

USING FUNCTIONAL DEPENDENCY THRESHOLDING
TO DISCOVER FUNCTIONAL DEPENDENCIES FOR

DATA CLEANING

 Ruben Smink
University of Twente

PO Box 217, 7500 AE Enschede
the Netherlands

r.b.smink@student.utwente.nl

ABSTRACT
Cleaning data is important before it can be processed.
Erroneous data needs to be filtered out or repaired in order to
achieve good results. One interesting method is to use
functional dependencies to clean data. This is possible to do by
hand on smaller data sets. However, when the data sets become
larger and contain more attributes, this becomes labor intensive.
In this paper, we describe a method of discovering functional
dependencies useful for data cleaning. Using a method of data
cleaning that uses FDs, we can test and evaluate how well a
functional dependency performs. After this we can score them
and use bayesian optimization to threshold the minimum score
for a functional dependency to have a positive impact on the
data cleaning process.

Keywords
data cleaning, learning model, functional dependency, bayesian
optimization, thresholding

1. INTRODUCTION
With more and more industries relying on data and the
automatic processing of it, it is important to make sure this data
is accurate. Inaccuracies in data could lead to erroneous
conclusions which in turn leads to the wrong decisions being
made. To increase the accuracy of information we can use data
cleaning. This is the process of detecting inaccurate or corrupt
data and modifying or deleting it in order to increase its
accuracy [3]. One way to clean data is by using functional
dependencies: “If Y is a function of X, we can say that X
functionally determines Y, written X → Y. This constraint is a
functional dependency (FD).” (p.140 [5]) In data sets these
FDs are between attributes. An example of an FD in a data set
is: Postal code → City. This FD means that whenever you know
the postal code, you also know the city. Thus, city is a function
of postal code. These FDs are not universal between data sets.
For the example FD, knowing the postal code does not always
allow you to know the city. This depends on where the data is
recorded.

Recent work has shown that integrity constraints such as FDs
can be used to train machine learning models for data cleaning
in a weakly supervised manner. [5] The only issue with this
approach is that the FDs still need to be entered manually. It is
not possible to simply check whether a functional dependency
is met in a database due to errors in the data. It would be
possible to have domain experts analyze the data and define
FDs by hand. However, this becomes quite difficult as the
amount of attributes grows and is it very labor intensive to do.

Thus, it is attractive to automate the process of discovering
FDs.

Therefore, multiple algorithms and methods have been
developed to automate the discovery of FDs in an unclean
database.

1.1.1 Data mining
The data mining community has attempted to view FDs as
statistical dependencies. With this point of view they are able to
determine FDs using an information-theoretic approach. [8]
This method is mainly focused on data profiling, but can also be
used for data cleaning.

1.1.2 Database
The database community attempted to find approximate FDs
that are not often violated in a database. [9] This approach does
not work well for data cleaning as the noisy data can lead to
incorrect FDs.

1.1.3 Machine learning
The machine learning community attempted to find FDs by
viewing noisy data as a graphical model over binary random
variables. They were then able to use structure learning to learn
this model and thus determine FDs from it. [10] Similarly to the
data mining approach, this method can be used to successfully
clean data. However, data cleaning is not its main purpose.

1.1.4 Proposal
The already existing methods can all be used for data cleaning,
however it is likely possible to improve upon when focusing
solely on data cleaning.

In this paper we will attempt to discover FDs for the purpose of
data cleaning. To be able to do this we will be using an open
source version of the system that trains a machine learning
model to clean data using manually entered FDs called
holoclean1.

The issue with attempting every single combination of FDs is
that it would take a very long time, as holoclean takes some
time for every evaluation. This problem only grows worse when
you consider that the amount of possible FDs increases
exponentially when increasing the amount of attribute sets in a
dataset.

1https://github.com/HoloClean/HoloClean

This is why we use machine learning to solve the problem. We
can score FDs in multiple different ways. To prove our concept
we will use the weight that holoclean gives to an FD and the
mutual information between the 2 attributes that the FD consists
of. Different methods of scoring could be used and this will be
discussed in section 11. When sorting FDs on these scores, we
can use thresholding to determine the minimum amount of
weight or mutual information is necessary in order to have a
positive effect on the data cleaning process.

