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ABSTRACT 
ActFact  is  a  software  development  company  which  delivers 
Enterprise Resource Planning (ERP) as part of a Software as a 
Service  (SaaS)  product.  As  part  of  their  effort  to  improve  the 
scalability of their software stack, they wanted to investigate the 
possibilities for them to use memoization techniques to reduce 
unnecessary repetition of expensive function calls, such as 
database access and parsing and evaluation of expressions. This 
project aims to investigate different memoization techniques, in 
order  to  determine  which  of  them  best  suits  the  company’s 
needs. Their comparative performance have  been measured 
between the methods, as well as the implications that 
implementing each of these techniques would have on the rest 
of the system. Based on these metrics, a recommendation was 
made to employ method level memoization as outlined in this 
paper.  
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1. INTRODUCTION 
1.1 System overview 
ActFact [8] is a software development company which delivers 
Enterprise Resource Planning (ERP) software as part of a 
Software  as  a  Service  (SaaS)  product.  Their  ERP  software  is 
also  named  ActFact.  It  consists  of  a  core  system,  written  in 
Java, with a number of extension modules. These modules are 
customized  for  each  customer.  One  customer  could  require  a 
specific financial management module, while another customer 
could instead want to run a web shop which is connected to the 
ERP software seamlessly.   

New  functionality  can  be  added  directly  in  the  ActFact  user 
interface (UI), by defining the structure (column names, types 
etc)  for  database  tables  and  windows  which  display  and  alter 
the data in these tables.  

This makes it simpler for non-experts to develop new modules, 
since less knowledge about databases (SQL queries, for 
instance)  is  required  to  create  a  functional  extension  to  the 
system.  

The server side of the ActFact UI implementation can, like most 
web applications, be thought of as a request pipeline. A request 
is received, processed and a response is created and shipped off.  

Operations involving input and output (I/O), specifically 
database access, and those performing parsing and evaluation of 
expressions take a significant part of the time needed to process 

a typical request, and are thus a major contributor to the 
experienced UI performance.  

In some cases, these operations are unnecessarily repeated 
while processing a particular request, in some rare cases up to 
hundreds or even thousands of times. These cases were 
discovered through code analysis. 

When  performance  issues  like  these  are  corrected,  it  is  not 
unusual for them to reappear as a result of a seemingly small, 
unrelated change to the UI code. Avoiding or mitigating these 
issues  typically  involves  duplicated  state,  leading  to  a  more 
complex  architecture  and  code  base,  and  more  defects.  These 
defects were reported by users, and the root cause was 
determined to be these ad hoc performance corrections. 

1.2 Terminology and research goals 
In  this  research,  there  are  a  number  of  terms  which  are  used 
extensively. They are explained here. 

A cache, in the context of this research, consists of a key-value 
map. This map contains method calls (method name and list of 
parameters)  and  maps  them  to  method  call  results  (the  return 
value of the method). Retrieving data from this cache is faster 
than  recomputing  the  result  in  the  case  of  expensive  function 
calls. Therefore, using the cache can increase system 
performance. 

Memoization  is  a  software  engineering  technique,  in  which 
results of method calls are stored in a cache. Before running a 
memoized  method,  this  cache  is  checked to  see  if  the  method 
has already been called with these arguments. If this is the case, 
the  stored  result  is  returned  instead.  If  the  result  is  not  in  the 
cache, the method is run, and the result is stored in the cache. 

ActFact aims to improve scalability and reduce the code 
complexity  of  the  ActFact  software  stack.  These  performance 
issues must be corrected if scalability is to be improved. 
Reducing code complexity and reducing the amount of defects 
requires replacement of these ad hoc solutions by a more robust 
solution which is less complex for the developer.  

In order to  achieve  this,  ActFact  would  like  to  investigate  the 
possibility to  add  a  memoization  implementation on  a  request 
scope level.  

The  possibility  of  adding  a  memoization  implementation on  a 
request  scope  level  is  investigated  through  analysis  of  three 
possible ways of implementing memoization, namely an ad hoc 
approach, a generalised class level approach and a generalised 
method level approach.  

2. RESEARCH QUESTIONS 
The possibilities for adding a memoization implementation are 
investigated on the basis of the following research question. 

RQ1:  How  can  unnecessary  repetition  of  expensive  function 
calls, such as database access or expression parsing, be 
avoided? 

This  research  question  can  subsequently  be  split  into  multiple 
sub-questions: 
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RQ1.1 Where does unnecessary repetition of expensive 
function calls occur within the ActFact system? 

RQ1.2 How to ensure that correctness is not compromised? 

RQ1.2.1 How can it be proven that the expression parsing will 
return the same result with similar (but not equal) inputs? 

RQ1.3 How to ensure that minimal code changes are needed 
in the existing code? 

