
Adapting, analyzing and benchmarking transportation
routing algorithms for realistic real-time environments

Yoeri Otten
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

y.d.otten@student.utwente.nl

ABSTRACT
There are many algorithms to find paths within a public
transportation timetable, often relying upon preprocess-
ing or complex data structures to speed up the process.
While these algorithms have undergone many tests, there
has not been a review with these algorithms with real-time
realistic data. This makes it difficult to choose the most
suitable algorithm necessary in most real-world scenarios.
We compare several commonly used algorithms adapted
for real-time data and test them in static and real-time en-
vironments to figure out which problems are encountered,
and which algorithm(s) best adapt to those problems.

Keywords
Transit routing, Analysis of algorithms, Graph algorithms,
Benchmarking, Real-time data

1. INTRODUCTION
While using public transport, the public often relies on
apps and websites, such as 92921 (a Dutch public trans-
portation app), to find out which buses or trains to take to
get to their destination. With ever-increasing timetables,
more integrated networks, and higher demand from trav-
elers. there is a need for algorithms to reliably, accurately,
and quickly perform these queries.

One important factor for travelers is that their travel infor-
mation is up-to-date. Travelers like to be informed early
of expected delays, and expect their travel planner to im-
mediately show them the impact schedule changes have
on their trip. This adds another layer of complexity to
this set of algorithms, since they cannot be reliant on slow
preprocessing steps to improve their speeds.

To see how different routing algorithms cope with this
extra requirement, we set out a methodology to adapt,
analyze, and benchmark a set of different popular algo-
rithms within a pseudo-real-time environment based on
actual timetable data, to find which algorithms perform
best in accordance with their functionality.

First, we introduce the notation and problems which are
used for describing the problems and working of the algo-

1https://9292.nl/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
34th Twente Student Conference on IT Jan. 29th, 2021, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

rithms. Next, we cover earlier work related to the devel-
opment and benchmarking of transit routing algorithms.

Finally we lay our methodology and present our results.

1.1 Research questions
We have organised our research along the following ques-
tions:

1. What are the challenges of working within a real-
time environment for transit routing algorithms?

2. How do or can different transit routing algorithms
cope with a real-time environment?

3. Which algorithm(s) adapt(s) best to a real-time en-
vironment in accordance with their functionality?

In the methodology, we discuss our approach to answering
these questions.

2. PRELIMINARIES
In this section, we define the notation and use this notation
to define our problems.

2.1 Notation
We base our notation upon the one specified in [6].

We define a timetable to consist of a quadruple (S, C, T ,F)
of stops S, connections C, trips T , and footpaths F . A
connection consists of a quintuple:

(cdep stop, carr stop, cdep time, carr time, ctrip)

Where cdep stop ∈ S, carr stop ∈ S, and cdep time ≤ carr time.

A trip is defined as an ordered list of 1 or more connec-
tions where for each connection within a trip citrip = ci+1

trip,

ciarr time ≤ ci+1
dep time, and ciarr stop = ci+1

dep stop.

A footpath is a triple which connects two stops:

(fdep stop, farr stop, fdur)

We note that for all stops a, b and c we have:

(a, b, x) ∈ F ∧ (b, c, y) ∈ F =⇒ (a, c, z) ∈ F ∧ z ≤ x+ y

Each stop also contains a loop-back to the same stop:

∀a∈S (a, a, x) ∈ F

We also define the set of journeys (J). A journey (j) is
a list of one or more connection pairs (lienter, l

i
exit) within

the same trip, and footpaths. A journey always starts and
ends with a connection pair. For a pair li = (lienter, l

i
exit)

the following holds true:

(lienter)trip = (liexit)trip ∧ (lienter)dep time ≤ (liexit)arr time

A journey alternates between pairs and footpaths:

l0, f1, l2, f3 ... fk−1, lk

1

https://9292.nl/

For each triplet li, f i+1, li+2 we have:

(liexit)arr time + f i+1
dur ≤ (li+2

enter)dep time ∧

(liexit)arr stop = f i+1
dep stop ∧ f

i+1
arr stop = (li+2

enter)dep stop

Next we define some information of the journey:

jdep time = (l0enter)dep time, jdep stop = (l0enter)dep stop

jarr time = (lkexit)arr time, jarr stop = (lkexit)arr stop

Where k denotes the last element in j.

