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Abstract

Driverless vehicles could have a tremendous impact on society, by making the
mobility system safer, more accessible and more sustainable. However, there are legal
challenges to overcome before fully automated vehicles will drive on public roads. The
Netherlands Vehicle Authority (Dienst Wegverkeer, RDW) evaluates vehicles and is
interested in the capabilities of self-driving vehicles. The goal of this thesis is to
help provide insights in the capabilities of self-driving vehicles, by determining the
fastest path and corresponding velocities of autonomous go-karts on a given track,
using Model Predictive Control. First, the road and the go-kart are modelled and a
state representation is given. The go-kart is modelled by a kinematic bicycle model
and the time- and space-derivatives are determined. Then, a controller algorithm is
formulated that uses (a simplification of) the vehicle model to calculate the optimal
trajectory based on the road and vehicle constraints. The objective of the controller
is to maximise (a simplification of) the progress along the center-line of the road.
Finally, the MPC algorithm is programmed and tested for different race tracks and
in different scenarios. The objective function of the controller behaves as expected,
although the controller is not robust with respect to all testing parameters in the
MPC algorithm. Considering that approximations have been made in this thesis with
regard to the vehicle model, cost function and vehicle dynamics, the proposed MPC
algorithm determines the fastest path and corresponding velocities reasonably well.

Keywords: path planning, trajectory planning, model predictive control, self-driving
vehicles, autonomous racing
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1 Introduction

Driverless vehicles will shape the future of mobility and could have a tremendous impact
on road users and the mobility system as a whole [1]. Human error is estimated to play a
role in 94% of accidents, giving driverless vehicles the opportunity to improve road safety
[2]. They could also bring mobility to people who cannot drive themselves (e.g. elderly or
disabled people) and revolutionise urban planning by freeing up space wasted in parking.
Such technology (although limited in full self-driving capabilities) is already on the market
[3]. However, there is still a long way to go before fully automated vehicles will be on
public roads, including technical and legal unsolved challenges [1], [4].

1.1 Research Motivation

The Netherlands Vehicle Authority (Dienst Wegverkeer, RDW) is an organization that
approves and licenses vehicles and vehicle parts in the Netherlands. Her mission is to
provide safety, sustainability and legal security in mobility [5]. RDW has an increasing
focus on software in vehicles, including Advanced Driving Assist Systems (ADAS), which
assist drivers in parking and driving tasks. It is important for the RDW to be able to
evaluate these, in order to permit driverless cars on the public road in the future.

In order to gain knowledge on ADAS, the RDW recently launched a self-driving challenge
in which a go-kart is equipped with an onboard vehicle computer (NVIDIA DRIVE). The
objective of this challenge was to let the go-kart drive autonomously and as fast as possible
on a track by means of line detection (or possibly any other functionality such as object
and weather detection). This computer is equivalent to the technology present in current
self-driving cars [6]. Therefore, programming this computer such that a go-kart drives
autonomously gives insight in the capabilities of the current car technology in the real
world. However, this link to the real world is not yet made in the challenge. It is not
evaluated whether the driven path is actually the fastest and whether the go-kart drives as
fast as physically possible and so whether the program of the computer could be improved.
This thesis aims to evaluate the race performance of the go-karts as programmed in the
self-driving challenge, by calculating the optimal race behaviour on a track with Model
Predictive Control (MPC).

1.2 Research Problem

This thesis describes the optimal racing behaviour of a go-kart on a track in terms of the
optimal trajectory on the track and the optimal speed at each point to travel the track as
fast as possible. To this end, path and trajectory planning will be performed by MPC.

A path is a geometric trace that the vehicle should follow to reach its destination whilst
adhering to the motion constraints such as road boundaries [7]. The configuration vector
defines the set of independent attributes in the coordinate system that together define
the position and orientation of the vehicle. Path planning is therefore the problem of
finding a geometric path from an initial configuration to a final configuration such that
each intermediate configuration is valid and feasible.

On the other hand, a trajectory is defined as a sequence of states visited by the vehicle,
parametrised by time or velocity [7]. So, a trajectory is a path plus a schedule, describing
how quickly a vehicle should move along the path and on what time the vehicle should be at
a certain position. These states could be defined in multiple ways, by different quantities,
but it is important that the quantities together, uniquely, indicate a specific configuration
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of the system. For example, the position on the road, the current velocity vector and its
direction. Therefore, trajectory planning (or trajectory generation or motion planning) is
the problem of planning the vehicle’s transition from one state to the next whilst adhering
to the kinematic limits of the vehicle and the motion constraints as road boundaries.

MPC is a method in control engineering and it is suitable for path and trajectory planning,
since it uses a kinematic or dynamic model of the vehicle to retrieve samples of the vehicle’s
future motion (controller inputs) [7]. From the model and controller inputs, the best
trajectory for the vehicle is obtained. A weakness of MPC is that it gets harder to optimise
trajectories when more variables are used to model the vehicle. On the other hand, a
strength of MPC is that the model could be extended in the future to also handle other
opponents or obstacles on the road to evaluate races which are more complex than one-
player races (which is the scope of this thesis).

This leads to the following main question:

How can the fastest path and the corresponding velocities of autonomous go-karts be deter-
mined on a given track using Model Predictive Control?

1.3 Contributions of the Thesis

In this thesis a framework is provided to determine the optimal path and maximal attain-
able speed on a given race course by path and trajectory planning using MPC. First, a
kinematic bicycle model is presented, which simulates the vehicles responses and is used
in the derivation of the controller algorithm. Next, the controller algorithm is presented
and implemented in a computer program to obtain the best trajectory for the vehicle.

This can be translated to the following contributions:

• First, a kinematic bicycle model is formulated;

• Next, a controller algorithm is formulated that calculates the optimal trajectory
based on road and vehicle constraints;

• Finally, the implication of the trajectory generating algorithm is visualized by pro-
gramming the algorithm and executing it on a manually created race track.
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2 Theory

This section provides relevant theory to help understand the other chapters of the thesis.

2.1 Vehicle Model Strategy

Vehicle modelling is often done in the vehicle axis system as presented in Figure 1 (note
that some letters are used differently in the rest of this thesis) [8]. The origin in this system
is formed by the center of gravity (CG). The three axes (roll, pitch and yaw) coincide at
the center of gravity.

Figure 1: Vehicle Axis System from the ISO 8855-2011 as given in [8]

Vehicle models can generally be categorised as geometric, kinematic or dynamic. Geometric
models only consider geometric dimensions and are considered to be the most simple of
the three types. Kinematic models study the motion of the vehicle using its geometry,
regardless of the forces and torque that cause it. Dynamic models, on the other hand,
study the relation between the applied forces/ torques and the resulting motion.

This thesis will use a kinematic model of the vehicle. In general, a kinematic model
provides a mathematical description of the vehicle’s motion without considering the forces
that affect the motion, but solely considering the vehicle’s geometry. Despite its simplicity,
the model is able to describe important aspects like vehicle velocity, lateral acceleration
and yaw motion in terms of the local and global axes. Therefore, this modelling type can
be found in most of the studies on path tracking control [9]. However, neglecting the forces
that affect the motion is equivalent to assuming there is no resistance on the wheels in
another orientation than the driving direction, i.e. there is no slip [10]. This is reasonable
for low speed motion of the vehicle (e.g. for speeds less than 5 m/s), but not for racing
conditions. Hence, a dynamical model would be more appropriate for a vehicle in racing
conditions, where the tire forces are significant [11]. In Appendix C an elaboration can be
found on slip.

In all categories, the kart can be modelled as full vehicle or half vehicle (so-called bicycle
model). The bicycle model is a model of the go-kart in which the two front and rear wheels
are replaced by one front and rear wheel, respectively. Even though it is not uncommon for
four-wheeled vehicles to be described by a kinematic full vehicle model [12], this thesis will
describe a kinematic bicycle model. Namely, kinematic bicycle models are less complex
and still sufficient for path and trajectory planning by MCP [13]. They are commonly used
to design a controller in autonomous driving.
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2.2 Relevant (Vector) Calculus and Analysis

This section provides an overview of relevant mathematical concepts in (Vector) Calculus
and Analysis that will be used and referred to in the coming chapters.