To perform the thresholding we use bayesian optimization.
“Bayesian optimization (Mockus et al., 1978) is a method for
performing global optimization of unknown “black box”
objectives that is particularly appropriate when objective
function evaluations are expensive (in any sense, such as time
or money).” [4]

Figure 1: The results of one round of bayesian optimization2.

Bayesian optimization works by first evaluating a few random
points. Using this information, a surrogate model is created.
This surrogate model is called a prior. The prior is an estimation
of the model we are evaluating. However, it is much cheaper to
evaluate. This allows us to minimize the amount of evaluations
on the model we are evaluating. The prior contains a posterior
probability distribution, The model to evaluate and the prior
with its posterior probability distribution as a purple area can be
seen in figure 1. After the prior is created, the optimal
hyperparameter will be estimated by using one of the possible
acquisition functions which maps beliefs on how promising
each hyperparameter is when evaluated next.

2https://github.com/AnotherSamWilson/ParBayesianOptimizati
on

The most popular ones are: Expected Improvement (EI), Upper
Confidence Bound (UCB) and Probability Of Improvement
(POI). These can be seen in figure 1. The optimal
hyperparameter is selected using the maximum of one of these
acquisition functions. When the optimal hyperparameter is
evaluated, it is added to the prior, after which the process is
repeated.

2. RESEARCH QUESTION
In this paper we will attempt to answer the following question.

1. Is thresholding using bayesian optimization a viable
method of discovering FDs for the purpose of data
cleaning.

(a) How well does this method perform when
compared to other existing methods.

(b) How does the time requirement of this
method scale with the amount of attributes
in a data set.

3. PROBLEM STATEMENT
We consider a relational schema R. For this schema there exists
a probability distribution PR which is able to generate data
according to R. Using this probability distribution a data set D
is generated. However, we assume that there are some errors
due to missing or incorrect values, this is called noise. As such
we will denote the clean data set with D and the noisy data set
with D’. We consider a value in a cell (c) in D’ an error when
D’(c) ≠ D(c). This procedure is the same as the often used
method described in database literature [1].

In this case both D and D’ are known. Our goal is to find FDs in
D’ that have a positive effect on the data cleaning process. We
denote the attributes as A = {A1,A2,...,AN} and the set of
attribute pairs as T = {(i, k) where i,k ∈ A and i ≠ k}. Every
attribute pair in this set represents an FD.

4. SOLUTION OVERVIEW
In order to use Function Dependency Thresholding (FDT) to
discover FDs for data cleaning. We go through a few steps:

4.1.1 Scoring
First, in order to make thresholding possible we need to score
the FDs. This will allow us to sort them. The way we do it is by
scoring the weight assigned to an FD by holoclean and the
mutual information between the attribute pair in the FD. This is
further discussed in section 5.

4.1.2 Optimization
After the scoring and sorting we are able to threshold the
minimum amount of weight or mutual information necessary
for the FD to provide good data cleaning results. This is done
with bayesian optimization. Not only will the FDs be optimized,
but also the threshold of certainty necessary for an error to be
repaired. This is further discussed in section 6.

4.1.3 Evaluation
After every round of optimization we evaluate the results using
holoclean. This program calculates a precision, recall and
F1-score for the data cleaning done using our set of FDs. We
can then use this result to fine tune the thresholds in another
round of optimization.

5. SCORING
5.1 Weight
This score is extracted from the output of holoclean. The
specific weight we use is this OccurAttrFeaturizer. Extracting
these weights requires holoclean to be run once. This allows us
to extract the weight.

5.2 Mutual Information
The second score is the mutual information between the 2
attributes in an FDs (p.7 [2]). This is calculated using the
formula.

 (X; Y) H (X) − H (X |Y) p(x, y) log .I = = ∑

x, y
 p(x, y)

p(x)p(y)

Where H(X) is the entropy of attribute X and H(X|Y) is the
conditional entropy. When the mutual information between 2
attributes is high, it indicates a possible FD.

6. OPTIMIZATION
The issue with attempting every single combination of FDs is
that it would take a very long time. Evaluating a set of FDs
using holoclean is very costly. Thus, the amount of evaluations
needs to be minimized.

