
Benchmarking and Optimisation of
Engage!-based XML Parsers

Frank Groeneveld
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

f.groeneveld@student.utwente.nl

ABSTRACT
In this research, we implement two event-based specifi-
cations of XML, from which Engage! can then generate a
parser. These parsers are then differentially tested against
an existing event-based parser for XML, .NET’s XML-
Reader. Based on the results of various tests, various
possible improvements to Engage! have been found and
suggestions on how to further improve the performance of
the tool will be proposed.

Keywords
Parsing, Compilers, Event-based parsing, XML, SAX

1. INTRODUCTION
Parsing is a well explored problem and many different
techniques are at our disposal [2]. Traditionally, parsers
use a tree-based approach, where an in-memory tree rep-
resentation is generated for the entire parsed input, even
though the kinds of trees and methods of obtaining them
can be very different [16]. This is a very memory-intensive
process, especially in the case of large inputs, such as
the OpenStreetMap database [9], which is, when uncom-
pressed, 1352.6 GB in size at the moment of writing. On
many systems, it is impossible to process such a large file
as the memory available will not be able to fit the entire
tree.

SAX, or Simple API for XML [5] was developed as an al-
ternative to the classical approach, and could arguably be
the first practical application of event-based parsing [15].
The idea behind this kind of parser is to process a tag as
an event and then forget about it, which means that SAX
is much more efficient in terms of memory usage and time
needed to process the input, as no complete in-memory
representation has to be generated [11].

In 2019, Engage! [15] was introduced as the first event-
based parser generator. While a parser for an existing
language, AppBuilder [10], has already been generated
and tested against a tree-based parser, the technology is
still very young and leaves a lot to explore. This means
that there exists little documentation of the software, aside
from the code [17] and the paper [15], both mostly written
by V. Zaytsev, the author of Engage!.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
34th Twente Student Conference on IT Jan. 29nth, 2021, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

Because there are no other known event-based parser gen-
erators and Engage! being such a young technology, lit-
tle is known on how well this tool performs in practice.
While it has already been shown to work in the case of
AppBuilder, the performance of the parsers generated has
not been tested extensively.

By differentially testing [3] an XML-parser generated by
Engage! against a SAX-like parser, such as XMLReader [8],
it can be seen how Engage! performs, and possible op-
timisations, either in the XML language specification or
Engage! itself will become known.

XMLReader is an industrial strength event-based parser
that can be used to parse XML-files in C#, in which En-
gage! was also written. It is a mature technology, and
like SAX, it generates a stream of events from an XML
input, rather than generating a tree from the entire input.
There are however some differences [6]. Most importantly,
XML follows a pull model, which means events have to
be pulled from the reader, as opposed to being pushed by
the parser, which is the case for SAX-based parsers and
Engage!-based parsers.

Depending on the size and type of the XML inputs used
in the tests, the loss or gain in performance between the
two parsers becomes apparent, and optimisations that can
be used to improve the performance of the parser, are sug-
gested. The implementation of those suggested optimisa-
tions can improve the performance of Engage!, to bring
it closer to an industrial strength event-based parser like
SAX or XMLReader, while also providing the flexibility
of allowing programmers to write their own specifications
for any language desired.

In the next section, we will formulate the research ques-
tions that have been answered. We will then provide the
methodology of the research and the results obtained. Fi-
nally, we present our results and conclusion.

2. RESEARCH QUESTIONS
In order to explore the performance of Engage!, and how
well it performs compared to XMLReader, the following
research questions have been asked.

1. Can XML be implemented in Engage!? And which
language extensions, if any, would be needed?

2. Which is faster, XMLReader, or the Engage!-based
XML parser?

(a) In the case of small files?

(b) In the case of realistic files?

(c) In the case of large files?

1

3. Where does Engage! lose the most speed? What
optimisations could be implemented in order to im-
prove its performance?

3. RELATED WORK
Engage! [15, 17] is an event-based parser generator: given
a parsing specification, it generates a parser that can then
be used to process inputs in an event-based way. It works
as follows: A specification consists of rules which have the
form of triggers -> actions. The trigger is usually a token,
or a token accompanied by a flag. An action is either done
immediately, or executed when a different token is found.

