
Generating Specifications to Verify the Correctness of
Sanitizers
Daniël Huisman
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

d.a.j.huisman@student.utwente.nl

ABSTRACT
Web applications widely use string sanitizers to prevent
injection vulnerabilities, such as SQL injection and cross-
site scripting (XSS). However, it is difficult to write cor-
rect sanitizers without introducing injection vulnerabili-
ties. It is therefore important to verify the correctness of
sanitizers. Previous work has presented an approach for
verifying correctness by comparing learned models of san-
itizers to specifications of the desired behaviour. It can
be time-consuming to write these specifications by hand.
Therefore, this paper presents an approach for automati-
cally generating sanitizer specifications from minimal user
input. Firstly, a classification of different types of sanitizer
specifications was made. Secondly, automatic generation
techniques have been conceived and implemented. Lastly,
a domain-specific language is introduced which enables
users to easily interact with the generation techniques.
The domain-specific language also allows users to combine,
export and test the generated sanitizer specifications.

Keywords
Sanitizers, Specifications, Symbolic Finite Automata, Sym-
bolic Finite Transducers, Software Verification

1. INTRODUCTION
Sanitizers are programs or algorithms that take user in-
put and replace or removed unwanted character sequences.
This is most commonly done to attempt to prevent injec-
tion vulnerabilities. Examples of injection vulnerabilities
are SQL injections, code injection, command injection and
cross-site scripting (XSS). These injection vulnerabilities
are a critical security risk for web applications and risk
exposure of sensitive information [12]. Therefore, sanitiz-
ers play an important role in handling user input in web
applications.

An example of a sanitizer is the htmlspecialchars func-
tion in PHP [13], which replaces all HTML tags with
HTML entities to prevent them from being interpreted.
For instance, the HTML tag <script> would be replaced
with <script>.

Although sanitizers are widely used in web applications,
they can be difficult to write. Generally, sanitizers operate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
34th Twente Student Conference on IT Jan. 29th, 2021, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

on input of unlimited size UTF-8 strings, which makes it
hard to account for all possible variations. A small mistake
in the sanitizer can lead to a serious injection vulnerability.

To address this problem, research has been done into veri-
fying the correctness of sanitizers. Various approaches for
verifying the correctness of sanitizers have been proposed,
for example studying a theoretical model of the sanitizer
[2] or applying black-box learning algorithms to find such
a model [11]. This paper focuses on the approach of veri-
fying sanitizers by comparing a learned model to a speci-
fication of the desired behaviour. These models of desired
sanitizer behaviour are known as sanitizer specifications.

Sanitizer specifications can be tedious to write by hand,
as the number of states and transitions significantly in-
creases for more complex sanitizers [10]. The goal of this
paper is to automatically generate these sanitizer speci-
fications from some minimal user input. Here minimal
user input is defined as specifying one or more character-
istics for which the user wants to generate a specification
rather than providing an exact algorithm of how the san-
itizer should work. For example, the user could provide
a blacklist of certain words or a minimum and maximum
word length. The ability to automatically generate sani-
tizer specifications reduces the amount of time and effort
that has to be spent on manually writing specifications.
Instead, this time and effort can be spent on analysing
the sanitizer and its behaviour.

Firstly, this paper gives some background on the models
used to present sanitizer specifications in Section 2. Sec-
ondly, related work that was used as a starting point is
discussed in Section 3. Next, the methodology of this re-
search is laid out in Section 4. Then, Section 5 presents
a classification of sanitizer specifications and discusses the
possibility of automatic generation for each type in the
classification. Section 6 describes the automatic gener-
ation techniques that were conceived and implemented.
Section 7 introduces a domain-specific language for inter-
action with the generation techniques. Next, Section 8
discusses benchmarking the generation techniques for scal-
ability. Finally, Section 9 discusses the overall goal of au-
tomatically generating sanitizer specifications, its limita-
tions and potenial future work.

2. BACKGROUND
This paper uses Symbolic Finite Automata and Symbolic
Finite Transducers to represent sanitizer specifications.
These two concepts and their application for sanitizer spec-
ifications are explained in this section.

2.1 Symbolic Finite Automata
”Symbolic Finite Automata (SFAs) are finite state au-
tomata in which the alphabet is given by a Boolean alge-

1

q0
even(x)

even(x)

q1 q2
odd(x)

odd(x)

even(x)
odd(x)

Figure 1. SFA that accepts all inputs which contain at least
one odd number (Lathouwers [10]).

bra that may have an infinite domain, and transitions are
labeled with first-order predicates over such algebra.” [4]

SFAs can be defined by a tuple (A,Q, q0, F,∆) [7]:

• A is an effective Boolean algebra
• Q is the finite set of states
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of final states, also known as ac-

cepting states
• ∆ ⊆ Q×ΨA×Q is the finite set of transitions, where

ΨA is the set of predicates in A

An example of an SFA can be seen in Figure 1. Here tran-
sitions are labelled with even or odd predicates operating
on the input number x. This SFA will for instance accept
the number 316 and reject the number 226, because it
contains no odd numbers. As seen in this example, SFAs
allow the expression of wide range of input characters in
a single transition by using predicates.

