
Creating a Compiler for the
Semi-Structured Language of Blazons

Michael Mulder
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

m.mulder-4@student.utwente.nl

ABSTRACT
A blazon is a textual, semi-structured description of the
visual representation of a coat of arms. There is no formal
tool to create such a visual representation given a blazon,
yet there is a lot of demand for these drawings. In this
project we research all steps needed to create a compiler
that can turn blazons into their visual representation. Our
focus during this research was creating a flexible and eas-
ily extendable compiler that can understand the different
ways a blazon can be expressed.

Keywords
Blazonry, Semi-parsing, Semi-structured languages, Com-
piler Construction, Domain Specific Languages

1. INTRODUCTION
A blazon is a formal semi-structured textual description
of a coat of arms, flag or similar emblem, from which the
reader can reconstruct the appropriate image. To blazon is
to create such a description. Blazonry is the art of creating
such blazons, linking textual semi-structured descriptions
of coats of arms to their visual representation.

There is quite an active online community of heraldry
and blazonry enthusiasts. This community includes re-
searchers researching medieval heraldry, people looking to
learn more about family crests, and general enthusiasts.
In this community there is a demand for the drawing of
coats of arms. Many older coats of arms only have small,
bad quality pictures, or even only a description. If some-
one want to get a better illustration they have to either
learn how to (digitally) draw or they have to post a re-
quest on an online board in the hope that someone else
will pick it up and provide them with an illustration. Our
goal is to create an online tool which can help with this
process. This will eliminate the need of users to have to
learn image processing or having to ask someone to draw
their shield. Instead the user will be able to enter a blazon
into the tool and create their own drawing.

In this project we will research different aspects needed for
the creation for this tool. To guide this research we have
determined the following research questions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
34th Twente Student Conference on IT Jan. 29nth, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

1. How can we model the domain of blazonry as a
domain-specific language, using software language
engineering methods?

2. What are the rules of blazonry that could be seen as
typing rules or its static semantics?

3. How can we construct a semi-structured, error-
correcting parser of the blazon language?

(a) How can we maximize the usefulness and infor-
mativeness of the parser’s error messages?

(b) How can we maximize the set of accepted in-
puts?

4. How can we create a code generator that can draw
Scalable Vector Graphics [3] coats of arms given a
parsed blazon?

We will start this paper be explaining the methods we
used to get our results in section 2. The result we found
using these methods will be discussed in section 3 until
section 7. In section 8 we will discuss the effectiveness of
our approach. section 9 will discuss possible future work
and what obstacles we foresee. Lastly we will answer our
research question in section 10.

All the code discussed in this paper can be found on GitHub.

2. METHODOLOGY
The goal of this research is to create a complete compiler.
To create this we will follow general steps to create a com-
piler [1,5]. We will start by defining the language we wish
to parse. Next we will write a scanner and parser, design
an intermediate representation, and write a code genera-
tor. We will also introduce a static checker that checks the
intermediate representation for typing rules. These steps
closely correspond to our research questions and will also
correspond to the structure of this document.

We will start with the language definition in section 3.
The definition of the language is an important basis on
which every next step will be built. To do this we analyzed
the domain of blazonry using literary research. This step
corresponds to our first research question.

Next we will create a scanner and parser, as detailed in
section 4. We started by researching ways of semi-parsing,
as can be read in subsection 4.1. After the research of
the background we attempted to apply these principles to
create our own parser, as detailed in subsection 4.2. The
part of the process will answer the third research question.

Our parser has to parse the input to some form of interme-
diate structure, which is also used by the static checker and
code generator. We designed and edited this intermediate

1

https://github.com/mmulder135/BlazonryCompiler

structure while working on the other parts of the com-
piler. This was a continuous process because as the other
parts developed the requirements for the intermediate rep-
resentation changed. Our final design will be discussed in
section 5.

The final essential step of a compiler is the code generator.
In our case we will generate an SVG, this will answer our
fourth research question. To create a code generator we
researched ways to describe different parts of the shield
in the SVG language and looked for the best way to do
so programmatically. The process of how we did this is
detailed in section 6.

In order to improve the usability of our tool, and to answer
the second research question, we will also create a static
checker that checks the intermediate representation to see
if it follows the rules of blazonry. To answer this question
we continued our analysis of blazonry into the domain of
heraldry to find these rules. Next we defined these rules in
a way that a static checker can check them and built this
checker. These rules and the description of the checker
can be found in section 7.

