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Abstract 

Pain management can considerably influence the recovery of a patient. A system for 

automatic pain detection can therefore not only support health practitioners in their work but 

also improve the patient’s well-being. Previous work on automatic painful facial expression 

recognition has been successful in discriminating painless from painful expressions. In this 

study, some of the limitations of these studies will be addressed by collecting a video database 

with continuous self-ratings of pain which enables to use self-ratings as ground truth at video 

frame level. Using machine learning algorithms, facial features that represent changes in the 

face due to expressions are ranked by their importance in discriminating non-painful from 

painful expressions. Different subsets of features are used to analyse which might be the most 

promising one in recognising painful facial expressions. The results show that the model 

performs well on new data if it was trained on data from the same participants, but on a chance 

level if a between-subjects design was used. Further, the model benefitted from excluding 

participants that indicated high levels of tiredness, which indicates that considering tiredness 

as a confounding variable could be important for future research about automatic painful facial 

expression. Overall the results show that a model built on the collected database can 

successfully be used to discriminate between no pain and pain classification when using 

subject-specific models. 
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Preface 

This master thesis was written in cooperation with the Institute of Experimental 

Psychophysiology (IXP) in Düsseldorf, Germany. It is part of a bigger project that is a joint 

collaboration with the University of Lübeck, the Silesian University of Technology in Zabrze, 

Poland and the company APA and is partly funded by the German ministry of education and 

research (BMBF) within the research programme ICT 2020. The project aims to create a 

multimodal device for automatic pain detection that can be used in a clinical setting to support 

health care workers. The system will be based on on-line processed indicators such as facial 

expressions and different physiological features. IXP hereby is responsible for creating a 

machine learning model that is able to detect pain based on facial expressions. I was asked to 

create a database on which the model can be trained on. The following study therefore (1) 

describes the creation of the database including the method selection and (2) gives first insights 

into the performance of a machine learning model that is trained on this database. 
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1. Introduction 

Pain control is a crucial part of the treatment for patients in the intensive care unit (ICU). It can 

influence the duration of infection, mortality and the length of stay in the ICU (Dale, 

Prendergast, Gélinas, & Rose, 2018). Yet, nearly half of the ICU patients can recall having 

experienced moderate or severe pain during and outside of treatment procedures and many 

physicians seem to underestimate the amount of pain common procedures can cause (Dale et 

al., 2018).  When assessing pain, one of the most used and most simple method, that many of 

us who were unfortunate enough might be familiar with, is the oral numeric rating scale from 

0 to 10. Self-reported pain assessments however quickly reach their limits as soon as the 

practitioners are working with patients who are unable to express their pain. Reasons for this 

can be that the patients are intubated, sedated or suffer from illnesses like dementia that impairs 

their cognitive ability (Ashraf et al., 2009), which are circumstances that are frequent in ICU. 

In these cases, there are alternatives to use assessments based on observation, e.g. the Critical-

Care Pain Observation Tool (CPOT), a valid and reliable tool based on observing behavioural 

changes like facial expression, muscle tension and body movements (Dale et al., 2018). But 

even behavioural assessment tools deal with the disadvantage that they require an observer who 

takes their time to assess the patient’s pain. Within the typically understaffed work environment 

that practitioners have to deal with, it is often impossible to detect potential pain early on. A 

system that can automatically detect pain can thus have a tremendously beneficial impact. The 

possibility to automatically detect pain at a very early stage would not only strongly reduce the 

patient’s suffering and support their recovery but would also lighten the workload of the health 

care providers.  

The current study aims to contribute to the research on developing a system for 

automatic pain detection. In this thesis, the focus will be on the facial expressions of people to 

detect pain. For this, a database consisting of video frames of facial expressions from people 

under varying degrees of pain will be created, in which the frames are annotated with the 

participant’s pain ratings. The acquired facial expression database will then be analysed to 

answer the questions 1) if it can be used to discriminate painful from non-painful expressions 

and 2) which of the facial features in the frames might be the most suitable to detect pain.  

 In the following, an overview of the related work regarding automatic facial pain 

expression will be given to present the current state of research on this topic and to identify 

areas where the research on video-based pain detection might be improved on. Based on this, 

a second literature research will be conducted to select the appropriate methods for creating a 
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database consisting of video frames of painful facial expressions. This database will then be 

analysed to answer the research questions presented above. 

 

2. Related Work 

Facial expressions can provide relevant information about someone’s pain and research 

has shown that it can serve as a reliable measuring instrument (Craig, Prkachin, & Grunau, 

1992). One of the most widely used approaches for analysing facial expressions is the Facial 

Action Coding System (FACS), that was developed by Ekman and Friesen in 1978 (as cited in 

Chen, Ansari, & Wilkie, 2018; Pantic & Rothkrantz, 2004; Whitehill, Bartlett, & Movellan, 

2013). The FACS uses so-called Action Units (AUs) which can define 46 movements of the 

face (Whitehill et al., 2013). It has been successfully utilised for the detection of a variety of 

cognitive states (see Ekman & Rosenberg, 2005 for an overview and review of studies using 

the FACS) and has achieved good results in the discrimination of “no-pain” vs. “pain” facial 

expressions (Ashraf et al., 2009).  

A combination of twelve AUs has been repeatedly found to be related to pain 

expressions (see for example Craig, Hyde, & Patrick, 1991; Lucey et al., 2012; Prkachin, 1992). 

These AUs include tightening of the eyelids, pulling of the lip corners and closing of the eyes 

(see Table 1 for a full list). Out of these AUs, four combinations have been found to be relevant 

in particular. These are brow-lowering (AU 4), tightening the eyelids (AU 6) or cheek raising 

(AU 7), nose wrinkling  (AU 9) or upper-lip raising (AU 10) and eye closure (AU 43, Kunz, 

Scharmann, Hemmeter, Schepelman, & Lautenbacher, 2008; Prkachin, 1992; Prkachin & 

Solomon, 2008). These findings led to the development of the Prkachin and Solomon Pain 

Intensity (PSPI) metric (Prkachin & Solomon, 2008), which combines mentioned pain-related 

AUs to calculate a pain intensity score. Werner et al. (2016) raised criticism regarding the use 

of the PSPI as ground truth in pain recognition. They state that the statistical analysis on which 

the PSPI is based on, was done on facial expressions on a video sequence level, so one has to 

be careful whether it is equally reliable on a frame by frame level. On a sequence level, a series 

of frames are annotated with one pain rating that was usually given after the pain stimulation 

instead of having one pain rating for each frame, which is the case for a frame level annotation. 

Analysing pain on a sequence level ground truth instead of a frame level ground truth could 

have the benefit of yielding information over the development of the pain but can have the 

disadvantage of overgeneralisation, as many different pain levels within this sequence all get 

categorised as only one pain rating. The PSPI further relies on only a very selective number of 
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AUs, although it is not unlikely that some people show atypical patterns in response to pain, 

which then would not be accounted for (Werner et al., 2016).  

 

Table 1. 

Descriptions of facial Action Units (AUs) associated 

with pain. * 

Action Units Description 

AU 4 Brow lower 

AU 6 Cheek raise 

AU 7 Lids tighten 

AU 9 Nose wrinkle 

AU 10 Upper lip raise 

AU 12 Lip corner pull 

AU 20 Lip stretch 

AU 25 Lips part 

AU 26 Jaw drop 

AU 27 Mouth stretch 

AU 43 Eyes closed 

AU 45 Blink 

* Information taken from Prkachin (1992) and Craig, 

Hyde and Patrick (1991). 