These  research  questions  were  chosen  to  help  identify  areas 
which could benefit from memoization and different methods of 
implementing memoization. They also help identify 
performance metrics, such as execution time or their 
implications for the rest of the system. 

3. RELATED WORK 
Memoization is a technique which has had significant research 
done  into  it  in  recent  years.  For  instance,  J.  Mertz  et  al.  [1] 
recently published a paper in which they provide an overview 
of the benefits and challenges of  applying memoization. They 
identified three main tasks which are required to apply 
memoization, which have been used as a guideline for 
performing this research. These steps are choosing which 
computations to cache, implementing caching decisions as 
caching logic and defining a consistency strategy.  

S. Wimmer, S. Hu et al. [7] developed a tool which 
automatically  memoizes  pure,  recursive  functions  –  that  is, 
functions  which  have  no  side-effects  and  provides  proof  of 
equivalence.  Since  this  is  only  applicable  to  pure,  recursive 
functions, this tool cannot be applied here, since the functions 
investigated are not free of side effects.  

In recent years, research into approximate memoization 
techniques has been performed  [5]. These techniques sacrifice 
precise result for performance gains. While promising for many 
applications in which there may not be a single best result, such 
as a search result or displaying trending posts on social media, 
this is unfortunately not applicable to this project, since 
correctness is paramount here. This is the case because ActFact 
runs administrative software, in which returning an 
approximately correct result is simply not an option. 

P. Prabhu et al. [2] developed a tool which is employed in the 
context  of  search  algorithms.  In  search  algorithms,  in  many 
cases, different solution paths are looped over. If memoization 
is applied, parallelized access to the memoization data structure 
is often the main performance bottleneck. This is solved 
through  development  of  a  tool  which  provides  access  to  a 
partial  view  of  the  contents  of  this  data  structure.  This  way, 
parallelized access to this data structure is made possible, 
increasing  performance.  While  this  might  be  an  interesting 
future  step  for  optimization  of  the  memoization  algorithms 
investigated in this paper, implementing such an optimization is 
out of scope for this project.  

Memoization  is  widely  used  across  multiple  languages.  For 
instance, there is built-in support for memoization in Prolog, in 
the  form  of  tabling  [9].  Other  functional  languages,  such  as 
Haskell [10], offer functionality to memoize functions as well.  

In Java, memoization can be done in multiple ways. For 
instance, one  could apply ad hoc memoization, by memoizing 
each method separately [6]. Alternatively, the entire class may 
be  memoized,  but  this  could  create  significant  overhead  for 
classes which contain both methods with high execution times, 
which  are  called  relatively  infrequently,  as  well  as  methods 
with  low  execution  times  which  are  called  often.  Instead,  a 
generic memoization technique can be applied [11], though this 

requires changes at every location the methods in this class are 
called.  

While libraries exist for memoization in object-oriented 
languages  [12],  it  is  quite  difficult  to  identify  methods  which 
can benefit from memoization, as these methods are often 
complex. Furthermore, analysing whether any side effects occur 
in these methods can be time-consuming and error-prone. 
Research has been done into tools which serve to aid developers 
in  identifying  which  methods  may  benefit  from  memoization 
[3].  Identification  of  such  methods  is,  however,  only  the  first 
step in implementing memoization. 

In  an  effort  to  aid  the  developer  in  detecting  methods  which 
may benefit from memoization and providing insight as to how 
to implement memoization for these methods, a tool was 
developed [4], which performs dynamic analysis and finds 
methods  which  might  be  overlooked  by  other  analysis  tools. 
This tool was not used, since the company already gave pointers 
towards which methods could benefit from memoization. These 
pointers were sufficient to investigate the possibilities of 
retrofitting memoization in the company’s software 
architecture. 

4. METHODOLOGY 
A number of steps were identified through which this research 
is conducted. They are detailed in this section. 

4.1 Researching the ActFact code base 
4.1.1 Investigating repetition of expensive methods 
It  must  be  clear  where  unnecessary  repetition  of  expensive 
function  calls  occur  within  ActFact.  This  is  needed  for  two 
reasons.  If  it  is  not  known  where  unnecessary  repetition  of 
expensive function calls occur, the implications of developing a 
solution cannot be investigated. Furthermore, a suitable solution 
cannot be developed if it’s unclear where in the system it should 
be used. 

As  a  means  to  find  out  where  this  repetition  occurs,  code 
analysis  is  performed  on  specific  parts  of  the  system,  which 
were identified by the company as potential performance 
bottlenecks.  

4.1.2 Proving correctness with similar inputs 
Since expression parsing contributes significantly to the 
experienced performance, this section focuses on those methods 
which perform this expression parsing, namely 
evaluateLogic(Evaluatee source, String logic). 

