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ABSTRACT 
Cleaning data is important before it can be processed.         
Erroneous data needs to be filtered out or repaired in order to            
achieve good results. One interesting method is to use         
functional dependencies to clean data. This is possible to do by           
hand on smaller data sets. However, when the data sets become           
larger and contain more attributes, this becomes labor intensive.         
In this paper, we describe a method of discovering functional          
dependencies useful for data cleaning. Using a method of data          
cleaning that uses FDs, we can test and evaluate how well a            
functional dependency performs. After this we can score them         
and use bayesian optimization to threshold the minimum score         
for a functional dependency to have a positive impact on the           
data cleaning process.  
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1. INTRODUCTION 
With more and more industries relying on data and the          
automatic processing of it, it is important to make sure this data            
is accurate. Inaccuracies in data could lead to erroneous         
conclusions which in turn leads to the wrong decisions being          
made. To increase the accuracy of information we can use data           
cleaning. This is the process of detecting inaccurate or corrupt          
data and modifying or deleting it in order to increase its           
accuracy [3]. One way to clean data is by using functional           
dependencies: “If Y is a function of X, we can say that X             
functionally determines Y, written X → Y. This constraint is a           
functional dependency (FD).” (p.140 [5]) In data sets these         
FDs are between attributes. An example of an FD in a data set             
is: Postal code → City. This FD means that whenever you know            
the postal code, you also know the city. Thus, city is a function             
of postal code. These FDs are not universal between data sets.           
For the example FD, knowing the postal code does not always           
allow you to know the city. This depends on where the data is             
recorded. 
 
Recent work has shown that integrity constraints such as FDs          
can be used to train machine learning models for data cleaning           
in a weakly supervised manner. [5] The only issue with this           
approach is that the FDs still need to be entered manually. It is             
not possible to simply check whether a functional dependency         
is met in a database due to errors in the data. It would be              
possible to have domain experts analyze the data and define          
FDs by hand. However, this becomes quite difficult as the          
amount of attributes grows and is it very labor intensive to do.            

Thus, it is attractive to automate the process of discovering          
FDs. 
 
Therefore, multiple algorithms and methods have been       
developed to automate the discovery of FDs in an unclean          
database. 

1.1.1 Data mining 
The data mining community has attempted to view FDs as          
statistical dependencies. With this point of view they are able to           
determine FDs using an information-theoretic approach. [8]       
This method is mainly focused on data profiling, but can also be            
used for data cleaning. 

1.1.2 Database 
The database community attempted to find approximate FDs        
that are not often violated in a database. [9] This approach does            
not work well for data cleaning as the noisy data can lead to             
incorrect FDs. 

1.1.3 Machine learning 
The machine learning community attempted to find FDs by         
viewing noisy data as a graphical model over binary random          
variables. They were then able to use structure learning to learn           
this model and thus determine FDs from it. [10] Similarly to the            
data mining approach, this method can be used to successfully          
clean data. However, data cleaning is not its main purpose. 

1.1.4 Proposal 
The already existing methods can all be used for data cleaning,           
however it is likely possible to improve upon when focusing          
solely on data cleaning. 
 
In this paper we will attempt to discover FDs for the purpose of             
data cleaning. To be able to do this we will be using an open              
source version of the system that trains a machine learning          
model to clean data using manually entered FDs called         
holoclean​1​. 
 
The issue with attempting every single combination of FDs is          
that it would take a very long time, as holoclean takes some            
time for every evaluation. This problem only grows worse when          
you consider that the amount of possible FDs increases         
exponentially when increasing the amount of attribute sets in a          
dataset.  
__________________ 
1​https://github.com/HoloClean/HoloClean  

 



 

This is why we use machine learning to solve the problem. We            
can score FDs in multiple different ways. To prove our concept           
we will use the weight that holoclean gives to an FD and the             
mutual information between the 2 attributes that the FD consists          
of. Different methods of scoring could be used and this will be            
discussed in section 11. When sorting FDs on these scores, we           
can use thresholding to determine the minimum amount of         
weight or mutual information is necessary in order to have a           
positive effect on the data cleaning process. 
 