2.2 Symbolic Finite Transducers
Symbolic Finite Transducers (SFTs) extend Symbolic Fi-
nite Automata by introducing outputs. ”A Symbolic Fi-
nite Transducer also produces outputs when given an in-
put. This output is computed using the given input char-
acter. Therefore all transitions in an SFT are labelled with
an input condition as well as an output sequence.” [10]

SFTs can be defined by a tuple (Q,Q0, F, ι, o,∆) [3, 11]:

• Q is the finite set of states
• q0 ∈ Q is the initial state
• F ⊆ Q is the set of final states, also known as ac-

cepting states
• ι is the input sort
• o is the output sort
• ∆ is a function consisting of ∆ε̄ ∪∆ε :

– ∆ε̄ denotes all transitions labelled with a first-
order predicate (which is the input condition)
and the set of output functions. The output
functions describe what output is generated when
this transition is taken.

– ∆ε denotes all transitions labelled with ε as the
input condition and the set of output functions.
ε-transitions are transitions that can be taken
without consuming an input at any point in
time.

An example of an SFT can be seen in Figure 2. The
input condition and output sequence are separated by a /
sign. Note that a transition may produce multiple outputs.
Taking the number 413 as input, the example SFT will end
in an accepting state and output [3, 5, 1, 3].

SFAs are a subset of SFTs, namely SFTs that produce
only empty output [3]. Therefore, the SFAs can also be
seen as SFTs without output.

q0

even(x) / [x-1, x+1]

odd(x) / [x]

odd(x) / [x]
even(x) / [x-1, x+1]

q1

Figure 2. SFT that accepts all inputs which contain at least
one odd number. For each even number it will output the
two surrounding numbers and for each odd number it will
output the odd number (Lathouwers [10]).

q0

x != '>' ^ x != '&' ^ x != '<' / [x]
x == '>' / [&, g, t, ;]

x == '&' / [&, a, m, p, ;]
x == '<' / [&, l, t, ;]

Figure 3. SFT which encodes <, > and & into their HTML
entities (Lathouwers [10]).

2.3 Sanitizer specifications
Sanitizers take some character sequence as input and re-
move or replace some of it. Symbolic Finite Transducers
can be used to represent this behaviour. [2, 10]

An example of a sanitizer specification can be seen in Fig-
ure 3. This SFT replaces some characters, which are of
special significance in HTML, with their respective HTML
entities. The SFT represents a simple sanitizer that pre-
vents a browser from interpreting HTML tags in the input.

Another example of a sanitizer specification is an SFA with
two states, of which only the last is accepting, with a true
transition between them. This SFA accepts all non-empty
words. In other words, it is a sanitizer that requires a
minimum length of one.

For both SFAs and SFTs equivalence can be checked. If
one has an SFT representing the implementation of a sani-
tizer and an SFT representing the specification of the san-
itizer, i.e. the desired behaviour, these two can be com-
pared and checked for equivalence. This is one approach
to verifying the correctness of sanitizers [10].

3. RELATED WORK
As mentioned in Section 1 and Section 2, there has been
previous research on generating SFA or SFT representa-
tions of sanitizers. This research primarily focuses on gen-
erating an SFA or SFT from a given sanitizer, for example
from its source code [2] or by using a black-box learning al-
gorithm [11]. Another approach is introduced by Hooimei-
jer et al. [9] called BEK, which is a domain-specific lan-
guage (DSL) for writing sanitizers and analysing their be-
havior. The BEK language can be compiled to other lan-
guages, such as JavaScript and C#. The BEK tools can
also generate an SFA for a sanitizer written in BEK, which
is then used in the analysis process. While this approach
also generates an SFA from user input, the user input is
not simple by our definition in Section 1. Effectively, BEK
is just another way to write sanitizer source code. For a

2

user to understand or investigate a sanitizer, they would
first have to convert the source code of the original san-
itizer to BEK before being able to reason about its SFA
representation.

There has also been some previous research mentioning
the generation of sanitizer specifications from user input.
Lathouwers [10] proposes three techniques for automatic
generation of certain types of sanitizer specifications, namely
for whitelist, blacklist and length specifications. For the
whitelist and blacklist specifications, the input is a list of
acceptable or unacceptable words, respectively. Firstly,
an SFA is constructed for each word on the list. Secondly,
the union of these SFAs is computed. This results in a
sanitizer specification for the entire whitelist or blacklist.
For the length specification the inputs are an integer n
and an operator, namely =, 6=, <,>,≤ or ≥. From this
input, an SFA can be constructed with n states with true
transitions, which accept all input characters. Then, de-
pending on the operator, certain states are marked as ac-
cepting states. This results in a sanitizer specification that
is able to check certain requirements for the length of the
input. Furthermore, Lathouwers [10] mentions exploring
automatically generating specifications based on user in-
put as future work to improve the user-friendliness of their
SFTLearning tool. These proposed generation techniques
were used as a starting point for this paper.

4. METHODOLOGY
To determine what types of sanitizer specification can be
automatically generated, we started by classifying speci-
fications into types and possibly subtypes. We used the
classification of Lathouwers [10] as a starting point and
expanded upon this classification by looking at properties
that are checked in commonly used sanitizer implementa-
tions.