We can now define journey domination, where one journey
should always be preferred over another:

∀a∈J ∀b∈J aarr time ≤ barr time ∧ adep stop = bdep stop

∧ aarr stop = barr stop ⇐⇒ a � b

Finally, we introduce a replacement action: ca(cb). This
means the mentioned connection a gets replaced by con-
nection b in the timetable. ca(∅) deletes connection a.

2.2 Problem definitions
In this section, we define the different problems that our
algorithms should be able to solve using the above nota-
tion.

2.2.1 Earliest Arrival Problem
The earliest arrival problem (EAP) is to find a journey
a with a set dep stop and arr stop at time t such that it
arrives as early as possible: ∀b∈J bdep time ≥ t =⇒ a � b

2.2.2 Earliest Arrival Profile Problem
The earliest arrival profile problem (EAPP) is to find all
journeys A from a preset dep stop and arr stop which de-
part and arrive between the set times tstart and tend and
are solutions to the earliest arrival problem.

∀a∈J adep time ≥ tstart ∧ aarr time ≤ tend ∧
adep stop = dep stop ∧ aarr stop = arr stop ∧

(∀b∈J b � a =⇒ bdep time < adep time)

=⇒ a ∈ A

2.2.3 Pareto-set
Some algorithms which solve these problems can optimize
on multiple criteria. In those cases, the algorithms will re-
turn a Pareto-set of results where no journey in the result-
ing set has criteria strictly better than any other journeys
in the set. Some examples of criteria to search on are:

• Earliest arrival

• Lowest number of transfers

• Lowest fares

• Highest reliability

2.3 Example
We define a timetable with the data found in Table 1. For
the purpose of this example, there are no footpaths be-
tween stops, except for the stop-loops which will be noted
by fs.

A visualization of these routes can be found in Figure 1.

Solving the EAP on this timetable at t = 0 gives us the
result: jsolution = [(c1, c4)].

After we perform actions c4(∅) and c7(∅), a solution would
be:

jsolution = [(c1, c1), fs2 , (c5, c6), fs1 , (c3, c3)] ∨
jsolution = [(c3, c3)]

cdep stop carr stop cdep time carr time ctrip
c1 s1 s2 0 5 t1
c2 s1 s5 10 15 t2
c3 s1 s3 22 30 t3
c4 s2 s3 7 15 t1
c5 s2 s4 10 15 t4
c6 s4 s1 17 20 t4
c7 s5 s3 17 20 t2

Table 1. Example timetable

We note that both solutions would solve the EAP since
this problem only asks for a solution at a given start time
that arrives the earliest, not one which solves the last pos-
sible departure for the first possible arrival. However, most
algorithms avoid visiting a stop twice within a journey.

A solution to EAPP from tstart = 0, and tend = 22 would
be:

A = {[(c1, c4)], [(c2, c7)], [(c3, c3)]}

s1

s2

s3

s4s5

c1 (t1)

c4 (t1)

c2 (t2)

c7 (t2)

c5 (t4)
c3 (t3)

c6 (t4)

Figure 1. Visualization of our example timetable

3. RELATED WORK
3.1 Algorithms
In the past ten years algorithms which solve these prob-
lems have been hot-topic due to interest by large mapping
companies [10].

The first ideas for algorithms were mainly graph-based [8]:
Time-expanded (TE) and Time-dependent (TD) graphs.
Both approaches work by creating a graph structure of
the timetable and finding the shortest path in that graph
by using Dijkstra’s algorithm [7]. TE formed a graph by
making every event (connection, transfer) a node, while
TD modeled each route (set of all connections between
two stops) as an edge between stops. Currently, only TD is
still used in practice for its generally suitable performance
in solving simple queries [2]. However, does not perform
well in multi-criteria queries.

Many additions and improvements upon these algorithms
have been made as discussed in [8]. They often rely ex-
tensively on preprocessing of the graph to filter out un-
necessary transfers and adding ‘speed-up’ edges for easier
querying.

Recent developments in the field tend to favor non-graph-
based solutions [2]. In 2010, the transfer patterns algo-
rithm (TP) was introduced [1], which is based upon the
fact that most transfers in a timetable occur at only par-
ticular stops. Preprocessing those transfer locations allows
for a significant speedup of query times. A derivative of
the TP algorithm was introduced [3], which stores connec-
tions based on frequency, reducing the number of connec-

2

tions significantly and accelerating the preprocessing. This
acceleration can also be used in graph-based approaches.

