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ABSTRACT 
Convolutional Neural Networks (ConvNets or CNNs) are 
nowadays the standard machine learning technique for analyzing 
visual imagery. As performance in the ILSVRC improves more 
and more, this paper questions the robustness and generalization 
abilities of state-of-the-art models. To test the hypotheses that 
four popular architectures (i.e., GoogLeNet, VGG19BN, 
ResNet152, and DenseNet161) are not significantly different 
when classifying images on the ImageNet, ImageNetV2, and 
ImageNetC benchmarks, the top-1 and top-5 accuracies are 
calculated and analyzed using the Iman-Davenport, Friedman’s 
Aligned Ranks and Bergmann-Hommel procedures. Our results 
show that there is enough evidence to reject the null hypotheses. 
We conclude that the four pre-trained networks do not have 
identical performance capabilities. 
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1. INTRODUCTION 
The increased interest in deep learning has led to a series of 
advances in speech recognition, decision making, and image 
classification. Though introduced more than 30 years ago, 
Convolutional Neural Networks (ConvNets or CNNs) are 
nowadays the standard machine learning technique for analyzing 
visual imagery. Recent developments such as large public image 
databases, graphics processing units, and open-source libraries 
have benefited the state-of-the-art models [7, 9, 17, 18]. Deriving 
from a typical structure – stacks of convolutions, followed by 
max-pooling and fully-connected layers, current 
implementations surpass the 100-layer barrier, have millions of 
parameters, and train on millions of images. The performance of 
these algorithms has been growing at a substantial pace due to 
competitions like the ILSVRC where researchers aim for high 
top-1 and top-5 accuracies. As these numbers reach the ceiling, 
the robustness and generalization abilities of such architectures 
are questioned. Previous studies show a preference for deeper 
and wider architectures, as well as significant problems when it 
comes to real-world applications where uncertainty and noise are 
present [8, 15]. Moreover, the sensitivity of such algorithms 
suffers from the operation of datasets like ImageNet where the 
contents of the images can be inappropriately misrepresented by 

the original sets of labels, leading to longer training times and 
unjust decreases in accuracy scores [1]. Using a statistical 
framework, we aim to address the gap in comparative studies 
with more classifiers and datasets [3] and gain new insights that 
may confirm or reject the existing assumptions. 

2. RESEARCH QUESTION 
The previous section leads to the following research questions: 
Considering the top-1 and top-5 accuracy scores, what pre-
trained convolutional neural network models (i.e., GoogLeNet, 
VGG19BN, ResNet152, and DenseNet161) are significantly 
different according to the Iman-Davenport, Friedman’s Aligned 
Ranks, and Bergmann-Hommel procedures when performing 
image classification on: 

(a) the original benchmark ImageNet? 
(b) a generalization benchmark like ImageNetV2? 
(c) a corruption robustness benchmark like ImageNetC? 

The answers to these questions may propose a new standard for 
evaluating the performance of image classifiers.  

3. LITERATURE REVIEW 
Though the focus has recently shifted from new architectural 
ideas to training and optimization, four popular state-of-the-art 
models (i.e. GoogLeNet, VGG, ResNet, and DenseNet) are 
considered for this comparative study. 

3.1 GoogLeNet 
The main idea of the Inception architecture is based on sparse 
connections, even inside the convolutions. Drawing inspiration 
from deep architectures and pop culture, Szegedy et al. [18] 
describe a network of larger width and depth, built from blocks 
optimally constructed and repeated. Information is processed at 
various scales, combined, and further abstracted. To keep the 
computational requirements to a low, 1x1 convolutions are used 
for dimensional reductions before the more expensive 3x3 and 
5x5 convolutions; such modules are only present at higher layers. 
The method takes into consideration the finite computational 
budget and overfitting problems, controlling the number of input 
filters between layers. Winner of the ILSVRC 2014 
Classification Challenge, the name of their final submission is an 
homage to the original LeNet 5 network [12]. With 27 layers 
(pooling included), GoogLeNet obtains a top-5 accuracy of 0.89 
on the single model performance. Results indicate the importance 
of sparser architectures and quality gains in computer vision 
when compared to shallower and less wide networks. 

