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ABSTRACT

Predicting heart rates for cycling exercise is useful for a
more efficient planning workout and estimating nutrition
intake. This is a difficult problem that is influenced by
both internal factors such as the persons physical condi-
tion and external factors such as the weather. The goal of
the research is to predict heart rate zones for new users for
bicycle rides. Two problems are defined. The first prob-
lem is to find an optimal regression model trained on a
set of bicycle rides and their average features. The best
performing model was a random forest regressor with fea-
ture selection through random feature elimination. The
second problem is to predict the heart rate on the time
sequence data of these bicycle rides, where each sequence
or segment denotes 100 meters. This is done by train-
ing a LSTM. The LSTM was capable of predicting heart
rate averages for segments, but struggled with peaks and
under- and overestimation.
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1. INTRODUCTION

EatMyRide is a food plan application that helps cyclists
determine what nutritions they need[6]. This is done based
on both user variables and ride circumstances. The goal
for this research is to estimate the intensity of a workout
when there is little data available for a user, for example in
the case that this user just signed up and did not complete
any rides. The intensity of a workout will be defined by
an estimated heart rate or heart rate category. This can
later be used to develop a personalized nutrition plan.

There are some difficulties with the prediction of a heart
rate. There are many personal circumstances that might
influence the heart rate of someone during a ride. Daniel
Boullosa et al [3] state that differences in the genetic pre-
disposition for endurance running, the time available for
training, and physical, psychological, and physiological
characteristics can all influence an athlete’s performance.
This paper will use basic user information, sequential in-
formation of the ride and ride-averages to tackle this prob-
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lem as best as possible.

We can define two problems. The first is problem the gen-
eral ride and its heart rate zone prediction. The second is
the prediction of heart rates for ride segments, which can
be used to estimate heart rate zones. This is supervised
learning task that can be solved through regression learn-
ing. In order to find an optimal regression model, we will
also perform feature selection.

The second problem involves sequential data, where each
segment denotes 100 meters of a ride. This can thus be
seen as a multivariate time series problem. Because of
this, we will use recurrent neural networks (RNNs) to find
a solution to this problem. The dependent variables we
are interested in are the average heart rate zone of a ride
and heart rates per 100 meters of a ride. The variables
consist of both internal variables, such as the weight of
the user, and external variables such as wind speed and
average slope of a ride or ride segment.

First, there will be an exploration of background infor-
mation and related works. After this the methodology is
defined. This is followed by the experiments and their
analysis. Finally, there is a discussion of the applications
and limitations and finally a conclusion.

There was no research found that uses regression mod-
els to estimate the average heart rate category or heart
rate for a bicycle or long cardio exercise in the same way
as this paper. Some related works are discussed in the
background section. However, Jianmo Ni et al [12] pub-
lished a paper using a 2-layered Long-short term memory
(LSTM) to estimate heart rates using wearables. There
are two key differences with this study. The first is that
this study uses historical data of a user to predict heart
rates, whereas this study predicts the heart rate zones for
new users where this data is not available. The second is
that this study takes a wider range of external variables
of ride segments into account whereas the previous study
only uses internal variables, besides speed and sport ac-
tivity type. Thus, this paper will aid in the field of heart
rate estimation using regression models and a RNN.

1.1 Research Questions

There are 3 parts to our research. RQ 1.1 needs to be
investigated first. Afterwards, RQ 1.2 can be answered.
Following this, we move to the second problem and answer
RQ 2.

RQ 1.1 Which variables from the database contribute to
estimating the average heart rate zone for a ride?

RQ 1.2 Can we estimate the average heart rate zone for a
ride using a regression model and how does it perform?

RQ 2 Can we estimate heart rate zone averages for ride
segments using a LSTM and how does it perform?



2. BACKGROUND

This section first explores regression analysis, as this is
important for RQ 1. Secondly, as shown in objectives, we
are dealing with a problem that involves temporal data
so we then explore the use of a LSTM. This is a type of
architecture used for RNNs that deals with the vanishing
gradient problem and is relevant for answering RQ 2.

2.1 Regression Analysis

Regression Analysis is a statistical method used for pre-
diction, forecasting and finding relationships between in-
dependent and dependent variables. In this paper, we will
use different regression models to predict the average heart
rate category for a bicycle ride. Multiple linear regression
is, as the name suggests, an extension on linear regression
[2]. Linear regression is a simple regression model where
an optimally fitting linear model is made for a dataset in
order to estimate future outcomes. Whilst simple linear
regression has a one-to-one relationship between indepen-
dent and dependent variables, multiple linear regression
has a many-to-one relationship. Thus, the model has a
similar form to simple linear regression in multiple dimen-
sions.