Afterwards, we iterated over the specification types as fol-
lows:

1. Select a (sub)type of specifications
2. Conceive a generation technique
3. Implement the generation technique
4. Test the generation technique to verify correctness
5. Benchmark the generation technique to determine

scalability
6. Adjust type classification where necessary

4.1 Selecting a (sub)type
From the classification of sanitizer specifications, we picked
one type or subtype for which no generation technique has
previously been found. We started with simple specifica-
tion types, e.g. only accept a certain length, and contin-
ued to more complex specification types. This way simpler
techniques of previous iterations could be used as a basis
for more complex techniques.

4.2 Conceiving a technique
We started by looking at examples of sanitizer implemen-
tations that belong to this classification type to determine
similarities and differences. From the similarities, we cre-
ate an initial technique. We then expanded upon this tech-
nique to address the differences until it was possible to
generate all examples of this type. Furthermore, litera-
ture research was used to find solutions or inspiration in
related work.

4.3 Implementing the technique
The generation technique were implemented in Java based
on the work of Lathouwers et al. on SFTLearning [11].

Just like SFTLearning, these implementations use D’Antoni’s
Symbolic Automata library.

4.4 Testing the technique
Firstly, the generation technique were tested by hand by
providing input and checking if the generated specifica-
tion were correct. Secondly, test cases were written to
automatically check a wide variety of inputs by compar-
ing it to the output of the generated sanitizer specification.
These automated tests were implemented using the JUnit
5 framework. The automated tests did not test all possible
input combinations by rather focused on a diverse subset
of input values.

4.5 Benchmarking the technique
To empirically determine the scalability of the generation
technique, benchmarks were used. These benchmarks fo-
cus on two properties:

• Relation between input and the number of states and
transitions in the specification
• Relation between input and the time complexity of

the generation technique

These were both benchmarked by generating random in-
put of increasing sizes and generating sanitizer specifica-
tions for them. For each input, the generated amount of
states and transitions was counted and the execution time
was measured.

4.6 Adjusting the classification
At any point in this process, it was possible that a gen-
eration technique did not work or only worked for a lim-
ited subtype of specifications. It was also possible that
a generation technique could be extended to more types
of specifications. These insights were noted and used to
update the type classification.

5. CLASSIFICATION
This section presents the classification of sanitizer specifi-
cations. It is split into two categories, namely SFAs and
SFTs. SFAs represent sanitizer specifications that only
check whether input is valid or invalid. SFTs represent
sanitizer specifications that also generate an output for
the input.

5.1 Symbolic Finite Automata
Firstly, we separate two trivial SFAs: the SFA that accepts
all input and the SFA that rejects all input. Secondly, the
classification of Lathouwers [10] is added, see Section 3 for
a description of these SFAs. Table 1 shows the initial SFA
classification.

Specification type User input
Trivial Boolean b, whether to accept or

not
Length Integer n and operator =, 6=, <,>

,≤ or ≥
Blacklist List of unacceptable words
Whitelist List of acceptable words
Other Unknown

Table 1. Initial classification of SFA specification types.

Next, we note that the blacklist and whitelist specifica-
tions are each other’s complement. Therefore, these two
specification types can be merged into a new classification
called a word list. The word list requires a list of words
and an operator, namely equals or not equals. The word
list can match any input that is exactly on the list, but

3

https://github.com/Sophietje/SFTLearning
https://github.com/lorisdanto/symbolicautomata
https://github.com/lorisdanto/symbolicautomata
https://junit.org/junit5
https://junit.org/junit5

this can be extended by introducing two more operators,
namely contains and not contains. The contains op-
erator will match an input if the word occurs anywhere
in the string at least once and the not contains operator
behaves inversely.

It is now possible to match exact words, but this requires
very specific and rigid user input. Another approach is
matching a certain range of characters, for example the
range 0-9 matches any digit. By extending the length
specification with an additional character range parame-
ter, is it possible to match inputs of a certain length and
shape. The behaviour of the original length specification
type can be recreated by providing the range of all pos-
sible characters (\u0000-\uffff) as parameter. Table 2
shows the updated classification.

Specification type User input
Trivial Boolean b, whether to accept or

not
Range / length Character range r, integer n and

operator =, 6=, <,>,≤ or ≥
Word list List of words and operator equals,

not equals, contains or not

contains

Other Unknown

Table 2. Classification of SFA specification types with word
list and range added.

To extend the classification table, we can look at SFA op-
erations for making combinations. There are at least three
operations that can be performed to combine two SFAs,
these are: concatenation, union and intersection [7]. By
repeatedly performing these operations it is possible to
combine multiple SFAs into one. First, these SFA opera-
tions allow us to simply the classification by only listing
small building blocks for larger specifications. For exam-
ple, the world list specification could also be formed by
calculating the union of multiple word specifications. Note
that for the negated operators the intersection operation
has to be used to calculate the combined SFA. Secondly,
these operations allow us to construct more complex spec-
ifications. Take, for example, the intersection of the length
specifications (5, >), (10, <) and the word specification
("cast", contains). The combined SFA would match
any input between 6 and 9 characters containing the word
"cast", for instance "multicast" would match.

