which authorization constraints became
violated or resolved due to the change.

Time-dependent Accessibility

The second problem is that the solution should be able to analyze realistic physical
access control policies. However, RBÄC does not support time-dependent accessi-
bility. This is a requirement for realistic physical access control policies. Very often,
employees with roles such as night-time security guards and cleaners have different
permissions during their shifts compared to outside their shifts. As our goal is to an-
alyze realistic policies, we will try to propose an RBÄC-inspired authorization model
such that authorization can be granted or withheld based on time. Since we explore
if we can verify policies incrementally, we should design this formalism with this in
mind. Thus, our second research question will be:

RQ2: How can we design an RBÄC-inspired authorization model with time-dependent
authorizations in a way that is suitable for incremental verification?

We will explore how this can be done while trying to keep the desired properties
and the spirit of RBÄC.

Context-dependent Authorization Constraints

The last problem is that our solution should be able to verify the types of autho-
rization constraints security officers want to verify. Next to authorization constraints
which only depend on the authorization model, security officers also want to specify
and verify authorization constraints on the authorization model which do not only
depend on information contained in the authorization model. This is because in
physical access control, security and configuration mistakes on the level of the au-
thorization model can be inherently dependent on the context the model is deployed
into.

4



Two key context-dependent authorization constraints security officers often want to
check in physical access control are:

• users can never get trapped, i.e. users should always have a set of permis-
sions which allows them to leave the collection of areas under access control.

• users can always enter the security zones he/she has the permission to ac-
cess, i.e. users should always be able to invoke all granted permissions.

These authorization constraints do not only depend on the authorization model. In-
stead, they depend on the interplay between the authorization model, the access
control system topology and the authentication model. From the access control
system topology, we know how groups of locations delimited by access control mea-
sures, which we will call security zones, are interconnected and connected with the
outside. From the authentication model, we know the obligations (authentication re-
quirements) (none, access code, id badge, iris scan, etc.) to access a security zone
depending on the time.

To the best of our knowledge, it has not yet been explored how an authentication
model and the building topology can be linked with the authorization model in such
a way that security officers may use this information to prove properties about the
authorization model. Our third research question will thus be:

RQ3: How do we account for authorization constraints dependent on the access
control system topology and the authentication model in a way that is suitable for
incremental verification?

We will focus on verifying the two aforementioned key invariants and contextual fac-
tors. Although we could take more into account, we believe these two invariants and
factors provide an interesting jumping-off point to explore how we could deal with
context-dependent authorization constraints.

Performance Evaluation

To know if the presented solutions are a step in the right direction, we need to know
if our approach could be efficient/scalable enough for real systems. This leads us to
the fourth and final research question:

RQ4: How efficient and scalable is our approach?

We will explore this question by implementing our ideas into a prototype and mea-
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suring the performance of this prototype when analyzing an actual physical access
control system of an anonymous company. This data has been graciously provided
to us by Nedap. We have released an anonymized version of the security policy
alongside this research.
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Thesis Structure

This thesis is structured as follows:

• In Chapter 2, Background, we present the access control domain, access con-
trol analysis, incremental verification and VIATRA.

• In Chapter 3, Related Work, we show the current state of the art of access
control verification and physical access control modelling.

• In Chapter 4, GR-RBAC, we present and define our RBÄC-inspired authoriza-
tion model which allows for time-dependent accessibility.

• In Chapter 5, Site Access Control System Model, we present and define an
access control system topology model, an authentication model and the Site
Access Control System (SACS) model which encapsulates all previously intro-
duced models.

• In Chapter 6, Authorization Constraints, we present and define the authoriza-
tion constraints (sub)types we want to verify incrementally.

• In Chapter 7, Implementation, we show how we constructed a prototype in-
cremental policy verifier with VIATRA based on our previously defined models
and authorization constraints (sub)types.

• In Chapter 8, Evaluation, we evaluate our prototype based on an actual physi-
cal access control system.

• In Chapter 9, Final Thoughts, we conclude our research, present our sec-
ondary contributions, discuss the limits of our research and point to possible
future work.
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Chapter 2

Background

2.1 Access Control

Access Control is a security mechanism which regulates who can access what in a
cyber(-physical) system. Depending on the system, accessing may mean consum-
ing, entering, using, dowloading, deleting, etc. It may mean anything from entering
a room to reading a document. It depends on the system under access control.
The goal of access control is to reduce the risk of unauthorized access, thereby
enhancing the integrity and confidentially of the system and its resources. In the
access control domain, the entities which can perform actions on the system are
called users or subjects. The entities representing resources which might require
permission to be accessed are called objects.

Access Control may be implemented on different levels and different types of sys-
tems, such as on databases, operating systems but also buildings. Depending on
the system, examples of users may be persons or non-person entities such as pro-
cesses, servers or routers. Examples of objects could be areas, files or networks.

Inspired by the definitions presented in [18], we can say that conceptually there
are three parts to access control:

1. Identification: The means a user uses to claim an identity, role or attribute.
This can be done with ID badges, user names, process ids, MAC addresses
or anything else which can uniquely identify users.

2. Authentication: The means used to prove the right to use an identity, take on
a role or prove possession of one or more attributes. Authentication can be
achieved through 3 different approaches: based on something the user knows
(e.g. passwords, keys), based on what the user has (e.g. ID badges, RSA

9



tokens) or based on what the user is or does (e.g. fingerprints, iris scans).

3. Authorization: The means of expressing the access policy by explicitly granting
or withholding permissions.

The result of the identification, authentication and authorization process to grant or
withhold access when requested is called an access decision [18].

To get a better understanding of the above concepts, let us consider the access
control system of a building. There:

• Identification could be done by handing out ID badges to employees,

• Authentication could be done through badge scanners,

• Authorization to enter could be done based on a time-table which indicates
when users are working and thus should be able to enter the building.

During our research, we will focus on the authorization and authentication aspect of
access control. We will not take the identification process into account.

2.2 Types of Access Control

There are two main categories of access control authorization methods: Discre-
tionary Access Control (DAC) and Non-Discretionary Access Control (NDAC) [19].
The experience of Nedaps security experts tells us that NDAC policies are more
appropriate for the physical access control domain than DAC policies. Therefore, in
this section, we will only briefly explain DAC and give a more in-depth introduction
into NDAC policies.

Discretionary Access Control (DAC) gives users all permissions related to objects
they have created or have previously been given access to [20]. This includes shar-
ing permissions regarding these objects with other users. With DAC, invocation and
sharing of permissions are up to a user’s own discretion, hence the name.

Non-Discretionary Access Control (NDAC) can be seen as the inverse of Discre-
tionary Access Control. With NDAC, a centralized authority is in charge of the ac-
cess control system [19].

In contrast to DAC, depending on the form of NDAC, a user that has been granted
access to an object may be limited in doing any of the following [21]:

1. passing the object to unauthorized users or objects,

10



2. granting permissions to access the object to other users,

3. changing one or more security attributes on users, objects or any other ele-
ments of the system,

4. choosing the security attributes to be associated with newly-created or modi-
fied objects,

5. changing the policy and it rules governing access control.

The two most popular types of NDAC are arguably Role-Based Access Control
(RBAC) and Attribute-Based Access Control (ABAC).

2.2.1 RBAC

The idea behind Role-Based Access Control (RBAC) is that users are assigned
roles which in turn are assigned permissions based on a policy. [2]. DAC can be
emulated with RBAC [22].

Many extensions for RBAC have been defined, which add support for concepts
such as spatial-and location-based information (GEO-RBAC [23]), time (TRBAC
[24], GTRBAC [25]), both location and time (STRBAC [26], GSTRBAC [27]), in-
direction based on grouping permissions (T-RBAC[28], RBÄC [1]) and withholding
previously granted permissions (R±BÄC [1]).

2.2.2 RBÄC

RBÄC is an RBAC extension developed by security experts of Nedap. In RBÄC, per-
missions are assigned to demarcations which are in turn assigned to roles instead
of directly assigning permissions to roles. RBÄC subsumes RBAC.

This extension was developed as a reponse to the observation that plain RBAC
"blends together subject management aspects and permission management as-
pects into a single object of indirection: a role"[1]. Demarcations decouple the tasks
of maintaining abstractions over the set of users (assignment of users into roles),
maintaining abstractions over the set of permissions (assignment of permissions
into demarcations), and maintaining abstract access control policy (granting roles
access to demarcations) [1]. This decoupling facilitates policy evolution.

11



2.2.3 ABAC

Attribute-Based Access Control (ABAC) [29], sometimes also referred to as policy-
based access control (PBAC)[18] and rule-based access control (REBAC, e.g. in
[20]), gives permissions to users based on policy rules evaluated on attributes. The
rules can be defined on any type of attributes (user attributes, object attributes,
system attributes, etc.). ABAC is limited only by the computational language and
the richness of the available attributes [30]. RBAC can be emulated with ABAC.
Work has been done on combining RBAC and ABAC [31].

2.3 Authorization Constraints

As briefly touched upon in the introduction, authorization constrains are policy in-
variants defined on the authorization model. With basic RBAC, four common types
of authorization constraints are:

1. Cardinality constraints

2. Separation of duties (SoD) constraints

3. Binding of duties (SoD) constraints

4. Prerequisite constraints

With cardinality constraints, we constrain the number of entity occurrences that are
associated in a relationship. In the context of RBAC, this means we can put a bound
on the number of roles assigned to a user of the number of permissions assigned to
a role. Then, a user can only have a limited amount of roles at the same time.

With SoD constraints, we define mutual exclusion relations between entities. Two
mutual exclusive entities cannot be in relation with the same entity. For example, we
can define two mutually exclusive roles and enforce that a user should never have
them assigned at the same time.

With BoD constraints, we define mutual dependency relations between entities. Two
mutual dependent entities must always be in relation with the same entity. For ex-
ample, we can define two mutually dependent roles and enforce that a user should
always have them assigned at the same time.

With prerequisite constraints, we require that certain relationships between entities
may only exist given that other relationships between entities exist. This constraint
can, for example, enforce that a user can only be assigned a certain role if and only

12



if he/she already has another role.

There are many more types of constraints and RBAC extensions often introduce
new types of constraints. A comprehensive review can be found in [32].

2.4 Access Control Analysis

Access control analysis is crucial to support policy creation and evolution. It is com-
monly carried out for two different purposes: verifying that the policy conforms to a
set of quality requirements and supporting the design and organization of a set of
policies [3].

In the context of RBÄC, assessing the quality of your access control policy entails
checking that the policy is:

• consistent : the authorization model contains no contradictions,

• minimal : there is no unnecessary redundancy,

• revelant : there are no irrelevant assignments,

• complete: for each access request, the model contains the necessary infor-
mation to either grant or withhold the permission,

• correct : all authorization constraints hold.

We call access control verification the subset of access control analysis which only
deals with checking consistency, completeness and correctness.

In RBÄC, consistency and completeness are enforced by design. It is not possi-
ble to specify contradictions nor leave parts of the system under specified. This is
because permissions are withheld unless specifically granted, and only grants can
be specified.

Depending on the context, minimality is not always a desirable property. Redun-
dancy can be good in the face of change. Arguably, minimality might even be a too
strong requirement in general

The design and organization process can be supported through change impact anal-
ysis, similarity analysis and policy set structuring [3]. A change impact analysis as-
sesses and evaluates a change on a single policy or a collection of policies. This
analysis identifies the potential consequences and helps to estimate the associated
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risks. Similarity analysis performs comparisons among two or more policies. Specif-
ically, it checks for different relationships among policies such as equivalences, pos-
sible refinements, redundancies and conflicts [33]. This is an important analysis for
policy integration (merging policies). Policy set structuring analyses the structure of
a single or a collection of policies. It helps to ensure the optimal policy structure. A
well-known example of this kind of access control analysis is role mining [34].

2.5 Incremental Verification

There are many incremental computation approaches one could use for incremental
verification. Examples include using graph pattern matching (e.g. [15] and [35]) and
verification trees (e.g. [8] and [9]). However, no matter the approach all incremen-
tal checkers try to accomplish the same goal: limiting the set of rules to recheck
(rule reduction) and/or the model elements to consider (scope reduction) after each
model change [36].

Next to having the same goal, incremental checkers also have shared feature sets
[36]. To recheck rules, they must have access to the model, and it must be able
to process model changes. Moreover, it must have some method to perform rule
and/or scope reduction. To speed up the reduction, many incremental checkers use
a form of caching (often for some form of memoization). If the approach uses a
cache, it requires a method to manage it. Usually, when a cache is introduced, it is
accompanied by some kind of pruning method.

The downside of caching is that it may introduce a significant memory overhead.
This introduces a fundamental balancing act between efficiency (more caching) and
scalability (less caching). There is no silver bullet. The many different approaches
to incremental computation and verification all stem from an effort to optimize effi-
ciency, scalability and their balance for various application domains and use-cases.
The different methods have different strengths and weaknesses depending on the
shape of the data and the nature of the checks.
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2.6 Viatra

For our research, we are going to use the VIATRA1 model query and transforma-
tion framework [15]. This framework supports incremental consistency checking
through incremental graph queries. In this section, we will briefly go over the most
important aspects of this framework which are necessary to understand the work
presented in this thesis. For more information about VIATRA, we refer the reader to:
https://www.eclipse.org/viatra/documentation/index.html.

VIATRA is an open-source model query and transformation framework which sup-
ports event-driven, reactive transformations and incremental graph queries [15].
The framework supports Ecore and UML models made with the Eclipse Modelling
Framework (EMF). Graph patterns can be defined with a declarative DSL called the
Viatra Query Language (VQL). The queries can be evaluated incrementally over
models with millions of elements. [37]–[39].

2.6.1 Model Support

VIATRA supports Ecore and UML models made with the Eclipse Modeling Frame-
work (EMF) [40]. EMF can be considered a de-facto standard for modeling. Ecore
and UML allow the defintion of meta-models, namely models which described the
structure of other models. In our research, we will implement the meta-model of our
formalism as an Ecore model. The core of the Ecore model itself can expressed
using four types of elements: EClass, EAttribute, EDataType and EReference. To
create a new meta-model, these elements can be used as follows:

• Classes can be modeled with EClass entities. Classes can contain a number of
attributes and references. Multiple inheritance is supported between classes.

• Class attributes can be modeled with EAttribute entities.

• The attribute datatypes can be express with EDataType entities. They repre-
sent atomic values (i.e. any element whose internal structure is not modeled).

• The association between model classes can be captured with EReference in-
stances. Bidirectional references are expressed with two opposite references.

An overview of the basic Ecore elements is shown in Figure 2.1. An example RBAC
metamodel and model can be found in Figure 2.2. Ecore contains many additional
elements helpful for the organization of the models.

1https://www.eclipse.org/viatra/
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Figure 2.1: Core of Ecore metamodel [40]
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Figure 2.2: RBAC metamodel and model
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2.6.2 Query Language

Model queries in VIATRA can be defined as graph patterns using the Viatra Query
Language (VQL) [40]. Graph patterns are expressed declaratively as a set of con-
straints. A tuple of parameter variables that fulfill the graph pattern is called a match.
The set of all matches of a graph pattern is called the match set. Pattern variables
that are not pattern parameters are called local variables.

VQL is an expressive language, capable of expressing constraints like:

• Path Expressions: a specific reference, an attribute, or a path of references
must exist between two variables.

1 pattern UP(user: User , perm: Permission) { // UP = UR;RP

2 User.UR(user , role); // role (local var.) should be linked to

user with relation UR , i.e. role should be assigned to user.

3 Role.RP(role , perm); // perm should be assigned to role.

4 }

The match set of this pattern for Figure 2.2 is {(User1 ,PermA), (User1 ,PermB),

(User2 ,PermB), (User2 ,PermC )}.

• Transitive Closure: compute the (reflexive) transitive closure of binary patterns
in a pattern call. + indicates the transitive closure, ∗ the reflexive transitive
closure.

1 pattern AccessRelation(user: User , perm: Permission) {

2 User.UR(user , role);

3 Role.juniors *(role , roleP); // reflexive transitive closure

4 Role.RP(roleP , perm);

5 }

The match set of this pattern for Figure 2.2 is {(User1 ,PermA), (User1 ,PermB),

(User1 ,PermC ), (User2 ,PermB), (User2 ,PermC )}.

• Attribute Equality: an attribute of a variable (class instance) must be equal to
a given variable or value.

1 pattern SoDRoleBAndRoleC(user: User) {

2 Role.name(roleB , "RoleB"); // the value of the name attribute

of roleB should be "RoleB", i.e. roleB should be named "RoleB"

3 Role.name(roleC , "RoleC"); // roleC should be named "RoleC"

4 Role.RU(roleB , userB); // roleB should be assigned to userB

5 Role.RU(roleC , userC); // roleC should be assigned to userC

6 user == userB; // user should be equal to userB

7 user == userC; // user should be equal to userC
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8 }

The match set of this pattern for Figure 2.2 is {(User2 )} (violations of the con-
straints are matched).

