
Distributed Control Algorithm for Cooperative
Autonomous Driving Vehicles Inspired by Flocking

Behaviour
Joppe Blondel

Faculty EEMCS, University of Twente
Enschede, the Netherlands

j.blondel@student.utwente.nl

Abstract—Control strategies for cooperatively autonomous
driving vehicles are becoming more and more complex to ensure
safe operation while, when taking inspiration from nature, more
simple mathematical descriptions exist which describe behaviour
of animals moving in a flocking or herding manner. In the eighties
Reynolds came up with a set of heuristic rules [1] which form a
model for flocking behaviour of birds and his work has been an
inspiration for constructing a control strategy based on flocking
behaviour for self-driving vehicles. Previous research relied on
more simple kinematic models of vehicles and thus using it
directly in real vehicles would be difficult. This research provides
an algorithm inspired by flocking behaviour as found in swarms
of birds and a bridge between said algorithm and a vehicle. A
dedicated simulation environment which uses parallelism on a
GPU is written and is used to determine the performance of
the proposed algorithm. It is found that the proposed algorithm
performs relatively well under the tested situations and is found
that a wide range of parameters could be used which result in
stable behaviour.

Index Terms—Cooperative Autonomous Driving, Flocking be-
haviour, Self-driving cars, Boids

I. INTRODUCTION

Traffic jams, car crashes and environmental impact of
present-day traffic are things that are inseparable of the view
of modern traffic. Where were empty roads and content drivers
are now congested traffic arteries during the more and more
extended rush hours. Within most of the car accidents, the
driver was responsible.

To eliminate the human factors within traffic congestion and
car crashes one could eliminate the human driver itself. Re-
search into self-driving cars has provided us with autonomous
driving cars which can navigate themselves within modern-day
traffic by imitating the human driver. Adding communication
to self-driving vehicles will lead to anticipation of abrupt
actions and movements and thus will probably lead to less
congestion and more safety. Cooperative Autonomous Driving
(CAD) is an area in which a lot of active research is done.

Since algorithms for CAD must be safe and avoid crashes
in any cases, the rules on which these algorithms rely are
growing more and more complex. Instead of adding more and
more rules to ensure safe operation, one can look completely
the other way and take inspiration from natural phenomena.
Within nature, there are a vast amount of animals which
travel in large groups, herds or flocks without any collisions.

Research has shown that to simulate such flocking behaviour,
one does not need a complex set of rules [1]. This research is
driven by the question if such behaviour can be mirrored in
modern traffic.

The goal of this research is to see if these set of rules
can be used in self-driven traffic and if so, how well such
an algorithm can perform in different situations with strict
spatial constraints (vehicles must not drive out of designated
areas). Within this research, an attempt will be made to
implement such an algorithm and it will be evaluated in terms
of efficiency and safety.
Back in 1986, Reynolds had shown interest in flocking be-
haviour and provided an approach for simulating flocks with
a simple set of heuristic rules in which the animals are called
boids (bird-oids): cohesion (or flock centring), alignment
(or velocity matching) and separation (or collision avoidance)
[1]. In the same paper, two ways of obstacle avoidance are
mentioned:
• Avoidance based on a ’force field’
• Avoidance based on ’steer-to-avoid’
Since Reynolds formulation of his rules did not specify

any mathematical algorithms, multiple interpretations of the
algorithm are around. [2] poses a method which uses graph
theory and is elaborated on in [3]. This paper provides us with
3 algorithms and gives a formal description of flocks which
can be used to analyze flocking algorithms.

Within most research boids are considered as single points
or circular disks. [4] takes another approach and poses a
constructive method to design a flocking control algorithm for
mobile agents with an elliptical shape and mentions ships as
a possible application. Research in flocking behaviour used in
control algorithms for aircraft is done by Crowther in Rule-
based guidance for flight vehicle flocking [5].

Within the field of (cooperative) autonomous driving itself
little research is done. Kakaria’s Boids On Wheels [6] shows
a proof of concept study on simulating traffic with vehicles
acting as boids and Flocking Algorithm for Multiple Non-
holonomic Cars of Hayashi and Namerikawa [7] provides
an algorithm which enables multiple nonholonomic cars to
travel as a flock on a highway. More research on flocking
control on nonholonomic agents is done in [8]. Recent research
on the usage of flocking behaviour in CAD [9] shows that

1

Reynolds’s rules suffice as a control scheme for autonomous
vehicles (which bring in a set of constraints with them such
as maximum velocities and controlling a vehicle indirectly by
steering angle) if, and only if, a balance is formed between the
different ’forces’ of each rule which occurs when a flock is
formed. In general, these three rules alone are too simplistic
to act as a control mechanism. The addition of goal-driven
behaviour decreases the amount of collisions but does not
completely diminish them.