Looking at these combinations, the similarities with reg-
ular expressions (regex) become visible. In fact, it is pos-
sible to express a subset of regular expressions in regular
SFAs [14]. We will refer to this subset as simple regular
expressions and to all others as complex regular expres-
sions. Simple regular expressions consist of the following
features:

• Character classes

– (Negated) character sets ([abc], [^abc])

– Ranges ([a-z])

– Range shortcuts (\w, \W, \d, \D, \s, \S)

– Wildcard (.)

– Unicode categories (\p{Z}, \P{Z})

– Unicode scripts (\p{Latin}, \P{Latin})

• (Non-)capturing groups ((abc), (?:abc))
• Quantifiers (*, +, ?, {1}, {1,}, {1,3})
• Alternation (a|b)
• String boundary anchors (^, $)

Complex regular expressions consist of, but are not limited
to, the following features:

• Group references (\1)
• Lookaround ((?=abc), (?!abc), (?<abc), (?<!abc))
• Lazy quantifiers (*?, +?, ??)
• Word boundary anchors (\b, \B)
• Flags (i, g, m, u, y)

Using regular expressions we can express a wide range of
specification. Figure 4 shows an SFA for basic email ad-
dress validation derived from the following regex [8]:
/^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$/

Furthermore, regular expressions can also express all the
existing specification types in the classification. For in-
stance, the range specification ([a-z], 5, 6=) is equal to
the regex specification /[a-z]{0,4}|[a-z]{6,}/. How-
ever, the existing classification is kept, because there could
be a performance benefit from directly generating these
SFAs compared to generating them from regular expres-
sions. Table 3 shows the updated classification, but with-
out any of the combinations that could be made using the
concatenation, union and intersection operations.

Specification type User input
Trivial Boolean b, whether to accept or

not
Range / length Character range r, integer n and

operator =, 6=, <,>,≤ or ≥
Word Word w and operator equals, not

equals, contains or not con-

tains

Simple regex Regular expression r
Complex regex Not possible, requires lookaround

and/or registers
Other Unknown

Table 3. Classification of SFA specification types with regex
added.

Finally, there are specifications that can not be repre-
sented by standard SFAs. For instance, validating if each
HTML opening tag has a corresponding closing tag, which
is not possible without registers [10].

5.2 Symbolic Finite Transducers
Firstly, we separate two trivial SFTs: the identity SFT,
which accepts all input and produces output equal to the
input, and the constant SFT, which accepts all input and
always produces an output string s. Note that the trivial
SFT that rejects all input does not produce any output
and is therefore equivalent to the trivial SFA that rejects
all output. SFTs that do not produce outputs are not
listed in this classification, instead the SFA classification
should be used. Table 4 shows the initial SFT classifica-
tion.

Specification type User input
Trivial, identity -
Trivial, constant Output string s
Other Unknown

Table 4. Initial classification of SFT specification types.

Secondly, we introduce a simple SFT that accepts all in-
put and replaces any occurrences of a specific character
range with a certain output string. The character range
input is the same as for the character range SFA speci-
fication. Next, we separate SFTs that operate on exact
matches of a specific word, similar to the word list SFA

4

0 1[%+--.0-9A-Z_a-z]

[%+--.0-9A-Z_a-z]

2[@] 3[--.0-9A-Za-z]

[-0-9A-Za-z]
4[.]

[-0-9]

[.]

5
[A-Za-z]

[-0-9]

[.]

6[A-Za-z]

[-0-9]

[.] [A-Za-z]

Figure 4. SFA generated from a regex which accepts valid email addresses.

specification. These SFTs will replace any occurrence of
the specified word with a certain output string. However,
there is a caveat, because these SFTs will not properly
output strings that end in a partial match [10]. For exam-
ple, an SFT that replaces "abc" with "def", will output
"defdef" for "abcabc", but "def" for "abcab". This can
be resolved with ε-transitions, but that could make the
SFT not single-valued and prevent equivalence checking
[10]. Nonetheless, these SFTs are included in the classifi-
cation.

Similarly to the SFA classification, we can define SFTs
that operate on the length of the input string. The two
most simple of these operations are trim and pad. Trim
will reduce the length of the input string to a specified
length and pad will extend the input string with a spec-
ified string to match a certain length. These operations
can be performed on the start and the end of the string.
The versions of trim and pad that operate on the start of
the input string are not possible with regular SFTs. In-
stead, SFTs with registers are required to keep track of
the start of the string after determining the entire length.
The trim and pad versions that operate on the end of the
input string are possible with regular SFTs. However, the
end padding SFT requires ε-transitions, making it unsuit-
able for equivalence checking. Table 5 shows the updated
classification.

Specification type User input
Trivial, identity -
Trivial, constant Output string s
Replace range Character range r and replace-

ment string s
Replace word Word w and replacement string s
Trim start Not possible, requires registers
Trim end Integer n
Pad start Not possible, requires registers
Pad end Integer n and padding string s
Other Unknown

Table 5. Classification of SFT specification types with re-
place character and replace word added.

