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1. ABSTRACT
Facial marks like freckles, moles, scars, pockmarks have
been used in the past to identify individuals. There have
been developed systems integrating both Facial Marks de-
tection with Facial Recognition [17] [2], which showed im-
proved performance over only using Facial Recognition.
These systems used classic blob detection approaches like
LoG (Laplacian of Gaussian) or Fast Radial Symmetry
Transform for detecting facial marks, which gave a lot
of False Positives, or had people manually annotate fa-
cial marks, which is too time consuming. Although there
have been significant improvements in detecting Facial
Marks using a Convolutional Neural Network, a system
integrating this new approach with facial detection has
not been implemented yet. This paper improves the state-
of-the art in Facial Marks detection by using CNNs with
deeper architectures and shows that a system combining a
state-of-the-art algorithm in Facial Recognition with a Fa-
cial Marks Systems outperforms one that only uses Facial
Recognition, especially in the case of monozygotic twins.

Keywords
Facial marks, Facial recognition, Convolutional Neural Net-
works, Monozygotic Twins

2. INTRODUCTION
Facial marks (e.g freckles, moles, scars, pockmarks, etc)
are soft biometric features that have been shown to de-
crease the error rates in facial recognition software [8].
Although they are not discriminative enough by them-
selves to identify an individual, they have been proven
to be effective at narrowing the search for the person [11],
and helping to distinguish between people, especially in
the case of monozygotic twins.[14]. Where Facial Recog-
nition systems could output high scores, two people can
have radically different facial marks patterns, not taken
into account by a Facial Recognition system. This is es-
pecially true for identical twins, where it is very difficult
to differentiate them only by using their facial structure,
since they look so much alike. This is where facial marks
can offer enough information to indicate if two pictures
are from the same person or not. To be able to use facial
marks effectively, their correct detection is crucial. Work
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has been done to show that a Shallow Convolutional Neu-
ral Networks (CNN) outperforms the classic blob detector
approach such as Laplacian of Gaussian (LoG) or Fast Ra-
dial Symmetry Transform [15]. The topic facial recogni-
tion has gotten much attention, with a lot of research being
done into improving the performance of such systems [9]
[5] [12] [10]. The relevance of this topic is not surprising
since facial recognition has many important implications
such as being used for identifying suspects in relation to
a crime, or being used as a way to identify an individual
for security purposes. In this paper, we aim to improve
the performance of a state-of-the-art face recognition algo-
rithm, Open-face [1], by combining it with our facial marks
system (FMS), and seeing if it can help differentiate be-
tween images of people, especially in the case of monozy-
gotic twins. To this end, a subset of the FRGCv2 and 2009
and 2010 TwinsDays festivals in Twinsburg, Ohio datasets
will be used and the following research questions will be
addressed:
RQ1 To what extent does increasing the number of lay-
ers improve the performance of a facial marks detection
CNN?
RQ2 To what extent is transfer learning better than cre-
ating CNN’s from scratch.
RQ3 Can we, and to which extend, improve face recogni-
tion performance by fusing results obtained by the FMS,
particularly in the case of monozygotic twins.

Experiment 1 will address Research Question 1 by compar-
ing the performance of 4 CNNs with a shallow architecture
(up to 3 layers) with 4 CNNs with a deeper architecture
(between 3 and 9 layers). Experiment 2 will address Re-
search Question 2 by comparing the performance of the
8 CNNs trained in Experiment 1 with a pre-trained deep
CNN used for image recognition that has has the last 4
layers replaced and retrained for detecting facial marks.
Lastly, Experiment 3 will use a CNN from the previous ex-
periments to detect facial marks and fuse these scores with
scores from a state-of-the art facial recognition software to
try to get better results than just using facial recognition
alone, especially in the case of monozygotic twins.