For a task like this machine learning comes to mind. Bayesian
optimization is well suited for a task like this because of its low
evaluation count and its ability to work on a black-box function.

The python library we use for the optimization3 uses the
gp_hedge acquisition function. This is a method that combines
3 acquisition functions we have mentioned before: Expected
Improvement (EI), Upper Confidence Bound (UCB) and
Probability Of Improvement (POI).

Using this method, each acquisition function is optimized
independently, after which one of the methods is
probabilistically chosen to evaluate. The process of choosing
the acquisition involves how strong the belief of the acquisition
function is and the average gain of it’s previous evaluations.
Other than the set of FDs, we also optimize the threshold for a
cell to be seen as erroneous by. During the repair holoclean
decides for each cell a certainty of being erroneous. When the
threshold is set to 0, it means every cell that is even remotely
seen as erroneous will get repaired. When the threshold is 1 it
means only cells with 100% certainty of being erroneous will
be repaired.
Because of the different scores and the threshold having very
little effect on each other we can optimize them separately. This
takes the complexity of the problem from O(n3) to O(n), where
n is the amount of FDs and 3 is the amount of optimizations we
do.

3https://scikit-optimize.github.io/stable/modules/generated/skop
t.Optimizer.html

7. EXPERIMENTS
In order to evaluate our method, we start off by testing our
approach on 3 synthetic data sets and 1 real data set. The results
we will measure and discuss are:

- The precision, recall and F1 scores of the optimized
set of FDs.

- The time required to perform the data cleaning
operation.

Whilst the duration of the optimization is measured. The results
will vary a lot due to low end hardware and usage of the
hardware during the optimization process.

8. EXPERIMENTAL SETUP
8.1 Existing Methods
We will compare the performance on the real data set of our
method to 3 existing methods.

8.1.1 PYRO
This is the state-of-the-art discovery method for FDs in the
database community [9]. This method seeks to find all
syntactically valid FDs in a data set. A java code released by the
authors is used to test on the real data set4.

8.1.2 TANE
“TANE is based on partitioning the set of rows with respect to
their attribute values, which makes testing the validity of
functional dependencies fast even for a large number of tuples.”
[7] This method is included in the java code for PYRO4.

8.1.3 Reliable Fraction of Information (RFI)
This is the state-of-the-art discovery method for FDs in the data
mining community [10]. RFI uses an information theoretic
score to find FDs and uses an approximation scheme to
optimize the performance. The method has a hyperparameter α
that controls the approximation ratio. This functions the same as
the error detection threshold in holoclean where 0 includes all
FDs that have above 0% likelihood of being a good FD and 1
only includes FDs that have a 100% likelihood of being a good
FD.

As the real data set we use has been tested often in other papers.
We can use the results of an earlier published paper [11] to
compare the results of RFI.

8.2 Data Sets
First, we will test the synthetic data sets. These data sets are
generated using often used data generation methods and can be
seen as a benchmark for our method. First we will take a
relational schema R and use a standard method that uses
probability distribution PR In order to generate a data set D. For
the relational scheme we will use Bayesian Networks. After
which we use an R package to generate data set D5. We have
chosen to generate 1000 rows of data per data set.

After the data set D is generated we can generate noise. In order
to generate the noise, we first set the amount of noise we want
in data set D’. For thorough testing we have to select a range of
noise settings. We use N = {0.01, 0.02, 0.03, 0.04, 0.05, 0.10,
0.15}.

4https://github.com/sekruse/pyro
5http://www.bnlearn.com/bnrepository/

This allows us to see the performance of our method on an
increasing amount of noise. We generate the noisy data set by
iterating through every cell. Every cell has a chance equal to N
to become erroneous. When a cell (c) with value (v) on attribute
(Ai) is selected to become erroneous, we select a random value
(v’) that is not (v) from the same attribute in different rows.
Thus, we take v’ where v, v’ ∈ Ai and v’ ≠ v.

The order we have decided on optimizing is first the weight,
then the error threshold and finally the mutual information. We
have chosen this order because the error threshold requires a set
of FDs with a good performance in order to meaningfully
optimize it. After the threshold is set we can then perform
optimization on the mutual information with the optimal
performance.