To extend the classification table, we can look at SFT op-
erations for making combinations. There is at least one
operation that can be performed to combine two SFTs,
that is composition [7]. By repeatedly performing this op-
eration it is possible to combine multiple SFTs into one.
However, it is important to note that the composition op-
eration is not commutative. Take, for example, the com-
position of the trim specification (3) and replace range
specification ([&], "&"). The combined SFT would
output "&ca" for "&card", because it trims the text
before replacing characters. If the composition order of the
two SFTs was reverse, it would output "&am" instead, be-
cause the trimming occurs after the characters have been
replaced. Just like the SFA classification, the SFT clas-
sification also leaves out any combinations that could be
made using the composition operation.

Finally, there are specifications that can not be repre-
sented by standard SFTs. For instance, replacing the
match of a regular expression with a replacement string.
Take the regular expression /a*b/. Without registers it is
impossible to output the correct amount of ’a’ characters
if the match fails.

6. GENERATION TECHNIQUES
This section presents the generation techniques that were
developed for each sanitizer specification type ion the clas-
sification. The implementations, tests and benchmarks of
all techniques can be found in the GitHub repository for
this paper1. Each technique is implemented in a generator,
which takes the required specification parameters as input
and produces an automaton (SFA or SFT) as output.

6.1 SFA - Character range
The technique for generating character range specifica-
tions is based on the technique proposed by Lathouwers
[10] for generating length specifications. The main differ-
ence is that this technique replaces the true-transitions
with transitions that have the character range as a predi-
cate (line 3). This technique is described in Algorithm 1.

Algorithm 1: Generate character range specification

Input: Character range r, length n, operator
o ∈ {=, 6=, <,>,≤,≥}

1 Create empty SFA with initial state 0
2 for i ∈ {0..n− 1} do
3 Add transition (i, i+ 1) with predicate r
4 end
5 if o ∈ {=,≤,≥} then
6 Add n as final state
7 end
8 if o ∈ {6=, <,≤} then
9 for i ∈ {0..n− 1} do

10 Add i as final state
11 end

12 end
13 if o ∈ {6=, >,≥} then
14 Add transition (n, n+ 1) with predicate r
15 Add transition (n+ 1, n+ 1) with predicate r
16 Add n+ 1 as final state

17 end
18 return SFA

6.2 SFA - Word
The technique for generating word specifications starts of
similar to the previous technique. The main difference is
that this technique uses the characters of the word as sep-
arate predicates instead of using the same predicate for all
transitions (line 3). Furthermore, it has some additional
logic for handling the contains (⊃) and not contains (6⊃)
operators. This technique is described in Algorithm 2.

1https://github.com/DanielHuisman/sanitizer-
specifications

5

Algorithm 2: Generate word specification

Input: Word w, operator o ∈ {=, 6=,⊃, 6⊃}
1 Create empty SFA with initial state 0
2 for i ∈ {0..|w| − 1} do
3 Add transition (i, i+ 1) with predicate wi
4 end
5 if o ∈ {=,⊃} then
6 Add |w| as final state
7 end
8 if o ∈ {6=, 6⊃} then
9 for i ∈ {0..|w| − 1} do

10 Add i as final state
11 end

12 end
13 if o ∈ {6=} then
14 /* Add final state after word with self

transition */

15 Add transition (|w|, |w|+ 1) with predicate true
16 Add transition (|w|+ 1, |w|+ 1) with predicate

true
17 Add |w|+ 1 as final state

18 /* Add transitions from char to final state

excluding said char */

19 for i ∈ {0..|w| − 1} do
20 Add transition (i, |w|+ 1) with predicate wi
21 end

22 end
23 if o ∈ {⊃, 6⊃} then
24 /* Add self transition for last char */

25 Add transition (|w|, |w|) with predicate true

26 /* Add transitions from char to initial

state excluding said char */

27 for i ∈ {0..|w| − 1} do
28 Add transition (i, 0) with predicate wi
29 end

30 end
31 return SFA

6.3 SFA - Simple regular expressions
The technique for generating simple regular expression
specifications is based on techniques for constructing an
NFA/DFA for a regular expression. To start off, the regu-
lar expressions string is first parsed to an abstract syntax
tree (AST). In this implementation, ANTLR 4 was used
to express the grammar and to generate a corresponding
parser. The AST has three types of nodes with each their
own properties:

• Operator

– Operator: CONCAT, OR
– Children: list of nodes

• Quantifier

– Child: node
– Minimum: integer
– Maximum: integer, -1 for none

• Character class

– Class: CHARACTER, SET, NEGATED_SET
– Ranges: list of character ranges

Next, the SFA for the AST is generated recursively (line
3 and 14). For character class nodes, a simple SFA is
generated consisting of two states and one transition with
the character range(s) as predicate (lines 50-60). For op-
erator nodes, the SFAs of all children are generated and
combined (lines 2-12).