 

Originally, a trained FACS-coder would code pictures or videos on a frame-by-frame 

basis according to the observed AUs. Since a minute of video material can take up to one hour 

to annotate, the benefit of its automation is obvious (Pantic & Rothkrantz, 2004). Over the last 

years, automatic facial expression detection has evolved rapidly. Looking at the development 

of automatic pain detection in particular, most of the recent work has been based on two 

publicly available databases: First (1) the UNBC McMaster Shoulder Pain Database (in the 

following referred to as UNBC database) by Lucey et al. (2012) and secondly (2) the BioVid 

Heat Pain Database by Walter et al. (2013). For the UNBC database, 129 people with shoulder 

pain were filmed while performing passive range-of-motion tests. The videos were 

subsequently coded on a frame-by-frame basis, using the FACS and the PSPI was used as the 

ground truth to define pain on a frame level. They achieved a performance of around 80% for 

pain detection at frame level. They further found significant variance in head movements 

between no-pain and pain conditions, especially for yaw (rotating the head left to right) and 

roll (tilting the head sideways). This is indicating that head movements could be relevant for 
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pain detection. Hammal and Cohn (2012) used the PSPI metric to classify four intensities of 

pain in 25 people from the UNBC database. They achieved a moderate to good interclass 

correlation, which suggests that facial expressions could reliably be used to measure pain 

intensity in this context. Another study related to this database was done by Sikka (2014), who 

found a Pearson correlation coefficient of .51 in their prediction of self-reported pain intensity, 

indicating that machine learning models based on FACS can reliably be used to predict pain 

intensity. Ashraf et al. (2009) compared the use of rigid face recognition (location, scale and 

rotation) and non-rigid face recognition, which are shape variations that cannot be expressed 

by its location, scale or rotation in 2D. This was a different approach since the detection of AU 

usually depends on rigid face detection, on which the work previously was focused on. Their 

model was trained using the Support Vector Machine, using a leave-one-subject-out approach, 

so that the test dataset did not include participants in the training set. They found that non-rigid 

shapes significantly improved the performance classifier. Additionally, they tested the 

performance of pain detection between frame-level and sequence-level. While the performance 

was better at frame-level, it still was above chance at sequence-level, which lead them to raise 

the question for future research to combine frame and sequence level. Another study on the 

UNBC database was done by Sikka et al. (2014) and aimed at predicting the self-ratings, rather 

than using a binary classification of no-pain and pain like other studies have done it previously. 

They found a positive correlation between the predicted ratings and the actual ones and a 

Pearson correlation of 0.51, which shows that the regression performed better than chance 

classification. In addition to the analysis on the UNBC-Database, Sikka et al. (2014) also 

conducted a study on facial expressions on children between 5 and 18 with post-operative and 

experimental pain. The pain recordings took place within 24 hours after the surgery and the no-

pain recordings after clinical recovery. The participants rated their maximum perceived pain 

on a scale of 0-10 and the video segments were then analysed using AUs. AU 4, AU 7, AU 9, 

AU 25 and AU 45 were found to have a significant correlation with self-ratings.  

The second database mentioned, the BioVid Heat Pain Database (Walter et al., 2013), 

contains video and physiological data (skin conductance (SC), electrocardiogram (ECG), 

electromyogram (EMG), and electroencephalography (EEG)) of 90 persons who received 

controlled heat pain in four intensities. Werner et al. (2013) used distance and gradient features 

to represent pain-related AUs. Among other features, they also included nasal wrinkles, 

nasolabial furrows and the head pose for their analysis. Generally, they found high variability 

in the facial expressiveness of their participants, i.e. some participants had a high variability of 
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facial expression between no pain and high pain intensities, while other’s expressions barely 

varied between the two conditions. Nevertheless, for most participants, they have achieved a 

high performance when discriminating between no-pain and high-pain intensities when using 

person-specific models but had a performance not clearly above chance for lower pain levels. 

They further investigated the importance of head movements and found high variability mostly 

for pitch (moving the head up or down) but less so for yaw and roll as found by (Lucey et al., 

2012). In a subsequent study, Werner et al. (2016) proposed new facial activity descriptors for 

pain assessment and estimation of pain intensity. They found that this new method 

outperformed their previous approaches. Another study on the BioVid database, by Lopez-

Martinez and Picard (2017), focused on pain classification using only the physiological 

measures SC and ECG. For the classification, they used a multi-task learning approach, with 

which they were able to account for individual differences and achieved a good classification 

accuracy. 

 

3. Theoretical foundations of pain 

A widely used and accepted definition of pain is the one from the International 

Association for the Study of Pain (IASP), who defines pain as “an unpleasant sensory and 

emotional experience associated with actual or potential tissue damage, or described in terms 

of such damage.” (IASP, 2017). The IASP further acknowledges that pain is always subjective 

and, even though it does not have to be tied to physical damage but can be of psychological 

cause, it still has to be accepted as pain. Hansen and Streltzer (2005) further emphasise the 

importance of psychological aspects when it comes to defining pain, as its perception is 

influenced by affective or evaluative factors. It thus strongly depends on the context it is 

perceived. For example, the amount of pain someone feels can be influenced by the amount of 

attention, anxiety, fear, or even past experiences a person has made (Hansen & Streltzer, 2005).  

 Pain is usually categorised into two types of pain, namely acute and chronic. An 

overview of the differences between acute and chronic pain can be found in Table 2. Acute 

pain occurs suddenly and lasts for only a short time and can usually be linked to a specific 

cause, like an injury (Institute of Medicine, 2011; Świeboda, Filip, Prystupa, & Drozd, 2013). 

Usually, pain fulfils a protective role by hindering people from activities that could worsen 

their condition and under ordinary circumstances the pain ends when its cause is resolved, e.g. 

if the pain stimulus is gone or the injury has healed (Institute of Medicine, 2011). Chronic pain 

however is defined as a pain that lasts for longer than three months and considered to be a 
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disease in itself (Institute of Medicine, 2011; Świeboda et al., 2013). It can occur without a 

detectable physical cause or stay prevalent after healing its related illness or injury (Świeboda 

et al., 2013).  

 

Table 2. Overview of the difference between acute and chronic pain 

 Acute pain Chronic Pain 

Duration < 3 months 
> 3 months 

 

Cause 
Known (illness or injury), 

treatable 

Unknown, multifaceted 

 

Therapy 
Treatment / cure of 

underlying cause 

Multi-therapeutic 

approach, cure unlikely 

 

 

4. Method selection for creating the facial expression database 

The aim of the current study, as outlined in the introduction, is to contribute to a project 

for the development of a device that is capable to automatically detect pain. The focus of this 

study hereby is solely on the detection of pain based on facial expressions. Given the 

experimental nature of this study, only acute pain will be studied as chronic pain cannot be 

induced in a controlled way and would require a longitudinal study. Reviewing above literature 

research, it can be concluded that the research on pain expression has been primarily focused 

on AUs over the last years and has only recently with the rise of machine learning been 

extended to also include additional descriptors like non-rigid features. Using AUs seems to be 

a viable strategy if human raters are involved in the process of categorising the facial 

expressions as it simplifies the complexity of them down to specific movements. However, this 

is not applicable for real-time applications and with now existing methods for automatic feature 

detection, there is the possibility to miss out on other, more effective features than only relying 

on action units to describe the high variability of facial expressions people can have. The 

research further was mostly done on a frame level, while the ground truth of pain was given 

through self-ratings at sequence level. I.e, the participant indicated their perceived pain level 

after the pain induction for the whole duration of the pain stimulus instead of having a 

continuous monitoring of their perceived pain throughout the stimulation.  