In many methods, not all fields and methods of  all arguments 
are  used.  Because  of  this,  differences  in  the  arguments  might 
not always cause a change in output. This means that if some 
fields  of  some  arguments  are  changed,  the  output  could  be 
unchanged.  If  this  is  harnessed  effectively,  the  stored  cache 
keys don’t need to store all fields of the key Object, but only the 
ones which affect the output of the method. By doing this, the 
keys in the cache can cover multiple  different possible inputs, 
increasing  the  amount  of  covered  inputs  with  the  same  cache 
size, while decreasing the amount of space taken for a cache of 
the same size.  

In  ActFact,  some  of  the  user  session  state  is  stored  in  a  class 
named Ctx. This class contains a list of contextual values, such 
as  identifiers  for  which  user  is  logged  in,  which  window  is 
currently opened and many more such values. This list does not 
have a set size and there are many optional values. Furthermore, 
these values may change relatively often.  
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Many classes within ActFact contain a field with the Ctx type. 
Among those classes is the Evaluatee class. Code analysis will 
be performed on the evaluateLogic method in which 
expressions  are  parsed,  with  the  goal  of  identifying  whether 
cache keys for this method can be optimised.  

4.2 Researching different methods 
In this section, the basic requirements for implementing 
memoization are discussed, for each of the memoization 
techniques investigated. The memoization techniques 
investigated  are  ad  hoc  memoization,  class  level  memoization 
and  method  level  memoization,  as  shown  in  Figure  1.  These 
techniques are further illustrated and explained in their 
respective sections.  

In short,  ad hoc  memoization  alters the calling code, inserting 
caching logic in the method(s) which are to be memoized.  

Class level memoization creates a dynamic proxy, which works 
similarly to the target instance, with one difference: all method 
calls on that class are intercepted, and caching logic is added. 
For the caller, it is as though they are calling the methods on the 
original object, but all methods in the class are memoized. 

Method level memoization is similar to class level 
memoization. It also creates a dynamic proxy which intercepts 
all  method  calls.  However,  it  only  applies  caching  logic  to 
specific  whitelisted  methods,  whereas  the  other  methods  are 
called as they would normally.  

 

Figure 1. Memoization techniques 

4.2.1 Requirements 
In a key-value cache, cache consistency is an important topic to 
consider. Consider the following example, illustrated in Figure 
2. 

 

Figure 2. Cache inconsistency. Expected result is b. 

Method M, an expensive method, is being memoized. On one of 
the runs of M, it receives X as an argument. M(X) is run, and the 
result, a,  is  stored  in  the  cache.  Now,  a  change  is  made  to  X, 
such  as  changing  a  field  of  X.  Now  M(X)  would  return  b  if 
computed again. If M(X) is called now, a will be retrieved from 
the cache, though the correct answer would be b.  

There  are  a  few  solutions  to  this  problem.  One  option  is  to 
invalidate  cache  entries  after  a  certain  amount  of  time  has 
passed. This is not an option, since cases can still happen where 
incorrect results are returned, which is not acceptable.  

Another  option  is  to  invalidate  cache  entries  when  the  stored 
arguments are altered. This requires monitoring all the locations 
where the stored Object may be altered. This is a viable option 
for  classes  in  which  the  only  way  to  alter  a  field  is  through 
setters.  However, this  requires  the  corresponding  getters  to 
return an immutable copy of the field, which is not the case in 
ActFact’s code base. 

A  third  option  is  to  store  immutable  copies  of  the  arguments 
which are to be cached. This requires creating a (deep) copy of 
the  argument,  which  in  itself  is an  expensive operation  and  is 
not  supported  by  all  classes.  Furthermore,  this  requires  the 
arguments’ equals method to be suitable for memoization – in 
particular,  for  a  function  f(x),  if  two  arguments  x1  and  x2  are 
compared, if f(x1) = f(x2), then x1.equals(x2) should return false. 
An example of a  case in ActFact where this is not  satisfied is 
given. Because of this, this option is not suitable. 

In the case of evaluateLogic, one of the arguments, Evaluatee, 
has a subclass, PO,  which has an equals method which is not 
suitable for memoization. This equals method does not compare 
the Ctx field, so if two nearly identical PO objects with 
differing Ctx field are compared, they are considered equal, but 
the evaluateLogic method might return different results.  Since 
this  equals  method  cannot  be  replaced,  another  solution  is 
needed. 

The option that will be investigated is storing immutable 
(partial) copies of the key object. These copies should contain 
all  relevant  fields  and  implement  an equals  method  which 
compares  these  relevant  fields.  An  implementation  for  this  is 
proposed. 

