
1

Retrofitting Memoization: An Exploratory Study
Joël Ledelay

University of Twente
PO Box 217, 7500 AE Enschede

the Netherlands

j.ledelay@student.utwente.nl

ABSTRACT
ActFact is a software development company which delivers
Enterprise Resource Planning (ERP) as part of a Software as a
Service (SaaS) product. As part of their effort to improve the
scalability of their software stack, they wanted to investigate the
possibilities for them to use memoization techniques to reduce
unnecessary repetition of expensive function calls, such as
database access and parsing and evaluation of expressions. This
project aims to investigate different memoization techniques, in
order to determine which of them best suits the company’s
needs. Their comparative performance have been measured
between the methods, as well as the implications that
implementing each of these techniques would have on the rest
of the system. Based on these metrics, a recommendation was
made to employ method level memoization as outlined in this
paper.

Keywords
Memoization, caching, optimization, Java, scalability

1. INTRODUCTION
1.1 System overview
ActFact [8] is a software development company which delivers
Enterprise Resource Planning (ERP) software as part of a
Software as a Service (SaaS) product. Their ERP software is
also named ActFact. It consists of a core system, written in
Java, with a number of extension modules. These modules are
customized for each customer. One customer could require a
specific financial management module, while another customer
could instead want to run a web shop which is connected to the
ERP software seamlessly.

New functionality can be added directly in the ActFact user
interface (UI), by defining the structure (column names, types
etc) for database tables and windows which display and alter
the data in these tables.

This makes it simpler for non-experts to develop new modules,
since less knowledge about databases (SQL queries, for
instance) is required to create a functional extension to the
system.

The server side of the ActFact UI implementation can, like most
web applications, be thought of as a request pipeline. A request
is received, processed and a response is created and shipped off.

Operations involving input and output (I/O), specifically
database access, and those performing parsing and evaluation of
expressions take a significant part of the time needed to process

a typical request, and are thus a major contributor to the
experienced UI performance.

In some cases, these operations are unnecessarily repeated
while processing a particular request, in some rare cases up to
hundreds or even thousands of times. These cases were
discovered through code analysis.

When performance issues like these are corrected, it is not
unusual for them to reappear as a result of a seemingly small,
unrelated change to the UI code. Avoiding or mitigating these
issues typically involves duplicated state, leading to a more
complex architecture and code base, and more defects. These
defects were reported by users, and the root cause was
determined to be these ad hoc performance corrections.

1.2 Terminology and research goals
In this research, there are a number of terms which are used
extensively. They are explained here.

A cache, in the context of this research, consists of a key-value
map. This map contains method calls (method name and list of
parameters) and maps them to method call results (the return
value of the method). Retrieving data from this cache is faster
than recomputing the result in the case of expensive function
calls. Therefore, using the cache can increase system
performance.

Memoization is a software engineering technique, in which
results of method calls are stored in a cache. Before running a
memoized method, this cache is checked to see if the method
has already been called with these arguments. If this is the case,
the stored result is returned instead. If the result is not in the
cache, the method is run, and the result is stored in the cache.

ActFact aims to improve scalability and reduce the code
complexity of the ActFact software stack. These performance
issues must be corrected if scalability is to be improved.
Reducing code complexity and reducing the amount of defects
requires replacement of these ad hoc solutions by a more robust
solution which is less complex for the developer.

In order to achieve this, ActFact would like to investigate the
possibility to add a memoization implementation on a request
scope level.

The possibility of adding a memoization implementation on a
request scope level is investigated through analysis of three
possible ways of implementing memoization, namely an ad hoc
approach, a generalised class level approach and a generalised
method level approach.

2. RESEARCH QUESTIONS
The possibilities for adding a memoization implementation are
investigated on the basis of the following research question.

RQ1: How can unnecessary repetition of expensive function
calls, such as database access or expression parsing, be
avoided?

This research question can subsequently be split into multiple
sub-questions:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
34thTwente Student Conference on IT, Jan. 29th, 2021, Enschede, The
Netherlands. Copyright 2021, University of Twente, Faculty of Electrical
Engineering, Mathematics and Computer Science.

2

RQ1.1 Where does unnecessary repetition of expensive
function calls occur within the ActFact system?

RQ1.2 How to ensure that correctness is not compromised?

RQ1.2.1 How can it be proven that the expression parsing will
return the same result with similar (but not equal) inputs?

RQ1.3 How to ensure that minimal code changes are needed
in the existing code?