3. RELATED WORK
Facial marks have been used as a means of identification
for a long time, the Bertillonage system being the first
modern system to use facial features for identifying sus-

Figure 1. Example of facial mark patches



pects. [3] In Park and Jain [11], a facial marks detection
system is implemented using classic blob detectors like Ac-
tive Appearance Model (AAM) and Laplacian of Gaussian
(LoG). This type of approach introduced a lot of false pos-
itives that needed to be filtered. In the case of [14], the
case of identifying monozygotic twins is explored using
classic blob detector methods like Fast Radial Symmetry
transform. Since then, better Facial Marks detection sys-
tems have been made using Shallow Convolutional Neural
Networks [15]. Grid-based approaches have been seen in
[16] showing improved performance over classical meth-
ods. This novel approach surpassed the performance of
traditional approaches such as blob detection with heuris-
tics and had significantly less false positives. There are
still ways to improve the performance of CNNs. As has
been discussed in [13], creating deeper models is usually
better than creating wider models. A model can have the
same effective receptive field, with more layers, as has been
shown [13]. Work has been done to show that a FMS can
improve the performance of state-of-the-art facial recog-
nition systems in [8] [2] [17]. Looking at the work that
has been done so far, there seems to be a gap in using a
CNN-based facial marks detection system with a state-of-
the-art facial recognition system, such as [1], especially in
the case of monozygotic twins, therefore this paper will
focus on fusing these systems together and solving the dif-
ficult problem of identifying identical twins.

4. METHODOLOGY
4.1 Dataset
In this paper, from the FRGCv2 dataset, we will use the
subset containing 12306 images of 568 subjects, in which
the facial marks were manually annotated by [16]. The
people in these images show a natural facial expression
and were photographed under controlled conditions. This
way, we provide our system with a relatively consistent
dataset. The reason why we use this dataset is because
it is sufficiently large, with a relatively consistent environ-
ment where the images were taken and has been manually
annotated before. Otherwise, it will take too much time
to manually annotate it ourselves. Additionally, we will
use identical twin images acquired at the 2009 and 2010
Twins Days Festival in Twinsburg, Ohio, to test our sys-
tem in the case of monozygotic twins identification. From
this dataset, 100 pairs of identical twins will be selected,
resulting in 200 people and for each person 2 pictures will
be extracted. This will result on 400 images to be used
in experiments. These images will be processed the same
as the first dataset. The reason 2 images are extracted
for each person is so that we have enough images to see if
the system can recognize if two images are from the same
person or from different people.

4.2 Image pre-processing
For the image pre-processing part, we apply geometric and
photometric transformations to the images prior to the fa-
cial marks detection and facial recognition steps. We crop
the images to (800,600) and use the affine transformation
that will map the pupils to the coordinates (200,250) and
(400,250), such that the inter-pupillary distance for every
image is the same (200 px). [15] This gives images a con-
sistent coordinate system in which to store the locations
of detected facial marks. It also provides consistency be-
tween images of a person taken in different environments.
For the photometric transformation, we apply a grayscale
transformation to reduce the complexity of the problem.
After this we normalize the image by subtracting a mean
of 0.5 and dividing with a standard deviation of 0.5. This

is done to reduce the time to converge. Figure 2 shows an
example of this procedure.

Figure 2. Image 1 - Original, Image 2 - After transformation

4.3 Patch generation
After pre-processing, the dataset is split into training and
evaluation sets. The images from the first 390 people will
be used for training and the rest will be used for evalu-
ation. For each of these sets, we will extract 10000 skin
patches containing facial marks and 50000 skin patches not
containing facial marks. This procedure will be repeated
for 3 different skin patch sizes: 15 × 15 px, 19 × 19 px
and 25× 25 px. These collections will be used for training
and evaluating models in Experiment 1 and Experiment 2.
Skin patches containing facial marks will be extracted ac-
cording to the locations that have already been manually
annotated. To generate skin patches not containing facial
marks, firstly the face of the subject will be detected and
withing that bounding box skin patches will be randomly
selected such that a) they don’t overlap with facial marks
and b) they don’t overlap with already selected patches.

4.4 Facial mark detection
To detect the facial mark pattern on a person’s face, we
shall use a grid-based approach that will divide the face
into a grid of equal-sized rectangles. For each rectangle,
we will use our CNN-based classifier to detect the facial
mark. Once it is detected, the result will be added to the
set containing the facial marks of the person’s face, along
with the location of the facial mark. [16] The size of each
rectangle will be decided based on experimental results,
but we expect that it should be large enough to contain a
relatively large facial mark and small enough to separate
small facial marks close to each other.

