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Abstract

Introduction - Cystic fibrosis (CF) is the most life-threatening monogenic disease in western populations caused by
mutation in the CF transmembrane conductance regulator (CFTR). The survival age of new-born CF patients in 2016
was 47.7 years. The disease causes damage to all organs consisting of epithelial cell membranes, mostly affecting the
lungs. CF is characterized by thickened mucus in the lungs that can obstruct the airways and hinder the removal
of pathogens, causing bacterial infections. The most common bacterial infections in CF patients are Pseudomonas
aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus), both associated with greater risk of exacerbations,
hospitalisations, and decline of lung function. A fast and sensitive screening method for pathogens in the lungs is
needed to successfully treat the infections at an early stage and prevent further harm. A possible solution might be
the detection of volatile organic compounds (VOCs) in exhaled breath. This study aimed to identify candidate VOCs
from literature linked to S. aureus and A. fumigatus in exhaled breath using the method of gas chromatography-mass
spectrometry (GC-MS). The second objective was to assess if these VOCs can be used to distinguish S. aureus and A.
fumigatus and P. aeruginosa in exhaled breath.
Methods - To identify candidate VOCs that can possibly distinguish S. aureus and A. fumigatus in exhaled breath a
systematic review of previous literature is conducted. These candidate VOCs are then examined in the in-vivo GC-MS
breath data, originating from the BioMerieux study, a longitudinal study focused on exhaled breath of CF patients.
The VOCs present in the breath samples were then compared to microbiology results (sputum and cough swaps) after
which the targeted VOCs are analysed with multiple analyses. This study used univariate (Mann-Whitney U test),
multivariate (PLS-DA) and topological (mapper) methods to analyse and assess the performance of breath data to
predict pathogen presence.
Results - In a total of 16 articles, 10 candidate VOCs coupled to the presence of S. aureus were found, and 6 articles
resulted in one compound to link to A. fumigatus. Complete data (GC-MS and microbiology) was available from 54
patients, 29 adults and 25 children. Benzaldehyde displayed a significant difference (p < 0.05) between the S. aureus
positive versus negative sputum samples as well as the S. aureus chronically infected versus not-chronically infected
groups, with a AUROC of respectively 0.61 and 0.62 these groups could not be distinguished. Using PLS-DA and
mapper did not deliver group distinguishing results. In the search for a discriminating compound for A. fumigatus
α-pinene displayed a significant difference (p < 0.05) between positive versus negative sputum samples, with a AUROC
of 0.62. Applying multivariate analysis strategies, PLS-DA and mapper, did not increase the discriminatory power
between groups. Using all the candidate VOCs linked to S. aureus and A. fumigatus combined with previous research
to compounds for P. aeruginosa a difference can be seen between groups of samples infected with S. aureus, A.
fumigatus, and uninfected samples and groups that next to these samples also contain multiple infections.
Discussion - Combinations of mass and retention time were significantly different between colonised and not colonised
samples for both S. aureus and A. fumigatus. However, these specific data columns are not confirmed by other mass
and retention time combinations linked to these same candidate VOCs making it is less plausible that these VOCs as
discriminating. This study was the first to validate previous literature found in a systematic review using a targeted
analysis with in vivo GC-MS data for S. aureus or A. fumigatus. Previous work of Kos et al. performed a similar
protocol, using different compound confirmation in their breath samples and statistical methods. For future research,
the mapper method could be of use to validate a suspected relationship between compounds and the presence of the
pathogens. However it is difficult to quantify such relationships as mapper relies on visual analysis. Using exhaled
breath is a non-invasive, low-cost, and time-efficient way of checking patients. However, more research should be done
before it could be used in practice. When the performance of these methods will increase, exhaled breath has the
right benefits to improve the possibilities in home monitoring.
Conclusion - This study found several components to be associated with S. aureus and linked one component with A.
fumigatus in literature, but was not able to extract significant candidate VOCs to discriminate positive and negative
samples for both S. aureus and A. fumigatus by using GC-MS data.
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Abbrevations

AMC Amsterdam UMC, location Amsterdam Medisch Centrum
AMDIS Software for GC-MS data interpretation (Automated Mass Spectral

Deconvolution and Identification System)
A. fumigatus Fungus Aspergillus fumigatus
AUC Area under the curve
CAS number A unique number to identify chemical elements,

components, polymers and alloys. CAS is short Chemical Abstracts Service,
a division of the American Chemical Society

CF Cystic Fibrosis
CFTR Cystic Fibrosis Transmembrane conductance Regulator

(both the gene and protein are called this abbreviation)
DT Desorption tubes
eNose electronic Nose
GC-MS Gas Chromatography – Mass Spectrometry
GC-TOF-MS Gas Chromatography - time of flight - mass spectrometry
HSSE Headspace sorptive extraction
HS-SPME Headspace – solid phase microextraction
KEGG Kyoto Encyclopaedia of Genes and Genomes; a collection of databases

dealing with genomes, biological pathways, diseases, drugs, and chemical substances
M/Z-ratio Mass to charge ratio
NIST National Institute of Standards and Technology
P. aeruginosa Bacteria Pseudomonas aeruginosa
PLS-DA partial least squares – discriminant analysis
ROC Receiver operating characteristic
S. Aureus Bacteria Staphylooccus aureus
SBSE Stir bar sorptive extraction
SESI-MS Secondary electrospray ionisation – Mass spectrometry
SIFT-MS Selected ion flow tube – Mass spectrometry
TDA Topological data analysis
VOC Volatile organic component
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1 Introduction

1.1 Background

Cystic fibrosis (CF) is the most life-threatening monogenic disease in western populations with a median survival age
of new-born CF patients of 47.7 years in 2016 [1]. The diagnosis CF is established in more than 70,000 individuals
worldwide, of which around 50,000 patients are living in Europe [2]. A mutation in the CF transmembrane conductance
regulator (CFTR) gene causes the disease, which is characterised by thick and viscous mucus secretions. These affected
secretions are present in the liver, pancreas [3], intestines [4] and most notably the lungs, making CF a multi-organ dis-
ease [5,6]. This CFTR gene encodes for cAMP-regulated chloride (Cl−) and bicarbonate (HCO3−) channels expressed in
the membrane of epithelial cells [7]. If these channels are malfunctioning, the amount of water in- and outside the epithe-
lial cells is out of balance, which results in thickened mucoid secretion. The CFTR gene mutations can be divided into
six different classes, all with their specific characteristic effects on the CFTR protein functioning. The CFTR protein is
either not synthesised (class 1), not processed (class 2), not regulated (class 3), not conducted (class 4), partly produced
or processed (class 5) or there is a deregulation of these CFTR channels (class 6) [6]. The most common mutation in
CF patients is of the class 2 mutation, more specific the ∆F508 mutation. This mutation causes absence of pheny-
lalanine resulting in a deficiency of the CFTR protein and is accounted for a total of 86.4% of all the CF cases in 2016 [1].

The European Cystic Fibrosis Society (ECFS) states that the neonatal screening for CF done via a heel prick
is preferable [8]. In the Netherlands, this advice is carried out on national level since 2011 [9]. This diagnosis is
confirmed by a sweat Cl− test. The damaged CFTR channels cannot provide sufficient migration of Cl− ions, resulting
in more salted sweat on the skin. According to the guidelines from the cystic fibrosis foundation, an amount of ≥
60mmol/L is the limit to definitively diagnose CF with the sweat test [10]. The symptoms which raise the suspicion of
CF, mainly focus on the respiratory and gastrointestinal tract [7].