The first goal of the current study is hence to create a database of video frames of facial 

expressions of people under varying levels of pain that uses continuous self-ratings for the pain 

annotation for each frame. The aim is to collect video recordings of facial expressions of a 



 

 
8 

sample of 50 participants. They will be recorded during experimental pain stimulation, while 

the subjects are continuously indicating their perceived pain level. In the following section, a 

literature research is described that aimed to select the instruments for the planned pain 

induction and pain measurements that will be used in the experiment to create the database. 

 

4.1 Measuring pain 

When speaking about measuring pain, a distinction can be made between one-

dimensional scales, that measure only the pain intensity and multi-dimensional scales that 

might also include the pain quality. Pain intensity described the severity of the pain, while pain 

quality refers to the way the pain feels like, for example, ‘hot’, ‘stinging’ or ‘dump’, or where 

the pain is located. For this study, only the intensity is of interest, which is why only one-

dimensional pain measuring instruments are explained in more detail. Further, there are a 

number of physiological measurements, like skin conductance or heart rate that have been 

proven to be successful in detecting pain (see e.g. Loggia, Juneau, & Bushnell, 2011; Lopez-

Martinez & Picard, 2017). As this study focuses on facial expression only, these methods will 

not be explained in more detail. 

As explained above, pain is a very complex, multifaceted and subjective experience. It 

is therefore not surprising that self-reports are considered as the “gold standard” in pain 

assessments  (Hadjistavropoulos, Hunter, & Dever Fitzgerald, 2009). Probably the most used 

self-rating scale is the 0-10 Numeric Rating Scale (NRS), which is considered to be the scale 

with the most benefits and fewest weaknesses (Jensen, 2011). It has also shown the best results 

in adults because of its easy implementation and low rate of errors (Falch et al., 2014). To 

utilise this scale, patients are asked to indicate their perceived pain level between 0 (no pain) 

and 10 (pain as intense as you can imagine). According to Jensen (2011), answers in between 

two integers are also fine, as people can distinguish between more than ten pain levels.  

Another scale is the FACES-Pain Scale Revised (FPS-R, Hicks, Baeyer, Spafford, van 

Korlaar, & Goodenough, 2001) which consists of six drawings of a face that shows expressions 

of increasing levels of pain (from no pain to very much pain) and is applied by pointing on a 

face that best suits the current paint level. It is assumed to be better suited for children as the 

FPS-R is more concrete and easier to understand for children (Hicks et al., 2001).  

The Verbal Rating Scale (VRS) usually consists of four (Jensen, 2011) or six (Falch et 

al., 2014) verbal descriptions of pain, ranging from ‘no pain’, increasing to ‘moderate pain’ 

and up to ‘severe pain’ in the 4-point VRS, and up to ‘worst pain imaginable’ in the 6-point 
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VRS. This scale is more restricted in the amount of pain that can be expressed but can be easier 

to use for some patients (Jensen, 2011).    

In the end, it was decided to use the NRS. Speaking could interfere with the facial 

expressions, so verbal ratings do not seem suitable. The NRS is further the easiest scale to 

operate and also allows for more accurate pain measuring as it offers a wider scale than the 

FPS-R. 

 

4.2 Methods of pain induction 

Pain stimuli can be separated into four categories of chemical, thermal, mechanical and 

electrical pain stimuli (Fillingim, Loeser, Baron, & Edwards, 2016). Chemical stimuli take 

some time to take effect and further last over a longer period of time. (Fraser & Grady, 2008). 

In contrast, the other stimuli usually are brief and phasic ones (Wong, Vierck, Riley, King, & 

Mauderli, 2010). Therefore, only electrical, thermal and mechanical stimuli will be considered 

for this study.  

In Table 3, an overview of each pain stimuli is given, together with a rating of four 

different aspects that have been considered (feasibility, pain variation, data quality, and safety). 

For pain variation, a good rating was given if it is likely to obtain pain levels varying from very 

little pain up to the maximum pain imaginable. ‘Data quality’ concerned the quality of the 

video recordings, as this is the main goal of the study. Good ratings were given if the participant 

can sit straight and look straight forward. In a sitting position, little body movements would be 

ensured and would allow for an easy installation and adjustment of the camera positions. The 

category ‘Safety’ received a high rating if there is no risk for long-term harms for the 

participants. 

For thermal stimulation, the cold pressor task and use of a heat thermode are considered. 

The cold pressor task has been used frequently in the pain literature (von Baeyer, Piira, 

Chambers, Trapanotto, & Zeltzer, 2005; Wehe, 2013). However, for good results, it requires 

special equipment because it is crucial to have a constant temperature and circulation of the 

water (von Baeyer et al., 2005). The cold pressor task has also been used to relieve pain (von 

Baeyer et al., 2005), which could conflict with the goal of achieving a good pain variation. 

Heat stimulation through a thermode has been used in several studies for pain induction (see 

e.g. Angst, Tingle, Phillips, & Carvalho, 2009; Hammal, Kunz, Arguin, & Gosselin, 2008; 

Walter et al., 2013). A thermode makes a highly controlled pain induction possible without the 

risk of causing any damage to the skin (Walter et al., 2013) as it can heat up precisely to a 
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defined temperature for a predefined period of time. This high control of the stimulus further 

allows to tailor the pain to each person individually by predefining the person’s pain threshold, 

which is the point where a stimulus is perceived as painful for the first time (IASP, 2017) – and 

pain tolerance level, which is the maximum pain intensity a subject is able or willing to endure 

(IASP, 2017).   

For mechanical pain stimulations, the pinprick test, using a pressure algometer and the 

Submaximum-Effort Tourniquet test have been found. For the pinprick test, a sharp object is 

used on the participant and gently applied to the skin (“pinprick test,” 2009) which has the 

potential to penetrate the skin and thereby causing damage to the skin. The pressure algometer 

uses for example a rubber disk which presses against the participant’s skin to induce pain (Park, 

Kim, Park, Kim, & Jang, 2011). As the pressure can potentially harm the participant too, by 

resulting in bruises, it is also omitted for further evaluation. For the Submaximum-Effort 

Tourniquet test, a tourniquet is inflated which causes ischemic pain (Carli, 2007). If certain 

safety regulations are met, it is a safe method to use and can also lead to high pain ratings. The 

drawback, however, is that the pain is not highly controllable as it takes a certain amount of 

time to build up. 

The last stimuli considered are electrical. In combination with facial expressions, this 

method yielded in the study of Kunz, Mylius, Schepelmann and Lautenbacher (2004) very 

weak correlation with self-reported pain, suggesting that other mechanisms like shock reactions 

confound the painful expressions. Another mean for electrical pain stimulation are 

electrocutaneous stimuli that only activate a-delta fibres (see e.g. Blom & Lubbe, 2017; 

Mouraux, Iannetti, & Plaghki, 2010). The pain is delivered via a bipolar needle electrode that 

is inserted into the outermost layer of the skin and the applied pain is described as “pricking” 

(Mouraux et al., 2010) and could therefore circumvent the problem of a shock reaction and be 

a viable method for this study. 

To conclude, it was decided that the thermal stimulation through a heat thermode seems 

to be the most suitable one for the present study. It makes it possible to control the pain stimulus 

with high accuracy and to tailor the pain to each person individually and has been used 

successfully in several studies about painful facial expressions. 
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Table 3. Overview of Pain stimuli. 

Note: Meaning of the ratings are + = positive, o = neutral, - = negative aspect, regarding the use the 

method for the current study  

 

4.3 Feature detection through OpenFace 

The above determined methods will be used to create a database of video frames of 

painful facial expressions. Before the video data can be analysed to answer the research 

questions if it is possible to distinguish between painful and painless facial expressions and 

which features are relevant to achieve this, they first have to be transformed into quantitative 

data. To do this, facial features for each frame will be extracted using the toolkit ‘OpenFace’. 