Even though research is done into the application of flocking
behaviour in the control of self-driven vehicles, evaluation
of such algorithms on every-day traffic situations such as
crossings, round-a-bouts’ and highways has yet to be done.
Without additions and alterations, especially within the cou-
pling between the flocking algorithm and the control of a
vehicle, the relatively simple Boids algorithm will not be
feasible to be used in self-driven traffic. This research will
provide the needed coupling between the flocking algorithm
and the vehicle control and will build upon [9] with the
addition of obstacle avoidance. Furthermore it will provide
an efficient simulation environment using parallelism on the
GPU for smaller execution times. In this paper the following
questions will be answered.
• How well does a flocking behaviour inspired control

algorithm for autonomous driving vehicles work with
strict spatial constraints?

To answer this question the following sub-questions must be
answered:
• How can we measure the performance of a flocking

behaviour inspired control algorithm for autonomous
driving vehicles?

• How can we add obstacle avoidance to a flocking inspired
control algorithm for autonomous driving vehicles while
keeping reasonable stable behaviour?

The outline of the paper is as follow: Some background on
the original Boids algorithm and a mathematical description
of the kinematics of a vehicle are provided in Section II.
The algorithm and the coupling with the kinematics are
described in Section III. The choice for writing a specific
simulation environment and the description of the environment
is presented in Section IV. Section V will consist of a few
steps for evaluating the proposed algorithm. Finally concluding
remarks, encountered difficulties and directions for future
work are provided in Section VI.

II. PRELIMINARIES

This section will give the reader information which is neces-
sary to read the following sections of the paper. Assumptions
made or specific interpretations of certain information are
stated.

A. Boids

Modeling of the flocking behaviour of birds and other
animals has kept people of multiple disciplines busy for a long
time. Reynolds provided in 1986 a basic set of rules which can

be used for such flocking [1]. Within his paper each object
which moves according to his rules are called boids which is
used in this paper as well. Reynolds stated the three rules as
follow:
• Flock Centering. This rule makes a boid want to steer

to the center of nearby flockmates. The farther a boid is
from this center, the stronger the urge to go towards it.

• Velocity Matching. Each boid will try to match its veloc-
ity with its flockmates.

• Collision Avoidance. This rule will add the urge to steer
away from an imminent impact and thus avoid collisions
with other flockmates.

To combine these rules Reynolds proposes that each rule gives
an acceleration request which are in its most simplistic form
averaged to get the direction of the movement of the boid.

Since the rules stated by Reynolds are qualitatively de-
scribed, multiple interpretations of these rules can differ
strongly. Within this research the rules are interpreted as follow
(rules are depicted in Figure 1 as well):
• Flock Centering (from now on called cohesion) will give

an acceleration towards the center of all other boids
within a certain radius of perception. The farther away
the boid is from the center, the higher the acceleration
will be (in a linear fashion).

• Velocity Matching (from now on called alignment) will
give an acceleration by taking the average from all
velocities (direction and speed) of nearby boids (within
the same radius of perception as with cohesion). No
distinction is made between the boids within the radius
of perception.

• Collision Avoidance (from now on called separation) will
give an acceleration per boid within a smaller separation
radius in the direction pointing away from the other boid.
The magnitude of the acceleration is dependent from the
distance between the boids.

The accelerations for each rule are combined by taking a
weighted average and the result is used as the acceleration
of the boid itself.

B. Vehicle kinematics

Within other researches boids are simulated as points which
are able to accelerate in all directions or as simplified vehicles
which have constraints to resemble real life vehicles ([7]).
However, in a try to simulate vehicles as realistic as possible,
the kinematics of a car are elaborated upon. Most road vehicles
have fixed rear axis and are steered by rotating the wheels on
the front axis (Ackermann steering [10]). This section will
provide a mathematical description of the motion of such a
vehicle.

As basis a vehicle of length l is taken with the center of
mass at the center of the vehicle itself (see Figure 2). Changing
direction is done by rotating the front wheels around their
center point (which results in a rotation of ϕ of a virtual wheel
in the center of the front axis). The angle between the roll axis
of the vehicle and the global y axis is called θ, the velocity of

2

(a) Cohesion (b) Alignment (c) Separation

Fig. 1: Visual representation of the rules for flocking behaviour

Fig. 2: Vehicle kinematics

the car is given as vector vcvcvc at the center of mass and the speed
of the driving car is given by vr. Needed for this research are
the relations between ϕ, vr, vcvcvc and θ which can be used to
define the motion of a vehicle:{

θ̇ = ωc

ṗ = vc

(1)

where p is the position of the vehicle, θ is the angle between
the global y axis and the vehicle and ωc is the rotational
velocity of the car around its center of rotation. Assumed is
that the steering angle ϕ cannot exceed ϕmax and the speed
of the car vr cannot exceed vmax.

