

1

The burden and information gain of path-based topology
discovery
Remi Hendriks

University of Twente
PO Box 217, 7500 AE Enschede

the Netherlands

r.hendriks@student.utwente.nl

ABSTRACT

There exist many routing algorithms for networks that allow

nodes to efficiently send messages through a network, these

algorithms require a map of the network. One method for

gaining knowledge about the topology of a network is to store

the path a packet has taken and include it in the packet header.

This will burden the network with the extra required overhead

to share the paths of packets, however a lot of information can

be gained from analyzing this data. This paper will analyze the

information gain and burden of this method. To accomplish

this, we will write software that examines received packets

from a simulated network and updates routing tables based on

the paths these packets took. Statistics about information gain

will be examined and presented.

Keywords

Path-based discovery; information gain; metadata burden on

network; network topology; topology discovery.

1. INTRODUCTION
Networks are continuously growing in size as the number of

devices in our society keeps increasing, as well as the size of

incoming and outgoing packets for these devices. To ensure that

the networks can scale with the increase in size and traffic,

routing algorithms must be as efficient as possible. The goal of

these algorithms is to send data from sender to receiver, to

accomplish this they must add data to the packets that is not

required by the receiver but required by the network to operate.

This is called metadata, metadata contains information about

destination, source, packet size, etc. depending on the network

design.

This metadata is very valuable for routing algorithms, as they

can use it to build a map of the network and use it to decide

where to send packets to. The path a packet took through the

network is extremely useful information that can be added to

the metadata of the packet structure. This information tells

routing algorithms a lot about what the network looks like.

However, they require a lot of metadata to be send through the

network. This added overhead is undesired.

This paper aims to; discuss the up- and downside of adding

paths to the packet structure, create software that realizes

routing maps being built based on packet paths, and analyze the

effects this has on a network.

2. BACKGROUND
To understand the aims of this paper, we must first give some

background on routing, and provide information about the

simulator that will be used.

2.1 Routing algorithms
To ensure that packets get delivered to their destination routing

algorithms are used, this can be new packets or packets that are

being forwarded. Ideally the routing algorithm can find the best

path for all packets being sent through the network. To realize

this, however, the routing algorithm would need a good map of

the network. This map of the network is especially difficult

when the network is constantly changing, which is often the

case. Existing connections between nodes can drop, new

connections can be found, or perhaps the nodes in the network

change locations.

If every node in the network would flood the network with their

own neighbors, each node would be able to build a complete

map for all connected nodes. However, this would require a lot

of information to flood the network if the network is non-static

then this information would have to be flooded many times.

This is undesired as it would make the network less efficient.

Packet loss will be more likely, packets will take longer to

process, computational requirements will increase. Therefore, it

is important that all routing algorithms have an efficient method

of mapping the network.

2.2 The simulator
Before we can write a program for our purposes, we must first

simulate a network. To realize this, we will use ‘The

Opportunistic Network Environment Simulator’ (‘The ONE’).

This is a simulation environment that we will use to simulate a

network which we can later use to test our software on and

analyze. The network I will be simulating can be seen below

(figure 1).

Figure 1. A map of the network

The network is 100 nodes in size and on average each node has

3.14 edges. The simulation uses epidemic routing to flood this

network with packets, where packets will be dropped if they

have been received previously. The epidemic routing algorithm

implemented in the simulator replicates messages and sends

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

28thTwente Student Conference on IT, Jan. 29th, 2021, Enschede, The

Netherlands. Copyright 2018, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

2

these copies to all neighbors, except the one he received the

original from. This ensures that any node with a connection to a

node, that has created a new packet, will receive that packet and

will only receive it once. The simulation outputs information to

a log where we can find the creation of the edges at

initialization, and we can see every time a message got sent to a

node.

Whilst the network consists of 100 nodes, 2 of these nodes do

not have any neighbors and thus are not connected to the

network. Therefore, these two nodes will not be included in any

results and the analysis thereof. The network will be seen as

having 98 nodes total.