OpenFace was developed by Baltrušaitis, Zadeh, Chong Lim, and Morency (2018) and is 

capable to detect facial landmarks, estimate the head pose and eye-gaze and detect 18 facial 

action units from video frames or photos.  

Facial landmarks refer to positions of (in this case) 68 points of the face, as it can be 

seen in the landmark index of Figure 1, and are detected in both 2D and 3D. These facial 

landmarks are also used to detect the facial AUs, which represent the change of a combination 

of facial landmarks and describe certain movements of the face, rather than just specific points 

(as discussed in section 2). An example of how these landmarks are mapped to a face can be 

seen in Figure 2. As OpenFace only detects 18 of the usually used 27 AUs, it also only detects 

Type Method  Pain variation  Data quality  Safety 

Thermal 

Cold pressor + 
Good results in 

literature 
o 

Takes time to 

become painful 
+ 

Good, 

participant is 

in control 

Heat thermode + 
Good results in 

literature 
+ Good + 

Good, Safety 

regulations 

prevent any 

harm 

 

 

Mechanical 
 

 

Submaximum-

Effort 

Tourniquet 

+ 
Good results in 

literature 
o 

Takes time to 

become painful 
+ 

Good if 

protocol is 

followed 

Pressure 

algometer 
- 

Used in 

literature for 

pain threshold, 
not tolerance 

+ Good - 
Can leave 

bruising 

Pinprick - 

Used in 

literature for 

pain threshold, 

not tolerance 

o 

Fear of needles 

common, can 

affect data 

- 
Penetrates 

skin 

Electrical 
Electrical 

stimulation  
+ 

Good results in 

literature 
o 

Startled 

expressions as 

possible 

confounder  

+ Good 
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8 of the 12 AUs that have been found in the literature to be relevant to pain, which are AU 4, 

6, 7, 9, 12, 20, 25 and 45. 

 OpenFace is further able to detect 6 rigid shape parameters and 34 non-rigid parameters, 

which are reduced components of the facials landmarks (Baltrušaitis, Robinson, & Morency, 

2016). Rigid shapes can hereby be understood as shapes that can be transformed in terms of its 

location, scale and rotation, while non-rigid shapes represent deformations due to, for example, 

the person’s expressions or their identity (Baltrušaitis, 2019). Overall, OpenFace tracks 709 

features which will be used in the analysis of the created database. 

 

 

Figure 1. Facial Landmark index (taken from (Baltrušaitis, 2019). 
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Figure 2. Example of OpenFace tracking facial landmarks (orange dots), head pose (green box) and eye 

gaze (pink dots). 

 

5.  Method 

5.1 Participants 

A total of 54 subjects were recruited and took part in the study in a laboratory at IXP. 

Twenty-nine were female, 25 male with an age range of 18-56 and a mean age of 27.7 (SD = 

7.63). Excluded from participation in the survey were persons under 18 or over 70 years of age 

and persons who were pregnant or suffering from chronic pain, cardiovascular disease, 

neurological or psychiatric disorders. The participants also received monetary compensation 

for their travel of 50€. After investigating the data, 5 participants were excluded from the study 

due to missing data or poor video quality, leaving 49 participants remaining. The study design 

was approved by the ethical commission of the University of Lübeck, with whom we work 

together on the project for automatic pain detection.  

 

5.2 Instruments 

For the measurement of pain intensity, the Numeric Rating Scale (NRS) was used. The 

respondent selects their perceived pain on a scale of 0 (no pain) and 10 (highest conceivable 

pain). The evaluation of the pain intensity is done with the help of a digital scale on a screen, 

which is operated with a mouse (see Figure 3). Using a digital scale enables a continuous pain 

rating, so each frame in the video can be annotated with a self-rating. The ratings are recorded 

during the entire pain induction, with a sampling rate of 10 Hz and were later upsampled to 30 

Hz to match the video frame rate of 30 frames per seconds. The test person's assessment of the 

pain intensity (self-rating) and an external assessment (observer-rating) are recorded by a 
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second test supervisor, who was able to monitor the test person on a screen during the test. The 

observer-rating will not be used in the current study but was recorded for the potential use in 

future analyses. 

In addition to pain intensity and demographic data, the participants had to fill in the 

Pittsburgh Sleep Quality Index (PSQI, Buysse, Reynolds, Monk, Berman, & Kupfer, 1989), 

the German version by Riemann (1996) which checks the quality of sleep the participant had 

and the current state of tiredness, as being tired could potentially influence facial expressions 

due to for example an increase in eye blinking or slow reactions.  

 

 

 

6. Procedure 

6.1 Technical Setup 

Figure 4. Technical Setup 

Figure 3. Evaluation of pain intensity by the test person on the NPRS. 
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An overview of the used technical setup during the procedure can be seen in Figure 4. 

The participant sat in front of a laptop, which was utilised to operate the NRS rating scale via 

a mouse. Two video cameras (Logitech C920) recorded the face of the subject frontally and 

from a higher angle (see Figure 5) with 30 frames per seconds.  The test supervisor and observer 

were positioned orthogonally to the subject, as depicted on the right side of Figure 4. The 

observer also used a laptop to rate his observations, and a third laptop was used by the 

experimenter to operate the TSA II, whose thermode was attached to the participant’s forearm. 

To minimise an observer effect, the view between the participant and the observer area was 

blocked by a curtain. The observer could see the participant on a screen in front of them to give 

observer ratings. In addition, the experimenter could see the self-ratings of the participant in 

real-time on another monitor. This allowed checking the distribution of the pain ratings to make 

any necessary temperature adjustments between the trials, for example setting the temperature 

lower if too many high pain ratings were reached.  

 

 

 

6.2 Pain induction and measurement of pain intensity 

The pain induction protocol was based on methods found in the literature who have also 

used heat stimulation through a thermode (Angst et al., 2009; Hammal et al., 2008; Walter et 

al., 2013). In our experiment, the Thermal Sensory Analyser II (TSA II, Medoc, 

http://www.medoc-web.com) was used for the pain induction. After filling out the 

demographic questionnaire and informed consent (see Appendix A), the participant was asked 

to sit down in front of the laptop in a comfortable position. The thermode was then attached to 

the volar aspect of the dominant forearm. Prior to the start of the experiment, the individual 

pain limits of the volunteers were determined using the 'method of limits', whereby the 

Figure 5. Two camera angles used during pain stimulation. The left picture shows the recording 

from a higher angle, the left picture the frontal recording. 
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maximum of 50°C was not exceeded. With this method, the temperature increased at 1°C/s 

until the subject pressed the button of a mouse, which immediately brought the temperature 

down to the baseline of 32°C and then increased again. First, the participant was asked to press 

the button once they first felt a painful sensation (the pain threshold) and when they reached 

the highest pain imaginable (the pain limit). These pain levels were measured ten times in total 

in alternating order, five times for each pain level. Immediately afterwards the medium pain 

intensity was measured by asking the participant to press the button once a pain sensation of 5 

out of 10 is reached, which was repeated 5 times as well. To determine the individual pain 

levels, the average value of the last 3 of the 5 measurements were used. Based on the three 

obtained components, 5 different levels of temperatures were calculated by taking the average 

values between two pain levels (see Figure 6). 

 

 

Figure 6. Used pain levels and their calculation (adapted from Werner et al., 2016) 

 

For the following main examination, the thermode was attached to the non-dominant 

forearm. This had the purpose to exclude temperature adaptation of the skin or causing damage 

to it and further allowed the participant to operate the mouse with their dominant hand. The 

pain induction took place over 2x15 minutes, with a short break in between, in which the 

previously determined temperatures were applied in random order. Each temperature was 

applied twice with an increase of 0.5°C/s and 3 times with an increase of 2°C/s. The inter-

stimulus interval was 5-15 seconds (randomised) to prevent temperature habituations. 

