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ABSTRACT

This work describes a way of predicting traffic low with
machine learning. To accomplish this goal, several re-
search questions have been created. These are Q1: What
machine learning techniques can be used to accurately pre-
dict traffic flow? Q2: How can we use the predicted traffic
flow to avoid congestion? Q3: What is the influence of
non-cooperative vehicles on this model? The first ques-
tion will be used to select the most accurate technique
from an LSTM, GRU or CNN. The technique can be used
to create a rerouting mechanism in SUMO to prevent con-
gestion. Finally the work describes ways to evaluate the
effect of non-cooperative vehicles on the rerouting mecha-
nism to test the effectiveness on a more realistic scenario.
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1. INTRODUCTION
1.1 Background

Autonomous driving is a quickly growing subject in the
modern world. With the increasing amount of self-operating
vehicles a large number of challenges arise. One of these
challenges is avoiding congestion in an increasing amount
of traffic. A possible solution for this problem would be to
use Machine Learning to predict traffic flow and use the
predicted flows to redirect vehicles on a different route. By
using the real time location of vehicles, neural networks
could be used to predict this flow. Being able to avoid a
congestion in a road network yields several benefits, these
include decreased travel time and fuel consumption for the
cars.

1.2 Previous work

The literature study was first used to identify several ways
of using neural networks to predict traffic flow. Convolu-
tional Neural networks (CNN), Long Short-Term Mem-
ory (LSTM) networks and Gated Recurrent Units (GRU)
networks have been used quite often for this problem as
mentioned in Zhao 2017[7], Ma 2017[6] and Dai 2019[2].
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Figure 1. LSTM Cell (taken from Rana 2016 [5]), with
Input Gate i, Forget Gate f and Output Gate o
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Figure 2. GRU Cell (taken from Rana 2016 [5]), with Up-
date Gate z and Reset Gate r

In Ma 2017 [6] a CNN is proposed that uses traffic as im-
ages and then predicts traffic flow and is usable for large-
scale transportation networks. By converting the traffic
to temporal-spatial images (as shown in Figure 1 in [6]),
these are processed with a Convolutional Neural Network.

Zhao 2017 [7] proposes a solution that uses an LSTM
to predict short-term traffic. Long Short-Term Memory
(LSTM) cells consist of three gates, an input gate, an out-
put gate and a forget gate. A sample cell is shown in
Figure 1 and taken from Rana 2016 [5]. This structure
allows LSTM cells to remember values over certain time
intervals and the cell can use the gates to regulate the
information flow through the cell. The structure makes
them very suitable for time series prediction. Zhao cre-
ates a two-dimensional LSTM network, which allows for
temporal-spatial predictions.

Dai 2019 [2] proposes a GRU based solution to predict
traffic flows and this is compared to a CNN solution. The
main difference between an LSTM cell and a GRU cell is
the absence of a third gate. Instead of an input, forget and
output-gate, only an update and reset gate exist. A GRU
cell is shown in Figure 2 and is taken from Rana 2016 [5].
This structure is accomplished by merging the input and
forget gate into a single gate, reducing complexity and in-
creasing speed. Kaiser 2015 [8] provides more information.

All three of the implementations provided promising re-
sults, however none of them were directly compared. Com-



paring these three methods on the same data set would
therefore provide a good indication on the relative perfor-
mance.

In Fouladgar 2017 [3] a decentralized deep learning-based
method is proposed for detecting the congestion state for
a node in the network based on the congestion state of
the predecessors. This is particularly interesting since it
resides closely to the main research question. However,
instead of having a node predict its own congestion state,
this specific research focuses on predicting the congestion
state from the viewpoint of a car’s route and adjusting
their route accordingly.

In Code 2018 [1] a realistic traffic scenario for SUMO is
described that has been verified with real world data. This
provides options for this research to evaluate the conges-
tion predictions by running them through real-world sce-
narios. To keep the research within a scope, the scenario
will have to be stripped from traffic types such as public
transport and pedestrians.

1.3 Research Questions

The goal of this research is to avoid traffic congestion by
predicting traffic flow with machine learning. One of the
problems that arises with this solution is the influence of
non-cooperative vehicles, which could disturb the flow and
worsen a congestion. This research will focus on the fol-
lowing questions:

e What machine learning techniques can be used to
accurately predict traffic flow?

e How can we use the predicted traffic flow to avoid
congestion?

e What is the influence of non-cooperative vehicles on
this model?

The first question will help us select the most accurate
machine learning technique that can be used for the second
and third part of the research. The second question will
help us evaluate the selected technique in identifying and
preventing traffic congestion. The final question will help
us evaluate the effects of non-cooperative vehicles in the
aforementioned problem.