In order to be able to discuss the results of testing later. We
should first know the kind of synthetic data sets we are working
with.

8.2.1 Cancer
This data set is a Bayesian Network consisting of 5 nodes and
4 arcs. We can see in figure 2 that the Cancer node depends on
both Pollution and Smoker.
probability (Cancer | Pollution, Smoker)
 (low, True) 0.03, 0.97
 (high, True) 0.05, 0.95
 (low, False) 0.001, 0.999

 (high, False) 0.02, 0.98
Upon inspection of the network, the chances for Cancer
depends heavily on the output of these 2 nodes. However, the
chance of Cancer still remains very low. This makes it difficult
to perform any repairs on these 2 nodes, as they do not have any
strong FDs.
probability (Xray | Cancer)
 (True) 0.9, 0.1
 (False) 0.2, 0.8
probability (Dyspnoea | Cancer)
 (True) 0.65, 0.35

 (False) 0.3, 0.7
For both Xray and Dyspnoea Their output is very dependent on
the Cancer node. This dependency means they have strong FDs.
We can expect good repairs between these 3 nodes because of
this. In conclusion we would only expect to be able to repair 3
out of 5 nodes accurately. With this data set we do not expect a
very good quality repair.

8.2.2 Asia
This data set is a Bayesian Network consisting of 8 nodes and
8 edges. When inspecting the arcs between the nodes in figure
3, we can see strong FDs between most of the nodes.
probability (xray | either) {
 (yes) 0.98, 0.02
 (no) 0.05, 0.95

probability (either | lung, tub) {
 (yes, yes) 1.0, 0.0
 (no, yes) 1.0, 0.0
 (yes, no) 1.0, 0.0
 (no, no) 0.0, 1.0

Xray and Either are good examples for nodes that have strong
FDs with the nodes that they take as input.
probability (tub | asia)
 (yes) 0.05, 0.95;
 (no) 0.01, 0.99;
probability (lung | smoke) {

 (yes) 0.1, 0.9;
 (no) 0.01, 0.99;
probability (bronc | smoke) {
 (yes) 0.6, 0.4;
 (no) 0.3, 0.7;

When looking at the nodes: Tub, Lung and Bronc. We can see
that they are not very dependent on their input. Bronc being the
most dependent, but still not enough for a strong FD. In
conclusion, because 6 out of 8 nodes have strong FDs, we
expect a good quality of data cleaning.

8.2.3 Child
This data set is a medium sized Bayesian Network consisting of
20 nodes and 25 arcs. In figure 4 we can see the network. Upon
inspection of this network. We can see that most of the nodes
in the network have a lot of different inputs.
probability (LowerBodyO2 | HypDistrib, HypoxiaInO2)
 (Equal, Mild) 0.1, 0.3, 0.6;
 (Unequal, Mild) 0.4, 0.5, 0.1;
 (Equal, Moderate) 0.3, 0.6, 0.1;
 (Unequal, Moderate) 0.50, 0.45, 0.05;
 (Equal, Severe) 0.5, 0.4, 0.1;
 (Unequal, Severe) 0.60, 0.35, 0.05;

Taking LowerBodyO2 as an example. The node has two
different inputs and more possible outputs than the nodes in the
other data sets. With more complex dependencies it would
likely be possible to perform repairs on data sets like this.
However, with only FDs containing 2 attributes, we will likely
be unable to perform many correct repairs. In conclusion we
expect a very low quality repair on this data set.

8.2.4 Real data set
For the real data set we will be using an often used benchmark
data set called hospital. This data set has 19 attributes. For the
data cleaning process only 17 of them are relevant due to 2 of
the attributes not containing any values.

This data set is a fairly standard data set containing hospital
procedure information. The data contains some attributes with
quite strong FDs. A few examples of this are: When the name
of a hospital is the same, it often means that the zip code,
address, city and phone number are the same. This allows
Holoclean to perform very high quality data cleaning on this
data set. This data set is included in the source code of the open
source version of holoclean1.

9. RESULTS
Table 1: Results of synthetic data sets.

 “-” no correct repairs have been performed.

Table2: Average time taken by FDT.