To perform the thresholding we use bayesian optimization.        
“Bayesian optimization (Mockus et al., 1978) is a method for          
performing global optimization of unknown “black box”       
objectives that is particularly appropriate when objective       
function evaluations are expensive (in any sense, such as time          
or money).” [4] 
 

 
Figure 1: The results of one round of bayesian optimization​2​. 
 
Bayesian optimization works by first evaluating a few random         
points. Using this information, a surrogate model is created.         
This surrogate model is called a prior. The prior is an estimation            
of the model we are evaluating. However, it is much cheaper to            
evaluate. This allows us to minimize the amount of evaluations          
on the model we are evaluating. The prior contains a posterior           
probability distribution, The model to evaluate and the prior         
with its posterior probability distribution as a purple area can be           
seen in figure 1. After the prior is created, the optimal           
hyperparameter will be estimated by using one of the possible          
acquisition functions which maps beliefs on how promising        
each hyperparameter is when evaluated next.  
 
__________________ 
2​https://github.com/AnotherSamWilson/ParBayesianOptimizati
on 

The most popular ones are: Expected Improvement (EI), Upper         
Confidence Bound (UCB) and Probability Of Improvement       
(POI). These can be seen in figure 1. The optimal          
hyperparameter is selected using the maximum of one of these          
acquisition functions. When the optimal hyperparameter is       
evaluated, it is added to the prior, after which the process is            
repeated. 

2. RESEARCH QUESTION 
In this paper we will attempt to answer the following question. 

1. Is thresholding using bayesian optimization a viable       
method of discovering FDs for the purpose of data         
cleaning. 

(a) How well does this method perform when       
compared to other existing methods. 

(b) How does the time requirement of this       
method scale with the amount of attributes       
in a data set. 

 

3. PROBLEM STATEMENT 
We consider a relational schema R. For this schema there exists           
a probability distribution P​R which is able to generate data          
according to R. Using this probability distribution a data set D           
is generated. However, we assume that there are some errors          
due to missing or incorrect values, this is called noise. As such            
we will denote the clean data set with D and the noisy data set              
with D’. We consider a value in a cell (c) in D’ an error when               
D’(c) ≠ D(c). This procedure is the same as the often used            
method described in database literature [1]. 

In this case both D and D’ are known. Our goal is to find FDs in                
D’ that have a positive effect on the data cleaning process. We            
denote the attributes as A = {A​1​,A​2​,...,A​N​} and the set of           
attribute pairs as T = {(i, k) where i,k ∈ A and i ≠ k}. Every                
attribute pair in this set represents an FD. 
 

4. SOLUTION OVERVIEW 
In order to use Function Dependency Thresholding (FDT) to         
discover FDs for data cleaning. We go through a few steps: 

4.1.1 Scoring 
First, in order to make thresholding possible we need to score           
the FDs. This will allow us to sort them. The way we do it is by                
scoring the weight assigned to an FD by holoclean and the           
mutual information between the attribute pair in the FD. This is           
further discussed in section 5. 

4.1.2 Optimization 
After the scoring and sorting we are able to threshold the           
minimum amount of weight or mutual information necessary        
for the FD to provide good data cleaning results. This is done            
with bayesian optimization. Not only will the FDs be optimized,          
but also the threshold of certainty necessary for an error to be            
repaired. This is further discussed in section 6. 

4.1.3 Evaluation 
After every round of optimization we evaluate the results using          
holoclean. This program calculates a precision, recall and        
F1-score for the data cleaning done using our set of FDs. We            
can then use this result to fine tune the thresholds in another            
round of optimization. 
 
 

 



 

5. SCORING 
5.1 Weight 
This score is extracted from the output of holoclean. The          
specific weight we use is this OccurAttrFeaturizer. Extracting        
these weights requires holoclean to be run once. This allows us           
to extract the weight. 