3.2 VGG 
Inspired by the work Krizhevsky et al. [11], Simonyan and 
Zisserman [17] explore very deep convolutional networks. To 
confirm the importance of depth in visual representations, they 
improve the classical architecture of LeCun et al [12] by 
significantly increasing the number of weight layers. Five max-
pooling layers alternate with stacks of convolutions and are 
followed by three fully connected layers and softmax averaging. 
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Training and evaluation are done on multiple GPUs following 
data parallelism principles; the batches of images are split and 
shared among GPUs for processing. Normalization is not 
employed since it increases memory consumption and 
computational time while bringing no benefits; scale jittering and 
spatial context capturing are encouraged. Moreover, testing 
shows that classification errors are dependent on the size of the 
datasets and drop with the increase in depth. Entering the 
ILSVRC competition in 2014, their ConvNets outperform 
previous winning submissions, the single-net model with 19-
weight layers achieving a top-5 accuracy of 0.92.  

3.3 ResNet 
He et al. [7] question the significance of stacking more layers 
when learning better networks. Influenced by the ideology of 
VGG networks, the authors address concerns like optimization 
and degradation which arise with the increase in depth. Their 
implementation is a deep residual network (ResNet) with 
shortcut connections that skip a certain number of layers. After 
performing identity mappings, the outputs of these connections 
and the outputs of the stacked layers are added. According to 
their conclusions, residual networks are easy to optimize and 
benefit greatly from increased depths. Achieving first place in the 
ILSVRC 2015 classification competition, their 152-layer single-
model (the deepest on ImageNet at the time) has significantly 
lower complexity than VGG networks. Further, ResNet152 
outperforms previous ensembles with a top-5 accuracy of 0.94. 
To avoid overfitting, more drastic regularization is recommended 
when training much deeper networks on small datasets.  

3.4 DenseNet 
After discovering a pattern among implementations that deal 
with the vanishing gradient problem, Huang et al. [9] propose an 
architecture with paths connecting early layers to later layers. In 
contrast with ResNets, the inputs are concatenated using a 
composite function, leading to a simpler and more efficient 
solution. Divided into multiple dense blocks connected by 
transitional layers performing batch normalization, convolution, 
and pooling, DenseNets are more compact and motivate feature 
reuse; bottleneck and compression layers are present to reduce 
the number of feature maps and improve computational 
efficiency. Additionally, with a relatively low number of filters 
per layer, DenseNets are easy to train and scale to hundreds of 
layers while raising no optimization concerns. The outcome of 
their research shows that DenseNets achieve similar performance 
to ResNets while requiring significantly fewer parameters. 
DenseNet201 achieves a top-5 accuracy of 0.93 on the ImageNet 
dataset and is believed to obtain further gains through 
hyperparameter tuning; the overfitting problem is addressed by 
the regularizing effect of connections. 

3.5 Problems with ImageNet 
The ImageNet benchmark has represented a turning point in the 
evaluation of machine learning classifiers. When investigating 
the generalization capabilities of the dataset, Beyer et al. [1] 
report several concerns such as overfitting that might lead to what 
is perceived as “progress”. One of these concerns is the 
significant number of images with more than a single object of 
interest. The contents may be inappropriately misrepresented as 
the 1,000-way image classification task has a limit of a single 
label per image. Thus, using accuracy as a metric may penalize 
architectures producing correct predictions that do not match the 
established ground truth labels. According to the authors, their 
Reassessed Labels (“ReaL”) provide a better approximation of 
the accuracies as they allow multiple annotations and remove 
duplicate pairs. For instance, complicated distinctions such as 

“laptop” are added the labels “notebook” and “computer 
keyboard.” It is concluded that label noise is to blame for the 
longer training times and that the end of the original label set is 
near. Even so, the current research focuses on the authentic 
ImageNet benchmark test, taking into consideration the impact 
of its limitations.  

4. METHOD 
The proposed method comprises three steps. First, the data of the 
three benchmarks (i.e., ImageNet, ImageNetV2, and ImageNetC) 
are downloaded and split into several subsets. Second, we make 
use of a Google Collaboratory notebook to evaluate the 
performance of our models; the top-1 and top-5 accuracies are 
calculated for each of the subsets. Last, the statistical analysis is 
carried out in RStudio. To visualize the results, graphs and tables 
are provided. 