2.2.1 Parametrizations of Plane Curves

The curve or path traced by a particle moving in the xy-plane is not always the graph of
a function or single equation y = f(x), see for example Figure 2. Here, multiple y values
belong to a specific x value. In this case, there is the need to represent the curve differently,
namely by a pair of parametric equations:

Definition 2.1 (Parametric curve and equations). If x and y are given as functions

x = x(t), y = y(t)

over an interval I of t-values, then the set of points (x, y) = (x(t), y(t)) defined by these
equations is a parametric curve C. [14]

Figure 2: The curve or path traced by a particle is not always the graph of a function or
single equation [14]

The variable t is a parameter for the curve, and its domain I is the parameter interval.
Let I = [a, b] be a closed interval, then (x(a), y(a)) is the initial point of the curve and
(x(b), y(b)) is the terminal point of the curve C specified by (x(t), y(t)), t ∈ I. The equations
and interval together constitute a parametrization of the curve. When studying motion, t
usually denotes time.

Now, if a particle moves around in two-dimensional space, its motion can be described by
the 2 coordinates of its position as functions of time t: x = x(t) and y = y(t). It could be
more convenient, however, to replace these two equations by a single vector equation:

Γ = Γ(t) =

(
x(t)
y(t)

)
(t ∈ I). (1)

In terms of the standard basis vectors i and j, the position of the particle at time t is:

Γ = Γ(t) = x(t)i + y(t)j. (2)
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If the component functions x(t) and y(t) are continuous functions of t, the particle follows
a continuous curve and Γ(t) is a continuous vector function of t. Continuous curves possess
interesting properties, such as smooth curves which are defined as follows:

Definition 2.2 (Smooth curve). Let C be a curve with parametrisation Γ(t), t ∈ I,
where x(t) and y(t) are continuously differentiable (meaning they have continuous first
derivatives) on the interval I and the derivatives x′(t) and x′(t) are not simultaneously
zero, then C is a smooth curve [14].

Smooth curves are free of corners and cusps, see Figure 3.

Figure 3: The curve or path traced by a particle is not always the graph of a function or
single equation [14]

In the figure above, a smooth curve C is presented and the path (or arc) AB is subdivided
into n pieces at points A = P0, P1, P2, ..., Pn = B. The length of AB can be approximated
by the sum of the straight line segments between these points. Each of these line segments
have length (see Figure 4):

`k =

√
(∆xk)

2 + (∆yk)
2. (3)

Therefore, when the number of segments n → ∞, it is reasonable to interpret the sum of
line segments as the arc length and so to define the length of the curve from A to B as a
definite integral.

Definition 2.3 (Arc length). If a smooth curve C is defined parametrically by x = x(t)
and y = y(t), a ≤ t ≤ b, then the length of C is the definite integral:

` =

∫ b

a

√
[x′(t)]2 + [y′(t)]2dt,

or in Leibniz notation:

` =

∫ b

a

√(
dx

dt

)2

+

(
dy

dt

)2

dt.
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Figure 4: The curve or path traced by a particle is not always the graph of a function or
single equation

The arc length function for the parametrically defined curve C can be defined by:

s(t) =

∫ t

a

√(
dx

dτ

)2

+

(
dy

dτ

)2

dτ. (4)

2.2.2 Curvature

The concept of curvature can be interpreted as how much the curve direction changes over
a small distance travelled on the curve. This makes sense intuitively, as we say from two
circles with a different radius that the smaller circle is "more curved". Hence, the intuitive
concept of curvature from a circle can be defined as follows:

Definition 2.4 (Curvature circle). The curvature κ of a circle with radius R is:

κ =
1

R
.

Consider Figure 5, where a circle is presented with the tangents at P and P1. Denote the
arc length measured from A by s. Then, the length of the arc PP1 is ∆s. Furthermore,
denote the angle between the tangent at P and the horizontal axis by α(s). If the change
of direction from the center M to the circle at P and P1 is ∆α(s), then it follows from
∆s = R∆α(s):

κ =
1

R
=

∆α(s)

∆s
.

So, for a circle the curvature is equal to the change of direction of the tangent per unit arc
length. For an arbitrary smooth curve, this change of direction is not constant. However,
it is possible to consider this quantity as the average curvature between P and P1. Hence,
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Figure 5: The curvature of a circle

in Figure 6, the quotient ∆α(s)
∆s is the average curvature of the arc between P and P1. If

the distance between P1 and P decreases and approaches zero, the average curvature will
hardly change and if it approaches a limit, this limit is called the curvature in P .

Figure 6: The curvature of a smooth curve

Definition 2.5 (Curvature smooth curve). The curvature κ(s) in P on a smooth curve
with arc length s is the limit of the average curvature between P and P1 on the curve if
P1 approaches P :

κ(s) = lim
∆s→0

∆α(s)

∆s
=
dα

ds
,

where α denotes the angle between the tangent of the curve at P and the horizontal axis.

For the definition above, it is important for the curve to be smooth in order for α to be
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differentiable to s. If α is an increasing function of s, then κ(s) is positive. Similarly, if α
is a decreasing function of s, then κ(s) is negative.

For a circle, the inverse of the curvature is the radius (Def. 2.4). Similarly, for any random
smooth curve the absolute value of the inverse of the curvature is the radius of an imaginary
circle. The radius of this circle is the radius of curvature R(s):

R(s) =
1

|κ(s)|
. (5)

2.3 Model Predictive Control

Model predictive control (MPC) is a method of process control which is based on iterative,
finite-horizon optimization of a plant model. At a specific time, the current state is evalu-
ated and a cost minimizing strategy is computed for a relatively short time horizon in the
future. This is then repeated for the next moment in time close to the last moment. The
prediction horizon is shifted forwards and therefore MPC is also called receding horizon
control. MPC uses an internal dynamic model of the process, a cost function J over the
receding horizon N and an optimization algorithm minimizing the cost function J using
the control input u. More specifically, the structure of MPC is as follows:

1. At time k, compute the optimal control u(k) for k, k + 1, k + 2, ..., k +N by solving
the optimization problem J for the prediction horizon N ;

2. Apply the first value of the computed control sequence;

3. At time k + 1, retrieve the system-state and re-compute.

For clarity, regard the following abstract example of an MPC problem:

minimize
u

J =

k+N∑
t=k+1

(x(t))2 + (u(t))2

subject to x(t+ 1) = Ax(t) +Bu(t),

u(t) ≤ u0,

(6)

where x(t) denotes the state of the system at step t, u(t) denotes the input to the plant at
step t and A and B are used to predict the next state of the plant using the current state
and input. The upper limit of the input is u0, creating a constraint. The cost function J
looks N steps into the future and collects at each step a value (x(t))2 + (u(t))2.

MPC is well suited for vehicle control, since it takes vehicle dynamics into account and
performs trajectory planning and execution at each step, so that sudden developments
such as the position of other vehicles can be taken into account. By using MPC, optimal
control inputs to the model can be determined based on minimzation of a certain objective
function. This objective function is subjected to constraints set by physical limits of the
vehicle or the track environment.

When nonlinear system models are used in MPC, the control problems on a finite prediction
horizon need not be convex anymore. This challenges real-time feasibility. Therefore, it is
often beneficial to linearize and discretize the dynamic equations of a system to allow the
problem to be formulated as a convex optimization problem.
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3 Problem Formulation

This chapter focuses on formulating the problem. First, the road model will be presented,
followed by the vehicle model. Using the model, the state representation for the system is
given and then the differential equations are derived to describe the vehicle dynamics.

3.1 Road Model

The road is modelled in two dimensions from a top-view, see Figure 7.

cen Il n e

ro)

SIŁ)

X

Figure 7: Sketch of the road parametrized by time

In the figure above, the road bounds and the center-line (the path Γ) are indicated. The
center-line is a smooth curve (Section 2.2.1) and it is directed, since there is a specific
driving direction on the road. The path can be denoted as a vector parametrized by time
(t) as follows (see Section 2.2.1) :

Γ(t) = x(t)i + y(t)j, 0 ≤ t ≤ Z. (7)

Each point Γ(t) = (x(t), y(t)) has arc length parameter s(t) (see Section 2.2.1):

s(t) =

∫ t

0

√(
dx

dτ

)2

+

(
dy

dτ

)2

dτ. (8)

The curve Γ is parametrized with regard to parameter t, but it can be reparametrized in
terms of s by substituting for t: Γ = Γ(t(s)). This is under the assumption that the vehicle
always has a forward (positive) velocity. This is reasonable, considering the vehicle is in a
racing environment. Then, with the arc length function s(t), it is possible to solve for t as
function of s: t = t(s).