4.5 Facial marks matching
Once facial marks have been detected, it is important
to calculate how different two images are given the fa-
cial mark locations. Given an image, we split it into a
grid of rows x columns, where the size of each rectan-
gle is determined by dimensions of the face bounding box
split over the number of rows and columns. The best grid
configuration will be found during Experiment 3, based
on empirical results, from 4 different categories: coarsest,
coarse, finer and finest, defined by setting the number of
rows and columns to the aspect ratio of the image (4× 3),
multiplied by 2,5,8 and 11, respectively. Then we run
our CNN model in a ”sliding window” fashion, whereby
we classify skin patches taken distance(stride) d from ad-
jacent patches, such that some visual data may overlap.
If the center of a skin patch classified as having a facial
mark is within a rectangle in a grid, then that rectangle
gets the score 1, indicating that the rectangle contains at
least one facial mark, otherwise the score is 0. After this
grid has been established for two images, we can compute
the negative hamming distance between them. This dis-
tance will then be used to determine how similar the facial



Figure 3. Example of a facial matching 3x4 grid

mark pattern between two images is. An example of such
a grid can be seen in Figure 3.

4.6 Fusing algorithm
To combine the similarity scores between the Facial Recog-
nition (FR) system and the Facial Marks System (FMS),
it is important that we first normalize the outputs of each,
in such a way that they are in the same range.
To normalize the Facial Mark System score, we will per-
form min-max normalization on the negative hamming dis-
tance between the facial grids of two images. This will
result in a score from 0 to 1, whether the higher the score,
the more likely the two images have the same facial mark
pattern.
For the Facial Recognition system, we will obtain the fea-
ture vector containing 2D and 3D facial features of two
images, v1 and v2, respectively. We will perform the fol-
lowing operation to get the angle between the two vectors:

angle = arccos(v1·v2)
|v1||v2|

. If we divide this angle by π and sub-

tract 1 by this value, we get a score from 0 to 1 compatible
with the FMS score.
After this, we compute a final similarity score as follows:
SC = w1 ∗ FR+ w2 ∗ FMS, where w1 + w2 = 1. Experi-
mental results should show what are the best weights for
the combined system.

4.7 Experimental setup
In this paper, we use Receiver Operating Characteristic
(ROC) curves and Equal Error Rate (EER) to measure
performance and compare with previous results. The EER
is the point on the ROC curve where the false acceptance
rate and the false rejection rate are equal. Lower EER
indicates better performance of the classifier. The ROC
curve shall show the True Positive and False Positive rates
for all classification thresholds. The above metrics will be
used to evaluate each model.
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At the end of each CNN, the output of the last layer will
be passed through a Softmax activation function to com-
pute the probability that a patch contains a facial mark.
This output will be passed through a threshold. If the
probability that a patch contains a facial mark is higher
than the threshold then the output is True, otherwise the
model outputs False.

Experiment 1 - Increasing the number of layers

The aim of this experiment is to compare the performance
in detecting facial marks of Convolutional Neural Net-
works which have up to 3 layers (shallow) with CNNs
which have between 3 and 9 layers (deeper). For this pur-
pose, 8 CNNs will be developed (4 shallow and 4 deeper).
Each model will be trained from scratch for 4 epochs and
evaluated on 3 different skin patch sizes: 15×15 px, 19×19
px and 25×25 px. The kernel size for each model will range
between 3 and 7. The performance of each kernel size will
also be evaluated. Padding is added to each convolutional
layer if the input image is too small. The stride is fixed
for all models at 1.

The deeper models are inspired by the VGG [13] architec-
ture. They use stacked 3×3 convolutional filters instead of
larger filters like 5×5 or 7×7, followed by a pooling layer,
since stacking two or more 3× 3 filters has the same effec-
tive receptive field as a 5 × 5 or larger filter, respectively,



a) Coarsest - 8 × 6 grid b) Less coarse - 20 × 15 grid

c) Finer - 32 × 24 grid d) Finest - 44 × 33

Figure 5. ROC curves for Experiment 3 performed on the FRGCv2 dataset.

with the added performance of a deeper model.

Furthermore, the convolutional layers increase in width by
a factor of 2 each time, since earlier layers don’t have that
many features to learn. The first layers only need to detect
simple features like lines or blobs.

In Figure 8, we can see a selection of trained 7×7 filters in
the first convolutional layers. These filters clearly shows
that the model has learned to detect blobs, which is what
facial marks tend to look like.