ϕc = arctan

(
tan (ϕ)

2

)
(2)

gives the relation between the angle of the velocity of the
vehicle and the steering angle. The relation between the speed
and the magnitude of the velocity of the vehicle is given below.

vc =
tan (ϕ)

2 sin (ϕc)
· vr (3)

vcvcvc = vc ·
(

cos (1
2π − θ − ϕc)

sin (1
2π − θ − ϕc)

)
(4)

Using vc and ϕc the velocity of the vehicle itself can be
calculated as stated in Eq. 4. At last the rotation of the vehicle
around its center of mass is calculated:

ωc =
vr
l
· tan (ϕ) (5)

Eq. 4 and Eq. 5 combined will describe the motion of the
vehicle as stated in Eq. 1. (Full calculations and derivations
can be found in Appendix A)

III. FLOCKING ALGORITHM

The boids algorithm described in subsection II-A has un-
dergone some changes and additions to be applied in this
research to support the motion of a vehicle as described in
subsection II-B with the addition of the strict spatial con-
straints necessary for this research. Since the boids algorithm
expects the vehicle to be able to accelerate in all directions and
vehicles which move accordingly to the described kinematic
model can not accelerate in all directions (accelerating in other
directions than forward or backward can be done by steering,
an action which makes certain ways of movement impossible)
a conversion must be made from the acceleration given by the
boids algorithm and the way the vehicle steers to achieve such
acceleration. Furthermore rules for obstacle avoidance must be
added to make it possible to let vehicles stay on a road.

Before adding things to the boids algorithm, the algorithm
itself must be specified as given below. This sections shows the

3

calculations to be done each time step (the algorithm is meant
to be ran step by step) for each vehicle i surrounding a vehicle
(lets call this vehicle V) where r is the radius of perception,
rsep is the smaller separation radius, di is the distance between
the vehicles i and V , ppp is the position of vehicle V itself and
qiqiqi is the position of vehicle i within perception radius.

fc,ifc,ifc,i = qiqiqi − ppp (6)

This equation represents the cohesion factor and generates a
vector pointing from vehicle V to vehicle i. To get the center
of mass of all vehicles surrounding vehicle V all these vectors
are averaged.

fa,ifa,ifa,i =
vc,ivc,ivc,i + v′c,iv′c,iv′c,i

2
(7)

This equation represents the alignment factor. It takes the
velocity of vehicle i (vc,ivc,ivc,i) and is averaged with the desired
velocity of vehicle i (v′c,iv′c,iv′c,i). The desired velocity is the output
of the algorithm of the previous time step. Taking this average
will result in a more stable behaviour since it takes not only
the current state of a vehicle into account but also takes in the
near future of a vehicle.

fs,ifs,ifs,i = −ersep−di · qi
qiqi − ppp
|qiqiqi − ppp|

(8)

This represents the separation factor. It generates a vector
pointing from vehicle i to vehicle V where its length is
proportional to the distance between the vehicles. This relation
between the length and the distance is negatively exponential
and is chosen by trial and error (thus created the most stable
behaviour compared to other relations as 1/di or a constant
factor).

adadad =
∑
di≤r

wc · fc,ifc,ifc,i +
∑
di≤r

wa · fa,ifa,ifa,i +
∑

di≤rsep

ws · fs,ifs,ifs,i (9)

combines the three parts of the boids algorithm which is
used in further steps where wc, wa and ws are the specific
weights of each part. For simplicity the mass of a vehicle is
not incorporated into this equation which implies the mass
is encapsulated in the weights. adadad is the desired acceleration
of the vehicle. After combining all parts adadad is maximized
to the maximum acceleration of the vehicle and the desired
velocity can be altered as stated below. First define the clamp
function, a function which clamps a value to a minimum and
a maximum, as stated in Eq. 10 where [±a] is the same as
[−a, a].

x|[a,b] = max(min(x, b), a) (10)

∆v′cv
′
cv
′
c = adadad|[±amax] (11)

The following part describes the calculations needed to
obtain the variables required for the vehicle to move (ϕ and
vr) from the output of the boids algorithm (the desired velocity

Fig. 3: Virtual vehicle on a line piece

v′cv
′
cv
′
c). The maximum steering angle ϕmax is converted to a

maximum angle of the center-velocity (ϕc,max):

ϕc,max = arctan

(
tan (ϕmax)

2

)
(12)

Then the desired velocity is used to determine the new angle
of the center-velocity with

ϕc = arctan2(v′c,xv′c,xv′c,x, v
′
c,yv′c,yv′c,y)
∣∣
[±ϕc,max]

(13)

The change of ϕc can be clamped to emulate a maximum
steering speed. From the new angle of the center-velocity the
new steering angle can be calculated as stated below.