This reparametrization introduces a second coordinate system: the curvilinear system.
Any point P on the road can be projected onto a point P̄ at the center-line Γ, with P̄
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being the point on Γ closest to P (see Figure 8). The curvilinear abscissa is the arc length
parameter s of P̄ and the curvilinear ordinate is the "directed distance" d between P and
P̄ . The absolute value of d is the distance between P and P̄ . The ordinate d is positive
if P is on the left side of the road and negative if it is on the right side of the road. This
is equivalent to P being to the left or right, respectively, of P̄ , seen from the road heading
in its direction. More formally, the curvilinear ordinate d is defined by the Cartesian
coordinates of P = (xP , yP ) and P̄ = (xP̄ , yP̄ ):

d =

{√
(xP − xP̄ )2 + (yP − yP̄ )2, if P to the left of P̄

−
√

(xP − xP̄ )2 + (yP − yP̄ )2, otherwise.
(9)

Figure 8: Sketch of the road with point P and its projection P̄ on center-line Γ

3.2 Vehicle Model

The vehicle (the go-kart) is modelled as a bicycle with a kinematic model (see Section
2.1). Consider Figure 9, which illustrates the model with its variables (an overview of
all variables with their unit and range can be found in Appendix A). The figure is a
representation of the system frozen at a specific time t or place s. So, even though the
parameters seem to have a distinct value in the figure, this only holds for t or s and they
are actually time- or space-dependent.

The bicycle has a front wheel F and rear wheel R at a distance L. The bicycle is placed on
a road with center-line Γ. The point on Γ closest to R is P̄ and the directed distance (see
Section 3.1) between R and P̄ is d. At point P̄ , the center-line has angle θΓ with respect to
the global X-axis. At point P̄ the center-line has a circular motion and the center of that
motion is indicated by point M . The radius of curvature is ρ and the angular velocity is
θ̇Γ. The vehicle is driving forwards with velocity v and the projection of v in the direction
of the path is denoted vΓ. The angle between the current position of the vehicle and the
global X-axis is θG and the angle between the vehicle and the direction of the path at P is θ.

13



Figure 9: Extended kinematic model of the vehicle as a bicycle

The vector ṡ indicates the progression along the center-line of the track. The front wheel
of the vehicle is turned δ degrees.

Furthermore, the curvature of the path the vehicle is travelling is denoted κG and the
curvature of the center-line at P̄ is κΓ (with κΓ = 1

ρ , see Section 2.2.2).

3.3 State Representation

The state vector ζ = [d, θ, v, κG]T is defined as a 4-dimensional vector with a meaning as
described in Table 1. These four quantities can, together, uniquely describe the system.
Intuitively, they describe where the vehicle is, how it is placed on the road, how fast it is
currently going and how the wheels are turned. Along with these quantities, the time t or
place s are also known.

The input vector u = [a, cG]T is defined as a 2-dimensional vector with a meaning as
described in Table 2. The longitudinal acceleration a and vehicle steering cG are the input
quantities of the system, since the vehicle can be controlled by accelerating/decelerating
and steering the wheel.
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State Unit Description
d m Deviation from center-line
θ rad Yaw angle relative to path
v m/s Longitudinal velocity
κG m−1 Vehicle curvature

Table 1: Spatial states of the vehicle model

Control Unit Description
a m/s2 Longitudinal acceleration
cG rad/ms Vehicle steering

Table 2: Control inputs of the vehicle model

3.4 Dynamics

For any variable x, its time derivative (with respect to t) will be denoted by ẋ and its
spatial derivative (with respect to s) will be denoted by x′. All quantities in the state
vector ζ (recall: d, θ, v, κG) will first be derived with respect to t and then with respect to
s.

3.4.1 Time Dynamics

First, the time derivative of the longitudinal velocity v is the longitudinal acceleration a
after taking friction into account with the longitudinal friction coefficient µ as follows:

v̇ = a− µv. (10)

The longitudinal acceleration is one of the input variables and the longitudinal friction
coefficient is a parameter depending on the type and conditions of the tires and the road
[15].

Secondly, the time derivative of the vehicle curvature is the vehicle steering as follows:

κ̇G = cG. (11)

For verification, both units of κ̇G and cG are rad/ms. That is, how many radians the
wheels are turned per meter, per second.

Thirdly, regard ḋ (the time derivative of d) as the vector v − vΓ. Then:

ḋ = v sin θ. (12)

Finally, regard the yaw angle θ of the vehicle with respect to the path. This is the difference
between the yaw angle of the vehicle with respect to the global X-axis (θG) and the yaw
angle of the center-line of the road at P̄ with respect to the global X-axis (θΓ):

θ = θG − θΓ. (13)

Hence (by the sum rule in differentiation),

θ̇ = θ̇G − θ̇Γ. (14)

Both terms (θ̇G and θ̇Γ) will be derived in the following two paragraphs.
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Derivation Yaw Angle of Vehicle to Global X-axis
This paragraph focuses on deriving θ̇G.

Consider Figure 10, which is a simplification of Figure 9. It contains the vehicle as a bicycle
with R and F . It has current velocity v and the wheels are pointed δ rad.

Figure 10: Bicycle model of vehicle with length L, current velocity v and angle δ of the
front wheels

The arc-length from the global X-axis around the circle to F (the front wheel) is l = LθG.
Furthermore, the tangential velocity dl

dt = w = Lθ̇G. Namely, the tangential velocity at F
is the angular velocity proportional to its distance to the axis of rotation.

So,

θ̇G =
w

L
=
v tan (δ)

L
. (15)

This equation is already valid, but it can be expressed shorter when relating the vehicle
curvature κG to the steering angle δ. Therefore we consider Figure 11.

Figure 11: Sketch of bicycle model for derivation vehicle curvature
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Here, the front and rear wheel are presented and the front wheel is turned at angle δ.
Consequently, the vehicle will drive in direction a which is under the angle δ with regard
to the current position. The translated vector b of a on the rear wheel also has angle δ with
regard to the current position. The angle ε is the angle between R and F at the center of
the (imaginary) circle the rear wheel will drive. This angle is equal to δ (since RF ⊥ QR).
Hence,

tan (ε) = tan (δ) =
L

r
(16)

and therefore

κG =
1

r
=

tan(δ)

L
. (17)

Finally, substituting Equation (17) into Equation (15) gives:

θ̇G = κGv. (18)

Derivation Yaw Angle of Road to global X-axis
This paragraph focuses on deriving θ̇Γ.

Notice that the angular velocity can be used to derive the tangential velocities vΓ and ṡ as
follows (see Figure 9):

ṡ = ρθ̇Γ (19a)

vΓ = (ρ− d)θ̇Γ. (19b)

First, consider Equation (19b). The vehicle velocity in the direction of the path can also
be expressed geometrically using yaw angle θ as follows:

vΓ = v cos(θ). (20)

Combining these two (Equation (19b) and (20)) gives:

θ̇Γ =
v cos θ

ρ− d
. (21)

Rewriting this equation by multiplying the nominator and denominator with κΓ (remem-
ber, κΓ = 1

ρ) gives:

θ̇Γ =
κΓv cos θ

1− dκΓ
. (22)

Finally, substituting Equation (18) and (22) into Equation (14) gives:

θ̇ = θ̇G − θ̇Γ = κGv −
κΓv cos θ

1− yκΓ
. (23)

The vehicle dynamics of the states are now derived as functions of the control inputs and
other known variables. They are given one more time in the overview below.