4.2.2 Ad hoc memoization of n-argument methods 

 

Figure 3. Ad hoc memoization 

Ad hoc memoization of n-argument methods is the first 
technique to memoize method calls. The implication  of this is 
that  the  calling  code  must  be  altered.  Rather  than  computing 
and returning the value, the cache is first checked to see 
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whether the input argument(s) are already in cache, as shown in 
Figure  3.  This  means  that  on  subsequent  runs  with  the  same 
input argument, the result does not have to be recomputed, but 
can be retrieved from the cache instead. 

The implications of implementing memoization in this manner 
is that the calling code is altered, leading to more complex and 
difficult to maintain code. 

4.2.3 Generic class level memoization 

 

Figure 4. Class level memoization 

Memoization is implemented on the class level by defining an 
interface which contains all methods of the class. At the place 
where  the  class  is  initialised,  the  class  should  be  initialised 
through a dynamic proxy instead.  

For the calling code, it looks as though they are calling methods 
on the target interface, but under the hood, the proxy intercepts 
all method calls on this interface, allowing addition of 
functionality such as memoization, as shown in Figure 4. 

By  doing  this,  no  other  changes  in  calling  code  are  required, 
and all caching code is stored in a centralized location.  

A  major  downside  to  this  technique  is that  all  methods  inside 
the target class are memoized, including the methods with side 
effects, such as setters. 

4.2.4 Generic method level memoization 
Since the generic method level memoization is heavily based on 
the  class  level  memoization  technique,  it  is  very  similar  in 
behaviour, aside from one main difference. Rather than 
memoizing every method  in the target class, only specific 
methods are memoized, which are inserted into a list of 
‘whitelisted’ methods. If one of these methods is encountered, 
the cache is consulted, similar to the class level memoization. 
Otherwise,  the  method  is  called  as  normal.  An  illustration  of 
this is shown in Figure 5.  

 
Figure 5. Method level memoization 

4.3 Testing environment 
These memoization implementations are compared to one other 
by testing them in a testing environment. 

The testing environment consists of a simple scenario with two 
methods. One method, expensiveMethod(int a), has a runtime of 
around  100  ms.  This  method  is  a  model  of  methods  within 
ActFact which have long execution times, such as I/O 
operations or methods which perform parsing and evaluation of 
expressions.  The  second  method,  cheapMethod(int  a),  has  a 
short  runtime,  performing  only  a  simple  arithmetic  operation. 
This method is meant to model methods which are encountered 
in ActFact which have short execution times.  

In the test cases, a mix of methods will be called with long/short 
execution times, with varying input parameters. In the  context 
of ActFact, it is expected that the majority of method calls have 
a  short  execution  time,  with  relatively  few  expensive  method 
calls. Because of this, the amount of expensive method calls are 
much  smaller  than  the  amount  of  cheap  method  calls  in  the 
tests.  

Though these methods will not perfectly model the situation in 
ActFact, it is expected that they will serve to indicate 
comparative performance between the memoization techniques, 
and  as  such  are  a  useful  tool  to  analyse  which  memoization 
technique will best suit ActFact’s needs. 

Testing  directly  on  the  ActFact  code  base  is  avoided  here, 
because  otherwise,  the  requirements  outlined  in  section  4.2 
would have to be implemented in order to perform these tests.  

A JUnit [13] test class was written which tested the comparative 
performance of the three memoization techniques.  
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5. RESULTS 
5.1 Researching the ActFact code base 
5.1.1 Investigation repetition of expensive methods 
Identification of locations where unnecessary repetition occurs 
was done by contacting the supervisor from the company. They 
pointed towards a situation which is very common in ActFact, 
in which unnecessary repetition (dozens of times) of one 
method,  evaluateLogic,  was  observed.  Code  analysis  showed 
that this method could benefit from memoization. Furthermore, 
another  method,  parseLogic,  was  identified  which  could  also 
benefit from memoization, potentially increasing the 
performance further. This analysis was done by inspecting the 
code of evaluateLogic and replicating the repetition by running 
through one of these scenarios. 

5.1.2 Proving correctness with similar inputs 
While analysing the code for the evaluateLogic method, it was 
discovered  that  the  Ctx  values  contained  within  the  Evaluatee 
do  affect  the  output  of  the  method,  but  only  if  these  specific 
values were requested in the expression which is to be parsed.  

This means that the cache key can be abstracted to only contain 
specific Ctx values, decreasing the size of the cache entry and 
allowing  multiple  different  Evaluatees  with  very  similar  Ctx 
fields to be treated as equal, if the differing Ctx values do not 
appear in the expression. However, distinguishing between Ctx 
values which are used and those that are not requires parsing the 
expression  String.  This  is  considered  a  relatively  expensive 
operation.  

5.2 Researching different methods 
5.2.1 Requirements 
The idea behind the solution proposed in this section is to have 
an  immutable  copy of  the  source  object.  The  immutable  copy 
should then be used as the cache’s key. It should be possible to 
compare keys of the same type to each other.  