These research questions were chosen to help identify areas
which could benefit from memoization and different methods of
implementing memoization. They also help identify
performance metrics, such as execution time or their
implications for the rest of the system.

3. RELATED WORK
Memoization is a technique which has had significant research
done into it in recent years. For instance, J. Mertz et al. [1]
recently published a paper in which they provide an overview
of the benefits and challenges of applying memoization. They
identified three main tasks which are required to apply
memoization, which have been used as a guideline for
performing this research. These steps are choosing which
computations to cache, implementing caching decisions as
caching logic and defining a consistency strategy.

S. Wimmer, S. Hu et al. [7] developed a tool which
automatically memoizes pure, recursive functions – that is,
functions which have no side-effects and provides proof of
equivalence. Since this is only applicable to pure, recursive
functions, this tool cannot be applied here, since the functions
investigated are not free of side effects.

In recent years, research into approximate memoization
techniques has been performed [5]. These techniques sacrifice
precise result for performance gains. While promising for many
applications in which there may not be a single best result, such
as a search result or displaying trending posts on social media,
this is unfortunately not applicable to this project, since
correctness is paramount here. This is the case because ActFact
runs administrative software, in which returning an
approximately correct result is simply not an option.

P. Prabhu et al. [2] developed a tool which is employed in the
context of search algorithms. In search algorithms, in many
cases, different solution paths are looped over. If memoization
is applied, parallelized access to the memoization data structure
is often the main performance bottleneck. This is solved
through development of a tool which provides access to a
partial view of the contents of this data structure. This way,
parallelized access to this data structure is made possible,
increasing performance. While this might be an interesting
future step for optimization of the memoization algorithms
investigated in this paper, implementing such an optimization is
out of scope for this project.

Memoization is widely used across multiple languages. For
instance, there is built-in support for memoization in Prolog, in
the form of tabling [9]. Other functional languages, such as
Haskell [10], offer functionality to memoize functions as well.

In Java, memoization can be done in multiple ways. For
instance, one could apply ad hoc memoization, by memoizing
each method separately [6]. Alternatively, the entire class may
be memoized, but this could create significant overhead for
classes which contain both methods with high execution times,
which are called relatively infrequently, as well as methods
with low execution times which are called often. Instead, a
generic memoization technique can be applied [11], though this

requires changes at every location the methods in this class are
called.

While libraries exist for memoization in object-oriented
languages [12], it is quite difficult to identify methods which
can benefit from memoization, as these methods are often
complex. Furthermore, analysing whether any side effects occur
in these methods can be time-consuming and error-prone.
Research has been done into tools which serve to aid developers
in identifying which methods may benefit from memoization
[3]. Identification of such methods is, however, only the first
step in implementing memoization.

In an effort to aid the developer in detecting methods which
may benefit from memoization and providing insight as to how
to implement memoization for these methods, a tool was
developed [4], which performs dynamic analysis and finds
methods which might be overlooked by other analysis tools.
This tool was not used, since the company already gave pointers
towards which methods could benefit from memoization. These
pointers were sufficient to investigate the possibilities of
retrofitting memoization in the company’s software
architecture.

4. METHODOLOGY
A number of steps were identified through which this research
is conducted. They are detailed in this section.

4.1 Researching the ActFact code base
4.1.1 Investigating repetition of expensive methods
It must be clear where unnecessary repetition of expensive
function calls occur within ActFact. This is needed for two
reasons. If it is not known where unnecessary repetition of
expensive function calls occur, the implications of developing a
solution cannot be investigated. Furthermore, a suitable solution
cannot be developed if it’s unclear where in the system it should
be used.

As a means to find out where this repetition occurs, code
analysis is performed on specific parts of the system, which
were identified by the company as potential performance
bottlenecks.

4.1.2 Proving correctness with similar inputs
Since expression parsing contributes significantly to the
experienced performance, this section focuses on those methods
which perform this expression parsing, namely
evaluateLogic(Evaluatee source, String logic).

In many methods, not all fields and methods of all arguments
are used. Because of this, differences in the arguments might
not always cause a change in output. This means that if some
fields of some arguments are changed, the output could be
unchanged. If this is harnessed effectively, the stored cache
keys don’t need to store all fields of the key Object, but only the
ones which affect the output of the method. By doing this, the
keys in the cache can cover multiple different possible inputs,
increasing the amount of covered inputs with the same cache
size, while decreasing the amount of space taken for a cache of
the same size.