Consider this example by Zaytsev [15, p.2]:

'dcl' -> push DclBlock(types)

where types := await* String

'char' -> push String(n)

where n := await number

'enddcl' -> trim String

This example pushes a DCLBlock containing all Strings
that exist within an input that begins with ’dcl’ and ends
with ’enddcl’. The first rule specifies that when a ’dcl’
token is reached, a DCLBlock initialized with all Strings
found will be pushed to the stack. A string is constructed
by adding all character tokens until a number is found.
Finally, when the ’enddcl’ token is found, the trim action
is called, which stops all other ongoing actions, in this
case the await* action, so that the event that pushes the
DCLBlock is pushed.

SAX, or Simple API for XML [5], is the first practical ap-
plication of event-based parsing, developed since 1997 [13].
The latest release of SAX at the moment is 2.0.2, released
in 2004. Contrary to Engage!, in SAX the end developer
does not write specifications for each scenario: any XML
file can be parsed with SAX, and the events are caught and
handled programmatically. It works as following, consider
the following simple XML file:

<DocumentElement param="value">

<FirstElement>

Content

</FirstElement>

</DocumentElement>

When this input is passed through a SAX parser, it will
generate a sequence of events as following:

• XML Element start, named DocumentElement, with
an attribute param equal to ”value”

• XML Element start, named FirstElement

• XML Text node, with data equal to ”Content”

• XML Element end, named FirstElement

• XML Element end, named DocumentElement

The user defines a number of callback methods that will be
called when specific events occur during parsing. Consider
the following example in Java:

public void startElement(String uri,

String localName, String qName,

Attributes attributes)

throws SAXException {

System.out.println(qName);

}

This function is called every time a XML Element start

event is pushed, in which case the QName, or qualified
name of the XML element is printed. When parsing, SAX
drops events right after the callbacks received them, and
there is no way to go back. The entire document will have
to be parsed again if an event was not handled correctly.

DOM, or Document Object Model [14], is an alternative
to SAX, also widely used in the XML ecosystem. Unlike
SAX, it is standardised as a W3C specification. Addition-
ally, DOM does not rely on events like SAX does. It loads
the entire XML document into memory to parse it into a
tree-based structure. This means it is less memory effi-
cient, but at the advantage of being easier to operate on,
as the the entire document and its structure is loaded into
memory.

XMLReader [8] is a reimplementation of the classic SAX,
meant to be used on the .NET Framework and .NET Core
(while SAX targeted JVM). It is an industrial strength
event-based parser that is widely used to parse XML-files
in C#. There are however some differences [6], the most
important being that XMLReader uses a pull mechanism.
Where SAX’s push mechanism pushes events which are
handled by callbacks, XMLReaders pull system gives the
user control over the decision of when to pull the events,
which means that there is no need to pull the entire doc-
ument if only certain information is needed.

RxParse [1] is another framework for event-based SAX-
style parsing for Java. It is an internal domain-specific
language (essentially, a library). It ended up being out of
scope of this project: there is some interest in their com-
munity in making a similar event-based library for event-
based LINQ-style parsing for .NET [12], as well as some
interest in making a detailed feature-wise comparison of
RxParse with Engage! [15, p.6].

4. METHODOLOGY
Various parsers were benchmarked when solving two prob-
lems. The parsers, benchmarks and input data used are
described below.

4.1 Parsers
A simple Engage! specification was developed in order to
parse XML tags. This specification can be found in Fig-
ure 1. Based on this specification, a parser, EAX, is gen-
erated that recognises the tags in an XML document and
its contents. Once the end of the input is reached, all
the found tags are then returned and stored in an En-

gagedXmlDoc object, which then can be used to read the
parsed XML. This parser parses the entire input, and then
returns all the tags found. Then, in order to access the
data parsed, one can iterate over all the returned tags.

Additionally, an additional Engage! specification was de-
veloped to generate a parser, EAXFind, which only re-
turned the contents of a specified tag. This means that
the parser still has to parse the entire input, but only the
specific tag has to be processed afterwards, which means
fewer events have to be iterated over when processing the
parsed input. This specification can be found in Figure 2.