In 2012, RAPTOR was introduced [5]. This algorithm
approaches the problems by expanding its network each
round with all of the directly reachable stops without an
interchange. RAPTOR solves for a bicriteria Pareto-set
on the number of interchanges and first-arrival. More-
over, the authors introduced two derivatives: McRAP-
TOR solves multi-criteria queries and rRAPTOR which
solves for a range in time and allows for more criteria as
well. However, these multi-criteria algorithms, while more
useful, are significantly slower than RAPTOR itself.

In 2014, the Connection Scan Algorithms (CSA) was in-
troduced [6]. CSA works by looping through an ordered
list of all connections. This approach allows for smaller
data structures and has been shown to work very quickly.
However, a downside is that the amount of connections in-
creases exponentially with the amount of stops which are
in the timetable. Transport for London alone serves over
4,5 million connections each day [6].

More recent work has been looking to increase speed by
limiting existing algorithms while still achieving reason-
able results. An example of this is described in [4], which
introduces Bounded McRAPTOR.

4. METHODOLOGY
In this section we discuss how we answered our research
questions. To do this we have several steps of building up a
benchmarking system which allows us to test a multitude
of algorithms. These steps are as follows:

1. Gather timetable data

• Static data

• Live data

2. Choose & analyze algorithms

• Adapt algorithm to live environment

3. Design & implement benchmarking system

4. Implement algorithms

5. Perform benchmarks & interpret results

We elaborate on these steps below.

4.1 Gather timetable data
To perform our benchmarks we need timetable data to
execute against. For qualitative and realistic testing there
are some requirements the timetable data need to fulfill:

• Realistic: realistic data allow our algorithms to be
tested in an environment corresponding to that of
real-life systems. Realistic data can mostly be found
by using publicly available timetable data.

• Sizeable: to better differentiate between different (im-
plementations of) the algorithms, we need a suitably
sized data set.

• Detailed: preferably the timetable should contain de-
tailed information of the surrounding infrastructure,
allowing us to realistically simulate footpaths.

For the dataset(s)we also need to find suitable live data-
feeds which can be coupled to the static data. This allows
us to gather and make changes in our timetable during the
benchmarking.

4.2 Choose & analyze algorithms
We need to choose a set of algorithms which solve the
problems as described above. Preferably the chosen algo-
rithms are modern, efficient, and used in real-life products
and scenarios.

Before we can start implementing the algorithms we first
need to analyze them and discuss our approach to making
them suitable for real-life updating. For the analysis we
discuss the presented data structures used by the authors
of the algorithm, then we present strategies to adapt these
data structures to be able to cope with live-data, and fi-
nally we choose a strategy which is used for testing.

4.3 Design & implement benchmarking sys-
tem

Next, we need a benchmarking system to perform the
benchmark. It is important that our system allows us to
record the necessary data. The system should be suitable
to implement the algorithms in.

4.4 Implement algorithms
Within the benchmarking system our algorithms need to
be implemented. For each algorithm two implementa-
tions will be made: one which mimics the presented data
structures by the original authors and one implementation
which is adapted to support live-data.

For the first implementation the data structures as de-
scribed by the authors will be used. For the real-time
implementation the data structure as discussed is used.

4.5 Perform benchmarks & interpret results
Finally, we perform our benchmarks. Through the results
we should be able to compare the different implementa-
tions of each algorithm and determine how well they adapt
to the real-time environment.

5. RESULTS
5.1 Datasets
For testing we used two different datasets focused on dif-
ferent goals.

Both data sets are relatively small compared to the amount
of trips which take place in public transport in the whole
of Europe every day. However due to the constraints of
this research no larger datasets could be used.

5.1.1 Trainline EU
Trainline EU made timetable data available2 suitable for
the benchmarking of different algorithms. This data is
based on the timetable of many Western-European coun-
tries in a 48-hour period.

The advantage of this data set is primarily its size. In
total, it contains 4,714,403 connections stopping at over a
1067 places. This makes the timetable suitable to differ-
entiate between how the different data structures used for
implementation perform in differently sized scenarios.

The data set does not contain any footpath information
or live updates. In benchmarks, the interchanges are seen
as to be without any delay.