3. THE DOMAIN OF BLAZONRY
The language of blazonry is based on English, but with an
uncommon word order in some places, and with French
words dominating its vocabulary. We recognize 7 colors
and 2 furs. The colors are divided into 5 tinctures and 2
metals. It is a general rule of heraldry that a shield is not
supposed to have tinctures upon tincture or metals upon
metals. So if the background is blue, anything placed on
the background must be colored as a metal, anything that
is in turn placed upon that must again be colored as a tinc-
ture. See Table 1 for an overview of the colors, also see
Figure 6b and Figure 6c for depictions of the furs. We’ll
use color to mean any tincture, metal, or fur, unless speci-
fied otherwise. We’ll write the names of colors with capital
letters for clarity, this is not required in real blazons.

Heraldic name English name
Metals
Or Gold / Yellow
Argent Silver / White
Tinctures
Azure Blue
Vert Green
Gules Red
Sable Black
Purpure Purple
Furs
Ermine White with black spots
Vair White and blue ‘bells’

Table 1: The different colors

Each shield starts with a background, called the “field”. A
field can be a either be one color or divided into multiple
colors. There are a few words that specifically denote a
division. For example “Quarterly Azure and Or” is a field
divided into quarters where the first and third quarter are
blue and the second and fourth are yellow or gold. A
division can also be expressed as “per <ordinary>”. We’ll
go into ordinaries in the next paragraph. A bend is an
ordinary that is a band from the top left to the bottom
right of the shield. A division “Per band” is a field divided
by a line from top left to bottom right. “Per bend Vair
and Or”, as shown in Figure 7a, shows this division. The

word “party” can also be used to indicate a partition, this
changes nothing in the meaning. So instead of “Per pale
Vair Or” one could also say “Party per pale Vair Or” and
achieve the exact same result.

After the field the ordinaries will be named. Ordinaries
are a number of standardized shapes that can take a main
position on the shield. We already mentioned the bend
before, that is an excellent example of an ordinary. In
Figure 8a we show the bend and in Figure 8c the pale.
Figure 8b we also show the word “sinister”, which is a
modifier word that flips the figure that precedes it. We
can also use this word to flip the division of the field, see
Figure 7b. Furthermore it is also possible to specify special
partition lines. Because there was no time to implement
this in our code-generator we will not go into the different
possibilities.

After the field and ordinaries figures can be added on top,
we call these “charges”. Charges can be smaller variants
of the ordinaries, like a bendlet is a smaller variant of the
bend, or figures, like flowers or animals. There are a num-
ber of standard figures that are widely recognized, but
in theory the amount of figures in unlimited. In general
weapons, animals, crosses and human arms are quite com-
mon. Each of these figures can be described into more de-
tail if needed. Take animal figures for example, “displayed”
means spread wings, “passant” means walking, etc [4, 6].

4. IMPLEMENTATION OF PARSING
4.1 Background on Semi-Parsing
In the domain of semi-parsing a number of different ap-
proaches have been developed [9]. For our application we
decided to look into iterative lexical analysis [2] and hier-
archical lexical analysis [7,8]. Both approaches use lexical
analysis to generate source code models.

Lightweight Source Model Extraction (LSME), [7,8], uses
hierarchical regular expressions to extract unit level mod-
els. Iterative Lexical Analysis (ILA) [2] also uses a hierar-
chical approach to regular expression matching. But while
LSME was designed to build high level models, ILA is
more focused on building low level models. Another point
where they differ is that ILA requires the user to provide
definitions for the base level tokens used in their scanner;
while LSME breaks the input stream into two token types:
identifiers and single characters. This means that a larger
specification is needed for ILA, but this gives more con-
trol over the scanner. Lastly, the iterative nature of ILA
allows it to find arbitrarily deeply nested constructs.

We based our idea of the parser on the approach used for
ILA. So we’ll summarize the basics of their approach.