4.1 Datasets 
4.1.1 ImageNet 
 

 
Figure 1. Image Samples from the “Pizza” (Left) and 

“Chihuahua” (Right) ImageNet Categories 
 
Observing the increasing number of image data available on the 
internet, Deng et al. [4] anticipate the need for a large database 
dedicated to developing, training, and benchmarking image 
understanding algorithms. Using the backbone of the WordNet 
architecture, popular concepts are represented through images. 
Categories include typical nouns like “toilet seat”, “spatula”, 
“pizza”, and “chihuahua”, each of them being, on average, linked 
to 500 images. Though ImageNet was created with the help of 
the Amazon Mechanical Turk (MTurk), the authors promise to 
deliver diversity and accuracy as quality control deals with the 
errors in the human judgment process. The images are taken from 
different angles and contain various backgrounds and 
obstructions. With 1,000 categories, this dataset offers 1.2 
million images dedicated to training and 150,000 more - to 
validation and testing. The present research makes use of the 
ImageNet benchmark test to confirm the rankings in performance 
and scores reported in the literature review. 

4.1.2 ImageNetV2 
Ideally, machine learning models generalize to new data. To 
evaluate the state-of-the-art, Recht et al. [15] follow the 
principles behind ImageNet and elaborate an extension to the 
original benchmark. Sampled a decade after the original 
benchmark test, ImageNetV2 contains three datasets, each with 
10,000 new images. A thorough analysis suggests that the more 
complicated images lead to accuracy drops of 11-14%.  
Regardless of the outstanding contributions to the field, more 
attention is recommended to the creation and operation of 
datasets like ImageNet as real-life applications suffer from the 
lack of generalization. We aim to check whether the four models 
have the same ability to adjust to previously unseen content. 
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4.1.3 ImageNetC 
 

 
Figure 2. Image Samples from the “Pizza” (Left) and 

“Chihuahua” (Right) ImageNetC Categories 
 
Hendrycks and Dietterich [8] question the robustness of machine 
learning algorithms and implement a benchmark that consists of 
fifteen types of corruption. Applied to the ImageNet validation 
set, ImageNetC covers common corruptions like Gaussian noise, 
Poisson noise, motion blur, and pixilation. Moreover, each image 
is applied a level of severity; ranging between 1 and 5, the higher 
the level of severity, the worse the image noise gets. Results 
show that deeper and wider models perform notably better on 
corrupted inputs than smaller models. The importance of such 
benchmarking techniques is highlighted as the accuracy on 
ImageNet reaches its limit. Its purpose for the current 
experimental evaluation is to observe how the algorithms react 
in worst-case scenarios and identify the ones with different 
performances. 

4.2 PyTorch Models 
 

Table 1. ImageNet 1-Crop Error Rates (224x224) 

Network Top-1 
error 

Top-5 
error 

VGG19BN 0.2576 0.0815 
ResNet152 0.2169 0.0594 

DenseNet161 0.2235 0.0620 
GoogLeNet 0.3022 0.1047 

 

Competing in the ILSVRC implies classifying images into one 
of the 1,000 classes of the ImageNet database. Approximately 
150,000 images collected from search engines are used for 
validation and testing, each algorithm producing a list of labels 
sorted by decreasing confidence. PyTorch [13] is a popular 
scientific computer library in the deep learning community with 
easy debugging and support for hardware accelerators. It offers 
common image transformations and model architectures 
addressing image classification. Table 1 provides the top-1 and 
top-5 error rates for the chosen pre-trained models [14]. 

4.2 Metrics 
The top-1 and top-5 accuracies are the two numbers usually 
reported [7, 9, 17, 18]. Top-1 accuracy implies that the label with 
the highest confidence matches the ground truth, whereas top-5 
accuracy implies that one of the first five labels with the highest 
confidence matches the ground truth. In both cases, the scores are 
calculated as the number of matches, divided by the total number 
of data points evaluated. These metrics are numbers between 0 
and 1, where 1 indicates perfect accuracy and 0 – the contrary. 

