
Comparison of different types of auto-encoders for data
cleaning
Kevin Alberts

University of Twente
P.O. Box 217, 7500AE Enschede

The Netherlands
k.j.alberts@student.utwente.nl

ABSTRACT
Using machine learning techniques for data cleaning has
a lot of potential, for example in repairing corrupted data
or restoring missing information. Previous research has
given rise to a lot of different ways of using machine learn-
ing in this way, one of which being the auto-encoder. A
lot of different types of auto-encoders have since emerged,
which are usually tested on one dataset or compared to one
other type. This begs the question which type is best and
if auto-encoders can be used in a more general sense. In
this research, we propose to experimentally compare five
different auto-encoders (basic, sparse, contractive, denois-
ing and variational) for cleaning and to see which types of
auto-encoders are the most suited and most accurate for
data cleaning for three different datasets, namely CIFAR-
10, MNIST (images) and US Weather Data (tabular).
We implement a testing framework that allows easy imple-
mentation of different auto-encoders and datasets, and use
this framework to test five different types of auto-encoders
on two different image datasets. We find that for some
types of auto-encoders there is no big difference in the
type of dataset, but other types of auto-encoders work a
lot better on certain types of data.

1 Introduction
1.1 Background
Data cleaning, is the process of detecting and removing er-
rors and inconsistencies from data to improve the quality
of the data [19]. In the past this has always been done by
humans manually verifying the data and correcting mis-
takes, but humans can make mistakes or miss certain types
of errors that are not as easily spotted, or datasets can be-
come too large for humans to handle.
To avoid these mistakes, machine learning can be used
to train artificial intelligence models to predict attributes
of the data, based on the values of other attributes. If
the amount of corruption in the original data is low, this
can produce a good model even though there are errors
in the data. After training, these models can then be
used to correct suspicious values in the data. One type
of model used is an auto-encoder. These models, when
trained, generate a more general encoding of this data,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
34th Twente Student Conference on IT Jan. 29st, 2021, Enschede, The
Netherlands.
Copyright 2021, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

which eliminates errors (see Section 3 for more details).
If we can create a method to correct corruption in data
using machine learning, this has a lot of interesting use
cases. One could for example imagine it being used to
repair corrupted real-time sensor data that is sent over an
unreliable connection. Or, one could even imagine using
it to restore corrupted parts of photos, or even audio and
video fragments. This intuitively can work because these
types of data have a lot of patterns embedded in them, so
a machine learning tool could be trained on the patterns
from other, non-corrupted data to restore those patterns
in the corrupted versions.

1.2 Related work
Automatic correction of data is a very interesting and use-
ful topic. Previous research has been focused on devel-
oping new types of auto-encoders for de-noising images,
video and audio data [16][17][23][20][13], or an existing
type of auto-encoder is modified and then tested against
one or more data sets for their accuracy in repairing the
corrupted data [18][22][26][11]. Such research usually con-
cludes with saying that the newly developed auto-encoder
is indeed effective for data cleaning, but it is usually not
clear if this auto-encoder is indeed better than other exist-
ing auto-encoders, or if it is maybe only better in certain
cases or with certain types of data (i.e. structural, image,
audio).

2 Research Question

Which types of auto-encoders are the best for repairing
corruption in different types of datasets?

2.1 Sub-questions
• What different types of auto-encoders exist that can

repair corruption in a dataset?

• What different types of datasets can be used as in-
puts to auto-encoders?

• What parameters give the best results for each type
of auto-encoder, based on previous research?

• How does each type of auto-encoder perform while
repairing corruption in each dataset?

• How does the architecture of an auto-encoder impact
the performance of it?

3 Background
3.1 Neural networks
A neural network is a machine learning structure consist-
ing of layers of neurons. An example of a neural network
with four input neurons, two hidden layers and three out-
put neurons can be seen in Figure 1. It has an input layer,
an output layer, and one or more hidden layers (f1, f2)

1

Figure 1: Example of a neural network [9]

in between. Each layer consists of neurons, which take
a set of inputs, modifies them according to the weights of
the connections (W1,W2,Wo), and then returns an output.
Outputs of neurons can be modified by a propagation func-
tion before being used as inputs for other neurons, usually
by adding a bias term [12]. The neurons in the output
layer determine the result of the neural network. This can
for example be the result of a classification (one output
neuron per category), or an output image from an image
generation neural network (one output neuron per output
pixel). Weights are optimized by training the network on
training data. Once the weights are all determined, a neu-
ral network is a really fast structure that is able to perform
surprisingly complex tasks.