ILA encodes tokens as strings. It uses pattern matching
to iteratively replace the basic tokens with generalizations
until the stream has been completely parsed. In the pa-
per by A. Cox and C. Clarke [2] a parser for C has been
created, called ILAC . In this implementation 8 different
levels have been defined. The input goes through the lev-
els one by one, sometimes being sent back. This process is
visualized in Figure 2. Levels 1, 3, 4, and 5 use standard
pattern matching, levels 2 and 6 are there for elements
needing longer matching at level 1 or levels 3, 4, 5 re-
spectively. Level 7 makes relatively low risk matches for
ambiguous text and level 8 makes high risk matches for
ambiguous text. Figure 1 shows an example of how ILA
parses a function definition. In each iteration a part of
the stream gets replaced by a higher order token until a
function definition is found.

2

-1 int zero () { return (0); }

0 int ident () { return (cnst) ; }

1 dspec name () { return (expr) ; }

2 dspec declr { return expr ; }

3 dspec declr { stmt }

4 dspec declr block

5 fundef

Figure 1: Example Substitution Sequence ILAC [2]

4.2 Implementation
As said in subsection 4.1 we started by basing our im-
plementation on the principles of Iterative Lexical Analy-
sis [2]. This means that we will be parsing from the bot-
tom up and we intended to mainly use regular expressions
to find structures. Because we use bottom up parsing,
any errors will be propagated to the top of the parse tree.
Because the goal of this research is to research how semi-
parsing might be used for a semi-structured language like
blazonry, we choose our programming language based on
personal experience instead of efficiency. The lead us to
build our compiler in PHP 8.

Our first concern was to define our tokens and build a
scanner. We programmatically create regular expressions
from an associative array which we use to create our first
list of tokens. This step mirrors what ILAC does in line
0 in Figure 1, and can be seen as step 1 in Figure 3. All
undefined words get saved as the token type STRING. This
is to make sure that our scanner will always transform all
words into tokens and nothing gets lost.

In order to keep our parsing rules simple, our next step is
to generalize tokens. By this we mean that, for example,
all colors get transformed into the token COLOR, or that
both “per bend” and “quarterly” become get transformed
into the token PARTITION. This step is also entirely done
by regular expression matching.

Our next concern was to parse a field declaration. Because
we do not want to have to define any parse rules directly as
regular expressions we started to run into the limitations of
our parsing approach. A regular expression for a field dec-
laration would be ‘(COLOR)|(PARTED? PARTITION SINIS-

TER? PARTITION_LINE? SINISTER? COLOR AND? COLOR)’ ,
this is without allowing for commas or other possible small
deviations. So we started looking for another approach.

We will explain our approach using Figure 3. The gray
squares indicate that the node did not get edited by this
level, but they are repeated for clarity. Here we see that
after the first two levels of parsing we are left with tokens
PARTITION COMMA COLOR AND COLOR.

Our approach to parsing the field starts by reading the
first token, PARTITION in this case. We have defined that
a partition requires two colors, so the parser will continue
until it has either found two colors or reaches the end of the
blazon, in which case it will report that no field has been
found. We have also defined that tokens like COMMA and
AND hold no information, so it will not save these tokens
in our parse tree.

The next step in parsing is parsing the ordinaries. An ordi-
nary definition is in the shape of“NUMBER? ORDINARY SIN-

ISTER? PARTITION_LINES? COLOR”. There are, however, a
number of variations possible in defining ordinaries. For
example,“Azure, a bend and pale Or”is the correct way
to denote two ordinaries of the same color. This compli-
cates our parser and makes it very hard to define a regular
expression that encapsulates will match will all ordinary

definitions while also catching all the information. Our
current program is not able to parse these more compli-
cated blazons. It uses matching on the regular expression
expressed before.

5. INTERMEDIATE REPRESENTATION
Our parser creates an intermediate representation that
gets passed on to the rest of the compiler. The goal of
this representation is to have all the information that the
parser extracted from the source in a way that the rest
of the compiler can work with it. We choose to keep
our intermediate representation simple. We created an
abstract Node class which gets implemented by a classes
called Term and NonTerm which are meant for terminal
and non-terminal nodes, respectively.

In Figure 4 the intermediate representation of the bla-
zon ’Per bend, Azure and Or’ has been depicted. If we
compare this figure to the parse tree of the same blazon,
depicted in Figure 3, we see that the intermediate rep-
resentation follows the structure of the parse tree. It is,
however, more compact and has left out the tokens that do
not hold any new information, like the comma. Figure 5
depicts the intermediate representation of a longer blazon
with a sinister division and an ordinary. This has been in-
cluded to show how an ordinary, or any other extra part,
is represented in the intermediate representation. This fig-
ure also shows how modifiers are stored, in this case the
sinister modifier on the division of the field.