We will also look into non-linear regression models, the
most important being the random forest regressor. A ran-
dom forest regressor is a collection of decision trees used
to predict the outcome for continuous values [4].

There are some problems that might occur with any re-
gression model. Such problems include multicollinearity,
where independent variables have a correlation, and over-
fitting, where a model performs well on training data but
not on testing data. Both can be avoided by doing proper
exploratory data analysis on the dataset and performing
feature selection. For multicollinearity one has to keep in
mind whether or not input variables are independent. In
order to prevent overfitting, one has to ensure that only
statistically significant variables are used and models are
validated with cross validation. Proper feature selection
also makes the model simpler and allows for faster train-

ing.

2.2 Related Works

In 1994 Mary Sue Fairbarn et al. used simple linear re-
gression to estimate the heart rate and oxygen uptake for
intense physical activity [8]. They found age to be the
most important factor for both males and females. Roger
G. Eston et al also used multiple simple regressions for the
purpose of predicting the energy cost of physical activities
for children and came to the conclusion that heart rate
is an adequate method of measurement, though oxygen
intake and accelerometry proved to be better [7].

Both studies relied strongly on measurement of the maxi-
mum oxygen uptake of the participants in the study. This
information is not available for new EatMyRide users.

There are also regression studies that proved more useful.
Gary E. Larsen et al used gender, body weight and elapsed
exercise time to estimate the oxygen uptake of participants
with minimal statistical loss [11]. Paulo Lopes-Silva et al.
researched physical fitness for judokas and found that HR
contributed most to the Special Judo Fitness Test perfor-
mance using multiple linear regression [13]. Last but not
least, Yichen Wu et al. found that Multiple Linear Regres-
sion proved better at determining exercise intensity than
other regression and deep learning methods and performed
equally to ridge regression [17].

From this literature review it remains unclear which vari-
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Figure 1. Schematic overview of a simple neural network.

ables weight most heavily in a regression model that at-
tempts to predict exercise activity, so this will be covered
later in the Experiments and Results section.

2.3 Recurrent Neural Networks and LSTMs

A neural network (NN) is a machine learning model that
takes resemblance after biological neural networks [16]. A
NN consists of multiple connected neurons in a layer struc-
ture. It consists of an input and output layer with poten-
tially hidden layers in between. An example can be found
in 1[10]. It is important to select the right input values for
a NN. A model that is too big can cause overfitting and
slow learning. It is also important to consider whether the
dataset is broad enough for the NN to not only succeed in
training, but to also succeed with never-seen testing data.

Recurrent Neural Networks, based on a paper by David
Rumelhart, are NNs based on the principle that it remains
in a state that is able to keep track of information from
previous sequences [15]. This gives the advantage that a
RNN can deal with temporal sequences that have depen-
dencies.

RNNs have a problem with vanishing gradients however.
A solution proposed by Hochreiter and Schmidhuber in
1997 involves Long Short-Term Memory, also known as
LSTM [9]. This solution implements more complex mem-
ory cells with multiple gates. Another proposed solution
is called GRU proposed by Kyunghyun Cho et al. in 2014
[5]. It is similar to an LSTM in that it has gates, but it
lacks an output gate thus giving it fewer parameters. It has
been shown that both LSTMs and GRUs have very simi-
lar performance. GRUs tend to converge faster on smaller
and less regular datasets, though LSTMs tend to perform
better on longer sequences. Since the length of segments
in our rides are of irregular length and quite long we will
settle on an LSTM.

2.4 Related Works

The field of using LSTMs to estimate workout intensity
has little prior research. In 2019 Jianmo Ni et al. pub-
lished a paper where they proposed FitRec, a 2-layered
stacked LSTM model that uses information gathered by
wearables, such as smartwatches [12]. The gathered data
is used to model heart rate and activity data of the wearer.
This is then used to make a personalized fitness recom-
mendation. The result for heart rate prediction was sig-
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Figure 2. Heart rate plotted per 100m segment for a padded
ride.

nificantly better than other models from prior research
(p < 0.05). This suggests an LSTM can be used for our
research, although their data is time and not distance re-
lated.