3.2 Auto-encoders
Figure 2: Structure of an auto-encoder [6]

An auto-encoder, as seen in Figure 2, is a type of neu-
ral network where the input and output layers have equal
neurons. This allows it to produce output in the same for-
mat as the input. Furthermore, the hidden layers consist
of less neurons than the input, which creates a bottleneck.
This forces the network to figure out a more efficient en-
coding of the data [16]. The hidden layers consist of an
encoder (gφ), the bottleneck (z), and a decoder (fθ).

The bottleneck makes sure that the input data needs to be
compressed down into a lower number of neurons, which in
theory means that any non-general data (errors, noise, etc)
will be cut out. This is where the ’cleaning’ comes from.
The compressed representation is then decoded back to
the original number of inputs, which is then the result.
This result should then be a generalized form of the in-
put, which in theory means that any noise, irregularities
and corruption that does not line up with the rest of the
data set is removed. Auto-encoders can be trained unsu-
pervised, which is a major benefit for which saves time
for researchers and makes it easier to implement them in
practice.

3.3 Types of auto-encoders
Over the years, as more research in this field has been
done, more and more different variations of auto-encoders
have been devised. We give a short introduction of the
most common types of auto-encoders.

3.3.1 Basic auto-encoder
This is the default version of the auto-encoder as described
above, with no modifications.

3.3.2 Sparse auto-encoder
In a sparse auto-encoder, the bottleneck layer may actu-
ally have more neurons than the input data, but only a
small number of them (usually the most active ones) are
propagated to the decoding stage. This method allows
the network to learn more complex patterns in the input
data, because it has more neurons available to store the
encoding in, while still preventing it from reconstructing
the input using too many neurons [17]. It is shown that a
sparsity factor using L1 regularization gives better results
than the traditional KL divergence [25].

3.3.3 Denoising auto-encoder
In a denoising auto-encoder, a good representation is achieved
by changing the reconstruction criterion. This means that
instead of feeding the input directly into the auto-encoder,
it is first corrupted using some form of noise. This cor-
rupted version is then used as the input to train the auto-
encoder. To evaluate the performance, the output of the
network is compared to the original, uncorrupted version.
By training the network in this way, it learns how to de-
noise the input, which leads to a better higher level repre-
sentation of the input [23].

3.3.4 Contractive auto-encoder
A contractive auto-encoder adds an explicit regularizer to
the inputs of the neurons that forces the model to be less
sensitive to small variations of the input values. It es-
sentially makes the neurons ignore small fluctuations in
the data, and only react to larger, more important varia-
tions in the data. This ’penalty’ is only applied during the
training of the model, so when actually using the network
it will not have any influence [20].

3.3.5 Variational auto-encoder
Variable auto-encoders produce a different form of encod-
ing in their bottleneck layer. Instead of producing the
encoding values directly, they produce a tensor of means,
and a tensor of standard deviations. These two interme-
diate values are then used as a distribution, from which a
sample is taken. This sample is then used as the input to
the decoder network. This kind of auto-encoder is usually
used for generative purposes (i.e. generating new images),
but it can also be used for cleaning [13].

3.4 Types of noise
To test auto-encoders, usually a clean dataset is corrupted
with some kind of noise. There are different noise types
for each different data type. For this research, since we
already have quite a few independent variables to test for
(type of auto-encoder, type of data set), we constrain our-
selves to one type of noise per data type. For image data
we use Gaussian noise [14], which modifies each pixel to
the value plus some random Gaussian distributed noise
value. For structured data we will use random errors
(where completely random fields are corrupted). The in-
fluence of other noise types can be part of further research.