2.3 Python libraries
For this project we use the following Python libraries:

Matplotlib, and Networkx.

Matplotlib allows us to import many mathematical functions

that we use to parse through the data and analyze the results, it

is also used to generate and show graphs. Networkx is a library

that is used to represent networks in Python, in this case the

network from the simulator.

3. RELATED WORK
Breitbart et al. [1] discussed the importance of topology

information in networks and developed novel algorithms for

discovering topology in heterogeneous IP networks.

Donnet et al. [2] did a survey on measurements of the network

topology. Diaz et al. [3] discuss the overhead of a topology

discovery algorithm and talk about the related trade-offs.

4. RESEARCH GOAL
The goal of this research is to find out whether keeping track of

the path packets took to reach its destination can be used as a

networking mapping approach. More specifically, does the

burden of having to increase packet size for this information

justify the effectiveness this has on mapping the network. To

find these answers we must create a program that can map the

network through analyzing paths and examine the result to

determine the validity of this solution.

4.1 Research question
Can a network be mapped by keeping track of paths that

packets take in a network, and is this a viable solution?

5. METHODOLOGY
To approach the research question, a Python program was

created. In this section we will discuss the development of this

program.

5.1 Translating the simulation
Firstly, we translate the graph into our Python program. For this

we create the nodes and get their neighbors from the log. Once

all this information is parsed, each node will have a tiny map of

the network that consists of their direct neighbors.

Next, we go through the logs and look at all the successfully

received messages, filtering out received messages that had

already been received prior and thus were dropped. For each

received message, all that is captured in the log is: the

timestamp, the message ID, the sender, the receiver, and

whether it was a successfully received message.

If a message is a newly created message, we give it a path that

contains the origin and destination of this message. If we find a

message that the origin forwarded, we look through the events

from the origin node to find the event where the origin received

this packet. We then copy the path from there and append it

with the current destination. This ensures that for each message

received event we will have the path this message took so far.

5.2 Mapping the network
Now that we have the path for each received message event, we

can create for each node a map of the network, based on the

paths of the messages the node received. The network map for

each node has the following structure:

[(Node_ID, [Neighbor_IDs..])]

This is a list of tuples, where each tuple has a node coupled to a

list of that node’s neighbors.

To update our network map based on a path, we loop over the

path starting with the first node. We check whether we have this

node in our network map. If we do not, we add it to our map

and, if they exist, we add the previous and next node in the path

to this new node’s neighbor list. If we do have this node in our

network map, we check whether we have the previous and next

node in the path, in the current node’s neighbor list and add

them if they are not yet in that list.

5.3 Getting useful data
For us to examine the validity of this network mapping method,

we must keep track of data that show the efficiency. For these

reasons we will save for each node: the total amount of received

messages, the message IDs that updated the routing table

together with what event number this was.

Finally, when all events have been parsed, we can examine for

each node how accurate their map is. We do this by comparing

what a complete network map looks like and what the network

map of an individual node looks like.

5.4 Reducing metadata
Mapping the network comes at a cost; packets in the network

are carrying more metadata to store the path they have taken.

This metadata is undesired and should be as little as possible.

Therefore, we will quantify the overhead in our program to

determine the total shared metadata. Finally, we will change the

number of hops stored in our paths. We will either store all

hops, or the hops up to n. For these different configurations we

will determine the efficiency, by comparing the overhead cost

to the completeness of the network maps.

We could also look at storing the last n hops, however this will

only limit the vision of the nodes. This is because a node will

then only be able to see n hops far, as any node beyond that hop

count will not be stored in the path.

6. ANALYSIS
With the data from the simulation being parsed through the

Python program, we have gained information on path-based

network mapping. We can use this data to analyze the

information gain and burden of this approach.

