
Rosetta ANTLR: Ultimate Grammar Extractor
Ewout van der Wal
University of Twente

P.O. Box 217, 7500AE Enschede
The Netherlands

e.w.vanderwal@student.utwente.nl

ABSTRACT
Parsers, and the grammars used to express them, have be-
come geared towards solving for ambiguous parsing paths
by using look-ahead and control structures such as seman-
tic predicates to decide a language. This creates a prob-
lem when attempting to extract a grammar to a gener-
alized structure for use in grammar comparison. While
there is an existing ANTLR to BGF extractor, this im-
plementation is outdated and generalizes away semantic
information during the extraction process. We perform a
replication for the tool for use with ANTLR4 and create
a novel enhanced extraction methodology that improves
the accuracy of the extractor. In the future, this would
allow for more accurate analysis of grammars written in
ANTLR.

Keywords
Grammar Extraction, Grammar Extensions, ANTLR,
BGF, BGF++

1. INTRODUCTION
Over the past decades, parsing techniques have become
less restrictive in the grammatical structures that can be
expressed. Classic parsers such as LL(k) put hard limits
on the look-ahead depth of the parser. Later, Ford intro-
duced the PackRat parsing strategy and Parsing Expres-
sion Grammars (PEG)[7, 8]. These improved on earlier
parser by implementing a backtracking and memoization
strategy to work with all LL(k) and LR(k) grammars in
linear time. However, PEG-based parser would still prove
to have limitations [14].

To overcome the limitations of the PackRat parsing strat-
egy, LL(*) was introduced in 2011 by Parr and Fisher
[14], followed by ALL(*) in 2014 [15]. Unlike PackRat,
these parsers will look ahead as far as is necessary to de-
termine which parsing rule to apply instead of using the
first matching rule. Also, LL(*) and ALL(*) allow for a
great degree of freedom by way of semantic actions and
other grammar extensions.

In practice, the LL(*) and ALL(*) parsers are the basis for
the ANTLR3 and ANTLR4 parser generators respectively,
both of which are widely used [14, 15, 18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy oth-
erwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
34th Twente Student Conference on IT Jan. 29th, 2021, Enschede, The
Netherlands.
Copyright 2020, University of Twente, Faculty of Electrical Engineer-
ing, Mathematics and Computer Science.

In grammar extraction, a grammar defined in a parser spe-
cific language such as ANTLR is converted into an imple-
mentation agnostic representation. Such a representation
could be the BNF-like Grammar Format (BGF) used by
Zaytsev [18], Lämmel and Zaytsev [12]. Accurate gram-
mar extraction allows for grammar comparisons, regard-
less of implementation details, and is an active research
topic. Studies such as those by Zaytsev [18], Lämmel and
Zaytsev [12] into the evolution of parser grammars and by
Fischer et al. [6] into the differences between parsers for
the same version of a language show clear use cases for
grammar extraction.

Grammar extraction is hampered by the implementation
specific structures or semantic actions present in the source
grammars. For example, the ANTLR3 to BGF extractor
used in the Grammar Zoo project [18] disregards any kind
of semantic information. While this makes extracting a
general structure for a grammar much easier, it causes a
loss of information such that the language accepted by
the extracted BGF grammar is not the same as the origi-
nal grammar. This makes comparing grammars extracted
with this tool difficult and inaccurate.

In software engineering, as in many other facets of scien-
tific research, there exists the notion of research replication
as a means of verifying existing research, perhaps in light
of new insights [13]. As shown by Gómez et al. [9], there
is a wide variety of terms used to label exactly the type of
replication a particular research is attempting. In light of
this, we will be using the definitions put forward by Krein
and Knutson [11] as interpreted by Gómez et al. [9]. Our
goal can then be defined in two parts:

• Goal 1: To perform a dependent replication [9] of the
ANTLR3 to BGF grammar extractor created for use
in the Grammar Zoo [18]. The resulting extractor
will consume grammars defined using ANTLR4 and
produce a generalized structure, likely similar to the
BGF structure defined in the original study.

