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ABSTRACT
Frequent loading may cause pavement cracks, which have
hidden dangers to vehicles and pedestrians. Additionally,
the cracks will also deteriorate over time thus the cracks
should be found out in time. The current crack detec-
tion method is to recognize them by naked eyes, but it is
time-consuming and non-accurate. Hence, it is necessary
to develop automatic crack detection models. Currently,
CNN-based road crack detection methods get more popu-
lar. The author evaluates the performance, generalization
capabilities, and image processing time of state-of-the-art
methods on three datasets using ODS, OIS, AP, process-
ing time metrics. And the experiment results show the
HED performs better in these three aspects, which reaches
above ODS 0.75 in some datasets. The possible reason why
HED is better at performance and generalization in crack
detection is it outperforms on thin crack identification and
robustness. Additionally, it also shows a greater prospect
of real-time crack detection.
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1. INTRODUCTION
Cracks are a common road defect, which can increase with
time and pose a threat to the safety of drivers. So it
is important to find out and repair cracks to reduce the
maintenance fees and ensure safety before they continue
to deteriorate[10, 22]. Currently, detecting cracks manu-
ally is a relatively common way. However, the detection
process was considered as being time-consuming and the
detection results seem to be subjective. Hence, automatic
crack assessment is crucial for the future pavement crack
detection[9].
Currently, there are many different emerging crack detec-
tion approaches based on different mechanisms like 3D
data, or deep learning[2].
3D data allows the crack to have spatial structure. The
model based on 3D data uses one more dimension to depict
the cracks and it means there is more information about
cracks can be used for the crack analysis such as the depth,
the volume of a crack, which is helpful to enhance the ro-
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bustness of the system[2]. However, even though 3D data
can provide more complete information about the cracks,
it also increases the complexity of the algorithm in the
meantime. Currently, deep convolutional neural networks
contribute to solving the high computational cost issue in
models based on 3D data[2].
Deep learning-based models are popular in the crack detec-
tion field. When compared to traditional machine learning
techniques, feature extraction in deep learning can be done
automatically and the model based on deep learning also
has a better performance on generalization than the one
based on traditional machine learning due to bigger data
usage[2].
CNN-based models showed high precision on computer
vision-related tasks[13]. And generalization capabilities
play an important role in the resistance of minor image
transformations and distortions[14]. Since the trained mod-
els typically are used on different roads and should be able
to recognize cracks accurately, it has high requirements
for generalization capabilities and performance, otherwise,
the model could only be able to handle some specific cases
and can not replace manual detection. Hence, an eval-
uation of state-of-the-art models seems crucial and this
problem leads to two research questions:
Question 1 What is the best-performing CNN for pave-
ment crack detection in the state-of-the-art?

Question 2 Which CNN generalizes better on different data
sets in the state-of-the-art?

The paper aims to address the issue in the pavement crack
detection to enable readers to get insights into the dif-
ference of generalization capabilities and performance of
CNN-based models.
The rest of the paper is organized in the way below:
The ”Related research” section introduces popular state-
of-the-art CNN-based methods and the main evaluation
metrics used in crack detection. The ”Datasets” section
describes the datasets used for the training and evalua-
tion. The ”Research method” section discusses the metrics
for the evaluation. The ”Measurement environment” sec-
tion describes the experiment environment and parameter
setting. The ”Results and discussion” section presents and
analyses the experiment results. The ”Conclusion” section
summarizes the work conducted.