In ActFact, some of the user session state is stored in a class
named Ctx. This class contains a list of contextual values, such
as identifiers for which user is logged in, which window is
currently opened and many more such values. This list does not
have a set size and there are many optional values. Furthermore,
these values may change relatively often.

3

Many classes within ActFact contain a field with the Ctx type.
Among those classes is the Evaluatee class. Code analysis will
be performed on the evaluateLogic method in which
expressions are parsed, with the goal of identifying whether
cache keys for this method can be optimised.

4.2 Researching different methods
In this section, the basic requirements for implementing
memoization are discussed, for each of the memoization
techniques investigated. The memoization techniques
investigated are ad hoc memoization, class level memoization
and method level memoization, as shown in Figure 1. These
techniques are further illustrated and explained in their
respective sections.

In short, ad hoc memoization alters the calling code, inserting
caching logic in the method(s) which are to be memoized.

Class level memoization creates a dynamic proxy, which works
similarly to the target instance, with one difference: all method
calls on that class are intercepted, and caching logic is added.
For the caller, it is as though they are calling the methods on the
original object, but all methods in the class are memoized.

Method level memoization is similar to class level
memoization. It also creates a dynamic proxy which intercepts
all method calls. However, it only applies caching logic to
specific whitelisted methods, whereas the other methods are
called as they would normally.

Figure 1. Memoization techniques

4.2.1 Requirements
In a key-value cache, cache consistency is an important topic to
consider. Consider the following example, illustrated in Figure
2.

Figure 2. Cache inconsistency. Expected result is b.

Method M, an expensive method, is being memoized. On one of
the runs of M, it receives X as an argument. M(X) is run, and the
result, a, is stored in the cache. Now, a change is made to X,
such as changing a field of X. Now M(X) would return b if
computed again. If M(X) is called now, a will be retrieved from
the cache, though the correct answer would be b.

There are a few solutions to this problem. One option is to
invalidate cache entries after a certain amount of time has
passed. This is not an option, since cases can still happen where
incorrect results are returned, which is not acceptable.

Another option is to invalidate cache entries when the stored
arguments are altered. This requires monitoring all the locations
where the stored Object may be altered. This is a viable option
for classes in which the only way to alter a field is through
setters. However, this requires the corresponding getters to
return an immutable copy of the field, which is not the case in
ActFact’s code base.

A third option is to store immutable copies of the arguments
which are to be cached. This requires creating a (deep) copy of
the argument, which in itself is an expensive operation and is
not supported by all classes. Furthermore, this requires the
arguments’ equals method to be suitable for memoization – in
particular, for a function f(x), if two arguments x1 and x2 are
compared, if f(x1) = f(x2), then x1.equals(x2) should return false.
An example of a case in ActFact where this is not satisfied is
given. Because of this, this option is not suitable.

In the case of evaluateLogic, one of the arguments, Evaluatee,
has a subclass, PO, which has an equals method which is not
suitable for memoization. This equals method does not compare
the Ctx field, so if two nearly identical PO objects with
differing Ctx field are compared, they are considered equal, but
the evaluateLogic method might return different results. Since
this equals method cannot be replaced, another solution is
needed.

The option that will be investigated is storing immutable
(partial) copies of the key object. These copies should contain
all relevant fields and implement an equals method which
compares these relevant fields. An implementation for this is
proposed.

4.2.2 Ad hoc memoization of n-argument methods

Figure 3. Ad hoc memoization

Ad hoc memoization of n-argument methods is the first
technique to memoize method calls. The implication of this is
that the calling code must be altered. Rather than computing
and returning the value, the cache is first checked to see

4

whether the input argument(s) are already in cache, as shown in
Figure 3. This means that on subsequent runs with the same
input argument, the result does not have to be recomputed, but
can be retrieved from the cache instead.

The implications of implementing memoization in this manner
is that the calling code is altered, leading to more complex and
difficult to maintain code.

4.2.3 Generic class level memoization

Figure 4. Class level memoization

Memoization is implemented on the class level by defining an
interface which contains all methods of the class. At the place
where the class is initialised, the class should be initialised
through a dynamic proxy instead.

For the calling code, it looks as though they are calling methods
on the target interface, but under the hood, the proxy intercepts
all method calls on this interface, allowing addition of
functionality such as memoization, as shown in Figure 4.

By doing this, no other changes in calling code are required,
and all caching code is stored in a centralized location.

A major downside to this technique is that all methods inside
the target class are memoized, including the methods with side
effects, such as setters.