In some of the deeper network (CNN 1,2 and 3), batch
normalization [7] will be used to accelerate model training
and prevent the vanishing gradient problem, whereby be-
cause of the depth of the network, the gradient becomes
too small in some layers and the weights don’t update
properly. The best model resulting from experiments will
be used further to generate a facial mark pattern of a per-
son’s face.

Experiment 2 - Comparing transfer learning with training
from scratch.

Transfer learning will be explored in this experiment by
loading a model of the MobileNet [6] architecture that
has been pre-trained on the ImageNet dataset [4], freez-
ing all convolutional layers and replacing the last 4 fully
connected layers with fully connected layers of sizes 1024,
1024, 512, 2, respectively, where the 2 at the end repre-
sents the 2 classes that we wish to predict: patch contains
facial mark or doesn’t. These last 4 fully connected lay-
ers shall be trained for 4 epochs and then the performance
will be compared with the other 8 CNN architectures from
the previous experiment. The idea behind this is that the
pre-trained MobileNet model likely already captures im-
age features which we wish to extract (lines, edges, blobs,
etc.). By only training the fully connected layers at the

end and reusing the filters, we teach the model to use those
filters for a new task, thus decreasing the time it takes to
train a deep CNN such as MobileNet, which has 28 layers.
Since MobileNet accepts input images of size 224×224 px
with 3 color channels, but we have skin patches of sizes
15 × 15, 19 × 19 and 25 × 25 pixels with one color chan-
nel, we would have to upscale images to the correct input
size and changing the number of color channels from 1 to
3, by copying over the grayscale channel and obtaining an
RGB image. This obviously means that the network won’t
be able to leverage the colors of images, but it is still ex-
pected that the network would be able to extract valuable
features from the images.

Experiment 3 - Fusion

In this experiment, we will fuse the Facial Mark System
(FMS) with the Facial Recognition (FR) system. Each of
these systems will be tried in the following scenarios: FR
alone, FMS alone and the fusion of FMS and FR. The
results will then be compared. Furthermore, this experi-
ment will be performed on both datasets for comparison.
For fusing the two systems together, the weights of each
system will be selected such that the Equal Error Rate of
the resulting predictions is minimal.

For the Facial Mark System, 4 different grid configurations
will be tried. Also, for the FMS, a stride of 5 pixels will be
used for detecting marks. This means facial patches will
be extracted 5 pixels apart from adjacent patches, in order
to maximize the number of facial marks detected. There
will be cases when a single facial mark will be detected
multiple times, but that will be mitigated by the super-
imposed grid which will take multiple facial mark patches
and aggregate them into a score of 1 or 0. To reduce
the number of false positives (from clothing, jewelry, hair,
etc.) like in Figure 12, we superimposed a rectangle where



a) Coarsest - 8 × 6 grid b) Less coarse - 20 × 15 grid

c) Finer - 32 × 24 grid d) Finest - 44 × 33

Figure 6. ROC curves for Experiment 3 performed on the Ohio Twins Day festival dataset.

approximately the face will be and where the facial marks
will be extracted from. Since all faces were centered and
the eyes were mapped in the same location, this can be
done.

For each pair of twins, twin A and twin B, there is a to-
tal of 4 images, A1, A2, B1, B2, respectively. Each of the
above system will perform all combinations of two ele-
ments from the 4 images (6 in total). This will result in
two cases where two images of the same person is com-
pared and four cases where images of different people are
compared. Since we take 100 pairs of twins, this will re-
sult in 600 scores. The same procedure will be performed
on the FRGCv2 dataset where we will select 100 pairs of
non-twins, resulting in 600 scores. These scores will be
used to compare the 3 scenarios described above. From
this, it can be seen if fusing the FMS with the FR system
actually gives better results.

5. RESULTS AND DISCUSSION
5.1 Experiment 1 - Deeper architecture
Table 1 shows the performance of the 8 CNN architectures
ran on 3 different patch sizes. The lowest EER for a patch
size is underlined. It can be seen that for each model,
the error is higher with each decreasing patch size, thus
indicating that decreasing the patch size has a negative
influence on the performance. Furthermore, for all patch
sizes, it can be seen that deeper models outperform shallow
models. For all patch sizes, the best performance is offered
by the deeper models.