Table 3: Results of real data set. (error threshold of 0.5 for other
methods)

Table 4: Time taken for the real data set.

9.1 Synthetic Data
In table 1 we can see that just as predicted, the Asia data set
performs the best, followed by the Cancer data set and the Child
data set being the worst for our data cleaning method.

Next to this we can see that cleaning data using FDs works well
up till the point where there is too much noise to be able to
recognize the FDs, at which point the cleaning performance
drops off very quickly, often becoming unable to perform any
useful repairs after still performing quite well one noise percent
lower. An example is the Cancer data set having an F1 of 0.331
at 0.07 noise and not performing any useful repairs at 0.08.

The most interesting part of the optimization is the FD
selection. Due to the splitting of our optimization, we can see
how many FDs the bayesian optimization adds to the set of
optimal FDs. For the first optimization round we can see in
table 6 that in most cases, a large amount of the FDs is selected.
Then when the error threshold is optimized, the mutual
information optimization will add the remaining FDs. This
means that in most cases all the FDs are useful as long as the
error threshold is optimized.

When the noise of the data set increases, the optimizer often
starts picking less FDs. This has mostly happened to the Cancer
and Child data set. This can be seen in table 6.

The FD selection has an effect on the time required by our
method. In some cases the default threshold already allows for
all the FDs to be added in the first optimization round. When
there are no FDs left to add, the optimization stops early.
Taking examples from the raw data for optimizations with only
one FD thresholding round and the error threshold round:
Cancer: 5 attributes, 0:29:56
Asia: 8 attributes, 0:42:55

Child: 20 attributes, 2:10:22
We can see that because of the splitting of the attributes the
time required by our method scales linearly with the amount of
attributes.

Data Set N 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

 P 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Cancer R 0.183 0.202 0.255 0.168 0.189 0.204 0.198 - -

 F1 0.310 0.336 0.406 0.288 0.318 0.339 0.331

 P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Asia R 0.598 0.521 0.494 0.484 0.513 0.117 0.123 0.120 -

 F1 0.748 0.685 0.661 0.653 0.678 0.209 0.219 0.214

 P 1.000 0.875 1.000 1.000 1.000 1.000 1.000

Child R 0.030 0.017 0.015 0.005 0.003 0.006 0.001 - -

 F1 0.057 0.033 0.029 0.010 0.006 0.013 0.003

Data Set Duration

Cancer 0:28:31

Asia 0:36:03

Child 2:59:48

Data Set FDT PYRO TANE RFI (0.3) RFI (0.5)

 P 0.956 0.923 0.923 1.000 1.000

Hospital R 0.853 0.825 0.827 0.424 0.424

 F1 0.901 0.871 0.873 0.596 0.596

Algorithm Duration

FDT 4:01:22

PYRO 0:00:03

TANE 0:00:00

RFI (0.3) 1:47:37

RFI (0.5) 1:50:03

9.2 Real Data
In order to generate fair results we have used the error threshold
recommended by holoclean for this data set [10]. We can see
that our method pulls ahead of the other existing methods on the
F1-score. However, our method requires much more time than
the existing methods. Whilst the other methods are tested on
much more powerful hardware, the difference is very likely still
quite large when run on equal hardware.

10. DISCUSSION
In conclusion, thresholding FDs using bayesian optimization is
a viable method of discovering FDs for the purpose of data
cleaning. The tests have shown that our method provides the
expected results on synthetic data sets and competitive results
on the real data set. However, whilst the time required by this
method scales linearly with the amount of attributes. The time
required to perform the optimization is still quite long. This
means that this method is only viable for cases where the
frequent generation of a new set of FDs is not required.

11. FUTURE WORK
Much can be done to improve our method. Currently we are
only looking at one of the simplest dependencies. If we were
able to threshold multi-valued dependencies we would be able
to perform much higher quality repairs, as a lot of the attributes
are affected by more than just one other attribute. This could be
achieved with better scoring methods. In general, whilst the
weight and mutual information are working well as a way of
showing the viability of this method, there likely exist much
better methods of scoring dependencies.