• Pattern Composition: a given set of variables must or must not match to (an-
other) pattern.

1 pattern PrerequisitePermAImpliesPermB(user: User) {

2 Permission.name(pA , "PermA"); // pA should be named "PermA"

3 find AccessRelation(user , pA); // the tuple (user ,pA) should

be in the match set of AccessRelation

4 Permission.name(pB , "PermB"); // pB should be named "PermB"

5 neg find AccessRelation(user , pB); // the tuple (user ,pA)

should NOT be in the match set of AccessRelation

6 }

The match set of this pattern for Figure 2.2 is {}.

• Check Expression: an arbitrary expression containing attributes must be eval-
uated true

1 pattern CardinalityMaxOneRoleB () {

2 Role.name(role , "RoleB"); // role should be named "RoleB"

3 n == count Role.RU(role , _u); // n should be equal to the

number of matches of Role.RU(role ,_u), i.e. the number of

users assigned RoleB.

4 check(n >= 2); // n should be >= 2

5 }

The match set of this pattern for Figure 2.2 is {()}.

Next to the constraints shown above, the language has a few additional useful con-
structs such the eval() expression which can evaluate any arbitrary pure (no side-
effects) Java expressions and aggregators such as min/max/sum/count which calcu-
late the minimum/maximum/sum/number of matches of a path expression or pattern
has. The language can be extended with custom aggregators. In our research, we
have defined a custom aggregator which given a match set converts it to a Java set.

For a complete overview of the language, we refer the reader to [41]. However,
please note that the syntax has changed a bit since the publication of the paper.

2.6.3 Query Evaluation

The Viatra framework currently supports two graph pattern evaluation techniques:
local search and Rete.
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With local search, the matching process is started from a single node and extended
step-by-step with the neighboring nodes and edges following a generated search
plan. Local search is non-incremental: upon a model change the matching process
has to be redone from scratch.

In contrast, Rete is incremental. With Rete, the (sub)pattern match sets are cached.
These caches are organized in a graph structure called a Rete Network and incre-
mentally updated upon model changes. When a match is added or removed from a
(sub)pattern’s match set because of model changes, the patterns depending on this
(sub)pattern are partially re-evaluated based on the added/removed matches.

Local search based pattern matching has a much smaller memory footprint and
shorter initialization phase compared to incremental approaches. However, incre-
mental approaches, such as Rete, can provide an order of magnitude faster re-
evaluation time [39]. This comes back to the fundemental balancing act between
efficiency and scalability in incremental verification introduced in 2.4. As in our re-
search we focus on incremental verification, we use Rete instead of local search to
and evaluate graph queries incrementally.

More about the implementation of local search and Rete in VIATRA can respectively
be found in [42] and [43].
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Chapter 3

Related Work

In this chapter, we will present work related to our research. Literature regarding
incremental verification of access control policies is scarce. Thus, in this section,
we will mostly show works relevant to our research regarding modelling and non-
incremental verification of (T)RBAC and physical access control policies.

3.1 (T)RBAC Modelling & Verification

Much research has been done regarding the analysis of RBAC policies. Many for-
malisms have been applied to model and verify RBAC policies such as first-order
logic [44], modal logic [45], situation calculus [46], Petri-nets [47] and Kripke struc-
tures [48]. Extensive overviews and applications are presented in [3] and [49].

The TRBAC extension has also been the subject of much research, although not to
the same degree as plain RBAC. Attempts to model and verify TRBAC policies have
used formalisms such as first-order logic [50], Petri-nets [49] and timed-automata
[51].

Although not yet popular, speeding up policy verification through incrementalization
has been somewhat explored. An incremental algorithm to check dynamic sepa-
ration of duty constraints with the help of information flow graphs was introduced in
[4]. Additionally, incremental algorithms to verify administrative access control safety
properties (i.e. ensuring there are no sequences of administrative actions which can
result in policies by which can compromise some security goals) were presented in
[5] and [6].

Despite the fact that these works share the same insight that policy analysis can be
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sped up by taking an incremental approach, their goals and approaches are quite
different from ours. We hope to support a broader scope of constraints than [4]. On
the flip side, we do not aim to support most of the types of constraints presented
in [5] and [6] (e.g. is it possible for an administrator to assign a specific role to a
specific user?). These works also present algorithms tailored to verify specific types
of constraints while we propose to use a more general technique to verify a broader
scope of constraints.

Works which are arguably more similar to our approach are the many other attempts
at formalizing RBAC constraints with the help of another declarative model query
language called OCL (Object-Constraint Language). As with VQL, OCL can put
constraints on Ecore and UML models. However, OCL does not support incremen-
tal evaluation out of the box. Thus, the queries and the models in these works have
not been designed with incremental verification in mind. Research has however
been carried out on how to incrementally evaluate OCL constraints, including an at-
tempt to translate a subset of OCL to VQL [10] (back then called EMF-IncQuery).

Two notable attempts of formalizing access control constraints with OCL are [32]
(GemRBAC), and [52]. Both works are not only capable of analyzing RBAC models/-
constraints but also extensions such as TRBAC. The main difference between them
is that [32] focused on supporting many types of constraints while [52] focused on
creating an access control model which supports multiple NDAC formalisms (DAC,
RBAC and ABAC). Performance was not addressed in [32]. In [52], it was stated
that performance was a disadvantage of their approach. However, improvements
have been proposed by the authors, which might increase performance [52].

Other works where OCL was used for the formalization of RBAC constraints include
[53]–[60]. The EMF in general has also been used as the basis to support other pol-
icy analysis activities such as generating migration guides [61] and facilitating policy
mutation for mutation testing [62]. VIATRA has also been used before in the context
of access control, however not to analyze policies but instead to enforce rule-based
access control policies at runtime [16].

3.2 Physical Access Control Modelling & Verification

In contrast to (T)RBAC, not a lot of work has been done regarding modelling and
verifying physical access control policies. To the best of our knowledge, speeding
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up policy verification through incrementalization has not been explored in the do-
main of physical access control.

Various RBAC extensions have been proposed to deal with geo-spatial contexts
such as GEO-RBAC[23], STRBAC [26], GSTRBAC [27] and the previously pre-
sented GemRBAC. These models allow the enabling/disabling of roles, the specifi-
cation of constraints and more (depending on the formalism) based on the physical
location of various entities. These models will serve as an inspiration during our
research but will not be fully incorporated into our work. This is because, during
our research, we will not take into account policies where the physical location of
entities influences the policy behaviour. For example, we will not deal with policies
which enable/disable roles based on a user’s physical location in a building.

To the best of our knowledge, the only tool which is similar to us in terms of goals
is the physical access control management tool presented in [63]. This tool allowed
security experts to explore, visualize and analyze access control policies by utilizing
a building information model (BIM). BIMs are essentially digital twins of a building.
They can contain information regarding objects and processes within a building [63].

The access control model behind the tool in [63] is a combination of ABAC and
RBAC (based on [31]). The policies were modelled with the help of the EMF. The
tool supports constraints on entity assignment (e.g. separation of duty). The authors
did not mention how they checked the constraints nor if any rule/scope reductions
were made.

The authors of [63] also noticed the requirement that users should be able to reach
all rooms they have the permission to access. They proposed to solve this problem
by enforcing reachability on the level of roles: whenever a role is given access to a
room, the role should always have a path to this room. Thus, whenever the security
officer assigns a role to a user; the security officer knows the user can reach all
rooms the user has the permission to access.

A graph-based formal representation of BIMs specifically for physical access con-
trol applications is presented in [64], by (predominantly) the same authors of [63].
The model is based on hierarchical graphs and partitions buildings into storeys and
spaces. The nodes and edges represent the spaces and the connections between
those spaces. The nodes and edges can be associated with additional attributes
to capture relevant security aspects such as security clearances, security require-
ments and space/door types. Next to the model, the authors present multiple utility
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algorithms: a basic pathfinding algorithm, a minimum-security pathfinding algorithm
and a reachability algorithm which checks if a given user can reach a specific room
from another room.
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Chapter 4

Gregorian RBAC

Time-dependent accessibility is a requirement for realistic systems. Since we want
to analyze RBÄC-inspired authorization models and RBÄC does not support this
functionality, we will extend this formalism with time-dependent accessibility. We will
call this extension Gregorian RBAC (GR-RBAC) as how it deals with time is heavily
tied to the Gregorian calendar.

In this chapter, we will introduce GR-RBAC. We will do this in five steps. First, we will
present the formalism we inspire ourselves upon: RBÄC. Then, we will show some
extensions which add time-dependent accessibility to RBAC and pick a promising
candidate to rebase onto RBÄC. Next, we will discuss what roadblocks exist to re-
base this extension onto RBÄC (for the domain of physical access control) and how
they might be overcome. Lastly, we will show how we combined RBÄC and the cho-
sen extension into GR-RBAC and provide formal definitions for this new formalism.

We will use the formal definitions in the next chapters when we introduce a for-
malism which ties the authentication model and the building topology together in an
access control system model and when we formalize the authorization constraint
types (on the GR-RBAC-based authorization model) security officers want to verify.
Additionally, these definitions but also the definitions we presented in future chap-
ters will form the basis of the Ecore metamodel and the VQL graph patterns of our
prototypical implementation.

27



4.1 RBÄC

UR

RH DH

DP

U R D P
RD

Figure 4.1: RBÄC Model Overview

An RBÄC authorization model consists of four components: a set of users U , a set
of roles R, a set of demarcations D and a set of permissions P . No distinction is
made between having a role and activating it (i.e. the assumption is made that a
subject will always activate its roles). Thus, RBÄC does not deal with sessions (in
contrast to plain RBAC).

In the context of physical access control, users are generally the employees of the
organization. They are often also called subjects. Roles can be assigned to users
and generally correspond to positions in the organization. They are thus mean-
ingful in the context of the organization. In essence, demarcations are groups of
permissions. Roles are associated with a set of demarcations, i.e. the groups of
permissions required to carry out the role effectively. Permissions give access to an
object. In physical access control, permissions give access to areas or allow users
to open specific doors. On both roles and demarcations, a hierarchy is defined.
Roles higher in the hierarchy (senior roles) inherit the demarcation assigned to roles
lower in the hierarchy (junior roles). Demarcations higher in the hierarchy inherit the
permissions assigned to demarcations lower in the hierarchy.

In RBÄC, the assignment of users to roles, roles to demarcations and demarca-
tions to permissions is captured by the user-role assignment relation UR, role-
demarcation assignment (grant) relation RD and the demarcation-permission as-
signment relation DP (see Figure 4.1). Taking into account the hierarchies, we can
derive the so-called access relation UP between users and permissions which con-
tains who has which permission.

Practitioners have different views on what demarcations should represent. One side
argues that demarcations should represent processes. Then, assigning permis-
sions to a demarcation equals to stating what permissions are required to carry out
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that process. Furthermore, granting demarcations to a role equals to stating which
processes a role is allowed to carry out. The other side argues that demarcations
should be an abstract concept and what a demarcation represents should be left
as an implementation issue. Then, the meaning behind assigning permissions to a
demarcation and granting demarcations to a role depends on the meaning given to
demarcations by the implementation. In this research, we will not require demarca-
tions to represent any specific concept at all and thus the extension will be useful for
all practitioners.

4.2 Temporal RBAC extensions

Many extensions have been proposed to extend RBAC with temporal aspects. A
review comparing several extensions can be found in [65].

The first RBAC extension which allowed for time-dependent accessibility is Tem-
poral RBAC (TRBAC) [24]. TRBAC introduces the concepts of role enabling and
role disabling. The permissions associated with a role can only be invoked if that
role is enabled. Thus, a user can only use the permissions of an assigned role
when it is enabled. Roles are enabled and disabled over time according to temporal
constraints. TRBAC defines two types of temporal constraints: periodic expressions
and role triggers. Periodic expressions state for a given set of time intervals which
roles should be enabled during those intervals. When enabling or disabling certain
roles, role triggers may define extra roles to enable or disable based on the current
sets of enabled/disabled roles.

Two other notable extensions are generalized TRBAC (GTRBAC) [25] and Gem-
RBAC+CTX [65]. GTRBAC is an extension of TRBAC. It adds duration/cardinality
constraints on the role activation relation and constraints on the role-permission
assignment relation. GemRBAC+CTX is an exceptionally expressive model which
tries to cover most if not all the functionality offered by related models. The main
difference between GTRBAC and GemRBAC+CTX is that the latter supports more
complex temporal expressions representing one-off or repeating time intervals, per-
mission enabling/disabling and constraints based upon spatial information. The au-
thors of [65] themselves claim a difference is also that they support constraints on
role-permission assignment while GTRBAC does not, however we believe this to be
a small oversight as GTRBAC does support this type of constraint.

We believe the approach taken in TRBAC is a promising jumping-off point to extend
RBÄC with temporal aspects. Therefore, we are going to try to rebase TRBAC onto

29



RBÄC in a way that is fitting for the domain of physical access control. We picked
TRBAC over other more expressive models such as GTRBAC or GemRBAC+CTX
because it offers enough functionality while keeping the complexity relatively low.
Model expressiveness often comes at the cost of analyzability. In the case of Gem-
RBAC+CTX for example, just making an access decision could take up to three
seconds [65].

4.3 Combining RBÄC and TRBAC

Although TRBAC is a promising candidate, RBÄC and TRBAC do not combine well
out of the box. Furthermore, not all ideas TRBAC introduces are appropriate for the
domain of physical access control. We will therefore rebase the essential parts of
TRBAC onto RBÄC.

4.3.1 Role Enabling / Disabling

The first roadblock when we try to rebase TRBAC onto RBÄC is the construct of role
enabling/disabling. Intuitively, role enabling/disabling corresponds to stating that the
role can only be used within a certain time frame. Although useful in some cases, we
argue that this is often not what security officers want to express. Instead, we argue
that instead they want to express that the groups of permissions associated with a
role vary over time. In the case of physical access control, security officers rarely
want to express that a role (e.g. employee) can only be used during working hours.
Much more often, security officers want to express which areas this role should be
able to access during working hours.

Furthermore, modelling an organizational role with varying (non-empty) permission
sets over time through role-enabling/disabling requires multiple roles. For example,
modelling that an employee has different permissions during and after working hours
requires splitting the organization role of employee in a role which is enabled during
working hours and a role which is enabled after working hours. This is against the
spirit of RBÄC, as roles should represent abstractions over the set of users which
are not tied to the implementation of the access control policy.

Thus, we propose to add time-dependent access control in RBÄC through grant-
ing and revoking a role’s access to demarcations over time via temporal constraints.
We will call this demarcation granting / demarcation revoking. In essence, this shifts
the time restriction from the UR relation to the RD relation. Lastly, the concept of
role enabling/disabling is fully disconnected from the concept of role hierarchies.
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Roles can not become enabled/disabled through inheritance. However, in RBÄC,
role hierarchies are defined such that demarcations granted to roles lower in the hi-
erarchy are inherited by roles higher up in the hierarchy. We argue that since we are
extending RBÄC, we should try to conserve the spirit behind the original extension
as much as possible. Thus, we argue that demarcation granting/revoking should
be connected to the concept of role hierarchies. Specifically, we argue that in GR-
RBAC if a role lower in the hierarchy has access to a demarcation during a specific
time period, this should still be inherited by roles higher up in the hierarchy during
the same time period.

4.3.2 Temporal Constraints

Both types of temporal constraints introduced by TRBAC could be translated into
temporal constraints on demarcation granting / revoking. However, although some-
thing akin to role triggers can be useful to improve policy conciseness and under-
standability, this type of constraint will not add any expressive power compared to
something akin to periodic expressions while complicating the conflict detection and
resolution process significantly. Although one can also specify inconsistent policies
when just granting/revoking demarcations based on the time, inconsistencies are
easily found since two statements will directly contradict each other and it can be
resolved with a conflict resolution principle such as revocations taking precedence
over grants.

To illustrate, consider the requirement that when role r1 is granted demarcation d1 it
should also always be granted demarcation d2. Instead of requiring possibly many
rules which grant these demarcations to r1 in the same temporal contexts, only a
rule which states this dependency is required. However, this also allows to specify
contradictions which are non-trivial to detect. Imagine that we also have another
set of constraints which state that role r1 should always be granted demarcation d1,
that when role r1 is granted demarcation d1 then role r2 should also be granted d1

and that when r2 is granted d1 then r1 should not be granted d1. This contradiction
is non-trivial to detect nor to resolve. An algorithm to detect contradictions for role-
enabling/disabling with periodic expressions/role triggers was presented in [24].