5.1.2 NDOV Loket
The NDOV Loket [9] is a part of OpenGeo which makes
available public transportation data of the Netherlands,
statically and live. For benchmarking, we have chosen

2https://github.com/trainline-eu/csa-challenge/
blob/master/bench_data_48h.gz

3

https://github.com/trainline-eu/csa-challenge/blob/master/bench_data_48h.gz
https://github.com/trainline-eu/csa-challenge/blob/master/bench_data_48h.gz

the IFF database and its corresponding live data sources.
This database contains all scheduled train trips which pass
through the Netherlands.

These data are primarily focused on the testing in a real-
istic environment, however, its size is relatively small. For
simplicity, we focused our benchmarks on data of the 15th
of January 2021. In total this meant around 5,988 trips
containing over 58,000 connections stopping at 1,311 stops
placed in more than 600 stations. Next to that, around a
week of live data was gathered resulting in 1,200,000 mes-
sages, which were converted into more than 88,000 updates
to the timetable.

5.2 Algorithms
For the comparison of algorithms we have created an im-
plementation the following algorithms which solve the Ear-
liest Arrival Problem:

• Time-dependent graph algorithm [5]
• Connection Scan Algorithm [6]
• Round-Based Public Transit Routing [5]

For each array algorithm, we have adhered to the original
description of the authors of the algorithm. However, none
of the algorithms provided information about how best to
adapt them to live environments, for this reason we have
had to adapt the data structures as to be generally update-
able.

theoretically compared different techniques in the section
analysis. In that section, we note that using binary-tree
sets was the most suitable which is why we have made an
implementation using this structures as well.

For each algorithm examined, we discussed the expected
impact of live data on the algorithm based on its con-
straints.

5.2.1 Static environment

Connection Scan Algorithm.
The Connection Scan Algorithm uses an ordered list of
connections which is walked through for every routing re-
quest. In a static environment, an array structure can
be used for this purpose, since ordering need to only take
place once.

This algorithm thus has a complexity of O(|C|+ |F|).

Time-dependent graph algorithm.
The time-dependent graph algorithm contains an ordered
list of connections for every route stop a to b. In a static
environment a double hash-map containing an ordered ar-
ray structure can be used for this purpose since ordering
need only take place once.

The algorithm uses Dijkstra, each node representing a stop
and each set of connections between two stops representing
the edges. When visiting a stop, a connection to each
reachable next node is retrieved using binary search in the
connections list of those two nodes.

This gives the algorithm a complexity of:

Θ((
|C| log |R|
|R| + |F|+ |S|) log |S|)

Here R is defined as the set of two-tuples with the stops
(sdep, sarr) such that:

∀(sdep,sarr)∈R (sdep, sarr, x, y, z) ∈ C

Round-Based Public Transit Routing.
RAPTOR is not primarily based around connections but
around routes [5]. A route is a unique set of ordered stops
associated with many trips. Each trip’s route can be de-
termined by the ordered list of stops of the connections of
the trip. Each round, all routes which were discovered in
the previous round are relaxed. The number of rounds the
algorithm runs for is noted as K.

We define the set R be the set of all possible routes. Each
trip in T is part of one unique route, and is stored within
the route in order of departure.

Next to the routes, the algorithm also keeps track of a
table to lookup which routes depart and arrive at each
stop.

RAPTOR has a complexity of O(K(
∑

r∈R |r|+ |T |+ |F|))

5.2.2 Real-time environment
In the real-time environment each algorithm should sup-
port the deletion, addition and update of any connection.

Since none of the data structures, as discussed by the orig-
inal authors of the algorithm, allow for this we have had
to adapt these algorithms ourselves. We note that the
algorithms need to maintain an ordered list of either the
connections or the trips for use in the algorithm.

In Table 2 an overview is given of the different types of
collections which can be used for this purpose and the
associated complexity. Looking through this we note that
while a hash-set collection has the lowest complexity in all
update categories, it is significantly worse on the iteration
speed since its internal state cannot be sorted.

Therefore, the best collection type to use seems to be the
binary-tree set. The binary-set stores data in a tree like
manner which always stays sorted internally. This allows
it to quickly find any item and insert any item while still
having a linear iteration complexity.

For each algorithm we have implemented a version with
the original data structures (Vec) as described and one
which uses binary-trees (BTree) and support the updating
mechanism.

