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ABSTRACT 

There exist many routing algorithms for networks that allow 

nodes to efficiently send messages through a network, these 

algorithms require a map of the network. One method for 

gaining knowledge about the topology of a network is to store 

the path a packet has taken and include it in the packet header. 

This will burden the network with the extra required overhead 

to share the paths of packets, however a lot of information can 

be gained from analyzing this data. This paper will analyze the 

information gain and burden of this method. To accomplish 

this, we will write software that examines received packets 

from a simulated network and updates routing tables based on 

the paths these packets took. Statistics about information gain 

will be examined and presented. 
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1. INTRODUCTION 
Networks are continuously growing in size as the number of 

devices in our society keeps increasing, as well as the size of 

incoming and outgoing packets for these devices. To ensure that 

the networks can scale with the increase in size and traffic, 

routing algorithms must be as efficient as possible. The goal of 

these algorithms is to send data from sender to receiver, to 

accomplish this they must add data to the packets that is not 

required by the receiver but required by the network to operate. 

This is called metadata, metadata contains information about 

destination, source, packet size, etc. depending on the network 

design. 

This metadata is very valuable for routing algorithms, as they 

can use it to build a map of the network and use it to decide 

where to send packets to. The path a packet took through the 

network is extremely useful information that can be added to 

the metadata of the packet structure. This information tells 

routing algorithms a lot about what the network looks like. 

However, they require a lot of metadata to be send through the 

network. This added overhead is undesired. 

This paper aims to; discuss the up- and downside of adding 

paths to the packet structure, create software that realizes 

routing maps being built based on packet paths, and analyze the 

effects this has on a network. 

2. BACKGROUND 
To understand the aims of this paper, we must first give some 

background on routing, and provide information about the 

simulator that will be used. 

2.1 Routing algorithms 
To ensure that packets get delivered to their destination routing 

algorithms are used, this can be new packets or packets that are 

being forwarded. Ideally the routing algorithm can find the best 

path for all packets being sent through the network. To realize 

this, however, the routing algorithm would need a good map of 

the network. This map of the network is especially difficult 

when the network is constantly changing, which is often the 

case. Existing connections between nodes can drop, new 

connections can be found, or perhaps the nodes in the network 

change locations. 

If every node in the network would flood the network with their 

own neighbors, each node would be able to build a complete 

map for all connected nodes. However, this would require a lot 

of information to flood the network if the network is non-static 

then this information would have to be flooded many times. 

This is undesired as it would make the network less efficient. 

Packet loss will be more likely, packets will take longer to 

process, computational requirements will increase. Therefore, it 

is important that all routing algorithms have an efficient method 

of mapping the network. 

 

2.2 The simulator 
Before we can write a program for our purposes, we must first 

simulate a network. To realize this, we will use ‘The 

Opportunistic Network Environment Simulator’ (‘The ONE’). 

This is a simulation environment that we will use to simulate a 

network which we can later use to test our software on and 

analyze. The network I will be simulating can be seen below 

(figure 1). 

 

Figure 1. A map of the network 

The network is 100 nodes in size and on average each node has 

3.14 edges. The simulation uses epidemic routing to flood this 

network with packets, where packets will be dropped if they 

have been received previously. The epidemic routing algorithm 

implemented in the simulator replicates messages and sends 
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these copies to all neighbors, except the one he received the 

original from. This ensures that any node with a connection to a 

node, that has created a new packet, will receive that packet and 

will only receive it once. The simulation outputs information to 

a log where we can find the creation of the edges at 

initialization, and we can see every time a message got sent to a 

node. 

Whilst the network consists of 100 nodes, 2 of these nodes do 

not have any neighbors and thus are not connected to the 

network. Therefore, these two nodes will not be included in any 

results and the analysis thereof. The network will be seen as 

having 98 nodes total. 

2.3 Python libraries 
For this project we use the following Python libraries: 

Matplotlib, and Networkx. 

Matplotlib allows us to import many mathematical functions 

that we use to parse through the data and analyze the results, it 

is also used to generate and show graphs. Networkx is a library 

that is used to represent networks in Python, in this case the 

network from the simulator. 

3. RELATED WORK 
Breitbart et al. [1] discussed the importance of topology 

information in networks and developed novel algorithms for 

discovering topology in heterogeneous IP networks. 

Donnet et al. [2] did a survey on measurements of the network 

topology. Diaz et al. [3] discuss the overhead of a topology 

discovery algorithm and talk about the related trade-offs. 

4. RESEARCH GOAL 
The goal of this research is to find out whether keeping track of 

the path packets took to reach its destination can be used as a 

networking mapping approach. More specifically, does the 

burden of having to increase packet size for this information 

justify the effectiveness this has on mapping the network. To 

find these answers we must create a program that can map the 

network through analyzing paths and examine the result to 

determine the validity of this solution. 