2

4 The testing framework
We construct a testing framework, which is able to test an
arbitrary implementation of an auto-encoder for an arbi-
trary dataset. Then, we can add our own implementation
for each auto-encoder, add the datasets and automatically
run the same tests on all of the different implementations.
An added benefit of this is that we can collect exactly the
metrics that we want from the frameworks, and it will be
easily extendable with new types of encoders or datasets.
The framework was built as a wrapper around the exist-
ing PyTorch classes, to make implementations as easy as
possible. A class diagram of the framework can be found
in Appendix A. The source code of the testing framework
is available on GitHub [10].
The main structure is the TestRun class. This defines
a combination of a dataset, encoder implementation and
corruption type to use. Different test run instances can
be configured in the configuration file of the framework.
The dotted paths to the dataset, encoder and corruption
classes that should be used are given there, as well as the
parameter values for them (like the input shape). This
allows a multitude of test runs for any combination of
dataset, encoder or corruption.
The encoders are implemented as sub-classes of the BaseEn-
coder class, which is a subclass of the PyTorch Module

class, which means they can be used directly in PyTorch.
The class holds the network specification, optimizer and
loss function, as well as methods to train and test the
model, and hook functions that can be overridden to hook
into specific points of the training or testing process. These
hooks make it possible to implement all types of auto-
encoders into the same framework. The default network
consists of 4 layers, with the first two layers halving the
input shape each time, and the last two layers doubling
the neurons each time, thus creating the structure of an
auto-encoder. The default optimizer is the Adam opti-
mizer, and the default loss function is the Mean Squared
Error loss. These are used by a lot of tutorials as a starting
place[7][8][24], but of course these can be changed.
The datasets are implemented as sub-classes of the Base-

Dataset class, which itself is a subclass of the PyTorch
Dataset class. The class offers two methods that return a
training dataset or testing dataset, which are used during
the model training and test runs. The rest of the imple-
mentation is mostly left to the individual dataset imple-
mentations, as the way datasets are structured can vary a
lot (csv, images, etc). Three implementations for datasets
are included in the framework. The Cifar10Dataset loads
data from the CIFAR-10 dataset [1]. This dataset holds
images and labels, but only the image data is used for
this research. The MnistDataset loads its data from the
MNIST dataset [4]. The USWeatherEventsDataset is built
on the LTSW dataset [3]. The current implementation
only uses the weather event type, severity, timezone and
state. These columns are encoded using One-Hot encod-
ing, so they can be used in a neural network [5]. This
dataset does not use the default Mean Squared Error loss
when training, but the Cross Entropy Loss, which is meant
for data encoded in One-Hot encoding [21].
The corruption methods are implemented as sub-classes of
the BaseCorruption class. This is a class which has two
methods to corrupt one instance from a dataset, and to
corrupt an entire dataset. The exact method of corruption
is left up to the implementations. Two implementations
are included in the framework; NoCorruption, which does
not corrupt the data in any way, and GaussianCorrup-

tion, which adds noise taken from a Gaussian distribution
[14].

5 Methodology and approach
5.1 Implementations of auto-encoders
For this experiment, we want to implement one of each
type of auto-encoder explained in Subsection 3.3, using
the parameters from previous research.

5.1.1 Basic auto-encoder
Figure 3: Basic auto-encoder network

This implementation is based on the original auto-encoder
layout as proposed by Kramer[16]. The layout of the net-
work is illustrated in Figure 3, where N is the number of
inputs (for a 10 by 10 pixel image with 3 colour channels,
N = 300, so the second layer would have N//2 = 150
neurons, and the bottleneck layer would have N//4 = 75
neurons). This is the same auto-encoder as implemented
in the the base framework, so no modifications are neces-
sary. It has 4 layers, connected with a ReLU (Rectified
Linear Unit) activation function. This activation function
will return 0 if the input is negative, or the input as-is if
the input is positive. The two encoder layers halve the
neurons each time, and the two decoder layer doubles the
neurons each time. Neuron outputs are only influenced by
their weights, nothing else.

5.1.2 Sparse L1 auto-encoder
Figure 4: Sparse L1 auto-encoder network

This implementation is based on the sparse auto-encoder
with an L1 regularization term as the sparsity factor [25].
The layout of the network is illustrated in Figure 4. As can
be seen this encoder has more neurons in the bottleneck
than the input and output. For a 10 by 10 pixel image
with 3 colour channels (N = 300), the second layer has
N ∗1.5 = 450 neurons and the bottleneck layer has N ∗2 =
600 neurons. To prevent input copying, these neurons are
limited by the sparsity factor, which in this case is the L1
regularization. In practice this is achieved by adding the
sparsity penalty to the loss when the network is trained.
This is done by multiplying a regularization parameter
(set to 0.001 by default) with the L1 loss, which is the
sum of the means of the absolute values of each layer in
the network. The rest of the auto-encoder behaves just
like a regular auto-encoder network.