It would also be interesting to test the amount of evaluations
that are necessary before the optimal threshold is reached.
Bayesian optimization is not able to stop automatically when
the optimal threshold is found. It will continue testing different
hyperparameters until a maximum amount of evaluations or
when there are no hyperparameters left to test. Finding the
optimal amount of evaluations for different amounts of
attributes will allow the method to execute much faster.

12. REFERENCES
1. Bergstra, J. et al. (2011) ‘Algorithms for

Hyper-Parameter Optimization’, in Shawe-Taylor, J.
et al. (eds) Advances in Neural Information
Processing Systems. Curran Associates, Inc., pp.
2546–2554. Available at:
https://proceedings.neurips.cc/paper/2011/file/86e8f7
ab32cfd12577bc2619bc635690-Paper.pdf.

2. Cover, T. M. and Thomas, J. A. (2005) Elements of
Information Theory. Wiley. doi:
10.1002/047174882X.

3. Douglas, K. M. and Sutton, R. M. (2010) ‘Kent
Academic Repository’, European Journal of Social
Psychology, 40(2), pp. 366–374. Available at:
https://doi.org/10.1016/j.ress.2012.12.021.

4. Gelbart, M. A., Snoek, J. and Adams, R. P. (2014)
‘Bayesian Optimization with Unknown Constraints’,
Uncertainty in Artificial Intelligence - Proceedings of
the 30th Conference, UAI 2014, pp. 250–259.
Available at: http://arxiv.org/abs/1403.5607.

5. Guo, Z. and Rekatsinas, T. (2019) ‘Learning
Functional Dependencies with Sparse Regression’,
arXiv. Available at: http://arxiv.org/abs/1905.01425.

6. Halpin TA, M. T. (2008) Information Modeling and
Relational Databases, Information Modeling and
Relational Databases. 2nd ed. Elsevier. doi:
10.1016/B978-0-12-373568-3.X5001-2.

7. Huhtala, Y. et al. (1999) ‘TANE: An efficient
algorithm for discovering functional and approximate
dependencies’, Computer Journal, 42(2), pp.
100–111. doi: 10.1093/comjnl/42.2.100.

8. Kruse, S. and Naumann, F. (2018) ‘Efficient
discovery of approximate dependencies’, Proceedings
of the VLDB Endowment, 11(7), pp. 759–772. doi:
10.14778/3192965.3192968.

9. Mandros, P., Boley, M. and Vreeken, J. (2017)
‘Discovering Reliable Approximate Functional
Dependencies’, in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA:
ACM, pp. 355–363. doi: 10.1145/3097983.3098062.

10. Rekatsinas, T. et al. (2017) ‘HoloClean’, Proceedings
of the VLDB Endowment, 10(11), pp. 1190–1201. doi:
10.14778/3137628.3137631.

11. Zhang, Y., Guo, Z. and Rekatsinas, T. (2020) ‘A
Statistical Perspective on Discovering Functional
Dependencies in Noisy Data’, in Proceedings of the
2020 ACM SIGMOD International Conference on
Management of Data. New York, NY, USA: ACM,
pp. 861–876. doi: 10.1145/3318464.3389749.

13. APPENDIX

Figure 2: The nodes and arcs of the Cancer Bayesian Network4.

Figure 3: The nodes and arcs of the ASIA Bayesian Network4.

Figure 4: The nodes and arcs of the Child Bayesian Network4.

Table 5: The amount of possible FDs in the data sets.

Table 6: Size of selected FD set and selected threshold for synthetic data sets.

Table 7: Size of selected FD set and selected threshold for real data set.

Data Sets Possible FDs

Cancer 20

Asia 56

Child 380

Hospital 272

Data Set 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

 W 11 11 11 11 11 4 4 11

Cancer T 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 -

 MI 16 16 16 16 16 13 13 16

 W 48 56 49 49 56 56 56 56 29

Asia T 0.498 0.498 0.498 0.190 0.319 0.498 0.498 0.498 0.498

 MI 53 56 56 53 56 56 56 56 43

 W 380 1 1 1 1 1 1 191

Child T 0.498 0.498 0.498 0.498 0.498 0.498 0.498 0.498 -

 MI 380 2 2 2 2 2 2 286

 W 267

Hospital T 0.558

 MI 270