3. METHOD

3.1 Data

The dataset was provided by Eatmyride. It consisted of
21834 bicycle rides which were gathered from 133 different
users, where each ride has a length of at least 50km. There
were 20 female and 103 male users. The data was split into
three sets. The first contains the averages of all features
collected over the ride and was used to help answer RQ1.
The second contains features collected per ride segment of
each ride, where each ride segment spans 100 meters of this
ride. It was used to answer RQ2. The first set is described
by 45 different features and the second set by 37 features.
The third dataset contains features on the 133 users and
was used in combination with the first and second dataset.
Numpy and Pandas were used for the preparation of the
data.

The data first has its redundant features removed. Af-
ter this, the remaining data was normalized using z-score
normalization. The equation for this is as follows:

Ti— i
= - 1
z p (1)

The ride segments dataset is split into three different sets
containing 107, 13 and 13 users for the training, valida-
tion and testing sets respectively. Each set has the same
male/female ratio. The maximum ride distance has been
set at 300km as the size of a numpy arrays would become a
problem when it comes to memory usage, as well as unre-
alistic distances influencing the models. The ride segment
dataset is then merged with the user dataset. The fea-
tures are then normalized through z-score normalization
and converted to a numpy 3D array. The array is padded
to ensure that every sequence of ride segments has the
same length. An example of a ride per segment from the
training set can be seen in figure 2, where the flat line
indicates the padding.

3.2 Predicting heart rate categories
In order to apply regression models on the dataset con-
taining rides, scikit-learn was used. First, a feature selec-

tion step was applied consisting of two phases: through
selection from models and recursive feature elimination
(RFE). Selection by model uses importance weights to se-
lect a range of features, whereas RFE recursively removes
features to find an optimal set. A multitude of models
is tested with both sets of selected features and the most
optimal one was the random forest model resulting from
a hyperparameter random grid search. It has 321 estima-
tors, a minimum of 5 samples per split, a minimum of 2
samples per leaf and a depth of 100. The predicted val-
ues and metrics are discussed in more detail in the next
section.

3.3 Predicting heart rate sequences

Keras and Tensorflow are used to build the NN [1]. Google
Colab is used for the training infrastructure. In order
to find the best performing model, multiple experiments
are conducted. These experiments cover the depth and
amount of LSTM units. The mean squared error (MAE)
loss function is used due to outliers in the dataset. Adam
is used as the optimizer, with a maximum learning rate
per weight of 0.001. Each LSTM has a masking layer to
deal with the padding that makes all rides of equal length,
as otherwise it is only possible to perform online learn-
ing with a batch size of one. Each LSTM is also followed
by a dense output layer with just one weight, in order to
process the output. Each LSTM layer in the NN has a
dropout of 20% to prevent overfitting.

4. EXPERIMENTS

4.1 Performance Evaluation

Both the first and second problem are evaluated using mul-
tiple metrics that help us understand the correctness of the
models.

Firstly, in order to evaluate the random forest model for
RQ1.2 we look into the mean absolute error (MAE), root
mean squared error (RMSE) and R-squared metrics. Fi-
nally, we also evaluate the mean error (ME) to determine
whether the model under- or overestimates the heart rate
category.

Secondly, in order to evaluate the LSTMs used to answer
RQ2 we use the MAE and RMSE to determine the cor-
rectness of the models.

The equations used to calculate the mentioned metrics are
as follows, where gy denotes the predicted output and y
denotes the expected output:

Zi=1(gi — Yi)

ME = - )
MAE = W (3)
RMSE = |~ tzn;(@t —yi)? (4)
PP VTt i (5)

2.i(yi — 9)?

4.2 Predicting heart rate categories

Scikit-learn is used to apply regression models on the dataset
containt rides. [14]. For feature selection RFE and selec-
tion by model are used. Both used a Random Forest Re-
gressor. The results of this feature selection can be found
in table 1.



Table 1. RF features

” Feature | RFE model-based ”
user weight yes yes
user age yes yes
user length yes yes
average speed yes yes
maximum elevation yes no
minimum elevation yes no
estimated energy yes no
estimated power yes yes
normalized estimated | yes yes
total time yes yes

Actual heartrate category

0 1 2 3 4 5 6 7 8 9
Predicted heartrate category

Figure 3. Predicted heart rate categories plotted against
the actual heart rate categories for the training set.

In table 3 in the Appendices, we can see the results from
the multitude of models that are tested with both selected
features. The results are found using 10-fold cross val-
idation. For the random forest regressors, the name is
formatted as random-forest-n-m-o where: n denotes the
number of estimators, m denotes the maximum depth and
o either denotes the maximum features or maximum leaf
nodes. The latter two are tested as they make a model
simpler but might decrease correctness.