3

Figure 5: Denoising auto-encoder network

5.1.3 Denoising auto-encoder
This implementation is based on the original definition of
the stacked denoising auto-encoder [23]. The layout of the
network is illustrated in Figure 5. As can be seen the input
is manipulated before it enters the encoder (At the con-
nections with the ⊗ symbol). The input data is corrupted
before entering the encoder, but the end result is compared
to the uncorrupted image. This makes the auto-encoder
learn how to denoise the image. This corruption is only
done during training. The rest of the network functions
the same as the basic auto-encoder. Implementing this en-
coder only requires an extra parameter, namely the type
of corruption to apply to the network. The only thing dif-
ferent from the basic auto-encoder in the implementation
is an overridden process_train_features method, where
the input to the network during training is corrupted.

5.1.4 Contractive auto-encoder
The contractive auto-encoder implementation is based on
the original definition [20]. The network layout is ex-
actly the same as the basic auto-encoder from Figure 3.
The only implementation difference is in the loss function,
where the regular MSE loss is summed with the weighted
L2-norm of the Jacobian of the hidden units with respect
to the inputs. The technical implementation of this loss
function is inspired by an implementation by A. Kristiadi
[2].

5.1.5 Variational auto-encoder
Figure 6: Variational auto-encoder network

This implementation is based on the standard variational
auto-encoder proposed by Doersch [13]. The network,
shown in Figure 6, is split up at the bottleneck. The mean
(µ) and variance (σ2) are calculated from the outputs of
the encoder. These variables are used as the mean and
variance of a normal distribution. Then, instead of pass-
ing the outputs of the encoder to the decoder, a sample is
taken from that normal distribution and passed to the de-
coder. The rest of the network functions as a normal auto-
encoder. Details for the implementation of the reparame-
terization and the KL-divergence were taken from [13] and
[15].

5.2 Chosen datasets
For this experiment we want varied datasets so we can
make conclusions about the accuracy on different data
types. The datasets should be usable with all or the ma-
jority of the auto-encoders we want to test. Three datasets
were chosen and implemented for this research. Two with
image data (one general and one specialized), and one
dataset with tabular data.
The CIFAR-10 dataset contains small 32x32 pixel colour
images of everyday things like cars, cats and ships. This
dataset was chosen because it is very broad. This makes
it harder for the neural network to converge, and it will be
interesting to see if any type of auto-encoder will get good
results with such a general dataset. This dataset contains
50000 images for training, and 10000 images for testing.
The MNIST dataset has been used frequently when testing
auto-encoders. It consists of handwritten numbers from 0
to 9. This dataset was chosen because it is commonly used
to test the accuracy of auto-encoders, and this will give
a good baseline value of the performance of the encoder.
This dataset contains 60000 images for training, and 10000
images for testing.
The US weather dataset is based on tabular data of weather
events in the United States. It contains data about the
type of event (e.g. rain, snow, fog), the severity (e.g. light,
moderate, severe), the timezone (e.g. eastern, central, pa-
cific), and the state (e.g. Arizona, California, Texas). The
original data contains more columns but these were left out
due to implementation difficulties and time constraints.
The original dataset contains more than 5 million entries,
but for this research 250000 random entries were chosen
for both the training and testing dataset.

5.3 Metrics
For image data the accuracy is calculated using the SSIM
(Structural Similarity Index). This score considers the
luminance, contrast and structure of two images and com-
bines these [27]. It is meant to be used to compare the
visual similarity of two images for human eyes, given as
a number between -1 and 1, where -1 means the image is
completely different from the other, and 1 means they are
practically the same image.
For tabular data the accuracy is calculated by comparing
each cell to the original value, and taking the percentage
of correct values, so the amount of correct cells divided by
the amount of total cells.