For the threshold, based on empirical results, a value 50%
was selected. Since the output of the system is a proba-
bility between 0 and 1, a 50% threshold means that if the
output of the neuron corresponding to output ”True” is

Figure 7. Accuracy of CNN 1 for all thresholds.

higher than the 50%, then the resulting prediction will be
True. This result is achieved by looking at the accuracy
of CNN 1 in Figure 7 for all threshold values from 2% to
99%. The reason for these bounds is to exclude the out-
liers so the figure is clearer. At 50%, the system has the
highest accuracy overall.

If we took the point where the False Negative Rate is equal
to the False Positive Rate, we would have a value of 71%
for the threshold. This would give us a True Positive and
True Negative rate of 96%, which is undesirable, since skin
patches containing facial marks are far fewer than patches
not containing facial marks, thus we would have a lot of
False Positives, which will lower the performance of the
system.

From the shallow models, it seems that the kernel size of
7 × 7 has similar EER to best performing shallow models



evaluated on patches of sizes 15 × 15 and 25 × 25 and
the lowest EER, evaluated on patches of size 19 × 19 px.
This indicates that a filter size of 7 × 7 is preferred over a
5× 5 filter. Despite this, the deeper models incorporating
3×3 filter sizes still outperform the CNNs with large filter
sizes. This is explained by the fact that stacking layers
with 3 × 3 convolution filters achieves the same effective
receptive field with better performance than single layers
with large filters. [13]

CNN 4 and CNN 5 have similar architectures except for
the face that the convolutional layers in CNN 5 with filters
of size 5× 5 are replaced in CNN 4 by stacked layers with
3 × 3 filters, as explained in the VGG paper [13]. It can
be seen that indeed the deeper version has a very close
or lower error for patches all patch sizes. The same argu-
ment goes for CNN 2 and CNN 8, which have also similar
architectures and uphold the above idea.

It can thus be concluded, from the results of this experi-
ment, that adding more convolutional layers to a Convo-
lutional Neural Network increases its performance for the
task of detecting facial marks. The improvement is not
extreme, but it does improve upon the current state of
the art in facial mark detection. One explanation why the
improvement is not as dramatic as the improvement from
the classical way of using blob detectors to using CNNs is
that it is a relatively simple task to detect a facial mark
and it does not require a very complicated model.

5.2 Experiment 2 - Transfer learning
In this experiment, transfer learning was performed on the
MobileNet model pre-trained on the ImageNet dataset by
replacing the old fully connected layers at the end with 4
dense layers of sizes 1024, 1024, 512 and 2, respectively,
and training those layers from scratch. This was done on
skin patches of size 25 × 25 px, 10000 of which contained
facial marks and 50000 of which didn’t. The reason other
patch sizes were not included in the experiment is because
it has already been established in the previous experiment
that decreasing the patch size monotonically decreases the
performance.

The evaluation was done with a collection of the same
number of skin patches but from different people. The re-
sulting EER is 0.043. Looking at Table 1, we can see that
the error is lower than CNNs 6 and 7, but higher than the
rest of the models. This means that greater performance
for the task of facial mark detection can be achieved from
models created in Experiment 1 than by doing transfer
learning. This may have been caused that the fact that
the model was pre-trained on color images, but we give
it grayscale images, thus reducing its performance, since
the model cannot use the color information it has been
trained with. Additionally, although images are upscaled
from 25 × 25 px to 224 × 224 px, those images still have
the same amount of data in them as the smaller coun-
terpart, while the model expects images of size 224 × 224
that have not been upscaled. This means that we are do-
ing something the model has not been trained on, thus
the loss in performance. However, the performance is still
acceptable, since the error is not significantly higher than
the other models. This is likely due to the fact that the
pre-trained model still is able to extract useful features
like lines, blobs, edges to detect facial marks. This is the
reason for re-training the fully connected layers at the end:
to use these learned features to learn what a facial mark
looks like.

5.3 Experiment 3 - Fusion

Figure 8. Selection of filters from CNN 8

Table 1. EER of all classifiers.