An  interface  Memoizable  was  proposed,  in  which  an  abstract 
class MemoizedKey is contained. This interface should be 
implemented  by  the  classes  which  are  passed  as  arguments  to 
memoizable  methods.  The  interface  should  contain  a  single 
toKey method, which converts the source instance to an 
immutable instance with the MemoizedKey type.  

The  abstract  class  MemoizedKey  should  contain  a  method  to 
compare keys. One of the main challenges here is constructing 
the MemoizedKey objects in such a way that comparison 
between two objects is possible in a generic manner.  

This  is  yet  to  be  implemented  in  a  generic,  reusable  manner. 
This is one of the challenges that has to be overcome in order to 
retrofit memoization into ActFact’s software architecture. 

In this research, it is assumed that all input is immutable, and 
can  therefore  be  copied  directly  into  the  cache.  The  company 
wishes to use memoization on a request scope level. Therefore, 
it  is  unlikely  that  the  arguments  passed  as  parameters  will  be 
altered during a request.  

The called method and its input parameters are combined into a 
List<Object>  which  is  used  as  the  cache’s  key.  Since  the 
Objects contained in this list are assumed to be immutable, the 
problem of cache consistency is nullified. 

5.2.2 Ad hoc memoization 
Implementation of the ad hoc memoization technique was done 
as such. First of all, a cache needs to be  created, which maps 
input arguments to output values. 

private Map<List<Object>, Object> cache = new 
HashMap<>();  

Then, the method which is to be memoized is altered, such that 
this cache is used. 
private ReturnType expensiveMethod(int a, boolean b, 
SomeClass c) {  
  ArrayList<Object> args = new ArrayList<>(); 
  Collections.addAll(args, a, b, c); 
  return (ReturnType) cache.computeIfAbsent(args, list 
-> { 
    // previous method content 
    // ...  
    return value; 
  }); 
} 

Inside the computeIfAbsent block, the input parameters passed 
along to the method are also available, so this wrapping code is 
the only thing needed to implement memoization in this case. 

For memoization to be implemented for a second method with 
similar input types, a second cache should be added to the class. 
In principle, for methods with different input parameter types, 
the same cache could be re-used, although this exacerbates the 
problem of maintainability of the code. 

5.2.3 Class level memoization 
Class  level  implementation  is  implemented  using  a  dynamic 
proxy.  On  a  conceptual  level,  the  proxy  ‘pretends’  to  be  the 
target interface. When a method  is called on this instance, the 
proxy intercepts the method call and is able to alter the 
functionality of this call, for instance by adding logging or time 
measurement code, or in the case of this project, memoization. 
This is illustrated in Figure 4. 

Instantiation of these proxy objects is simple. Rather than 
instantiating the target class directly, it is wrapped in a memoize 
call and cast to an interface which contains all methods which 
are to be called on this object. 
SampleInterface foo = (SampleInterface)  

  ClassMemoizer.memoize(new SampleClass(1, "foo")); 

Afterwards, this foo Object can be used similarly to an instance 
of SampleClass, since  SampleInterface would have definitions 
of each of the methods in SampleClass. 

The major downside of this is that this would clutter up the 
code base with interfaces for each class requiring memoization.  

ClassMemoizer.memoize returns an Object, which contains all 
methods available in SampleClass, but these methods cannot be 
invoked directly, since the returned type is Object. In order to 
invoke any method, the returned Object has to either be cast to 
an interface (as above), or the corresponding Method has to be 
found first, as such: 
Object foo = ClassMemoizer.memoize(new SampleClass(1, 
"foo")); 
Object value = null; 
try { 
    Method expensiveMethod = 
foo.getClass().getMethod("expensiveMethod", int.class); 
    value = expensiveMethod.invoke(foo, 1); 
} catch (NoSuchMethodException | IllegalAccessException 
| InvocationTargetException e) { 
    e.printStackTrace(); 
} 

This is clearly not ideal, since anywhere an implemented 
method is called, a try/catch block is needed. It’s much more 
concise and simple to cast the resulting Object to an interface 
which contains all methods implemented by SampleClass.  

Another  downside  of  this  approach  is  that  in  this  case,  also 
cheap  methods or  methods  with side-effects  are  cached,  again 
resulting in potentially incorrect results. A solution is proposed 
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to this problem, which is presented in the following 
memoization method.  

5.2.4 Method level memoization 
Method  level  memoization  is  functionally  identical  to  class 
level memoization, aside from one key difference. Rather than 
memoizing  all  methods  within  a  class,  only  specific  methods 
are selected to be memoized. When other non-memoized 
methods  are  called,  the  method  calls  are  intercepted,  but  then 
the original method is called anyway. For memoized methods, 
the caching logic is used, as shown in Figure 5.  