6.1 The completeness of the network maps
The size of all neighbor lists combined is 314, for every edge in

the network there are two entries in the combined neighbor list

(one for each node). This means that the network has 157 edges,

and 100 nodes. Due to the randomness of the network, two

nodes are not connected. This means that the connected part of

the network consists of 98 nodes.

Each node in the entry ended up with having an entry in their

map for every connected node in the network. However, for

each node to have a full map of the network, they would need to

have neighbor lists that collectively equal 314 in size. However,

the average neighbor list size is 305.95. This means that each

node is unaware of 4.03 edges out of 157 on average.

3

On average each connected node was aware of 97.44% of all

the edges in the network. The 2.56% that a node is unaware of

are most likely edges that have a high travel time or are

outperformed severely by other edges. Thus, these edges have

little value, or even no value at all, to this node.

Since the number of packets flooded into the network is finite,

each node received 3,637 messages on average, the network

maps of nodes are incomplete. If there were infinite number of

packets being flooded, then eventually all nodes will have a full

map of the network.

6.2 Differences in learning between nodes
Some nodes learn the layout of the network faster and with

fewer messages than others. The nodes in the center of the

network have a lower average distance between nodes than the

nodes in the edges of the network. It is expected that those

nodes in the center will learn about the network faster than

those at the edges. There may also be difference in learning

when comparing nodes with few neighbors and nodes with

many neighbors.

However, when comparing the average time needed for nodes

to learn 25, 50, and 75% off the network map based on the

number of neighbors. We find that there is no statistically

significant difference in learning time when looking at the

neighbor count.

Table 1. Learning time (in seconds) for nodes with 2, 3, 4, or

5 neighbors to learn 25, 50, and 75% of the network.

 25% 50% 75%

2 119 463 1995

3 115 452 1973

4 119 433 1994

5 132 454 1963

Above you can see a table showing the timestamp in the

simulation where the node has received enough data to have

learned 25, 50, or 75% of the network. The average of nodes is

taken based on their neighbor count; 2, 3, 4, or 5. This data

disproves that nodes with higher number of neighbors learn

faster compared to those with lower number of neighbors when

it comes to the learning algorithm discussed in this paper.

6.3 The information gain
On average each node received 3,637 messages, of which 76.03

gave new information. This shows that on average 3,560.97

messages (98% of all messages) did not give new information

about the network. This is a significant amount, and the

information gain is quite low.

From observing the message IDs that gave new information you

can see that IDs with small values are very likely to give new

information, whereas IDs with high values are very unlikely to

give new information. This is because as the IDs increase the

nodes have received increasingly more messages. When a node

has already received many messages, that node will have a good

map of the network and will be unlikely to gain new

information from future messages.

This can also be seen when looking at the timestamp when

messages are received, at low timestamps more packets

containing new information get received than at higher

timestamps. In the bar graph (figure 2) you can see the number

of packets, with new knowledge about the network, that were

received by nodes within certain intervals.

Figure 2. The number of packages that gave new

information for various time intervals (in seconds).

6.4 The burden
As the hop count of a packet increases, the number of nodes in

its path increase too. This means that the metadata required can

become very large if the packet had to move through many

nodes in the network. In the worst case the path size would be

equal to the total amount of connected nodes, however it is very

unlikely that a packet would visit every node in the network.

When assuming that each address in the path takes up a single

byte, then we find that the combined metadata for every

successfully received message is equal to 4,418,194 bytes

(4.4GB). The combined metadata of all received messages that

gave new information to nodes is 104,863 (0.1GB), which is

2.4% of the total combined metadata.

6.5 Limiting the path size

Table 2: Data for path sizes 5, 10, 15, 20, and 25.

 5 10 15 20 25

Overhead 1.715 3.032 3.853 4.239 4.377

Completeness 0.973 0.974 0.974 0.974 0.974

75% time 2528 2153 2041 1984 1981

The results for limiting the path size can be seen in table 2. In

this table ‘Overhead’ is the combined metadata of all packets

successfully received (in GB), ‘Completeness’ is the average

completeness of the network map, ‘75% time’ is the average

amount of time needed for a node to learn 75% of the network.