ϕ = arctan (2 · tan (ϕc)) (14)

The vehicle has a maximum speed (vr) which is converted
to a maximum magnitude of the velocity vector (Eq. 15) which
is, in its turn, used to determine the new magnitude of the
velocity in

vc,max = vr,max ·
tan (ϕ)

2 · sin (ϕc)
(15)

vcvcvc = v′c|[±vv,max]
·
(

cos (1
2π − ϕc − θ)

sin (1
2π − ϕc − θ)

)
(16)

The new velocity vector is determined and the new speed of
the vehicle is calculated as below:

vr = vc ·
2 · sin(ϕc)

tan(ϕ)
(17)

At this point there is enough information to use the kine-
matic model in combination with the boids algorithm. The next

4

addition to the boids algorithm is the avoidance of objects.
Within this research an object which must be avoided by
all vehicles is constructed from line pieces. The distance
between a vehicle and the line piece is calculated (calculation
steps are shown in Appendix B). On the line piece a virtual
vehicle is placed with the front-rear axis aligned with the line
piece pointing in the same direction as the vehicle itself (see
Figure 3) as is done in [3]. The same steps for the ’alignment’
and ’separation’ parts of the boids algorithm are applied. After
this calculation adadad is clipped at the maximum velocity again
and is used as output of the algorithm for the movement
calculations. The equation below shows the total calculation
needed per vehicle where f ′a,jf ′a,jf ′a,j and f ′s,jf ′s,jf ′s,j are the factors for
the alignment and the separation calculated using the, on an
obstacle placed, virtual vehicle j.

adadad =

∑
di≤r

wc · fc,ifc,ifc,i +
∑
di≤r

wa · fa,ifa,ifa,i

∑
di≤rsep

ws · fs,ifs,ifs,i

∣∣∣∣∣∣
[±amax]

+
∑
dj≤r

wc · f ′a,jf ′a,jf ′a,j

+
∑

dj≤rsep

wa · f ′s,jf ′s,jf ′s,j

∣∣∣∣∣∣
[±amax]

(18)

IV. SIMULATION IMPLEMENTATION

To validate the algorithm explained in Section III for
correctness and test it for its performance a certain setup is
necessary. Since testing highly experimental algorithms on
real life cars will probably not only be very expensive, it
will be dangerous as well and in most countries prohibited
(or extremely regulated) by law ([11]), the most logical, and
probably only, choice would be testing the algorithm in a
dedicated simulation environment. This part is split up in three
sections: the choice of the simulation environment itself, a
more in-depth look of the environment and an evaluation of
performance of the simulation.

A. Simulation environment

For this research a dedicated simulation environment is
made in Python accompanied by OpenGL to evaluate the
proposed algorithm. The reasons for this choice can be placed
in the two separate categories expanded below:
• Existing simulations: Before writing an own simulation

environment existing software packages which can be
used to approach the problem should be considered. A
traffic simulator as Veins (on top of OMNeT++ [12])
arises as possible solution, together with the simulation
written for the previously done research on this topic
[9]. The first one would have been a great environment
for testing and evaluation if the proposed algorithm is
known to work and an approach for its networking has
come up. The latter is specifically written for evaluating
flocking behaviour in autonomous driving traffic so it

Fig. 4: Basic overview of simulation

would have been a perfect solution apart from the fact
that, since it does not make any use of parallel calculation,
the simulation is relatively slow and running parameter
sweeps will take many hours.

• Programming environment: Concluding from the point
above an own simulation environment shall be written.
The next question states ’in what?’. A big range of
possibilities opens up as answer to this question such
as writing it completely from the bottom up (in Java,
C(++), Python, etc...) or taking an environment dedicated
to mathematical operations such as MATLAB. Since
the simulation written for the previous research [9] is
written in Python, the thought of adding parallelism to the
calculations should significantly speed up the simulation
and the fact that I have more experience with Python than
MATLAB the choice for Python was a clear one. With
this choice arises one difficulty: multi-threading in Python
is not directly supported. For support of parallelism
OpenGL with its compute shaders (from version 4.3 and
up) is taken with again experience in mind (and the added
bonus of simulating on the GPU).