4.2.4 Generic method level memoization
Since the generic method level memoization is heavily based on
the class level memoization technique, it is very similar in
behaviour, aside from one main difference. Rather than
memoizing every method in the target class, only specific
methods are memoized, which are inserted into a list of
‘whitelisted’ methods. If one of these methods is encountered,
the cache is consulted, similar to the class level memoization.
Otherwise, the method is called as normal. An illustration of
this is shown in Figure 5.

Figure 5. Method level memoization

4.3 Testing environment
These memoization implementations are compared to one other
by testing them in a testing environment.

The testing environment consists of a simple scenario with two
methods. One method, expensiveMethod(int a), has a runtime of
around 100 ms. This method is a model of methods within
ActFact which have long execution times, such as I/O
operations or methods which perform parsing and evaluation of
expressions. The second method, cheapMethod(int a), has a
short runtime, performing only a simple arithmetic operation.
This method is meant to model methods which are encountered
in ActFact which have short execution times.

In the test cases, a mix of methods will be called with long/short
execution times, with varying input parameters. In the context
of ActFact, it is expected that the majority of method calls have
a short execution time, with relatively few expensive method
calls. Because of this, the amount of expensive method calls are
much smaller than the amount of cheap method calls in the
tests.

Though these methods will not perfectly model the situation in
ActFact, it is expected that they will serve to indicate
comparative performance between the memoization techniques,
and as such are a useful tool to analyse which memoization
technique will best suit ActFact’s needs.

Testing directly on the ActFact code base is avoided here,
because otherwise, the requirements outlined in section 4.2
would have to be implemented in order to perform these tests.

A JUnit [13] test class was written which tested the comparative
performance of the three memoization techniques.

5

5. RESULTS
5.1 Researching the ActFact code base
5.1.1 Investigation repetition of expensive methods
Identification of locations where unnecessary repetition occurs
was done by contacting the supervisor from the company. They
pointed towards a situation which is very common in ActFact,
in which unnecessary repetition (dozens of times) of one
method, evaluateLogic, was observed. Code analysis showed
that this method could benefit from memoization. Furthermore,
another method, parseLogic, was identified which could also
benefit from memoization, potentially increasing the
performance further. This analysis was done by inspecting the
code of evaluateLogic and replicating the repetition by running
through one of these scenarios.

5.1.2 Proving correctness with similar inputs
While analysing the code for the evaluateLogic method, it was
discovered that the Ctx values contained within the Evaluatee
do affect the output of the method, but only if these specific
values were requested in the expression which is to be parsed.

This means that the cache key can be abstracted to only contain
specific Ctx values, decreasing the size of the cache entry and
allowing multiple different Evaluatees with very similar Ctx
fields to be treated as equal, if the differing Ctx values do not
appear in the expression. However, distinguishing between Ctx
values which are used and those that are not requires parsing the
expression String. This is considered a relatively expensive
operation.

5.2 Researching different methods
5.2.1 Requirements
The idea behind the solution proposed in this section is to have
an immutable copy of the source object. The immutable copy
should then be used as the cache’s key. It should be possible to
compare keys of the same type to each other.

An interface Memoizable was proposed, in which an abstract
class MemoizedKey is contained. This interface should be
implemented by the classes which are passed as arguments to
memoizable methods. The interface should contain a single
toKey method, which converts the source instance to an
immutable instance with the MemoizedKey type.

The abstract class MemoizedKey should contain a method to
compare keys. One of the main challenges here is constructing
the MemoizedKey objects in such a way that comparison
between two objects is possible in a generic manner.

This is yet to be implemented in a generic, reusable manner.
This is one of the challenges that has to be overcome in order to
retrofit memoization into ActFact’s software architecture.

In this research, it is assumed that all input is immutable, and
can therefore be copied directly into the cache. The company
wishes to use memoization on a request scope level. Therefore,
it is unlikely that the arguments passed as parameters will be
altered during a request.

The called method and its input parameters are combined into a
List<Object> which is used as the cache’s key. Since the
Objects contained in this list are assumed to be immutable, the
problem of cache consistency is nullified.