Algorithm 3: Generate regular expression specification

Input: AST node n
1 switch n.type do
2 case Operator do
3 Let s = {generate(c) | c ∈ n.children}
4 switch n.operator do
5 case CONCAT do
6 return concatenation of s
7 end
8 case OR do
9 return intersection of s

10 end

11 end

12 end
13 case Quantifier do
14 Let s = generate(n.child)
15 Let c = n.max
16 if n.max < 0 then c = n.min
17 Create empty SFA
18 Set s.initialState as initial state
19 for i ∈ {0..c− 1} do
20 Let oc = (1 + |s.transitions|) ∗ i
21 Let on = (1 + |s.transitions|) ∗ (i+ 1)
22 for t ∈ s.transitions do
23 Add copy of t as transition

(oc + t.from, oc + t.to)
24 end
25 if i < c - 1 then
26 for f ∈ s.finalStates do
27 Add ε-transition

(oc + f, on + s.initialState)
28 end

29 end

30 end
31 Let ol = (1 + |s.transitions|) ∗ (c− 1)
32 if n.min = 0 then
33 for f ∈ s.finalStates do
34 Add ε-transition (s.initialState, ol + f)
35 end

36 end
37 if n.max < 0 then
38 for f ∈ s.finalStates do
39 Add ε-transition

(ol + f, ol + s.initialState)
40 end

41 end
42 for i ∈ {max(n.min, 1)..c} do
43 Let oc = (1 + |s.transitions| ∗ (i− 1) for

f ∈ s.finalStates do
44 Add oc + f as final state
45 end

46 end
47 if n.parent = null then Minimize SFA
48 return SFA

49 end
50 case Character class do
51 Let p = null
52 for r ∈ n.ranges do
53 if p = null then p = r else p = p ∨ r
54 end
55 if n.class = NEGATED_SET then p = p
56 Create empty SFA with initial state 0
57 Add transition (0, 1) with predicate p
58 Add 1 as final state
59 return SFA

60 end

61 end

6

https://www.antlr.org/

For quantifier nodes, first the SFA of the child is generated
and then that SFA is copied and connected as many times
as needed (lines 13-49). The copying of the child SFA oc-
curs at an offset to prevent duplicate state numbers (lines
20-24). The final states of a copied SFA are connected
to the next copied SFA using ε-transitions (lines 25-30).
However, these copied final states are not actually marked
as final in the new SFA. Additionally, ε-transitions are
added to handle a minimum amount of zero occurrences
(lines 31-36) and an unlimited maximum amount of oc-
currences (lines 37-41). The final states of copied SFAs
are marked as actual final states at each relevant offset as
specified by the minimum and maximum amount of oc-
currences (lines 42-46). Lastly, the SFA is minimized to
remove the ε-transitions (line 47). The minimization algo-
rithm used in the D’Antoni’s automata library is an imple-
mentation of the minimization algorithm by D’Antoni and
Veanes [6]. This full technique is described in Algorithm 3
and Figure 4 shows an example of a specification gener-
ated by this technique, as described in Section 5. Note
that the generation technique can be adapted to similar
ASTs of regular expressions.

6.4 SFT - Replace character range
The technique for generating replace character range spec-
ifications is straightforward. There is only one state with
two self transitions. The first has the range as predicate
and outputs the specified replacement. The second has the
complement of the range as predicate and identity function
as output.

6.5 SFT - Replace word
The technique for generating replace word specifications
is an extension of the technique for generating SFA word
specifications. The SFT has states for each character of
the word. The transitions between them do have outputs,
except for the last one, which outputs the replacement
string. Furthermore, transitions are added back to the
first and second states that output the partial matches.
This technique is described in Algorithm 4.

Algorithm 4: Generate replace word specification

Input: Word w, replacement string s
1 Create empty SFT with initial state 0
2 for i ∈ {0..|w| − 1} do
3 if i = |w| − 1 then
4 Add transition (i, i+ 1) with predicate wi and

output s
5 else
6 Add transition (i, i+ 1) with predicate wi and

output none
7 end

8 Add transition (i, 0) with predicate w0 ∨ wi and
output w0..i, identity

9 if i > 0 then
10 Add transition (i, 1) with predicate w0 and

output w0..i

11 end
12 Add i as final state

13 end
14 Add transition (|w|, 0) with predicate w0 and output

identity
15 Add transition (|w|, 1) with predicate w0 and output

none
16 Add |w| as final state
17 return SFT

6.6 SFT - Trim/pad end of string
The technique for generating trim end specifications is
straightforward. Add n final states that output the in-
put (identity function) and add one final state with a self
transition that does not output anything.

The technique for generating pad end specifications is sim-
ilar, but several ε-transitions are added for outputting the
padding (lines 4-7). The padding is determined by repeat-
ing the specified padding string and then taking a sub-
string. For example, take padding "ab", desired length
10 and an input string of length 5. This string requires
5 characters of padding, so the padding string is repeated
d5/2e = 3 times before taking the substring of the first 5
characters, which is "ababa".

Both techniques are described in Algorithm 5.

Algorithm 5: Generate trim/pad end specification

Input: Trim/pad o, length n, padding string s
1 Create empty SFT with initial state 0
2 for i ∈ {0..n− 1} do
3 Add transition (i, i+ 1) with predicate true and

output identity

4 if o = Pad then
5 Let a = n− i, b = da/|s|e, p = w repeated b

times
6 Add ε-transition (i, n+ 1) with output p0..a

7 end

8 end
9 if o = Trim then

10 Add transition (n, n) with predicate true and
output none

11 Add n as final state

12 else if o = Pad then
13 Add transition (n, n) with predicate true and

output identity
14 Add ε-transition (n, n+ 1) with output none
15 Add n+ 1 as final state

16 end
17 return SFT

7. DOMAIN-SPECIFIC LANGUAGE
This section describes the domain-specific language (DSL)
that was developed and implemented to allow users to in-
teract with the generation techniques. During the devel-
opment of the generation techniques, it became clear that
calling the generators from Java source code added unnec-
essary complexity. The overall goal of this research was to
allow users to generate sanitizer specifications without in-
depth technical knowledge. To truly reach this goal, a
simpler way to interact with the generators was desired.
The two options were a graphical user interface or a text
based interface. Due to time constraints, the latter was
chosen and this DSL was implemented using ANTLR 4.