• Goal 2: To create a novel methodology with which
to extract the semantic actions, implicit disambigua-
tions, and other grammar extensions specific to ANTLR4
into a generalized notation, which is agnostic to im-
plementation. These new extraction techniques are
to be implemented on top of the extractor resulting
from Goal 1.

1



To achieve these goals, we will be using the following re-
search questions (RQ) as the basis of our research:

• RQ1: What kinds of semantic actions, implicit dis-
ambiguations and other grammar extensions are used
in real life ANTLR4 grammars? What are the defin-
ing traits of these ANTLR specific grammatical struc-
tures?

• RQ2: Which of the grammatical structures identified
in RQ1 can be generalized into an extracted gram-
mar?

• RQ3: How do we define and implement a grammar
that accurately captures these grammatical struc-
tures without loss of generality?

Our research contributes to the field of grammar extrac-
tion and analysis in two ways. First, we have created a
replication of the ANTLR to BGF extractor used in the
Grammar Zoo project, which is able to extract ANTLR4
grammars. Second, we have created a novel set of ex-
traction rules for the grammar extensions specific to the
ANTLR4 language. The result is a new generalized lan-
guage for more accurately extracting ANTLR grammars,
called BGF++.

The structure of the paper is as follows. In section 2 we
will give an overview of the related works in the field of
grammar extraction. Section 3 will detail the methodology
and describe the dataset. In section 4 we will go into detail
about what results we have been able to achieve, both
in analysing the grammars in the dataset and in creating
BGF++. Finally, we will conclude in section 5 and shortly
discuss the research in section 6.

2. RELATED WORK
In this section we will go over some of the related work in
grammar extraction.

Grammar extraction has been a topic of research at least
as far back as 1996 [16]. These early efforts are geared
at recovering grammars from an incomplete or unreliable
documentation or parser implementation, often aimed at
recovering the grammars for Domain Specific Languages
(DSL).

In their 2002 paper Kort et al. [10] present the Gram-
mar Development Kit (GDK), a toolkit providing support
in grammar engineering which is optimized for COBOL.
One of the functionalities of the GDK is that grammars
can be extracted from a language reference such as doc-
umentation. Like in many of the later technologies, the
GDK internally uses a standardized grammar format, in
this case LLL.

In 2011, Lämmel and Zaytsev [12] describe a method for
using grammar convergence for comparing different ver-
sions of Java grammars extracted from the Java Language
Specification (JLS). As part of this comparison, the gram-
mars are extracted from the JLS into BGF. By extracting
to BGF, it is possible to compare and modify the different
Java grammars using one strict, internally standardized
format.

The work by Fischer et al. [6] shows how grammar ex-
traction is used to make comparisons between grammars
written to follow the same language specification. They
show that even though the authors of the grammars use
the same information, there can be structural differences
between the resulting grammars. As an application of this

type of grammar extraction and comparison the authors
propose to use this technique as an automated method
of comparing grammars made by students studying Com-
puter Science to a reference solution created by their pro-
fessor.

Work by Zaytsev [18] in 2015 on the Grammar Zoo uses
the same BGF notation. As a result of the Grammar Zoo
effort, there is an open-source ANTLR2 and ANTLR3 to
BGF converter already available. As part of our efforts,
we have replicated this grammar extraction tool for use
with ANTLR4.

3. METHODOLOGIES
In this section we will explain the methodology for the
replication of the existing grammar extractor and the anal-
ysis with as goal the extension of the BGF syntax.

As explained earlier, a tool to extract previous versions of
ANTLR to the generalized BGF syntax already exists [5].
This tool was largely unusable as it required Python2 to
run, a version of Python that has been largely deprecated.
The replication would therefore be easier to do from the
ground up.

Seeing as it was not feasible for us to write a grammar for
ANTLR ourselves, we decided to use the grammar that the
ANTLR project provides[1]. However, the grammar and
corresponding implementation did not accept the same in-
puts as the ANTLR tool. This required us to fix these
issues before moving on.

With the grammar now accepting inputs as expected, we
could start replicating the Grammar Zoo extraction tool.
The documentation for this tool provided us with a set of
BGF concepts that could be encoding in an XML format.
Using our grammar, we generated a parse tree visitor that
would produce an XML file with the BGF representation
of an ANTLR4 grammar. Like in the original tool, many
features were left out, because they could not be converted
to BGF.