Of all organs consisting of epithelial cell membranes, and thus the CFTR protein, the pathological thickened
mucus mostly affects the lungs. CF patients suffer from extensive coughing, lower lung function, and have a higher risk
of exacerbations. They are limited in their physical activity and daily routine by their condition. Looking at cell level,
the genetic defects start the so-called cystic fibrosis pathogenesis cascade in the lungs (Figure 1), which ultimately
leads to respiratory disease [11]. The first step is the lack of CFTR protein leading to deficient chloride ion transport.
This malfunctioning regulation leads to less water in the secretion of airway surface liquid, caused by the increased
water retention by the ion rich secretion cells. The lower amount of water results in thickened mucus, which can
obstruct the airway and eventually cause bacterial infection, inflammation of the tissue and ultimately lung damage [7].
The main cause of the infection is the inability of patients with CF to clear their lungs by coughing up the pathogens.

There are five types of pathogens; viruses, bacteria, fungi, protozoa and worms [12]. A number of these pathogens
are present in most people’s airways, and not hurtful for healthy persons. The pathophysiological changes in CF
patients’ lungs result in their inability to clear their lungs properly of pathogens. Some regular pathogens cause a lot
of problems in this group of patients. The most common cause of problems in the lungs of CF patients is bacterial
infection, specifically Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) [6]. As displayed
in figure 2, infection caused by S. aureus is more prevalent in younger patients, with even a percentage of more than
60% (with a peak of above 80% in teen years). Bacterial infection by P. aeruginosa becomes more prevalent around
30 years, with a peak of more than 70% in the 35-44 years group.
Of these pathogens in CF, only S. aureus can be pathogenic in immunocompetent patients. The other bacteria such as
P. aeruginosa are considered opportunistic pathogens, meaning that the microorganisms are non-harming for healthy
hosts and only become a problem in already damaged environments [5]. Both P. aeruginosa and S. aureus are reported
to be associated with a declined lung function [13], increased hospitalisation and lower survival rate [14,15]. Next to
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Figure 1: CF pathogenesis cascade. The lack of CFTR (left part) ultimately leading to inflammation and infection
(right part) [7]

these bacteria, another opportunistic pathogen known to culture the lungs of CF patients is the fungus Aspergillus
fumigatus (A. fumigatus). A. fumigatus colonisation is associated with greater risk of exacerbations, hospitalisations
and lung function decline [16].

1.2 Clinical Problem

To date, the presence of pathogens in the lungs are determined through culturing of sputum or throat swabs. With
a sensitivity of 78% and specificity of 100% in the case of P. aeruginosa, and a sensitivity of 100% and specificity
of 63% for S. aureus (throat swaps showing even fewer discriminating results for both pathogens) the method lacks
accuracy [15]. For CF patients, especially children, coughing up sputum is hard and sometimes even impossible.
Moreover, routine culturing takes several days. A more quick and still reliable detection could be useful to predict the
pathogens in CF patients.

The importance of early detection is underlined by better long-term outcomes for patients when using earlier
treatment. Antibiotic treatment in early P. aeruginosa infection has a high eradication of the infection [5]. Due to this
antibiotic treatment against the P. aeruginosa bacteria the lungs will remain eradicated for a more extended period [17].
Treating the pathogen in a later stadium gives a higher probability of chronic infection, worsening long-term outcomes
for the patient. An added difficulty of late treatment of (meanwhile chronic) P. aeruginosa is that this pathogen
can construct biofilms. The biofilm consists of an extracellular polymeric substance matrix. This so-called mucoid
phenotype of P. aeruginosa provides a more stable environment for the bacteria, in which it can defend itself against
host defences and antibiotic-therapy [18] increasing the chance on morbidity and mortality [19]. Just like P. aeruginosa,
S. aureus in CF patients is also treated with a variety of antibiotics [17]. Treating these pathogens effectively results
in improved lung function and higher life expectancy in CF patients [20]. Treatment for patients with established A.
fumigatus culturing by antifungal therapy has improved the clinical condition while these patients do not respond to
antibacterial therapy [21]. Overall, CF patients’ clinical outcome benefit from early treatment against P. Aeruginosa,
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Figure 2: Age-specific prevalence of airway infections caused by bacteria in CF patients in 2016. Showing the high
proportional of patients infected with SA at a younger age and PA at a later age. [1]

S. aureus and A. fumigatus.

To know when and how to treat the pathogenic infections at an early stage and prevent exacerbations, a fast
and sensitive screening method for pathogens in the lungs is needed and could be of great help in treating infections
in CF patients.

1.3 Pathogen detection in breath

A possible solution might be the detection of volatile organic compounds (VOCs) in exhaled breath. This method
is non-invasive and, unlike sputum collection, almost always feasible for CF patients. VOCs are either produced in
the body by all sorts of metabolic processes (endogenous VOCs) or obtained via inhaled air (exogenous VOCs). A
mix of these VOCs can be measured in the exhaled breath. The endogenous VOCs in the exhaled breath are partly
produced by the lung tissue, making them potential indicators (also called: candidate biomarkers for pulmonary
diseases) [22]. Some main methods to analyse these VOCs are gas chromatography (GC) in combination with mass
spectrometry (MS) and pattern-based techniques which resemble the mammalian olfactory system (electronic nose).
Both techniques are displayed in figure 3 [23].

Electronic nose

A promising, time-efficient, and cost-efficient technique for breath analysis is the electronic nose (eNose) technology.
The eNose technology detects a VOC mixture and projects it into a sensor response pattern. The eNose consists
of cross-reactive sensors, enabling multiple different VOCs to interact with one sensor, and the other way around,
multiple sensors interacting with the same organic compound. This constructed pattern can be compared to previously
obtained mixtures of a population to retrieve information about the breath’s current underlying pathology. The eNose
technology has proven to be of potential use in different kinds of applications [24], especially in a clinical setting [25]. A
downside of eNose measurements is the black-box principle, as no individual VOCs can be identified. This makes it
challenging or even impossible to understand the chemical processes behind the exhaled breath pattern and which
factors play a role in the potential distinction between groups.
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Figure 3: VOC detection methods GC-MS (upper part) and eNose (lower part). The first part of the GC-MS is gas
chromatography, and it can be seen in the figure that the chemicals are separated in this part, after which they are
ionised by the mass-spectrometry. The retention time is given for every m/z ratio, which can be coupled to volatile
compounds. With the eNose method the different sensors of the device all collect values of a breath sample and this is
combined in a PCA result, giving a discriminating pattern instead of insights about differentiating volatile
compounds [23]

Gas Chromatography-Mass Spectrometry (GC-MS)

Another technique for breath analysis is the GC-MS method, which – in contrast to the pattern-based eNose - identifies
chemical compounds based on the retention time (GC) and their ratio of mass to charge (m/z) ratio (MS) [26]. This
technique can distinguish individual VOCs, which can be compared manually with an earlier obtained reference library.
GC-MS is a broadly used method for metabolic analysis, especially for identification and quantification of individual
chemical compounds [26].

The first part of the GC-MS, the gas chromatograph, is used to separate the different VOCs in an exhaled breath
sample over time. The first part of the GC-MS, the gas chromatograph, is used to separate the different VOCs in an
exhaled breath sample over time, as can be seen in the upper part of figure 3. The separation is realised by sending
the breath sample through a long heated column with a mobile phase (i.e. carrier gas – often helium) and a stationary
phase (coating on the wall). The interaction of the VOC to the stationary phase determines the mobility of the
VOC in the column. A component that has a short time of interaction will elute relatively quickly out of the column [27].