4.1 Research question 
Can a network be mapped by keeping track of paths that 

packets take in a network, and is this a viable solution? 

5. METHODOLOGY 
To approach the research question, a Python program was 

created. In this section we will discuss the development of this 

program. 

5.1 Translating the simulation 
Firstly, we translate the graph into our Python program. For this 

we create the nodes and get their neighbors from the log. Once 

all this information is parsed, each node will have a tiny map of 

the network that consists of their direct neighbors. 

Next, we go through the logs and look at all the successfully 

received messages, filtering out received messages that had 

already been received prior and thus were dropped. For each 

received message, all that is captured in the log is: the 

timestamp, the message ID, the sender, the receiver, and 

whether it was a successfully received message. 

If a message is a newly created message, we give it a path that 

contains the origin and destination of this message. If we find a 

message that the origin forwarded, we look through the events 

from the origin node to find the event where the origin received 

this packet. We then copy the path from there and append it 

with the current destination. This ensures that for each message 

received event we will have the path this message took so far. 

5.2 Mapping the network 
Now that we have the path for each received message event, we 

can create for each node a map of the network, based on the 

paths of the messages the node received. The network map for 

each node has the following structure: 

[(Node_ID, [Neighbor_IDs..])] 

This is a list of tuples, where each tuple has a node coupled to a 

list of that node’s neighbors. 

To update our network map based on a path, we loop over the 

path starting with the first node. We check whether we have this 

node in our network map. If we do not, we add it to our map 

and, if they exist, we add the previous and next node in the path 

to this new node’s neighbor list. If we do have this node in our 

network map, we check whether we have the previous and next 

node in the path, in the current node’s neighbor list and add 

them if they are not yet in that list. 

5.3 Getting useful data 
For us to examine the validity of this network mapping method, 

we must keep track of data that show the efficiency. For these 

reasons we will save for each node: the total amount of received 

messages, the message IDs that updated the routing table 

together with what event number this was. 

Finally, when all events have been parsed, we can examine for 

each node how accurate their map is. We do this by comparing 

what a complete network map looks like and what the network 

map of an individual node looks like. 

5.4 Reducing metadata 
Mapping the network comes at a cost; packets in the network 

are carrying more metadata to store the path they have taken. 

This metadata is undesired and should be as little as possible. 

Therefore, we will quantify the overhead in our program to 

determine the total shared metadata. Finally, we will change the 

number of hops stored in our paths. We will either store all 

hops, or the hops up to n. For these different configurations we 

will determine the efficiency, by comparing the overhead cost 

to the completeness of the network maps. 

We could also look at storing the last n hops, however this will 

only limit the vision of the nodes. This is because a node will 

then only be able to see n hops far, as any node beyond that hop 

count will not be stored in the path. 

6. ANALYSIS 
With the data from the simulation being parsed through the 

Python program, we have gained information on path-based 

network mapping. We can use this data to analyze the 

information gain and burden of this approach. 

6.1 The completeness of the network maps 
The size of all neighbor lists combined is 314, for every edge in 

the network there are two entries in the combined neighbor list 

(one for each node). This means that the network has 157 edges, 

and 100 nodes. Due to the randomness of the network, two 

nodes are not connected. This means that the connected part of 

the network consists of 98 nodes. 

Each node in the entry ended up with having an entry in their 

map for every connected node in the network. However, for 

each node to have a full map of the network, they would need to 

have neighbor lists that collectively equal 314 in size. However, 

the average neighbor list size is 305.95. This means that each 

node is unaware of 4.03 edges out of 157 on average. 



 

3 

 

On average each connected node was aware of 97.44% of all 

the edges in the network. The 2.56% that a node is unaware of 

are most likely edges that have a high travel time or are 

outperformed severely by other edges. Thus, these edges have 

little value, or even no value at all, to this node. 

Since the number of packets flooded into the network is finite, 

each node received 3,637 messages on average, the network 

maps of nodes are incomplete. If there were infinite number of 

packets being flooded, then eventually all nodes will have a full 

map of the network. 

6.2 Differences in learning between nodes 
Some nodes learn the layout of the network faster and with 

fewer messages than others. The nodes in the center of the 

network have a lower average distance between nodes than the 

nodes in the edges of the network. It is expected that those 

nodes in the center will learn about the network faster than 

those at the edges. There may also be difference in learning 

when comparing nodes with few neighbors and nodes with 

many neighbors. 

However, when comparing the average time needed for nodes 

to learn 25, 50, and 75% off the network map based on the 

number of neighbors. We find that there is no statistically 

significant difference in learning time when looking at the 

neighbor count. 

 

Table 1. Learning time (in seconds) for nodes with 2, 3, 4, or 

5 neighbors to learn 25, 50, and 75% of the network. 