Below we describe how we have implemented the updating
process for each algorithm. Again, no mechanism for this
was described by the original authors.

Connection Scan Algorithm.
Received updates are immediately applied on the internal
data structure containing an ordered list of all connections.

Time-dependent graph algorithm.
The Time-dependent algorithm uses an ordered 2d hash-
set to store all connections in a binary-tree set for every
route in R. To update, the route can be looked up, after
which the connection can be updated.

Round-Based Public Transit Routing.
RAPTOR is more difficult to implement in a live system
since trips also need to support their route being changed.
To make this feasible we introduced a lookup hash-map
which can be used to find the position of each route in
the route list as described in [5]. With each update, we
lookup the old route, remove the trip and later insert the
updated trip in the new route.

5.3 Benchmarking

4

Collection Insertion Deletion Update Iteration
Array O(n) O(n) O(logn) O(n)
Linked List O(n) O(n) O(n) O(n)
Hash-set O(1) O(1) O(1) O(n logn)
Binary Tree Set O(logn) O(logn) O(logn) O(n)

Table 2. Comparison of different collection operations on sorted data. n is the number of items in the list

A benchmarking suite was created to create an interface
which allowed for the easy implementation and bench-
marking of a vast set of different routing algorithms.

The benchmarking program currently has the following
functionality:

• Retrieve and interpret IFF timetable data (NDOV)

• Retrieve and interpret InfoPlus RIT live data (NDOV)

• Simple routing of timetable from stop a to b

• Benchmarking with options for a static and real-time
environment

The main element is the benchmark of algorithms, during
the benchmark the following data is recorded:

• Dataset

• Algorithm

• If performed under live conditions

• Execution duration

• Distance between stops (when available)

• Query answer

Next to the query time we also measure the time it takes
to applies updates.

The algorithm to benchmark static algorithms can be found
in algorithm 1. The algorithm for our real-time environ-
ment can be found in algorithm 2. Our real-time envi-
ronment tries to simulate the handling of both incoming
updates and queries which mimics the events in a real-life
system.

Algorithm 1: Benchmark of static algorithms

Data: timetable: (S, C, T ,F), algorithm which can
solve the Earliest Arrival Problem

Result: list of query benchmark results
algorithm ← algorithm(timetable);
results ← empty vector;
for s1 ∈ first hundred stops of S do

for s2 ∈ next hundred stops of S do
start time ← system time now;
algorithm.earliest arrival(s1, s2, at mid day);
end time ← system time now;
results.push((start time - end time, s1, s2));

end

end

5.4 Data retrieved
We do not note down the initialization time for any of the
algorithms being tested on since this is dependent on the
given data structure. The data structure can be designed
in such a way as to give an advantage to certain algorithms
which would give an unfair comparison.

Algorithm 2: Benchmark of live-algorithms with real-
time environment

Data: timetable: (S, C, T ,F), algorithm which can
solve the Earliest Arrival Problem and receive
updates, list of update chunks

Result: list of query benchmark results and update
benchmark results

algorithm ← algorithm(timetable);
query results ← empty vector;
update results ← empty vector;

normalizer ← min(|S|, 100)2

for s1 ∈ first hundred stops of S do
for s2 ∈ next hundred stops of S do

start time ← system time now;
algorithm.earliest arrival(s1, s2, at mid day);
end time ← system time now;
query results.push((start time - end time, s1,
s2));

for normalize times do
for update ∈ next update chunk do

start time ← system time now;
algorithm.update(update);
end time ← system time now;
update results.push(start time - end
time);

end

end

end

end

5.4.1 Benching information
All benchmarks were performed on a laptop containing an
Intel(R) Core(TM) i7-6700HQ processor clocked at 2.60GHz
and 16 GiB of memory. No compiler optimizations were
used next to the standard release profile of the Rust com-
piler. The benchmark program was compiled with rustc

version 1.48.0.

5.5 Benchmark results
All benchmarking results can be found in Figures 2 to 5.

Firstly, we have plotted the box plots of our algorithms for
the trainline and NDOV dataset in a static environment in
figure 2 and 3. This primarily gives us a look into how the
algorithms compare when given more or less connections.

Next, we show two plots containing the execution times in
the live environment as described in algorithm 2. Figure 4
shows the execution time of the same queries as performed
in the static benchmark, while figure 5 shows the apply
time for update per algorithm.