Multiple models are tested, where the optimal model is
the random forest model resulting from a hyperparameter
random grid search. It has 410 estimators, a minimum of
2 samples per split, a minimum of 2 samples per leaf and
a depth of 90. The maximum features used per tree is the
square root of the amount of features available. The MSE
is used as a criterion.

The predicted values for this model are visualized and
plotted against the expected values in figure 3. The red
line indicates the perfect prediction. One can see that the
predictions are quite spread out. This is also reflected by
the R-squared value and RMSE, shown in table 2. Despite
this, a RMSE and MAE under 1 indicate that the model
can be used to get a good indication of overall intensity
of a bicycle ride. The difference between the MAE and
RMSE also indicate that there is some variance between
individual errors, though not that big. In addition, a ME
of -0.005 was found for this random forest. This indicated
that the model does not over or underestimate strongly.

Additionally, we can see that other random forest models
performed relatively well compared to other models. We
can also see that a depth over 15 has very little impact
on the performance of the random forest regressors. The
amount of estimators has a bigger impact. The maximum
amount of leaf nodes also seems to have quite an impact,

Table 2. LSTM results

Model MAE RMSE
Model-1-128 (1) 15480 22.567
Model-2-128 (2) 15.785  23.431
Model-3-128 (3) 15.784  23.460
Model-3-256 (4) 15.263 22.641
Model-1-256 (5) 15.831 23.475
Model-3-256-128-64 (6) | 15.533  23.548
Model-1-128-agecat (7) | 15.430 23.529
Model-3-128-agecat (8) | 15.445 23.495

so it is better left untouched and set to unlimited. The
amount of features used per estimator does not seem to
strongly affect the results. The above explains why the
grid search found an optimal tree with 410 estimators,
though it only has a limited increase from the tree with
only 150 estimators and a depth of 15.

4.3 Predicting heart rate sequences

Multiple experiments are conducted on the impact of depth
and number of LSTM units in order to try and optimize
the model described in the methodology. Additionally an
experiment is conducted where the age of users is catego-
rized into 5 categories.

4.3.1 Impact of depth

For this experiment, three models are compared. Each
model had either one, two or three LSTM layers. Each
layer has 128 LSTM units. From table X, we can see that
the models (1), (2) and (3) do not have any significant
changes in the metrics. The MAE and RMSE of (1) are
slightly lower than the metrics of other models however.

4.3.2  Impact of width

For this experiment we compare five models with a dif-
ferent amount of LSTM units. The first three that are
compared have 3 layers. Model 3 has 128 LSTM units per
layer, model 4 has 256 and model 6 has 256, 128 and 64
LSTM units per layer.

There is a small improvement between (3) and (4) found,
but it is not a significant change. For model (6) we see
that the metrics are comparable to the other models.

Models (1) and (5) both have one layer with 128 and 256
units respectively. It seems that (1) performs slightly bet-
ter than (5), but there is no significant difference here
either.

4.3.3  Impact of categorized age

In this experiment the age of users is categorized. Models
(7) and (8) are trained on this data set. However, there
was no significant difference between these models and the
others.

S. DISCUSSION

Different regression models have been looked into for the
average heart rate category prediction and they perform
quite well. Additionally, the LSTM models can be used
to estimate an approximate intensity of a bicycle ride and
to approximate where more heart rate intensive parts of a
bicycle route may lie. However, there are also limitations.
The dataset only features 133 people, of which 20 were
female. This could lead to underfitting of the models for
this group. This could also partially explain why the MAE
and RMSE are not decreasing with different models being
used. This can also be seen in the difference between the
results of the validation and testing set, where the RMSE
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Figure 4. Predicted heart rate plotted next to the actual
heart rate.

160 A
140 A
120 A

100 A

Heartrate (bpm)
=

m -
40 -
20 1 — Expected values
o4 Predicted values I
T T T T T T T T
1] 10 20 30 40 50 B0 70
Distance (km)

Figure 5. Predicted heart rate plotted next to the actual
heart rate.

was quite a bit lower for the validation set. These results
can be found in the appendices.

Additionally, the prediction of the heart rate seems to have
difficulties with high and low spikes despite the use of
MAE as a loss function for the LSTMs. An example of
this is figure 5. Here, the predicted heart rate is plotted
against the actual heart rate. It seems that the model
tends to stay within a minimum and maximum prediction
range. There is also the fact that there is no feature avail-
able indicating the endurance levels for a user which can
cause over- and underestimations. This can be seen in 5.
This is likely why papers such as shown in Eston et al. [7]
included the VO2 max for their models.