The intermediate representation class is also where we col-
lect all error messages that get raised during parsing.

Figure 4: Intermediate Representation of the blazon ‘Per
bend, Azure and Or’

6. IMPLEMENTATION OF GENERATOR
We use SVG [3] to build the images of shields. This makes
it possible to programmatically draw our shields layer for
layer.

The generator builds the shield layer by layer. It start by
creating the needed XML for an SVG of an empty shield.
Next it will determine the background color of the shield.
This can be all that is needed for the field, as in Figure 6a
and the figures in Figure 8. If the background is a fur that
means for the generator that the background is white and
that it will have to add a fur pattern on top.

There are a number of approached to use a pattern on
a field in SVG. The easiest approach for this application
turned out to be to programmatically place the fur ‘shape’
on the shield using a loop to cover the field and adding a

3

Figure 2: Iteration profile for ILAC [2]

Figure 3: Parse tree for “Per bend, Azure and Or”

Figure 5: Intermediate Representation of the blazon ‘Per bend sinister Azure and Purpure a bend Or’

4

mask on top to hide any part that is outside the shield.
The furs are depicted in Figure 6b and Figure 6c.

(a) Azure (b) Vair (c) Ermine

Figure 6: Three examples of generated fields of one COLOR

The next layer of the shield is still part of the field: the
possible second half of the partition. At the moment of
writing our generator recognizes the divisions “per bend”
and “per pale”, shown in Figure 7a and Figure 7c respec-
tively. The partition is implemented as another shield on
top of the first one, now using a mask to make sure only
half of the original shield gets hidden. We have also de-
fined the sinister modifier, which flips the way the shield is
divided. See Figure 7b for the sinister version of Figure 7a.
This is implemented using a transformation on the mask.
Sinister has no effect on the division “per pale”. In order
to make sure that the sinister transformation did not get
applied to this division we had to separately define which
divisions can be flipped by sinister. If you were to apply
the sinister transformation to “per pale” the colors would
get flipped, which is not what is intended.

(a) Per bend
Vair and Or

(b) Per bend
sinister Vair and

Or

(c) Per pale
Vair and Or

Figure 7: Three examples of generated fields with divisions

After the complete field has been parsed we can start with
the figures. The ordinaries are below the charges and are
placed in the order that they are mentioned. We limited
the ordinaries to the bend and pale to show the generation.
They are depicted in Figure 8a and Figure 8c respectively.
The sinister modifier is also available on ordinaries. We
can use the same methods as we used for making the di-
visions sinister. The result can be seen in Figure 8b.

(a) Azure, a
bend Or

(b) Azure, a
bend sinister Or

(c) Azure, a
pale Or

Figure 8: Three examples of generated fields with simple
ordinaries

7. STATIC CHECKER IMPLEMENTATION
Heraldry has a number of rules of what is allowed on shield
and what not. For each of these rules it is of course also
possible to find an official coat of arms that breaks it. It is
however generally considered bad design if a shield does.
In order to improve the shield created with our compiler
we set out to implement a static checker that would check
our intermediate representation to see if it breaks any of
these rules.

One of the most basic rules of blazonry is that a tincture
cannot be placed on a tincture and a metal not on another
metal. Furs, on the other hand. can be placed on either
a metal or tincture, or even another fur. This also goes
for anything that is emblazoned ‘proper’. Proper in this
context means that it is depicted in its original colors,
or as close as possible. In designing a coat of arms it is
however usual to treat a fur as either a metal of tincture,
depending on its background. It is also rare to find a
charge emblazoned as proper but depicted in a recognized
heraldic color on a background of tincture, in such cased
care should be take to emblazon the charge as proper and
not the heraldic color.

A charge that is composed of a tincture and a metal may
be placed upon a field of either. In these shields it is how-
ever common to ensure that the first color of the composite
charge is in opposition of the field that it is placed on. For
example “Or, a fess chequy Azure and Argent”, a golden
shield with a horizontal line blocked in silver and blue, is
a correct blazon. To blazon, or depict this shield as “Or,
a fess chequy Argent and Azure” would however be incor-
rect. In the second blazon the blocks of silver and blue
would be switched. An ordinary placed on a background
of both metal and tincture, can be of metal, tincture, or
fur. This is not considered an infraction on the basic rule
of not having a tincture on tincture or metal on metal.