Please note that only data is shown for queries that re-
turned a non-empty response since empty responses usu-
ally have a similar execution time.

A summary of the results can be found in table 3.

6. DISCUSSION
There are a few different things to look at, starting with

5

algorithm dataset live avg. query time (ms) avg. update time (µs)

CSA with Vec NDOV ◦ 0, 60 -

CSA with BTree NDOV ◦ 0, 71 -

CSA with BTree NDOV • 0, 75 0, 90

TD with Vec NDOV ◦ 0, 20 -

TD with BTree NDOV ◦ 0, 22 -

TD with BTree NDOV • 0, 22 0, 43

RAPTOR with Vec NDOV ◦ 6, 86 -

RAPTOR with BTree NDOV ◦ 6, 98 -

RAPTOR with BTree NDOV • 6, 99 1, 93

CSA with Vec Trainline ◦ 26, 35 -

CSA with BTree Trainline ◦ 15, 39 -

TD with Vec Trainline ◦ 7, 41 -

TD with BTree Trainline ◦ 13, 31 -

RAPTOR with Vec Trainline ◦ 16, 42 -

RAPTOR with BTree Trainline ◦ 11, 29 -

Table 3. Summary of benchmark results for the different algorithms

the differences between the Vec implementation and the
BTree implementation. Within our NDOV dataset we see
a clear difference between the two. For each algorithm
the BTree implementation is slightly slower. This is to
be expected as one big downside to the binary-tree set is
the CPU optimizability. With the way the data is struc-
tured, the structure cannot take use of CPU caching im-
provements which means that reading from the list can be
significantly slower.

However, the inverse is true for the Trainline dataset for
the CSA algorithm. In general one should not expect bet-
ter execution times for the BTree version since the exact
same data is being iterated through. One possible explana-
tion is that the BTree implementation is better optimized
to find the first connection that needs to be checked, how-
ever that does not explain the full difference.

Next, we have kept track of the query times for each al-
gorithm in the static and real-time environment. No real
query time differences can be found which indicates that
the amount of cache misses due to updates taking in the
data is insignificant.

Finally we can compare the updating times. From our
testing we found that the Time-dependent algorithm clearly
beats all other algorithms in updating time. TD keeps
track of connections per stations whereas CSA only keeps
track of one big list of connections. This makes it quicker
to insert, update or remove data from the connections list.
The clear loser is the RAPTOR implementation. RAP-
TOR keeps track of many routes instead of connections
which means that the corresponding route needs to be
found which can be an intensive task.

7. CONCLUSION
In this paper we have tested three different algorithms in
a static and live environment. With our implementation
and analysis steps we have shown the difficulties different
algorithms have with coping with real-time environment
data and how these could be solved. With our bench-
marking we were able to show what impact these features
had on each algorithm.

We have found that overall the TD implementation per-

formed best, both in the static as in the live-environment.
This is primarily caused by its efficient manner of splitting
connections which meant lower updating times.

However, it is difficult to conclude that this algorithm is
best in all situations. Each algorithm is focused on solv-
ing the same task while keeping different things in mind.
For instance RAPTOR which has had better adaptability
for multi-criteria queries in mind. Overall, we can con-
clude that while there is definitely an impact to adapting
a public-transport routing algorithm to work in a real-time
environment, all algorithms tested in this paper were able
to adapt well with minimal impact on their query times.

8. FUTURE WORK
This research created a start to a toolset to benchmark
different public transport routing algorithms, however due
to the constraints set, we were only able to take a look
at a limited number of different algorithms using only a
limited set of data. Many of the systems that could be used
to retrieve the necessary data are proprietary and baldy
documented, which means that every source of data needs
its own translation layer, making realistic environments
hard to recreate in such a short time.

Another area which could be more focused on is having the
benchmarking run with more realistic queries. Currently,
all queries are randomly generated, and only generated for
a single day of the timetable. By expanding the timetable
to cover a greater period, the algorithms need to cope
under harsher but more realistic conditions, where correct
linkage between timetable days, and efficient memory stor-
age of connections need to be thought of. Next to that,
looking at making the queries more realistic would signif-
icantly improve the real-world application of the gathered
data.