2. RELATED RESEARCH
Arbeláez et al.[1] used ODS, OIS, AP to evaluate method
performance in contour detection. By comparing the met-
ric results of methods, it is able to clearly see the per-
formance difference between different methods. Yang et
al.[18] proposed a way to evaluate generalization capacity
by using means of ODS and OIS, which can show whether
the model performs stably in different datasets.
Some CNN-based methods perform well in crack detec-
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tion. Xie et al.[16] proposed an edge detection method
called HED (holistically-nested edge detection) to solve
edge detection problems. There were many edge detection
methods developed based on different principles. However,
with the rapid development of deep learning, CNN-based
edge detection methods show better performance. The
holistically-nested edge detection method is able to accept
the image as the input and output the result in the image
directly, which is what ”holistically” means here. In addi-
tion, ”nested” represents the current layer can inherit the
results of previous ones so that the model can have better
performance on consistency, otherwise there is a higher
probability of spatial shift issue. After solving issues in
holistic images multi-scale and multi-level feature learn-
ing well, HED is considered to be good at accuracy and
computational speed.
Ronneberger et al.[15] proposed an image segmentation
method based on convolutional networks called U-Net to
solve object recognition challenges. Convolutional net-
works show good performance on the image segmentation
issues, but the size of the dataset is an obstacle to further
improvement. After introducing ImageNet[4], this issue
seems to be solved. However, it also means that the large
dataset gets to a necessity to train a high-performance
model, but it is not always possible to obtain it in differ-
ent fields. Ciresan et al.[3] tried to solve this issue by using
the sliding-window technique. But there are two main is-
sues here. The first one is slowness, since it is necessary
to run the network for each patch in this case. And the
other one is the high requirements on the number of max-
pooling layers, which could decrease the accuracy. To solve
these issues, U-Net uses ”fully convolutional network”[11]
architecture and it is added more feature channels in the
upsampling part in the meanwhile, which causes the ex-
pansive path to seem symmetric to the contracting one
and also makes the architecture look like ”u”. Besides, U-
Net uses elastic deformations to expand the datasets so
that it can perform well on small datasets when compared
to other methods.

3. DATASETS
The CRACK500[19, 20], GAPs384[6, 19], Cracktree200[21]
datasets are used for the evaluation, which contains 3348,
509, 206 raw images with the dimensions of 2560 to 1440,
640 to 540, 800 to 600 pixels respectively. For each raw
image, there is a corresponding groundtruth. In addition,
there are 1124, 39, 21 images are used for the test in each
dataset mentioned above. And the rest of the images will
be divided up into the training set and validation set at a
ratio of 9:1.

Figure 1. A crack image and the corresponding
groundtruth image in Cracktree200 dataset

Cracktree200: Zou et al.[21] introduced a dataset of pave-
ment crack images that has 206 images with the dimension
of 800 * 600 pixels and Yang et al.[18] named it as Crack-
tree200, which involves pavement cracks images with dif-
ferent recognition challenges like shadows, thin cracks like

images shown in Figure 1.

Figure 2. A crack image and the corresponding
groundtruth image in GAPs384 dataset

GAPs384: Eisenbach et al.[7] presented GAPs dataset which
contains 1969 images with dimensions of 1920 * 1080 pix-
els. Yang et al.[18] chose 384 images from it to build a
dataset called GAPs384. They also cropped each image
into 6 parts to fit the GPU limitation and there are 509
images in the dataset eventually. There are different chal-
lenges with the crack detection like white lines on the road,
low contrast, sealed cracks, and Figure 2 shows an image
and corresponding groundtruth in the GAPs384 dataset.

Figure 3. A crack image and the corresponding
groundtruth image in CRACK500 dataset

CRACK500: Yang et al.[18] presented CRACK500 dataset,
which consists of 500 2000 * 1500 pixel images of pavement
cracks in Temple University. In addition, it is divided into
three parts for training, validation, testing, which contains
250, 50, 200 images respectively. To get more images, the
images are cropped into 12 parts and the dataset has 1896,
328, 1124 images for each function mentioned above. Fig-
ure 3 shows an example in the CRACK500 dataset and the
spaces between road grit will be one of the crack detection
obstacles for the methods.

4. RESEARCH METHOD
The state-of-the-art crack detection models e.g. HED[16,
17], U-Net[15, 12] are chosen for testing and comparing
their generalization capabilities and performance.
There are three metrics that are used for the performance
and generalization evaluation: ODS, OIS, AP. Due to the
similarity to edge detection, the metrics for edge detection
can be used for the evaluation. ODS is short for optimal
dataset scale, which represents the best F-measure in dif-
ferent dataset scales. And OIS means optimal image scale,
which is the aggregate F-measure in the best scale for each
image. The last one is AP, which represents the average
precision here[5, 18].