Another problem with this kind of temporal constraint is that it might be confusing for
a security officer if something happens automatically when a demarcation is granted
to or revoked from a role. Thus, it might be a better idea to force the security officer
to specify when demarcations should be granted to roles solely based on the time
and allow him/her to verify, in contrast to specify, that this requirement (i.e. an impli-
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cation) holds.

To reduce the scope of our research, we have chosen to only support temporal
constraints which grant or revoke demarcations based on the temporal context. We
will call this type of constraint a temporal grant rule. We leave constraints which
grant/revoke demarcations based upon which demarcations are being granted/re-
voked as possible future work.

4.3.3 Time Intervals

In TRBAC, time intervals are specified through periodic expressions. Periodic ex-
pressions are based on the concept of calendars [66] and define sets of time inter-
vals based on a set of starting time instants and a duration in terms of a period (e.g.
minutes, hours, days, etc.).

In most cases, security officers do not want to specify how long somebody should
have access. Instead, they generally want to specify when somebody should have
access. Although this might sound similar, expressing when somebody should have
access while only being able to specify how long somebody should have access
and vice versa is non-trivial for realistic policies as clock shifts have to be taken
into account (e.g. daylight saving time, leap seconds, moving between time-zones,
etc.). Additionally, finding all unique sets of intersecting periodic expressions also
becomes non-trivial when taking clock shifts into account. Therefore, we argue that
periodic expressions are not the right formalism to express time intervals in physical
access control.

Therefore, we argue that a different formalism which allows security officers to spec-
ify repeating and one-off time intervals as a period between two points in time spec-
ified on a day of the week (e.g. Monday, Tuesday, etc.), a day of the month (the 1st
of January, the 2nd of January, etc.), a day of the week/month (e.g. Monday 1st of
January, Monday 2nd of January etc.) or a day of the year (Wednesday the 1st of
January 2020, Thursday the 2nd of January 2020, etc.) would be more appropri-
ate. Please note that by defining time intervals on the day of the week/month, it is
possible to also express concepts such as "the 1st Monday of January" or "the 3rd
Thursday of October" as these can be represented by a set of intervals on the day
of the week/month (e.g. Monday on 1-7 January and Thursday on 15-21 October).
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4.4 GR-RBAC Outline

UR

RH DH

DP

U R D P

G

temporal grant

def  ines  

Figure 4.2: High-level overview of the GR-RBAC Authorization Model

Taking into account the presented roadblocks and how they might be overcome, we
structured the new extension as follows. GR-RBAC spiritually extends RBÄC by
adding a set of temporal grant rules G and a set of temporal contexts C. Together,
they work as a kind of time table. We call the extension Gregorian RBAC as, when
dealing with time, we make use of assumptions and simplifications which hold for
the Gregorian calendar but which may not hold for other calendars.

Temporal grant rules grant/revoke roles access to demarcations based on the time.
They may be given a priority to resolve conflicts. When they are conflicting, demar-
cation revoking takes precedence over demarcation granting 1. To illustrate this and
other new concepts, please consider the policy of the fictive ACME company. This
policy is presented in Figure 4.3. For this policy, we could define the temporal grant
rules shown in Figure 4.4.

Temporal contexts are named sets of time ranges which can represent concepts
such as working hours, lunch breaks or holidays. We call the time ranges of a tem-
poral context the instances of that context. They represent when the temporal con-
text takes place. If any instance of a temporal context covers a moment in time, we
also say that the temporal context as a whole covers that moment in time. Temporal
grant rules grant/revoke roles access to demarcations during temporal contexts.

1This conflict-resolution approach is based on the denial-takes-precedence principle, which rep-
resents "the most conservative approach with respect to security" [67]. TRBAC also based their
conflict-resolution strategy on this principle. More about conflict-resolution strategies for access con-
trol can be found in [68].

33



User1
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Manager Red

Purple

Orange

Green

OpenOffice

BreakRoom

Kitchen

Safe

Lobby

: User : Role : Demarcation
: Permission : Assignment / Hierarchy : Topological Reachability

Figure 4.3: ACME GR-RBAC Authorization Model & Topology

Grant Employee access to Green during Always with priority Low

Grant Employee access to Orange during Working Hours with priority Medium

Grant Employee access to Purple during Lunch Breaks with priority Medium

Revoke Employee access to Orange during Holidays with priority High

Revoke Employee access to Purple during Holidays with priority High

Grant Manager access to Red during Working Hours with priority Medium

Figure 4.4: ACME Example Temporal Grant Rules
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Temporal Context Instances (Time Ranges)
Working Hours { Monday 8.00-17.00, [...], Friday 8.00 - 17.00 }
Lunch Breaks { Monday 12.00-13.00, [...], Friday 12.00 - 13.00 }
Holidays { 25 December 00.00 - 23.59 }
Always { Monday 0.00-23.59, [...], Sunday 0.00 - 23.59 }

Table 4.1: ACME Example Temporal Contexts

We assume the existence of a temporal context Always covering all moments in
time. This allows us to simplify various definitions regarding the authorization con-
straints and the computation of the set of scenarios later in this research. We believe
this to be a reasonable assumption since we believe almost every realistic physical
access control systems will have some behaviour which should always hold.

Time ranges are time intervals which can be specified on 4 levels: a day of the
week (e.g Monday), day of the month (e.g. 25th of December), day of the year (e.g.
Monday 25th of December 2023) or when a day of the week coincides with a day
of the month (e.g. Monday 25th of December). To illustrate, the temporal contexts
used in the temporal grant rules shown in 4.4 could be specified as shown in Table
4.1. We assume Always will always be defined as shown in this table.

From the set of temporal contexts, we can compute the set of scenarios. Scenar-
ios are sets of temporal contexts which represent the occurring combinations of
temporal contexts. In essence, the set of scenarios is the state-space of the autho-
rization model. When we verify time-dependent authorization constraints, we check
if it holds for all occuring scenarios.

From the set of scenarios and set the temporal grant rules, we can compute the
temporal grant relation RSD. This relation captures which roles have access to
which demarcations during which scenarios. From RSD we can in turn compute the
access relation. This relation determines when users have access to which security
zones. To also illustrate these concepts the scenarios, temporal grant relation and
access relation of the ACME policy can be found in 4.5.

4.5 GR-RBAC Definitions

In this section, we will present the formal definitions capturing the new GR-RBAC
model. The definitions will be illustrated using the ACME policy introduced in the
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Scenario Instances (Time Ranges)
{ Always, Working Hours,
Lunch Breaks, Holidays }

{ Monday 25th of December 12:00 - 13:00, [...],
Friday 25th of December 12:00 - 13:00 }

{ Always, Working Hours,
Lunch Breaks }

{ Monday 1st of January 12:00-13:00,
Tuesday 1st of January 12:00-13:00, [...] }

{ Always, Working Hours,
Holidays }

{ Monday 25th of December 08:00 - 11:59,
Monday 25th of December 13:01 - 17:00, [...],
Friday 25th of December 13:01 - 17:00 }

{ Always, Working Hours }
{ Monday 1st of January 08:00-11:59,
Monday 1st of January 13:01-17:00, [...] }

{ Always, Holidays }
{ Monday 25th of December 00:00 - 07:59,
Monday 25th of December 17:01 - 23:59, [...],
Sunday 25th of December 00:00 - 23:59 }

{ Always }
{ Monday 1st of January 00:00-7:59,
Monday 1st of January 17:01-23:59, [...] }

Table 4.2: ACME Example Scenarios

[Always, 
Holidays, 

WorkingHours]

User1

User2 Employee

Red

Purple

Orange

Green

OpenOffice

BreakRoom

Kitchen

Safe

Lobby

[Always, 
Holidays, 

LunchBreaks, 
WorkingHours]

[Always, 
Holidays]

[Always]

Manager

[Always, 
WorkingHours]

[Always, 
LunchBreaks, 
WorkingHours]

Figure 4.5: ACME GR-RBAC Auth. Model, Topology & Temporal Grant Relation
: User : Role : Demarcation
: Permission : Assignment / Hierarchy : Topological Reachability
: Scenarios / : Temporal Assignments
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previous section as a running example.

4.5.1 Temporal Grant Rules

Let us start with formalizing the definition of temporal grant rules. They are a central
concept; temporal grant rules can be used to temporarily associate demarcations
with roles. They grant/revoke a role’s access to a demarcation during a temporal
context with a certain priority.

Definition 4.5.1 Temporal Grant Rules
A temporal grant rule is a 5-tuple (a, r, d, c, p) where:

• a ∈ {grant , revoke}: is an action,

• r ∈ R: is a role,

• d ∈ D: is a demarcation,

• c ∈ C : is a temporal context

• p ∈ N+: is a value representing a priority.

Example 4.5.1 ACME Temporal Grant Rules
Consider the 6 temporal grant rules presented in Figure 4.4. They can be repre-
sented as:

g1 = (grant , employee, green, always , 1)

g2 = (grant , employee, orange,working hours , 2)

g3 = (grant , employee, purple, lunch breaks , 2)

g4 = (revoke, employee, orange, holidays , 3)

g5 = (revoke, employee, purple, holidays , 3)

g6 = (grant ,manager , red ,working hours , 2)

4.5.2 Time Ranges

Next, let us formalize another new central concept: time ranges. They will be used to
state when a temporal context takes place. Time ranges are time intervals specified
on a day of the week/month/year or when a weekday coincides with a specific day
of the month.

Please note that we use two assumptions regarding time in our definitions. We
assume that every day of the week will eventually overlap with every day of the
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month and that we can establish a set Dates representing all valid dates in the Gre-
gorian calendar. Furthermore, please note that although here we have chosen to
represent time up to the granularity of minutes, this could be replaced by any other
granularity without issue as computations are only performed with the lower and
upper bounds of the intervals (and no computations iterates over all the moments
captured by interval).

Definition 4.5.2 Time Range
A time range is a 5-tuple (I, e, d,m, y) where:

• I : is a integer interval representing a time-of-day interval in minutes,

• e ∈ {Mon,Tue,Wed ,Thu,Fri , Sat , Sun} ∪ {_}: represent a weekday or a wild-
card,

• d ∈ N+ ∪ {_}: represents the nth day of a month or a wildcard,

• m ∈ {Jan,Feb,Mar ,Apr , [...],Dec} ∪ {_}: represents a month or a wildcard,

• y ∈ N ∪ {_}: represents a year or a wildcard.

A time range is considered valid if I ⊆ [0, 1439], |I| ≥ 1 and it belongs to one of the
following sets:

• Tw = {(I, e, _,_,_) | e ∈ {Mon, ..., Sun}}, representing all valid time intervals
on a day of the week (e.g. Monday),

• Tm = {(I,_, d,m, _) | 1 ≤ d ≤ days(m)}, representing all valid time intervals on
a day of month (e.g. 25th of December),

• Twm = {(I, e, d,m,_) | e ∈ {Mon, ..., Sun}, 1 ≤ d ≤ days(m)}, representing all
valid time intervals when a weekday coincides with a specific day of the month
(e.g. Monday 25th of December),

• Ty = {(I, e, d,m, y) | (e, d,m, y) ∈ Dates}, representing all valid time intervals
on a day of the year (e.g. Monday 25th of December 2023).

with days = {(Jan, 31), (Feb, 29), (Mar, 31), ..., (Dec, 31)) a function giving the max-
imum days of a month and Dates = {..., (Thu, 1, Jan, 1970), (Fri , 2, Jan, 1970), ...} a
set representing all valid dates in the Gregorian calendar.

The set of all valid time ranges is given by T = Tw ∪ Tm ∪ Twm ∪ Ty

Definition 4.5.3 Time Range Intersection
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Let t1 and t2 be two valid time ranges. We define the intersection t1 ∩ t2 as:

t1 ∩ t2 =



(I1 ∩ I2, e1, d2,m2, y2) if t1 = (I1, e1,_,_,_), t2 = (I2, e2, d2,m2, y2)

∧ I1 ∩ I2 6= {} ∧ (e1 = e2 ∨ e2 = _)

(I1 ∩ I2, e2, d1,m1, y2) if t1 = (I1,_, d1,m1,_), t2 = (I2, e2, d2,m2, y2)

∧ I1 ∩ I2 6= {} ∧ (d1 = d2 ∨ d2 = _)

∧ (m1 = m2 ∨m2 = _)

(I1 ∩ I2, e1, d1,m1, y2) if t1 = (I1, e1, d1,m1,_), t2 = (I2, e2, d2,m2, y2)

∧ I1 ∩ I2 6= {} ∧ (e1 = e2 ∨ e2 = _)

∧ (d1 = d2 ∨ d2 = _) ∧ (m1 = m2 ∨m2 = _)

(I1 ∩ I2, e1, d1,m1, y1) if t1 = (I1, e1, d1,m1, y1), t2 = (I2, e2, d2,m2, y2)

∧ I1 ∩ I2 6= {} ∧ (e1 = e2 ∨ e2 = _)

∧ (d1 = d2 ∨ d2 = _) ∧ (m1 = m2 ∨m2 = _)

∧ (y1 = y2 ∨ y2 = _)

([0, 0),_,_,_,_) otherwise

Definition 4.5.4 Time Range Subrange Relation
Let t1 and t2 be two valid time ranges. We define the subrange relation t1 ⊆ t2 as:

t1 ⊆ t2 ⇔ t1 ∩ t2 = t1

Definition 4.5.5 Time Instant
A time instant is a time range (I, e, d,m, y) ∈ Ty where |I| = 1. Tτ is the set of all
time instants.

Example 4.5.2 Time Range Examples
To illustrate the previously introduced definitions, let us define 4 valid time ranges
t1, t2, t3, t4:

t1 = ([480, 1020],Mon,_,_,_)

t2 = ([720, 780],Mon,_,_,_)

t3 = ([0, 1439],_, 25, Dec,_)

t4 = ([720, 720],Mon, 25, Dec, 2023)

Here, t1 represent the time range from 8am to 5pm on Mondays, t2 represent the
time range from 12am to 1pm on Mondays, t3 represent the 25th of December and
t4 is a time instant which represents 12:00am on Monday the 25th of December
2023.
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For t1, t2, t3 and t4, it holds that: t2 ⊆ t1, t4 ⊆ t1, t4 ⊆ t2, t4 ⊆ t3

t1 ∩ t2 = ([720, 780],Mon,_,_,_) = t2

t1 ∩ t3 = ([480, 1020],Mon, 25, Dec,_)
t1 ∩ t4 = ([720, 720],Mon, 25, Dec, 2023) = t4

t1 ∩ t2 ∩ t3 = ([720, 780],Mon, 25, Dec,_)
t1 ∩ ([480, 1020], Tue,_,_,_) = ([0, 0),_,_,_,_)

Example 4.5.3 ACME Time Range Sets
Consider the 4 temporal contexts working hours, lunch break , holidays and always

presented in Table 4.1. The sets of time ranges which represent when these tempo-
ral contexts take place can be represented as:

TWH = {([480, 1020],Mon,_,_,_), [...], ([480, 1020], F ri,_,_,_)}
TLB = {([720, 780],Mon,_,_,_), [...], ([720, 780], F ri,_,_,_)}
TH = {([0, 1439],_, 25, Dec,_)}
TA = {([0, 1439],Mon,_,_,_), [...], ([0, 1439], Sun,_,_,_)}

4.5.3 Authorization Model

With time ranges and temporal grant rules formally defined, they can now be put
together in an authorization model. We extend RBÄC and add:

• a set of temporal contexts C ,

• a function γ which maps temporal contexts to a set of time ranges which rep-
resent when the temporal context takes place,

• a set of temporal grant rules G.

We will call this extension Gregorian RBAC (GR-RBAC).

Definition 4.5.6 GR-RBAC Policy Authorization Model
An authorization modelM is a 11-tuple (U ,R,D ,P ,O ,UR,DP ,PO ,C , γ,G) where

• U , R, D , P ,O : are sets of users, roles, demarcations, permissions, objects

• UR ⊆ U ×R: is a user-role assignment relation,

• DP ⊆ D × P : is a demarcation-permission assignment relation,

• PO ⊆ P ×O: is a permission-object assignment relation,

• C : is a set of temporal contexts,
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• γ : C → P(T ): is a function mapping each temporal context to its instances,

• G: is a set of temporal grant rules.

For an authorization model M we write UM to indicate M’s set of users, RM to
indicateM’s set of roles and so on, unless it is clear from its context.

Definition 4.5.7 Role-Hierarchy
A role-hierarchy is a partial order RH ⊆ R × R. We write ri > rj for (ri, rj) ∈ RH

meaning that ri inherits the demarcations granted to rj. In this case, we say that ri
is a senior role of rj and rj is a junior role of ri.

Definition 4.5.8 Demarcation-Hierarchy
A demarcation-hierarchy is a partial order DH ⊆ D×D . We write di > dj for (di, dj) ∈
DH meaning that di inherits the permissions assigned to dj. In this case, we say
that di is a superdemarcation of dj and dj is a subdemarcation of di.