ḋ = v sin θ (24a)

θ̇ = κGv −
κΓv cos θ

1− dκΓ
(24b)

v̇ = a− µv (24c)
κ̇G = cG. (24d)
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3.4.2 Spatial Dynamics

Rewriting the time dynamics to spatial dynamics can be achieved by the following deriva-
tion rule (chain rule):

ζ ′(s) :=
dζ

ds
=
dζ

dt

dt

ds
. (25)

Considering the racing conditions, it is reasonable to assume positive velocity and therefore
ṡ 6= 0. This gives dt

ds = 1
ṡ . Therefore, the spatial states can be derived using the time states

and ṡ as follows:

ζ ′(s) = ζ̇
1

ṡ
. (26)

Revise Equation (19a) and substitute Equation (21) to obtain:

ṡ = ρθ̇Γ = ρ
v cos θ

ρ− d
=
ρv cos θ

ρ− d
=

v cos θ

1− d/ρ
=

v cos θ

1− dκΓ
. (27)

Substituting Equation (27) in Equation (26) gives the following set of spatial vehicle dy-
namics:

d′ =
ḋ

ṡ
= v sin θ · 1− dκΓ

v cos θ
= (1− dκΓ) tan θ (28a)

θ′ =
θ̇

ṡ
=

(
κGv −

κΓv cos θ

1− dκΓ

)
· 1− dκΓ

v cos θ
= κG

1− dκΓ

cos θ
− κΓ (28b)

v′ =
v̇

ṡ
= (a− µv) · 1− dκΓ

v cos θ
= a

1− dκΓ

v cos θ
− µ1− dκΓ

cos θ
(28c)

κ′G =
κ̇G
ṡ

= cG
1− dκΓ

v cos θ
. (28d)
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4 Controller Design

An overview of the control structure can be found in Figure 12. Here, the computing
unit that performs Model Predictive Control (MPC) receives the coordinates of a reference
path. It also receives information of the vehicle (its current position on the road) and
determines the optimal vehicle steering and longitudinal acceleration/deceleration taking
the objective function and constraints into account. These inputs are given to the vehicle
model that will causes it to reach a new state.

Figure 12: Overview control structure

The horizon will be cut into N points and at each point k, the control structure of above is
executed. The vehicle model will be simplified for this end, by linearizing and discretizing,
to guarantee feasibility at each discrete sampling time.

More specifically, the controller should solve the following generic optimal control problem
over a finite horizon:

max Progress along a given path
s.t. Vehicle model,

Actuation limits,
Handling limits,
Driving corridor.

(29)

Each of the components will be specified in the coming sections.

4.1 Progress Maximization

The objective of the controller is to get the vehicle to cross the finish line as fast as possible.
In other words, the progression along the center-line of the track (ṡ) must be maximized.
However, since minimization problems are more common in practice, the problem will be
denoted as minimization of 1

ṡ (which is valid under the assumption ṡ 6= 0). That gives,
considering Equation (27), the following objective function f :

f(y, θ, v) :=
1

ṡ
=

1− yκΓ

v cos θ
, (30)

where κΓ is determined for every s.

As explained in Section 2.3, it is important for the objective function to be convex to have
a real-time implementation. Therefore, f is approximated by a second order Taylor series
as follows (with x = 〈d, θ, v〉 and a = 〈dref , θref , vref 〉):

f(x) ≈ f(a) + [(x− a) · ∇f(a)] + [(x− a)T · (H (x) · (x− a))], (31)
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where ∇f(a) denotes the gradient of f at a and H is the Hessian matrix (the matrix of
second derivatives). More specifically:

∇f(a) =
[
∂f
∂d (a) ∂f

∂θ (a) ∂f
∂v (a)

]T (32)

and

H(d, θ, v) =

 fdd(d, θ, v) fdθ(d, θ, v) fdv(d, θ, v)
fθd(d, θ, v) fθθ(d, θ, v) fθv(d, θ, v)
fvd(d, θ, v) fvθ(d, θ, v) fvv(d, θ, v)

 . (33)

The first order derivatives in the gradient of f are:

fd(d, θ, v) = − κΓ

v cos θ
(34a)

fθ(d, θ, v) =
1− dκΓ

v

sin θ

(cos θ)2
=

1− dκΓ

v
tan θ sec θ (34b)

fv(d, θ, v) = −1− dκΓ

v2 cos θ
. (34c)

The second order derivatives in the Hessian matrix are:

fdd(d, θ, v) = 0 (35a)

fθθ(d, θ, v) =
(1− dκΓ) sec θ((tan θ)2 + (sec θ)2)

v
(35b)

fvv(d, θ, v) =
2(1− dκΓ)

v3 cos θ
(35c)

fdθ(d, θ, v) = fθd(d, θ, v) = −κΓ

v
tan θ sec θ (35d)

fdv(d, θ, v) = fvd(d, θ, v) =
κΓ

v2 cos θ
(35e)

fθv(d, θ, v) = fvθ(d, θ, v) = −1− dκΓ

v2
tan θ sec θ. (35f)

The Taylor approximation will be done with respect to θref = 0 and vref 6= 0. Namely, it
is assumed throughout the thesis that v 6= 0, since the vehicle is in a racing environment.
Furthermore, θref = 0 minimizes the angle between the heading of the vehicle and the
heading of the path. It encourages the vehicle to travel in the same direction as the path
and therefore maximise progress.

Filling in these linearization points in the derivatives in Equations (34) and (35) cancels
fθ, fdθ, fθd, fθv and fvθ, since they are equal to zero (as tan(0) = 0).

Then, this leaves Equation (31) as follows:

f(d, θ, v) ≈f(dref , θref , vref ) + fd(dref , θref , vref )(d− dref )+

fv(dref , θref , vref )(v − vref ) + fdv(dref , θref , vref )(d− dref )(v − vref )+

1

2

[
fθθ(dref , θref , vref )(θ − θref )2 + fvv(dref , θref , vref )(v − vref )2

]
.

(36)
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After filling in the linearization points in the remaining derivatives, Equation (36) becomes:

f(d, θ, v) ≈f(dref , θref , vref ) +
−κΓ

vref
(d− dref )+

−(1− drefκΓ)

v2
ref

(v − vref ) +
κΓ

v2
ref

(d− dref )(v − vref )+

1

2

[
1− drefκΓ

vref
(θ − θref )2 +

2(1− drefκΓ)

v2
ref

(v − vref )2

]
.

(37)

Now, minimizing 1
ṡ (or f(d, θ, v)) is equal to the optimization problem:

min γ1d+ γ2v + γ3θ
2 + γ4vd+ γ5v

2, (38)

where the terms that do not depend on model states or inputs are excluded. The values for
γ1, γ2, γ3, γ4 and γ5 can be retrieved by rewriting Equation (37) and are defined as follows:

γ1 = − 2κΓ

vref
(39a)

γ2 = − 1

v2
ref

(39b)

γ3 =
1− drefκΓ

2vref
(39c)

γ4 =
κΓ

v2
ref

(39d)

γ5 =
1− drefκΓ

v3
ref

(39e)

with the additional requirement drefκΓ 6= 1.

Namely, when drefκΓ = 1, then dref = 1/κΓ, so the vehicle is exactly at the center of the
imaginary circle from the curvature of the road. This is a unique point, comparable to the
center of a roundabout, on which the vehicle is not permitted to drive.

The objective function of the MPC controller is a simplification of the optimization problem
in Eq. (38), where the final two terms (γ4vd and γ5v

2) are omitted. During simulations, the
optimization problem in Eq. (38) turned out to be non-convex and therefore unsolvable.
Furthermore, the remaining terms still contain all 3 variables (d, θ and v).

Revise that the objective function of a MPC controller solves an optimization problem for
each point k prediction horizon (see Section 2.3). Hence, the objective function can be
denoted as follows:

J(d, θ, v) =

N−1∑
k=0

γ(1,k)dk + γ2vk + γ(3,k)θ
2
k, (40)

where k is the discrete step length in space, N is the prediction horizon and γ1, γ2 and γ3

are from Equations (39). Note that the variables d, θ and v depend on k, as well as γ1 and
γ3, since κΓ depends on the place on the road.

This objective function encourages progress maximization, since it:
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1. maximises the lateral deviation between the vehicle and the path with the same sign
as the road curvature. That is, when the road turns to the left κΓ > 0 and, therefore,
d > 0, since that minimizes their product κΓd. Vice-versa when the road turns to
the right.

2. maximises the longitudinal speed. Namely, γ2 will always have a negative value, so
it is beneficial for v to be as large as possible.

3. minimizes the angle between the heading of the vehicle and the heading of the path.
This also makes the approximation θref = 0 valid.

4.2 Vehicle Model

From the previous chapter, we know:
d′

θ′

v′

κ′G

 = ζ ′ = f(ζ, u) =


f1(ζ, u)
f2(ζ, u)
f3(ζ, u)
f4(ζ, u)

 =


(1− dκΓ) tan θ

κG
1−dκΓ
cos θ − κΓ

a1−dκΓ
v cos θ − µ

1−dκΓ
cos θ

cG
1−dκΓ
v cos θ .