The aim of using these five different temperatures was to achieve an even distribution 

of subjective pain levels from 0-10 while the different temperature increases were intended to 
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achieve more variability within the stimuli. During the break between the two pain stimulation 

sequences, the temperatures were adjusted if no satisfactorily even distribution of pain ratings 

was observed in the previous run. In addition, the position of the thermode was changed to 

avoid temperature habituations or damage to the skin. 

 

7. Data Analysis 

7.1 Data preparation 

The obtained video data were analysed by using the facial analysis toolkit ‘OpenFace’ 

(Baltrušaitis et al., 2018) with which facial landmark detection, head pose estimation, facial 

action unit recognition, and eye-gaze estimation were obtained for each frame in the video. The 

data were then merged with the self-rating, observer rating and demographic data of each 

participant. Due to the size of the obtained dataset, the dataset was manually reduced into two 

subsets before further analysis was possible with the given hardware. Beforehand, the data 

were filtered to contain only observations with the highest confidence that OpenFace indicated 

to have for the feature detection. Because the participants continuously operated a horizontal 

slider to indicate their pain levels, it was also decided to remove the features that represent eye 

movements and head movements on the yaw axis, which likely could be influenced by 

following the position of the slider. This left 419 of the initial 709 features.  

The first subset consisted out of 100 ‘no pain’ (0) self-ratings and 100 ‘high pain’ (7-

10) self-ratings for each participant and was used to do a feature selection, which was not 

possible with the whole dataset given the available hardware. The feature ranking was 

performed in the programme ‘R’ by building a Learning Vector Quantization (LVQ) model 

(adapted from Brownlee, 2019) using 10-fold cross-validation (see Appendix B for the used R 

code). In a 10-fold cross-validation, the data set is randomly divided into 10 folds. One of these 

folds is held back as test set while the rest is being used for training. This is repeated until each 

of the 10 folds has been used as a test set once. Using the 10-fold cross-validation, instead of a 

simple split of a test and training set, generally leads to a less biased estimate of the model’s 

capability (Brownlee, 2018). The features were then ranked by their importance for 

discriminating painful from non-painful expressions using the varImp function of the caret 

package in R (Kuhn, 2019). The varImp function computes the ROC curve for each variable 

by computing the false positive rate against the true positive rate for a series of cutoffs. The 

area under the ROC curve is then used as measurement for the variable importance (Kuhn, 

2019). Features with a high predictive power, i.e. which have a high impact on the performance 
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accuracy, therefore receive a higher importance than redundant features. From this feature 

ranking the most important 30 facial features that were obtained from OpenFace were then 

used for further analysis. The reduction to 30 features made it more feasible regarding 

computing power to do subsequent analysis on the dataset.  

The second subset was reduced to contain all the ‘high pain’ ratings for each participant, 

matched with an equal amount of ‘no pain’ ratings and resulted in a dataset of 347,113 

observations and was further used for the predictive analysis. Before each analysis, the self-

ratings were converted into a categorical variable to represent the binary classification of ‘no 

pain’ and ‘high pain’. 

 

7.2 Predictive analysis  

The overall project aims to develop a system that is capable to automatically detect pain 

through a multi-modal device, of which facial recognition will be one part of. It is therefore 

intended to implement machine learning algorithms that can classify the perceived pain of the 

patient in real-time. For this reason, a machine learning approach was also chosen for the 

analysis of the acquired dataset. In particular, the k-nearest neighbour (kNN) algorithm was 

used to analyse it (see Appendix C for an example code). The kNN algorithm is a lazy learning 

algorithm, which means that it learns by memorizing previous observations (Gama & de 

Carvalho, 2012). It then tries to map the new observation to the number of k-nearest neighbours 

to categorise it. Regarding the given dataset, the advantage of the kNN algorithm is that it is 

possible to give k a high number. As the observations consist out of 30 frames per second, the 

observations that are temporally close to each other will likely be quite similar to each other. 

Choosing a high k can therefore help for a more global pattern recognition. The chosen k for 

the following analysis is the square root of observations, which equals k = 519. The model 

therefore looks for the nearest 519 neighbours in the training set to classify a new observation 

in the test set. Approximately 80% of the datasets were used to train the model and the other 

20% was set aside to test it. 

The kNN algorithm was first performed on the subset consisting out of the resulting 30 

features that were found during the feature selection, as explained in 7.1. The analysis was 

further done for both between and within-subjects. For the ‘between-subjects’ condition, the 

training and test set for the analysis were divided by participant, so that the test set does not 

contain any observations from a participant that is in the training set. For the ‘within-subjects’ 

condition, the test and training sets were randomly divided with an 80/20 split, so that the test 
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set consist of observations from participants that are also in the training set. It was checked that 

both datasets have data from every subject, however it was not controlled for an even 

distribution of data.  

The same analysis was done with the dataset which features consist out of the AU’s that 

were found in the literature to be relevant for pain expression (see p. 5). Out of these 12 

identified AUs, OpenFace only computes 8 (AU 4, 6, 7, 9, 12, 20, 25 and 45), so the analysis 

has to be limited to these. 

 

8. Results 

8.1 Feature reduction 

The goal of the feature reduction was to reduce the dataset to as few features as possible 

to improve the calculation time and also to make it more feasible for e.g. mobile applications. 

It was decided to initially reduce the features to 30 and do subsequent tests to see if even smaller 

feature subsets can yield promising results. Depicted in Figure 7 are the results of the top 30 

features, ranked by their importance in distinguishing painful from non-painful states. The 

importance rating here is measured by the calculated area under the ROC curve. In the 

following, the subset consisting out of these top 30 features will be referred to as ‘Subset A’. It 

is visible that AU01 and AU02 seem to have the most importance in distinguishing pain from 

no pain, being the only features reaching an importance above .65. Note that all of the depicted 

features have an importance over .5 as the graph does not start at zero. The meaning of the 

features is explained in more detail in Table 4, however the authors did not provide further 

information about the non-rigid face parameters (the features starting with p_).  

The goal of the feature analysis is to reduce the features to make the database more 

feasible to work with, not only during the analysis but also for potential real-time applications. 

To see if the number of features can be even further reduced, three additional subsets were 

selected to test the model’s performance, as indicated by the lines in Figure 7. The first subset, 

Subset A.1, includes the two most important features which also clearly have a higher 

significance than any other feature in Subset A. Subset A.2 includes the following 4 features. 

The dividing line for Subset A.3 was chosen because the importance of the following features 

is relatively close to each other, which suggests that they might not add much more to the 

model’s performance compared to the features ranked above. 
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Figure 7. Top 30 features (Subset A) ranked by importance for discriminating painful from non-painful 

expressions. The lines indicate the different subsets of features used for further analysis. 

 
Table 4. 