ODS = max{2Pt ×Rt

Pt + Rt
: t = 0.01, 0.02, ..., 0.99} (1)
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t
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Figure 4. Visualization of method performance on different datasets

where:

P Precision
R Recall
t Threshold
i Index of image

Nimg Number of images

To evaluate the performance of each method, calculate
the ODS, OIS, AP values of methods on each dataset.
And compare the results of these three metrics between
methods to find out the best-performing one.

To evaluate the generalization capabilities of methods, train
the models with the first dataset, and then test the trained
models on the rest of the datasets successively. And the
means and standard deviations of ODS, OIS, AP are used
for the evaluation, which can be calculated by using other
dataset results of methods trained on a specific dataset.
For instance, for HED trained on the Cracktree200, the
means and standard deviations can be calculated by us-
ing the ODS, OIS, AP results of this model on GAPs384,
CRACK500. And also compare the mean and standard
deviation results between methods to choose one with the
best generalization capability.

5. MEASUREMENT ENVIRONMENT
5.1 Platform
All training processes were conducted on Google Colab
with 12GB NVIDIA Tesla K80 GPU. And the evaluation
part was performed on the laptop with Intel dual-core i5
CPU @2.7GHz by using the tool from [8].

5.2 Parameter Setting
All methods are trained based on SGD optimizer and fol-
lowing hyperparameters: batch size(1), step size(1e4), mo-
mentum(0.9), weight decay(2e-4), gamma(0.1)

The initial learning rate is 1e-3, which is multiplying by
gamma(0.1) every step size(1e4) iterations to find out a

model with the best performance.

6. RESULTS AND DISCUSSION
6.1 Performance
Cracktree200 Dataset: As shown in the Table 3. We can
see HED has better performance on Cracktree200 than U-
Net. HED trained on Cracktree200 can reach 0.925, 0.953,
0.818 in ODS, OIS, AP respectively. But the model of U-
Net trained on the same dataset only achieve 0.469, 0.477,
0.430 in ODS, OIS, AP from the second row of Table 3.

GAPs384 Dataset: According to results in the Table 4.
HED outperforms U-Net slightly, which has a similar score
on the ODS. However, HED has better performance on
OIS and AP than U-net, which are 0.004, 0.112 higher.

CRACK500 Dataset: From results in the Table 5, we can
see HED is better on all three metrics than U-Net. Specif-
ically, HED outperforms U-Net by 16.6%, 23.3%,30.0% in
ODS, OIS, AP respectively.

In general, the HED method has better performance than
U-Net in crack detection. Since the HED achieves better
results on three datasets in the performance evaluation. A
possible reason is it has better performance on thin crack
identification and robustness. For instance, from the 4,
the result of HED on CRACK500 shows more continuity
on the thin cracks when compared to the result of U-Net.
For the robustness, the result of HED on GAPs384 shows
a cleaner background, but U-Net probably also takes par-
ticles in the raw image into account.

6.2 Generalization Capability
Cracktree200 Dataset: According to results in the Table
6, HED trained on Cracktree200 has better generalization
capability than U-Net. HED achieves better results on
means of ODS, OIS, AP. In detail, they are 0.256, 0.245,
0.184 respectively.
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HED trained on HED trained on HED trained on
Cracktree200 GAPs384 CRACK500

Datasets ODS OIS AP ODS OIS AP ODS OIS AP

Cracktree200 0.925 0.953 0.818 0.776 0.807 0.829 0.379 0.437 0.262
GAPs384 0.267 0.262 0.210 0.266 0.235 0.193 0.286 0.301 0.189

CRACK500 0.244 0.229 0.158 0.351 0.292 0.290 0.498 0.560 0.385

Table 1. Evaluation results of HED trained on Cracktree200, GAPs384, CRACK500 respectively

U-Net trained on U-Net trained on U-Net trained on
Cracktree200 GAPs384 CRACK500

Datasets ODS OIS AP ODS OIS AP ODS OIS AP

Cracktree200 0.469 0.477 0.430 0.709 0.736 0.090 0.147 0.219 0.068
GAPs384 0.105 0.088 0.039 0.271 0.191 0.081 0.166 0.171 0.086

CRACK500 0.032 0.023 0.005 0.143 0.141 0.011 0.427 0.454 0.296

Table 2. Evaluation results of U-Net trained on Cracktree200, GAPs384, CRACK500 respectively