Classifier 15 × 15 19 × 19 25 × 25

CNN 1 0.0505 0.0449 0.0315
CNN 2 0.0556 0.0397 0.0376
CNN 3 0.0654 0.0392 0.0325
CNN 4 0.0602 0.0589 0.0346

CNN 5 0.0634 0.0548 0.0382
CNN 6 0.0712 0.0547 0.0470
CNN 7 0.0684 0.0656 0.0474
CNN 8 0.0648 0.0466 0.0386

As can be seen in the ROC curves in Figure 5 and Figure
6, OpenFace has a higher Area Under the Curve (AUC) for
the FRGCv2 dataset, than on the Twins dataset. Its EER
on the non-twins dataset is 0.0937 compared to 0.2625, on
the twins dataset. This is approximately a 64.3% relative
difference. The reasoning for this is that, since we are com-
paring monozygotic twins, the Facial Recognition system
will output very similar scores while comparing images of
identical twins. This is explained by the fact that twins
have very similar facial properties, which is what makes
them a difficult case for Facial Recognition.

We also observe, that there is a difference in the perfor-
mance of the FMS between the two datasets, for the same
grid configurations, but this difference is not as dramatic
(at most 21.3% relative difference for grid configuration
8×6) as the difference described above. This could be ex-
plained by the fact that, as was discussed in [14], the facial
mark patters between twins do appear to be correlated.

In Figure 9, we can see a pair of twins with different grid
configurations generated by the FMS. It can be seen that
the two grids are similar, but have important differences,
especially around the chin area, where Twin A clearly has
a few moles, while Twin B doesn’t. This information can
help distinguish between twins, and the rectangles that are
the same for both twins don’t affect the negative hamming
distance. This indicates that there differences between the
facial mark patterns of twins that can be used to improve
facial recognition.

Seeing the ROC curves in Figure 6, we note that the Fa-
cial Mark System has a significantly higher performance
than the Facial Recognition system (OpenFace) run on
the twins dataset,(up to 61.4% relative difference for grid
configuration 32 × 24) for all grid configurations except
the coarsest. This exception is due to the fact that a
8 × 6 grid does not capture enough facial mark informa-

Table 2. EER of Experiment 3 done on the FRGCv2 dataset
for different grid configurations.

Grid FMS weight EER of FMS+FR EER of FMS

8 × 6 0.2 0.08 0.2575
20 × 15 0.37 0.0512 0.085
32 × 24 0.41 0.0612 0.16
44 × 33 0.8 0.0675 0.1687



a)Twin A b) Twin B

Figure 9. Differences in facial mark grids between twins for grid size 12 × 9.

Table 3. EER of Experiment 3 done on the Twins dataset
for different grid configurations.

Grid FMS weight EER of FMS+FR EER of FMS

8 × 6 0.16 0.25 0.3275
10 × 8 0.62 0.235 0.2875
20 × 15 0.9 0.1041 0.1062
32 × 24 0.9 0.0987 0.1012
44 × 33 0.8 0.12 0.125

tion to be useful. This fact can also be observed in Figure
5, where this grid configuration under performs, due to
it being too coarse. It can thus be concluded, that the
Facial Mark System significantly outperforms the Facial
Recognition system for differentiating between monozy-
gotic twins. However, looking at Table 2 we see that for
the best performing grid configuration, the Facial Marks
System has approximately the same performance as the
Facial Recognition system.

Looking at the combination of the Facial Mark System
with the Facial Recognition system, in Figure 5 and in
Table 2 we observe that the combined system does offer
the best performance in some cases, with a 39.7% relative
decrease in error rate for grid dimensions 20 × 15, from
8.5%, given by the Facial Mark System alone, to 5.12%.
For the coarsest grid configuration, there is no significant
performance improvement for the combined system. This
is likely due to the fact that this grid size does not provide
enough useful information to help the classification, since
its error rate is so high compared to OpenFace.

When this experiment is run on the Twins dataset, how-
ever, we see in Figure 6, no grid configuration offers a
significant improvement for the combined system. For the
coarsest grid, we note a 4.7% relative reduction in error
from 26.5% achieved by OpenFace, to 25%, which is rather
insignificant compared to the results for the FRGCv2 dataset.
In Figure 10 and Table 3, for the grid configuration 10×8,
the combined system run on the Twins dataset has the
lowest error rate, with a relative reduction in EER of
10.4% from 26.25%, obtained by OpenFace, to 23.5%.