1.4 Paper Structure

The paper will start by explaining the approach that was
used to tackle the problem, this includes the data gen-
eration and implementation of the different models. Af-
terwards the results, conclusion and future work will be
discussed.

2. APPROACH

The first step of this research is to compare LSTM, GRU
and CNN neural networks on their performance in traffic
predictions. These models will be applied to datasets that
will be generated with SUMO. SUMO (Simulation of Ur-
ban MObility) is an open source traffic simulation package
developed by the German Aerspace Center which allows
for modeling and simulation of traffic. Multiple scenarios
will be generated which will show us the impact of a high
or low complexity network. The LSTM, GRU and CNN
will be built using Keras in Python, since this will allow
us to easily interact with the TraClI library from SUMO.
The predictions will be evaluated using the Root mean
Squared Error (RMSE).

After comparing the different neural networks on gener-
ated scenarios, the most accurate will be chosen for the

second and third research questions. From here, the next
step will be to use predicted flows to find expected traf-
fic congestion and compare these with simulations of the
scenarios in SUMO Using these results, we will update
the scenarios to include vehicle route redirection for all
vehicles to avoid traffic congestion by using the predicted
flows. The scenarios will then be simulated in SUMO to
evaluate the results. Congestion will determined by set-
ting a maximum number of cars that are allowed to be on
a node before it is declared a congestion.

Finally, to answer the third research question, the scenario
will be modified to only redirect a portion of the vehicles
to simulate non-cooperative vehicles. Different portions
of non-cooperative vehicles will be simulated to compare
these results to a fully cooperative scenario.

2.1 Data Generation

To generate the required training data, SUMO was used.
A road network of the UT campus was exported from
OpenStreetMap and then converted into a SUMO com-
patible network with the SUMO netconvert tool. After
generating the network, routes were generated with the
randomtrips.py tool that is included with SUMO. Finally
a simulation was run with SUMO to get traffic data that
was exported to a csv. This method was used for all three
models, although a smaller portion of the campus was used
for the CNN, as explained in the implementation. The
map used for the LSTM and GRU was 3km by 2km, the
smaller map used for the CNN was 780m by 1000m.

Figure 5 shows the larger SUMO network that was created
for the LSTM and GRU, within this network 700 different
routes of varying length were created. The simulation span
was 3600 seconds with a time step length of one second.
The (overlapping) routes are shown in figure 4.

For both the GRU and LSTM models the data was split
up into sequences that were captured by creating a rolling
windows over each of the cars’ locations. The sequences
were 20 time steps each, with the steps after that being
used as expected output for the model. The then shuffled
sequences were split into a training and validation set with
a 90% split. All data was normalized to be between [0,1]
by applying a min-max normalization.

minmax(z) = — 2 —min@)
ax(z) max(z) — min(zx)

As mentioned later, Convolutional Neural Networks rely
on images to proess data. Therefore, the CNN model was
fed with a data generator that could create frames for a
specific batch size. The generator transformed sequences
created in a rolling windows into images by merging all
locations for a specific timestep into an image. Each car
received a unique color to distinguish them between dif-
ferent images. An example of a sequence of these images
is shown in figure 3.

2.2 Models

All deep learning models were implemented in Python us-
ing Keras with a TensorFlow GPU backend. All models
were trained by using the Mean Squared Error (MSE) as
loss function, with the Adam optimizer. Because training
and evaluating models is a time intensive task, not all dif-
ferent configurations could be tested. A desktop with an
Intel i7 4770K, 16GB RAM and a GTX1060 was used for
all training and validation.



Figure 3. CNN Input sample
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Figure 4. Routes generated for the LSTM and GRU

3. IMPLEMENTATION
3.1 LSTM

The LSTM model was implemented as follows:

Layer Type | Input Shape | Output Shape
LSTM(64) (steps,2) (steps)
LSTM(64) (steps,2) (steps,2)
LSTM(64) (steps,2) (steps,2)
LSTM(64) (steps,2) (2)
Dense(2) (2) (2)

Four LSTM layers with 64 units were stacked, where the

first three had the option return_sequences=True enabled.

This allows LSTM layers to feed the sequence to the next
layer, with the final block having the option disabled so a
single timestep is passed to the Dense output layer. Stack-
ing LSTM layers allows for a greater complexity for the
representation of the data. The input of the LSTM con-
sisted of a certain amount of steps and then two features,
the x and y coordinates of the cars.

3.2 GRU

The GRU model was implemented as follows:

Layer Type | Input Shape | Output Shape
GRU(64) (steps,2) (steps,2)
GRU(64) (steps,2) (steps,2)
GRU(64) (steps,2) (steps,2)
GRU(64) (steps,2) (2)
Dense(2) (2) (2)

As explained before, a GRU cell is a simplified LSTM cell.
Because of this reason, the GRU network was given the
same depth and complexity as the LSTM network, with
this we can give a clear difference in speed and accuracy
between the two models.