6

C
S
A

w
it

h
B

T
re

e

C
S
A

w
it

h
V

ec

T
D

w
it

h
V

ec

T
D

w
it

h
B

T
re

e

R
A

P
T

O
R

w
it

h
V

ec

R
A

P
T

O
R

w
it

h
B

T
re

e

0.1

1

10

T
im

e
(m
s)

Figure 2. Execution time for queries per algorithm for the
NDOV dataset in the static environment

C
S
A

w
it

h
B

T
re

e

C
S
A

w
it

h
V

ec

T
D

w
it

h
V

ec

T
D

w
it

h
B

T
re

e

R
A

P
T

O
R

w
it

h
V

ec

R
A

P
T

O
R

w
it

h
B

T
re

e

0.1

1

10

100

T
im

e
(m
s)

Figure 3. Execution time for queries per algorithm for the
Trainline EU dataset in the static environment

7

C
S
A

w
it

h
B

T
re

e

T
D

w
it

h
B

T
re

e

R
A

P
T

O
R

w
it

h
B

T
re

e

0.1

1

10

T
im

e
(m
s)

Figure 4. Execution time for queries per algorithm for the
NDOV dataset in the live environment

C
S
A

w
it

h
B

T
re

e

T
D

w
it

h
B

T
re

e

R
A

P
T

O
R

w
it

h
B

T
re

e

0.1

1

T
im

e
(µ
s)

Figure 5. Execution time for updates performed per algo-
rithm

8

9. REFERENCES
[1] H. Bast, E. Carlsson, A. Eigenwillig, R. Geisberger,

C. Harrelson, V. Raychev, and F. Viger. Fast
routing in very large public transportation networks
using transfer patterns. In M. de Berg and
U. Meyer, editors, Algorithms - ESA 2010, 18th
Annual European Symposium, Liverpool, UK,
September 6-8, 2010. Proceedings, Part I, volume
6346 of Lecture Notes in Computer Science, pages
290–301. Springer, 2010.

[2] H. Bast, D. Delling, A. V. Goldberg,
M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in
transportation networks. CoRR, abs/1504.05140,
2015.

[3] H. Bast and S. Storandt. Frequency-based search for
public transit. In Y. Huang, M. Schneider, M. Gertz,
J. Krumm, and J. Sankaranarayanan, editors,
Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic
Information Systems, Dallas/Fort Worth, TX, USA,
November 4-7, 2014, pages 13–22. ACM, 2014.

[4] D. Delling, J. Dibbelt, and T. Pajor. Fast and exact
public transit routing with restricted pareto sets. In
S. G. Kobourov and H. Meyerhenke, editors,
Proceedings of the Twenty-First Workshop on
Algorithm Engineering and Experiments, ALENEX
2019, San Diego, CA, USA, January 7-8, 2019,
pages 54–65. SIAM, 2019.

[5] D. Delling, T. Pajor, and R. F. F. Werneck.
Round-based public transit routing. In D. A. Bader
and P. Mutzel, editors, Proceedings of the 14th
Meeting on Algorithm Engineering & Experiments,
ALENEX 2012, The Westin Miyako, Kyoto, Japan,
January 16, 2012, pages 130–140. SIAM /
Omnipress, 2012.

[6] J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner.
Connection scan algorithm. ACM J. Exp.
Algorithmics, 23, 2018.

[7] E. W. Dijkstra. A note on two problems in
connexion with graphs. Numerische Mathematik,
1:269–271, 1959.

[8] E. Pyrga, F. Schulz, D. Wagner, and C. D.
Zaroliagis. Efficient models for timetable
information in public transportation systems. ACM
J. Exp. Algorithmics, 12:2.4:1–2.4:39, 2007.

[9] Stichting OpenGeo. Dutch real-time transit data,
2013-2019.

[10] Universität Freiburg. Google focused research award
on next-generation route planning, 2015.

9

	Introduction
	Research questions

	Preliminaries
	Notation
	Problem definitions
	Earliest Arrival Problem
	Earliest Arrival Profile Problem
	Pareto-set

	Example

	Related work
	Algorithms

	Methodology
	Gather timetable data
	Choose & analyze algorithms
	Design & implement benchmarking system
	Implement algorithms
	Perform benchmarks & interpret results

	Results
	Datasets
	Trainline EU
	NDOV Loket

	Algorithms
	Static environment
	Real-time environment

	Benchmarking
	Data retrieved
	Benching information

	Benchmark results

	Discussion
	Conclusion
	Future work
	References