Please note that since the hierarchies are defined as partial orders, cyclic inheri-
tance is not possible.

Example 4.5.4 ACME GR-RBAC Policy Authorization Model
Consider the policy presented in Figure 4.5, it can be represented as a GR-RBAC
policyMACME = (UACME , RACME , DACME , PACME , OACME ,URACME ,DPACME ,POACME ,

CACME , γACME , GACME ) with:

UACME = {user1 , user2}
RACME = {employee,manager}

RH ACME = {(manager , employee)}
DACME = {red , orange, green, purple}

DH ACME = {(red , orange), (orange, green)}
PACME = {p1 , p2 , p3 , p4 , p5}
OACME = {safe, open office, lobby , breakroom, kitchen}

URACME = {(user1 ,manager), (user2 , employee)}
DPACME = {(red , safe), (orange, open office), (green, lobby)(purple, breakroom)

(purple, kitchen)}
POACME = {(p1 , safe), (p2 , open office), (p3 , lobby), (p4 , breakroom), (p5 , kitchen)}

CACME = {working hours , lunch break , holidays , always}
γACME = {(working hours , TWH ), (lunch break , TLB), (holidays , TH), (always , TA)}
GACME = {g1, g2, g3, g4, g5, g6}

To improve the readability, we will abbreviate the temporal contexts working hours,
lunch break , holidays and always as cWH , cLB , cH and cA in most future examples.

41



4.5.4 Scenarios

To allow for time-dependent accessibility, the access relation is redefined such that
the newly defined temporal contexts and the temporal grant rules are taken into
account. This is done on the basis of scenarios. Scenarios are sets of temporal
contexts which represent the occurring combinations of temporal contexts. Similar
to temporal contexts, the time ranges which represent when the scenario takes place
are called the instances of that scenario.

Definition 4.5.9 Covers
Given a time range t, a set of temporal contexts Q and a temporal context instance
function f , the function covers : T ×P(C)×(C → P(T ))→ P(C) returns all temporal
contexts in Q which cover t.

covers(t, Q, f) = { c ∈ Q | ∃t′ ∈ f(c), t ⊆ t′}

Definition 4.5.10 Scenarios
Given the set of temporal contexts Q and the temporal context instance function f

of an authorization model, the function scenarios : P(C) × (C → P(T )) → P(C)
returns the set of scenarios of the authorization model.

scenarios(Q, f) = { S ∈ P(Q) | ∃t ∈ Tτ , covers(t, Q, f) = S}

Definition 4.5.11 Scenario Instances
Given a scenario S, a set of temporal contexts Q and a temporal context instance
function f of an authorization model, the function instances : P(C)× (C → P(T ))→
P(Tτ ) returns the instances of S.

instances(S,Q, f) = { t ∈ Tτ | covers(t, Q, f) = S}

Example 4.5.5 ACME Scenarios
scenarios(CACME , γACME ) = {{cWH , cLB , cH , cA}, {cWH , cLB , cA}, {cWH , cH , cA},
{cWH , cA}, {cH , cA}, {cA}}

4.5.5 Access Relation

We can now define the access relation. This relations states who (user) has access
to what (security zone) during which moments in time (scenarios). The difference
between RBÄC’s and GR-RBAC’s access relation is that roles are now granted de-
marcations depending on the temporal contexts. This is captured in the temporal
grant relation.
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Definition 4.5.12 Temporal Grant Relation
For a authorization modelM, we define its temporal grant relation as RSD ⊆ R ×
S ×D as:

RSD = {(r, S, d) ∈ R× S ×D | grantmax > revokemax}

with S = scenarios(C , γ)

grantmax = max(0,max({ p | (grant, r, d, c, p) ∈ G, c ∈ S }))
revokemax = max(0,max({ p | (revoke, r, d, c, p) ∈ G, c ∈ S }))

Example 4.5.6 ACME Temporal Grant Relation

RSDACME = {employee} × S × {green}
∪ {employee} × {{cWH , cLB , cA}, {cWH , cA}} × {orange}
∪ {employee, {cWH , cLB , cA}, purple}
∪ {manager} × {{cWH , cLB , cH , cA}, {cWH , cH , cA},
{cWH , cLB , cA}, {cWH , cA}} × {red}

with S = scenarios(CACME , γACME )

Definition 4.5.13 Access Relation
For a authorization modelM, we define its access relation USO ⊆ U × S × O such
that (u, S, o) ∈ USO if there exists two roles r, r′ ∈ R, two demarcations d, d′ ∈ D

and a permission p ∈ P such that the following conditions are fulfilled:

• (u, r) ∈ UR, i.e.: user u is assigned role r,

• r ≥ r′, i.e.: r = r′ or r is senior role of r′,

• (r′, S, d) ∈ RSD , i.e.: role r is granted demarcation d during scenario S,

• d ≥ d′, i.e.: d = d′ or d is a superdemarcation of d′,

• (d′, p) ∈ DP , i.e.: permission p is part of demarcation d′,

• (p, o) ∈ PO , i.e.: permission p gives access to object o.

where S = scenarios(C , γ)

Example 4.5.7 ACME Access Relation

USOACME = {user1 , user2} × S × {lobby}
∪ {user1 , user2} × {{cWH , cLB, cA}, {cWH , cA}} × {lobby , open office}
∪ {user1 , user2} × {{cWH , cLB , cA}} × {breakroom, kitchen)}
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∪ {user1} × {{cWH , cLB , cH , cA}, {cWH , cH , cA},
{cWH , cLB , cA}, {cWH , cA}} × {lobby , open office, safe}

with S = scenarios(CACME , γACME )
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Chapter 5

Site Access Control System Model

To account for authorization constraints dependent on the access control system
topology and the authentication model in a way that is suitable for incremental verifi-
cation, we propose to link them with the authorization model by looking for a shared
concept which exists or can be derived from each.

In this chapter, we will define this new formalism, which we will call the site access
control system (SACS) model. It will consists of a GR-RBAC based authorization
model, an access control system topology model and a simplified authentication
model. We propose to link them in the SACS model through the shared concept of
security zones as this is a central concept:

• authorization models describe who should have access to which security zones
depending on the time,

• the access control system topology model describes how security zones are
interconnected and connected with the outside,

• authentication models describe the obligations to access a security zone de-
pending on the time.

5.1 Context Models

We only capture the information in the access control topology model and the au-
thentication model which we deem essential to verify the key context-dependent
invariants presented in the introduction. These invariants were:

• users can never get trapped, i.e. users should be able to leave the collection
of areas under access control.
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• users can always enter the security zones he/she has the permission to ac-
cess, i.e. users should always be able invoke all granted permissions.

Specifically, we will capture the how security zones are interconnected and which
security zones allow users to enter/leave the areas under access control in the ac-
cess control system topology model and the effects of the authentication model on
the accessibility of the security zones.

5.1.1 Acces Control System Topology Model

From the access control system topology, we capture the how security zones are
interconnected and which security zones allow users to enter/leave the areas under
access control. Although other topological properties can play a part in the invariants
being violated, we deem these properties to play the largest role.

Definition 5.1.1 Access Control System Topology Model
An access control system topology model V is a 3-tuple (O, I, δ) where

• O : is a set of security zones,

• I ⊆ O: is the subset of the security zones which can be accessed from outside
the security system and allows users to leave the security system,

• δ ⊆ O × O: is a relation representing (direct) reachability between security
zones.

For an access control system topology model V we write OV to indicate A’s set of
security zones, IV to indicate V ’s set of security zones which can be accessed from
outside the security system contexts and δV to indicate the reachability between V ’s
security zones, unless clear from its context.

Example 5.1.1 ACME Access Control System Toplogy
Consider the policy presented in Figure 4.5, the access control system topology can
be represented as a VACME = (OACME , IACME , δACME ) with:

OACME = {safe, open office, lobby , breakroom, kitchen}
IACME = {lobby}
δACME = {(safe, open office), (open office, safe), (open office, lobby),

(lobby , open office), (open office, breakroom), (breakroom, open office),

(breakroom, kitchen), (kitchen, breakroom)}
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5.1.2 Authentication Model

From the authentication model, we capture the effects of the authentication model
on the accessibility of the security zones. This means that we abstract away from
specific obligations such as the requirements (e.g. that users should enter a pass-
word or show a badge). Instead, we capture if for any given moment a security zone
is:

• unlocked, meaning it is publicly accessible without authentication.

• locked, meaning it is inaccessible regardless of authentication.

• protected, meaning it is protected with authentication measures and thus can
only be entered with the appropriate permissions.

We propose to define these statuses similarly to how we defined the access rela-
tion in the authorization model: through rules which state if a zone should be un-
locked/locked/protected during a certain temporal context with a given priority. We
chose to define authentication on the level of security zones instead of their con-
nects between them as we also defined authorization on the level of security zones
(instead of on the connections between them). As the most common scenario is that
areas are protected with authentication measures, we say that the default status is
that a security zone is protected. As a conflict resolution policy, we take that the
assignment of the locked status takes precedence over that of the protected status,
which in turn takes precedence over that of the unlocked status.

Definition 5.1.2 Temporal Authentication Rules
A temporal authentication rule is a 4-tuple (a, o, t, p) where:

• a ∈ {locked , unlocked , protected}: is a status,

• o ∈ O: is a security zone,

• c ∈ C: is a temporal context,

• p ∈ N: is a value representing a priority.

Definition 5.1.3 Authentication Model
An authentication model A is a 4-tuple (O,C, γ, A) where

• O : is a set of security zones,

• C : is the set of temporal contexts,

• γ : C → P(T ): is the temporal context instance function,

• A: is a set of temporal authentication rules.
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For an authentication model A we write OA to indicate A’s set of security zones, CA
to indicate A’s set of temporal contexts and so on, unless clear from its context.

Definition 5.1.4 Temporal Authentication Status
Given a scenario S, a security zone o and a set of authentication rulesA, the function
status : P(S)×O×P(A)→ {locked , unlocked , protected} computes the authentication
status of o during S given A.

status(S, o, A) =



locked if lockedmax ≥ protectedmax

∧ lockedmax ≥ unlockedmax

∧ ∃(a, o, c, p) ∈ A, c ∈ S

unlocked if unlockedmax > lockedmax

∧ unlockedmax > protectedmax

∧ ∃(a, o, c, p) ∈ A, c ∈ S

protected otherwise

with lockedmax = max(0,max({ p | (locked, o, c, p) ∈ A, c ∈ S}))
protectedmax = max(0,max({ p | (protected, o, c, p) ∈ A, c ∈ S}))
unlockedmax = max(0,max({ p | (unlocked, o, c, p) ∈ A, c ∈ S}))

Example 5.1.2 ACME Authentication Model
Consider the policy presented in Figure 4.5, a possible authentication model could
be AACME = (OACME ,CACME , γACME , AACME ) with OACME , CACME , γACME as defined
in 4.5.6 and

AACME = {(unlocked , lobby , cWH , 3), (locked , safe, cH , 3)}

Please note that these example temporal authentication rules correspond to some-
thing which, according to Nedap’s experience, is not uncommon in access control
systems. Quite often, the lobby of a company is publicly accessible during work-
ing hours. Furthermore, there are systems in which the authentication devices of
a security zone are sometimes turned off (e.g. during weekends or holidays). This
implies that somebody can only enter the security zone by overriding the system
(e.g via a key).
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Example 5.1.3 ACME Temporal Authentication Statuses
To illustrate Definition 5.1.4, consider the authentication model presented in Figure
5.1.2. Then, the following holds:

∀o ∈ O, status(o, {cA},AACME ) = protected

status(lobby , {cWH , cLB , cH , cA},AACME ) = unlocked

status(open office, {cWH , cLB , cH , cA},AACME ) = protected

status(safe, {cWH , cLB , cH , cA},AACME ) = locked

5.2 SACS Model

Putting everything together, we define the new SACS model as follows:

Definition 5.2.1 SACS Model
A site access control system model P is a 3-tuple (M,A,V) with:

• M: an authorization model,

• A: an authentication model,

• V: an access control system topology model.

The models should share the same set of security zones, temporal contexts and the
temporal context instance function. Otherwise said, it should hold that OM = OA =

OV , CM = CA and γM = γA.

For a site access control system model P, we write UP to indicate its authorization
modelM’s set of users UM, RSDP to indicate its authorization modelM’s temporal
grant relation RSD and so on for all entities and relations ofM, A and V unless it is
clear from its context.

Example 5.2.1 ACME SACS Model
Putting everything together, ACME’s access control system can be modeled as
PACME = (MACME ,AACME ,VACME ) with:

MACME as defined in Example 4.5.6,AACME as defined in Example 5.1.2 and VACME

as defined in Example 5.1.1.
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Chapter 6

Authorization Constraints

The number of authorization constraint types that can be specified and verified is
only limited by the imagination of the security officer. In our research, we will focus
on incrementally verifying a predefined set of authorization constraint types. This
set will consist of common authorization constraints from the literature, the new au-
thorization constraints defined together with security experts from Nedap and the
context-dependent authorization constraints needed to verify the key invariants pre-
sented in the introduction.

In this section, we will propose some definitions regarding authorization constraints
and the authorization constraint types to enable and facilitate their verification.

6.1 Groups

We propose to characterize authorization constraints as being policy-dependent or
policy-independent. Policy-dependent authorization constraints refer to authoriza-
tion constraints on specific elements of the authorization model. Policy independent
authorization constraints refer to constraints on the structure of the authorization
model, independent of specific elements.

6.2 Policy-dependent authorization constraints

As we presented in the background, the four common types of authorization con-
straints are: prerequisite, separation of duty (SoD), binding of duty (BoD) and cardi-
nality constraints. These are all policy-dependent authorization constraints as they
are specified on the basis of specific elements from the model.
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Formally, we specify these constraints as shown below. These definitions are loosely
inspired by the work presented in [69].

Definition 6.2.1 Prerequisite Constraint
A prerequisite constraint for an SACS model P = (M,A,V) is represented as
PRE ((ep, ed), E, c), where:

• (ep, ed) ∈ (U2 ∪R2 ∪D2 ∪ P 2): the prerequisite condition,

• E ∈ {U,R,D, P}: the set of entities for which the constraint should hold,

• c ∈ C: the temporal context during which the constraint should hold.

with ep, ed 6∈ E

A prerequisite constraint PRE ((ep, ed), E, c) is satisfied if ∀S ∈ {Q ∈ S | c ∈ Q} it
holds that:

∀e ∈ E, (e, ed) ∈ REL∗S → (e, ep) ∈ REL∗S
with RDQ = {(r, d) | ∃(r,Q, d) ∈ RSD}
RELQ = UR ∪ RDQ ∪ DP ∪ RH ∪ DH

REL∗Q = symmetric closure of the transitive closure of RELQ

S = scenarios(C, γ)

Definition 6.2.2 Separation of Duty (SoD) Constraint
A separation of duty constraint for an SACS model P = (M,A,V) is represented as
SoD((e1, e2), E, t), where:

• (e1, e2) ∈ (U2 ∪R2 ∪D2 ∪ P 2): are the conflicting entities,

• E ∈ {U,R,D, P}: the set of entities for which the constraint should hold,

• c ∈ C: the temporal context during which the constraint should hold.

with e1, e2 6∈ E

A SoD constraint SoD((e1, e2), E, t) is satisfied if ∀S ∈ {Q ∈ S | c ∈ Q} it holds
that:

∀e ∈ E,¬((e, e1) ∈ REL∗S ∧ (e, e2) ∈ REL∗S)

with REL∗S as defined in 6.2.1
and S = scenarios(C, γ).

Definition 6.2.3 Binding of Duty (BoD) Constraint
A binding of duty constraint for an SACS model P = (M,A,V) is represented as
BoD((e1, e2), E, t), where:

• (e1, e2) ∈ (U2 ∪R2 ∪D2 ∪P 2): are two model entities called the bound entities,
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• E ∈ {U,R,D, P}: the set of entities for which the constraint should hold,

• c ∈ C: represent the temporal context during which the constraint should hold.

with e1, e2 6∈ E

A BoD constraint BoD((e1, e2), E, t) is satisfied if ∀S ∈ {Q ∈ S | c ∈ Q} it holds
that:

∀e ∈ E, (e, e1) ∈ REL∗S ⇐⇒ (e, e2) ∈ REL∗S

with REL∗S as defined in 6.2.1
and S = scenarios(C, γ).

Definition 6.2.4 Cardinality Constraint
A cardinality constraint for an SACS model P = (M,A,V) is represented as
CRD(eb, u, E, t), where:

• eb ∈ (U ∪R ∪D ∪ P ): represents the bound entity,

• u ∈ N represents the upper bound,

• E ∈ {U,R,D, P}: represents the set of entities for which the constraint should
hold,

• c ∈ C: represent the temporal context during which the constraint should hold.

with eb 6∈ E

A cardinality constraint CRD(eb, u, B, t) is satisfied if ∀S ∈ {Q ∈ S | c ∈ Q} it holds
that:

|{(e, eb) ∈ REL∗S | e ∈ E}| ≤ u

with REL∗S as defined in 6.2.1
and S = scenarios(C, γ).