There is also future work related to this research to be
done. It is unclear what each feature exactly contributed
to the prediction results, researching this could lead to a
better understanding of the models and might allow for im-
provements. Additionally it could be looked into whether
or not the techniques of this paper can be applied to dif-
ferent forms of cardio exercise where heart-rates are less
likely to spike, such as marathon running or long distance
ice skating.

6. CONCLUSION

Finally, we will address the answers to the research ques-
tions.

For RQ1.1 we researched the variables that could con-

tribute to estimating the average heart rate zone for a ride.
We found that the features selected using RFE performed
slightly better on the better performing models than the
features selected using importance weights, through scikit
learns selection by model. The selected features can be
found in table 1.

For RQ1.2 we researched whether or not we could use re-
gression models to estimate the average heart rate zone for
a ride. The random forest regressor found through a ran-
dom grid search performed best. Although the R-squared
metric indicates that the results are off, the metrics still
show that it can be used to make an adequate estimation
of the average heart rate zone for a ride.

In RQ2 we used LSTMs to predicted the average heart
rate over 100 meter segments for a ride. The results give
a good indication of an over-all ride, as explained in the
discussion section. The metrics point out that it is not pre-
cise enough to estimate the actual average heart rate well
enough though, as it struggles with high and low peaks. .
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Table 3. Regression results

Model MAE model-based MAE RFE R2 model-based R2 RFE  RMSE model-based RMSE RFE
linear-regression 1,1085 1,103 0,1438 0,133 1,3986 1,4067
poly-2nd 1,0779 1,4293 0,1849 -467,0497 11,3646 20,2975
lasso 1,1369 1,1369 0,1164 0,1164 1,4208 1,4208
ridge-regression 1,1085 1,103 0,1438 0,133 1,3986 1,4067
random-forest-50-5 0,9945 0,9935 0,3005 0,3014 1,2641 1,2633
random-forest-50-10 0,7833 0,7801 0,5424 0,546 1,0224 1,0184
random-forest-50-15 0,7208 0,7076 0,5958 0,6115 0,9609 0,942
random-forest-50-30 0,7195 0,6937 0,5924 0,6202 0,965 0,9315
random-forest-100-5 0,9943 0,9933 0,3009 0,3018 1,2637 1,2629
random-forest-100-10 0,7824 0,7791 0,5435 0,5475 1,0211 1,0167
random-forest-100-15 0,719 0,7055 0,598 0,6144 0,9583 0,9385
random-forest-100-30 0,7163 0,6905 0,5959 0,624 0,9608 0,9268
random-forest-150-5 0,9941 0,9932 0,3011 0,302 1,2636 1,2628
random-forest-150-10 0,7821 0,7788 0,5437 0,5479 1,0209 1,0162
random-forest-150-15 0,7184 0,7046 0,5985 0,6155 0,9576 0,9372
random-forest-150-30 0,7154 0,6896 0,5969 0,625 0,9596 0,9256
random-forest-50-15-10mlf  1,0352 1,0352 0,257 0,2571 1,3028 1,3027
random-forest-50-15-20mlf  0,9583 0,9587 0,3566 0,356 1,2123 1,2129
random-forest-50-15-30mlf  0,9122 0,9115 0,4113 0,4111 1,1596 1,1598
random-forest-50-15-40mlf  0,8814 0,8777 0,4466 0,4474 1,1243 1,1235
random-forest-50-15-50mlf  0,8584 0,8552 0,4725 0,4733 1,0977 1,0969
random-forest-50-15-2mf 0,7416 0,8094 0,5861 0,5213 0,9724 1,0457
random-forest-50-15-4mf 0,7175 0,7393 0,6024 0,5891 0,953 0,9688
random-forest-50-15-6mf 0,7195 0,7183 0,5983 0,6065 0,9579 0,9481
random-forest-gridsearch 0,713 0,687 0,6011 0,6276 0,9546 0,9224
gradient-boosting 0,8897 0,8864 0,4342 0,4371 1,1369 1,134
decision-tree-5 1,012 1,0116 0,2757 0,2761 1,2864 1,286
decision-tree-10 0,8347 0,8415 0,4653 0,453 1,1051 1,1178
decision-tree-15 0,8382 0,8371 0,4165 0,4108 1,1545 1,1601