3.3 CNN
The CNN model was implemented as follows:
Layer Type Input Shape Output Shape
Input (780, 1000, 2*st) | (780, 1000, 2*st)
Conv2D(2%st) (780, 1000, 2%st) | (780, 1000, 2*st
Activation("relu”) (780, 1000, 2*st) | (780, 1000, 2*st
BatchNormalization | (780, 1000, 2*st) | (780, 1000, 2*st
Dropout(0.2) (780, 1000, 2*st) | (780, 1000, 2*st
Conv2D(2*st) (780, 1000, 2*st) | (780, 1000, 2*st
Activation("relu”) | (780, 1000, 2*st) | (780, 1000, 2*st
BatchNormalization | (780, 1000, 2*st) | (780, 1000, 2*st
Dropout(0.2) (780, 1000, 2*st) | (780, 1000, 2*st
Conv2D(2) (780, 1000, 2*st) (780, 1000, 2)

In the table st indicated the length of the input sequence.
Because convolutional neural network need images as in-
puts, the input shape has been adjust to the resolution
of the network. As can be seen in the input shape of the
model, the total amount of data is significantly larger than
that of the LSTM and GRU. Because the model is signif-
icantly harder to train, I have taken a simplified part of
the network. For reference, to use the same network as
the LSTM and GRU, images of a resolution of 3000x2000
would have to be used. The model can be divided into
two parts, the first consists of stacked blocks of Conv2D,
BatchNormalization and Activation layers. Batch Nor-
malization is used to avoid overfitting and to increase the
efficiency of learning by normalizing the output of the ac-
tivation layer. Finally a Dropout layer is applied, also to
prevent overfitting. These blocks were stacked to increase
the complexity and accuracy of the model. The final layer
is used to step from the multitude of channels to only two,
the predicted next frame.

3.4 Multistep predictions

All of the aforementioned models output a single predic-
tion step based on a certain amount of input steps (20 for
the LSTM and GRU, 3 for the CNN). Predicting multiple
steps was done by using the output of the previous pre-
diction step as input for the next. If accurate, the multi
step input can be used to calculate the density of cars in
all locations of the network.

4. RESULTS

In the next few sections, the results of the different models
are analysed and then compared with each other. To eval-
uate the results, the Root Mean Squared Error (RMSE)
was calculated on the prediction and actual values of a
data set. The min-max scaling that was applied to the
data set was reversed before calculating the values.The
root mean squared error gives us the root of the average
of squared errors between two data sets.

RMSE(y, §) = VMSE(y,5).



Figure 5. Campus network used for data generation

Table 1. LSTM Validation results

Predicted Steps | RMSE | MAE
1 4.7 3.21
2 6.50 4.63
3 9.86 7.24
4 14.04 | 10.45
5 18.67 | 14.01
1 Nsamples —1
MSE(y, ) = ——— (i — 90)*.
Nsamples =7
1 Nsamples — 1
MAE(y,9) = —— > |y — @il

n,
samples i—0

The Root Mean Squared Error for the LSTM and GRU
was calculated by taking the root of the sklearn.metrics[4]

mean_squared_error function. To calculate the MAE (Mean

Absolute Error) the sklear.metrics mean_absolute_error
function was used. For calculating the RMSE of the CNN
the skimage.metrics mean_squared_error was used, this
function compares two images pixel wise and calculates
the error between the colors of all pixels.

41 LSTM

The LSTM was trained for 150 epochs on a set of 52k
sequences consisting of 20 time steps each, a batch size of
1000 was used. During training, the time per epoch was
1 second. With this, the results can be found in table 1.
Because the RMSE and MAE have the same scale as the
dataset, the results are in meters.

42 GRU

The GRU was trained for 150 epochs on a set of 52k se-
quences consisting of 20 time steps each, a batch size of
1000 was used. During training, the time per epoch was
1 second. With this, the results per amount of predicted
steps can be found in table 2. Because the RMSE and
MAE have the same scale as the dataset, the results are
in meters.

Table 2. GRU Validation results
Predicted Steps | RMSE | MAE
1 6.98 5.44
2 13.72 | 11.38
3 25.44 | 21.52
4 41.44 | 35.32
5 61.94 | 52.94

Table 3. CNN Validation results
Predicted Steps | RMSE (Pixel to Pixel)

1 0.84%*

43 CNN

The CNN was trained for 150 epochs on a set of 900 se-
quences, consisting of 3 time steps each. The training time
per epoch was 66 seconds, with 7 sequences as batch size.
Increasing the batch size would result in the GPU run-
ning out of memory, switching to training with the CPU
(to increase available memory) would increase the time per
epoch to about 9 minutes per epoch. With this configura-
tion the results can be found in table 3.