3.1 Data Source
To get an idea of the features that are unique to ANTLR4
grammars, we would first need to acquire a dataset of,
preferably real-world, example grammars. Github is an
easy to use, online version control website hosting a sizable
number of projects that contain an ANTLR4 grammar and
are publicly available. On top of that, Github provides a
REST API with which it is possible to automatically query
all public repositories.

We created a Javascript application that would use the ax-
ios library to send a search request to the Github API. This
request queried the ”api.github.com/search/code” end-
point with the search parameters ”?q=grammar+extension=
g4”, which returns references to all public files containing
the word grammar, and with the correct ANTLR4 exten-
sion. One of the fields in the search API response to a
search request is the URL from which the file correspond-
ing to the request can be downloaded. From there, we
were able to extract only these URLs to a file on disk.
Next, we iterated over these URLs and downloaded the
grammars.

One issue with this approach was that it did not preserve
the names of the files that were downloaded, so in order for
ANTLR to recognise them as proper grammars, we had to
extract them from the content of the file. After this was
complete, we had a dataset of 370 grammars.

2

api.github.com/search/code
?q=grammar+extension=g4
?q=grammar+extension=g4


3.2 Dataset
Of the 370 grammars downloaded from Github, the ANTLR
tool was unable to parse six grammars. Our tool had is-
sues with one other grammar, where the name of one of
the productions was an ANTLR keyword. Renaming the
production fixed this issue, so only the incorrect grammars
were left out of the further analysis. This left us with a
dataset of 364 correct, real-world grammars from which we
could extract any features specific to ANTLR that have
an effect on the language accepted by the grammars.

3.3 RQ1
From here we can go on to identify the constructs that
are unique to ANTLR that are not currently extracted to
BGF. By looking at the documentation, digging through
the reference grammar[1], and going over the dataset we
compiled a list of constructs that we would need to look
at. This list contains all of the constructs that we can
identify, some of which are possibly not interesting for our
usecase.

With the list of all features we create a matrix that for
each grammar in the dataset marks which of the ANTLR
specific features are found in that grammar. For many
of these, we also identify commonly occurring patterns
within the feature. We can use this information later on
to get a better understanding of the makeup of our dataset,
and to estimate the impact of adding a feature to BGF++.

This methodology bears resemblance to the research strat-
egy called Grounded Theory [17]. The aim of Grounded
Theory, as defined by Tie et al. [17], is to ”generate the-
ory that is grounded in the data.” Grounded Theory is an
appropriate strategy when little is known about the sub-
ject. Instead of starting from the beginning, we are able to
leverage the information from the documentation and ref-
erence grammar to speed up the identification of relevant
features.

3.4 RQ2
In order for any ANTLR specific construct to be consid-
ered for BGF++ it has to change the accepted language
of the grammar, and be feasible to implement. For some
of these constructs, the original BGF language specifica-
tion does already allow the construct to be extracted, but
the previous extraction tool does not do this. In these
cases, we choose to implement these extractions without
extending the BGF notation.

3.5 RQ3
Next, we determine what extensions to the BGF notation
are necessary in order to extract each of the ANTLR spe-
cific constructs. The goal is to use as few extensions as
possible to achieve total coverage of the features we will
be extracting.

Finally, the list of required extensions to BGF is imple-
mented into BGF++.

4. RESULTS
In this section we will go over the results we were able to
achieve over the course of this research.

The first task we set out to do was to replicate the previous
ANTLR to BGF extractor for use with ANTLR4, and to
then improve on this implementation by increasing the
accuracy. We achieved this goal, and created a replication
in C# with the new additions[4].

Although we use the same BGF syntax in our replication,
performing replications on the same grammar in ANTLR3

and ANTLR4 using the two tools does not produce ex-
actly the same output. No grammatical information is
lost, but the new tool does away with many <expression>

and <sequence> nodes. The replicated extractor guaran-
tees that nodes on the same level within a production are
a sequence, and an expression is always captured in one
node. For example, where the original tool would create:

<expression>

<sequence>

<expression>

<nonterminal>rule_name</nonterminal>

</expression>

<expression>

<nonterminal>rule_name_2</nonterminal>

</expression>

</sequence>

</expression>

The replication simplifies this to:

<expression>

<nonterminal>rule_name</nonterminal>

<nonterminal>rule_name_2</nonterminal>

</expression>

This reduces the footprint of the output of the tool. That
the two <nonterminal> nodes belong to the same sequence
is implied by their existence on the same level within the
surrounding <expression> node.