Description of the found features in the top 30 important features.* 

Features Description Intensity (r) Presence (c) 

AU01 Inner brow raising ✓ ✓ 

AU02 Outer brow raising (unilateral) ✓ ✓ 

AU05 Upper lip raising ✓  

AU14 Dimpler ✓  

AU15 Lip corner depressor ✓  

AU20 Lip stretcher ✓  

AU26 Jaw drop ✓  

AU45 Blink ✓  

p_rx 
Rigid face parameter (pitch 

rotation) 

- - 

p_n Non-rigid face parameters** - - 

x_n, y_n 
location of 2D landmarks in 

pixels** 

- - 

X_n, Y_n 
location of 3D landmarks in 

millimetres** 

- - 

Note. ‘✓’ = present in the top 30 features; ‘-‘ = not applicable 

*   Information for the AUs taken from Baltrušaitis et al. (2016) 

** n∈{1,…,34}, information taken from Baltrušaitis (2019), see 

     Figure 1 for the Landmark Index 
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8.2 Results of the predictive analysis 

The first two prediction calculations were done with Subset A, which includes all 

features presented in Figure 7. The trained model resulted in an accuracy of 51.01% when 

predicting the pain ratings on the dataset split between the subjects (see Table 5 for the 

confusion matrix). When predicting the accuracy on the randomly split dataset within the 

participants, an accuracy of 80.33% (see Table 6) was achieved on the test dataset. 

 

Table 5.  

Confusion Matrix. Top 30 feature subset 
between-subjects. 

 No Pain Pain 

No Pain 10948 10381 

Pain 22741 23538 

Accuracy 51.01 

 

Table 6.  

Confusion Matrix. Feature Subset A, 
within-subjects. 

 No Pain Pain 

No Pain 28847 8347 

Pain 5311 26918 

Accuracy 80.33 

 

In the following, the additional feature subsets of Subset A will be analysed, to see if 

even a smaller number of features can be used to achieve a comparable performance accuracy. 

The first subset, Subset A.1, with the two most important features fails due to too many ties 

which means that for the selected method, too many neighbours were equidistant to the target 

for the algorithm to come to a conclusion. It could be solved by increasing the allowed number 

of ties in the code, but this resulted in an increase of computing power that was not feasible 

with the given hardware. The second feature subset, Subset A.2, included 6 features (AU01_r, 

AU02_r, AU05_r, p_8, p_25, AU20_r and AU01_c). For the dataset that was split between-

subjects, the accuracy was at chance level with 48.15% (see Table 7). Within the participants, 

the model performed slightly above chance with an accuracy of 66.26% (see Table 8). 
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Table 7.  

Confusion Matrix of Feature Subset A.2, 

between-subjects 

 No Pain Pain 

No Pain 6371 7738 

Pain 27318 26181 

Accuracy 48.15 

 

Table 8.  

Confusion Matrix of Feature Subset A.2, 

within-subjects 

 No Pain Pain 

No Pain 22499 11762 

Pain 11659 23503 

Accuracy 66.26 

 

Subset A.3 consists of 11 features. The results between the participants are slightly 

higher than A.2, but still at chance level with an accuracy of 53.42% (see Table 9). The model's 

performance within the participants resulted in a significantly higher accuracy compared to 

A.2, with an accuracy of 74.75% (see Table 10).  

 

Table 9.  

Confusion Matrix of Feature Subset A.3, 

between-subjects. 

 No Pain Pain 

No Pain 7421 5224 

Pain 26268 29695 

Accuracy 53.42 

 

Table 10.  
Confusion Matrix of Feature Subset A.3, 

within-subjects. 

 No Pain Pain 

No Pain 26574 9946 

Pain 7584 25319 

Accuracy 74.75 
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Before and during the experiment the participants were checked for their perceived 

tiredness. As some showed observable signs of fatigue, like closing their eyes for a long period 

of time, an increase of eye blinking and/or slow movements, it was decided to run an analysis 

where the participants that indicated a high level of fatigue (7 or above) were removed, to 

control for these factors. This left a database of 45 participants. The calculated model resulted 

in an accuracy of 58.62% between-subjects (see Table 11), which is higher than the models 

analysed above for between-subjects, which have been on chance level. For within-subjects, 

the accuracy was also higher compared to the models that were not controlled for tiredness, 

with an accuracy of 85.14% (see Table 12) compared to the previous highest score of 80.33%. 

 

Table 11.  

Confusion Matrix. Feature Subset A, 

between-subjects, controlled for tiredness. 

 No Pain Pain 

No Pain 13283 8517 

Pain 21236 28861 

Accuracy 58.62 

 

Table 12.  

Confusion Matrix. Feature subset A, within-

subjects, controlled for tiredness. 

 No Pain Pain 

No Pain 25741 5135 

Pain 3722 25009 

Accuracy 85.14 

 

In order to compare the performance of the found feature sets, a feature subset with 

only the pain associated AUs (AU 4, 6, 7, 9, 12, 20, 25 and 45) was created. An accuracy of 

55.88% was achieved when predicting the pain ratings on the dataset split between-subjects 

(see Table 13) and an accuracy of 74.32% was achieved for the dataset split within-subjects 

(see Table 14). The performance is comparable to the Subset A.3, which had 3 more features 

included. 
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Table 13.  

Confusion Matrix. AU subset between-

subjects. 

 No Pain Pain 

No Pain 16644 12783 

Pain 17045 21136 

Accuracy 55.88 

 

Table 14. 

Confusion Matrix. AU subset within-

subjects. 

 No Pain Pain 

No Pain 26622 10296 

Pain 7534 24971 

Accuracy 74.32 

 

8.3 Feature subset excluding non-rigid face parameters 

The analysed subset also included non-rigid face parameters. As these features not only 

describe distortions due to facial expressions but are also used to identify different faces, it 

could potentially have an influence on the model’s performance for the between subject 

designs. Therefore, it was decided to run a second feature analysis, that excluded the non-rigid 

face parameters. The results of the top 30 features can be seen in Figure 8. In the following, it 

will be referred to this feature subset as ‘Subset B’. Subset B was also divided further into a 

smaller subset of the top 7 features, to compare the performance with the smaller subsets of 

Subset A. 
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Figure 8. Top 30 features (Subset B), ranked by importance for discriminating painful from non-painful 

expressions. The line indicates the subset of features used for further analysis. 

   

Comparing Subset A (Figure 7) with Subset B (Figure 8), it can be seen that the order 

of the features that are present in both datasets remain the same. The only difference is that by 

removing some of the previously top-scoring features, more features of lower importance were 

added in Subset B. Analysing Subset B, an accuracy of 54.93% was achieved between the 

subjects, and an accuracy of 79.17% within-subjects (see Table 15 and Table 16). The results 

are overall similar to Subset A, both for between and within-subjects.  

 

Table 15. 

Confusion Matrix. Feature Subset B, 

between-subjects. 

 No Pain Pain 

No Pain 9016 5801 

Pain 24673 28118 

Accuracy 54.93 
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Table 16.   

Confusion Matrix. Feature Subset B, within-

subjects. 

 No Pain Pain 

No Pain 278510 8814 

Pain 5643 26451 

Accuracy 79.17 

 

Subset B.2 results in a feature set with 7 features. Between the participants, the 

performance accuracy was at 53.16% and within-subjects at 66.74% (see Table 17 & Table 18) 

which is comparable to the results of Subset A.2, which included 6 features (see Table 7 & 

Table 8). 

 

Table 17. 

Confusion Matrix. Subset B.2, between-

subjects. 

 No Pain Pain 

No Pain 14424 12404 

Pain 19265 21515 

Accuracy 53.16 

 

Table 18.  

Confusion Matrix. Subset B.2, within-

subjects. 

 No Pain Pain 

No Pain 21973 10907 

Pain 12185 24358 

Accuracy 66.74 

 

In a previous analysis, it has been established that tiredness can potentially influence 

the accuracy of the model. To ensure a fair comparison between the subsets, another analysis 

was run on Subset B, which was controlled for tiredness by removing the participants who 

indicated a high level of fatigue. Similar to Subset A, the accuracy improved for the within-

subject design (see Table 20). However, the accuracy for the between-subject design even 
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slightly decreased with an accuracy of 48.97% at chance level (see Table 19), while an accuracy 

slightly above chance was achieved for Subset A. 