5.2 Mutual Information 
The second score is the mutual information between the 2          
attributes in an FDs (p.7 [2]). This is calculated using the           
formula. 

 (X; Y  ) H  (X) − H  (X |Y )  p(x, y) log .I  =  =  ∑
 

x, y
  p(x, y)

p(x)p(y)  

Where H(X) is the entropy of attribute X and H(X|Y) is the            
conditional entropy. When the mutual information between 2        
attributes is high, it indicates a possible FD. 
 

6. OPTIMIZATION 
The issue with attempting every single combination of FDs is          
that it would take a very long time. Evaluating a set of FDs             
using holoclean is very costly. Thus, the amount of evaluations          
needs to be minimized.  

For a task like this machine learning comes to mind. Bayesian           
optimization is well suited for a task like this because of its low             
evaluation count and its ability to work on a black-box function. 

The python library we use for the optimization​3 uses the          
gp_hedge acquisition function. This is a method that combines         
3 acquisition functions we have mentioned before: Expected        
Improvement (EI), Upper Confidence Bound (UCB) and       
Probability Of Improvement (POI).  

Using this method, each acquisition function is optimized        
independently, after which one of the methods is        
probabilistically chosen to evaluate. The process of choosing        
the acquisition involves how strong the belief of the acquisition          
function is and the average gain of it’s previous evaluations. 
Other than the set of FDs, we also optimize the threshold for a             
cell to be seen as erroneous by. During the repair holoclean           
decides for each cell a certainty of being erroneous. When the           
threshold is set to 0, it means every cell that is even remotely             
seen as erroneous will get repaired. When the threshold is 1 it            
means only cells with 100% certainty of being erroneous will          
be repaired.  
Because of the different scores and the threshold having very          
little effect on each other we can optimize them separately. This           
takes the complexity of the problem from O(n​3​) to O(n), where           
n is the amount of FDs and 3 is the amount of optimizations we              
do. 
 
 
 
 

 
 
__________________ 
3​https://scikit-optimize.github.io/stable/modules/generated/skop
t.Optimizer.html 
 

7. EXPERIMENTS 
In order to evaluate our method, we start off by testing our            
approach on 3 synthetic data sets and 1 real data set. The results             
we will measure and discuss are: 

- The precision, recall and F1 scores of the optimized         
set of FDs.  

- The time required to perform the data cleaning        
operation. 

Whilst the duration of the optimization is measured. The results          
will vary a lot due to low end hardware and usage of the             
hardware during the optimization process. 

8. EXPERIMENTAL SETUP 
8.1 Existing Methods 
We will compare the performance on the real data set of our            
method to 3 existing methods. 

8.1.1 PYRO 
This is the state-of-the-art discovery method for FDs in the          
database community [9]. This method seeks to find all         
syntactically valid FDs in a data set. A java code released by the             
authors is used to test on the real data set​4​. 

8.1.2 TANE 
“TANE is based on partitioning the set of rows with respect to            
their attribute values, which makes testing the validity of         
functional dependencies fast even for a large number of tuples.”          
[7] This method is included in the java code for PYRO​4​. 

8.1.3 Reliable Fraction of Information (RFI) 
This is the state-of-the-art discovery method for FDs in the data           
mining community [10]. RFI uses an information theoretic        
score to find FDs and uses an approximation scheme to          
optimize the performance. The method has a hyperparameter α         
that controls the approximation ratio. This functions the same as          
the error detection threshold in holoclean where 0 includes all          
FDs that have above 0% likelihood of being a good FD and 1             
only includes FDs that have a 100% likelihood of being a good            
FD.  

As the real data set we use has been tested often in other papers.              
We can use the results of an earlier published paper [11] to            
compare the results of RFI. 