 (41)

To solve the optimization problem at each discrete sampling point, this model will be
linearized and discretized (to construct a linear space varying model). This is a variation on
linear time varying models where the vehicle dynamics are expressed in spatial coordinates
instead of time. A commonly used linearization point in vehicle control is the center-line
of the road, where the goal is to steer the vehicle to the center-line (i.e. (d, θ) = (0,0)).
However, racing lines are often different than the center-line. Often, the entire width of the
track is used to increase the radius of a turn. For this reason, solutions of previous iterations
from the optimization problem are used instead as reference

(
ζ̄, ū
)
for linearization.

For this reason, the initial state ζ0 should be estimated by proper guess (a so-called warm
start):

ζ0 = ζ(s). (42)

Estimating f(ζ, u) with a Taylor series around the estimated optimal solutions (i.e. the
solutions of the previous iteration) given by

(
ζ̄, ū
)
is in general:

f(ζ, u) ≈ f(ζ̄, ū) +
∂f(ζ, u)

∂ζ

∣∣∣∣
ζ̄,ū

(ζ − ζ̄) +
∂f(ζ, u)

∂u

∣∣∣∣
ξ̄,ū

(u− ū)⇔

⇔ f(ζ, u) ≈ f(ζ̄, ū) +Ac(ζ − ζ̄) +Bc(u− ū).

(43)

This gives:

ζ̇ =


∂f1

∂d
∂f1

∂θ
∂f1

∂v
∂f1

∂κG
∂f2

∂d
∂f2

∂θ
∂f2

∂v
∂f2

∂κG
∂f3

∂d
∂f3

∂θ
∂f3

∂v
∂f3

∂κG
∂f4

∂d
∂f4

∂θ
∂f4

∂v
∂f4

∂κG

 (ζ − ζ̄) +


∂f1

∂a
∂f1

∂C
∂f2

∂a
∂f2

∂C
∂f3

∂a
∂f3

∂C
∂f4

∂a
∂f4

∂C

 (u− ū) + f(ζ̄, ū). (44)
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And this can be rewritten as follows:

ζ̇ =


∂f1

∂d
∂f1

∂θ
∂f1

∂v
∂f1

∂κG
∂f2

∂d
∂f2

∂θ
∂f2

∂v
∂f2

∂κG
∂f3

∂d
∂f3

∂θ
∂f3

∂v
∂f3

∂κG
∂f4

∂d
∂f4

∂θ
∂f4

∂v
∂f4

∂κG

 ζ +


∂f1

∂a
∂f1

∂C
∂f2

∂a
∂f2

∂C
∂f3

∂a
∂f3

∂C
∂f4

∂a
∂f4

∂C

u+

f
(
ζ̄, ū
)
−


∂f1

∂d
∂f1

∂θ
∂f1

∂v
∂f1

∂κG
∂f2

∂d
∂f2

∂θ
∂f2

∂v
∂f2

∂κG
∂f3

∂d
∂f3

∂θ
∂f3

∂v
∂f3

∂κG
∂f4

∂d
∂f4

∂θ
∂f4

∂v
∂f4

∂κG

 ζ̄ −


∂f1

∂a
∂f1

∂C
∂f2

∂a
∂f2

∂C
∂f3

∂a
∂f3

∂C
∂f4

∂a
∂f4

∂C

 ū
=Aζ +Bu+H.

(45)

To perform discretization in a continuous system, it is common to hold each sample value
for one sample interval ∆s and assume constant control signals in between the samples
(Zero-Order Hold, ZOH, see [16]). Doing so, the model can be written in the following
way:

ζ(k + 1) = AZOH(k)ζ(k) +BZOH(k)u(k) +HZOH(k), k ≥ 0, (46)

where

AZOH(k) = exp(A∆s), (47a)

BZOH(k) =

(∫ ∆s

0
exp(Aτ)dτ

)
B, (47b)

HZOH(k) = H. (47c)

Equations (47) can also be written as follows, which is easier to solve numerically [16]:[
AZOH BZOH

0 I

]
= exp

([
A B
0 0

]
∆s

)
. (48)

Note that the matrices are not written down specifically due to their size.

4.3 Constraints

The spatial states and control inputs are limited by constant bounds that act as constraints.

Namely, considering a racing environment, only forward motion of the vehicle is assumed.
This is defined by spatially dependent bounds in the curvilinear system as follows:

θmin ≤ θ ≤ θmax,
vmin ≤ v ≤ vmax,

(49)

where θmin =
(
−π

4 , 0
]
, θmax =

[
0, π4

)
and vmin ≥ 0.

Furthermore, the other states and control inputs are limited by constant bounds:

amin ≤ a ≤ amax,
κmin ≤ κ ≤ κmax,

cG,min ≤ C ≤ cG,max.
(50)
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Finally, the lane boundaries spatially determine state bounds:

dmin ≤ d ≤ dmax. (51)

4.4 Final Controller

Now, the optimal control problem can be put together. At each discretization step length
∆s, the spatial-based MPC controller must solve the following convex optimization prob-
lem:

minimize
a,cG

J(d, θ, v)

subject to ζk+1 = Akζk +Bkuk +Hk,

ζ0 = ζ(s),

θmin ≤ θ ≤ θmax,
vmin ≤ v ≤ vmax,
amin ≤ a ≤ amax,
κmin ≤ κ ≤ κmax,
cG,min ≤ cG ≤ cG,max,
k = 0, ..., N − 1.

(52)
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5 Simulation Setup

To test the proposed MPC controller and analyse its performance, a simulation environ-
ment is programmed in Python. Three racetracks are manually created and imported into
the environment, using a cubic-spline planner where the spline is representing the center-
line of the track (from GitHub, [17]). See Figure 13 for the visualization of the three
tracks, which will be referenced to by the S-curve, the 90-degrees curve and the hairpin
curve, from left to right, from now on. The left and right boundary of the road are shown
with yellow and blue line, respectively. The center-line is indicated by the dotted line.

(a) The 90-degrees curve (b) The S-curve (c) The hairpin curve

Figure 13: Representation of the track segments, with the global X- and Y- coordinate
on the horizontal and vertical axis, respectively

The optimization problem (Eq. (52)) is modeled as a convex optimisation problem in
CVXPY, a Python-embedded modeling language [18]. First, the problem is initialized
and subsequently, the convex optimization problem is solved with the solver ECOS at
each sampling point k, over the prediction horizon N with step size ∆s. ECOS is an effi-
cient embedded conic solver, which performs well for small and medium-sized optimization
problems such as (Eq. (52)) [19]. The following pseudo-code shows the structure of the
algorithm :

Algorithm 1 Pseudo-code spatial-based MPC
Warm start ζ0 = ζ(s) to compute optimal input ū
while prediction horizon has not crossed finish line do

for k = 0, ..., N − 1 do
Linearize around (ζ̄, ū) (Eq. 44) and discretize (Eq. 46)
Solve MPC problem with ECOS in CVXPY (Eq. 52)
if Solution is optimal then

ζ̄ = ζ, ū = u
else

MPC unsolvable
Recover Cartesian coordinates

All figures are generated with the Python module Matplotlib.
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6 Results

This chapter is devoted to the results from the simulations and their interpretations.

Unless stated otherwise, the following initial values of the state parameters were used in
the simulation:

Parameter Unit Value
d m 0
θ rad 0
v m/s 40
κG rad/m 0

Table 3: Initial values state parameters

Similarly, the following constraints were used:

Constraint Unit Value
θmin rad −π

4
θmax rad π

4
vmin m/s 0
vmax m/s 150

3.6
amin m/s2 -5
amax m/s2 5
κG,min rad/m − tan(δmax)

L

κG,max rad/m tan(δmax)
L

cG,min rad/ms -0.2
cG,max rad/ms 0.2

Table 4: Values constraints

where the maximum steering angle δmax = π
4 and the length of the vehicle L = 3 m. Lastly,

N = 15, ∆s = 4 and µ = 0.8 (unless stated otherwise).

6.1 Main Results

The main question of this thesis concerns the fastest path and the corresponding speed of
an autonomous vehicle on a racing track. Therefore, these quantities are plotted for each
of the simulation scenarios and can be found in Appendix B.1 (see Figure 17, 18, 19).

Note that the road and the fastest path are plotted on the global X-axis, while the speed
is plotted against the curvilinear abscissa s.