Example 6.2.1 ACME Constraints

prereq1 = PRE ((manager , employee),UACME , always)

prereq2 = PRE ((employee,manager),UACME , always)

prereq3 = PRE ((kitchen, lobby),RACME , always)

sod1 = SoD((manager , employee),UACME , always)

bod1 = BoD((manager , employee),UACME , always)

bod2 = BoD((kitchen, lobby),RACME , cWH )

card1 = CARD(safe, 1,UACME , always)
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prereq2 is not satisfied since not every employee is also a manager. sod1 is not
satisfied since user1 is both a manager and a employee through inheritance. bod1 is
not satisfied since user2 is only a employee. The rest of the authorization constraints
are satisfied

Definition 6.2.5 Static / Dynamic Constraints
We say that an authorization constraint is static if either its satisfaction is indepen-
dent of the associated temporal context or if the associated temporal context equals
always. Otherwise, we say it is dynamic.

We employ the naming convention (static/dynamic) level constraint name

to distinguish between subtypes of the four previously defined authorization con-
straint types. Here, level denotes the combination of the groups of elements of
which the assignment or (transitive) grant relation is constrained. For example,
prereq1 would be a static user-role prerequisite constraint and bod2 would be a a
dynamic role-permission SoD constraint. We will use this naming convention when
evaluating the performance of our incremental approach.

A limit of how we have defined the authorization constraints is that it is no distinction
is made if the relationships occur because of direct assignments/grants or because
of role-/demarcation-inheritance. Take the case of sod1 ; it would be interesting to
make a distinction between if a role has been granted directly (which might be a
mistake) or indirectly (which happens because of inheritance). Another limit is that it
is not possible to define exceptions. Sometimes constraints might be broken for valid
reasons. Both would be interesting additions. However, we have decided to keep the
authorization constraints relatively simple for this initial exploration into incremental
verification.

6.3 Policy-independent authorization constraints

Together with security experts from Nedap, we established a list of policy-independent
authorization constraints. These authorization constraints serve as policy smell indi-
cators. They check for, what we will call, policy smells. The idea behind policy smells
is similar to that of code smells. Policy smells are not direct flaws but could indicate
a possible deeper structural problem. To illustrate, consider the "unused role" smell:
a role which is not assigned or inherited. The presence of this smell could be an
indicator that this role should not exist. However, the presence of this smell might
be justified because of administrative reasons, e.g. there currently are no people
occupying certain roles within the organization, or it makes the policy specification
more readable. An overview of all policy smell indicators we will check for together
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with an informal description of what they detect can be found in Table 6.1.

Policy Smell Description

Unused Role Smell
a role that is never assigned to a user or
inherited by another role

Unused Demarcation Smell
a demarcation that is never granted/revoked
with a temporal grant rule or inherited by another
demarcation

Unused Permission Smell
a permission that is never assigned to a
demarcation

Zombie Demarcation Smell
a permission that is never granted to a role
or inherited by another demarcation

Zombie Permission Smell
a permission that is never (transitively) granted
to a role

God User Smell a user that is always granted all permissions
God Role Smell a role that is always granted all permissions

Ignored Role Inheritance
a role that is assigned to a user and of which a
senior role is also granted to a user

Ignored Demarcation Inheritance
a demarcation that is granted to a role and
of which a superdemarcation is also granted
to a role

Table 6.1: Policy Smells

The context-dependent invariants which state that users should never be trapped
and granted permissions should always be invocable can also be enforced with
policy-independent authorization constraints. They do however depend on the con-
text, namely the access control system topology and the authentication model. These
authorization constraints can be found in table 6.2. A formal description of what it
means that a permission can not be invoked and when a user is trapped can be
found in 6.3.1 and 6.3.2.
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Context-dependent A.C. Description

Permission Uninvocable

a (user,scenario,permission) triple where the given
user is granted the given permission during the given
scenario which authorizes access to a security zone
which can not be reached by the user in the given scenario

User Trapped

a (user,scenario,security zone) triple where the given
user can reach the given security zone during the
given scenario but becomes trapped and can not reach
a security zone from which the user can leave the security
system

Table 6.2: Context-Dependent Authorization Constraints

Definition 6.3.1 Permission Invocability
We say a for a given SACS model P = (M,A,V), the permission p to access the
security zone o granted to a user u during scenario S is not invocable if (u, s, o) ∈
USO, (p, o) ∈ PO but (u, s, p) 6∈ invocable.
where

invocable = {(u, S, p) ∈ U × S × P | ∃(u, S, o) ∈ accessible, (p, o) ∈ PO}
∪ {(u, S, p) ∈ U × S × P | ∃(u, S, o) ∈ accessible,∃(o, o′) ∈ δ, (p, o′) ∈ PO}

accessible = U × {(S, o) ∈ S ×O | status(S, o, A) = unlocked , o ∈ I }
∪ {(u, S, o) ∈ USO | status(S, o, A) 6= locked , o ∈ I }
∪ {(u, S, o) ∈ U × S ×O | status(S, o, A) = unlocked ,

∃(o′, o) ∈ δ, (u, S, o′) ∈ accessible}
∪ {(u, S, o) ∈ USO | status(S, o, A) 6= locked ,

∃(o′, o) ∈ δ, (u, S, o′) ∈ accessible}

with S = scenarios(C, γ)

Definition 6.3.2 User Trapped
We say a for a given SACS model P = (M,A,V), a user u is trapped in a security
zone o during scenario S if (u, s, o) ∈ USO but (u, s, o) 6∈ leavable.
where

leavable = {(u, S, o) ∈ accessible | o ∈ I }
∪ {(u, S, o) ∈ accessible | ∃(o, o′) ∈ δ, (u, S, o′) ∈ leavable}

with accessible as defined in 6.3.2.
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Chapter 7

Implementation

In this chapter, we show how we constructed our prototype incremental policy ver-
ifier with VIATRA. First, we show how we translated the SACS formalism into an
Ecore Model. Next, we will show how the access relation and the authentica-
tion statuses can be expressed as graph patterns on this model. This allows us
to incrementally compute these relations as the match sets of graph patterns can
be incrementally updated in VIATRA. We will also show how the various types
of authorization constraints can be expressed as graph patterns. This allows us
to incrementally verify them. Lastly, we will show how we incrementally compute
the set of scenarios. The full source code of our implementation is available at
https://github.com/HansvdLaan/GRRBAC-Verifier/
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7.1 Ecore Model

User

name : EString

Role

name : EString

Demarcation

name : EString

Permission

name : EString

TimeRange

start : EInt
end : EInt
name : EString

ValidDay

name : EString

TemporalContext

name : EString

TemporalGrantRule

name : EString
priority : EInt
isGrant : Boolean = false

SACSObject

name : EString

SiteAccessControlSystem

name : EString

SecurityZone

public : Boolean = false

PolicyDependentAuthorization
Constraint

name : Name

AuthorizationPolicy

name : EString

ContextContainer

name : EString

AuthenticationPolicy

name : EString

TemporalAuthenticationRule

name : EString
priority : EInt
status : EInt

AccessControlSystem
Topology

name : EString

[0..*] instances

[0..*] authorizationConstraints

[0..1] authorizationPolicy

[0..1] contextContainer [0..1] authenticationPolicy

[0..1] topology

[0..*] reachable

[0..*] users

[0..*] roles [0..*] demarcations

[0..*] permissions[0..*] temporalGrantRules

[0..*] temporalContexts

[0..*] validDays

[0..*] temporalAuthenticationRules

[0..*] securityZones[0..1] role

[0..*] constrainedBy

[0..*] seniors[0..*] juniors

[0..*] RU

[0..*] UR [0..*] PD

[0..*] DP

[0..1] temporalContext

[0..*] temporalGrantRules

[0..1] demarcation

[0..*] constrainedBy

[0..1] securityZone

[0..*] constrainedBy

[0..*] timeRanges

[0..1] validDay

[0..*] superdemarcations [0..*] subdemarcations

[0..1] OP

[0..1] PO

[0..1] temporalContext

[0..*] authorizationConstraints

[0..1] temporalContext

[0..*] temporalAuthenticationRules

Figure 7.1: Ecore SACS Model Overview

The SACS formalism mainly deals with entities which are in relation with other enti-
ties. Therefore, the translation into Ecore was relatively straightforward. An overview
of the Ecore SACS model can be found in Figure 7.1.

Four things are omitted from this overview. First, not all subclasses of the abstract
authorization constraint class are shown. The policy-dependent authorization con-
straint subtypes (e.g. static/dynamic user-demarcation SoD) are implemented as
separate subclasses. This allowed us to define separate patterns to find the vio-
lations of each constraint subtype. Secondly, not all subclasses of ValidDay are
shown. This class is used to indicate what valid day of the week/month/year or day
of the week/month combination the time interval of a time range occurs in. We again
created separate subclasses for each of the possible types of valid day. Thirdly, we
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omitted a class which is used to store intermediate results when computing the set
of scenarios. Lastly, we omitted a class which is used for debugging purposes to
work around a current limitation of VIATRA.

7.2 Policy Relations

We have defined 29 graph patterns to incrementally compute the various relations
specified in Chapter 4. To give an impression of how the relations were formalized
as VQL patterns on the SACS Ecore Model, we will show how we expressed the
temporal grant, access and authentication statuses relations in VQL.

7.2.1 Temporal Grant Relation

To start, let us show the formalization of the temporal grant relation RSD into VQL.
The VQL pattern definition resembles the set-based definition of this relation in Def-
inition 4.5.13. The main difference is that we have to specify a special case to deal
with the situations when there are no temporal grant rules which revoke a demarca-
tion from a given role during a given scenario (i.e. RevokePriority() has no matches
and thus there is no maximum revoke priority). We have noticed that often our set-
based definitions translated quite well into VQL.

This pattern makes use of quite a few other patterns. The Scenario pattern com-
putes all scenarios. ScenarioTemporalContext finds which temporal contexts are a
part of which scenarios. We will elaborate on these two patterns in Section 7.5.1.
connectedByTemporalGrantRule finds which roles are related via a temporal grant
rule to a demarcation. GrantPriority and RevokePriority find the priorities of the
temporal grant/revoke rules defined on the given role and demarcation which hold
during the given scenario. RevokePriority is defined similarly to GrantPriority .

1 pattern RSD(role: Role , scen: java Scenario , dem: Demarcation) {

2 find Scenarios(scen);

3 find connectedByTemporalGrantRule(role , dem); // perf. optm.

4 find GrantPriority(scen , role , dem , _); // perf. optm.

5 find RevokePriority(scen , role , dem , _); // perf. optm.

6 maxGrantPriority == max find GrantPriority(scen , role , dem , #p); 1

7 maxRevokePriority == max find RevokePriority(scen , role , dem , #p2);

8 check(maxGrantPriority > maxRevokePriority);

9 } or { // when RevokePriority () has no matches

10 find Scenarios(scen);

1max is an aggregator. The # indicates which parameter of the called pattern should be
aggregated (e.g with max the greatest number is selected)

59



11 find connectedByTemporalGrantRule(role , dem); // perf. optm.

12 find GrantPriority(scen , role , dem , _);

13 neg find RevokePriority(scen , role , dem , _);

14 }

1 pattern connectedByTemporalGrantRule(role: Role , dem: Demarcation) {

2 TemporalGrantRule.role(rule , role);

3 TemporalGrantRule.demarcation(rule , dem);

4 }

1 pattern GrantPriority(scen: java Scenario , role: Role , dem:

Demarcation , priority: java Integer) {

2 find ScenarioTemporalContext(scen ,context);

3 TemporalContext.temporalGrantRules(context , rule);

4 TemporalGrantRule.isGrant(rule , isGrant);

5 check(isGrant);

6 Role.constrainedBy(role , rule);

7 Demarcation.constrainedBy(dem , rule);

8 TemporalGrantRule.priority(rule , priority);

9 }

It is worth noting that the statements on line 3-5 and 11 in RSD are not strictly
necessary. However, sometimes in VIATRA we can improve performance by adding
extra constraints. In this case, by adding these constraints, we reduce the number
of objects to consider in subsequent constraints (and thus increase performance).

7.2.2 Access Relation

In contrast to how we formally defined the access relation, we do not directly com-
pute the access relation USO from the temporal grant relation RSD . Instead, we first
compute the intermediary access relations USP , RSP and RHSDH which are then
used to compute the access relation USO .

1 pattern USO(user: User , scen: java Scenario , object:SACSObject) {

2 find USP(user , scen , perm);

3 Permission.PO(perm , object);

4 }

1 pattern USP(user: User , scen: java Scenario , perm:Permission) {

2 User.UR(user , role);

3 find RSP(role , scen , perm);

4 }

1 pattern RSP(role: Role , scen: java Scenario , perm:Permission) {

2 find RHSDH(role , scen , dem);

3 Demarcation.DP(dem , perm);

4 }
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1 pattern RHSDH(role: Role , scen: java Scenario , demP:Demarcation) {

2 Role.juniors *(role , roleP);

3 find RSD(roleP , scen , dem);

4 Demarcation.subdemarcations *(dem , demP);

5 }

We compute USP , RSP and RHSDH separately as they are also needed when veri-
fying the authorization constraints. In general, we tried to reuse computed (interme-
diary) relations as much as possible. This prevents that the match sets of equivalent
subpatterns have to be (re)computed multiple times, increasing efficiency and re-
ducing memory consumption.

7.2.3 Authentication Status

The pattern computing the temporal authentication status status (for all security
zones during all occurring scenarios) is defined similarly to the pattern computing
the temporal grant relation RSD . A difference is that the locked, protected and un-
locked statuses now have a default priority of -1. This removes the need to deal
with the cases that for one or more types of actions no rule is defined covering that
scenario separately.

The function determineAuthenticationStatus() computes the authentication status given
the found priorities. If no rules are defined for the given security zone during the
given scenario, the default status is returned. This is the protected status. The
locked status takes precedence over the protected status, which in turn takes prece-
dence over that of the unlocked status.

1 pattern SecurityZoneAccessStatus(scen: java Scenario , zone:

SecurityZone , status: java Integer) {

2 find LockedPriority(scen , zone , _); // perf. optimization 2

3 maxLockedPriority == max find LockedPriority(scen , zone , #p1);

4 maxProtectedPriority == max find ProtectedPriority(scen , zone , #p2);

5 maxUnlockedPriority == max find UnlockedPriority(scen , zone , #p3);

6 status == eval(MyQueryUtil.determineAuthenticationStatus(

maxLockedPriority , maxProtectedPriority , maxUnlockedPriority));

7 }

2see https://www.eclipse.org/forums/index.php/t/1105611/ for a related discussion.
(accessed on 22-1-2021)
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7.3 Policy-dependent Authorization Constraints

The VQL patterns which verify the policy-dependent authorization constraints each
look for constraint violations for a specific subtype of authorization constraint. To
illustrate, the following VQL patterns try to find violations of user-permission SoD
and static demarcation-permission cardinality constraints.

1 pattern SoDUPViolation(constraint: SoDUPConstraint , scen: java

Scenario , user: User){

2 SoDUPConstraint.left(constraint , left);

3 SoDUPConstraint.right(constraint , right);

4 AuthorizationConstraint.temporalContext(constraint , context);

5 find ScenarioTemporalContext(scen , context);

6 find USP(user , scen , left);

7 find USP(user , scen , right);

8 }

1 pattern CardinalityDPViolation(constraint: CardinalityDPConstraint ,

usageCount: java Integer){

2 CardinalityDPConstraint.permission(constraint , permission);

3 CardinalityDPConstraint.bound(constraint , bound);

4 usageCount == count Demarcation.DP(_, permission);

5 check(usageCount > bound);

6 }

We implemented the following authorization constraint subtypes: user-role, user-
demarcation, user-permission, role-demarcation, role-permission and demarcation-
permission. As these kind of patterns are not that complex, we will not go into fur-
ther detail about how we translated more policy-dependent authorization constraints
subtypes into VQL.

7.4 Policy-independent Authorization Constraints

The patterns which detect the policy smells are also not that complex. The only
exception being the patterns which check for the so-called God Users and the God
Roles. VQL has no direct way of stating something should be in a relation with
all elements of a certain type. We worked around this by detecting God Users as
follows:

1 pattern GodUser(user: User) {

2 currentSPCount == count find USP(user , _, _);

3 permissionCount == count Permission(_);

4 scenarioCount == count find Scenarios(_);

5 maxSPCount == eval(permissionCount * scenarioCount);

6 check(currentSPCount == maxSPCount);
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7 }

One of the most time-consuming parts of the implementation proved to be the VQL
patterns which try to find violations of the context-dependent authorization con-
straints. Although the accessible and leavable relations can be expressed rather di-
rectly as graph patterns, a considerable amount of time was required tweaking these
patterns. Due to their recursive nature, their match sets have proven to be quite ex-
pensive to initialize and update. Furthermore, the underlying Rete networks could
take quite a noticeable amount of memory. We experimented by adding extra con-
straints and factoring out subpatterns to enforce the underlying Rete network of the
pattern to be structured more efficiently.