4.1 Enhancing the replication
The original tool did not make complete use of the existing
BGF specification. Before moving on extending the BGF
syntax, we can first exhaust the existing options. BGF
already has the <epsilon> node, which allows us to spec-
ify that a production alternative accepts the empty string
as input. Also, BGF supports Boolean grammars, where
the <not> node means the input is accepted if it does not
match what is inside the <not>. In ANTLR, the ~ con-
struct allows for character set negation. For example, the
rule NOT_A: ~[A]; matches any character that is not the
uppercase letter A.

There are two other constructs that we implemented, which
we do not list in the results below, because they are not
constructs specific to ANTLR. However, they did require
additions to the BGF syntax.

The first is character sets, which are not implemented in
the original tool. ANTLR allows character sets to have
UTF-8 characters, Unicode escape strings, and one or more
character ranges. In order to extract exactly what char-
acters are captured by the character set, we introduce the
<charSet>, <charRange>, and <char encoding="...">

nodes. The encoding of a character is set to UTF-8 nor-
mally, and to Unicode when a Unicode escape string is
detected.

Second, we added support for extracting *? and +?. Nor-
mally, the * and + operators will greedily consume as much
input as they can. The question mark makes the evalua-
tion lazy, preferring to consume as little input as possible.
The <star> and <plus> will now have a greedy attribute.

Before implementing any enhancements to the tool that
extract ANTLR specific constructs, we can already per-
form a more accurate extraction of ANTLR grammars
than the original tool.

3



4.2 RQ1
There are two distinct types of constructs specific to ANTLR:
code written in the parser target language injected into the
grammar, and ANTLR keywords. Table 1 lists these con-
structs and in how many grammars in the dataset each
construct can be found.

ANTLR construct Outcome # of grammars

@header{...} Not extracted 90
@members{...} Not extracted 46
@rulecatch{...} Not extracted 2

@init{...} Not extracted 7
production arguments Not extracted 14
production locals Not extracted 7
production returns Not extracted 29
identifier = expression Not extracted 85

{...}? Partially extracted 17
{...} Not extracted 55

fragment Extracted 103
-> pushMode(...) Extracted 20
-> mode(...) Extracted 4
-> popMode Extracted 21
-> skip No effect 166
-> more No effect 1
-> type(...) No effect 9
-> channel(...) No effect 48
import ... Extracted 65
options{tokenVocab} Extracted 76
options{language} Extracted 18
tokens{...} Extracted 18
<assoc=...> Extracted 8

Table 1. All ANTLR features

Code can be injected into a grammar in three ways. The
first is to use the @header{}, @members{}, and @rulecatch{}

keywords. Code between the curly braces following @header

is added to the top of the generated parser, before the class
definition. In the dataset this is almost exclusively used to
add package definitions, imports, and doc comments. The
@members keyword works in the same way, but the code is
added within the parser class. The dataset shows that this
is used to add various private variables and and functions
to the generated parser class. The @rulecatch keyword
is used to define custom behaviour when the generated
parser encounters an error.

Another method is to insert code into one of the gram-
mar productions is to declare production parameters, lo-
cal variables and return values. These are defined using
@init, locals, returns, and the square brackets next to
a production name, and can be used by other code in
the rule. A terminal or nonterminal may also be given
an identifier by which code inserted into the surrounding
production may interact with it.

The third method is to insert actions and predicates into
the productions using {} and {}? respectively. Actions
contain code that is run once the parser has successfully
entered an alternative in a production. Predicates are run
before an alternative is entered by the parser and are used
to conditionally allow or deny access to a certain parse
path.

The remaining keywords can be split by whether they are
used by the lexer or the parser. In the lexer ANTLR uses
the fragment, -> pushMode(), -> mode(), -> popMode, -
> skip, -> more, -> type(), -> channel(), and ~ con-
structs.