6 Results
To get these results, each auto-encoder is trained for 50
epochs using the training data from the dataset. Then,
the testing data from the dataset is corrupted, and run
through the trained network. The resulting images are
compared to the original images and the average accuracy
score is calculated. The training loss for each auto-encoder
over the 50 epochs have been graphed and they can be
found in Appendix B. For the image datasets, a sample of
the original, corrupted, and reconstructed images from all
implemented auto-encoders can be found in Appendix C.
The average SSIM (for image datasets) and accuracy (for
tabular dataset) scores that were achieved on the testing
datasets can be seen in Figure 7. The numerical data that
makes up this chart can be found in Figure 8. As can be
seen, the scores for the MNIST dataset are consistently
higher than the scores for the CIFAR-10 dataset. Perfor-
mance on those datasets seems to be similar for the basic,
sparse and contractive auto-encoders, but the denoising
auto-encoder has a lot better score on the MNIST dataset,

4

Figure 7: Accuracy scores for all implemented auto-encoders
and datasets.

Figure 8: Accuracy scores for all implemented auto-encoders
and datasets. (rounded to 4 decimals)

Encoder type CIFAR-10 MNIST US Weather
Basic 0.3441 0.4898 0.8320

Sparse L1 0.4962 0.5817 0.8145
Denoising 0.2631 0.8431 0.6582

Contractive 0.3533 0.4327 0.8379
Variational 0.0804 0.1225 0.4141

while having the second lowest score on CIFAR-10. Also,
note that the score of the variational auto-encoder is very
low in all three datasets compared to the other encoders.
Lastly, it is interesting to note is that the scores for the
US weather dataset seem to be pretty good and quite high
across the board when compared to the image datasets,
though this is misleading as will be discussed in the next
section.

7 Analysis
Overall, the simplicity of the implemented networks lead
to quite moderate scores on all encoders. To get higher
scores more hidden layers are required, and one needs to
do hyper-parameter optimization for each specific dataset.
This all was not done for this experiment, as it is not neces-
sary for a global comparison of the types. Also, in all cases
except the US weather data the default Mean Squared Er-
ror loss was used during training to keep implementations
as simple as possible, while there may be other types of
loss functions that are better suited for images, like SSIM,
which was used for the score calculation in the end.
Most types of encoders perform similarly for all datasets,
and similar to each other. The basic auto-encoder, sparse
L1 auto-encoder and the contractive auto-encoder all have
roughly similar performances on the all datasets. It is
quite interesting to see that even the most basic auto-
encoder still performs pretty well.
The most interesting thing is the large difference in the
performance of the denoising auto-encoder. This type of
auto-encoder seems to be very good at cleaning when used
with the MNIST dataset, but not very good at all with the
CIFAR-10 dataset. This is probably due to the simplic-
ity of the images in the MNIST dataset, where clean im-
ages only consist of a black background and white lines, so
Gaussian noise can be easily recognised and removed. This
does not work well with the CIFAR-10 dataset because
those are pretty varied pictures with a lot of colours and
shapes, so the denoising auto-encoder cannot find large
enough differences between a noisy image and some other
image that just looks different.
Another interesting thing is that the scores for the US
weather dataset seem to be a lot higher than the image
datasets. This however does not mean that the encoders

perform a lot better on this type of data. The dataset
is corrupted using a random corruption, which is imple-
mented so that it corrupts zero columns in 10% of the
rows, one column in 90% of the rows, and it has a 10%
chance of corrupting a second column if one was already
corrupted. So, if we just compare a regular row to a cor-
rupted row, we would expect a score of around 0.9, without
running it through any kind of auto-encoder. However, all
scores we measured are lower than 0.9, which means that
the auto-encoders actually are corrupting cells that were
not even wrong. This could probably be avoided in any
number of ways, but it is a side-effect of auto-encoders
operating on the entire row, and reconstructing the entire
row of data in one go.
It can also be seen that the variational auto-encoder was
not able to converge on a well-performing model in all
tests. As can be seen in the sample images from Appendix
C, every reconstructed image of this auto-encoder is very
similar to each other and not similar to the original in-
put at all. This is especially clearly visible in the MNIST
reconstruction. This is probably due to the random sam-
pling from the distribution, maybe requiring more train-
ing epochs or some parameter optimization, but obviously
programming errors are always a possible cause as well.