B. Implementation and design

Due to the choice of working with OpenGL the architecture
of the simulation is in its core data-oriented. This resulted in
the global architecture as seen in Figure 4. All calculations for
the simulation are done in OpenGL compute shaders, programs
which can run within the OpenGL context on a graphics card
and are not directly linked to rendering graphics. Apart from
the shaders, the data storage and the part which is responsible
for rendering to the screen are connected to the OpenGL
context as well. Creating said context and queuing specific
functions is done by the control code in Python.

All the data for the simulation is stored on the graphics card
as buffers. For each vehicle its position, rotation, velocity and
its state within the simulation (collided or not and the time to
enter the simulation) are stored as well as all the positions and
normals of obstacles. Another big matrix holds the distance
between two objects (vehicles and obstacles) as well as the

5

Fig. 5: Simulation time comparison

angle between them. Due to the nature of data buffers in
OpenGL, the size of allocated data must be known beforehand.
Randomly spawning vehicles is done by adding all vehicles
to the simulation on start and setting a time at which they
may appear. The shaders ignore all vehicles which have not
appeared yet.

The control code will activate and run each part of the
simulation in its turn. In broad sense the steps which are taken
for each time step (or frame) are:
• Start the shader which calculates all distances between

objects and wait for it to finish;
• Start the shader which executes the proposed algorithm

and wait for it to finish;
• Start the shader which moves all vehicles one step and

wait for it to finish;
• If rendering is enabled, render the next frame to the

screen;
• If data acquisition is turned on, the control code retrieves

data from the buffers on the graphics card
The split between the three shaders must be present and cannot
be combined into one shader: The algorithm step needs the
distances between all objects so these must be calculated first.
The last step cannot be ran until the second step is completed
since the movement of a vehicle is dependent on (practically)
all other vehicles. Moving a vehicle when other vehicles are
still executing the algorithm will possibly cause corruptions to
appear in the used data.

C. Evaluation of simulation

Within the process of creating the simulation environment
a lot of testing and evaluation had to be done. This is done by
placing a vehicle next to another vehicle or obstacle in known
positions (situations in which all values stored in the data
buffers are calculatable by hand) and altering the calculations
until all stored values match known values. Since this had to
be done at the same time as developing the algorithm and this
process took a lot of iterations, all these steps are not included
in this paper.

One of the main reasons for the written simulation en-
vironment was that it executed faster than the one existing

Fig. 6: Simulation setup of parameter sweep

environment. A test had to be done to verify if that goal was
accomplished. Both the simulation of Lijcklama a Nijeholt
and the new simulation are ran with a growing amount of
vehicles just driving around. The total run time and amount
of calculation steps are recorded and per amount of vehicles
the time per step is averaged over four different runs. A note
must be made that the existing simulation environment is
not changed meaning that the implemented algorithm itself
is not adapted to the here proposed algorithm. The time per
step (or frame) is plotted against the amount of vehicles in
the simulation, see Figure 5. As one can see the simulation
environment written for this research is faster in all cases with
a difference of two powers of ten with a large amount of
vehicles which confirms the claim of being a more efficient
simulation environment.

V. EVALUATION

This section will show the steps taken to validate and evalu-
ate the proposed algorithm with matching results. Since testing
the algorithm and simulation environment while developing
one or the other is mostly done by visually assessing the
renders of the simulation, jumping back and forth with a lot of
trial and error, these steps are not included in this paper. Only
the steps taken to evaluate the correctness and the performance
are stated. This section is divided into several parts describing
the process of finding the right parameter combinations and
finding the capabilities of the algorithm in several situations:
a road with a certain width, a 90◦ turn and a narrowing road.

For fair evaluation a measure for performance is needed.
The measure chosen for the evaluation aimed at safety and
stability and is calculated from the fc,ifc,ifc,i, fa,ifa,ifa,i and fs,ifs,ifs,i vectors
and the amount of collisions. It is assumed that when a stable
situation is reached, the length of these vectors is small relative
to unstable situations and collisions did not happen. The length
of these vectors is averaged over all vehicles present in the
simulation, squared and summed over time (full calculation
shown below in Eq. 19 where N is the number of vehicles and
T is the number of time steps, the lower the score the better

6

(a) (b) (c)

Fig. 7: Score on all three axis on point wc = 0.26, wa = 1.5 and s = 1.0

the algorithm performs). The values are squared to count short
unstable periods as well.

s(wc,wa,ws) =

T∑
i=1

(

N∑
j=1

|fc,jfc,jfc,j [i]|

)2

N2 · T

+

(
N∑
j=1

|fa,jfa,jfa,j [i]|

)2

N2 · T
+

(
N∑
j=1

|fs,jfs,jfs,j [i]|

)2

N2 · T

(19)

A. Finding parameters

The first step to be done is finding a valid combination of
parameters which results in a stable behaviour of the vehicles.
The parameters which could be altered are the weights of the
cohesion, alignment and separation vectors wc, wa and ws
combined with the radius of perception r and the separation
radius rsep.