A production with the fragment modifier does not produce
a token, and these productions must always be used in
another lexer production.

Lexer modes allow the lexer to enter different sub-grammars
within one overarching grammar. The -> pushMode(),
-> mode(), and -> popMode keywords control the lexer
moving between these grammars. Later, we will go into
more detail about the difference between -> mode() and
-> pushMode().

The other arrow functions -> skip, -> more, -> type(),
and -> channel() are used to control the output of the
lexer after an input has been successfully matched to a
token. When analysing a grammar we are interested in
the language accepted by the generated parser. Since these
four functions do not change the accepted input, they can
be safely ignored.

The final four rows in table 1 are used in the parser. Gram-
mar files can be imported into one another with import,
and extra tokens are defined with tokens{}. ANTLR
also supports the grammar options superClass, language,
tokenVocab, tokenLabelType, and contextSuperClass. Of
these, we extract the tokenVocab and language options.
The former is used to import tokens from another gram-
mar, and the latter defines the language that the parser
will be generated in (the default is Java).

Finally, <assoc=...> is used to define the associativity
of a production alternative. By default ANTLR is left-
associative, and this modifier can be used to make a pro-
duction right-associative.

0 1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

76

117

75

33

21 21

9 11

1

Number of constructs

O
cc

u
rr

en
ce

s

All ANTLR constructs

Figure 1. Constructs labeled No effect in table 1 are not
included.

Figure 1 is a histogram of the amount of ANTLR con-
structs that are listed above, found in the grammars in
the dataset.

4.3 RQ2
From this understanding of ANTLR we can determine
which of the constructs listed in the previous section can
be extracted to BGF++. An overview of these choices can
be found in table 1. In this section we will go into further
detail for some of these choices.

All of the ANTLR constructs that we label Not extracted

are directly or indirectly only useful when using actions
and predicates. Actions are used in 55 out of the 364 to-
tal grammars in the dataset. From that number, it would

4



seem as if we are still losing information in 15.11% of the
grammars in the dataset. However, this changes when we
also look at the makeup of these actions. Figure 2 shows
that of these 55 grammars, we have determined that 41
(74.55%) of these grammars had actions with no effect on
the language accepted by the grammars. In these cases,
the actions would for example be used to generate a cus-
tom parse tree, which does not have to be done in the
grammar file. ANTLR generates a parse tree visitor and
listener base class specifically for this purpose. This leaves
us with 14 grammars, amounting to 3.85% of the dataset,
with effects that are either unclear or do change the ac-
cepted language.

No Effect

41

Unknown Effect

6 Effect

8

Figure 2. Makeup of grammar actions

The other notable row is the predicate (shown as {...}?),
which we have labeled Partially extracted. Predicates
are shorter pieces of code only meant to output a boolean
value. While it is impractical for us to try and parse these
predicates, it is possible to extract this information in
some form. As long as this information is not lost, an
analysis of the extracted structure done on a case by case
basis could prove to successfully utilise this information
anyway without cluttering the BGF++ syntax too much.

There are four rows with the No effect label. These are
constructs that ANTLR uses, but that do not have any
effect on the accepted language of the grammar. We list
them in table 1 for completeness sake, and have not in-
cluded them in any of the other graphs.

Finally, we have also identified a number of constructs that
we are able to extract to BGF++.

Figure 3 is a histogram of the amount of ANTLR con-
structs remaining in the grammars in the dataset after
removing the constructs that we are able to extract. From
this, we can see that 214 of the 364 grammars (58.79%)
can be extracted to BGF++ with no loss of information
about the accepted language. This is a marked increase
over the 58 grammars seen in figure 1. Of the remaining
150 grammars, we know that there are 14 grammars with
actions that cannot be determined to have no effect and 17
grammars with predicates. Due to overlap between these
groups, we have 26 grammars (7.14% of the dataset) that
cannot be extracted without a loss of information. The
other 124 grammars (34.07%) will lose information, but
this does not impact the language that the grammar ac-
cepts. In total, we can extract 338 grammars (92.86% of
the dataset) with no loss of accuracy with respect to the
accepted language of the grammar.