8 Conclusion
This research has shown that it depends greatly on the
type of dataset which forms of auto-encoder works the
best. A denoising auto-encoder works a lot better on a
dataset with similar-looking images, but this type of auto-
encoder does not work well at all for datasets with a lot of
variation. Conversely, other types of encoders like the ba-
sic auto-encoder or the sparse L1 auto-encoder work simi-
larly well on datasets with both varied and similar images,
but give overall less accuracy than if an auto-encoder that
is better at handling a specific type of dataset is used.
We also show that auto-encoders can effectively be used
on tabular data, but extra measures have to be taken to
ensure that the encoders do not accidentally corrupt data
that was valid in the first place.
Furthermore, this research resulted in a testing frame-
work where different types of auto-encoders, datasets and
corruption methods can easily be implemented, trained
and tested. This framework can allow future research to
quickly train, test and compare new types of auto-encoders
or even more general neural networks, or to test existing
implementations against new datasets or with new types
of corruption.

8.1 Future work
Researchers that are interested in furthering this research
could look into implementing more types of auto-encoders
into the framework, or do hyper-parameter optimization
on the existing auto-encoders to find out if the score dif-
ferences become more apparent.
Furthermore, researchers can implement new datasets of
different types. This research focused on image and tab-
ular data, but it would be very interesting to see if auto-
encoders are also effective at removing noise or correcting
errors in for example audio data. Also, the tabular data
used was only of a categorical type, it is very interesting
to see if this also works for other types of columns like
timestamps, or actual measurement values.
And lastly, this research did not compare these implemen-
tations of the different auto-encoders to other implementa-
tions of the same type of encoder. It might be interesting
to see if there are implementation differences that impact
the performance of the encoders.

5

9 References

[1] CIFAR-10 and CIFAR-100 datasets. Accessed:
23-01-2021. URL:
https://www.cs.toronto.edu/~kriz/cifar.html.

[2] Deriving Contractive Autoencoder and
Implementing it in Keras - Agustinus Kristiadi’s
Blog. Accessed: 23-01-2021. URL:
http://wiseodd.github.io/techblog/2016/12/05/

contractive-autoencoder/.

[3] LSTW: Large-Scale Traffic and Weather Events
Dataset - Sobhan Moosavi. Accessed: 23-01-2021.
URL: https://smoosavi.org/datasets/lstw.

[4] MNIST handwritten digit database, Yann LeCun,
Corinna Cortes and Chris Burges. Accessed:
23-01-2021. URL:
http://yann.lecun.com/exdb/mnist/.

[5] What is One Hot Encoding? Why and When Do
You Have to Use it? | Hacker Noon. Accessed:
23-01-2021. URL: https://hackernoon.com/what-
is-one-hot-encoding-why-and-when-do-you-

have-to-use-it-e3c6186d008f.

[6] From Autoencoder to Beta-VAE, August 2018.
Accessed: 23-01-2021. URL:
https://lilianweng.github.io/2018/08/12/from-

autoencoder-to-beta-vae.html.

[7] Implementing Deep Autoencoder in PyTorch -Deep
Learning Autoencoders, December 2019. Accessed:
23-01-2021. URL:
https://debuggercafe.com/implementing-deep-

autoencoder-in-pytorch/.

[8] Abien Fred Agarap. Implementing an Autoencoder
in PyTorch, October 2020. Accessed: 23-01-2021.
URL:
https://medium.com/pytorch/implementing-an-

autoencoder-in-pytorch-19baa22647d1.

[9] Jayesh Bapu Ahire. The Artificial Neural Networks
handbook: Part 1, September 2020. Accessed:
23-01-2021. URL:
https://medium.com/coinmonks/the-artificial-

neural-networks-handbook-part-1-f9ceb0e376b4.

[10] Kevin Alberts. Kurocon/AutoEncoderComparison,
January 2021. Accessed: 23-01-2021. URL: https:
//github.com/Kurocon/AutoEncoderComparison.

[11] J. Dai, H. Song, G. Sheng, and X. Jiang. Cleaning
Method for Status Monitoring Data of Power
Equipment Based on Stacked Denoising
Autoencoders. IEEE Access, 5:22863–22870, 2017.
Conference Name: IEEE Access.
doi:10.1109/ACCESS.2017.2740968.