 

Table 19. 

Confusion Matrix. Top 30 of adjusted 
Feature set controlled for tiredness, between-

subjects. 

 No Pain Pain 

No Pain 12936 15109 

Pain 21583 22269 

Accuracy 48.97 

 

Table 20. 

Confusion Matrix. Top 30 of adjusted 

Feature set controlled for tiredness, within-
subjects. 

 No Pain Pain 

No Pain 25226 5873 

Pain 4137 24371 

Accuracy 83.21 

 

9. Discussion 

This project aimed to develop a dataset for video-based pain detection and evaluating 

it to answer the questions whether or not it is possible to discriminate between painful and non-

painful expressions with it and which features might be the most relevant to achieve this. 

Consequently, it was not surprising that discriminating pain was successful for person-specific 

models, but not for general models. The dataset overall performed well when discriminating 

new data from participants that the model was already trained on but performed merely better 

than guessing on the dataset split between-subjects. These findings are in line with Werner et 

al. (2013) who also found good results when predicting the pain levels within the participants 

and performance at chance level for a general model, and Lucey at al. (2012) who also achieved 

a performance at around 80% for automatic pain detection. This underlines that person-specific 

models seem to be the way to go for automatic pain recognition. They have the drawback of 

requiring a personalised trained model for every person, which is not feasible in many real-

world applications. However, especially in intensive care people stay for a longer time and 
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setting aside a few minutes to train the model would still benefit the patient in the long term 

through a quicker detection of a painful state. 

 When implementing automatic and real-time pain recognition, a system would benefit 

from a small feature subset, as it would take less time and less powerful hardware to compute. 

For this reason, it was decided to analyse a maximum of 30 features, which were specified 

through the importance ranking. To see if the feature set could be reduced even more than the 

initial 30 features, additional subsets were created with which the dataset was analysed. 

Increasing the feature set from the top 6 to the top 12 features resulted in a performance increase 

of roughly 11% with 77.24% (Subset A.3) compared to 66.26% (Subset A.2). Including all 30 

(Subset A), thus 21 more features, gave an increase in accuracy of only around 3%, with 

80.33%. The performance accuracy did not increase massively from 12 to 30 features, so it 

could be reasonable to reduce the features to these 12 to decrease the processing time, 

especially if limited resources are available. Including more features still can result in a higher 

accuracy and could also potentially compensate for the differences people have in expressing 

pain and thus perform better over a higher variability of people. 

During the experiment, the participants rated their tiredness as it could potentially 

influence the dataset, for example through slow movements or general lack of expressions. 

Indeed, removing the participants with high ratings of tiredness significantly increased the 

model’s performance. For the within-subject design, the accuracy went from 80.33% up to 

85.14% and the model built on the dataset split between-subjects performed slightly above 

chance level with an accuracy of 58.62%. This indicates that considering tiredness as a 

confounding variable in the research of automatic painful expression recognition could be 

important for future studies. 

To compare how well the ranked feature set performs, the same analysis was done with 

only the AU’s that were found to be relevant in the literature. As OpenFace does not compute 

all AUs available, only 8 of the 12 AUs could be used, so the results may not be fully 

representable to how the full set of pain-related AUs would perform. The results were 

comparable to Subset A.3, which also had a similar number of features. This indicates that the 

found features are comparably well suited for predicting pain as the AUs.  

A lot of the features that had the highest importance concern ones that describe non-

rigid face parameters. These are used not only to detect distortions of the face due to 

expressions but also to identify faces, hence, they could potentially impact the performance of 

the general, between-subjects model. Therefore, it was decided to do a second feature ranking 
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where those features were omitted. The model performance of the resulting feature set (Subset 

B) was comparable with the between and within-subjects performance obtained with Subset A. 

For the top 30 features within-subjects, a slightly lower but comparable accuracy of 79.17% 

for Subset B, compared to 80.32% for Subset A was achieved. Excluding participants with a 

high level of tiredness slightly increased the performance accuracy for the within-subjects 

design but not for between the participants, as it was the case for the Subset A that included 

the non-rigid face parameters. The only notable difference between Subset A and Subset B was 

thus the performance increase of the general model that was controlled for tiredness, otherwise 

the models performed equally well in distinguishing painful from non-painful behaviour given 

a similar number of features was included. This does not correspond to the results of Ashraf 

(2009) who found a performance increase when using non-rigid parameters for person-specific 

models.  

The results found in the current study suggest that non-rigid face parameters perform 

equally well in facial pain recognition as AUs for person-specific model and the only 

performance increase compared to the AUs was found between the participants. Given that 

person-specific models seem to be the best option for facial expression recognition, non-rigid 

face parameters seem to have no benefit compared to AUs. As additional remarks, it was 

observed during the experiment that not everyone showed visual changes in their facial 

expressions even when they experienced high levels of pain, which has also been the case in 

the study of Werner et al. (2013). This strengthens the assumption that the expressiveness of 

pain differs widely between people and automatic painful facial expression might not work for 

everyone. 

 

9.1 Limitations 

When interpreting the results, one has to keep in mind the limitations of this study. As 

a laboratory study, the results naturally cannot completely be transferred to real-life situations. 

People can be inhibited showing emotions when they feel observed or might feel the need to 

prove themselves to not show any signs of pain. It also should be noted that the two test 

operators were both female, which due to sociological concepts could potentially influence 

how male participants behave during the pain stimulation. 

 Another limitation comes with the reliance on the participant’s self-rating of pain. 

Before the experiment, they had to indicate the temperature at which the highest pain level they 

could endure was reached. Some participants reported being afraid of feeling pain which made 
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them indicate a much lower temperature initially. This became obvious for some participants 

when they did not continue indicating high pain levels during the trial. This further strengthens 

the need for using person-specific models for facial pain recognition, because many variables 

like someone’s experience, fear or their expectations can influence the way they judge their 

perceived pain. 

 The self-rating was further indicated on a visual slider on a laptop which made a 

continuous pain rating possible but came with the disadvantage of influencing features like the 

gaze or the head-turning from right to left. The features describing this yaw rotation of the head 

was omitted, but it cannot be confidently said that the slider did not affect the roll or pitch of 

the head as well. It therefore could not be accounted for every head pose during the analysis 

although it potentially could be relevant for the prediction of pain as suggested in previous 

studies (e.g. Lucey et al., 2012; Werner et al., 2013). An alternative for using the slider could 

be to use for example a device to measure grip force, which the participant has to press harder 

the more pain he feels. This would ensure that the gaze is not affected while still making 

continuous pain ratings possible. Another limitation is that the pain induction was just a few 

seconds long. It is common for people in a clinical setting to experience pain over a longer 

period of time or to have a very slow increase in pain and their reaction might be different to a 

brief and phasic pain stimulus.  