To test these parsers, XMLReader was used to parse the
generated inputs.

4.2 Benchmarking
4.2.1 Unique tags

The simple Engage!parser and the XMLReader parser each
had to count the number of unique tags present in the in-
put, this was timed using the built in Stopwatch [7]. The

2

namespace EaxOpenClose

types

EngagedXmlDoc;

Name;

TagOpen, TagClose <: TagEvent;

tokens

’ ’, ’\r’, ’\n’ :: skip

’<’, ’>’, ’!’, ’/’ :: mark

string :: Id

handlers

EOF -> push EngagedXmlDoc(tags) where tags := pop* TagEvent

’<’ -> lift TAG

’<’ -> lift OPEN

’/’ upon TAG -> lift CLOSE

’/’ upon TAG -> drop OPEN

Id upon TAG -> push Name(this)

’>’ upon OPEN -> push TagOpen(n) where n := pop Name

’>’ upon CLOSE -> push TagClose(n) where n := pop Name

Figure 1. EAX (Engage! API for XML) specification for generating a stream of TagOpen/TagClose objects. Online version:
https://github.com/raincodelabs/engage/blob/master/EAX/specs/OpenClose.eng

namespace EaxFuzzy

types

EngagedXmlDoc;

Name;

TagOpen, TagClose <: TagEvent;

tokens

’ ’, ’\r’, ’\n’ :: skip

’<’, ’>’, ’!’, ’/’ :: mark

’a’ :: word

string :: Id

handlers

EOF -> push EngagedXmlDoc(tags) where tags := pop# TagEvent

’a’ upon TAG_CLOSE -> drop PARSE

’a’ upon TAG -> lift PARSE

’a’ upon TAG_CLOSE -> drop TAG

’a’ upon TAG_CLOSE -> drop CLOSE

’a’ upon TAG -> drop TAG

’a’ upon TAG -> drop OPEN

’<’ -> lift TAG

’<’ -> lift OPEN

’<’ -> drop CLOSE

’/’ upon TAG -> lift CLOSE

’/’ upon TAG -> drop OPEN

Id upon TAG -> push Name(this)

’>’ upon PARSE_OPEN -> push TagOpen(n) where n := pop Name

’>’ upon PARSE_CLOSE -> push TagClose(n) where n := pop Name

’>’ upon IGNORE -> lift IGNORE

’<’ -> lift IGNORE

Figure 2. EAX (Engage! API for XML) specification for generating a stream of TagOpen/TagClose objects only for tags
found inside tags <a>. Online version: https://github.com/raincodelabs/engage/blob/master/EAX/specs/Fuzzy.eng

3

https://github.com/raincodelabs/engage/blob/master/EAX/specs/OpenClose.eng
https://github.com/raincodelabs/engage/blob/master/EAX/specs/Fuzzy.eng

number of tags generated and the ticks required in order
to count these have then been plotted using Matplotlib [4].

4.2.2 Search
Both EaxFind and XMLReader had to find one tag in the
input, which was timed by the same Stopwatch used for
counting the unique tags. The number of tags generated,
excluding the tag that had to be found, and the ticks taken
before this tag could be accessed were stored, and finally
plotted in the same way as the previous experiment.

4.3 Input
4.3.1 Unique tags

For various types and sizes, an input was randomly gen-
erated every time a test was ran. The input could either
be shallow, deep, or mixed in terms of nested-ness.

To elaborate, the shallow inputs were generated by adding
random tags that open and then close to the input, which
is then put in one XML root node. In the case of deep
inputs, every tag generated is nested inside the previ-
ous generated tag. For the mixed input, a more realistic
XML input was generated, which had a maximum depth
of 4 nodes, which resulted in the parser having to decide
whether to transcend deeper into a node or to go to the
next one. The size of the input was between 10 and 11000
randomly generated XML pairs of tags which open and
close.