The mass spectrometry (MS) makes it possible to identify the by GC separated compounds from the sample,
as can be seen in the right upper part in figure 3. The first step is the ionisation of the mixture. As a result, the
VOCs present in the sample will fracture and obtain charge. Next, the ions are accelerated by electric plates and
deflected by a magnet. The higher the mass, the lower the deflection of the ion is. These flying ions eventually result
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in a mass spectrum, which gives information about the mass of the different building blocks out of which this specific
VOC is built. GC-MS is beneficial for identifying specific compounds and gives precise results. Disadvantages are that
this method is expensive, labour-intensive, and takes time [28].

A quick, easy and accurate method to identify present pathogens and hereby prevent upcoming bacterial infec-
tions could be of great added value in CF-specialised healthcare. Using VOCs seems to be a promising procedure that
is worth investigating.

5



1.4 Goals and hypothesis

The goals of this study are:

I. To evaluate which VOCs have been associated with S. aureus and A. fumigatus in previous literature

II. To determine the diagnostic potential of these compounds for detection of S. aureus and A. fumigatus in exhaled
breath of CF patients

III. To determine if associated VOCs can make a distinction between patients with S. aureus, A. fumigatus, and P.
aeruginosa

The primary outcome of this study is to evaluate if GC-MS data linked to individual VOCs can be used to detect and
predict S. aureus and A. fumigatus colonisation in exhaled breath. As a secondary outcome, we want to know if these
methods can be used to distinguish S. aureus, A. fumigatus and P. aeruginosa.

Previous work in our group resulted in promising results as it concerns the detection of P. aeruginosa through
exhaled VOCs [29]. Therefore, we hypothesize that exhaled VOCs measured by GC-MS can be used to detect and
identify S. aureus and A. fumigatus in exhaled breath and that these VOCs can discriminate patients colonised
by S. aureus, A. fumigatus and P. aeruginosa. For this study, we will make use of data that originates from the
BioMerieux study, an observational 1-year follow-up study on exacerbations among CF patients able to perform breath
measurements. Study visits were performed at Amsterdam UMC (AMC and VUmc) and took place between 2013 and
2015.
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2 Methods
A targeted analysis was conducted to identify compounds that can distinguish S. aureus and A. fumigatus in exhaled
breath. More precisely, first, potential VOC candidates are sought after which their predictive value is checked by
statistic tests instead of looking for statistical findings in a big dataset. In order to execute this targeted analysis, it
was first needed to identify candidate VOCs to look for in the GC-MS data. A systematic review of the literature
provided this information. The targeted analysis steps are the same for S. aureus and A. fumigatus but conducted
separately for both pathogens. In figure 4, the outline of the research is shown schematically.

Figure 4: Schematical outline of the study. In the first part a systematic review is performed; focusing on patients
with established cystic fibrosis a literature search is performed for S. aureus, A. fumigatus and P. aeruginosa to
determine candidate VOCs. These candidate VOCs were then checked in the GC-MS data of the BioMerieux dataset.
VOCs that were both present in the dataset and in more than 2 articles resulting from the literature search aimed on
S. aureus and A. fumigatus, are used to perform univariate and multivariate data analysis. With all columns
combined a topological data analysis for coinfections is performed.

2.1 Study Population and data

The data used in this study all originates from the ‘BioMerieux’ study. The ’BioMerieux’ study is a longitudinal
observational study which investigated the exhaled VOCs in CF patients (adult and paediatric) from the Amsterdam
UMC (Amsterdam, the Netherlands) using GC-MS analysis and clinical data. Patients were followed for one year,
in which exhaled breath and sputum or cough samples were collected during their 3-monthly regular outpatient
visits with maximally five visits per patient. CF patients can have extra visits in case of exacerbation. Patients
were included based on mutations in one or both CFTR alleles, cystic fibrosis-related clinical symptoms and chloride
sweat test. They had to be stable for at least six weeks (no exacerbations) and able to perform lung function tests.
Patients younger than 18 years old were considered children and patients of at least 18 years old were considered
adults. Children were included from the point that they were able to perform the breath experiments. Exclusion
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criteria were mental retardation, CF-related diabetes, smoking, waiting for lung transplantation or participation in
other studies or inability to perform requested manoeuvres or measurements.

Data

Sputum samples
Sputum samples were taken of all patients, for children and patients unable to expectorate sputum a cough swab was
obtained. The sputum samples and cough swabs were part of standard CF clinical care and used to test for infections
with pathogens. Samples were considered positive for a pathogen (S. aureus, A. fumigatus or P. aeruginosa) when the
test returned positive for this specific pathogen in the concerned sputum sample for this visit, if the label was not
positive the label for this sample was considered negative. Patients were considered chronically colonised if 50% of all
the samples in the last year before the study returned positive. If they were not chronically colonised, the patient was
considered not-chronically colonised.

Breath samples
Breath samples were collected using a nose clip to prevent breathing through the nose. First, a wash-out period took
place where patients breathed through a mouthpiece connected to a VOC filter (A1-filter, North, N7500-1U) for 5
minutes continuously, so that the external air is completely filtered from the VOCs present in the environment. This
was followed by an inspiratory capacity manoeuvre, after which the inhaled air was exhaled into a nalophan bag. A
total of 500mL of exhaled air was sampled in desorption tubes (TD tubes) filled with Tenax (GR60/80 Interscience,
Breda, The Netherlands) using a peristaltic pump at a flow pace of 250mL/min for 2 minutes, the sampling tubes
were stored in a refrigerator.

GC-MS analysis
Using a thermal desorption unit (TD100, Markes, Cincinnati, Ohio, USA), the TD tubes were heated to 280°C for
15 minutes with a flow of 30 ml/min which enabled release of the captured VOCs. After cold trapping compounds
at 10°C, they were quickly heated to 300°C for one minute. Compounds were injected through a transfer line at a
speed of 1.2mL/min and a temperature of 180°C, using an Intercap 5MS/Sil GC column (30m”, 0.25mm ID, 1µm film
thickness, 1,4-bis(dimethylsiloxy)phenylene dimethyl polysiloxane, Restek, Breda, The Netherlands). The isothermal
temperature remained 40°C for 5 minutes, after which it was increased in steps of 10°C/min to 280°C. Molecules were
ionised using electron ionisation at 70 eV. A quadrupole mass-spectrometer (GC-MS-GP2010, Shimadzu, Den Bosch,
The Netherlands) was used to detect fragment ions at a scan range of 37-300 Da.

GC-MS data
The results of the GC-MS analysis are stored in an Excel-database, whereby every row represents an analysed breath
sample. Each column shows the intensity for a m/z-value ( ion) that was detected at a specific retention time. The
columns are named by the mass and retention time. Column ‘X45.127’ for example is the data column that indicates
the compounds’ mass of 45 molecular mass and retention time of 127 seconds. These columns are the columns referred
to when linking data columns to a volatile organic compound.
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2.2 Part I: Systematic review

The first step of this study was a systematic review, in which VOCs linked to the pathogens (S. aureus and A.
fumigatus) in previous literature were searched; the VOCs had to be linked to a pathogen at least in two separate
articles. The literature search resulted in two sets of compounds, for which all linked GC-MS data columns were
selected. A more detailed description of the systematic literature search and following steps are described below.