8.2 Data Sets 
First, we will test the synthetic data sets. These data sets are            
generated using often used data generation methods and can be          
seen as a benchmark for our method. First we will take a            
relational schema R and use a standard method that uses          
probability distribution P​R ​In order to generate a data set D. For            
the relational scheme we will use Bayesian Networks. After         
which we use an R package to generate data set D​5​. We have             
chosen to generate 1000 rows of data per data set.  

After the data set D is generated we can generate noise. In order 
to generate the noise, we first set the amount of noise we want 
in data set D’. For thorough testing we have to select a range of 
noise settings. We use N = {0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 
0.15}.  
 
__________________ 
4​https://github.com/sekruse/pyro 
5​http://www.bnlearn.com/bnrepository/ 
 
 

 



 

This allows us to see the performance of our method on an 
increasing amount of noise. We generate the noisy data set by 
iterating through every cell. Every cell has a chance equal to N 
to become erroneous. When a cell (c) with value (v) on attribute 
(A​i​) is selected to become erroneous, we select a random value 
(v’) that is not (v) from the same attribute in different rows. 
Thus, we take v’ where v, v’ ∈ A​i​ and v’ ≠ v. 

The order we have decided on optimizing is first the weight,           
then the error threshold and finally the mutual information. We          
have chosen this order because the error threshold requires a set           
of FDs with a good performance in order to meaningfully          
optimize it. After the threshold is set we can then perform           
optimization on the mutual information with the optimal        
performance. 

In order to be able to discuss the results of testing later. We             
should first know the kind of synthetic data sets we are working            
with. 

8.2.1 Cancer 
This data set is a Bayesian Network consisting of 5 nodes and            
4 arcs. We can see in figure 2 that the Cancer node depends on              
both Pollution and Smoker.  
probability ( Cancer | Pollution, Smoker )  
  (low, True) 0.03, 0.97 
  (high, True) 0.05, 0.95 
  (low, False) 0.001, 0.999 

  (high, False) 0.02, 0.98 
Upon inspection of the network, the chances for Cancer         
depends heavily on the output of these 2 nodes. However, the           
chance of Cancer still remains very low. This makes it difficult           
to perform any repairs on these 2 nodes, as they do not have any              
strong FDs. 
probability ( Xray | Cancer )  
  (True) 0.9, 0.1 
  (False) 0.2, 0.8 
probability ( Dyspnoea | Cancer )  
  (True) 0.65, 0.35 

  (False) 0.3, 0.7 
For both Xray and Dyspnoea Their output is very dependent on           
the Cancer node. This dependency means they have strong FDs.          
We can expect good repairs between these 3 nodes because of           
this. In conclusion we would only expect to be able to repair 3             
out of 5 nodes accurately. With this data set we do not expect a              
very good quality repair. 

8.2.2 Asia 
This data set is a Bayesian Network consisting of 8 nodes and            
8 edges. When inspecting the arcs between the nodes in figure           
3, we can see strong FDs between most of the nodes.  
probability ( xray | either ) { 
  (yes) 0.98, 0.02 
  (no) 0.05, 0.95 

probability ( either | lung, tub ) { 
  (yes, yes) 1.0, 0.0 
  (no, yes) 1.0, 0.0 
  (yes, no) 1.0, 0.0 
  (no, no) 0.0, 1.0 
 

Xray and Either are good examples for nodes that have strong           
FDs with the nodes that they take as input.  
probability ( tub | asia )  
  (yes) 0.05, 0.95; 
  (no) 0.01, 0.99; 
probability ( lung | smoke ) { 

  (yes) 0.1, 0.9; 
  (no) 0.01, 0.99; 
probability ( bronc | smoke ) { 
  (yes) 0.6, 0.4; 
  (no) 0.3, 0.7; 

When looking at the nodes: Tub, Lung and Bronc. We can see            
that they are not very dependent on their input. Bronc being the            
most dependent, but still not enough for a strong FD. In           
conclusion, because 6 out of 8 nodes have strong FDs, we           
expect a good quality of data cleaning. 