 25% 50% 75% 

2 119 463 1995 

3 115 452 1973 

4 119 433 1994 

5 132 454 1963 

 

Above you can see a table showing the timestamp in the 

simulation where the node has received enough data to have 

learned 25, 50, or 75% of the network. The average of nodes is 

taken based on their neighbor count; 2, 3, 4, or 5. This data 

disproves that nodes with higher number of neighbors learn 

faster compared to those with lower number of neighbors when 

it comes to the learning algorithm discussed in this paper.  

6.3 The information gain 
On average each node received 3,637 messages, of which 76.03 

gave new information. This shows that on average 3,560.97 

messages (98% of all messages) did not give new information 

about the network. This is a significant amount, and the 

information gain is quite low. 

From observing the message IDs that gave new information you 

can see that IDs with small values are very likely to give new 

information, whereas IDs with high values are very unlikely to 

give new information. This is because as the IDs increase the 

nodes have received increasingly more messages. When a node 

has already received many messages, that node will have a good 

map of the network and will be unlikely to gain new 

information from future messages. 

This can also be seen when looking at the timestamp when 

messages are received, at low timestamps more packets 

containing new information get received than at higher 

timestamps. In the bar graph (figure 2) you can see the number 

of packets, with new knowledge about the network, that were 

received by nodes within certain intervals.  

 

Figure 2. The number of packages that gave new 

information for various time intervals (in seconds). 

 

6.4 The burden 
As the hop count of a packet increases, the number of nodes in 

its path increase too. This means that the metadata required can 

become very large if the packet had to move through many 

nodes in the network. In the worst case the path size would be 

equal to the total amount of connected nodes, however it is very 

unlikely that a packet would visit every node in the network. 

When assuming that each address in the path takes up a single 

byte, then we find that the combined metadata for every 

successfully received message is equal to 4,418,194 bytes 

(4.4GB). The combined metadata of all received messages that 

gave new information to nodes is 104,863 (0.1GB), which is 

2.4% of the total combined metadata. 

6.5 Limiting the path size 
 

Table 2: Data for path sizes 5, 10, 15, 20, and 25. 

 5 10 15 20 25 

Overhead 1.715 3.032 3.853 4.239 4.377 

Completeness 0.973 0.974 0.974 0.974 0.974 

75% time 2528 2153 2041 1984 1981 

The results for limiting the path size can be seen in table 2. In 

this table ‘Overhead’ is the combined metadata of all packets 

successfully received (in GB), ‘Completeness’ is the average 

completeness of the network map, ‘75% time’ is the average 

amount of time needed for a node to learn 75% of the network. 

From this data we find that the metadata required increases 

when the path size limit becomes bigger, however this increase 

diminishes as the path size limit becomes larger. This is because 

most received messages have only traveled a limited number of 

hops, making the probability of a received message reaching the 

path limit lower as the limit increases. Similarly, the learning 

time required to learn three quarters of the network deviates 

largely when increasing a small path size limit, and barely 

deviates when comparing high path size limits. 

The average completeness of a node changes very little when 

limiting the path size. However, when severely limiting the 

number of packets that will be analyzed this will have a large 

effect on the average completeness of the network. When 

looking at path sizes lower than 5 we find nodes that have a 

completeness lower than 75% of the entire network. 

 

7. CONCLUSION AND FUTURE WORK  
Path-based topology discovery has a high information gain in 

early stages of a network. But as the amount of received 

messages increases, the topological information gain of future 

messages decreases. At a certain point, the burden of having to 
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share the paths is larger than the information gain. When this 

happens is dependent on the network: the network size and the 

average amount of neighbors are likely factors that influence 

this. For future work it would be interesting to find out when 

this point occurs and in what ways certain factors influence it. 

Also, those paths that do give new information about the 

network are likely to contain many edges that are already 

captured in the network map. Edges that provide the best 

connection for a node to a large part of the network will be seen 

often in these paths. Possible future work would be to detect the 

occurrence of edges and use this information to determine the 

value of an edge. 

The number of neighbors a node has, has very little influence 

on the speed at which the node learns the network. Limiting the 

sizes of paths in the metadata of packets does have a large 

effect on the learning speed, decreasing this limit decreases the 

learning speed. Additionally, the overhead also decreases, 

whilst the average completeness of the network map for all 

nodes stays the same. This makes limiting the path size in 

headers a trade-off between learning speed and the overhead. 

The point at which the burden of the overhead outperforms the 

rate of information gain by limiting path size will be different 

for each network. Currently only one network was analyzed 

using the developed software program, for future work this 

software would be used on many networks. 

To summarize, path-based topology discovery can be used to 

successfully map a network. Especially in the early stages of 

network discovery the algorithm is very efficient in learning the 

topology. When a network is already largely mapped the burden 

of all the required metadata is too high to justify the low 

information gain. Limiting the path size limit also helps with 

making the method more viable, as it allows learning speed to 

be sacrificed for lowered overhead costs. 
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