Systematic literature review
A systematic search was conducted using the terms "volatile organic compounds [MESH] AND s. aureus [MESH]"
and terms "volatile organic compounds [MESH] AND a. fumigatus [MESH]" in PubMed. Articles were selected based
on the title, abstract or tables containing volatile compounds produced by the pathogens. No publication date cut-off
was used. At least two researchers performed selection steps. If there was no agreement between researchers whether
to include or exclude an article, the article was discussed until an agreement was found. Next, the complete text of
the included articles was read. If there were no specific VOCs reported specific for S. aureus or A. fumigatus, the
articles were excluded.

Compounds
Subsequently, chemical names of volatile compounds, structural formulas and detection methods were listed. CAS
registration numbers, i.e., unique numerical identifying numbers found using the chemical standards reference database
(version: 2008) of the National Institute of Standards and Technology (NIST), were assigned to each compound to
prevent the same compound’s occurrence in the list twice.

Figure 5: Schematical outline of the selection of data columns in the BioMerieux dataset. From left to right the
results of literature research make it possible to distil the potential data by first making use of AMDIS software, after
which a manual check leads to definitive data columns to include in the targeted analysis.

Compound analysis of GC-MS data from BioMerieux
The available GC-MS data consists of data columns with retention times in combination with a mass-charge-ratio. A
schematic outline of the procedure from potential candidate compounds to GC-MS data is shown in figure 5. To link
the compounds found in the literature to the available GC-MS data, first the retention times linked to the VOCs of
interest needed to be found. This was done by using an automated batch job in AMDIS software, that identifies the
candidate compounds in the samples of BioMerieux data and the coupled retention times. The batch job analysis
compared the known mass spectra to the information stored in the breath samples of the BioMerieux samples. To
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ensure the accuracy of the batch job results, the list of compounds in the samples were checked manually thereafter.
The manual check was done by looking at the mass spectral information in the results of the batch job and checking
if corresponding retention times were realistic for that compound. If these steps all had a positive outcome, the
compounds were confirmed as prevalent in the breath data. Retention times linked to these prevalent compounds were
now manually linked to mass-to-charge-ratios based on their characteristic mass-spectra peaks. For each candidate
compound was checked which relevant columns were present in the dataset. These data columns were selected for part
2 of the study, the targeted analysis.

2.3 Part II: Targeted analysis

This study’s outcomes can be divided into three subsections of analysis, all with their own statistical tools.

1. The detection of S. aureus using univariate, multivariate and topological data analysis

(a) Positive samples vs. negative samples

(b) Positive and chronic infected samples vs. negative samples

2. The detection of A. fumigatus using univariate, multivariate and topological data analysis

(a) Positive samples vs. negative samples

3. The distinction between S. aureus, A. fumigatus, and P. aeruginosa using topological data analysis

The clinical characteristics and GC-MS data were analysed using R studio (RStudio Inc., Boston, United States
of America; Version 1.2.1335) in combination with R-libraries (mixomics, ROC, tidyverse, ggplot2, TDAmapper,
devtools, forcats, reshape2, dbstats, tableone, plotROC, Rcolorbrewer, rms, dplyr, cowplot, sva, limma, pROC, lattice,
lme4, vegan, locfit, igraph)

Univariate analysis

Univariate analysis was performed on each separate column linked to the compounds resulting from the systematic
review. This was done by performing a Mann–Whitney U test. The Mann-Whitney U test is suitable to check if two
independent groups are comparable as a group but shifted in their values. A p-value of under 0.05 was considered to
indicate a significant difference between groups.

Multivariate analysis

Partial Least Squares Discriminant Analysis (PLS-DA) was performed on all columns linked to all found compounds
for the multivariate analysis. PLS-DA is used to find the largest covariance between two labelled groups, i.e. can one
distinguish between two given groups based on the measured variables. The labels, in this case, were based on the
sputum culture and cough swaps. Due to the targeted character of PLS-DA, there is risk for overfitting, therefore
results should be interpreted with caution. Preferably external validation is performed after this type of modelling.

Topological data analysis (TDA)

Another analysis that was included is TDA. This method is based on the topology of a dataset, it connects datapoints in
a point cloud by using information about their geometric shape. TDA is useful for complicated large multidimensional
data sets and has already proven to be of use in the field of (micro)biology, for example in genomic data [30].
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To combine all numerical values of a data point, the Euclidean distance is used to create proximity between the data
points. The Euclidean distance gives a distance (d) between data points (p and q) with given coordinates of infinite
dimensions (n), see equation 1.

d(p,q) =
√

(p1 − q1)2 + (p2 − q2)2 + (p3 − q3)2 + (p4 − q4)2 (1)

When the Euclidean distance calculates distances of all these data points, a point cloud is formed, which can be used
to look into shape information. [30]

Mapper
In this study, the topological analysis method used is called mapper [31]. This method is a popular way to visualise the
structure of a complicated high dimensional dataset. Specific for the mapper function is the filter that is applied after
calculating the distance. The filter used in this analysis is a kernel density estimator (KDE). This filter estimates
the probability density in the datapoints without assuming a gaussian distribution. Other groups of filters can be
divided in focusing on eccentricity or Laplacian operators [31]. The mapper function can be best explained by using
a visualisation. In figure 5 an example is shown of the mechanism used in mapper, in this example executed in
python [32]. The algorithm simplifies the point cloud on the left into a more structured map of dots on the right side.
Note that this example is in two dimensions, making it easier to grasp the concept of what is happening. In practice,
datasets have more dimensions, resulting in the fact that the constructed map cannot be compared to the point cloud.

Figure 6: Visualisation of an example of the mapper algorithm. A point cloud is displayed on the left, on the right
the same data is shown but this time by making use of the mapper algorithm. This example is from a paper of
Mullner et al, has nothing to do with this study and functions merely as an example [32]
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3 Results

3.1 Part I: Systematic review

S. aureus

Systematic literature review
Thirty-four articles were listed as a result of the search query in PubMed. Next, the articles were selected based on
title, abstract or tables containing volatile compounds produced by S. aureus. The literature review resulted in the
inclusion of sixteen articles. A flow chart of literature search process is displayed in figure 7. A complete list of articles
is included in appendix A.

Figure 7: Flow chart of the systematic literature review focused on S. aureus

Compounds
A total of 145 compounds, of which 129 unique CAS numbers, were identified in all literature articles. Twenty-seven
of these compounds were designated in at least two articles, and thus used in further steps to look for linked retention
times. These compounds and their number of designations in articles are listed in table 1.

Compound analysis of GC-MS data
Out of 27 compounds found in multiple articles, 10 compounds were identified in the BioMerieux patients’ breath
samples using AMDIS batch job analysis and manual checking. Out of 10 identified compounds, 8 were possible to
link to a total of 27 m/z-columns of the GC-MS database. These 27 columns were extracted from the database and
analysed using R Studio.
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Table 1: Compounds found in the literature linked to S. aureus

Name [1] CAS [2] M/z [3] Number of mentions [4]
Acetaldehyde 75-07-0 44 3
ethanol 64-17-5 46 4
formic acid 64-18-6 46 2
Aceton 67-64-1 58 3
acetoin 513-86-0 58 2
acetic acid 64-19-7 60 3
2-butanone 78-93-3 72 2
2-methyl-1-propanol 78-83-1 74 3
3-methyl-butanal 590-86-3 86 5
2,3-butanedione 431-03-8 86 3
2-methyl-butanal 96-17-3 86 2
Pentanal 110-62-3 86 2
3-methyl-1-butanol 123-51-3 88 5
1-methyl-propylhydrazine 4986-49-6 88 2
butanoic acid 107-92-6 88 2
ethyl acetate 141-78-6 88 2
dimethyldisulfide 624-92-0 94 2
3-methyl-butanoic acid 503-74-2 102 5
Benzaldehyde 100-52-7 103 4
ethyl butanoate 105-54-4 116 2
n-butyl acetate 123-86-4 116 2
1H-indole 120-72-9 117 2
isopentyl acetate 123-92-2 130 3
ethyl isovalerate 108-64-5 130 2
2-methyl napthalene 91-57-6 142 2
Undecan-2-one 112-12-9 170 2
1,3,5,7-tetraazatricyclo[3.3.1.1]decane 60168-84-5 262 2