7.5 Computing Scenarios and Scenario Instances

We incrementally compute the set of scenarios S by computing a finite representa-
tion TS ⊆ Twm ∪ Ty of the infinite set of scenario instances and inferring the set of
scenarios from it.

7.5.1 Conceptual Idea

The idea behind our technique is that, because of how we construct TS , we claim
that for all scenario instances one of the the following will occur, either: 1) there
exists a time range ty ∈ TS ∩Ty covering it and the scenario this instance belongs to
is the same as the set of contexts covering ty or 2) there does not exists such a ty

but there exists a twm ∈ TS ∩ Twm covering it and the scenario this instance belongs
to is the same as the set of contexts covering twm. This means that for a given SACS
model and given TS , the set of scenarios can also be defined as:

scenarios(C, γ) = {covers(ty, C, γ) | ty ∈ TS ∩ Ty}
∪ {covers(twm, C, γ) | twm ∈ TS ∩ Twm,
∃t ∈ Tτ , t ⊆ twm, @ty ∈ TS ∩ Ty, t ⊆ ty}

This definition can be further simplified. We also claim that because of how we
construct TS , if the set of all temporal context instances is not infinite, there will
always exists a time instant covered for each twm ∈ TS , twm ∈ Twm which is not
covered by a ty ∈ TS , ty ∈ Ty. As we will not deal with infinite sets of temporal
context instances when analyzing realistic SACS models, this means that the set of
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scenarios can also be defined as:

scenarios(C, γ) = {covers(t, C, γ) | t ∈ TS}

Since TS is finite, the above definition is computable.

7.5.2 Overview

The process to compute TS and the set of scenarios S conceptually consists of five
steps:

1. First, we split the set of all temporal context instances T (not to be confused
with T , the set of all valid time ranges) into the subsets Tw, Tm, Twm, Ty based
on what each time range represents. Tw contains all time ranges which rep-
resent valid days of the week, Tm which represents valid days of the month,
Twm which represent valid days of the week/month combinations and Ty which
represent valid days of the year.

Please recall that we assume the temporal context Always has a finite set
of temporal context instances and is defined a set of time ranges representing
on the level of days of the week (([0, 1439],Mon,_,_,_), ([0, 1439],Tue,_,_,_),
etc. ).

2. From each subset, we compute the set of disjoint time ranges T ′w, T ′m, T ′wm,
T ′y which partition the time ranges of the original subsets into maximal disjoint
time ranges such that for each disjoint time range, any two moments in time
covered by it overlap with the same time ranges from the original subset (Tw,
Tm, Twm and Ty). An example partitioning is shown in Figure 7.2.

3. Next, we combine T ′w, T ′m and T ′wm and compute another set of maximal disjoint
time ranges T ′′wm which partition the combined sets. Similarly, we combine T ′′wm
and T ′y for all days of year on which time intervals are specified and compute
the set of maximal disjoint time ranges T ′′y .

4. Afterwards, we combine T ′′wm and T ′′y into TS . We claim that because of how we
constructed these sets that for each time range t contained in T ′′y we know all
time instants covered by t overlap with the same temporal context instances
and will belong to the same scenario. Furthermore, we claim that for each time
range t contained in T ′′wm all time instants covered by t which are not covered
by any time range contained in T ′′y will belong to the same scenario.

5. During all previous steps, we keep of temporal context instances overlap with
which the scenario instances. Given this knowledge and C, γ and TS we can
compute the set of scenarios S.
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Figure 7.2: Example partitioning of Tw into T ′w for an arbitrary day of the week
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Figure 7.3: steps to compute S and TS

An overview of all steps can be found in Figure 7.3. An example of those steps per-
formed on a slightly modified version of ACME’s access control policy’s set of tem-
poral contexts (see Table 4.1) is shown in Figure 7.4. Every step except the second
is done in a declarative manner with graph patterns expressed in VQL (and thus they
are thus automatically performed incrementally thanks to the VIATRA framework).

We have developed algorithms to incrementally compute T ′w, T ′m, T ′wm, T ′y as this
was non-trivial to perform declaratively with graph patterns while also keeping track
of the relation between temporal context instances and their partitioning. Naively,
we would need for any given day with n associated temporal context instances store
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at least n × (n − 1) comparisons. The algorithms are integrated with VIATRA as a
event-based model transformation. Whenever a temporal context instance is added
or removed, VIATRA runs the appropriate algorithm.
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Figure 7.4: steps to compute S and TS example

In total, we established 16 VQL patterns to compute S. We refer the reader to
our public code repository to see the implementation of all steps. To facilitate the
implementation, we used a different definition of Always in our implementation com-
pared to how we defined it formally. Namely, we assumed that Always was defined
as the set of time ranges covering the whole day for every day of the day week, day
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of the month and day of the week/month combination. Furthermore, for every day of
the year on which another temporal context instance had been defined, we added a
time range covering that whole day to Always during runtime. Practically, this means
that in our implementation, the Always temporal context has at least 2935 temporal
context instances instead of 7.

In the rest of this chapter, we will focus (1) at the algorithm we have developed to
incrementally compute T ′w, T ′m, T ′wm, T ′y and (2) the VQL patterns which infer S from
C, γ and TS . We want to highlight (1) as the developed algorithms are non-trivial to
understand from our implementation only. We will look at (2) as our evaluation has
shown the implementation of this step is inefficient and we believe other VIATRA
practitioners might learn from it.

7.5.3 Incremental Computation of Initial Partitions

That the computation of the partitions is done incrementally means that, whenever
a temporal context instance is added to or removed from T ′w, T ′m, T ′wm and T ′y, the
partition will be updated accordingly instead of being recomputed from scratch. We
keep track of a relation which maps the temporal context instances to the scenario
instances they overlap with. The algorithms which perform this incremental compu-
tation are shown in Algorithm 1 and Algorithm 2.

The intuition behind the algorithms is that each day of the week/month/year has
an interval from 0 up to and including 1439 associated with it which is incrementally
partitioned based on the intervals of the temporal context instances specified on that
day. When a temporal context instance is added, the partitioning is either refined or
stays the same. Whenever a temporal context instance is removed, the partitioning
is either coarsened or stays the same. The partitioning algorithms also keep track
of a relation overlap which maps temporal context instances to their partitions.

The algorithm which processes the newly added temporal context instances first
finds all existing partitions which overlap with the new temporal context instance.
This can be achieved with the help of an interval tree. An interval tree is a tree data
structure which holds intervals and can efficiently find all intervals that overlap with
a given interval. Then, for each overlapping partition, it is either kept further subdi-
vided into two or three subpartitions if none, one or both of the bounds of the newly
added temporal context instance fall between the bounds (excluding the bounds
themselves) of the scenario instances with overlap being updated accordingly.

67



The complexity to find all intervals that overlap with a given interval depends on
the type of interval tree. In our implementation, we use an augmented interval tree.
With this type of interval tree, adding intervals to the tree, removing intervals from
the tree and finding all intervals that overlap with a given interval take O(log n) time,
with n being the number of intervals in the tree.

The algorithm which processes removed temporal context instances also starts by
finding all partitions in the same manner as the other algorithm. Then, for each
found overlapping partition, it updates overlap. Lastly, it checks if the partition with
the lowest lower bound of the overlaps can be merged with the partition before it (if
it exists) and if the partition with the highest upper bound can be merged with the
partition after it (again if it exists).

68



Algorithm 1: Process Addition of Temporal Context Instance
Input: tnew = [tnew , tnew ], P = partitions associated with the same day as tnew

1 Poverlap ← {p | p ∈ P, tnew overlaps with p }
2 if |Poverlap| = 1 then
3 p = [p, p]← only element of Poverlap

4 if tnew = p then // case 1

5 overlap ← overlap ∪ {(tnew, p)}

6 else if tnew > p and tnew < p then // case 2

7 pnew1 ← [tnew , tnew ]

8 pnew2 ← [tnew + 1, p]

9 resize p to [p, tnew − 1]

10 overlap ← overlap ∪ {(t, pnew1) | (t, p) ∈ overlap}
11 overlap ← overlap ∪ {(t, pnew2) | (t, p) ∈ overlap}
12 overlap ← overlap ∪ {(tnew, pnew1)}

13 else if tnew < p then // case 3

14 pnew ← [tnew , tnew ]

15 resize p to [tnew + 1, p]

16 overlap ← overlap ∪ {(t, pnew) | (t, p) ∈ overlap}
17 overlap ← overlap ∪ {(tnew, pnew)}

18 else if tnew > p then // case 4

19 pnew ← [tnew , tnew ]

20 resize p to [tnew , tnew − 1]

21 overlap ← overlap ∪ {(t, pnew) | (t, p) ∈ overlap}
22 overlap ← overlap ∪ {(tnew, pnew)}

23 else
24 foreach p = [p, p] ∈ Poverlap do
25 if tnew < p then // case 5

// same as with |poverlap| = 1, case 3

26 else if tnew > p then // case 6

// same as with |poverlap| = 1, case 4

27 else // case 7

28 overlap ← overlap ∪ {(tnew, p)}
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Algorithm 2: Process Removal Of Temporal Context Instance
Input: trem = [tnew , tnew ],P = partitions associated with the same day as trem

1 Poverlap ← {p | p ∈ P, trem overlaps with p }
2 pfirst ← interval with lowest lowerbound of Poverlap

3 plast ← interval with highest upperbound of Poverlap

4 overlap ← overlap ∩ {(trem, p) | (trem, p) ∈ overlap}
5 if ∃p = [p, pfirst − 1] ∈ P ∧ overlap−1(p) = overlap−1(pfirst) then
6 merge p and pfirst

7 if ∃p = [plast + 1, p] ∈ P ∧ overlap−1(p) = overlap−1(plast) then
8 merge p and plast

7.5.4 Incremental Computation of Occuring Scenarios

We infer S from C, γ and TS with the help of four VQL patterns. We have renamed
some patterns and simplified calls to other patterns to facilitate their explanation.

The pattern TWMPP_TimeRange_To_Scenario computes for all time ranges twm ∈
T ′′wm the set of temporal contexts covering twm. TYPP_TimeRange_To_Scenario

computes the same for all time ranges ty ∈ T ′′y . They are defined similarly. As
we discussed previously, for any given time range in t ∈ TS , the set of all temporal
contexts covering t corresponds to an occurring scenario. Thus, these patterns find
occurring scenarios. We group the found temporal contexts covering a given time
range into a scenario with the help of a custom aggregator distinct . Please note that
scenarios are just renamed sets of temporal contexts (i.e. Set<TemporalContext>)3.

Scenarios aggregates the scenarios found by TWMPP_TimeRange_To_Scenario

and TYPP_TimeRange_To_Scenario. This corresponds to the set of all occur-
ring scenarios. ScenarioTemporalContext states which temporal contexts are part
of which scenarios as a pattern.

1 pattern TWMPP_TimeRange_To_Scenario(validDay: ValidDay , starttime:

java Integer , endtime: java Integer , scen: java Scenario) {

2 ValidDayOfWeekMonth(validDay); // perf. optimization

3 find TWMPP_TimeRange(validDay , starttime , endtime); // Simplified.

Matches any twm ∈ T ′′
wm

3This was done since as a workaround since VIATRA at the moment does not fully support classes
with generics, see: https://bugs.eclipse.org/bugs/show_bug.cgi?id=564426 (accessed on 22-
1-2021)
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4 scen == distinct find TWMPP_TimeRange_To_TemporalContext(validDay ,

starttime , endtime , #context); // Custom aggregator. Groups all

distinct temporal contexts into a scenario , i.e. a set of temporal

contexts.

5 }

1 pattern Scenarios(scen: java Scenario) {

2 find TWMPP_TimeRange_To_Scenario(_, _, _, scen);

3 } or {

4 find TYPP_TimeRange_To_Scenario(_, _, _, scen);

5 }

1 pattern ScenarioTemporalContext(scen: java Scenario , context:

TemporalContext) {

2 find TWMPP_TimeRange_To_Scenario(day , start , end , scen);

3 find TWMPP_TimeRange_To_TemporalContext(day , start , end , context);

4 } or {

5 find TYPP_TimeRange_To_Scenario(day , start , end , scen);

6 find TYPP_TimeRange_To_TemporalContext(day , start , end , context);

7 }

Our current implementation has two problems, which are interesting to note. The first
problem is that given how we compute scenarios our prototype unnecessarily com-
putes various relations and proves authorization constraints for spurious scenarios.
The root cause of this problem is that the Rete engine always directly propagates
new and disappeared matches. It does not let the match set of Scenarios stabilize
beforehand. While the set of scenarios is being (re)computed, spurious scenarios
are found. These correspond to intermediary results. Since all newly found scenar-
ios will directly be propagated to all other patterns, this means that time will be spent
unnecessarily computing and proving properties about these intermediate results.

The second problem is that much work has to be redone when temporal contexts
are removed. When a temporal context is removed, first all scenarios matches given
this temporal context disappear, and then new scenarios matches without this tem-
poral context appear. For these new scenarios matches, many relations have to be
computed anew, and authorization constraints have to be reverified. This is not ef-
ficient; it would be better if our prototype knew the scenarios were slightly modified
and more computations could be reused.
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Chapter 8

Evaluation

In this chapter, we evaluate and discuss our prototypical incremental policy verifier
based on an actual access control policy provided by Nedap. We will benchmark
the time/memory required to initialize the engine and the time required to reverify
the model after many types of authorization/authentication model modifications and
when adding new authorization constraints. We aim to get an impression of:

• the impact of incrementalizing the verification,

• to what degree the type and nature of a change has an impact on performance,

• the cost of verifying context-dependent authorization constraints,

• and the scalability of our prototype.

We use these results to draw conclusions about our prototype and our approach.
The source code of our verification engine, the anonymized access control pol-
icy and all test cases are publicly available at https://github.com/HansvdLaan/
GRRBAC-Verifier. For demonstration purposes, we also developed a CLI version of
the verification engine.

8.1 Business Case

We were graciously provided with an actual physical access control system’s autho-
rization model, authentication model and building topology by Nedap. According to
their security experts, the system is representative of physical access control sys-
tems of small-medium enterprises. For privacy and security reasons, we can not
disclose the name of the company who’s access control system we were provided
with and their access control policy, published alongside this research, has been
fully anonymized.
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Figure 8.1: Policy Verifier CLI

8.1.1 Policy Conversion

We have converted the given policy into our newly-defined SACS format. The con-
version of the provided authorization model into GR-RBAC was less than straight-
forward and we required the assistance from security experts in the company.

Explaining the complete format of the provided authorization model is out of the
scope for this research. However, in short, it consists of Users, Templates, En-
trance Groups and Entrances. Entrance groups are sets of entrances. Entrances
are access controlled doors. Users can be assigned templates and can be granted
time-dependent access to entrance groups and entrances. Templates are granted
time-dependent access to entrance groups and entrances. There is no construct
akin to GR-RBACS’s role/demarcation hierarchies.

We transform templates into roles and entrance groups into demarcations. When
an entrance group is granted directly to a user instead of via a template, we create
a new intermediary template which is given the entrance group and assigned to the
user. This substitutes the direct assignment. We employ a similar technique when
entrances are directly assigned to users or templates. We call the roles/demarca-
tions which are the result of this substitution proxy roles/demarcations.

Entrance groups and entrances are often granted directly to users. To prevent an un-
realistic explosion in the number of roles and demarcations in the translated model,
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we group a user’s proxy roles and proxy demarcations together whenever possible.
We also remove duplicates between users.

The translation of the authentication model and the building topology in our format
was less challenging. From a practical standpoint, our formalisms can be seen as
simplifications of those used by Nedap. However, there is a major difference that
currently, Nedap provides access on the level of doors while SACS defines access
on the level of zones. To deal with this discrepancy, we model doors and rooms as
zones.

We model rooms as security zones which are always unlocked. Doors are mod-
elled as two separate security zones, one for each door side. We model each door
side separately as they can have different authentication status for a given point in
time (e.g., one side of the door is protected with access control while the other side
is unlocked). If a door side is always locked, we do not model this side. If the door
side has no installed access control measures, we remove the newly created secu-
rity zone and connect the security zones representing the adjacent rooms directly.
We model the perimeter of the building as a security zone.

Unfortunately, the provided authentication model and building topology were incom-
plete. There are 78 entrances in the authorization model which are missing in the
authentication model and the building topology. However, all doors which were cen-
tral to the building are present.