8.2.3 Child 
This data set is a medium sized Bayesian Network consisting of           
20 nodes and 25 arcs. In figure 4 we can see the network. Upon              
inspection of this network. We can see that most of the nodes            
in the network have a lot of different inputs. 
probability ( LowerBodyO2 | HypDistrib, HypoxiaInO2 ) 
  (Equal, Mild) 0.1, 0.3, 0.6; 
  (Unequal, Mild) 0.4, 0.5, 0.1; 
  (Equal, Moderate) 0.3, 0.6, 0.1; 
  (Unequal, Moderate) 0.50, 0.45, 0.05; 
  (Equal, Severe) 0.5, 0.4, 0.1; 
  (Unequal, Severe) 0.60, 0.35, 0.05; 

Taking LowerBodyO2 as an example. The node has two         
different inputs and more possible outputs than the nodes in the           
other data sets. With more complex dependencies it would         
likely be possible to perform repairs on data sets like this.           
However, with only FDs containing 2 attributes, we will likely          
be unable to perform many correct repairs. In conclusion we          
expect a very low quality repair on this data set. 

8.2.4 Real data set 
For the real data set we will be using an often used benchmark             
data set called hospital. This data set has 19 attributes. For the            
data cleaning process only 17 of them are relevant due to 2 of             
the attributes not containing any values. 

This data set is a fairly standard data set containing hospital           
procedure information. The data contains some attributes with        
quite strong FDs. A few examples of this are: When the name            
of a hospital is the same, it often means that the zip code,             
address, city and phone number are the same. This allows          
Holoclean to perform very high quality data cleaning on this          
data set. This data set is included in the source code of the open              
source version of holoclean​1​. 
 
 

 
 
 
 
 

 



 

9. RESULTS 
Table 1: Results of synthetic data sets. 
 

 

 “-” no correct repairs have been performed. 
 
Table2: Average time taken by FDT. 
 

 

Table 3: Results of real data set. (error threshold of 0.5 for other             
methods) 

 
Table 4: Time taken for the real data set. 
 

9.1 Synthetic Data 
In table 1 we can see that just as predicted, the Asia data set              
performs the best, followed by the Cancer data set and the Child            
data set being the worst for our data cleaning method.  

Next to this we can see that cleaning data using FDs works well             
up till the point where there is too much noise to be able to              
recognize the FDs, at which point the cleaning performance         
drops off very quickly, often becoming unable to perform any          
useful repairs after still performing quite well one noise percent          
lower. An example is the Cancer data set having an F​1 of 0.331             
at 0.07 noise and not performing any useful repairs at 0.08. 

The most interesting part of the optimization is the FD          
selection. Due to the splitting of our optimization, we can see           
how many FDs the bayesian optimization adds to the set of           
optimal FDs. For the first optimization round we can see in           
table 6 that in most cases, a large amount of the FDs is selected.              
Then when the error threshold is optimized, the mutual         
information optimization will add the remaining FDs. This        
means that in most cases all the FDs are useful as long as the              
error threshold is optimized. 

When the noise of the data set increases, the optimizer often           
starts picking less FDs. This has mostly happened to the Cancer           
and Child data set. This can be seen in table 6.  

The FD selection has an effect on the time required by our            
method. In some cases the default threshold already allows for          
all the FDs to be added in the first optimization round. When            
there are no FDs left to add, the optimization stops early.           
Taking examples from the raw data for optimizations with only          
one FD thresholding round and the error threshold round: 
Cancer: 5 attributes, 0:29:56 
Asia: 8 attributes, 0:42:55 

Child: 20 attributes, 2:10:22 
We can see that because of the splitting of the attributes the            
time required by our method scales linearly with the amount of           
attributes. 
 