Compounds are displayed with their most-used chemical name [1], their CAS registration number [2], their mass-

to-charge ratio [3] and the amount of mentions in articles as a result of the systematic review of literature

[4]

A. fumigatus

Systematic literature review
Ten articles were listed as a result of the search query in PubMed. Next, the articles were selected based on title,
abstract or tables containing volatile compounds produced by A. fumigatus. No publication date cut-off was used.
The result of the literature review is inclusion of 8 articles, the process of the review is displayed in figure 8. The
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complete list of articles is included in appendix B.

Figure 8: Flow chart of the systematic literature review focused on A. fumigatus

Compounds
A total of 54 compounds, of which 33 unique CAS numbers, were identified in the literature search focusing on A.
fumigatus. Five of these compounds were designated in at least two articles and were used to find linked retention
times. These compounds and their number of designations in articles is listed are table 2.

Table 2: Compounds found in the literature linked to A. fumigatus

Name [1] CAS [2] M/z [3] Number of mentions [4]
α-pinene 67762-73-6 93 2
camphene 79-92-5 93 2
α-trans-bergamotene 13474-59-4 119 2
β-trans-bergamotene 15438-94-5 119 2
2-pentylfuran 3777-69-3 81 2

Compounds are displayed with their most-used chemical name [1], their CAS registration number [2], their mass-to-

charge ratio [3] and the amount of mentions in articles as a result of the systematic review of literature [4]

Compound analysis of GC-MS data
Out of 5 noted compounds mentioned in multiple articles, 1 compound was identified in the BioMerieux patients’
breath samples using AMDIS analysis and a manual check. From this one compound it was possible to link to a total
of 20 m/z-columns of the GC-MS database. These 20 columns were extracted from the database and analysed using R
Studio.
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3.2 Part II: Targeted analysis

3.2.1 Characteristics

In this study, the GC-MS data and sputum culture data of 54 patients, of whom 29 adults and 25 children, is used
with a total of 204 visits along with 204 samples from both breath and sputum. Patient characteristics are described
in table 3, the colonisation of all samples is noted in table 4. Both positive sputum samples as well as samples of
chronic infected patients by S. aureus are more prevalent compared to P. aeruginosa and A. fumigatus, especially in
children. In the adult group the colonisation tends to shift in presence from S. aureus to P. aeruginosa.

Table 3: Patient characteristics

Total (n = 54) Adults (n = 29) Children (n = 25

Gender - Male [N (%)] 30 (55.6) 17 (59) 13 (52)
Age [Mean (SD)] 20.9 (14.0) 30.1 (13.0) 10.1 (3.1)
Chronic culture Positive [N (%)]

Pseudomonas aeruginosa 13 (24.1) 9 (31.0) 4 (16)
Aspergillus fumigatus 6 (11.1) 5 (17.2) 1 (4)
Staphylococcus aureus 27 (50.0) 13 (44.8) 14 (56)

Number of visits [ Mean (SD) ] 3.8 (0.9) 3.9 (1.0) 4.1 (0.8)
Data is presented numerical (N (%)) or as mean (N (SD)); SD = standard deviation

Table 4: Sample characteristics

Total (n = 54) Adults (n = 29) Childs (n = 25)

Samples [N] 204 110 94
Visit culture Positive [N (%)]

Pseudomonas aeruginosa 51 (25.4) 35 (31.8) 16 (17.0)
Aspergillus fumigatus 35 (17.2) 22 (20) 13 (13.8)
Staphylococcus aureus 98 (48.0) 46 (41.8) 52 (55.3)

Data is presented numerical (N (%)) or as mean (N (SD)); SD = standard deviation

3.2.2 Detection of S. aureus

Univariate analysis

For all 27 columns linked to the eight compounds, the Mann-Whitney-U test’s resulting scores - for both the positive
versus negative samples and chronically versus not chronically infected patients’ sputum samples - are given in table 5.
A p-value of under 0.05 is considered to display a significant difference between the two groups. In column ‘X85.858’,
a significant difference is present for positive versus negative samples and chronically versus not chronically infected
patients (S. aureus) with p-values both under 0.05. No other column in this analysis showed statistically significant
results.
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Table 5: Mann-Whitney U test results targeted GC-MS columns for S. aureus

Positive vs. negative Chronic vs. Not chronic
Compound Columns

P - values P - values

ethanol x45.127 0.90 0.55
x46.127 0.97 0.57
x47.127 0.95 0.68

formic acid x48.127 0.42 0.86
aceton x43.141 0.76 0.49

x44.140 0.64 0.39
x57.140 0.53 0.35
x58.140 0.75 0.45
x59.141 0.47 0.23

2-butanone x43.221 0.26 0.16
x44.230 0.20 0.06

2,3-butanedione x56.213 0.89 0.93
x86.222 0.84 0.59

butanoic acid, 3-methyl x87.327 1.00 0.84
x88.326 0.79 0.90

Benzaldehyde x77.863 0.07 0.53
x78.865 0.11 0.43
x85.858 <0.05 <0.05
x105.860 0.46 0.71
x106.863 0.15 0.48
x107.863 0.09 0.30

1-butanol, 3-methyl- x70.1007 0.77 0.88
x112.1008 0.31 0.40
x70.1127 0.73 0.48
x97.1127 0.74 0.46
x100.1127 0.69 0.36
x112.1127 0.87 0.61

Results are displayed with the most-used chemical name of the compound [1], the data column which gives information

about the m/z ratio and retention time [2] and the p-values for statistical tests of both groups [3,4] . Breath samples

are considered positive when the result of sputum sampling was positive for S. Aureus and negative when its result

was negative. The sample was considered chronic if the patient linked to the sample is considered chronically infected

with S. aureus and not chronic if this was not the case.

ROC analysis showed that positive versus negative breath samples and chronic versus not chronic samples could be
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discriminated from each other with an AUC of respectively 0.61 (CI 0.53-0.68) and 0.62 (CI 0.53-0.71) (figure 9).

(a) ROC Curve for predicting S. aureus positive

samples versus negative samples using X85.858

(b) ROC Curve for predicting S. aureus chronically

versus not-chronically infected patients using X85.858

Figure 9: ROC-curves for GC-MS data column X85.858 predicting S. aureus

Multivariate analysis

PLS-DA was executed to assess the predictive values for the set of targeted columns. There was no significant
differentiation between the two groups (again S. aureus positive and negative and S. aureus chronic and S. aureus
not chronic) when using discriminating variates on the X and Y-axis (see figure 10). Respectively, 24% and 26% are
explained by the X1-variate and 9% and 11% by the X2-variate, displayed on the Y-axis. No discriminating clusters of
samples can be determined for the colonisation of S. Aureus (left side of figure 10) or chronic infections with S. aureus
groups (right side of figure 10). To compare the predictive performance of the multivariate analysis the AUROC of
the first two components was calculated for both models, resulting in of 0.61 and 0.65 respectively for the positive
versus negative sample and the chronic versus not chronic analysis of 0.63 and 0.67.