4.4 RQ3
From the previous section we know that we can extract a
portion of the constructs specific to ANTLR. In this sec-

0 1 2 3 4 5 6 7
0

50

100

150

200

214

60
44

17
7 13

4 5

Number of constructs

O
cc

u
rr

en
ce

s

Unextracted ANTLR constructs

Figure 3. Constructs labeled No effect in table 1 are not
included.

tion we will explain how we extract these constructs from
ANTLR to BGF++. Table 2 is an overview of all of the
changes that are made in order to improve the extraction.

To extract the predicates we create a new <predicate>

node. This node is placed in an alternative in the same
place as the predicate was in the ANTLR grammar, and
will contain the code that was in the predicate. An anal-
ysis that does not take predicates into account can simply
skip this node.

As explained earlier, the fragment keyword is a modifier
for a production. Therefore, we can add this information
to the already existing <production> node as an attribute.
If a production is a fragment, this would produce the XML
node <production fragment="true">.

Modes in ANTLR are treated as separate grammars in
BGF++. In order to extract the mode switching be-
haviour into BGF++ we need to be able to switch be-
tween these grammars. Like in ANTLR, this is done us-
ing a grammar stack. When the ANTLR lexer encounters
the pushMode() command, the new mode is pushed onto
the mode stack and the lexer moves to the corresponding
mode. In BGF++, this is extracted as the <pushGrammar>

node. The popGrammar command is extracted into the
<popGrammar> node. There is also the mode() command
in ANTLR, which does not add the new mode to the top
of the stack. Instead, it replace the current head of the
mode stack with the new mode. For the sake of simplicity,
we first create a <popGrammar> node and immediately after
it create a <pushGrammar> node. Any grammar analysis
tool that uses BGF++ is expected to keep track of this
stack themselves, and always make sure that the stack is
non-empty whenever the analyser is in a grammar.

ANTLR grammars can be imported into other ANTLR
grammars. For example, by splitting the lexer and parser
and importing the lexer into the parser. To make sure
this information is not lost, we create an <importGrammar>

node for each of the import statements in the grammar.

Earlier, we determined there were two grammar options
that had merit to extract. These are the tokenVocab and
language options. The tokenVocab option allows for im-
porting tokens from other grammars, which we extract as
the <importTokens> node in order to set it apart from the

5



ANTLR construct Extraction to BGF++

{...}? Create a new <predicate> node
fragment Create a new ”fragment” attribute
-> pushMode(...) Create a new <pushGrammar> node
-> popMode Create a new <popGrammar> node
-> mode(...) Combine a <popGrammar> and <pushGrammar>
import ... Create a new <importGrammar> node
options{tokenVocab} Create a new <importTokens> node
options{language} Create a new <targetLanguage> node
tokens{...} Use the existing <production> node
<assoc=...> Create a new ”associativity” attribute

Table 2. All ANTLR features

grammar import. The language option is extracted to the
<targetLanguage> node. Although the target language
for the parser generation does not change the accepted
language of a grammar, it does make it easier to deter-
mine what language a predicate is in. It is also possible
to provide this as a command line option, so not seeing
this option does not guarantee that the target language is
Java.

Importing other grammars and setting the grammar op-
tions is done in the preamble of an ANTLR grammar,
before the first production definition. This means that
we can also create a <preamble> node that contains all
<importGrammar>, <importTokens>, and <language> nodes.

Aside from importing tokens from other grammars, ANTLR
also supports extra token definitions in the preamble us-
ing the tokens{} construct. These imaginary tokens are
recognised by ANTLR as correct token types, but do not
contribute to parsing the input. Instead, they can be used
to add information to the resulting parse tree. Tokens are
extracted into <production> nodes, just like any other
production. The resulting productions , the production
will have an <empty> node to show that there is no asso-
ciated input. These token definitions are not put in the
preamble, because they can be treated as any other gram-
mar production.

4.5 Comparing the two tools
In order to compare the two tools, we looked at two extrac-
tions done by the original tool [2, 3]. The first grammar is
for Ada, written in ANTLR2. The second grammar is for
Google Dart, written in ANTLR3. For both grammars,
we translated them to ANTLR4 by hand to the best of
our ability. These translations were then passed through
the ANTLR4 to BGF++ extractor.