If the field is divided into an equal number of pieces it
may be composed of two metals or two tinctures. This
is because all the pieces are equal and of equal number so
none can be considered as placed upon another. There are
also some special cases, the fields emblazoned ‘landscape’,
‘water’, and ‘masoned’. These are said to fall outside of
the categories mentioned.

We have implemented a static checker that checks the color
combinations that are possible with our current parser and
generator implementations. It adds an error to the inter-
mediate representation if it finds an invalid combination.

8. EVALUATION
One of the biggest challenges is writing a compiler for a
semi-structure language is the parsing step. In this paper
we have tried two different approaches. We based our first
approach on ILA [2] and we have tried extending that
approach by writing a specific parser for one of the steps.
There are benefits and disadvantages of both approaches,
which will be discussed now.

We deviated from the original approach of ILA because we
felt that we didn’t have enough control over the matching
and a possible rollback. We also did not like the idea of
directly writing regular expressions. The lexical compo-
nent is very suited for matching simple expressions, like
recognizing a tincture as a color. A downside of this ap-
proach is that it makes it harder to create helpful error
messages because the regular expression either matches or
not, there is no indication of an almost match. The main
issues with this approach could possible be solved by cre-
ating a custom regular expression matcher, in which you

5

could have more control on what matches and on what
doesn’t match and gives an error.

For our specific parser we attempted to write a smart
parser that could find and parse any field declaration. This
approach gave us some flexibility that we missed in our
ILA implementation, but it also introduced new problems.
In writing a custom parser with the variability needed for
semi-structured languages it can be quite hard to account
for all possibilities. Especially all the ways a wrong input
can be structured. A benefit of this approach is that we
were able to make our error messages more specific.

Another part of our compiler is our static checker. This
checker is intended to check the intermediate representa-
tion generated by the parser to check if the rules of her-
aldry a being complied to. Our checker checks the color
of the field in combination of the color of the ordinary.
These rules can become quite difficult to implement when
the shield gets more difficult. Think for example of ordi-
naries on top of ordinaries, or charges that are partly on
an ordinary and partly on a field. Our approach works
perfectly for our relatively small set of options and could
be extended for all future rules. Anyone who wishes to
do so might however consider extending the intermediate
representation to reduce some of the complexion of the
checker.

Lastly, there is the code generator. Seeing as the goal of
blazonry is to describe the coat of arms step by step, layer
by layer, it is not surprising that it lends itself beautifully
to this kind of code generation. The main obstacle would
be the massive amount of different shapes that can be
used. We envision that in extending the code generator it
would be wise to design a maintainable structure to save
all these shapes. l

9. FUTURE WORK
Our goal of creating a flexible compiler with good usability
features is still a long way ahead. In this study we have
collected a lot of knowledge on blazonry as well as on what
parsing methods work or don’t work at all.

In order to achieve our ultimate goal we obviously need
to add charges to our compiler and extend our library of
divisions and ordinaries. There is, however, also a lot of
research that still can be done on the parts that have been
implemented.

A lot more research can be done on the parsing of blazons.
We currently use a different parsing method for field than
ordinaries. The field has his own specialized class, while
the ordinaries use a regular expression to match. The spe-
cialized class gives more freedom in defining the behavior
of the parser, but is harder to correctly implement. In the
basics it is very easy to implement, but it is also very bug-
prone. A regular expression on the other hand is more
difficult to write initially. It requires quite some initial
knowledge on regular expressions and it is very easy to
make typing or spelling errors. ILA [2] shows us however
that it is possible to achieve complicated patterns using
regular expression matching. This will likely involve the
implementation of a system that has more control over the
regular expressions and how they match than our current
implementation has.

In section 7 we have detailed some of the static rules of
heraldry and blazonry. These are only the rules on which
color can be placed where, as one might imagine there are a
lot more. We would like to do more research on these rules,
which is maybe more in the domain of history or vexillol-
ogy. It would also be interesting to research the usability.

A big part of the goal we envision for this tool is its usabil-
ity and guiding error messages, together with helping the
user create the best shields possible. Research into how to
best present any compiler messages would make this task
a lot easier. Combining that with research into how peo-
ple use blazonry nowadays and what are common mistakes
that cause the result to be different than they envisioned
would greatly improve the usability of our envisioned tool.