Mapper

With the GC-MS data (27 data columns) linked to candidate VOCs for S. aureus a mapper network is constructed. In
this network, the samples are all structured in a way that corresponding samples are either in the same vertex (dots
containing samples) or in vertices positioned close to each. The relations between the vertices gives information about
the coherence of these samples. The direction or shape of the structure is not of additional value. The occurrence of
multiple splits is a result of the coherence of the vertices. It is important to note that one sample can be included in
multiple vertices if the dimensions are similar in multiple ways. The layer of interest of this network can be visualised
to understand how the different columns of the data are represented in the network, this can be varied to look at
multiple aspects.
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(a) Positive samples versus negative samples (b) Chronically versus not-chronically infected samples

Figure 10: PLS DA executed with all targeted GC-MS data columns focusing on S. aureus

Figure 15 includes the network in two different layers in two different plots, where mean values of column X85.858
(the most significant differing GC-MS data column for S. aureus) is used as a colour scale for the vertices on the left
and the amount of S. aureus in the vertices is displayed on the right. In the right plot, a more considerable amount of
S. aureus is observed in the middle of the string. The value of column X85.858 seems to decrease continuously over
the string’s length from vertex 1 until 10. One could say that the values of both networks are inversely related until
vertex 7, where the amount of S. aureus and the mean value of the vertices 9 and 10 both decreases.

(a) Coloured by GC-MS data column X85.858 (b) Coloured by the ratio of S. aureus in samples

Figure 11: (TDA) Mapper plot used to visualise the value of GC-MS data column X85.858 versus the ratio of S.
aureus in samples. 10 vertices are formed based on how the samples correlate, laying in a string with only one extra
split on vertex 7. The mean values of column X85.858 plotted on the vertices decrease steadily from vertex 1 until 10.
The highest amount of S. aureus is found in vertices 4, 5 and 6.

Similar to the network in figure 15 based on S. aureus positive versus negative samples, in figure 12 a network is
plotted based on the S. aureus chronic versus the not chronic samples. In figure 12, the layers are coloured with the
same method in the left and right network as in figure 15 and the same structures are formed, except for some minor
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changes caused by the different properties of the dataset between positive vs. negative and chronically infected vs.
not chronically infected sputum samples.

(a) Coloured by GC-MS data column X85.858 (b) Coloured by the ratio of S. aureus in samples

Figure 12: (TDA) Mapper plot used to visualise the value of GC-MS data column X85.858 next to the ratio
of S. aureus chronic samples. 10 vertices are formed based on the coherence of samples, laying in a string
with only one extra split on vertex 7. The mean values of column X85.858 plotted on the vertices decrease
steadily from vertex 1 until 10. The highest amount of S. aureus is found in vertices 4, 5 and 6.
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3.2.3 Detection of A. fumigatus

Univariate analysis

The resulting scores of the Mann-Whitney-U test for positive against negative samples are given in table 6 of all
columns matched to α-pinene a p-value of under 0.05 is considered to display a significant difference between the
two groups – positive versus negative sputum samples. In column ‘X53.817’, a significant difference is present with a
p-value of < 0.05. No other column showed a significant difference between groups.

Table 6: Mann-Whitney U test results targeted GC-MS columns for A. fumigatus

Compound [1] Columns [2] P – values [3]

α-pinene X51.817 0.40
X52.817 0.22
X53.817 <0.05
X63.817 0.14
X65.817 0.46
X77.817 0.26
X78.817 0.16
X79.817 0.31
X80.817 0.28
X91.817 0.31
X92.817 0.31
X94.817 0.24
X103.817 0.46
X105.817 0.65
X106.817 0.30
X107.817 0.40
X119.817 0.28
X121.817 0.36
X136.817 0.33
X137.817 0.30

Results are displayed with the most-used chemical name of the compound [1], the data column which gives

information about the m/z ratio and retention time [2] and the p-values for statistical test between the positive versus

negative samples[3] . Breath samples are considered positive when the result of sputum sampling was positive for A.

fumigatus and negative when its result was negative.

To visualise the predictive value of this column ‘53.817’, the ROC curve is constructed with an AUC of 0.62, see figure
13.
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Figure 13: ROC-curve for GC-MS data column X53.817 predicting A. fumigatus

Multivariate analysis

As for S. aureus the PLS-DA was also executed for all GC-MS data columns linked to α-pinene and in this manner
indirectly to A. fumigatus. The two groups differ on the most discriminating variates on the X and Y-axis, 85%
explained by the X1-variate and 2% by the X2-variate on the Y-axis, see figure 14. No explicit groups or clusters can
be distinguished by plotting over the (most discriminating) X-variate and Y-variate. To check the predictive value
of the multivariate analysis the AUROC of the first two components was calculated, resulting in of 0.57 and 0.63
respectively.

Mapper

With all 21 GC-MS data columns targeted on A. fumigatus a mapper network is constructed to check the coherence
between linked columns and A. fumigatus. Just like S. aureus detection, the layers of interest of this network can be
varied. In figure 15, the same network is plotted twice, where the values of column X53.817 is used as a colour scale
on the left and the amount of A. fumigatus is displayed on the right. In the right plot, a more considerable amount of
A. fumigatus is observed in the left part and median part of the string, while the right particle is displaying no A.
fumigatus in the vertices. The values of column X53.817 seem to be have the same pattern for the ‘clean’ samples in
the right lower part.
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Figure 14: PLS DA executed with all targeted columns for positive versus negative samples

(a) Coloured by GC-MS data column X53.817 (b) Coloured by the ratio of A. fumigatus in samples

Figure 15: (TDA) Mapper used to visualise the value of GC-MS data column X53.817 (left) versus the ratio of A.
fumigatus in samples (right). 16 vertices are formed based the GC-MS information, forming a network with extra
splits on vertex 6, 13 and 9. The mean values of column X53.817 is the highest in the upper part of the network,
becomes lower in the middle part and has the lowest values in the lower part. The amount of A. fumigatus plotted on
the vertices are similarly the highest in the upper and left section and the lowest in the lower section.

3.2.4 Co-infection analysis using mapper

With the mapper algorithm, a network is constructed with all GC-MS data linked to S. aureus and A. fumigatus and
P. aeruginosa. The GC-MS data columns linked to S. aureus and A. fumigatus resulted from the targeted analysis of
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this study. The columns linked to compounds to look for P. aeruginosa are chosen accordingly to the results of Kos
et al [29]. In figure 16 the constructed network is visualised. Based on the GC-MS data a distinction is made between
the breath samples included in the up left vertices, which contain mainly S. aureus, P. aeruginosa, and ‘clean’ samples
in specific amounts for each vertex, see figure 16. The rest of the string also contains mixed samples.

Figure 16: Mapper used to visualise the distribution of all samples included in the vertices with total population
distribution shown in a pie chart upright. All samples either only positive for S. aureus (SA), A. fumigatus (AF), P.
aeruginosa (PA), none of these three pathogens or multiple pathogens (mix). The amount of samples in the vertices
range from 7 to 56.

To get insights on specific pathogens and their role in the total network, we focus on their linked columns - i.e. X85.858
for S. aureus, X53.817 for A. fumigatus and X73.285 for P. aeruginosa - and the coherence of these plots to the
presence of the pathogen. The potential correlation of a compound to the pathogen’s presence can be confirmed
qualitatively by matching patterns in both plots.