5.2.2 Ad hoc memoization
Implementation of the ad hoc memoization technique was done
as such. First of all, a cache needs to be created, which maps
input arguments to output values.

private Map<List<Object>, Object> cache = new
HashMap<>();

Then, the method which is to be memoized is altered, such that
this cache is used.
private ReturnType expensiveMethod(int a, boolean b,
SomeClass c) {
 ArrayList<Object> args = new ArrayList<>();
 Collections.addAll(args, a, b, c);
 return (ReturnType) cache.computeIfAbsent(args, list
-> {
 // previous method content
 // ...
 return value;
 });
}

Inside the computeIfAbsent block, the input parameters passed
along to the method are also available, so this wrapping code is
the only thing needed to implement memoization in this case.

For memoization to be implemented for a second method with
similar input types, a second cache should be added to the class.
In principle, for methods with different input parameter types,
the same cache could be re-used, although this exacerbates the
problem of maintainability of the code.

5.2.3 Class level memoization
Class level implementation is implemented using a dynamic
proxy. On a conceptual level, the proxy ‘pretends’ to be the
target interface. When a method is called on this instance, the
proxy intercepts the method call and is able to alter the
functionality of this call, for instance by adding logging or time
measurement code, or in the case of this project, memoization.
This is illustrated in Figure 4.

Instantiation of these proxy objects is simple. Rather than
instantiating the target class directly, it is wrapped in a memoize
call and cast to an interface which contains all methods which
are to be called on this object.
SampleInterface foo = (SampleInterface)

 ClassMemoizer.memoize(new SampleClass(1, "foo"));

Afterwards, this foo Object can be used similarly to an instance
of SampleClass, since SampleInterface would have definitions
of each of the methods in SampleClass.

The major downside of this is that this would clutter up the
code base with interfaces for each class requiring memoization.

ClassMemoizer.memoize returns an Object, which contains all
methods available in SampleClass, but these methods cannot be
invoked directly, since the returned type is Object. In order to
invoke any method, the returned Object has to either be cast to
an interface (as above), or the corresponding Method has to be
found first, as such:
Object foo = ClassMemoizer.memoize(new SampleClass(1,
"foo"));
Object value = null;
try {
 Method expensiveMethod =
foo.getClass().getMethod("expensiveMethod", int.class);
 value = expensiveMethod.invoke(foo, 1);
} catch (NoSuchMethodException | IllegalAccessException
| InvocationTargetException e) {
 e.printStackTrace();
}

This is clearly not ideal, since anywhere an implemented
method is called, a try/catch block is needed. It’s much more
concise and simple to cast the resulting Object to an interface
which contains all methods implemented by SampleClass.

Another downside of this approach is that in this case, also
cheap methods or methods with side-effects are cached, again
resulting in potentially incorrect results. A solution is proposed

6

to this problem, which is presented in the following
memoization method.

5.2.4 Method level memoization
Method level memoization is functionally identical to class
level memoization, aside from one key difference. Rather than
memoizing all methods within a class, only specific methods
are selected to be memoized. When other non-memoized
methods are called, the method calls are intercepted, but then
the original method is called anyway. For memoized methods,
the caching logic is used, as shown in Figure 5.

First, the whitelist is created. In the example implementation,
this is done by filtering the methods of the SampleInterface on
some properties, such as method name and/or parameter/return
types. Then, this array of whitelisted methods is passed along to
the constructor.

Method[] whitelist = Arrays.stream(
SampleInterface.class.getMethods()).filter(m -> {
 String name = m.getName();
 Class<?>[] types = m.getParameterTypes();
 return name.equals("aMethod") ||
 name.equals("bMethod") &&
 types[0].equals(int.class) &&
 types[1].equals(String.class);
 }).toArray(Method[]::new);
SampleInterface foo = (SampleInterface)
MethodMemoizer.memoize(new SampleClass(1, "foo"),
whitelist);

Ideally, it would be possible to annotate memoizable methods,
such that the developer only needs to add an @Memoizable
annotation in order to enable memoization of the method.

5.3 Test results
Each test consisted of 1,000 runs of the expensive method, and
1,000,000 runs of the cheap method. There was no significant
difference between the runtime of 1,000 expensive runs with no
runs of the cheap method and the runtime of 1,000 expensive
runs with 1,000,000 runs of the cheap method, the differences
being so small that they could not reliably be distinguished
from the random variation of runtime between runs, despite
there being 1,000 times as many runs of the cheap method.

Performance testing indicated that all three memoization
techniques are very similar in performance, aside from a few
cases. If the cache size is larger than the amount of distinct
inputs, all three techniques are near identical in performance. If
the cache size is smaller than the amount of distinct inputs, the
ad hoc memoization had superior performance, because no
limitation on cache size was implemented there. However, since
the size of the ad hoc cache is not restricted and managed, this
technique suffers from the drawback that it is less space
efficient – it does not take into account memory limits, and its
performance will decrease as the cache gets larger, as the time
taken to look up a cache record increases as the cache gets
larger.