4.3 Statistics and Tests 
Since the numbers used to describe the performance of such 
algorithms may vary by less than 0.01, the present paper 
questions the significance of these differences and how they can 
be translated using a statistical framework. It is believed that 
significance tests are often misused, leading to false conclusions. 
When it comes to real-world classifiers and datasets, Demšar [3] 
recommends the use of non-parametric methods to evaluate 
differences. Their empirical results indicate the strength and 
safety of these tests in problems regarding classification 
accuracies. 
The Friedman test is a non-parametric method ranking models 
for our datasets. It does not assume normal distributions nor 
homogeneity of variance. The algorithm performing best is 
assigned “rank 1” and, in case of a tie, an average rank is 
calculated. The null hypothesis states that all models are 
equivalent and thus have the same rank. Due to its undesirably 
conservative nature, the Iman-Davenport modification of 
Friedman's test derives a better statistic [3, 10] which is used for 
the present research. Depending on the significance level chosen, 
the p-value obtained indicates whether the null hypothesis can be 
safely rejected or not. A test result below the alpha threshold is 
statistically significant, meaning our test hypothesis is false. The 
opposite holds for a test result above the alpha threshold. 
Once it is known that not all the architectures perform the same, 
we can proceed with a post-hoc test. As this is a review of 
existing methods, checking the pairwise differences then 
correcting the p-values in a multiple comparison analysis is 
preferred [2]. Due to abnormality, a nonparametric test such as 
Friedman’s Aligned Ranks is applied to our pairwise 
comparisons. Garcia and Herrera [5] describe the Bergmann-
Hommel procedure as an advanced and powerful tool for 
controlling the familywise error rate. Though extremely 
expensive from a computational point of view, the use of the 
Bergmann-Hommel correction procedure is recommended for 
comparisons with up to nine algorithms. The p-values are yet 
again compared to the significance level, the ones below it 
indicating evidence of significant differences between the 
respective pairs of models. For a more thorough introduction to 
these procedures, we refer to [2, 3, 5, 6, 10]. 

5. EXPERIMENTS 
We begin our experiments by uploading all the images to a 
Google Drive account. To facilitate the classification process, we 
make use of Google Collaboratory’s Cuda GPUs. The 
transformation of our data follows the one from the PyTorch 
website: the images are resized to 256x256 pixels, centrally 
cropped to 224x224 pixels, converted to a Tensor data type, and 
normalized using the mean and standard deviation. Further, the 
data is loaded with a batch number of one and four workers. For 
each image sample, the labels with the highest confidence are 
stored for the statistical analysis. The RStudio package 
implemented by Calvo and Santafé [2] includes the 
nonparametric tests, post-hoc tests, and correction methods 
mentioned in Section 4.3, following the explanations from 
Demšar [3] and García et al. [6]. In the following subsections, the 
distributions and differences among models are discussed. We 
consider a significance level alpha equal to 0.05, which is the 
probability of rejecting the null hypothesis when it is true. 
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5.2 Statistical Distribution of Results 
 

 
Figure 3. Density Plot of Top-5 Accuracies on ImageNet  

 

 
Figure 4. Q-Q Plot of ResNet152’s Top-1 Accuracies on 

ImageNetV2  
 
We regard a distribution as the occurrence of the different 
accuracy scores obtained on a benchmark test. To check whether 
the distributions cannot indeed be considered normal, we may 
want to visualize the data. Therefore, two types of plots are 
created. A density plot illustrates that most of the samples cannot 
be regarded as normal due to the lack of symmetry and 
unimodality. As evidenced in the quantile-quantile plot, sample 
points do not perfectly lie on the diagonal. The assumptions of 
normality and homogeneity of variance are violated (see Figure 
3 and 4), confirming the recommendation of Demšar [3].  

5.3 ImageNet 
The TorchVision classification models are trained on the 
ILSVRC2012 dataset [16]. For the present experiment, we make 
use of their validation data which contain 50,000 random images 
with labels. After splitting them into subsets, we end up with a 
sample size of 1,000 for both of the following analyses. 
 
 
 
 
 
 

 

5.3.1 ImageNet Top-1 accuracies 
 
Table 2. Minimum, Mean, and Maximum of ImageNet Top-

1 Accuracies 
Network Min. Mean Max. 

VGG19BN 0.5200 0.7422 0.9200 
ResNet152 0.6000 0.7825 0.9400 

DenseNet161 0.5800 0.7715 0.9600 
GoogLeNet 0.4400 0.6974 0.8800 

 
Table 3. First Quartile, Median, and Third Quartile of 

ImageNet Top-1 Accuracies 
Network 1st Qu. Median 3rd Qu. 