We observe that, for the Twins dataset, the combined sys-
tem offers an increase in performance when the difference

Figure 10. ROC curve on the twins dataset for grid config-
uration 10x8.

in error rates between the Facial Mark System and Facial
Recognition system are not significant, such as for grid
configurations 8×6 and 10×8, with relative differences of
20% and 12.2%, respectively. This fact is also observed for
the combined system run on the FRGCv2 dataset, with all
grid configurations showing a better performance for the
combination of the systems, except for the coarsest grid
size, where the relative difference in error rate between the
FMS and OpenFace is 63.3%, which is significant.

This is because when one system significantly outperforms
the other in terms of error rates, the under-performing
system’s output is much closer to random noise than to
useful information and thus drags down the performance
of the combined output. When the Facial Mark System
and Facial Recognition systems have similar performance,
they both provide different useful information about the
face, thus resulting in a prediction that is better than the
individual systems’ predictions.

In Tables 2 and 3, the weights are shown for each experi-
ment. They were selected such that the EER of the com-
bined systems is minimal, on the corresponding dataset,
for the specific grid configuration. In the case of the ex-
periment performed on the Twins dataset, we clearly see
in Table 3,that the weights are generally higher, in some
case even more than double than those in Table 2. This
is an indication that the combined system (FMS+FR) re-



Figure 11. ROC curve for the best performing CNN in
Experiment 1.

lies more on the predictions of the Facial Mark System
in the case of the twins dataset than in the case of the
FRGCv2. This is explained by the fact that facial marks
have a stronger discriminating power on the twins dataset
than on the non-twins dataset, due to how poorly the Fa-
cial Recognition system differentiates between twins, since
they have very similar facial features.

As for the grid configurations, we can clearly see that the
performance is lowest for both Tables 2 and 3 in the case
of the coarsest grid, reaches a peak for grid configuration
32×24 for Table 3 and 20×15 for Table 2, then decreases
for the finest grid configuration. This is explained by the
fact that a very coarse grid groups too many facial marks
in a large rectangle to offer much useful information about
the facial mark pattern. Furthermore, a very fine grid
is prone to errors due to small differences in alignment,
position or size of the face. The best performance is offered
by a grid configuration in between these extremes.

From this experiment we can conclude that for identifying
if two images of non-twins belong to the same person, a
system combining a Facial Mark System and a state-of-the
art Facial Recognition software like OpenFace, offers the
best performance. However, for images of twins, the best
performance is offered by a Facial Mark System, since Fa-
cial Recognition severely under-performs in this scenario.

5.4 Conclusions and Further work
In this paper, we were able to improve the performance of
the state of the art Facial Marks System by adding more
layers to the Convolutional Neural Networks used for facial
mark classification. We noted that the results weren’t as
dramatic as the improvement from the classical method of
using blob detections such as LoG or Fast Radial Symme-
try Transform to using Convolutional Neural Networks for
facial mark detection. Nonetheless, Experiment 1 showed
that there is a noticeable improvement in detecting facial
marks with deeper networks than more shallow networks.

For the future, the CNNs can be improved by adding layers
with 1x1 kernel size, which would act as linear transfor-
mations of the previous layer and have been shown in [13]
to increase performance in some deep CNNs.

For Experiment 2, we observed that transfer learning in
our case did not show a decrease in error rate compared to
Experiment 1, but the results were not significantly worse,
either.

Figure 12. Example of False Positives.

Lastly, for Experiment 3, we observed that the Facial
Marks System developed in Experiment 1 had significantly
better results than a state-of-the art Facial Recognition
software, OpenFace, for the task of differentiating between
monozygotic twins. In the case of the FRGCv2 dataset,
fusing the FMS with the FR system showed better results
than just using the Facial Marks System. We did observe
that fusing the two systems did not offer a performance
improvement when run on the Twins dataset.

To mitigate this problem, one may try to combine the two
systems in a different way. For example, when the scores
of the Facial Recognition system are very close to each
other, or when it is known that the system will be used to
differentiate twins, the weights, instead of being manually
entered, could be automatically adjusted to favor the FMS
scores, and otherwise shift the weights towards the Facial
Recognition scores.

For the future, to reduce the problem of false positives like
in Figure 12, one could add to the training set patches con-
taining images of things that usually cause false positives,
such as jewelry or clothing.
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