Comparing amount of S. aureus coupled to the mean value of X85.858 (see figure 17) shows a clear outlier in
the mean value of X85.858 in node 2. Next to the higher value in node 2 also the nodes 1, 3, and 4 display higher
values just like a small difference on the other end in node 9 and 10. In the left plot it is visible that in the middle of
the string the ratio of S. aureus is the highest, becoming smaller towards both ends.
In figure 18, the same data is showed for the distribution of A. fumigatus on the left and the values of column X53.817
on the right. There is a outlier visible in the mean value of X53.817 in node 2, being higher than all the other nodes
and thus coloured darker. Other patterns are not visible.
In figure 19 the same plots are constructed for the distribution of P. aeruginosa on the left and the values of column
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Figure 17: Mapper network to visualise to the distribution of S. aureus in the vertices (left) in comparison the
pattern of GC-MS data column X85.858 (right). The piecharts give information about the ratio of S. aureus (red) and
the clean samples. The high (black) and low amounts (white) in the right network are the values of the data column.

Figure 18: Mapper network to visualise the pattern of GC-MS data column X53.817 (right) in comparison to the
distribution of A. fumigatus in the vertices (left).The piecharts give information about the ratio of A. fumigatus
(green) and the clean samples. The high (black) and low amounts (white) in the right network are the values of the
data column

X73.258 on the right. There are higher values visible in the mean value of X73.258 in node 1, 4, 7, and 9. In the
plotted groups of P. aeruginosa, no real pattern can be appointed, except for a increasing amount of P. aeruginosa in
the nodes 1, 4-6, and 9-10.
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Figure 19: Mapper network to visualise the pattern of GC-MS data column X73.258 (right) in comparison to the
distribution of P. aeruginosa in the vertices (left). The piecharts give information about the ratio of P. aeruginosa
(yellow) and the clean samples. The high (black) and low amounts (white) in the right network are the values of the
data column.
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4 Discussion
This study has found several components to be associated with S. aureus and one with A. fumigatus in literature.
There were some data columns (combination of mass and retention times) significantly different between colonised
and not colonised samples, however not consequently pointing in the same direction as other columns linked to these
same compounds. Meaning that no single component with a high predictive value in univariate and multivariate
analyses was appointed in this study’s breath samples, for S. aureus and A. fumigatus. This study could therefore
not indicate candidate VOCs in exhaled breath to distinct S. aureus or A. Fumigatus. It did, however, show a
number of VOCs linked to S. aureus and A. fumigatus published in multiple studies. Next, it did manage to show
the usefulness of the mapper algorithm when using GC-MS data, by visualising properties of a population colonised
with S. aureus, A. fumigatus or P. aeruginosa. These results should be followed by new studies focusing on more
pathogens, gaining more knowledge about using VOCs in exhaled breath as predictors for lung infections in CF patients.

This study was the first to validate previous literature that was found in a systematic review using a targeted
analysis with in vivo GC-MS data for S. aureus or A. fumigatus. The (unpublished) work of Kos. et al has performed a
similar study though focusing on P. aeruginosa [29]. Differentiating from our study is the step of compound confirmation
in the breath samples, instead of performing this check manually we used a batch job analysis in AMDIS and checked
the results by hand. The difference in presence of benzaldehyde in the breath sample analysis of both groups (positive
vs. negative and chronically infected vs. not chronically infected) in this study is according to the findings of four
articles in our systematic review. Filipiak et al, Berrou et al., and Boots et al. published findings that benzaldehyde
was consumed by S. aureus in their studies leading to a lower amount of benzaldehyde [33–35]. Karami et al. mentioned
a higher value of benzaldehyde in cultures with S. aureus [36], meaning that the bacteria produced the benzaldehyde.
Our results show a lower amount of the column X85.858 in the group where S. aureus was present, pointing in the
direction of consumption by the bacteria. However, all other columns that are linked to benzaldehyde (X77.863,
X78.865, X105.860, X106.863 and X107.863) do not result in significant changes. Significantly different amounts of
data columns linked to α-pinene between the positive and negative breath samples, is in line with the findings in two
articles in our systematic review. Ahmed et al. and Heddergott et al. both showed that α-pinene was increased when
A. fumigatus was present in the samples [37,38].

Using topological data analysis for multidimensional datasets is not a new approach, though other studies that
used the mapper algorithm focused on different datasets. Using this method researchers found predictive factors of
wage [39], gene expression on profiling breast cancer [Lum] and clustered player performance in the National Basketball
Association (NBA) [40]. The high dimensional datasets that are used is similar in these divergent studies. It is used as
validation method for clustering methods before [41], but never as an independent approach for GC-MS data. To the best
of the authors’ knowledge, this study was the first to use a mapper algorithm’s topological method to assess GC-MS data.

This study has several strengths. The first being its reproducibility, due to a very clear protocol and transpar-
ent steps this research is easy to repeat, making it suitable for future research to use this as reference for further steps.
Secondly, is the verification of previous research in in-vivo clinical data. This study combines previous knowledge and
tests it in clinical data, adding more context to the previous literature by underlining or disproving . In this field of
interest a lot of studies are conducted to look for the new candidate VOCs that point to pathogens. These studies
are all executed separately, making it look like a competition. Furthermore, the study methods with regards to the
analysis are complete, using multiple angles of approach. Working with multiple statistical analyses, quantitative
outcome measures and a standardised analysis protocol means that the conclusion of this study is not ambiguous.
The findings can be trusted and there is a minimal chance of getting the wrong predictors with this method. Finally,
the standardised method when analysing GC-MS data of the breath samples. The factor of manual work is reduced
making use of a batch job option in the software of AMDIS. Hereby, directly making chance of subjective decisions or
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errors smaller. The fact that these batch results are checked manually makes it more standardised but at the same
time still robust.

This study had several limitations. First, the use of the standardised systematic search. By using such a pre-
defined search protocol, articles with valuable data could be missed. A balance is needed between time investment to
check all articles and looking for the best search terminology. The broader the search, the more time is needed to
check the articles. This systematic search’s reproducibility means that everybody can rerun the search and add more
information if needed. Moreover, this study entirely focused on checking and validating old findings in a newin-vivo
dataset. A direct result is that no new findings could be pointed out by using this new data. The execution of
GC-MS analysis in this research has some potential downsides. The batch job’s check is done by hand and only by
one researcher. This manual check of compounds is subjected to intra-observer variability. Thereby, the AMDIS
software works with relative intensities of the GC-MS data. By not being able to see the absolute values of these
peaks it becomes harder to check the presence of compounds. Finally, data about the colonisation of pathogens in this
study is used as a categorical value, either present or absent. It would be nice to come up with a way of quantifying
the pathogen in the sample, this gives more subtlety to the analysis.

When interpreting GC-MS data one should keep in mind that this technique relies on specifics in the measur-
ing setup. Factors that could influence a GC-MS analysis results are the length and material of the column, the choice
of carrier gas, or the material in which the breath samples are stored. All these factors can influence the results of the
MS analysis.
In this study the information is gathered by a systematic review in the literature, not making it explicit which method
could or could not be used. A wide range of different techniques is present in the compounds list, GC-time-of-flight
MS (GC-TOF-MS), headspace sorptive extraction (HSSE), stir bar sorptive extraction (SBSE), and solid phase
microextraction (SPME), secondary electrospray ionisation MS (SESI-MS) or selected ion flow tube MS (SIFT-MS)
are all encountered with their own specifications.