The DSL has the following features:

• Primitive types (integer, character, string, tuple, list,
regex)
• Generators, these are implementation of the tech-

niques that generate automata from some parame-
ters.
• Variables, these store generated automata.
• Expressions (not, plus, and, or), these combine au-

tomata.
• Statements

– accepts/rejects, test whether an automaton
accepts or rejects some input string.

7

https://www.antlr.org/

– outputs, test whether an automaton produces
certain output for some input string.

– import/export, import/export an automaton
from/to a DOT graph file.

An example of the DSL can be found in Listing 1. The
character range and word SFA specifications are combined
and tested in the first four lines. The replace character
SFT specification is generated and tested in the last two
lines.

Listing 1. Domain-specific language
var1 = range (”>=”, 10 , (’ a ’ , ’ z ’)) or

word (” conta in s ” , ”tuner ”)
export var1
a c c e p t s var1 ”dvbtuner ”
r e j e c t s var1 ”cheese ”

var2 = trim 3 and r ep lace −char (’ a ’ , ””)
outputs var2 ”abcde ” ”bc ”

8. BENCHMARKS
Some of the generation techniques were benchmarked to
empirically determine the relation between the input size
and the numbers of states, the number of transitions and
the generation time. Not all generators had input that
could easily be isolated and scaled. For example, regular
expressions consist of multiple different combination op-
erations which makes it difficult to determine the overall
scalability.

8.1 States and transitions
The first part of the benchmarks relate the input to the
numbers of states and transitions in the specification. For
these benchmarks one input parameter was chosen for scal-
ing up in size, but for some generators multiple rounds
were benchmarked. For example, the character range spec-
ification has multiple operators, so these were all tested
separately, but in all tests the length parameter was used
for scaling. The character range parameter has no effect
on the states or transitions, because it would only alter
the predicates, so this parameter was left constant for all
benchmarks. For the range parameter, [a-z] was chosen
and for the word and padding parameters a repeating al-
phabetic string was used (e.g. "abcd" for size 4). The
comparison of the number of states can be found in Ta-
ble 6 and the comparison of the number of transitions can
be found in Table 7. All these individual generators have
linear states and transitions, but some have a different
starting value or slope. These results are not surprising
given the linear nature of the algorithms.

Generator Operator 0 1 10 100 1000 10000
Range =, <,≤ 1 2 11 101 1001 10001
Range 6=, >,≥ 2 3 12 102 1002 10002
Word =,⊃, 6⊃ 1 2 11 101 1001 10001
Word 6= 2 3 12 102 1002 10002
Rep. char 1 1 1 1 1 1
Rep. word 1 2 11 101 1001 10001
Trim 1 2 11 101 1001 10001
Pad 2 3 12 102 1002 10002

Table 6. Comparison of number of states

8.2 Time complexity
The second part of the benchmarks relate the input to
the time spent generating the specification. The setup of
these benchmarks is equal to the setup for benchmarking
the amount of states and transitions. The generation time

Generator Operator 0 1 10 100 1000 10000
Range =, <,≤ 1 2 11 101 1001 10001
Range 6=, >,≥ 2 3 12 102 1002 10002
Word =,⊃, 6⊃ 1 2 11 101 1001 10001
Word 6= 2 3 12 102 1002 10002
Rep. char 1 1 1 1 1 1
Rep. word 0 4 31 301 3001 30001
Trim 1 2 11 101 1001 10001
Pad 2 4 22 202 2002 20002

Table 7. Comparison of number of transitions

was measured in nanoseconds, but is displayed in millisec-
onds in the table. The generation time can be influenced
by the JVM and the rest of the system, so the genera-
tion for each input size was performed multiple times and
averaged. The differences between range/word operators
was minimal, so the these times were also averaged to de-
termine the overall performance of the generator rather
than that of one operator. The comparison of generation
times can be found in Table 8. Half of the generators
show a roughly linear time complexity, which is confirmed
by plotting the data in a graph with more data points.
The replace character generator is constant, because there
is no input size to vary. The replace word and pad gener-
ators quickly jump up in time, but still perform well for
the large input sizes.

Generator 1000 2000 3000 4000 5000
Range 0.7 1.9 3.7 5.3 5.8
Word 1.6 4.2 7.0 8.6 9.6
Rep. char 0 0 0 0 0
Rep. word 28 96 196 374 559
Trim 0.3 0.9 1.6 3.2 3.6
Pad 11 30 52 85 123

Table 8. Comparison of average generation time in millisec-
onds
In general, the benchmarks show that the basic generation
techniques scale well, even up to unrealistic input sizes,
e.g. replacing words of 1000 character lengths.