8.1.2 Authorization Constraints

The provided policy has no explicitly defined authorization constraints. However, we
found 15 implicit authorization constraints. These were added to the policy and thus
will be reverified after each policy change. They were found through discussions
with facility management of the company whose access control policy we were pro-
vided and with security experts from Nedap. Specifically, we have found 13 user-role
SoD constraints and 2 user-role prerequisite constraints.

Interestingly, we have found no BoD or cardinality constraints nor constraints which
are not on the user-role level. We suspect because in the original policy, what
have now become demarcations often represented groups of entrances which were
grouped because the entrances were considered to be part of the same room. Thus,
they were not designed with implicit constraints in mind.
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8.1.3 Model Statistics

The translated authorization model has 237 (unique) users, 164 roles (of which
141 proxy roles), 93 demarcations (of which 52 proxy demarcations), 160 permis-
sions and 613 temporal grant rules. Regarding the (computed) relations, we have:
|UR| = 674, |DP | = 530, |USD | = 181160, |USP | = 490489, |RSD | = 22934 and
|RSP | = 64587. The authentication model consists of 450 temporal authentica-
tion rules. The translated building topology consists of 420 security zones of which
260 representing rooms and 160 representing access-controlled door sides. An
overview of the building topology can be found in Figure 8.2. There are 37 policy-
specific temporal contexts with a total 282 of temporal context instances. Interest-
ingly, all instances are defined on a day of the week basis. The "Always" temporal
context has 2935 temporal context instances. Furthermore, 478 temporal grant rules
and 260 temporal authentication rules have as context "Always". This latter was to
be expected, as this equals the number of rooms (which are always unlocked). In
total, the 38 temporal contexts give rise to 40 scenarios with a total of 54534 sce-
nario instances.

Regarding the authorization constraints and policy smells; we have found 6 au-
thorization constraint violations and found 10062 context-dependent authorization
constraint violations. This contains 9590 cases in which a user can get trapped in
a security zone during a scenario and 472 cases in which a user can not invoke a
granted permission during a scenario. Due to the missing doors, it is not possible to
know for sure if the found context-dependent authorization constraints violations are
spurious or genuine. For every violation, there could be a path which is not present
in our conversion due to the missing doors.

8.2 Benchmark Execution

8.2.1 Experimental Setup

We focused on evaluating the following aspects of our prototype:

Impact of Modification Type & Nature

We have created various collections of test cases for most authorization and authen-
tication model modifications. We also made test cases which add new authorization
constraints. This allows us to get an impression to what degree the type of a change
influence the time it takes to reverify the model. We made each test case distinct to
get a similar impression about the impact of the nature of the change.
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Figure 8.2: Building Topology
: Room : Doorside : Perimeter
: Reachability
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Batch vs Incremental

To get an impression of the achieved speed-up by incrementalizing the verification,
we evaluate the difference between caching and no caching, i.e. incremental and
batch verification. We use the incremental Rete engine as a stand-in batch engine.
Research has shown that it also works efficiently as a batch engine [70] (some-
times being faster than the local search engine for model sizes comparable to ours
[70]). We take the initialization time of the incremental engine as the time required
to (re)verify all authorization constraints (including the policy smells) in batch.

We initially aimed to use VIATRA’s non-incremental local search engine as the batch
engine. However, given how we have implemented our prototype, this engine is un-
reasonably inefficient for the verification task at hand. Since the set of scenarios
is computed through graph-patterns and this engine performs no caching, the set
of scenarios has to be recomputed from scratch when checking each type of au-
thorization constraint. The same holds for e.g. the temporal grant and temporal
authentication relations. Practically, we observed that checking one type of autho-
rization constraint with the non-incremental local search engine took more time than
checking the whole model with the incremental Rete engine. Thus, we decided to
use the Rete engine as a stand-in batch engine.

Cost of Verifying Context-Dependent Authorization Constraints

We measure the impact of omitting context-dependent authorization constraints and
all the patterns required to verify them to get an impression of how expensive con-
straints of this type are to verify. As we explained in Section 7.4 they are verified with
a recursive graph pattern which determines accessibility rather naively. Computing
accessibility this way appears to be quite expensive. This holds both for initializing
and updating the set of accessible security zones.

Scalability

To assess the scalability of our solution, we have created scaled-up versions of our
business case in which all authorization, authentication and topology model entities
or all scenarios are duplicated 1, 2, 3 and 4 times.

8.2.2 Measurement Strategies

To guarantee the measurements are independent, each test case is run individually.
This is achieved by simulating that the model is reloaded and the engine is reinitial-
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ized for every test case. This is achieved with the help of CRIU.

CRIU 1 can freeze a running application, checkpoint its state to a collection of files,
and restore the application from the point it was frozen at. We initialize the engine
once for each collection of test cases. When this is done, the initialized engine is
frozen and saved. The initialized engine is then restored for each individual test
case.

Measurement of Execution Time

If a test case is completed within a timeout of 5 minutes, the measurement is con-
sidered successful, and the measurement results are saved. We will compute the
average and maximum time. On a timeout, the measurement is terminated, dis-
carded, and a timeout is reported. For each test, we will present the percentage
of test cases which timed out. Timeouts can occur when it takes a lot of effort to
compute the impact of the model change.

We do not disregard all measurements of a collection of test cases upon one or
more time outs as we have observed a noticeable variation in the time required to
reverify the model based on the nature of the change. However, when inspecting
the results, it is thus important to take the number of time outs into account.

For all test cases on the default model, the median value of 3 runs was taken. For
the test cases executed on scaled-up models, only one run was performed as each
run takes a significant amount of time. For a few types of model changes, we were
also forced to decrease the number of test cases of that model change during the
scalability test.

We will use the simplification that the initialization time of the engine will roughly cor-
respond to the time which will be required to reinitialize the engine after the model
change. There are cases for which this does not hold. In the case a model entity
is removed which has a lot of relations, the actual reinitialization time might lower.
However, from a practical standpoint it is not feasible to measure the reinitialization
time of the engine after each model modification as this can take a considerable
amount of time.

1https://criu.org/Main_Page
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Measurement of Memory Consumption

The measurement of memory consumption was done as in [70]. In a binary search-
like fashion, the available memory to the JVM is decreased in it is observed if the
allotted memory is still enough to initialize the engine. With 9 tests and an initial limit
of 6.4GB, this allows us to measure the peak memory consumption with a precision
of 25 MB.

Please note that the measurements for memory consumption and execution time
were performed separately. Low memory can force the JVM to perform more garbage
collection, decreasing performance. For measurement of execution times, the JVM
was allowed a maximum of 8GB of memory.

8.2.3 Environment

The benchmark was performed on two HP ProLiant DL380 G7 servers with each
two six-core Intel(R) Xeon(R) CPU X5660 @ 2.80GHz with 96 GB of RAM each
(12x 8192MB DDR3 at 1333 MHz). The servers were running Debian (64-bit) with
a backported Linux 5.4.0-0 of the Linux kernel with hyperthreading turned off and
the OpenJDK 11.9.0.1 runtime. We backported an older version of the Linux kernel
since newer versions contained a bug in which caused JVMs to be not restored
properly with CRIU2. We used VIATRA version 2.5.0.

2Since the time of writing, this bug has been fixed, see: https://lkml.org/lkml/2020/10/15/

582 (accessed on 22-1-2021)
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8.2.4 Results

Initialization Time/Memory The time and memory required to initialize the VIATRA
query engine is measured. We performed 8 measurements for the initialization time.
We disregard the time it takes to load the XML file of the GR-RBAC model.
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Figure 8.3: Initialization Time/Memory Consumption Comparison

Please recall that we consider the time required to initialize the engine as the time
required to (re)verify all authorization constraints in batch. Thus, we consider that
it takes 40 seconds to verify all authorization constraints on the business case in
batch when context-dependent authorization constraints are not taken into account
and 153 seconds when they are.
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Add Entities We tried to get an impression of the time required to reverify the model
upon the creation of a new user (1), role (2), demarcation (3) or permission (4). Upon
the creation of a new permission, an unconnected non-public security zone is also
created since permissions should always be associated with a zone. For (1)-(4), we
generated 80 test cases.
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Figure 8.4: Add Entities Measurement Results
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Remove Entities We measured the time required to reverify the model after a user
(1), role (2), demarcation (3) or permission (4) is removed. For (1) and (4), we tried
removing each user and permission individually. For (2) and (3), we tried removing
each non-proxy role/demarcation (i.e. those which are not mapped to templates/en-
trance groups which came into existence to facilitate the translation) individually. For
(1)-(4), we respectively had 237, 23, 41 and 160 different test cases.
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Figure 8.5: Remove Entities Measurement Results

The following percentage of test cases timed out when taking Context-Dependent
A.C. into account:
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Modification Type \ # Entities 1x 2x 3x 4x 5x
Remove Demarcation 7.3% (3) 7.3% (3) 7.3% (3) 7.3% (3) 7.3% (3)
Remove Permission - - - - 3.8% (6)

Table 8.1: Timeouts of Remove Entities Test Cases with Context-Dependent A.C.
and Increasing Number of Model Entities

Modification Type \ # Scen. 1x 2x 3x 4x 5x
Remove User - - - 0.4% (1) -
Remove Role - - - 8.7% (2) 8.7% (2)
Remove Demarcation 7.3% (3) 17.1% (7) 39% (16) 43.9% (18) 46.3% (19)
Remove Permission - - 0.6% (1) 3.1% (5) 6.9% (11)

Table 8.2: Timeouts of Remove Entities Test Cases with Context-Dependent A.C.
and Increasing Number of Scenarios
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Assign Entities We measured the time required to reverify the model after the as-
signment a role to a user (1) and the assignment of a permission to a demarcation
(2). For (1), for each existing user, we tried assigning (up to 10) new non-proxy roles
individually. For (2), for each existing non-proxy demarcation, we tried assigning (up
to 10) new permissions individually. For (1) and (2), we respectively had 2370 and
410 different test cases.
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Figure 8.6: Assign Entities Measurement Results

85



Deassign Entities We measured the time required to reverify the model after the
deassignment of a role from a user (1) and the deassignment of a permission from
a demarcation (2). For (1), for each existing user, we tried deassigning each non-
proxy role individually. For (2), for each existing non-proxy demarcation, we tried
deassigning (up to 10) permission individually. For (1) and (2), we respectively had
486 and 103 different test cases.
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Figure 8.7: Deassign Entities Measurement Results

The following percentage of test cases timed out when taking Context-Dependent
A.C. into account:

Type \ # Scenarios 1x 2x 3x 4x 5x
Deassign Permission - - 28.2% (29) 31.1% (32) 45.6% (47)

Table 8.3: Timeouts Deassign Entities Test Cases and Context-Dependent A.C. and
Increasing Number of Scenarios
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Add/Remove Temporal Grant Rules We measured the time required to reverify the
model after the addition of a temporal grant rule which grants a new demarcation (1),
addition of a temporal grant rule which revokes a previously granted demarcation (2)
and removal of a temporal grant rule (3). For (1), for each non-proxy role, we tried
adding (up to 10) new temporal grant rule which permanently grants a new non-proxy
demarcation to that role individually. For (2), for each rule which grants a non-proxy
demarcation to a non-proxy role, we tried adding a rule which permanently revokes
a granted demarcation from this role individually. For (3), we tried removing each
temporal grant rule individually. For (1)-(3), we respectively had 209, 226 and 613
different test cases. However, since (1)-(3) can become quite costly in terms of time
when taking Context-Dependent A.C. into account and when scaling up the model,
we only performed 80 each on scaled-up versions of the model.
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Figure 8.8: Add/Remove Temporal Grant Rules Measurement Results

The following percentage of test cases timed out when taking Context-Dependent
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A.C. into account:

Type \ # Scenarios 1x 2x 3x 4x 5x
Add Grant TGR. - - - - 1.3% (1)
Add Revoke TGR. - - - 7.5% (6) 11.3% (9)
Remove TGR. - - - - 2.5 % (2)

Table 8.4: Timeouts Add/Remove TGRs. with Context-Dependent A.C. and In-
creasing Number of Scenarios
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Add/Remove Temporal Authentication Rules We measured the time required to
reverify the model after the addition/removal of a temporal grant rule which sets a
security zone’s status to locked (1)/(2), unlocked (3)/(4) or protected (5)/(6). For (1),
(3) and (5) for each temporal authentication rule which sets a certain status, we cre-
ated two new rules with a higher priority which sets another status during the same
temporal context. E.g., if the system has a rule which says the security zone Lobby
should be Unlocked during Working Hours, we create two new rules which states
this security zone should be locked and protected during the same temporal context
with a higher priority. For (2), (4) and (6) we tried removing each temporal grant rule
individually. For (1)-(6), we respectively had 448, 2, 160, 290, 292 and 158 different
test cases. As (1)-(6) can become quite costly in terms of time when taking Context-
Dependent A.C. into account and when scaling up the model, we only performed up
to 80 each on scaled-up versions of the model. Since the temporal authentication
rules are only taken into account when verifying context-dependent authorization
constraints, we did not measure the impact of adding/removing temporal authenti-
cation rules when we do not take those kind of constraints into account.
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Figure 8.9: Add/Remove Temporal Authentication Rules Measurement Results

The following percentage of test cases timed out when taking Context-Dependent
A.C. into account:
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Type \ # Entities. 1x 2x 3x 4x 5x
Add Lock TAR. - - 7.5% (6) 25% (20) 28.8% (23)
Add Protect TAR. - - 10% (8) 32.5 % (26) 46.3 % (37)
Remove Unlock TAR. - - 7.5% (6) 41.3 % (33) 46.3 % (37)

Table 8.5: Timeouts Add/Remove TARs. with Context-Dependent A.C. and Increas-
ing Number Of Model Entities

Type \ # Scenarios. 1x 2x 3x 4x 5x
Add Lock TAR. - 8.8% (7) 52.5% (42) 55% (44) 55% (44)
Add Protect TAR. - 21.3 % (17) 62.5 % (50) 65% (52) 72.5 % (58)
Remove Unlock TAR. - 12.5% (10) 67.5% (54) 68.8% (55) 68.8% (55)

Table 8.6: Timeouts Add/Remove TARs. with Context-Dependent A.C. and Increas-
ing Number Of Scenarios
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Add/Remove Temporal Contexts We measured the time required to reverify the
model after the creation of a new temporal context (1) and the removal of an ex-
isting temporal context (2). For (1), for each existing scenario, we tried adding a
new temporal context which overlaps only with that scenario through one temporal
context instance on the level of the day of the week/month. To measure (2), we tried
removing each temporal context individually. For (1) and (2), we respectively had 40
and 38 different test cases.
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Figure 8.10: Add/Remove Temporal Contexts Measurement Results

The following percentage of test cases timed out when taking Context-Dependent
A.C. into account:
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Type \ # Entities 1x 2x 3x 4x 5x
Remove Temporal Context - - 18.4 % (7) 60.5% (23) 78.9 % (30)

Table 8.7: Timeouts Add/Remove TC. with Context-Dependent A.C. and Increasing
Number of Model Entities

Type \ # Scenarios 1x 2x 3x 4x 5x
Remove Temporal Context - - 28.9 % (11) 31.6% (12) 55.3% (21)

Table 8.8: Timeouts Add/Remove TC. with Context-Dependent A.C. and Increasing
Number of Scenarios

92



Add Authorization Constraints
We measured the time required to reverify the model after the addition of a policy-
dependent authorization constraints which has at least one violation. We respec-
tively generated up to 30 different test cases per policy-dependent authorization
constraint subtype.
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Figure 8.11: Add Policy-Dependent A.C. Measurement Results
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8.3 Analysis of results

From the results presented in the previous section, we can draw the following con-
clusions about our prototype:

Incremental verification provided a significant performance increase over batch
verification. In general, incremental verification manages to drastically reduce the
reverification time of the business case after a model change (under our assump-
tions).

Initialization time/memory usage generally seems to scale linearly and looks
highly correlated. It looks as the initialization time and memory required to initialize
the Rete engine scale linearly when the size of the model and the number of sce-
narios are scaled linearly (under duplication). The only exception seems when we
increase the amount of model entities while not taking context-dependent authoriza-
tion constraints into account. They also seem much more correlated than we initially
anticipated. More research would be required to draw definitive conclusions.

Even though the Rete engine quite aggressively caches intermediary results,
the memory footprint of the prototype is manageable on modern machines.
This is the case even when the business case is scaled up to three-five times the
amount of authorization/authentication model entities or the number of scenarios.

Verifying context-dependent authorization constraints currently has a high im-
pact on performance. In general, it takes much longer to reverify the model after a
model modification when we take context-dependent authorization constraints into
account compared to when we do not. Furthermore, when we scale up the business
case, we also start to observe many timeouts when we take context-dependent au-
thorization constraints into account.