By visually assessing the behavior it is found that with a
radius of perception of 15m and a separation radius of 10m
a range containing valid parameter settings is at least 0 <
wc < 0.5, 0 < wa < 10 and 0 < ws < 6. Over this range
a full parameter sweep is done in the situation depicted in
Figure 6: 9 vehicles placed on a road in a grid with a bend in
the road. The width of the road is 40m, the distance between
each vehicle is 10m and the inner radius of the turn is 10m.
The distance between the start of the turn and the first line of
vehicles is 60m, the starting velocity of the vehicles is 1ms−1,
vmax = 2.0ms−1 and amax = 2ms−2. At last ϕmax is set to
be 37◦. The simulation is ran for 900 steps with a time step of
16.6ms which results in a simulated time of 15s. With each
simulation step the lengths of fc,ifc,ifc,i, fa,ifa,ifa,i and fs,ifs,ifs,i are broken
out of the simulation and are averaged over all 9 vehicles.
For each combination of parameters these averaged lengths
of the cohesion, alignment and separation vectors are used to
calculate the performance score as shown above. The lower

Fig. 8: Score of algorithm

the score the better the combination performs. Combinations
with collisions should be assigned the maximum score.

Taking the complete data set generated by the parameter
sweep it is found that the lowest score is with wc = 0.26,
wa = 1.5 and ws = 1 as depicted in Figure 7a. These
values will be used for the rest of the simulations. Figure 7
shows the performance scores of the parameter combinations
surrounding the combination resulting in the lowest score. As
one can see the range of parameter combinations which will
result in stable behaviour is quite broad.

B. Radius of turn

The next part of evaluating the algorithm is finding the
minimum turn radius of a bend in the road with the parameters
previously found. This is done in the same situation as
previously used where the inner radius of the bend is changed
between 0m and 100m where a radius of 0m indicates a sharp
turn with right angles. The previously used performance score
is applied to this simulation as well and provides view on how
well the algorithm performs in the situation.

Figure 8 shows the performance score plotted against the
radius of the turn. While no collisions are encountered at all,

7

(a) r = 1m

(b) r = 80m

Fig. 9: development of the cohesion, alignment and separation
vectors over time in a turn

smaller radii clearly result in a less stable operation. Figure 9
shows that with a small turn radius the overall length of the
cohesion and separation vectors are greater than with a larger
turn radius. The relatively larger separation vectors suggest the
vehicles are closer together after the turn and are left in a less
ideal situation when the radius is small in comparison with
a larger radius. As can be seen in Figure 9 the length of the
alignment vectors are (relatively) constant. This is due to the
fact that the alignment factor is independent of the distance
between the vehicles and only depends on the velocities of
other vehicles. Since all vehicles drive at roughly the same
speed, the magnitude of the alignment vectors do not chagne
significantly.

C. Width of road

Testing the capabilities of the algorithm for different road
widths is done as follow: on a straight road with width w are

Fig. 10: Score of algorithm

placed nine vehicles in a grid formation (as is done in the
previous evaluations). The distance between the vehicles is ds
for situations where w ≥ 4ds and w/4 for the other situations
(to fit the three rows of vehicles on the road). For all widths
between 20m and 60m the performance score is calculated
and is shown in Figure 10.

As can be seen, for all widths larger than 4ds the algorithm
performs relatively well and for widths smaller than a few me-
ters less than 4ds collisions are encountered. Visually assessing
those last situations it becomes clear that the collisions are
caused by the initial positions of the vehicles: the vehicles start
horizontally too close to each other and causes the separation
part to take immediate effect, resulting in over steering and a
collision is inevitable.

D. Narrowing road

At last the effect of a road narrowing on the performance
of the algorithm is tested. A road with a width of 40m is used
which narrows down to 30m over a length of l. Three rows of
three vehicles are placed on the road in the same manner as
in previous evaluations. Since the three rows of vehicles may
merge, the effect of ’phase difference’ between the two outer
lanes and the middle lane is measured as well. The middle row
is moved forward from its original position to a full distance
between the cars (and thus creating a 360◦ phase difference).
Again, the performance score is calculated. Figure 11 shows
the performance score graphed against the length of the road
narrowing and the phase difference between the middle lane
and the outer lanes (where a ph = 0 means all three lanes are
exactly aligned and ph = 1 means a 360◦ phase difference).
All the yellow squares depict a situation where collisions have
occurred.