9. CONCLUSION
As shown in this paper, it is possible to automatically
generate sanitizer specifications. For SFAs we showed that
a decent subset of regular expressions can be expressed.
For SFTs we showed that only a few simple operations
can be expressed. These limitations mainly come from the
overall approach of representing sanitizer specifications in
the limited feature set of SFAs and SFTs.

There is only a small selection of behaviour observed in
real world sanitizers that can be represented by these au-
tomata. For example, the JavaScript sanitize-html library
can remove script blocks, e.g. <script>alert("<script>

alert(1)</script>")</script>. This would require the
SFT to keep track of the HTML structure or it would
only strip until the first closing tags. This is common and
desired behaviour, as the library is downloaded roughly
900.000 times per week [1].

As future research, the classification of sanitizer specifica-
tions could be improved by looking at extensions of SFAs
and SFTs. Specifically, by looking at Symbolic Register
Automata (SRAs) [5] and Symbolic Register Transducers
(SRTs) [3], which add registers to SFAs and SFTs respec-
tively. The addition of registers could allow more sanitiz-
ers to be represented in automata, such as more complex
regular expressions or the structure of HTML documents.
D’Antoni et al. [5] show an example of how regular expres-
sions with backreferences can be expressed using SRAs.

8

https://www.npmjs.com/package/sanitize-html

10. REFERENCES
[1] Apostrophe Technologies. sanitize-html.

https://www.npmjs.com/package/sanitize-html.
Accessed on 23 January 2021.

[2] N. Bjørner, B. Livshits, D. Molnar, and M. Veanes.
Symbolic finite state transducers: Algorithms and
applications. Technical Report MSR-TR-2011-85,
Microsoft Research, July 2011.

[3] N. Bjørner and M. Veanes. Symbolic transducers.
Technical Report MSR-TR-2011-3, Microsoft
Research, January 2011.

[4] L. D’Antoni. Symbolic automata. https://pages.
cs.wisc.edu/~loris/symbolicautomata.html.
Accessed on 21 November 2020.

[5] L. D’Antoni, T. Ferreira, M. Sammartino, and
A. Silva. Symbolic register automata. In I. Dillig and
S. Tasiran, editors, Computer Aided Verification -
31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part
I, volume 11561 of Lecture Notes in Computer
Science, pages 3–21. Springer, 2019.

[6] L. D’Antoni and M. Veanes. Minimization of
symbolic automata. In S. Jagannathan and
P. Sewell, editors, The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego,
CA, USA, January 20-21, 2014, pages 541–554.
ACM, 2014.

[7] L. D’Antoni and M. Veanes. The power of symbolic
automata and transducers. In R. Majumdar and
V. Kuncak, editors, Computer Aided Verification -
29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings,
Part I, volume 10426 of Lecture Notes in Computer
Science, pages 47–67. Springer, 2017.

[8] J. Goyvaerts. How to Find or Validate an Email
Address. https:
//www.regular-expressions.info/email.html,
2019. Accessed on 14 January 2021.

[9] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena,
and M. Veanes. Fast and precise sanitizer analysis
with BEK. In USENIX Security’11, August 2011.

[10] S. Lathouwers. Reasoning about the correctness of
sanitizers. Master’s thesis, University of Twente,
Enschede, the Netherlands, 2018.

[11] S. Lathouwers, M. Everts, and M. Huisman.
Verifying sanitizer correctness through black-box
learning: A symbolic finite transducer approach. In
S. Furnell, P. Mori, E. Weippl, and O. Camp,
editors, Proceedings of the 6th International
Conference on Information Systems Security and
Privacy, pages 784–795. SCITEPRESS Digital
Library, 2020.

[12] OWASP Foundation. OWASP Top Ten Web
Application Security Risks.
https://owasp.org/www-project-top-ten, 2017.
Accessed on 20 November 2020.

[13] PHP Group. PHP: htmlspecialchars - Manual.
https://www.php.net/manual/en/function.

htmlspecialchars.php. Accessed on 20 November
2020.

[14] M. Veanes, P. de Halleux, and N. Tillmann. Rex:
Symbolic regular expression explorer. Technical
Report MSR-TR-2009-137, October 2009. ICST’10.

9

https://www.npmjs.com/package/sanitize-html
https://pages.cs.wisc.edu/~loris/symbolicautomata.html
https://pages.cs.wisc.edu/~loris/symbolicautomata.html
https://www.regular-expressions.info/email.html
https://www.regular-expressions.info/email.html
https://owasp.org/www-project-top-ten
https://www.php.net/manual/en/function.htmlspecialchars.php
https://www.php.net/manual/en/function.htmlspecialchars.php

	Introduction
	Background
	Symbolic Finite Automata
	Symbolic Finite Transducers
	Sanitizer specifications

	Related work
	Methodology
	Selecting a (sub)type
	Conceiving a technique
	Implementing the technique
	Testing the technique
	Benchmarking the technique
	Adjusting the classification

	Classification
	Symbolic Finite Automata
	Symbolic Finite Transducers

	Generation techniques
	SFA - Character range
	SFA - Word
	SFA - Simple regular expressions
	SFT - Replace character range
	SFT - Replace word
	SFT - Trim/pad end of string

	Domain-specific language
	Benchmarks
	States and transitions
	Time complexity

	Conclusion
	References