In the prototype, a recursive graph pattern is used to compute accessibility. This in-
formation is required to verify the context-dependent authorization constraints. The
match set of this pattern is very expensive to initialize and update. When context-
dependent authorization constraints are not taken into account, the match set of
this pattern does not have to be initialized and updated. Together with the fact that
some other patterns also do not have to be initialized, omitting context-dependent
authorization constraints results in a drastic decrease in the initialization time, mem-
ory usage and the time required to reverify the model after many types of model
changes.
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The number of scenarios had a higher impact on performance than the amount
of authorization/authentication model entities. Overall, the time required to rever-
ify the model after a change increases faster when we increase the number of sce-
narios compared to when we increase the amount of authorization/authentication
model entities.

Verifying new authorization constraints went almost instantly. All newly added
authorization constraints added to the business case were verified in at most 110ms,
often much faster. Even when scaling up the business case, new authorization con-
straints were verified in less than 600ms (and again, often much faster).

New user-demarcation and user-permission were the most expensive sub-
types of prerequisite, SoD. and BoD. constraints to verify. Policy-dependent
authorization constraints check if certain invariants are respected for one of the fol-
lowing relations: UR, USD , USP , RSD , RSP and DP . The greater the cardinality of
these relations, the higher the number of computations a pattern checking invariants
on one of these relations has to perform. User-demarcation and user-permission
authorization constraints check invariants on the USD and USP relations. In the
business case, the cardinality of USD and USP is much greater than that of UR,
RSD , RSP and DP . Thus, authorization constraints on the user-demarcation and
user-permission level were the most expensive to verify.

New cardinality constraints were inexpensive to verify. Even on the scaled-
up business case, new cardinality constraints took on average less than 10ms and
at most 45ms.

Not only the type but also the nature of the change has a high impact on the
time required to reverify the model. For most model modifications, it holds that
there is quite a high variation in the time which was required to reverify the model.
Next to this, there are often quite a few outliers and quite a steep difference between
the median time and the maximum which was required to reverify the model.

The current prototype is not fast enough for incremental continuous verifi-
cation when taking context-dependent authorization constraints into account
In contrast to batch verification, incremental verification is a blocking process. It is
not possible to verify and analyze the impact of a new change before the impact of
previous changes has been fully processed. When taking context-dependent au-
thorization constraints into account, there are many model modifications which can
take a signification amount of time. Thus, the achieved performance is not yet on the
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level to support continuous verification and give security officers quick feedback after
each possible model change. Furthermore, in the case the engine has to be reini-
tialized (e.g. because of a crash), a security officer must wait a significant amount
of time before the engine is reinitialized.

The current prototype does not scale well enough for continuous verifica-
tion when context-dependent authorization constraints are taken into account.
When context-dependent constraints are taken into account, the time required to
reverify the model after a change and the amount of memory used increases signif-
icantly when the model is scaled-up. Especially model modifications which have an
effect on what many users can access (e.g. the removal of a much-used role/demar-
cation or setting a previously unlocked security zone to protected) take significantly
longer with scaled-up models.

The currrent prototype shows incremental verification might be a promising
avenue for continuous verification. Although the current prototype is not fast
enough and does not scale well enough for continuous verification, it does show
promise. When not taking context-dependent authorization constraints into account,
the performance of increases significantly and the prototype scales relatively well.
The model modifications a security officer is expected to perform most are the cre-
ation of users and the assignment/deassignment of roles to/from users and permis-
sion to/from demarcations. All measurements we performed of these type of model
modifications at most 160ms on the non-scaled up business case. The measure-
ments of the other model modifications which a security officer performs more rarely
in most cases took less than 1 second on the non-scaled up business case. This is
an important limit as 1 second is about the limit for the user’s flow of thought to stay
uninterrupted, even though the user will notice the delay [71].

There were a few exceptions. We have measured that adding temporal grant rules
which revoke grants, removing temporal grant rules and removing much-used roles/de-
marcations could take over 1 second. There is also the problem that reverifying the
model after removing a temporal context often took almost as long as reinitializing
the whole engine because of how we implemented the process to compute the set
of scenarios. There are many areas of improvement, however the results of this
initial prototype look promising. Thus, based on these results we conclude that in-
cremental verification of physical access control merits future research.
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Chapter 9

Final Thoughts

Conclusion

In this thesis, we explored a model, approach and prototype to incrementally verify
various types of authorization constraints on realistic evolving physical access con-
trol systems.

Inspired by RBÄC and the ideas introduced by TRBAC, we presented and formalized
Gregorian RBAC (GR-RBAC) as a possible model to capture physical access control
authorization policies. We introduced the concept of demarcation granting/revoking
inspired by role enabling/disabling and the concept of time ranges as an improve-
ment upon periodic expressions. Together, these concepts allow for time-dependent
accessibility.

We also introduced two simple formalisms which can capture physical access con-
trol topologies and authentication policies. We showed how GR-RBAC and these
two formalisms can be linked in a single overarching formalism: the Site Access
Control System (SACS) model.

Next, we presented how common authorization constraints can be defined on this
model. We made a distinction between two types of authorization constraints: policy-
independent and policy-dependent constraints. We also introduced the new con-
cepts of policy smells and context-dependent authorization constraints.

We showed how the previously introduced formalisms can be translated into EM-
F/VIATRA. Next, we demonstrated that the various presented types of authorization
constraints can be incrementally verified through incremental graph pattern match-
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ing by building a prototype implementation with VIATRA.

To get an impression on how efficient and scalable the chosen approach is, we
performed an exhaustive benchmark exploring many aspects of our prototype. We
did this based on an actual physical access control policy of an anonymous com-
pany provided by Nedap. We publicly released the source code of our verification
engine, an anonymized version of the provided real physical access control pol-
icy, a CLI version of the verification engine and all test cases on https://github.

com/HansvdLaan/GRRBAC-Verifier/. We draw the conclusion that incremental ver-
ification often drastically speeds-up reverification. However, we also observe that
the current prototype is not fast/scalable enough for continuous verification of ac-
tual physical access control systems. Nevertheless, we conclude that our approach
shows promise.

Secondary Contributions

Our work contributed in improving the VIATRA project by spotting some bugs and
limitations. We also had quite a few public discussions with people behind VIATRA
on their forum regarding topics such as performance, the internal workings of the
Rete engine and how to approach certain problems which increases the general
knowledge base. We think that especially the discussions regarding performance
would be useful for other VIATRA practitioners to read as there are some tips given
which are not present in the documentation. Lastly, we think that the benchmark
setup we have created with CRIU might be useful for the VIATRA project to replicate
as it allows for very extensive and aggressive benchmarks.

We have also indirectly contributed to the Linux kernel. When we started with CRIU,
we could not successfully restore JVMs. We reported this to the maintainers of
CRIU. They discovered that this was because of a kernel bug which they subse-
quently fixed 1.

Limitations

We would like to point out the following limitations of our research:

Scenario computation is complex. The most important limitations of our re-
search are related to the computation of the set of scenarios. The process to com-

1https://lkml.org/lkml/2020/10/15/583 (accessed on 22-1-2021)
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pute them has grown quite complicated and is interwoven with assumptions which
hold for the Gregorian calendar but which may or may not hold for other calendars.
We deem that two important directions of future research will be difficult to address
given how we compute them currently. Namely, 1) how to support event-based con-
texts and 2) how to deal with scenario explosions. We will elaborate on both these
areas of possible future work later on in this section.

We believe the process to compute the set of scenarios could be simplified by switch-
ing from an interval-based approach to an automata-based approach. If we could
model when a temporal context occurs with (timed) automata, we could find all oc-
curring scenarios by looking for all reachable states in the product automata of the
temporal contexts.

Scenario computation implementation is inefficient. We have implemented the
computation of scenarios in an inefficient way. Given how we compute scenarios,
our prototype unnecessarily computes various relations and proves authorization
constraints for spurious scenarios. Secondly, a lot of computations have to be re-
done when temporal contexts are removed since the modified scenario are regis-
tered as new scenarios.

No mechanism against scenario explosions. There is currently no mechanism
in place which, akin to a state-space reduction, reduces the number of scenarios for
which certain types of authorizations constraints have to be taken into account. As
can be concluded from the benchmark, the absence of a scenario reduction mech-
anism is an import limit to the scalability of our current prototype. Such a reduction
could provide a significant speed-up and reduce the impact of the number of sce-
narios on the performance of the analysis engine.

We believe there is ample opportunity for such reduction as we expect that from
the perspective of a user and role, many system-wide scenarios could be consid-
ered equivalent. Unfortunately, finding which scenarios are equivalent from e.g. the
perspective of a user is trickier than it might initially look. From an authorization per-
spective, it is trivial: two scenarios can be considered equivalent for a given user if
the intersection of the sets of temporal contexts associated with these scenarios with
the set of temporal contexts which are part of temporal grant rules which grant/re-
voke a demarcation to a role the user is assigned are equal. However, from an
authentication perspective, it is not so trivial as which temporal authentication rules
have an impact depends on what zones a user can reach, which (partly) depends
on the temporal authentication rules.
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Only security zones are taken into account as access-controlled objects. From
discussions with security officers and based on our business case, we must con-
clude that having only security zones as objects on which access can be controlled
is too simple to either model and/or support actual physical access control policies.
Next to security zones, security officers want to define measures, obligations and
perform checks on individual doors and door sides. Additionally, alarms, lockers and
door radars are also important physical access control entities which are currently
not taken into account.

Computing accessibility is too expensive. The context-dependent authoriza-
tion constraints are currently verified by looking if there exists a scenario in which a
user can not reach or leave a particular security zone during a given scenario. This
is computed with the help of recursive graph patterns which computes this rather
naively. Initializing and updating these patterns have proven to be quite expen-
sive in practice. We believe another approach is required to compute reachability
and/or verify the context-dependent authorization constraints. We believe a fruitful
approach might be to enforce reachability by construction through demarcations. To
illustrate, this might be done by enforcing for each demarcation that there is a path
in each direction between all assigned/inherited security zones. Another approach
would be to enforce reachability on the level of roles instead of on the level of users,
similar to [63].

Memory trade-off between incremental and batch verification was not evalu-
ated. Due to the way we implemented our prototype, VIATRA’s non-incremental
local search engine was unreasonably inefficient when verifying authorization con-
straints. Thus, we have used VIATRA’s incremental Rete engine as a stand-in batch
engine during our evaluation. However, this engine is incremental by design; the
Rete networks the Rete engine builds and fills to compute the matches for each
graph pattern also serve as the cache. Thus, we were unable to get a faithful
impression about the additional amount of memory required (for the cache) when
performing incremental verification instead of batch verification.

Upscaled business case not representative for larger access controlled sys-
tems. We would also like to point out that, although the scaled-up versions of our
business case give us an impression about the scalability of our prototype, they are
not representative of actual access control systems of larger companies or larger
physical access control systems. Based on conversations with security experts from
Nedap, it is suspected these will be structured differently. Namely, it is suspected
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that they will be less granular. Thus, although there will be more users and per-
missions, it is expected that the number of roles and demarcations will be relatively
lower. Also, the number of temporal contexts is suspected of growing only slowly
when the size of the company and the access control increases. However, more
research would be required to confirm this. Thus, we do not know if our solution
would be scalable enough for bigger physical access control systems.

Future Work

Next to addressing the limitations, we consider the following research directions to
be of interest for future work.

Increase Robustness Moving from limitations to opportunities, we believe a fea-
ture which could help facilitate policy evolution is a mechanism which can withhold
(previously granted) permissions. An extension to RBÄC called polarized RBÄC
was presented in the same paper RBÄC was introduced in a which offers this exact
functionality [1]. We thus believe it could be worthwhile to investigate into combining
polarized RBÄC and TRBAC.

To illustrate, take the use-case that, for a specific day, a zone should not be ac-
cessible by a group of roles (e.g. for an event). Currently, there is no direct way to
state directly that individual permission should be revoked from a role during a spe-
cific context. Processing this single, and arguably simple, requirement might require
many new temporal grant rules have to be defined for that specific day which revoke
existing grants and define new grants. Specifically, a new temporal grant rule has to
be created for each existing temporal grant rule, which grants that demarcation to a
role which should temporarily be denied that zone, that overwrites it for that specific
day. Furthermore, a copy of all demarcations containing this zone except the zone
itself has to be made which has to be granted again to all roles which were denied
the one specific zone during the moments they are denied the original demarcations.
Processing this requirement would have been much simpler if it would be possible
to withhold previously granted permissions.

Another feature which we argue could perhaps make the policy more robust are tem-
poral constraints which grant/revoke demarcations to/from roles based upon which
demarcations are also being granted/revoked to/from that role. As we showed in
4.3.2, this could improve policy conciseness and understandability. However, it does
complicate the conflict detection and resolution process significantly. Furthermore, it
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might be confusing for a security officer if something happens automatically when a
demarcation is granted to/revoked from a role. Nonetheless, if one wants to add this
kind of temporal constraints, we believe a good jumping-off point to start with this
feature would be to see if the graph-based algorithm to detect temporal constraint
contradictions in TRBAC can be incrementalized.

Role granting/revoking Three common use-cases in physical access control are
that users are granted a new role for one or a few days (e.g. for events), until a cer-
tain date (e.g. the end of their contract) or occupy a role intermittently (e.g. because
they work part-time or in shifts). All three use-cases were present in the business
case, although only the first two were reflected in the access control policy.

Unfortunatly, these use-cases are not directly supported by our proposed autho-
rization model. GR-RBAC does not support granting and revoking of roles to users
based on the temporal context. All three use-cases could be encoded in the model
by creating copies of roles and modifying the set of temporal grant rules attached to
these rules. However, supporting the use-cases in this way is arguably against the
spirit of the formalism we inspire ourselves upon, RBÄC, as roles should represent
abstractions over the set of users which are not tied to the implementation of the
access control policy.

Event-based Contexts The presented GR-RBAC formalism does not support event-
based contexts. In physical access control, these kind of contexts are often implicitly
or explicitly part of the authorization and authentication model. With regards to au-
thorization, physical access control policies often have a group of roles correspond-
ing to various emergency service personnel roles which gain permissions during
a calamity. With regards to authentication, a common security practice is that the
front door is protected with access control measures unless when the receptionist
is at her workstation. In that case, visitors can often enter the lobby freely. Both
cases were part of the provided anonymized access control policy, although the first
use-case was performed as a process outside of the access control system itself.
To effectively capture these parts of physical access control policies, event-based
contexts need to be supported.

The idea of contextual/reactive policies has been explored before. In [72], the au-
thors present ERBAC, a formalism which extends TRBAC with events and envi-
ronmental conditions. Another formalism, GRBAC [73], introduced the concept of
an environmental role which could automatically be activated/deactivated based on
environmental conditions. In [74], the CAAC formalism was presented, which sup-
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ports context-aware user-role and role-permission assignments. For an extensive
overview of what has been done regarding reactive policies, we refer the reader to
[74].

Hybrid Checking VIATRA can combine both incremental and non-incremental
techniques when evaluating a set of graph patterns: for each individual graph pat-
tern, it can be indicated if the match set should be computed using the Rete engine
or the local search engine. Prior work has been done combining both techniques
[75]. We did not use this functionality during our research. In future work, it could be
interesting to explore this feature and evaluate the loss in performance compared to
the memory saved by using the local search engine for certain patterns instead of
the Rete engine.

Policy Repair When authorization constraint violations and policy smells have
been detected, it would be useful for a security officer to know how they could be
resolved. This corresponds to the problem of model repair: what is a set of model
transformations that "repair" the model such that it conforms to all constraints? VI-
ATRA has been used before to generate so-called quick fixes for domain-specific
modelling languages [76]. For access control, this question has also been explored
before in the domain of XML write-access control policies [77] and for XACML poli-
cies [78]. We believe it could be interesting to investigate if these techniques would
also be appropriate for the domain of physical access control or if this domain intro-
duces new challenges.

Path-Informed Verification We have observed in our business case that permis-
sions to access security zones are given because of two reasons: either the role
has direct business in the security zone, or they are given to facilitate paths and
short-cuts. At the moment, this intent is not captured in the model. We believe that it
could be worthwhile to investigate what new possibilities open up if security officers
can specify this intent. To start, we believe it could allow for path-based verification
such as verifying that all paths conform to the principle of least privilege. We can
draw inspiration from [63]. Here, the authors proposed to support security officers
by suggesting paths conforming to various criteria such as least privilege or shortest
distance.
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2016.

110



[41] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró, “A graph query language for
EMF models,” in Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011.

[42] M. Búr, Z. Ujhelyi, Á. Horváth, and D. Varró, “Local search-based pattern
matching features in EMF-INCQUERY,” in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 2015.

[43] G. Bergmann, “Incremental model queries in model-driven design,” Ph.D. dis-
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