From this data we find that the metadata required increases

when the path size limit becomes bigger, however this increase

diminishes as the path size limit becomes larger. This is because

most received messages have only traveled a limited number of

hops, making the probability of a received message reaching the

path limit lower as the limit increases. Similarly, the learning

time required to learn three quarters of the network deviates

largely when increasing a small path size limit, and barely

deviates when comparing high path size limits.

The average completeness of a node changes very little when

limiting the path size. However, when severely limiting the

number of packets that will be analyzed this will have a large

effect on the average completeness of the network. When

looking at path sizes lower than 5 we find nodes that have a

completeness lower than 75% of the entire network.

7. CONCLUSION AND FUTURE WORK
Path-based topology discovery has a high information gain in

early stages of a network. But as the amount of received

messages increases, the topological information gain of future

messages decreases. At a certain point, the burden of having to

4

share the paths is larger than the information gain. When this

happens is dependent on the network: the network size and the

average amount of neighbors are likely factors that influence

this. For future work it would be interesting to find out when

this point occurs and in what ways certain factors influence it.

Also, those paths that do give new information about the

network are likely to contain many edges that are already

captured in the network map. Edges that provide the best

connection for a node to a large part of the network will be seen

often in these paths. Possible future work would be to detect the

occurrence of edges and use this information to determine the

value of an edge.

The number of neighbors a node has, has very little influence

on the speed at which the node learns the network. Limiting the

sizes of paths in the metadata of packets does have a large

effect on the learning speed, decreasing this limit decreases the

learning speed. Additionally, the overhead also decreases,

whilst the average completeness of the network map for all

nodes stays the same. This makes limiting the path size in

headers a trade-off between learning speed and the overhead.

The point at which the burden of the overhead outperforms the

rate of information gain by limiting path size will be different

for each network. Currently only one network was analyzed

using the developed software program, for future work this

software would be used on many networks.

To summarize, path-based topology discovery can be used to

successfully map a network. Especially in the early stages of

network discovery the algorithm is very efficient in learning the

topology. When a network is already largely mapped the burden

of all the required metadata is too high to justify the low

information gain. Limiting the path size limit also helps with

making the method more viable, as it allows learning speed to

be sacrificed for lowered overhead costs.

8. REFERENCES
[1] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S.

Seshadri and A. Silberschatz, "Topology discovery in

heterogeneous IP networks," Proceedings IEEE

INFOCOM 2000. Conference on Computer

Communications. Nineteenth Annual Joint Conference of

the IEEE Computer and Communications Societies (Cat.

No.00CH37064), Tel Aviv, Israel, 2000, pp. 265-274

vol.1. DOI=

https://doi.org/10.1109/INFCOM.2000.832196

[2] B. Donnet and T. Friedman, "Internet topology discovery:

a survey," in IEEE Communications Surveys & Tutorials,

vol. 9, no. 4, pp. 56-69, Fourth Quarter 2007. DOI=

https://doi.org/10.1109/COMST.2007.4444750

[3] Diaz C., Murdoch S.J., Troncoso C. (2010) Impact of

Network Topology on Anonymity and Overhead in Low-

Latency Anonymity Networks. In: Atallah M.J., Hopper

N.J. (eds) Privacy Enhancing Technologies. PETS 2010.

Lecture Notes in Computer Science, vol 6205. Springer,

Berlin, Heidelberg. DOI=https://doi.org/10.1007/978-3-

642-14527-8_11

https://doi.org/10.1109/INFCOM.2000.832196
https://doi.org/10.1109/COMST.2007.4444750
https://doi.org/10.1007/978-3-642-14527-8_11
https://doi.org/10.1007/978-3-642-14527-8_11