10. CONCLUSION
To structure the conclusion we will recall the research
questions we set out to answer.

1. How can we model the domain of blazonry as a domain-
specific language, using software language engineering meth-
ods?

We have started modeling the domain of blazonry into a
domain-specific language, as we detailed in subsection 4.2.
Since this is a large undertaking, we have limited our cur-
rent model to the field and a simplification of the ordinar-
ies.

2. What are the rules of blazonry that could be seen as
typing rules or its static semantics?

We have found a number of rules of blazonry and heraldry
that could be seen as typing rules our its static semantics.
For our limited model there are only rules about which
colors can be combined, for which we have implemented
a checker, as described in section 7. As the model gets
extended, the static checker should also be extended to
include the added possibilities for color combinations next
to new rules that will come into play.

3. How can we construct a semi-structured, error-correcting
parser of the blazon language?

(a) How can we maximize the usefulness and informative-
ness of the parser’s error messages?

(b) How can we maximize the set of accepted inputs?

In order to maximize the set of accepted inputs of the
parser a choice has to be made to create a very flexible
parser, which is error-prone in developing, or create special
rules for every edge case, which is a lot of work to write
and most likely will not be enough to catch all edge cases.
We have chosen to try to create a parser flexible enough to
catch everything. Some headway has been made, but no
optimal solution has yet been found. Our considerations
are in subsection 4.2. Error-correction of blazons is quite
complicated, in order to fully achieve this more research,
as detailed in section 9 is needed.

4. How can we create a code generator that can draw Scal-
able Vector Graphics [3] coats of arms given a parsed bla-
zon?

The model of blazonry lends itself quite well to the creation
of a code generator that build SVG coat of arms. This is
because a blazon is meant to describe the coat of arms
layer by layer and SVG allows us to follow this approach
for building the image.

6

11. REFERENCES
[1] K. Cooper and L. Torczon. Engineering a Compiler.

Elsevier Ltd, 2012.

[2] A. Cox and C. L. A. Clarke. Syntactic approximation
using iterative lexical analysis. In 11th International
Workshop on Program Comprehension (IWPC 2003),
May 10-11, 2003, Portland, Oregon, USA, pages
154–164. IEEE Computer Society, 2003.

[3] E. Dahlström, P. Dengler, A. Grasso, C. Lilley,
C. McCormack, D. Schepers, J. Watt, J. Ferraiolo,
J. Fujisawa, and D. Jackson. Scalable Vector Graphics
(SVG) 1.1 (Second Edition). W3C, Aug. 2011.
https://www.w3.org/TR/SVG11/.

[4] A. C. Fox-Davies. A Complete Guide to Heraldry.
T.C. & E.C. Jack, London, 1909.

[5] D. Grune, K. van Reeuwijk, H. E. Bal, C. J. H.
Jacobs, and K. G. Langendoen. Modern Compiler
Design. Addison-Wesley, second edition, 2012.
https://dickgrune.com/Books/MCD_2nd_Edition/.

[6] The Heraldry Society. Historic Heraldry Handbook,
2018.

[7] G. C. Murphy and D. Notkin. Lightweight source
model extraction. In G. E. Kaiser, editor, SIGSOFT
’95, Proceedings of the Third ACM SIGSOFT
Symposium on Foundations of Software Engineering,
Washington, DC, USA, October 10-13, 1995, pages
116–127. ACM, 1995.

[8] G. C. Murphy and D. Notkin. Lightweight lexical
source model extraction. ACM Trans. Softw. Eng.
Methodol., 5(3):262–292, 1996.

[9] V. Zaytsev. Formal foundations for semi-parsing. In
S. Demeyer, D. W. Binkley, and F. Ricca, editors,
2014 Software Evolution Week - IEEE Conference on
Software Maintenance, Reengineering, and Reverse
Engineering, CSMR-WCRE 2014, Antwerp, Belgium,
February 3-6, 2014, pages 313–317. IEEE Computer
Society, 2014.

7

https://www.w3.org/TR/SVG11/
https://dickgrune.com/Books/MCD_2nd_Edition/

	Introduction
	Methodology
	The Domain of Blazonry
	Implementation of parsing
	Background on Semi-Parsing
	Implementation

	Intermediate Representation
	Implementation of generator
	Static Checker Implementation
	Evaluation
	Future work
	Conclusion
	References