The optimal path, denoted by the pink line in the upper picture of the figures, seems to be
realistic. Namely, the vehicle takes the inner corner and does not switch sides on the lane
more often than necessary. One can also notice that the pink line stops before reaching
the end of the road. After all, the algorithm is written such that it stops once it cannot
predict into the future for the full prediction horizon.

The corresponding speed of the vehicle belonging to these paths seem somewhat optimal.
In all three figures, it can be seen that the speed decreases when driving towards a corner
and increases when leaving the corner. This is realistic, since it might otherwise not be
possible to take the corner. However, consider Figure 17, where the vehicle lowers it speed
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after s = 100, even though there is no corner coming up. This behaviour could either be
the result of a mistake in the controller, or a bug in the simulation program.

6.2 Validation Cost Function

In order to validate whether the proposed model functions as formulated, each term in the
cost function is taken into consideration, separately. The cost function (see Eq. (40)) is
split in three parts, namely:

J1(y, θ, v) =
N−1∑
k=0

γ1,kdk (53)

J2(y, θ, v) =

N−1∑
k=0

γ2,kvk (54)

J3(y, θ, v) =
N−1∑
k=0

γ3,kθ
2
k. (55)

From studying the results of the controller for each of the cost functions J1, J2 and J3, the
contribution from each of the terms can be examined and cost function J can be validated.
However, unfortunately, cost function J1 and J2 lead to non-convex optimisation problems.
So, only cost function J3 can be evaluated, see Figure 14. The optimal path follows the
center-line of the road closely, since minimizing J3 results in minimizing θ2

k. So, in practice
the heading angle with respect to the center-line is minimized and the vehicle follows it
closely.

Figure 14: Optimal path on the road (pink line) for cost function J3

To investigate the effect of the terms in the cost function J , consider Figure 15. Here, the
value for γ1 and γ2 are presented at every value for s on the S-Curve (when driven as in
Figure 18).

First, consider the values of γ1. Whenever the road turns to the right, γ1 is negative.
Therefore, it is beneficial to have a positive value of dk (considering the goal of minimiza-
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Figure 15: Values of γ1, γ2 and γ3 on the S-curve (from top to bottom)

tion) and so to be on the right side of the road. Similarly, when the road turns to the left,
γ1 is positive and it is beneficial to have a negative value of dk (and so to be on the left side
of the road). This is in line with the rationale as explained in Section 4.1: the term γ1 will
maximize the lateral deviation along with the curvature of the track. Secondly, consider
γ2. Its value is always negative and significantly smaller than γ2 for the entire track. This
implies that the addition of γ2 in the cost function has a small effect and could explain
why the speed decreases after s = 100 in Figure 17, since there is not much regulation on
the vehicle’s speed.

So, even though the vehicle’s speed might not be optimal by the controller, it does behave
as expected.

6.3 Robustness MPC

This section is meant to analyze the robustness of the MPC controller by varying the
parameters in the controller. This gives insight in the effect of the successive linearization
and the receding horizon strategy and enables us to make general conclusions on the MPC
controller.

6.3.1 Prediction Horizon and Step-Size

The prediction horizon N and step size ∆s are important parameters for the MPC con-
troller, since they determine how far in the future predictions are done.

Consider Table 5 which shows the average time per iteration (tsolve) and the total number
of iterations (# Iterations) needed for different values for the planning horizon N and the
step size ∆s for the S-curve. The total number of iterations needed is the number of times
at which the optimization problem is solved. The average time per iteration denotes the
average time needed to solve the optimization problem once, that is to find the optimal
input parameters to minimize the cost function J . Note that the simulation also needs
time to linearize the vehicle model, which is not taken into account in tsolve.
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N 5 10
∆s [m] 2 4 6 2 4 6
# Iterations - 81 - - 76 47
tsolve [sec] - 0.0049 - - 0.0076 0.0074
N 15 20
∆s [m] 2 4 6 2 4 6
# Iterations - 71 42 - - 37
tsolve [sec] - 0.0095 0.0099 - - 0.0136

Table 5: Computational effects of varying planning horizon and step length

Not all values for the planning horizon and step size are valid for the controller, these
are denoted by a dash (-) in Table 5. This happens for different values of N and for ∆s.
One reason is the limited memory of the computer which performed the simulation, as it
reached the maximum number of iterations. However, this is not the case for all of the
scenarios. In all of the test scenarios, the optimization problem is the same, except for the
linearizations of the vehicle model (because of the different step size). Therefore, it can be
concluded that the linearization of the vehicle is not stable. It should actually perform for
different values of the planning horizon and step size.

It can also be seen from Table 5 that higher horizon lengths N lead to a more time-
consuming optimization problem. A longer horizon length and greater step size, both
enable to plan further along on the track. As example, Figure 24 in Appendix B.3 shows
the effect of the step size. The figure shows the path driven at the same iteration number at
a constant horizon length N = 5 and varying step size ∆s = 2, 4, 6. The red dots indicate
the predictions in the horizon, at which the vehicle dynamics are linearized in the next
iterations. It can be seen that the algorithm is able to plan further ahead for greater step
sizes. Also note that in Figure 24a the vehicle turns later to the inner bound of the track
than in Figure 24c, as it recognizes the turn later. After all, in Figure 24a the vehicle is
able to see 20 meters in the future, whereas the vehicle can see 30 meters ahead in Figure
24c.

Similar results are depicted in Figure 25, where the step size is kept constant, but the
horizon length is increased. The vehicle has not traveled further along the track, but it
does plan further ahead and recognizes earlier when a turn is coming up. Consequently, it
drives to the inner bound of the track earlier.

Even though Figure 24 and 25 show successful simulations with results as expected, Table
5 shows that the MPC controller is not robust with respect to a change in planning horizon
N and step length ∆s.

6.3.2 Initial Conditions

This section is meant to show the effect of different values for the initial conditions of
the problem, which concern the initial position, heading, velocity and car curvature of
the simulated vehicle. After all, varying these initial conditions show the performance of
the controller well. The figures which are referenced in this section can all be found in
Appendix B.4.

First, consider Figure 26, which shows the optimal path for a vehicle starting at the left
side of the road of the 90 deg curve (d = 4). The figure shows the vehicle steers towards
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the curve as soon as it recognises it, which is similar to previous results.

Secondly, consider Figure 27, which shows the optimal path and the corresponding speed
for a vehicle starting with a speed of 20 m/s on the hairpin curve. It can be seen that the
vehicle still takes the same path, although its speed profile looks differently, since it does
not need not to slow down to make the corner.

Thirdly, consider Figure 28, which shows the optimal path for a vehicle starting at θ = π
4

rad on the 90 deg curve. Hence, it enters the figure already turned π
4 rad. It does take the

corner as soon as it recognises it, although it approaches it with a lot of little turns.

Finally, consider Figure 29 which shows the optimal path for a vehicle on the 90 deg curve
with a vehicle curvature of 0.1 rad/m. Hence, it does start on the center-line, although its
wheels are already turned 0.1 rad/m. Therefore, it has a small deviation to the left side
of the right, but steers back to the center-line and eventually the corner, as expected.

So, the controller performs reasonably well for different initial conditions. In all test cases,
the vehicle still steers to the inside of the corners. However, when initializing the vehicle
at an angle with respect to the center-line, the vehicle makes a lot of little of turns. This
is far from the optimal solution in the real world. Hence, it should be penalized as well
when the path is not smooth, i.e. has a lot of little turns. Such a penalty is not present in
the controller.

6.3.3 Constraints

This section is meant to show the effect of different values in the constraints of the problem,
which concern the maximal acceleration/deceleration and maximal curvature rate. The
figures which are referenced in this section can all be found in Appendix B.5.

Consider Figure 30, which shows the optimal path and corresponding speed for a vehicle on
the hairpin curve, where the maximal acceleration/deceleration is set to 1 m/s2. Here, the
lowest speed of approximately 30 m/s is reached at s = 100. Compare this to Figure 19,
where the same is depicted, but for a vehicle with a maximal acceleration/deceleration of 5
m/s2. There, the lowest speed is also reached at s = 100 m and its value is approximately
28 m/s. Both figures also show an approximately linear relationship of the speed over
place and a similar optimal path. Hence, a different value for the acceleration/deceleration
of 1 m/s2 does not seem to change the performance of the controller.