Another aspect to keep in mind is that GC-MS data is caught with a breath manoeuvre on a particular mo-
ment in time. The exhaled breath mixture is often based on an end-to-end process displayed in the exhaled breath
from lungs but gives no information about the steps in between. These processes can take place on another location,
while the end products will be visible in the breath. It is thus hard to reason which processes are behind some of the
compounds.
One should note that presence of a VOC in a pathway or process does not necessarily mean that this presence can be
measured. The amounts and concentrations are sometimes of such small numbers that the sensors cannot measure
them or cannot discriminate them from samples in which the VOCs are not present.

All data columns except for X85.858 are not significant, making it doubtful that benzaldehyde is a compound
that plays a significant role in this column. The mass spectrum of benzaldehyde is shown in figure 21, the highest
peaks – often the most specific for their compound – are 77, 105 and 106. The columns close to these peaks show not
sufficient differences between S. aureus positive and negative samples, making it very hard to justify the claim that
benzaldehyde can be appointed a predictor for S. aureus.
If a difference between columns linked to benzaldehyde was present in a higher amount when S. aureus is present,
one should still be critical about this finding. It could be the case that the toluene degradation or aminobenzoate
degradation play a role in these differences [43].

Given that all columns except for X53.817 are not significant gives uncertainty that α -pinene is a compound
that could be used as a predictor for A. fumigatus. The columns with a higher relative intensity (see figure 21) should
be more specific for α-pinene when present in the sample. Most of these columns are not differentiating, pointing to
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Figure 20: Mass spectrum of Benzaldehyde [42]

the conclusion that using α-pinene as a trustworthy predictor for A. fumigatus should be approached with a critical
attitude.

Figure 21: Mass spectrum of α-pinene [42]

If more columns corresponding to α-pinene were differentiating in the presence of A. fumigatus, one should still be
critical about this finding, it could be due to limonene and pinene degradation or due to the biosynthesis of secondary
metabolites [43].

PLS-DA is a reliable method to look for a possible distinction in a dataset between two groups, with a risk of
overfitting because it is tailored to the concerning dataset. If this method does not give a usable outcome, there is a
high chance that there is not enough information in the data to predict the distribution of samples. PLS-DA is a
method that looks for – and displays - the highest co variance in the specific dataset and can distinguish between the
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groups. If the plot suggests no separation, there is most likely no separation possible with this kind of mathematical
method(s). Looking at the separation in the results of the PLS-DA for both the pathogens, one can conclude that this
set of columns cannot predict in which group a sample is in.

For the results of both S. aureus and A. fumigatus a relationship can be seen between the pathogen presence
in different groups and the corresponding column values for linked compounds. The analysis in this form is to indicate
a relationship and not quantify it, this is because it relies merely on visualising and not counting or calculating
certain outcome measures. The mapper algorithm’s functioning in this study did not provide a separation between
the pathogen groups. There are however, parts of the algorithm that could contribute to this field of GC-MS research.

Clinical relevance
While looking into exhaled breath analysis, this study found no concrete VOC that could be pinpointed directly to
detect S. aureus, A. fumigatus or discriminate between the pathogens. For further research focused on improving the
clinical relevance it should be noted that using pathogenic information in exhaled breath can be an essential tool to
predict pathogen-induced exacerbations. However, to act on it, the type of the causing pathogen needs to be known,
including the reactivity to antibiotics or other treatment of that specific pathogen. The current method to reach
knowledge about these characteristics is culturing the sputum. No matter how good the results of breath analysis
will become, in-house sputum culturing would still be needed when personalising treatment for patients colonised by
pathogens. An ideal case could be to monitor the patient at home until presence of a possible pathogen is indicated
and more analysis is needed. When pathogen-specific sensors detect such a pathogen, the patient could then go to the
hospital to analyse more specifically which pathogen colonised the lungs and how it reacts on different antibiotics.
Patients who do not cough up sputum at all have an even higher improvement of their personalised care, being able
to track their lungs’ colonization in the future, where this was not possible before. This could mean a major step
forward in healthcare for these patients.
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5 Future recommendations
The systematic review in combination with targeted analysis executed in this study did not pinpoint a specific
biomarker or VOC to predict or prove a presence of either S. aureus or A. fumigatus. However, a targeted analysis
is an exquisite method to pinpoint candidate VOCs and still be able to know the reasoning behind the possible
separation. A couple of recommendations can be made for further research in this field.

For example adding an earlier analysis step to the process. If one is interested in using the targeted approach,
it is first useful to know if there is information in the columns of the concerning dataset. When PLS-DA is executed on
all columns and there seems to be information in the columns, a targeted analysis only added value if a substantiated
list of interesting compounds – and thus data columns – can be found. If beforehand it is shown that there is no
information in the data, further analysis in this direction could prove to be not very useful.

The use of mapper in this study was exploratory. I would recommend the mapper tool to be used for future
research as a tool to look at the data before starting a quantitative analysis. For example by colouring a network to
look for overlapping patterns with regards to pathogen presence. Computing this kind of exploratory analysis is time
consuming. I would instead use the mapper method to check if data is distributed with randomisation. For example, if
samples differentiate or cluster in the network in terms of gender or age. In multi centre studies it is possible to check
if the samples from all centres are evenly distributed or very clustered, and in the same way for longitudinal data or
even to check for differences between executing researchers. It can also be used as a validation of an already suspected
relationship, in this way the specific column needing validation is already known and can be used as colour map. The
computing the network should be done with as much (relevant) information as possible, as long as it is numerical.
The number of dimensions used to build the network only adds more information. It does not affect the results of the
colouring. A specific recommendation for the colouring of categorical data is to include a weighting factor as additional
layer, for example using it as transparency value of the concerning vertex. In this way one can combine the information
about different groups in the vertex with the amount of variety. It is useful to know if the 80% majority belongs to one
variable and the other 20% consists of 4 other variables or just one. Another way – and in my opinion the one with the
most potential - to use the mapper algorithm as a qualitative predictor. If a network of labelled samples is calculated,
one can add a new sample. The location or the vertex of this new sample in the already known network could potentially
give information about the properties of this sample. For example, about colonisation, based solely on the GC-MS data.

Further research to candidate VOCs of pathogens can improve the care for CF patients. Looking at more pathogens
in future research will only provide the clinicians with a more complete idea about the pathogens and in this way,
contribute to the health of the patients.

Development of these technical solutions makes the risk of unexpected exacerbations smaller. Thereby, using
this solution in the home setting could make more information available for the health professionals when using video
consults. It gives more efficiency and freedom for both the patient and the doctor in the outpatient clinic if the
patients’ situation remains stable. Using home monitoring based on the exhaled breath can be a non-invasive, low-cost,
and time-efficient way of checking this patients’ vital lung values, without letting them travel to the hospital for each
check-up. I think this kind of combination of digital consults and home monitoring devices will play a significant role
in the bright future of personalised medicine.
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6 Conclusion
This study found several components to be associated with S. aureus and linked one component to A. fumigatus
according to literature. Testing these components as candidate VOCs resulted in the conclusion that it was not
able discriminate positive and negative samples for both S. aureus and A. fumigatus. There were some promising
significant GC-MS data columns linked to compounds. However, other columns related to the same compounds did
not show the same predictive value. This study did thus not succeed in appointing VOCs to the studies’ pathogens.
Nonetheless, the combination of a systematic review with a targeted analysis is a suitable method to look for VOCs
and could be used in further research. The use of the mapper algorithm can be a useful tool to look into GC-MS data
and should be considered as an exploratory method when continuing research in the exhaled breath field.
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