Method ODS OIS AP

HED 0.925 0.953 0.818
U-Net 0.469 0.477 0.43

Table 3. Evaluation results of method trained on Crack-
tree200

Method ODS OIS AP

HED 0.266 0.235 0.193
U-Net 0.271 0.191 0.081

Table 4. Evaluation results of method trained on GAPs384

Method ODS OIS AP

HED 0.498 0.56 0.385
U-Net 0.427 0.454 0.296

Table 5. Evaluation results of method trained on
CRACK500

GAPs384 Dataset: As shown in the Table 7, HED and U-
Net both show decent generalization capability. But HED
still has higher scores on the means of all the three metrics
than U-Net. And the AP means of HED is 0.503 higher
than U-Net’s.

CRACK500 Dataset: From results in the Table 8, HED
shows better generalization capability than U-Net. And
HED’s means of metrics are 0.176, 0,174, 0.149 in ODS,
OIS, AP higher than U-Net’s respectively.

Method ODS OIS AP

HED 0.256±0.012 0.245±0.017 0.184±0.026
U-Net 0.069±0.037 0.056±0.033 0.022±0.017

Table 6. The mean and standard deviation of ODS, OIS,
and AP over datasets GAPs384, CRACK500 of methods
trained Cracktree200

Method ODS OIS AP

HED 0.563+0.213 0.550+0.258 0.560+0.270
U-Net 0.426+0.283 0.439+0.298 0.051+0.040

Table 7. The mean and standard deviation of ODS, OIS,
and AP over datasets Cracktree200, CRACK500 of meth-
ods trained GAPs384

Method ODS OIS AP

HED 0.333+0.047 0.369+0.068 0.226+0.037
U-Net 0.157+0.010 0.195+0.024 0.077+0.068

Table 8. The mean and standard deviation of ODS, OIS,
and AP over datasets Cracktree200, GAPs384 of methods
trained CRACK500

Generally, the HED method also performs better than U-
Net on generalization capability in crack detection due to
better stability in three datasets in generalization capa-
bility evaluation. A possible reason is the same as the
one in the performance part: the HED is better at the
thin-crack identification and robustness than U-Net. For
instance, from the Figure 6, HED trained on GAPs384
shows a more accurate result than U-Net on Cracktree200
since the width of cracked recognized by HED is closer
to the one in the ground truth. For the robustness, the
HED trained on GAPs384 shows fewer errors than U-Net,
because some spaces between grits are falsely recognized
as cracks and there are also more noises caused by grits
in the background of the result of U-Net. Besides, From
the Figure 5 and 7, the results of HED also show fewer
noises caused by grits in the backgrounds than the ones of
U-Net.

6.3 Processing Time
Method Cracktree200 GAPs384 CRACK500

HED 0.135s 0.080s 0.083s
U-Net 0.272s 0.333s 0.485s

Table 9. The time the method takes to process an image in
specific dataset on GPU

As shown in Table 9, HED processes images faster than U-
Net on the three datasets, which takes 0.099s on average.
It seems like HED shows the greater potential on the real-
time image processing in crack detection according to the
test results. And if there is a computer with a proper
GPU on board of a car that checks the roads, it could be
a better method choice for real-time crack detection.

7. CONCLUSION
CNN-based methods play an increasingly important role
in road crack detection. In this paper, the author tried
to find out the CNN-based methods with the best perfor-
mance and with best generalization capability, and with
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the fastest image processing speed by testing them on dif-
ferent pavement crack datasets. The result shows the
HED is better at performance, generalization capability,
and processing time than U-Net in crack detection. The
possible reason why it achieves better results on perfor-
mance and generalization in crack detection is this method
is good at thin-crack identification and not easy to be dis-
turbed by background noises. Besides, it also has a greater
potential for real-time crack detection in the meanwhile.
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Figure 5. Visualization of generalization capabilities of methods trained on Cracktree200 over datasets GAPs384, CRACK500

Figure 6. Visualization of generalization capabilities of methods trained on GAPs384 over datasets Cracktree200, CRACK500

Figure 7. Visualization of generalization capabilities of methods trained on CRACK500 over datasets Cracktree200, GAPs384
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