Consider Figure 31, which shows the optimal path for a vehicle on the hairpin curve, where
the maximal vehicle steering is set to 0.5 rad/ms. The vehicle steers to the inside of the
corner, once it sees the curve is coming up. This is similar to the behaviour of the controller
when the maximal vehicle steering is set to 0.2 rad/ms (see Figure 19).

So, the controller performs well for different values in the constraints of the problem.

6.4 Friction Coefficient

This section is meant to show the effect of changing the friction coefficient µ on the gen-
erated trajectory. Note that the initial value of v was set to 20 m/s and amin = −2 m/s2

and amax = 2 m/s2.

Figure 16 shows the effect of enlarging the value for µ for the spatial state v on the S-curve.
The result of the lateral dynamics are given in Appendix B.2. From Figure 16 is visible
that setting µ to zero gives an approximately linear increase in velocity, until it hits the
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maximum value vmax. This is as expected, since there is no longitudinal resistance when
µ = 0 and therefore the vehicle can freely accelerate. As the value of µ increases, the
acceleration of the vehicle decreases. This is as expected, since there is more longitudinal
resistance for higher values of µ.

Figure 16: Velocity profile S-curve different µ-values
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7 Discussion

In general, the results of the MPC controller are in line with the expectations. However,
there are a few conflicts between the results and the expectations, namely:

1. Even though there is no corner coming up, the vehicle’s speed decreases in some
situations. This is not as expected, since this is not the fastest way to travel a straight
track. However, the objective of the controller is to maximise the progression along
the center-line of the road and not to have the highest possible velocity. Due to
the approximation of the cost function, there is not much regulation on the vehicle’s
speed. This could be the explanation for this conflict.

2. The MPC controller is not robust with respect to a change in planning horizon N and
step size ∆s. This conflict could be due to the successive linearizing and discretizing of
the vehicle dynamics. Namely, for different step sizes, the vehicle model is linearized
and discretized at different locations on the road and therefore also different for each
step size.

3. The proposed path is not smooth in all situations, in the sense that it contains a lot
of little turns. This could never be the optimal way to cover a track. However, this
behaviour is expected from the proposed MPC controller, since there is no criterium
on the smoothness of the proposed path. The controller does not aim to keep the
curvature at the next step similar to the current one.

Furthermore, it should be noted that the results are reflected upon as approximations of
the optimal path and speed. The following simplifications have been made:

1. The kinematic bicycle model does not include slip, which cannot be justified in racing
environments. See Appendix C for an elaboration on slip.

2. Both the cost function and the vehicle dynamics are subsequently approximated in
the controller to enable convexity and real-time feasibility.

3. The vehicle is modelled by a bicycle model. Therefore, the width of the vehicle is
neglected. This can be overcome by adjusting the bounds of the road or adjusting
the dimensions of the vehicle in the simulation.
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8 Conclusion

In this thesis, a MPC algorithm is proposed for path and trajectory planning in autonomous
racing. The problem is formulated as a convex optimization problem by linearizing the
vehicle dynamics successively around previously predicted optimal solutions. The aim of
the controller is to maximise the progress along the center-line of a predefined track, which
is approximated by a second-order Taylor series. The vehicle is modeled kinematically
and the time dynamics are reformulated into spatial dynamics, which enables a natural
formulation of the track.

The MPC algorithm can be solved with efficient computation times and it is able to find
the fastest path and the corresponding speed of an autonomous vehicle reasonably well,
which answers the main question of this thesis.

9 Recommendations

If more time was provided, it would be interesting to perfect the current MPC controller.
I would change the cost function, to check what would give the most satisfactory results.
Currently, the cost function is a second-order Taylor approximation of the progress maxi-
mization along the center-line of the track. I would add another value to this cost function,
which regulates the vehicle’s speed better. The ideal value for this value could be obtained
by testing. Furthermore, I suspect the robustness of the MPC controller could also be im-
proved. I would research why certain combinations for prediction horizon N and step size
∆s fail. I suspect this could also be the effect of a wrong, or inefficient implementation of
the algorithm in Python code. But it could also be the result of the successive linearizing
and discretizing of the vehicle dynamics, for which it is harder to come up with an alter-
native. In theory, the linearizing and discretizing should guarantee convexity, but it would
be good to verify this by testing with the code. Lastly, I would add another criterium to
the cost function in the objective function that takes smoothness into account, to make
the proposed paths smoother.

For future research, it would also be interesting to determine the fastest path and cor-
responding velocities of autonomous vehicles on a given track with other methods than
model predictive control. I would suggest determining the racing lines with reinforcement
learning in artificial intelligence, where an intelligent agent is developed that perceives its
environment and takes actions that minimise the total time needed to cover the track. The
agent would start at point i and decide the points i+ 1, i+ 2, ... until the finish line using
some intelligent algorithm with probability distribution. This would be run many times
and the best racing line is chosen. Considering all possible racing lines would be infeasible,
therefore a form of branch-trimming should be chosen such that options can be discarded
without calculating them. This could be done, for example, by disregarding all points i+1
and i + 2, where the curve from i to i + 2 is not smooth enough. This approach saves
the formulation of an exact mathematical model for the problem and could obtain better
results.
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A List of Variables

The variables used in the vehicle model are presented with their description and range
in Table 6. It must be noted that the ranges of the variables do not take any specific
characteristics of the system into account, only the physical boundaries.

List of Variables
Variable Unit Range Description
s m [0, ∞] Curvilinear abscissa
G - - Center of mass of the go-kart
F - - Front wheel of the go-kart
R - - Rear wheel of the go-kart
ζ - - State vector (d, θ, v, κG)
u - - Input vector (a, cG)
Γ - - The center-line of the road
P - - The point on Γ closest to R, assumed to be unique
L m - The length of the go-kart from the center of the front

wheel (F) to the rear wheel (R)
θG rad [-π, π] Angle between the vehicle and the global X-axis
θΓ rad [-π,π] Angle between the path Γ and the global X-axis
θ rad [-π,π] Angle between the vehicle and the path Γ, equivalent

to θG − θΓ

v m/s [0, ∞) Vehicle velocity
d m (-∞,∞) Directed distance between R and P (positive means R

is to the left of P , negative means to the right)
µ - - The longitudinal tire-road friction coefficient
a m/s2 [0, ∞) The longitudinal acceleration
cG rad/ms [0, ∞) The vehicle steering
ρ m (-∞,∞) Radius of the circle motion of the path at P, sign in-

dicates orientation (positive means the midpoint is to
the left of P, negative means to the right)

vΓ m/s [0, ∞) Vehicle velocity projected in direction of Γ
κΓ rad/m [0, ∞) Curvature of the path Γ at M
κG rad/m [0, ∞) Curvature of the go-kart
δ rad [-π,π] The steering angle of the vehicle with respect to its

current direction
α rad [-π,π] The slip angle
Fc N [0, ∞) The centripetal force on the go-kart
Fw N [0, ∞) The force from tire-road friction on the go-kart

Table 6: List of Variables
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B Figures

B.1 Main Results

Figure 17: The 90-degrees curve (above: optimal path on the road (pink line), below:
corresponding speeds)
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Figure 18: The S-curve (above: optimal path on the road (pink line), below: correspond-
ing speeds)
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Figure 19: The hairspin curve (above: optimal path on the road (pink line), below:
corresponding speeds)
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B.2 Optimal Path for different Longitudinal Coefficients

Figure 20: Optimal path for µ = 0

Figure 21: Optimal path for µ = 0.5
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Figure 22: Optimal path for µ = 0.8

Figure 23: Optimal path for µ = 1.0

39



B.3 Robustness Analysis

(a) N = 5,∆s = 2

(b) N = 5,∆s = 4

(c) N = 5,∆s = 6

Figure 24: Optimal path for varying N = 5 and constant ∆s
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(a) N = 5,∆s = 4

(b) N = 105,∆s = 4

(c) N = 15,∆s = 4

Figure 25: Optimal path for varying N and constant ∆s
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B.4 Initial Conditions

Figure 26: The optimal path for the 90 deg curve, starting at d = 4 m

Figure 27: The optimal path and corresponding speed for the hairpin curve, starting at
v = 20 m/s
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Figure 28: The optimal path for the 90 deg curve, starting at θ = π
4 rad

Figure 29: The optimal path for the 90 deg curve, starting at cG = 0.1 rad/m
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B.5 Constraints

Figure 30: The optimal path and corresponding speed for the hairpin curve, with amax =
1 m/s2

Figure 31: The optimal path and corresponding speed for the hairpin curve, with
cG,max = 0.5 rad/ms
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C Elaboration on Slip

In this thesis, an attempt was done to account for slip in the vehicle model, to make it more
complying to racing conditions. This Appendix presents the findings and work done with
regards to this topic, which has not been used in the thesis. First, the relevant mechanics
and vehicle dynamics are presented. Then, the side slip angle is introduced. Finally, a
reflection upon this work is given and a recommendation for future research.