VGG19BN 0.7000 0.7400 0.7800 
ResNet152 0.7400 0.7800 0.8200 

DenseNet161 0.7400 0.7800 0.8200 
GoogLeNet 0.6600 0.7000 0.7400 

 
Table 4. Corrected P-values for Pairwise Network 

Comparisons of ImageNet Top-1 Accuracies 
Comparison Corrected P-value 

GoogLeNet vs. ResNet152 0e0 
GoogLeNet vs. DenseNet161 0e0 
GoogLeNet vs. VGG19BN 0e0 
VGG19BN vs. ResNet152 0e0 

VGG19BN vs. DenseNet161 0e0 
DenseNet161 vs. ResNet152 5.838971e-9 

 
As can be seen in Table 2, ResNet152 has the highest average 
top-1 accuracy on ImageNet, followed closely by DenseNet161, 
VGG19BN, and GoogLeNet. ResNet152 and DenseNet161 have 
the same interquartile range as their first quartile, median, and 
third quartile coincide (see Table 3). Further, the Iman 
Davenport's correction of Friedman's rank sum test yields a p-
value < 2.2e-16 and indicates that the null hypothesis can be 
safely rejected: not all the networks perform the same when 
considering their top-1 accuracies on the ImageNet benchmark. 
We proceed with the post-hoc test to identify the exact pairs of 
models showing differences. The Friedman’s Aligned Ranks test 
is applied to the six pairwise comparisons mentioned in Table 4. 
All corrected p-values using the Bergmann and Hommel’s 
method are below the established threshold, indicating 
significant differences between all pairs of architectures. 
 
5.3.2 ImageNet Top-5 accuracies 
 
Table 5. Minimum, Mean, and Maximum of ImageNet Top-

5 Accuracies 
Network Min. Mean Max. 

VGG19BN 0.7400 0.9185 1.0000 
ResNet152 0.8200 0.9398 1.0000 

DenseNet161 0.8000 0.9360 1.0000 
GoogLeNet 0.7400 0.8954 1.0000 
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Table 6. First Quartile, Median, and Third Quartile of 
ImageNet Top-5 Accuracies 

Network 1st Qu. Median 3rd Qu. 
VGG19BN 0.9000 0.9200 0.9400 
ResNet152 0.9200 0.9400 0.9600 

DenseNet161 0.9200 0.9400 0.9600 
GoogLeNet 0.8600 0.9000 0.9200 

 
Table 7. Corrected P-values for Pairwise Network 

Comparisons of ImageNet Top-5 Accuracies 
Comparison Corrected P-value 

GoogLeNet vs. ResNet152 0e0 
GoogLeNet vs. DenseNet161 0e0 
GoogLeNet vs. VGG19BN 0e0 
VGG19BN vs. ResNet152 0e0 

VGG19BN vs. DenseNet161 0e0 
DenseNet161 vs. ResNet152 5.013554e-4 

 
The results shown in Table 5 indicate that ResNet152 obtains the 
highest average top-5 accuracy on ImageNet, followed by 
DenseNet161, VGG19BN, and GoogLeNet. The maximum top-
5 accuracies per subset are 1.00, the highest possible. ResNet152 
and DenseNet161 share the same first quartile, median, and third 
quartile, as presented in Table 6. With a p-value < 2.2e-16 
obtained from the Iman and Davenport test, the null hypothesis 
can be safely rejected: one or more models do not perform the 
same when considering their top-5 accuracies on the ImageNet 
benchmark. Continuing with the post-hoc procedures, significant 
differences among our models are discovered as the corrected p-
values do not exceed the significance level of 0.05 (see Table 7). 
 

5.4 ImageNetV2 
TopImages is one of the three test sets included with 
ImageNetV2. Containing exactly 10,000 images, this benchmark 
links each class to the ten images with the highest frequency in 
their candidate pool. The top-1 and top-5 accuracies are 
calculated for each class, resulting in a sample size of 1,000. 
 
5.4.1 ImageNetV2 Top-1 accuracies 
 

Table 8. Minimum, Mean, and Maximum of ImageNetV2 
Top-1 Accuracies 

Network Min. Mean Max. 
VGG19BN 0.0000 0.7597 1.0000 
ResNet152 0.0000 0.8015 1.0000 

DenseNet161 0.0000 0.7951 1.0000 
GoogLeNet 0.0000 0.7300 1.0000 

 
Table 9. First Quartile, Median, and Third Quartile of 

ImageNetV2 Top-1 Accuracies 
Network 1st Qu. Median 3rd Qu. 