[12] CHRISTIAN W. DAWSON and ROBERT WILBY.
An artificial neural network approach to
rainfall-runoff modelling. Hydrological Sciences
Journal, 43(1):47–66, February 1998. Publisher:
Taylor & Francis eprint:
https://doi.org/10.1080/02626669809492102.
doi:10.1080/02626669809492102.

[13] Carl Doersch. Tutorial on Variational Autoencoders.
arXiv:1606.05908 [cs, stat], August 2016. arXiv:
1606.05908. URL:
http://arxiv.org/abs/1606.05908.

[14] Sukhjinder Kaur. Noise types and various removal
techniques. International Journal of Advanced
Research in Electronics and Communication
Engineering (IJARECE), 4(2):226–230, 2015.
Publisher: Citeseer.

[15] Diederik P. Kingma and Max Welling.

Auto-Encoding Variational Bayes. arXiv:1312.6114
[cs, stat], May 2014. arXiv: 1312.6114. URL:
http://arxiv.org/abs/1312.6114.

[16] Mark A. Kramer. Nonlinear principal component
analysis using autoassociative neural networks.
AIChE journal, 37(2):233–243, 1991. Publisher:
Wiley Online Library.

[17] Alireza Makhzani and Brendan Frey. k-Sparse
Autoencoders. arXiv e-prints, 1312:arXiv:1312.5663,
December 2013. URL: http:
//adsabs.harvard.edu/abs/2013arXiv1312.5663M.

[18] Ben Poole, Jascha Sohl-Dickstein, and Surya
Ganguli. Analyzing noise in autoencoders and deep
networks. arXiv:1406.1831 [cs], June 2014. arXiv:
1406.1831 version: 1. URL:
http://arxiv.org/abs/1406.1831.

[19] Erhard Rahm and Hong Hai Do. Data cleaning:
Problems and current approaches. IEEE Data Eng.
Bull., 23(4):3–13, 2000.

[20] Salah Rifai, Xavier Muller, Xavier Glorot, Gregoire
Mesnil, Yoshua Bengio, and Pascal Vincent.
Learning invariant features through local space
contraction. arXiv:1104.4153 [cs], April 2011. arXiv:
1104.4153. URL:
http://arxiv.org/abs/1104.4153.

[21] Stacey Ronaghan. Deep Learning: Which Loss and
Activation Functions should I use?, August 2019.
Accessed: 23-01-2021. URL:
https://towardsdatascience.com/deep-learning-

which-loss-and-activation-functions-should-

i-use-ac02f1c56aa8.

[22] Dan Stowell and Richard E. Turner. Denoising
without access to clean data using a partitioned
autoencoder. arXiv:1509.05982 [cs], September
2015. arXiv: 1509.05982. URL:
http://arxiv.org/abs/1509.05982.

[23] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie,
Yoshua Bengio, Pierre-Antoine Manzagol, and Léon
Bottou. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local
denoising criterion. Journal of machine learning
research, 11(12), 2010.

[24] Orhan G. Yalçın. Image Noise Reduction in 10
Minutes with Convolutional Autoencoders,
November 2020. Accessed: 23-01-2021. URL:
https://towardsdatascience.com/image-noise-

reduction-in-10-minutes-with-convolutional-

autoencoders-d16219d2956a.

[25] Li Zhang, Yaping Lu, Bangjun Wang, Fanzhang Li,
and Zhao Zhang. Sparse Auto-encoder with
Smoothed $$l 1$$l1Regularization. Neural
Processing Letters, 47(3):829–839, June 2018.
doi:10.1007/s11063-017-9668-5.

[26] Chong Zhou and Randy C. Paffenroth. Anomaly
Detection with Robust Deep Autoencoders. In
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining, KDD ’17, pages 665–674, New York, NY,
USA, August 2017. Association for Computing
Machinery. doi:10.1145/3097983.3098052.

[27] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P.
Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, April 2004.
Conference Name: IEEE Transactions on Image
Processing. doi:10.1109/TIP.2003.819861.