4.3.2 Search
In order to test the search performance of EaxFind and
XMLReader, three types of input were generated, first,
middle, and end. These inputs, of size 10 to 6200, con-
tained one specific tag to be found, either placed first, in
the middle or in the end, in order to determine how the
parsers would perform in best, average and worst cases.

5. RESULTS
5.1 Unique tags
As can be seen in the first three figures (Figure 3, Figure 4,
Figure 5), XMLReader outperforms the Engage! parser
significantly. This is quite irrelevant for smaller inputs,
but very inconvenient for larger inputs, especially con-
sidering many XML files contain much more than 10000
tags. Whether the input was deep or shallow did not make
a noticeable difference to the performance of the parsers,
but the realistic input, where XMLReader performed best,
took almost twice as long to parse compared to the other
two input types.

5.2 Search
As can be seen in Figure 7, regardless of the tag being
placed conveniently in front or in the worst case, in the
back, the Engage!-based parser takes a lot longer to find
the tag than the XMLReader parser, of which the result of
the benchmarks can be found in Figure 8. Unfortunately,
the new specification does not seem to improve the per-
formance of the Engage! parser much, and XMLReader
greatly outperforms our parser.

The fact that the Engage! parser benefits so little when the
tag was found in the front can be explained by the fact that
the parser will still parse the entire input before pushing
the result. When comparing these runs to the unique tag
counting runs of the Engage! parser, we find that there is
little to gain by reducing the number of tags that Engage!
returns, and instead a large portion of the time used is
spent parsing the input and generating the tags instead.
Therefore, in order to improve the performance, the focus

Figure 3. EAX vs SAX in the case of shallow inputs

Figure 4. EAX vs SAX in the case of deep inputs

Figure 5. EAX vs SAX in the case of realistic inputs

4

Figure 6. A comparison of three runs of the XMLReader
parser on deep inputs

Figure 7. EaxFind finding one tag in inputs of various sizes

Figure 8. XMLReader finding one tag in inputs of various
sizes

should be to reduce the time spent parsing as much as
possible. One way to do this would be to make Engage!
stop parsing once this is no longer necessary.

Currently, Engage! does not have an instruction to do so,
therefore we propose to add a stop instruction, telling the
parser to stop parsing once it is called. This could then
be used to stop the parser once the desired data is parsed,
so that it would not have to parse the rest of the output.

6. CONCLUSION
To conclude: It was possible to implement XML in En-
gage!. No language extensions were needed. XMLReader
was significantly faster in all cases of counting unique tasks,
overperforming the Engage!-based parser more as the in-
put became larger. In order to make Engage! viable for
processing larger XML inputs, certain improvements will
have to be made. The improvement suggested here is to
implement the stop functionality described above.

Interestingly enough, the performance of the parsers was
changing a lot over various runs of the test, even when av-
eraged over 10 runs, despite efforts to reduce the impact
of the machine on the test. These efforts included making
sure as few processes as possible were ran in the back-
ground, and running a few iterations of parsing that were
not timed, before the actual timing was performed. Three
consecutive runs of XMLreader have been timed and plot-
ted in Figure 6. As can be seen, the parsing of the various
inputs in the first two runs happened in roughly the same
time, but the third run shows various anomalies compared
to the other runs. This means that even with the precau-
tions taken, the timed runs can show significant variance.
Still, reliable conclusions can be drawn when looking at
the graphs for the comparisons between the XMLReader
parser and the Engage!-based parser, because the differ-
ence between these trends are so different.

7. REFERENCES
[1] A. Chen. RxParse: Reactive Parse. GitHub,

https://github.com/yongjhih/RxParse, 2015.

[2] D. Grune and C. J. H. Jacobs. Parsing Techniques
— A Practical Guide. Monographs in Computer
Science. Addison-Wesley, second edition, 2008.

[3] M. A. Gulzar, Y. Zhu, and X. Han. Perception and
practices of differential testing. In Proceedings of the
41st International Conference on Software
Engineering: Software Engineering in Practice,
ICSE-SEIP ’19, page 71–80. IEEE Press, 2019.
https://doi.org/10.1109/ICSE-SEIP.2019.00016.

[4] Matplotlib. Matplotlib.
https://matplotlib.org/index.html, 2021.