The objective of introducing the side slip angle is to formulate an extended kinematic
bicycle model as described in [20]. This adds complexity to the regular bicycle model, but
does make the extended kinematic bicycle model more suitable for vehicles operating on
slippery surfaces and high speed range [21]. Then, a similar controller to the current one
could be set up to solve the problem of path and trajectory planning.

C.1 Relevant Mechanics

According to the first law of Newton, a body will not change its motion unless a force acts
upon it. More specifically, a driving vehicle must experience a force to change its driving
direction. This force is realized by turning the wheels to experience friction. The friction
is caused by interaction from the tires with the road and depends on the type of tires and
the conditions of the road. The friction is perpendicular to the front wheels of the vehicle.
One component of the friction is perpendicular to the motion of the vehicle and the other
is longitudinal friction.

Consider Figure 32 where three vehicles are presented with each a forward velocity v.
Their front wheels are turned to the right and therefore, they experience a friction force
Fw perpendicular to the motion of the vehicle. This force changes the direction in which
the vehicles travel and enables them to take the corner.

Figure 32: Model of 3 vehicles taking a corner

It actually follows from Figure 32 that the friction acts as a centripetal force: a force
that makes a body follow a curved path. The direction of a centripetal force is always
orthogonal to the motion of the body and towards the center of curvature of the path. The
magnitude of the centripetal force of an object of mass m with tangential velocity v along
a path with radius of curvature r is:

Fc =
mv2

r
. (56)
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The centripetal force is illustrated in Figure 33. Here a vehicle with center of mass G has
a forward velocity v. Its front wheel is turned, experiencing a friction perpendicular to
the velocity that acts as a centripetal force and is directed at point M . This point acts as
center of the circle that the centripetal force introduces. This circle is followed if G keeps
experiencing the centripetal force in the direction of M .

Figure 33: Sketch of vehicle and the path with the centripetal force

C.2 Relevant Vehicle Dynamics

The force that enables a vehicle on rubber wheels to turn is produced by the elasticity of
the tires. This force is discussed in this section with the development of slip angle.

First, consider Figure 34 that illustrates a tire from the side. It is rotating clockwise and so
moving to the right of the figure. The part of the wheel that touches the ground is called
the contact patch and it starts at point B and ends at E. We will follow an element of
rubber starting at point A, where it does not yet touch the ground. Once the tire advances,
the element will reach B and enter the contact patch.

Figure 34: Side view tire [22]

The contact patch experiences vertical load from the vehicle weight and balances this with
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the elastic deformation of the tire (the contact patch is flat) and the inflation pressure of
the gas inside [22]. As the rubber element moves to C, the vertical load increases until
around the midpoint. Then, the vertical load will decrease until it reaches zero at point
E where the element leaves the contact patch. In this process, heat will be generated and
energy lost leading to rolling resistance.

This process can also be seen in Figure 35 that illustrates the tire from above.

Figure 35: Top view tire [22]

In Figure 36, the tire is also viewed from above, but the tire has been steered. It is
important to notice the tire travels to the right, even though it is not pointing in this
direction. Namely, once the tire steers, the rubber that is in contact with the ground (the
contact patch) cannot easily move due to the vertical load of the vehicle’s weight.

Figure 36: Top view steered tire [22]

Reconsider the element of rubber as before, starting at point A. As it reaches point B and
enters the contact patch, it makes contact with the road and bonds to it. Therefore, it is
constrained to stay at rest with respect to that particular point on the road. As the tire
moves to the right, it must move to C. In other words, it is displaced laterally and creates
an elastic force laterally. As the element moves rearwards, both the displacement and the
vertical load from the vehicle’s weight increase, balancing each other. However, around
position D the vertical load on the element starts to decrease and the element is urged to
move back in its rest position. By the time the element exits the contact patch at E, the
process is over and the element is back in rest position.

The angle between the direction of travel and the direction in which the wheels are pointing
is the slip angle, as indicated in Figure 36. The arrow in the Figure denotes the lateral force
on the contact patch. This force enables the vehicle to turn and change travel direction
eventually.
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C.3 Derivation Side Slip Angle

This section focuses on the attempt that was made to derive the side slip angle with the
mechanics as presented in Section C.1.

Consider Figure 37 which contains a bicycle model viewed in a rotating frame of reference.
The front and rear wheel experience friction, Ff and Fr respectively. The front wheel is
turned δ degrees from the current orientation of the vehicle and the slip angle α is indicated.
The center of gravity of the car (CG) has a distance r to the center of the circular motion
the vehicle is making. The distance from the front and rear wheel to the center of gravity
are a and b, respectively. The friction experienced by the front wheel (Ff ) can now be
expressed by the slip angle (α) and the cornering stiffness (Cα). The latter depends on
characteristics of the vehicle and the tires. The friction varies linearly with the slip angle
[23]:

Ff = Cαα. (57)

An attempt was made to express α by known parameters in the vehicle model by expressing
Ff in Eq. (57) by known parameters. However, this attempt requires the assumption that
α ≈ δ and δ is small, which cannot be supported in all scenarios. Nevertheless, the attempt
is still presented below.

Figure 37: Bicycle model with rotating reference frame

In Figure 37 the center of gravity (CG) experiences a centrifugal force (FCG
) which is the

reaction force of the centripetal force. It is a pseudo force appearing to act on the center of
gravity that exists only in this reference frame. Its value is equal to the centripetal force:

FCG
=
mv2

r
. (58)

Summing the forces in Figure 37 yields

FCG
= Fr + Ff cos(δ − α). (59)
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For of δ ≈ α, cos(δ − α) ≈ 1, so combining Equation (58) and (59) gives:

Fr + Ff =
mv2

r
. (60)

Because the vehicle itself is in equilibrium in the turn, the sum of moments about the
center of gravity must be equal to zero (assuming a small slip angle again):∑

MCG
= 0 = Frb− Ffa (61)

or

Ff =
Frb

a
. (62)

Substituting Equation (62) in (60) and noting that a+ b = L gives:

Fr

(
1 +

b

a

)
= Fr

(
L

a

)
=
mv2

r
(63)

or

Fr =
(ma
L

) v2

r
. (64)

Next, the vehicle is viewed in the lateral plane (side-view), as shown in Figure 38. The
center of gravity experiences a downward force (Fg) due to gravity and the front and rear
wheel experience upward forces from the ground (their weight, Wf and Wr respectively).

Figure 38: Bicycle model in lateral plane

These forces are due to gravity. The gravitational force that the center of gravity experi-
ences can be expressed as:

Fg = mg, (65)

where m denotes the mass of the vehicle and g denotes the gravitational acceleration (g =
9.80665 m/s2).

The sum of the moments about the front wheel (Mf ) must equal zero:∑
Mf = 0 = Wr(a+ b)− Fga = WrL− Fga. (66)

Rewriting Equation (66) and using Fg = mg:

Wr

g
=
ma

L
. (67)
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Substituting Equation (67) into (64) gives:

Fr =
Wr

g

v2

r
. (68)

Finally, substituting Equation (68) into (57) gives:

α =
Wrv

2

grCα
=
WrκΓv

2

gCα
. (69)

Finally, an expression is derived for the side slip angles in known parameters.

C.4 Reflection and Recommendations

Mathematically deriving the side slip angle is difficult, as it requires a very elaborate
dynamical model to precisely define it. For example, the model would require accurate tire
models and their parameters such as the axle cornering stiffness. However, for derivation
it is necessary to include the slip angle in a dynamic model, instead of integrating it into
a kinematic model. The attempt of this thesis failed, because the side slip angle could
not be placed within the context of the full dynamics and therefore not derived from any
known forces.

An extended kinematic vehicle model could work properly, when the side slip angle is
part of the state description and therefore also estimated by differential equations. An
approach would be to use extended Kalman filtering as presented in [24]. This would be
the recommendation for future research, as such a Kalman algorithm could be integrated
with the MPC algorithm as presented in this thesis.
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