Visually assessing a few l and ph combinations will show
that the three lanes are ’squished’ together without merging
into fewer lanes which implies vehicles do not merge with the
current algorithm. The region containing low scores around
a 180◦ phase shift could be explained with the fact that if

8

Fig. 11: Score of algorithm

there is roughly a 180◦ phase difference between the lanes
the vehicles could move closer to each other thus creating a
more narrow formation without being so close to each other
that the separation factor of the algorithm is significantly large.
Furthermore it is clear that longer road narrowings result in a
relatively more stable behaviour.

A peculiar thing to mention is the fact that the region with
the lowest scores is between a phase difference of 200◦ and
300◦ instead of an expected 180◦. A possible cause could be
the lack of vertical symmetry: when moving the middle lane
forward there is an empty spot in the back which is not filled
by another vehicle. Future research should be done to confirm
this.

VI. CONCLUSION AND FUTURE WORK

The boids algorithm presented by Reynolds with the small
alterations and additions proposed in this research provide a
control strategy for Ackermann steered vehicles in relatively
simple situations with strict spatial constraints. It is found that
a wide range of parameter combinations result in relatively
stable behaviour where a distinct best combination is found
for the situation in which the algorithm is tested. Next to
the proposed algorithm, this research provides the calculations
needed to bridge the algorithm itself to the vehicle. At last
an efficient simulation environment using parallelism on the
graphical processor is written and it is shown to be faster than
a previously used dedicated simulation environment.

The performance score used in the evaluation is found to be
a reasonable measure for the stability of the algorithm hence an
acceptable way to measure performance within this research.
When comparing the algorithm to other existing algorithms
other ways of measuring performance will be needed. By
letting a vehicle project itself as a virtual vehicle on an
obstacle and performing the alignment and separation steps
to it, obstacles can be avoided and vehicles will stay on
a road. Overall the usage of a flocking behaviour inspired
control algorithm for autonomous driving vehicles looks to be

promising but a lot more research has to be done to reach a
safe control strategy which can be used in real live cars.

When doing this research a major difficulty did arise: The
choice for OpenGL made the debugging of the simulation
environment quite cumbersome: Simply attaching a debugger
or printing out values between calculations is not possible and
should be done in a complete different way (using stand-alone
graphics debuggers which capture single frames). This made
finding errors time consuming and difficult while constantly
searching for the source of the problem: the simulation envi-
ronment or the algorithm.

This research provides a way to implement flocking be-
haviour in autonomous driving vehicles but this is mere a
basis: a lot of future research has to be done to reach a
feasible and safe control strategy. A first addition on top
of the current algorithm could be a way to let vehicles
decelerate when a collision is inevitable. This will possibly
open a way for different ’lanes’ to merge without collisions.
Apart from decelerating and accelerating the vehicles, the
velocity at which the vehicles drive should be increased to
a more realistic speed to examine if the provided algorithm
still performs the way it does as in this research. To reach a
usable control strategy destination driven behaviour should be
added so that vehicles can unmerge after merging and diverge
in the direction of its destination. The most simple way this
could be achieved is a constantly present ’force’ directed to
its destination (as is done in [9]). A more sophisticated way,
one which allows for a route not directly pointed towards
the destination, could be a virtual vehicle which is placed
on a pre-defined place on a road which follows a certain
route and can be followed by the vehicle itself. At last the
performance should be tested against real life situations and
be compared to other control strategies for autonomous driving
vehicles: narrower roads, highway intersections and large road
crossings.

REFERENCES

[1] C. W. Reynolds, “Flocks, Herds and Schools: A Distributed Behavioral
Model,” SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 25–34, 8
1987. [Online]. Available: https://doi.org/10.1145/37402.37406

[2] R. O. Saber and R. M. Murray, “Flocking with Obstacle Avoidance:
Cooperation with Limited Communication in Mobile Networks,” Tech.
Rep.

[3] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,” IEEE Transactions on Automatic Control, vol. 51, no. 3,
pp. 401–420, 3 2006.

[4] Khac Duc Do, “Flocking for Multiple Elliptical Agents With Limited
Communication Ranges,” IEEE Transactions on Robotics, vol. 27, no. 5,
pp. 931–942, 2011.

[5] W. J. Crowther, “Rule-based guidance for flight vehicle flocking,”
Proceedings of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, vol. 218, no. 2, pp. 111–124, 2004.