 

Data Set N 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
           

 P 1.000 1.000 1.000 1.000 1.000 1.000 1.000   

Cancer R 0.183 0.202 0.255 0.168 0.189 0.204 0.198 - - 

 F​1 0.310 0.336 0.406 0.288 0.318 0.339 0.331   

 P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000  

Asia R 0.598 0.521 0.494 0.484 0.513 0.117 0.123 0.120 - 

 F​1 0.748 0.685 0.661 0.653 0.678 0.209 0.219 0.214  

 P 1.000 0.875 1.000 1.000 1.000 1.000 1.000   

Child R 0.030 0.017 0.015 0.005 0.003 0.006 0.001 - - 

 F​1 0.057 0.033 0.029 0.010 0.006 0.013 0.003   

Data Set Duration 
  

Cancer 0:28:31 

Asia 0:36:03 

Child 2:59:48 

Data Set  FDT PYRO TANE RFI (0.3) RFI (0.5) 
       

 P 0.956 0.923 0.923 1.000 1.000 

Hospital R 0.853 0.825 0.827 0.424 0.424 

 F​1 0.901 0.871 0.873 0.596 0.596 

Algorithm Duration 
  

FDT 4:01:22 

PYRO 0:00:03 

TANE 0:00:00 

RFI (0.3) 1:47:37 

RFI (0.5) 1:50:03 



 

9.2 Real Data 
In order to generate fair results we have used the error threshold            
recommended by holoclean for this data set [10]. We can see           
that our method pulls ahead of the other existing methods on the            
F​1​-score. However, our method requires much more time than         
the existing methods. Whilst the other methods are tested on          
much more powerful hardware, the difference is very likely still          
quite large when run on equal hardware. 
 

10. DISCUSSION 
In conclusion, thresholding FDs using bayesian optimization is        
a viable method of discovering FDs for the purpose of data           
cleaning. The tests have shown that our method provides the          
expected results on synthetic data sets and competitive results         
on the real data set. However, whilst the time required by this            
method scales linearly with the amount of attributes. The time          
required to perform the optimization is still quite long. This          
means that this method is only viable for cases where the           
frequent generation of a new set of FDs is not required. 
 

11. FUTURE WORK 
Much can be done to improve our method. Currently we are           
only looking at one of the simplest dependencies. If we were           
able to threshold multi-valued dependencies we would be able         
to perform much higher quality repairs, as a lot of the attributes            
are affected by more than just one other attribute. This could be            
achieved with better scoring methods. In general, whilst the         
weight and mutual information are working well as a way of           
showing the viability of this method, there likely exist much          
better methods of scoring dependencies. 

It would also be interesting to test the amount of evaluations           
that are necessary before the optimal threshold is reached.         
Bayesian optimization is not able to stop automatically when         
the optimal threshold is found. It will continue testing different          
hyperparameters until a maximum amount of evaluations or        
when there are no hyperparameters left to test. Finding the          
optimal amount of evaluations for different amounts of        
attributes will allow the method to execute much faster. 
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13. APPENDIX 
 

 
Figure 2: The nodes and arcs of the Cancer Bayesian Network​4​. 
 

 
Figure 3: The nodes and arcs of the ASIA Bayesian Network​4​. 

 

 
Figure 4:  The nodes and arcs of the Child Bayesian Network​4​. 

 
 

  

 



 

 
Table 5: The amount of possible FDs in the data sets. 

 
Table 6: Size of selected FD set and selected threshold for synthetic data sets. 

 
Table 7: Size of selected FD set and selected threshold for real data set. 

 

 

Data Sets Possible FDs 
  

Cancer 20 

Asia 56 

Child 380 

Hospital 272 

Data Set  0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 
           

 W 11 11 11 11 11 4 4 11  

Cancer T 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 - 

 MI 16 16 16 16 16 13 13 16  

 W 48 56 49 49 56 56 56 56 29 

Asia T 0.498 0.498 0.498 0.190 0.319 0.498 0.498 0.498 0.498 

 MI 53 56 56 53 56 56 56 56 43 

 W 380 1 1 1 1 1 1 191  

Child T 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 - 

 MI 380 2 2 2 2 2 2 286  

 W 267 

Hospital T 0.558 

 MI 270 