The largest difference between the original extractions of
these grammars and the newly extracted BGF++ versions
is the extraction of the content of the tokens{} keyword.
Both grammars define a list of tokens, which the original
tool throws away. The new implementation preserves this
information.

Also, as explained earlier, our enhanced tool uses less
<expression> and <sequence> nodes than the original
tool. As a result, the BGF++ representations of the gram-
mars are smaller than the extractions to BGF, while also
preserving more of the information in the grammar.

5. CONCLUSIONS
This research had two objectives: to replicate an existing
ANTLR3 to BGF grammar extractor written in Python2

to extract ANTLR4, and to investigate the various ANTLR
specific constructs that prevented the previous tool from
accurately extracting ANTLR grammars.

We were successful in the replication, using a grammar for
ANTLR created by the ANTLR project themselves and
kept up to date by the community. This grammar, espe-
cially the C# superclass implementation, ended up having
some errors that we needed to fix first. These fixes have
found their way back into that repository. Our replication
gave us a good place to go on to achieve the second goal.

Our second goal was to create a novel methodology for
extracting ANTLR specific constructs from grammars to
a generalized notation. We did a survey of 364 grammars
downloaded from Github, from which we identified a list
of constructs that we could implement as extensions to
BGF. The result of this is that we have a much better
understanding of what ANTLR features are used in real
world grammars.

With this knowledge we were able to implement a gram-
mar extractor that could extract 214 grammars without
needing to remove any in-grammar code, and extract up
to 338 grammars from our dataset while only losing code
with no effect on the accepted language.

6. DISCUSSION
There are a couple of points that need to be addressed
regarding the research laid out in this paper.

For one, the extraction is far from perfect, absolutely no
effort is made to preserve in-grammar code. It would have
been unfeasible to, given the amount of time available,
attempt to extract, parse, or analyse this code in any
meaningful way. This especially, because the code in the
grammars was written in multiple languages, often with
no indication which language was used.

Second, the current implementation of the extractor is
far from optimised. For example, currently the extrac-
tor treats imported grammars as simply as string to be
displayed. A meaningful upgrade would be to actually
perform the import and to combine the grammars into
one, larger grammar that could be fully analysed. The
same goes for the tokenVocab option.

Finally, there are no rigorous tests in place to ensure that
the extractor and the underlying grammar accept exactly
the same language as the official ANTLR tool. One dif-
ference that we have already observed, and consequently
ignored for the sake of moving forward, is that a rule which
has the same name as a built in keyword is accepted by
the official tool, but not by the extractor.

6



References
[1] URL https://github.com/antlr/grammars-v4.

[2] . URL https://slebok.github.io/zoo/#ada_

ada95_kellogg.

[3] . URL https://slebok.github.io/zoo/#dart_

google.

[4] . URL https://github.com/EwoutWal/

ANTLR-Extractor.

[5] . URL https://github.com/grammarware/slps/

tree/master/topics/extraction/antlr.

[6] B. Fischer, R. Lämmel, and V. Zaytsev. Comparison
of context-free grammars based on parsing generated
test data. In A. Sloane and U. Aßmann, editors, Soft-
ware Language Engineering, pages 324–343, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg. ISBN
978-3-642-28830-2.

[7] B. Ford. Packrat parsing: Simple, powerful, lazy,
linear time, functional pearl. In Proceedings of the
Seventh ACM SIGPLAN International Conference on
Functional Programming, ICFP ’02, page 36–47, New
York, NY, USA, 2002. Association for Computing
Machinery. ISBN 1581134878. doi: 10.1145/581478.
581483. URL https://doi.org/10.1145/581478.

581483.

[8] B. Ford. Parsing expression grammars: A
recognition-based syntactic foundation. In Proceed-
ings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
POPL ’04, page 111–122, New York, NY, USA,
2004. Association for Computing Machinery. ISBN
158113729X. doi: 10.1145/964001.964011. URL
https://doi.org/10.1145/964001.964011.