VGG19BN 0.6000 0.8000 0.9000 
ResNet152 0.7000 0.9000 1.0000 

DenseNet161 0.7000 0.9000 1.0000 
GoogLeNet 0.6000 0.8000 0.9000 

 
 
 
 

Table 10. Corrected P-values for Pairwise Network 
Comparisons of ImageNetV2 Top-1 Accuracies 

Comparison Corrected P-value 
GoogLeNet vs. ResNet152 0e0 

GoogLeNet vs. DenseNet161 0e0 
GoogLeNet vs. VGG19BN 1.64313e-14 
VGG19BN vs. ResNet152 0e0 

VGG19BN vs. DenseNet161 0e0 
DenseNet161 vs. ResNet152 4.860711e-2 

 
As shown in Table 8, ResNet152 has the highest average top-1 
accuracy on ImageNetV2, followed by DenseNet161, 
VGG19BN, and GoogLeNet. The lowest and highest top-1 
accuracies per class achieved by all state-of-the-art models match 
the worst and the best accuracies possible, 0.00 and 1.00, 
respectively. The results presented in Table 9 indicate that two 
pairs of models have identical first quartiles, medians, and third 
quartiles (ResNet152-DenseNet161 and GoogLeNet-
VGG19BN). After carrying out the Iman-Davenport test, a p-
value < 2.2e-16 is obtained. We reject the null hypothesis: there 
are significant differences in the performance of our models 
when considering their top-1 accuracies on the ImageNetV2 
benchmark. When applying the Friedman and Bergmann-
Hommel methods to our six pairwise comparisons, the corrected 
p-values are below 0.05, meaning that there is sufficiently strong 
evidence to conclude that the pairs of models are significantly 
different (see Table 10).  
 
5.4.2 ImageNetV2 Top-5 accuracies 
 
Table 11. Minimum, Mean, and Maximum of ImageNetV2 

Top-5 Accuracies 
Network Min. Mean Max. 

VGG19BN 0.5000 0.9381 1.0000 
ResNet152 0.5000 0.9597 1.0000 

DenseNet161 0.4000 0.9516 1.0000 
GoogLeNet 0.4000 0.9174 1.0000 

 
Table 12. First Quartile, Median, and Third Quartile of 

ImageNetV2 Top-5 Accuracies 
Network 1st Qu. Median 3rd Qu. 

VGG19BN 0.9000 1.0000 1.0000 
ResNet152 0.9000 1.0000 1.0000 

DenseNet161 0.9000 1.0000 1.0000 
GoogLeNet 0.9000 1.0000 1.0000 

 
Table 13. Corrected P-values for Pairwise Network 

Comparisons of ImageNetV2 Top-5 Accuracies 
Comparison Corrected P-value 

GoogLeNet vs. ResNet152 0e0 
GoogLeNet vs. DenseNet161 0e0 
GoogLeNet vs. VGG19BN 1.465494e-14 
VGG19BN vs. ResNet152 0e0 

VGG19BN vs. DenseNet161 3.122579e-9 
DenseNet161 vs. ResNet152 1.074642e-3 

 
As can be seen in Table 11, ResNet152 achieves the highest mean 
top-5 accuracy on ImageNetV2, followed closely by 
DenseNet161, VGG19BN, and GoogLeNet. The maximum top-
5 accuracies per class are 1.00, the highest possible. Moreover, 
the results shown in Table 12 indicate that all four networks have 
identical interquartile ranges. The null hypothesis is rejected 
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since the p-value < 2.2e-16 obtained from the Iman-Davenport 
test is below the significance level alpha: at least one model 
performs statistically differently when assessing the top-5 
accuracies per class on the ImageNetV2 benchmark. To find out 
which models are statistically different, we proceed with the 
pairwise comparisons (see Table 13). Applying the post-hoc 
methods leads to corrected p-values below the significance level 
of 0.05; we have evidence that our six pairs of models perform 
significantly differently. 
 