[5] D. Megginson. Simple API for XML. Megginson
Technologies,
http://www.megginson.com/downloads/SAX/, 1998.

[6] Microsoft. Comparing xmlreader to sax reader. 2011.
https://docs.microsoft.com/en-us/

previous-versions/dotnet/netframework-4.0/

sbw89de7(v=vs.100)?redirectedfrom=MSDN.

[7] Microsoft. Stopwatch.
https://docs.microsoft.com/en-us/dotnet/api/

system.diagnostics.stopwatch?view=net-5.0,
2019.

[8] Microsoft. Xmlreader.
https://docs.microsoft.com/en-us/dotnet/api/

system.xml.xmlreader?view=netcore-3.1, 2019.

[9] Openstreetmap. Openstreetmap data file. 2021.
https:

//wiki.openstreetmap.org/wiki/Planet.osm.

5

https://github.com/yongjhih/RxParse
https://doi.org/10.1109/ICSE-SEIP.2019.00016
https://matplotlib.org/index.html
http://www.megginson.com/downloads/SAX/
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/sbw89de7(v=vs.100)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/sbw89de7(v=vs.100)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/dotnet/netframework-4.0/sbw89de7(v=vs.100)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.diagnostics.stopwatch?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmlreader?view=netcore-3.1
https://docs.microsoft.com/en-us/dotnet/api/system.xml.xmlreader?view=netcore-3.1
https://wiki.openstreetmap.org/wiki/Planet.osm
https://wiki.openstreetmap.org/wiki/Planet.osm

[10] Raincode. The raincode tialaa compiler. https://
www.raincode.com/technical-landscape/tialaa/,
2018.

[11] K. Sall. Xml family of specifications: A practical
guide. 2002. ISBN-13: 978-0-201-70359-7.

[12] S. C. Taylor. Reactive Parser Combinators.
Microsoft Developer Network Forums,
https://social.msdn.microsoft.com/Forums/

en-US/0f72e5c0-1476-4969-92da-633000346d0d/

reactive-parser-combinators, 2010.

[13] J. Tigue, P. Murray-Rust, T. Bray, D. Megginson,
and D. Brownell. SAX Genesis. Megginson
Technologies,
http://www.saxproject.org/sax1-history.html,
1998.

[14] W3C. Document Object Model (DOM) Living
Standard, Jan. 2021.

[15] V. Zaytsev. Event-Based Parsing. In T. Kamina and
H. Masuhara, editors, Proceedings of the Sixth
Workshop on Reactive and Event-based Languages
and Systems (REBLS), 2019.
https://doi.org/10.1145/3358503.3361275.

[16] V. Zaytsev and A. H. Bagge. Parsing in a Broad
Sense. In J. Dingel, W. Schulte, I. Ramos,
S. Abrahão, and E. Insfran, editors, Proceedings of
the 17th International Conference on Model Driven
Engineering Languages and Systems (MoDELS
2014), volume 8767 of LNCS, pages 50–67. Springer,
Oct. 2014.

[17] V. Zaytsev, M. Samy, and F. Groeneveld. Engage!
GitHub,
https://github.com/raincodelabs/engage, 2019.

6

https://www.raincode.com/technical-landscape/tialaa/
https://www.raincode.com/technical-landscape/tialaa/
https://social.msdn.microsoft.com/Forums/en-US/0f72e5c0-1476-4969-92da-633000346d0d/reactive-parser-combinators
https://social.msdn.microsoft.com/Forums/en-US/0f72e5c0-1476-4969-92da-633000346d0d/reactive-parser-combinators
https://social.msdn.microsoft.com/Forums/en-US/0f72e5c0-1476-4969-92da-633000346d0d/reactive-parser-combinators
http://www.saxproject.org/sax1-history.html
https://doi.org/10.1145/3358503.3361275
https://github.com/raincodelabs/engage

	Introduction
	Research questions
	Related Work
	Methodology
	Parsers
	Benchmarking
	Unique tags
	Search

	Input
	Unique tags
	Search

	Results
	Unique tags
	Search

	Conclusion
	References