[9] O. S. Gómez, N. Juristo, and S. Vegas. Under-
standing replication of experiments in software en-
gineering: A classification. Information and Soft-
ware Technology, 56(8):1033 – 1048, 2014. ISSN
0950-5849. doi: https://doi.org/10.1016/j.infsof.
2014.04.004. URL http://www.sciencedirect.com/

science/article/pii/S0950584914000858.

[10] J. Kort, R. Lämmel, and C. Verhoef. The grammar
deployment kit—system demonstration—. Electronic
Notes in Theoretical Computer Science, 65(3):117–
123, 2002.

[11] J. L. Krein and C. D. Knutson. A case for repli-
cation: synthesizing research methodologies in soft-
ware engineering. In RESER2010: proceedings of the
1st international workshop on replication in empirical
software engineering research. Citeseer, 2010.

[12] R. Lämmel and V. Zaytsev. Recovering grammar rela-
tionships for the java language specification. Software
Quality Journal, 19(2):333–378, 2011.

[13] A. A. Neto. A strategy to support replications of
controlled experiments in software engineering. SIG-
SOFT Softw. Eng. Notes, 44(3):23, Nov. 2019. ISSN
0163-5948. doi: 10.1145/3356773.3356796. URL
https://doi.org/10.1145/3356773.3356796.

[14] T. Parr and K. Fisher. LL(*): The foundation of
the antlr parser generator. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’11, page

425–436, New York, NY, USA, 2011. Association for
Computing Machinery. ISBN 9781450306638. doi:
10.1145/1993498.1993548. URL https://doi.org/

10.1145/1993498.1993548.

[15] T. Parr, S. Harwell, and K. Fisher. Adaptive LL(*)
parsing: The power of dynamic analysis. In Proceed-
ings of the 2014 ACM International Conference on
Object Oriented Programming Systems Languages &
Applications, OOPSLA ’14, page 579–598, New York,
NY, USA, 2014. Association for Computing Machin-
ery. ISBN 9781450325851. doi: 10.1145/2660193.
2660202. URL https://doi.org/10.1145/2660193.

2660202.

[16] A. Sellink and C. Verhoef. Development, assessment,
and reengineering of language descriptions. In Pro-
ceedings of the Fourth European Conference on Soft-
ware Maintenance and Reengineering, pages 151–160,
2000. doi: 10.1109/CSMR.2000.827323.

[17] Y. C. Tie, M. Birks, and K. Francis. Grounded
theory research: A design framework for novice re-
searchers. SAGE Open Medicine, 2019. doi: 10.1177/
2050312118822927. PMID: 30637106.

[18] V. Zaytsev. Grammar zoo: A corpus of ex-
perimental grammarware. Science of Computer
Programming, 98:28 – 51, 2015. ISSN 0167-
6423. doi: https://doi.org/10.1016/j.scico.2014.
07.010. URL http://www.sciencedirect.com/

science/article/pii/S0167642314003347. Fifth is-
sue of Experimental Software and Toolkits (EST): A
special issue on Academics Modelling with Eclipse
(ACME2012).

7

https://github.com/antlr/grammars-v4
https://slebok.github.io/zoo/#ada_ada95_kellogg
https://slebok.github.io/zoo/#ada_ada95_kellogg
https://slebok.github.io/zoo/#dart_google
https://slebok.github.io/zoo/#dart_google
https://github.com/EwoutWal/ANTLR-Extractor
https://github.com/EwoutWal/ANTLR-Extractor
https://github.com/grammarware/slps/tree/master/topics/extraction/antlr
https://github.com/grammarware/slps/tree/master/topics/extraction/antlr
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/581478.581483
https://doi.org/10.1145/964001.964011
http://www.sciencedirect.com/science/article/pii/S0950584914000858
http://www.sciencedirect.com/science/article/pii/S0950584914000858
https://doi.org/10.1145/3356773.3356796
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1145/2660193.2660202
http://www.sciencedirect.com/science/article/pii/S0167642314003347
http://www.sciencedirect.com/science/article/pii/S0167642314003347

	Introduction
	Related Work
	Methodologies
	Data Source
	Dataset
	RQ1
	RQ2
	RQ3

	Results
	Enhancing the replication
	RQ1
	RQ2
	RQ3
	Comparing the two tools

	Conclusions
	Discussion