5.5 ImageNetC 
For this experiment, only images suffering from a level three of 
motion blur are considered. Each of the 1,000 classes contains 
exactly 50 standard-sized images. The top-1 and top-5 accuracies 
are calculated for each of them, finishing with 1,000 observations 
per group. 

5.5.1 ImageNetC Top-1 accuracies 
 

Table 14. Minimum, Mean, and Maximum of ImageNetC 
Top-1 Accuracies 

Network Min. Mean Max. 
VGG19BN 0.0000 0.2836 0.9000 
ResNet152 0.4000 0.4626 0.9800 

DenseNet161 0.0000 0.4019 0.9600 
GoogLeNet 0.0000 0.2496 0.9000 

 
Table 15. First Quartile, Median, and Third Quartile of 

ImageNetC Top-1 Accuracies 
Network 1st Qu. Median 3rd Qu. 

VGG19BN 0.1400 0.2400 0.4000 
ResNet152 0.3200 0.4600 0.6000 

DenseNet161 0.2600 0.3800 0.5400 
GoogLeNet 0.1200 0.2100 0.3600 

 
Table 16. Corrected P-values for Pairwise Network 

Comparisons of ImageNetC Top-1 Accuracies 
Comparison Corrected P-value 

GoogLeNet vs. ResNet152 0e0 
GoogLeNet vs. DenseNet161 0e0 
GoogLeNet vs. VGG19BN 6.741536e-10 
VGG19BN vs. ResNet152 0e0 

VGG19BN vs. DenseNet161 0e0 
DenseNet161 vs. ResNet152 0e0 

 
The results shown in Table 14 suggest that ResNet152 scores the 
highest average top-1 accuracy on ImageNetC, followed by 
DenseNet161, VGG19BN, and GoogLeNet. The lowest 
minimum top-1 accuracy per class is 0.00, the lowest possible. 
As can be seen in Table 15, the median top-1 accuracy for 
ResNet152 is considerably higher than the rest. We safely reject 
the null hypothesis as the p-value < 2.2e-16 obtained from the 
Iman-Davenport test is considerably lower than the established 
threshold value. One or more image classification models show 
significant differences in performance when comparing their top-
1 accuracies on the ImageNetC benchmark. To discover what 
models are different, we continue with the post-hoc procedure. 
Applying Friedman’s Aligned Ranks test and correcting the p-
values using the Bergmann-Hommel method, we conclude that 
all four models perform significantly differently as the corrected 
p-values are below 0.05 (see Table 16). 
 
 

5.5.2 ImageNetC Top-5 accuracies 
 

Table 17. Minimum, Mean, and Maximum of ImageNetC 
Top-5 Accuracies 

Network Min. Mean Max. 
VGG19BN 0.0200 0.5117 0.9600 
ResNet152 0.1200 0.6972 1.0000 

DenseNet161 0.1000 0.6346 1.0000 
GoogLeNet 0.0000 0.4619 0.9800 

 
Table 18. First Quartile, Median, and Third Quartile of 

ImageNetC Top-5 Accuracies 
Network 1st Qu. Median 3rd Qu. 

VGG19BN 0.3400 0.5200 0.6800 
ResNet152 0.5800 0.7200 0.8200 

DenseNet161 0.5000 0.6600 0.7800 
GoogLeNet 0.3000 0.4600 0.6200 

 
Table 19. Corrected P-values for Pairwise Network 

Comparisons of ImageNetC Top-5 Accuracies 
Comparison Corrected P-value 

GoogLeNet vs. ResNet152 0e0 
GoogLeNet vs. DenseNet161 0e0 
GoogLeNet vs. VGG19BN 4.440892e-16 
VGG19BN vs. ResNet152 0e0 

VGG19BN vs. DenseNet161 0e0 
DenseNet161 vs. ResNet152 0e0 

 
As shown in Table 17, the highest top-5 accuracy on ImageNetC 
is obtained by ResNet152, followed by DenseNet161, 
VGG19BN, and GoogLeNet. The highest maximum top-5 
accuracy per class is achieved by ResNet152 and DenseNet161, 
while the lowest minimum one – by GoogLeNet. The results 
from Table 18 indicate that ResNet152 has a noticeably higher 
median top-5 accuracy. After performing the Iman-Davenport 
test, we obtain a p-value < 2.2e-16, meaning that the null 
hypothesis can be safely rejected: there is at least one model with 
significant differences in performance on the ImageNetC 
benchmark. According to Table 16, GoogLeNet, DenseNet161, 
VGG19bn, and ResNet152 are all significantly different as the 
corrected p-values using the Bergmann-Hommel method do not 
exceed the alpha of 0.05. 
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6. DISCUSSION 
 