It is important to note that the RMSE of the CNN and
GRU/LSTM are not directly comparable since they are
based on different datasets. For the CNN the RMSE is
calculated on the expected and predicted images, these
include all locations that do not contain cars and thus
heavily skew the average squared error, since they will al-
ways be zero. This means that the RMSE does not give us
an error in terms of distance between two positions, but
an error in terms of the color of the pixel not matching to
that of the expected image. To compensate for this, an
attempt was made to extract the predicted car locations
from the predicted images and calculate the RMSE in a
similair way to the LSTM and GRU. However, due to the
inaccuracy of the CNN the colors of the car locations did
not match to those of the expected output and often cars
were missing. Because of these large errors it was not pos-
sible to create an accurate RMSE based on location errors
for the CNN. For the same reason it was chosen not to
predict more than a single timestep.



Figure 6. Simplified network used for the CNN

4.4 Analysis of results

Both the LSTM and GRU are significantly faster to train
than the CNN, even with the reduced network size for
CNN. One of the major reasons is that for a specific time
step and car location, an entire frame of dimension (780,
1000, 2) needs to be processed. On the other hand, both
the LSTM and GRU need a frame with dimension (1, 2)
to represent a single car on a certain timestep. When
multiple cars are driving in the frame that is passed to
the CNN, the efficiency of the data in the frame is slightly
increased, but will still not be close to that of the LSTM
or GRU.

Training the LSTM and GRU was very close in time (both
reported 1 second per epoch during training), even though
the GRU should offer better performance. One cause could
be the complexity (or lack thereof for the still relatively
small road network of the campus) of the models, which
would need to be increased for real world usage on larger
road networks. This could possibly lead to a clear advan-
tage in speed for the GRU.

The accuracy of the CNN was quite poor. The RMSE of
the CNN was calculated on the difference between the pre-
dicted and actual dataframe of the model on a per pixel
basis. As mentioned earlier, this means that a majority
of the data represents locations where no car will drive
and the value of those pixels will always be 0 and there-
fore skew metrics such as RMSE. Another reason for the
decreased accuracy is the small dataset used for training
to keep training times reasonable. The training history
shows that the model has difficulty with correctly fitting,
because the validation data loss is oscillating quite heavily.
This can be seen in figure 7.

As expected, the LSTM was more accurate than the GRU.
Especially when predicting multiple timesteps ahead, the
LSTM showed a clear accuracy advantage over the GRU.

S. CONCLUSION

Based on these results, the LSTM provides us with the
most accurate traffic flow predictions. After the LSTM,
the GRU follows as a second best option in terms of accu-
racy. The current configuration of the CNN provides the
worst results and is currently unusable with regards to the
missing cars in the predictions.

When looking at complexity the LSTM and GRU pro-
vide a clear edge over the CNN. Both the preprocessing
and training are significantly faster, since the data sets are
more efficiently organized. The CNN is very slow in both
preprocessing and training, because the used data struc-
ture was very inefficient. Based on the current results, we
can therefore conclude that an LSTM model is currently
the best answer for our first research question.
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Figure 7. CNN training history, train represents the RMSE
loss for the training dataset, test represents the RMSE loss
for the validation dataset

6. FUTURE WORK

In this section two topics are discussed, improvements to
the prediction models and work on the congestion avoid-
ance.

6.1 Improving the models

One of the major issues of the CNN is the amount of data
that was necessary to train the network. One way to solve
this would be to create a better representation of the road
network in the model. Currently non-drivable locations
are included because the frames are the size of the map.
By mapping only roads and other driveable locations to
positions in the frame, the efficiency would be hugely in-
creased. This would result in faster training times and
possibly more accurate results since it would be easier to
train on a larger dataset. This would however decrease
the flexibility of the system, where currently only previ-
ous drives of cars need to be known to learn the network,
the network would need to be known before training the
model.

For both the LSTM and the GRU more different model
configurations could be tested. During this work only a
small amount of different configurations was empirically
tested. Improving the models and increasing the training
dataset will probably result in a higher accuracy.

Finally, to make the models more suitable for real world
use, a larger road network would need to be simulated and
trained.

6.2 Congestion avoidance

To answer the second research question, "How can we use
the predicted traffic flow to avoid congestion”, a signif-
icant more accurate model is needed. If found, several
ways could be used to determine whether there is a con-
gestion state. A simple, but inefficient method would be
to iterate over the network and calculate the density of
vehicles on locations in the network. For large networks,
this method would be unusable. An interesting research
topic, would be to use a Convolutional Neural Network to
classify traffic congestion. The second part of answering
this research question will reside in running simulations
that divert different amounts of cars based on the detected
congestion. Statistical analysis can then be used to deter-
mine whether the prediction and redirection actually has



the desired effect. Data from these simulations can also
be used to answer the third research question.
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