[6] “Boids On Wheels,” Tech. Rep., 2016.
[7] Y. Hayashi and T. Namerikawa, “Flocking algorithm for multiple

nonholonomic cars,” in 2016 55th Annual Conference of the Society
of Instrument and Control Engineers of Japan, SICE 2016. Institute
of Electrical and Electronics Engineers Inc., 3 2016, pp. 1660–1665.

[8] Hu Cao, Jie Chen, Yutian Mao, Hao Fang, and Huagang Liu, “Formation
control based on flocking algorithm in multi-agent system,” in 2010 8th
World Congress on Intelligent Control and Automation, 2010, pp. 2289–
2294.

9

https://doi.org/10.1145/37402.37406

[9] D. Lijcklama à Nijeholt, “Control for Cooperative Autonomous Driving
Inspired by Bird Flocking Behavior,” B.Sc Thesis, University of Twente,
2020.

[10] W. C. Mitchell, A. Staniforth, and I. Scott, “Analysis of Ackermann
Steering Geometry,” in Motorsports Engineering Conference &
Exposition. SAE International, 12 2006. [Online]. Available: https:
//doi.org/10.4271/2006-01-3638

[11] Dutch Government, “Art 149 WVW, Stb. 2018, 347,” 2018.
[12] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled

Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE
Transactions on Mobile Computing (TMC), vol. 10, no. 1, pp. 3–15, 1
2011.

10

https://doi.org/10.4271/2006-01-3638
https://doi.org/10.4271/2006-01-3638

APPENDICES

A. Kinematics

Fig. 12: Vehicle kinematics

Given that the angle between the axis of the vehicle and the
front velocity vf is ϕ one can say that the angle between radii
Rr and Rf is ϕ as well. In the same way the angle between
radii Rr and Rc is ϕc. Knowing this the following can be
said:

tan (ϕ) =
l

Rr
(20)

tan (ϕc) =
1
2 l

Rr
(21)

sin (ϕ) =
l

Rf
(22)

tan (ϕc) =
1
2 l

Rc
(23)

Rewriting Eq. 20 and filling in into Eq. 21:

ϕc = arctan

(
tan (ϕ)

2

)
(24)

vc can be constructed from ϕc and its own magnitude vc
(note that θ is chosen to be measured from the y-axis):

vcvcvc = vc ·
(

cos (1
2π − θ − ϕc)

sin (1
2π − θ − ϕc)

)
(25)

Driving in a circle means rotating around the center of
rotation (COR) with a radius of Rr from the rear axis. Due
to symmetry one can say that the rotation around the COR
is equal to the rotation around the center of the vehicle. This
results in the rotational velocity around the COR is equal to
the rotational velocity around the center of the vehicle and one
can conclude:

ωc =
vc
Rc

= ωr =
vr
Rr

(26)

This means that
vc =

vr ·Rc
Rr

(27)

Filling in Eq. 20 and Eq. 23

vc = vr ·
tan (ϕ)

2 sin (ϕc)
(28)

Filling that in into Eq. 26

ωc =
2 · vc
l

sin (ϕc) =
vr
l

tan (ϕ) (29)

B. Distance between point and line piece

The distance between a point and a line piece is calculated
as follow. One defines the vectors ABABAB and BABABA as the vectors
pointing from A to B and the other way around and the vectors
wAwAwA and wBwBwB as the vectors pointing from the point P to A
and B respectively (see Figure 13a). The angles αA and αB
are calculated as stated below:

αA = arccos

(
wAwAwA ·BABABA
|wAwAwA| · |BABABA|

)
(30)

αB = arccos

(
wBwBwB ·ABABAB
|wBwBwB| · |ABABAB|

)
(31)

When one of αA or αB is bigger then π
2 the distance to the

line piece is equal to the vector pointing to the closest point
(wAwAwA or wBwBwB) as shown in Figure 13b. If both angles are smaller
then π

2 as shown in Figure 13a the distance to the line piece is
equal to the length of a line crossing the line piece at a right
angle coming from the point.

d =

|wAwAwA| αA ≥ π

2 , αB < π
2

|wBwBwB| αA <
π
2 , αB ≥

π
2

|wAwAwA| · sin(αA) αA <
π
2 , αB < π

2

(32)

11

(a) (b)

Fig. 13: Situations for calculating distance between point and line piece

12

	Introduction
	Preliminaries
	Boids
	Vehicle kinematics

	Flocking algorithm
	Simulation implementation
	Simulation environment
	Implementation and design
	Evaluation of simulation

	Evaluation
	Finding parameters
	Radius of turn
	Width of road
	Narrowing road

	Conclusion and future work
	References
	Appendices
	Kinematics
	Distance between point and line piece