First, the whitelist is created. In the example implementation, 
this is done by filtering the methods of the SampleInterface on 
some properties, such as method name and/or parameter/return 
types. Then, this array of whitelisted methods is passed along to 
the constructor. 

 
Method[] whitelist = Arrays.stream( 
SampleInterface.class.getMethods()).filter(m -> { 
  String name = m.getName(); 
  Class<?>[] types = m.getParameterTypes(); 
  return name.equals("aMethod") ||  
    name.equals("bMethod") &&  
    types[0].equals(int.class) && 
    types[1].equals(String.class); 
  }).toArray(Method[]::new); 
SampleInterface foo = (SampleInterface) 
MethodMemoizer.memoize(new SampleClass(1, "foo"), 
whitelist); 

Ideally, it would be possible to annotate memoizable methods, 
such  that  the  developer  only  needs  to  add  an  @Memoizable 
annotation in order to enable memoization of the method.  

5.3 Test results 
Each test consisted of 1,000 runs of the expensive method, and 
1,000,000 runs of the cheap method. There was no significant 
difference between the runtime of 1,000 expensive runs with no 
runs of  the  cheap  method  and  the  runtime  of  1,000  expensive 
runs with 1,000,000 runs of the cheap method, the differences 
being  so  small  that  they  could  not  reliably  be  distinguished 
from  the  random  variation  of  runtime  between  runs,  despite 
there being 1,000 times as many runs of the cheap method.  

Performance testing indicated that all three memoization 
techniques  are  very  similar  in  performance,  aside  from  a  few 
cases.  If  the  cache  size  is  larger  than  the  amount  of  distinct 
inputs, all three techniques are near identical in performance. If 
the cache size is smaller than the amount of distinct inputs, the 
ad  hoc  memoization  had  superior  performance,  because  no 
limitation on cache size was implemented there. However, since 
the size of the ad hoc cache is not restricted and managed, this 
technique suffers from the drawback that it is less space 
efficient – it does not take into account memory limits, and its 
performance will decrease as the cache gets larger, as the time 
taken  to  look  up  a  cache  record  increases  as  the  cache  gets 
larger. 

The class level memoization suffers from one major drawback 
when compared to ad hoc memoization and method level 

memoization,  namely  that  it  results  in  unexpected  behaviour 
when  presented  with  non-pure  methods.  One  such  example 
would be a method which reads and increments the value of a 
given  field  and  then  returns  it.  On  each  call  of  the  method,  a 
different result should be returned. When this method is cached, 
it results in changed program behaviour. 

The  performance  of  these  three  memoization  techniques  was 
tested  by  running  a  number  of  different  runs,  with  differing 
cache sizes and input range for each run. Here, the input range 
is defined as “the size of the set from which input is randomly 
drawn”. In practice, this meant that an integer was drawn from a 
uniformly distributed sequence from 0 (inclusive) to the upper 
bound (exclusive).  

 
Figure 6: Performance comparison of different 

memoization techniques at a cache size of 100, with 1000 
runs. 

Figure  6  shows  that  the  performance  of  each  memoization 
technique is strongly dependent on how many possible distinct 
inputs  are generated,  as  expected.  Ad hoc  memoization vastly 
outperforms the other memoization techniques when the 
maximum  cache  size  is  vastly  different  from  the  amount  of 
distinct inputs, since it does not limit the size of its cache like 
the other techniques do.  

The class level and method level memoization techniques 
perform similarly. This is as expected, since they use the same 
technique,  with the  minor  difference  that  the  method  level 
technique  adds  one  if-statement  which  checks  that  the  called 
method is in the whitelist. 

Figure 7 shows that as the cache size approaches the amount of 
run tests (1000), the performance of the class level and method 
level  memoization  techniques  approaches  that  of  the  ad  hoc 
memoization. This shows that when configured correctly, class 
level and method level memoization do not suffer from 
performance penalties compared to an ad hoc approach, or they 
gain benefits in the form of space complexity.  
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Figure 7: Performance comparison of different memoization techniques for differing cache sizes and input ranges

6. CONCLUSIONS 
Based on the results of the requirements identified for each of 
the methods and the performance and correctness testing, it is 
clear that the class level memoization technique is not suited for 
use within ActFact systems. The classes in ActFact don’t only 
contain  pure  methods,  but  also  contain  methods  which  are 
intended  to  have  side-effects.  By  using  this  technique,  these 
side-effects are eliminated, which results in the program’s 
behaviour changing if this technique were to be implemented.  