 
Figure 5. Image Samples from the “Sports Car” (Left) and 

“Race Car” (Right) ImageNetV2 Categories 
 

 
Figure 6. Image Samples from the “African Crocodile” 
(Left) and “Goldfish” (Right) ImageNetC Categories 

(Motion Blur, Severity Level 3) 
 
While previous research has focused on designing new 
architectures, the results contribute a clearer understanding of the 
metrics declared. The data indicate that the pre-trained 
convolutional neural network models (i.e., GoogLeNet, 
DenseNet161, ResNet152, and VGG19BN) are significantly 
different when performing image classification on three 
benchmark tests (i.e., ImageNet, ImageNetV2, and ImageNetC).  
The average top-1 and top-5 accuracy scores obtained on the 
original benchmark coincide with the ones from the literature 
review. The observations of Kaiming He et al. [7] are therefore 
confirmed as increased depth indeed leads to significant accuracy 
gains. While comparable at a first glance [9], the performances 
of DenseNet161 and ResNet152 are unquestionably not similar. 
Concerning the ability to adapt to new data, the results contradict 
the claims of Recht et al. [15] that the models fail to reach their 
original accuracy scores on ImageNetV2. Interestingly, there is a 
slight increase in top-1 and top-5 mean accuracies of 2-3% and 
1-2%, respectively. The minimum class accuracies confirm the 
concerns of Beyer et al. [1] - though the images are drawn from 
the same distribution as the one used to create the models, their 
contents misrepresent them on many occasions. Because of the 
ambiguity and duplicity among labels, correct predictions that do 
not match the ground truth are translated to penalties. For 
instance, “sports car” is the class with the most difficult images 
to classify as no models can do so with the highest confidence. 
What happens here is that sports cars are misclassified as “race 
cars”, when in fact they both illustrate the same concept (see 
Figure 5). 
Sensitive tasks such as image processing imply reacting to noisy 
data. The four architectures cannot be regarded as robust when 
presented worst-case scenarios from the ImageNetC benchmark. 
There is a significant drop in average accuracies of 32-46% for 
top-1 and 24-44% for top-5. Even when applied a motion blur 
corruption of level three, the predictions seem to indicate 
context-awareness. Leading to a spread in confidences, images 

containing more than a single object of interest may also be the 
cause of that; the images supposed to represent an African 
crocodile or a goldfish (see Figure 6) are misclassified as 
“American coot” or “hair spray.” Further, ResNet152’s median 
top-1 and top-5 accuracies on ImageNetC are considerably 
higher and indicate its superiority over the competitors. This 
confirms the conclusions of Hendrycks and Dietterich [8] that 
deeper and wider models are considerably more robust. 
The methodological choices were constrained by the high upload 
times and storage limitations. The original ImageNetC consists 
of 15 types of corruptions, each type having five levels of 
severity. Ending up with an astonishing amount of 3,750,000 
images, testing the hypotheses on only one type of corruption 
with a level three of severity seemed the most appropriate option. 
Future studies should take into account different grouping 
strategies. Instead of calculating the top-1 and top-5 accuracies, 
different conclusions may be drawn when observing the 
confidences of the predictions. Given the confirmed issues with 
the images and labels of the original benchmark ImageNet, we 
recommend a strategy similar to ReaL [1] for obtaining better 
approximations of performance. 

7. CONCLUSIONS 
This research aimed to identify differences in the performance of 
four pre-trained image classification models. Based on a 
statistical analysis of the top-1 and top-5 accuracy scores 
obtained on three benchmark tests, it can be concluded that 
GoogLeNet, DenseNet161, ResNet152, and VGG19BN are 
significantly different. This research clearly illustrates the 
importance of statistical frameworks in the context of designing 
machine learning systems, but also raises the question of whether 
benchmarks like ImageNet are still useful in their current state. 
Based on these conclusions, practitioners should consider 
different groupings, metrics, or datasets in their future work. 
Finally, by addressing the gap in comparative studies, our 
findings challenge and confirm the existing assumptions. 
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