The class level memoization suffers from one major drawback
when compared to ad hoc memoization and method level

memoization, namely that it results in unexpected behaviour
when presented with non-pure methods. One such example
would be a method which reads and increments the value of a
given field and then returns it. On each call of the method, a
different result should be returned. When this method is cached,
it results in changed program behaviour.

The performance of these three memoization techniques was
tested by running a number of different runs, with differing
cache sizes and input range for each run. Here, the input range
is defined as “the size of the set from which input is randomly
drawn”. In practice, this meant that an integer was drawn from a
uniformly distributed sequence from 0 (inclusive) to the upper
bound (exclusive).

Figure 6: Performance comparison of different

memoization techniques at a cache size of 100, with 1000
runs.

Figure 6 shows that the performance of each memoization
technique is strongly dependent on how many possible distinct
inputs are generated, as expected. Ad hoc memoization vastly
outperforms the other memoization techniques when the
maximum cache size is vastly different from the amount of
distinct inputs, since it does not limit the size of its cache like
the other techniques do.

The class level and method level memoization techniques
perform similarly. This is as expected, since they use the same
technique, with the minor difference that the method level
technique adds one if-statement which checks that the called
method is in the whitelist.

Figure 7 shows that as the cache size approaches the amount of
run tests (1000), the performance of the class level and method
level memoization techniques approaches that of the ad hoc
memoization. This shows that when configured correctly, class
level and method level memoization do not suffer from
performance penalties compared to an ad hoc approach, or they
gain benefits in the form of space complexity.

7

Figure 7: Performance comparison of different memoization techniques for differing cache sizes and input ranges

6. CONCLUSIONS
Based on the results of the requirements identified for each of
the methods and the performance and correctness testing, it is
clear that the class level memoization technique is not suited for
use within ActFact systems. The classes in ActFact don’t only
contain pure methods, but also contain methods which are
intended to have side-effects. By using this technique, these
side-effects are eliminated, which results in the program’s
behaviour changing if this technique were to be implemented.

For the ad hoc memoization technique, a different issue arises,
namely maintainability. Since this method requires the
developer to change the calling code to incorporate
memoization, it increases code complexity, reducing
maintainability and readability of the code. While the
performance is good, these negatives outweigh the benefits of
implementing this method, as compared to the current situation
in ActFact, where already several different ad hoc performance
solutions exist. The main difference between the current
situation and the situation where ad hoc memoization is applied
is that there is a single solution, rather than all sorts of separate
solutions. The benefits are too small to justify retrofitting this
technique into the existing code base.

This leaves the method level memoization technique. This
technique suffers from the drawback that it requires interfaces,
which contain all the methods usually called on the memoized
object.

In the current architecture of the system’s application
programming interface (API) layer, which is composed of base
interfaces, to which developers add functionality by creating
classes which implement these interfaces, it would mean that an
additional interface should be added for each class, which
contains all the methods which developers added. This would
require developers to define their methods in multiple places
when they add them, which is error-prone and undesirable,
since it reduces maintainability of the system. Furthermore, the
objects which are to be memoized are currently not constructed
in a central location, which means that additional code should
be written which manages construction of memoized objects.
This code needs to be present at each location where objects
which are to be memoized are constructed. This further

increases system complexity, reducing maintainability and
readability of the code.

However, a new API which is meant to replace the PO layer is
currently under development, which addresses among other
things the issues which were just described. The new API
includes automatically generated interfaces for these developer-
added features, which mitigates the need for additional
interfaces to be added. Furthermore, the new API also contains
an object builder, which constructs instances of the different
objects. Since this builder is the only place in the new API
where objects are constructed, this is an ideal place to apply the
method level memoization. However, in order to do this, the
process of constructing a whitelist of methods to memoize must
be automated, since these builders are automatically generated
by the new API. One possible way to do this is to annotate each
memoizable method with an @Memoizable annotation, which
can be parsed by the API generator and converted into the
proper method whitelist for the method level memoization.
Another possible method is to define which methods are
memoizable through the ActFact UI – since most of the system
is defined through database definitions, this can also be
extended to include a list of methods which are memoizable.

Because method level memoization requires no changes in the
code where business logic is developed, it has minimal impact
on the complexity of the code which is commonly worked on
by developers.