For the ad hoc memoization technique, a different issue arises, 
namely maintainability. Since this method requires the 
developer to change the calling code to incorporate 
memoization, it increases code complexity, reducing 
maintainability and readability of the code. While the 
performance  is  good,  these negatives outweigh the benefits of 
implementing this method, as compared to the current situation 
in ActFact, where already several different ad hoc performance 
solutions exist. The main difference between the current 
situation and the situation where ad hoc memoization is applied 
is that there is a single solution, rather than all sorts of separate 
solutions.  The benefits  are too  small  to  justify  retrofitting this 
technique into the existing code base.  

This leaves the method level memoization technique. This 
technique suffers from the drawback that it requires interfaces, 
which contain all the methods usually called on the memoized 
object.  

In the current architecture of the system’s application 
programming interface (API) layer, which is composed of base 
interfaces,  to  which  developers  add  functionality  by  creating 
classes which implement these interfaces, it would mean that an 
additional interface should be  added for each class, which 
contains  all  the  methods  which  developers  added.  This  would 
require  developers  to  define  their  methods  in  multiple  places 
when  they  add  them,  which  is  error-prone  and    undesirable, 
since it reduces maintainability of the system. Furthermore, the 
objects which are to be memoized are currently not constructed 
in a central location, which means that additional code should 
be  written  which  manages  construction  of  memoized  objects. 
This  code  needs  to  be  present  at  each  location  where  objects 
which are to be memoized are constructed. This further 

increases system complexity, reducing maintainability and 
readability of the code. 

However, a new API which is meant to replace the PO layer is 
currently  under  development,  which  addresses  among  other 
things  the  issues  which  were  just  described.  The  new  API 
includes automatically generated interfaces for these developer-
added features, which mitigates the need for additional 
interfaces to be added. Furthermore, the new API also contains 
an  object  builder,  which  constructs  instances  of  the  different 
objects.  Since  this  builder  is  the  only  place  in  the  new  API 
where objects are constructed, this is an ideal place to apply the 
method  level  memoization.  However,  in  order  to  do  this,  the 
process of constructing a whitelist of methods to memoize must 
be automated, since these builders are automatically generated 
by the new API. One possible way to do this is to annotate each 
memoizable  method  with  an  @Memoizable  annotation,  which 
can  be  parsed  by  the  API  generator  and  converted  into  the 
proper  method  whitelist  for  the  method  level  memoization. 
Another possible method is to define which methods are 
memoizable through the ActFact UI – since most of the system 
is defined through database definitions, this can also be 
extended to include a list of methods which are memoizable.  

Because method level memoization requires no changes in the 
code where business logic is developed, it has minimal impact 
on the complexity of the code which is commonly worked on 
by developers.  

7. DISCUSSION 
7.1 Research questions 
While a grounded recommendation is made as to which 
memoization technique, if any, to apply, some of the research 
questions have not been fully answered.  

The  question  of  where  unnecessary  repetition  of  (expensive) 
method calls occur within the ActFact system was only partially 
answered. While some possible areas of exploration were 
identified (database access and expression parsing), due to time 
constraints, the decision was made to focus on the main goal of 
this  research,  rather  than  performing  a  broad  exploration  of 
which  exact  methods  would  benefit  from  memoization.  The 
goal of this research was never to implement and integrate these 
techniques  into  the  live  system  of  ActFact  within  the  allotted 
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time.  The  areas  which  were  identified  already  provided  a  few 
challenging points, which had to be addressed.  

Research question 1.2, regarding correctness, was similarly not 
answered fully. While correctness is paramount in the 
administrative software ActFact is running, developing a 
solution  for  ensuring  correctness  proved  to  be  more  complex 
than initially assumed. Addressing research question 1.2.1 
similarly proved too complex to model and solve in the proof of 
concept version. Since the goal of this research was to explore 
the  implications  and  possibilities  of  retrofitting  memoization, 
this  is  no  great  setback.  This  research  question  was  aimed 
towards an optimisation of the basic caching strategy, and was 
therefore not absolutely required for the purpose of 
investigating the feasibility of retrofitting memoization into the 
existing system. 

While the analysis described in section 4.1.2 yields interesting 
results, they are highly specific to the method which is 
investigated.  In  a  highly  general  solution,  this  is  not  easy  to 
implement  in  a  clean  way.  Since  this  project’s  intent  was  to 
explore the possibilities and the feasibility of different 
solutions, further optimisations to the cache are out of scope for 
this project. However, these kind of optimisations are an 
interesting focus for future research on this topic. In particular, 
dynamic  analysis  of  optimisations  like  this  could  yield  useful 
tools for optimising cache performance. 

The question  of how to ensure minimal code changes are 
needed  in  the  existing  code  has  been  mostly  answered.  Some 
additional  changes  will  be  required  to  ensure  correctness,  as 
explained in section 4.2.1, though for the most part, the changes 
needed will most likely be made in the API layer, which is not 
commonly worked on by developers. This means that the 
impact for the developers will still be minimal. 