6

https://www.cs.toronto.edu/~kriz/cifar.html
http://wiseodd.github.io/techblog/2016/12/05/contractive-autoencoder/
http://wiseodd.github.io/techblog/2016/12/05/contractive-autoencoder/
https://smoosavi.org/datasets/lstw
http://yann.lecun.com/exdb/mnist/
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://hackernoon.com/what-is-one-hot-encoding-why-and-when-do-you-have-to-use-it-e3c6186d008f
https://lilianweng.github.io/2018/08/12/from-autoencoder-to-beta-vae.html
https://lilianweng.github.io/2018/08/12/from-autoencoder-to-beta-vae.html
https://debuggercafe.com/implementing-deep-autoencoder-in-pytorch/
https://debuggercafe.com/implementing-deep-autoencoder-in-pytorch/
https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1
https://medium.com/pytorch/implementing-an-autoencoder-in-pytorch-19baa22647d1
https://medium.com/coinmonks/the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4
https://medium.com/coinmonks/the-artificial-neural-networks-handbook-part-1-f9ceb0e376b4
https://github.com/Kurocon/AutoEncoderComparison
https://github.com/Kurocon/AutoEncoderComparison
https://doi.org/10.1109/ACCESS.2017.2740968
https://doi.org/10.1080/02626669809492102
http://arxiv.org/abs/1606.05908
http://arxiv.org/abs/1312.6114
http://adsabs.harvard.edu/abs/2013arXiv1312.5663M
http://adsabs.harvard.edu/abs/2013arXiv1312.5663M
http://arxiv.org/abs/1406.1831
http://arxiv.org/abs/1104.4153
https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8
http://arxiv.org/abs/1509.05982
https://towardsdatascience.com/image-noise-reduction-in-10-minutes-with-convolutional-autoencoders-d16219d2956a
https://towardsdatascience.com/image-noise-reduction-in-10-minutes-with-convolutional-autoencoders-d16219d2956a
https://towardsdatascience.com/image-noise-reduction-in-10-minutes-with-convolutional-autoencoders-d16219d2956a
https://doi.org/10.1007/s11063-017-9668-5
https://doi.org/10.1145/3097983.3098052
https://doi.org/10.1109/TIP.2003.819861

Appendix A: Testing framework class diagram

Appendix B: Loss graphs for the training of the auto-encoders.

Figure 9: Loss graphs - CIFAR-10

(a) Basic auto-encoder (b) Sparse L1 auto-encoder (c) Denoising auto-encoder

(d) Contractive auto-encoder (e) Variational auto-encoder

7

Figure 10: Loss graphs - MNIST

(a) Basic auto-encoder (b) Sparse L1 auto-encoder (c) Denoising auto-encoder

(d) Contractive auto-encoder (e) Variational auto-encoder

Figure 11: Loss graphs - US Weather Data

(a) Basic auto-encoder (b) Sparse L1 auto-encoder (c) Denoising auto-encoder

(d) Contractive auto-encoder (e) Variational auto-encoder

8

Appendix C: Reconstructed images from the implemented auto-encoders.

Figure 12: Original, corrupted and reconstructed test images - CIFAR-10

(a) Original (b) Corrupted (c) Basic auto-encoder

(d) Sparse L1 auto-encoder (e) Contractive auto-encoder (f) Denoising auto-encoder

(g) Variational auto-encoder

Figure 13: Original, corrupted and reconstructed test images - MNIST

(a) Original (b) Corrupted (c) Basic auto-encoder

(d) Sparse L1 auto-encoder (e) Contractive auto-encoder (f) Denoising auto-encoder

(g) Variational auto-encoder

9

	Introduction
	Background
	Related work

	Research Question
	Sub-questions

	Background
	Neural networks
	Auto-encoders
	Types of auto-encoders
	Basic auto-encoder
	Sparse auto-encoder
	Denoising auto-encoder
	Contractive auto-encoder
	Variational auto-encoder

	Types of noise

	The testing framework
	Methodology and approach
	Implementations of auto-encoders
	Basic auto-encoder
	Sparse L1 auto-encoder
	Denoising auto-encoder
	Contractive auto-encoder
	Variational auto-encoder

	Chosen datasets
	Metrics

	Results
	Analysis
	Conclusion
	Future work

	References
	Appendix A: Testing framework class diagram
	Appendix B: Loss graphs for the training of the auto-encoders.
	Appendix C: Reconstructed images from the implemented auto-encoders.