7. DISCUSSION
7.1 Research questions
While a grounded recommendation is made as to which
memoization technique, if any, to apply, some of the research
questions have not been fully answered.

The question of where unnecessary repetition of (expensive)
method calls occur within the ActFact system was only partially
answered. While some possible areas of exploration were
identified (database access and expression parsing), due to time
constraints, the decision was made to focus on the main goal of
this research, rather than performing a broad exploration of
which exact methods would benefit from memoization. The
goal of this research was never to implement and integrate these
techniques into the live system of ActFact within the allotted

8

time. The areas which were identified already provided a few
challenging points, which had to be addressed.

Research question 1.2, regarding correctness, was similarly not
answered fully. While correctness is paramount in the
administrative software ActFact is running, developing a
solution for ensuring correctness proved to be more complex
than initially assumed. Addressing research question 1.2.1
similarly proved too complex to model and solve in the proof of
concept version. Since the goal of this research was to explore
the implications and possibilities of retrofitting memoization,
this is no great setback. This research question was aimed
towards an optimisation of the basic caching strategy, and was
therefore not absolutely required for the purpose of
investigating the feasibility of retrofitting memoization into the
existing system.

While the analysis described in section 4.1.2 yields interesting
results, they are highly specific to the method which is
investigated. In a highly general solution, this is not easy to
implement in a clean way. Since this project’s intent was to
explore the possibilities and the feasibility of different
solutions, further optimisations to the cache are out of scope for
this project. However, these kind of optimisations are an
interesting focus for future research on this topic. In particular,
dynamic analysis of optimisations like this could yield useful
tools for optimising cache performance.

The question of how to ensure minimal code changes are
needed in the existing code has been mostly answered. Some
additional changes will be required to ensure correctness, as
explained in section 4.2.1, though for the most part, the changes
needed will most likely be made in the API layer, which is not
commonly worked on by developers. This means that the
impact for the developers will still be minimal.

7.2 Research validity
In this research, a number of assumptions were made, in order
to make the project feasible to implement in the allotted time.
These assumptions could affect the validity of this research.

For instance, the assumptions made on runtime of expensive
methods are likely to be inaccurate – it was assumed that an
expensive method runs for 100ms, which is likely inaccurate. If
expensive methods in ActFact run in far less time, this might
affect the observed performance of the memoization techniques.
A better indication of the observed performance of the current
system could have helped in this regard, though it was chosen
to not do this due to time constraints. Existing ad hoc solutions
should have been identified and removed, if a proper indication
of non-optimised performance of these expensive methods was
to be obtained. However, this proved to be infeasible due to
time constraints.

Other assumptions, such as the amount of runs of expensive vs.
cheap methods could similarly be made more accurate through
profiling the existing system. As the indicated runtime of these
methods are already inaccurate, though, rectifying this does not
solve the problem of inaccurate performance measurements
without also improving the assumption of runtime of the
expensive method. These performance measurements were
designed to verify that these techniques did indeed improve
performance, as well as give an indication on the effects of
cache size and input range on performance. They were never
intended to be a fully accurate representation of memoization
performance on ActFact’s systems.

Aside from assumptions, there was also a slight bias towards
the method level memoization. The company which offered this
project prefers general solutions over ad hoc solutions in most

cases, stating to their developers that they prefer work which is
done right rather than work which is done quickly.

There are possible improvements to be made over the simple ad
hoc solution presented in this paper, which could have made it
more suitable for use within ActFact systems. In an ad hoc
solution like this, the managing code could be extracted to a
separate class, reducing the impact of this solution on code
complexity, and other changes such as bounding the cache size
could also have been applied. These additions and changes were
not made, partially due to the view of the company towards ad
hoc solutions, and partially due to time constraints. Because of
this choice, the ad hoc solution was presented as a much
inferior solution, although the actual difference between the
solutions in terms of suitability might be much smaller. Still,
since the company prefers highly generalised solutions over ad
hoc solutions, it is expected that the method level memoization
technique would still be more suitable.

7.3 Remaining challenges
There are still a number of challenges to be overcome before
method level memoization can be applied to ActFact code.
These challenges are outlined below.

First of all, correctness must be ensured. An interface similar to
the one proposed in section 4.2.1 could be implemented.
Alternatively, the (entire) cache could be invalidated when the
state has changed sufficiently, since this cache is meant to be
used on the request scope level. When a different request is
handled, the previous contents of the cache are no longer valid.
In order to prove that this preserves correctness, it must first be
proven that within a request scope, the objects which are cached
are not changed while they are in the cache.