7.2 Research validity 
In this research, a number of assumptions were made, in order 
to make the project feasible to implement in the allotted time. 
These assumptions could affect the validity of this research.  

For  instance,  the  assumptions  made  on  runtime  of  expensive 
methods  are  likely  to  be  inaccurate  –  it  was  assumed  that  an 
expensive method runs for 100ms, which is likely inaccurate. If 
expensive  methods  in  ActFact  run  in  far  less  time,  this  might 
affect the observed performance of the memoization techniques. 
A better indication of the observed performance of the current 
system could have helped in this regard, though it was chosen 
to not do this due to time constraints. Existing ad hoc solutions 
should have been identified and removed, if a proper indication 
of non-optimised performance of these expensive methods was 
to  be  obtained.  However,  this  proved  to  be  infeasible  due  to 
time constraints.  

Other assumptions, such as the amount of runs of expensive vs. 
cheap methods could similarly be made more accurate through 
profiling the existing system. As the indicated runtime of these 
methods are already inaccurate, though, rectifying this does not 
solve  the  problem  of  inaccurate  performance  measurements 
without also improving the assumption of runtime of the 
expensive method. These performance measurements were 
designed  to  verify  that  these  techniques  did  indeed  improve 
performance,  as  well  as  give  an  indication  on  the  effects  of 
cache  size  and  input  range  on  performance.  They  were  never 
intended  to  be  a  fully  accurate  representation  of  memoization 
performance on ActFact’s systems. 

Aside  from  assumptions,  there  was  also  a  slight  bias  towards 
the method level memoization. The company which offered this 
project prefers general solutions over ad hoc solutions in most 

cases, stating to their developers that they prefer work which is 
done right rather than work which is done quickly.  

There are possible improvements to be made over the simple ad 
hoc solution presented in this paper, which could have made it 
more  suitable  for  use  within  ActFact  systems.  In  an  ad  hoc 
solution  like  this,  the  managing  code  could  be  extracted  to  a 
separate  class,  reducing  the  impact  of  this  solution  on  code 
complexity, and other changes such as bounding the cache size 
could also have been applied. These additions and changes were 
not made, partially due to the view of the company towards ad 
hoc solutions, and partially due to time constraints. Because of 
this  choice, the  ad  hoc  solution  was  presented  as  a  much 
inferior  solution,  although  the  actual  difference  between  the 
solutions  in  terms  of  suitability  might  be  much  smaller.  Still, 
since the company prefers highly generalised solutions over ad 
hoc solutions, it is expected that the method level memoization 
technique would still be more suitable.   

7.3 Remaining challenges 
There  are  still  a  number  of  challenges  to  be  overcome  before 
method  level  memoization  can  be  applied  to  ActFact  code. 
These challenges are outlined below. 

First of all, correctness must be ensured. An interface similar to 
the one proposed in section 4.2.1 could be implemented. 
Alternatively, the (entire) cache could be invalidated when the 
state  has  changed  sufficiently,  since  this  cache  is  meant  to be 
used  on  the  request  scope  level.  When  a  different  request  is 
handled, the previous contents of the cache are no longer valid. 
In order to prove that this preserves correctness, it must first be 
proven that within a request scope, the objects which are cached 
are not changed while they are in the cache.  

Secondly,  the  challenge  of  integration  remains.  Since  a  new 
API is under development, the PO layer of Actfact is gradually 
going  to  be  replaced  by  the  new  API.  There  are  two  options 
here. The first option is to integrate this memoization technique 
into both the old and the new API. This is, however, not ideal. 
Implementing  this  technique  into  the  old  API  would  require 
changes to a large part of the PO implementation, which 
increases  code  complexity.  Furthermore,  this  would  require 
extra investment into something which is to be replaced in the 
foreseeable  future.  It  seems  to  be  more  efficient  to  integrate 
deployment  of  this  technique  into  the  deployment  of  the  new 
API.  This  has  the  benefit  of  not  requiring  much  extra  work 
when  compared  to  making the  changes  required  to  implement 
the  new  API,  while  adding  additional  benefits  in  terms  of 
performance.  

Another  challenge  related  to  the  smooth  integration  of  this 
technique is (partial) automation of method selection and code 
generation. If this method is to be integrated into the new API, 
it  would  be  ideal  if  the  methods  which  are  to  be  memoized 
could be annotated with an @Memoizable annotation, which are 
then automatically added to the whitelist of methods to 
memoize.  An  alternative  would  be  to  integrate  selection  of 
these methods to the existing system, through defining a 
database table which stores references to the methods which can 
be memoized.  

If these challenges are addressed, the method level memoization 
technique would be a beneficial addition to the ActFact 
architecture, which can be added with relative ease. 
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