Secondly, the challenge of integration remains. Since a new
API is under development, the PO layer of Actfact is gradually
going to be replaced by the new API. There are two options
here. The first option is to integrate this memoization technique
into both the old and the new API. This is, however, not ideal.
Implementing this technique into the old API would require
changes to a large part of the PO implementation, which
increases code complexity. Furthermore, this would require
extra investment into something which is to be replaced in the
foreseeable future. It seems to be more efficient to integrate
deployment of this technique into the deployment of the new
API. This has the benefit of not requiring much extra work
when compared to making the changes required to implement
the new API, while adding additional benefits in terms of
performance.

Another challenge related to the smooth integration of this
technique is (partial) automation of method selection and code
generation. If this method is to be integrated into the new API,
it would be ideal if the methods which are to be memoized
could be annotated with an @Memoizable annotation, which are
then automatically added to the whitelist of methods to
memoize. An alternative would be to integrate selection of
these methods to the existing system, through defining a
database table which stores references to the methods which can
be memoized.

If these challenges are addressed, the method level memoization
technique would be a beneficial addition to the ActFact
architecture, which can be added with relative ease.

8. REFERENCES
[1] Jhonny Mertz, Ingrid Nunes, Luca Della Toffola,

Marija Selakovic, and Michael Pradel. 2020. Satisfying
Increasing Performance Requirements with Caching at
the Application Level. IEEE Softw. (October 2020), 0–

9

0. DOI:https://doi.org/10.1109/ms.2020.3033508

[2] Prakash Prabhu, Stephen R. Beard, Sotiris Apostolakis,
Ayal Zaks, and David I. August. 2018. MemoDyn:
ExploitingWeakly consistent data structures for
dynamic parallel memoization. In Parallel
Architectures and Compilation Techniques -
Conference Proceedings, PACT, Institute of Electrical
and Electronics Engineers Inc., New York, NY, USA,
1–12. DOI:https://doi.org/10.1145/3243176.3243193

[3] Hugo Rito and João Cachopo. 2010. Memoization of
methods using software transactional memory to track
internal state dependencies. Proc. 8th Int. Conf. Princ.
Pract. Program. Java, PPPJ 2010 (2010), 89–98.
DOI:https://doi.org/10.1145/1852761.1852775

[4] Luca Della Toffola, Michael Pradel, and Thomas R.
Gross. 2015. Performance problems you can fix: A
dynamic analysis of memoization opportunities. Proc.
Conf. Object-Oriented Program. Syst. Lang. Appl.
OOPSLA 25-30-Oct-, (2015), 607–622.
DOI:https://doi.org/10.1145/2814270.2814290

[5] Georgios Tziantzioulis, Nikos Hardavellas, and
Simone Campanoni. 2018. Temporal Approximate
Function Memoization. IEEE Micro 38, 4 (July 2018),
60–70.
DOI:https://doi.org/10.1109/MM.2018.043191126

[6] Tom White. 2003. Memoization in Java Using
Dynamic Proxy Classes - O’Reilly Media. 1. Retrieved
November 21, 2020 from
https://web.archive.org/web/20150908034250/http://w

ww.onjava.com/pub/a/onjava/2003/08/20/memoization
.html?page=1

[7] Simon Wimmer, Shuwei Hu, and Tobias Nipkow.
2018. Verified Memoization and Dynamic
Programming. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
Springer Verlag, 579–596.
DOI:https://doi.org/10.1007/978-3-319-94821-8_34

[8] ActFact Cloud Business Software | De ERP voor
bedrijfsprocessen. Retrieved November 27, 2020 from
https://www.actfact.com/

[9] SWI-Prolog -- Manual. Retrieved November 21, 2020
from https://www.swi-
prolog.org/pldoc/man?section=tabling

[10] Memoization - HaskellWiki. Retrieved November 21,
2020 from https://wiki.haskell.org/Memoization

[11] Do it in Java 8: Automatic memoization - DZone
Performance. Retrieved November 21, 2020 from
https://dzone.com/articles/java-8-automatic-
memoization

[12] com.google.common.cache (Guava: Google Core
Libraries for Java 17.0 API). Retrieved November 21,
2020 from
https://guava.dev/releases/17.0/api/docs/com/google/co
mmon/cache/package-summary.html

[13] JUnit 5. Retrieved November 28, 2020 from
https://junit.org/junit5/