 

9.2 Future Research 

The current study presented just a first impression of how a model could perform on 

the new dataset. Further studies should implement more advanced machine learning techniques 

and for example look for combinations of features that indicate pain instead of just looking at 

each feature individually. The current study was to this date also the first who studied facial 

expression using continuous self-ratings of pain on a frame level instead of using a sequence 

level ground truth. It can be expected that facial expressions are temporally close to the feeling 

of pain, but given the complexity of pain expressions, future research should look into the 

relationship between frame level and sequence level analysis of pain prediction and if a 

combination of the two could yield better results. Additionally, a study that also uses 

continuous pain ratings but with devices that enable the participant to move more freely – such 

as the proposed method of grip force – could help in understanding the relation of pain and eye 

or head movement better.  
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Conclusion 

In summary, the collected dataset has been successfully used to predict pain through 

facial features when using person-specific models. For these, no significant difference was 

found when omitting non-rigid face parameters from the calculated feature set or when using 

only pain-related Action Units. However, the model benefitted from omitting persons with a 

high level of tiredness, indicating its relevance as a control variable in facial expression 

research. As this is the first database that offers self-ratings as ground truth on frame level, this 

study is also only a starting point in this regard. More research should be done on the presented 

database by using more advanced analysis techniques, e.g. for finding combinations of features 

that represent pain rather than looking at each feature individually. 
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Appendix A 

 

Informed Consent 

 

Beschreibung der Studie 

Wir bedanken uns für Ihr Interesse an unserer Studie. Für Ihre vollständig abgeschlossene 

Teilnahme erhalten Sie unmittelbar nach Abschluss des Experiments eine monetäre 

Entschädigung über 50 Euro. Den Empfang der Aufwandsentschädigung quittieren Sie uns mit 

Ihrem Namen und Ihrer Unterschrift. Die Quittung wird getrennt von allen anderen Daten 

dieser Studie aufbewahrt und dient dem Auftraggeber als Nachweis darüber, dass die Gelder 

für die Aufwandsentschädigung bestimmungsgemäß verwendet wurden.  

Während des Experiments wird Ihnen am Unterarm ein Sensor angelegt, der sich soweit erhitzt, 

dass es für Sie teilweise schmerzhaft werden kann. Es besteht allerdings nie die Gefahr durch 

die zugeführte Wärme Schäden davonzutragen und Sie können das Experiment jederzeit 

unterbrechen. Die Gesamtdauer der Studie wird etwa 120 Minuten in Anspruch nehmen, 

wovon das Experiment 90 Minuten dauern wird. Der Zweck der Studie ist es, mit Hilfe der 

ausgewerteten Daten ein System zur automatischen Schmerzerkennung zu entwickeln. 

Zur Verfolgung des oben genannten Studienzwecks werden von Ihnen personenbezogen Daten 

erhoben, gespeichert und ausgewertet. Hierzu gehören neben demografischen Daten und 

Angaben zu Ihrer Gesundheit auch Video- und Tonaufnahmen, die während der 

experimentellen Durchführung aufgezeichnet werden. Video- und Tonaufnahmen sind 

personalisierte Daten, d.h. hierüber lassen sich Rückschlüsse auf Ihre Identität ziehen. Die 

Verwendung dieser Daten setzt vor der Teilnahme an der Studie folgende freiwillig 

abgegebene Einwilligungserklärung voraus, d.h. ohne die nachfolgende Einwilligung können 

Sie nicht an der Studie teilnehmen. 

 

Einwilligungserklärung 

Ich habe die Beschreibung der Studie gelesen und erkläre mich damit einverstanden, dass im 

Rahmen dieser Studie erhobene Daten nach der aktuellen Datenschutzverordnung (DSGVO) 

auf verschlüsselten elektronischen Datenträgern (mindestens 256-Bit-AES-Verschlüsselung) 

am Institut für experimentelle Psychophysiologie, aufgezeichnet, gespeichert und ausgewertet 

werden. Gegebenenfalls in Papierform erhobene Daten werden digitalisiert, ebenfalls 

elektronisch gespeichert und die Originale umgehend und unwiderruflich vernichtet. Ich bin 
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darüber aufgeklärt worden, dass die Speicherung meiner Daten in pseudonymisierter Form 

erfolgt – „pseudonymisiert” heißt in diesem Zusammenhang, dass die Daten nicht mit meinem 

Namen, sondern unter einem Probandencode gespeichert werden, der Ihnen vom 

Versuchsleiter zugewiesen wird. Mir ist bewusst, dass eine Pseudonymisierung für die 

Speicherung der aufgenommenen Video- und Tonaufnahmen nicht möglich ist, d.h. es findet 

eine Speicherung in „personalisierter“ Form statt. Alle mit meinem Code versehenen Daten 

werden mit Erfüllung des Forschungszwecks spätestens aber am 01.05.2035 gelöscht. 

Ich bin damit einverstanden, dass die Daten in anonymisierter Form – also ohne meinen Code 

sowie ohne Alters- und Geschlechtsangabe – an andere Wissenschaftlerinnen und 

Wissenschaftler und/oder Auftraggeber und Auftraggeberinnen weitergegeben, veröffentlicht 

und in Datenrepositorien gespeichert werden. Mir ist ebenfalls bewusst, dass die Daten in 

anonymisierter Form zur Nachnutzung zwecks wissenschaftlicher Veröffentlichungen genutzt 

werden. Ich weiß, dass ich wegen des fehlenden individuellen Codes eine Löschung dieser 

anonymisierten Daten nicht mehr veranlassen kann. 

Ich weiß, dass die Personen, die mich während meiner Studienteilnahme betreuen, in Belangen 

des Datenschutzes unterwiesen sind und der Schweigepflicht unterliegen. Sie nehmen keinen 

Einblick in die erhobenen Rohdaten. Mir ist bekannt, dass die Studie ausschließlich zu 

Forschungszwecken dient und dass keine klinische Begutachtung oder individuelle 

Rückmeldung über die erhobenen Daten erfolgt. 

 

Ich bin darüber aufgeklärt worden, dass ich jederzeit ohne Angabe von Gründen die weitere 

Teilnahme an der Studie ablehnen und die Einwilligungserklärung widerrufen kann, ohne dass 

mir daraus Nachteile entstehen. Im Fall eines solchen Widerrufs meiner Einwilligung, an der 

Studie teilzunehmen, werden keinerlei Daten von mir abgespeichert bzw. bereits gespeicherte 

Daten umgehend unwiederbringlich gelöscht. 

Ich weiß, dass ich mich bei Anmerkungen oder Fragen zur Studie sowie zum Zweck des 

Widerrufs dieser Einwilligungserklärung wenden kann an:  

Lisa Kiel 

Institut für Experimentelle Psychophysiologie 

Gustav-Poensgen-Straße 29 

40215 Düsseldorf 

+49 211 975 326 53 

l.kiel@ixp-duesseldorf.de 
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Mir ist bewusst, dass die monetäre Entschädigung für diese Studie im Falle eines Widerrufs 

nur anteilig ausgezahlt werden kann. 

Ich habe die Einwilligungserklärung verstanden und erkläre mich bereit, an der Studie 

teilzunehmen.  

 

_____________________                        __________________________________________ 

         Ort, Datum                                          Name in Druckbuchstaben, Unterschrift 

 

Name der aufklärenden Person: 

 

_____________________ 
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Appendix B 

R Code used to rank the features 

# load the data 

data_subset<-read.csv("/Users/lisa/05_Big_Merge/subset200.csv") 

data_subset <- data_subset[c(1,15,23:731)] 

 

#Categorise pain ratings 

data_subset$Selfrating <- ifelse(between(data_subset$Selfrating,7,10), 1, 0) 

data_subset$Selfrating <- as.factor(data_subset$Selfrating) 

 

#missing values 

row.has.na <- apply(data_subset, 1, function(x){any(is.na(x))}) 

sum(row.has.na) 

data_subset <- data_subset[!row.has.na,] 

 

#Feature Selection - Rank by Importance - Learning Vector Quantization (LVQ) 
model 

TrainClass <- data_subset[,1] 

TrainData <- data_subset[,2:711] 

control <- trainControl(method="repeatedcv", number=10, repeats=3) 

model <- train(TrainData, TrainClass, method ="lvq", preProcess ="scale", trC
ontrol=control) 

 

# estimate variable importance 

importance <- varImp(model, scale=FALSE) 

# summarize importance 

print(importance) 

plot(importance, cex.lab=0.1, top=30) 
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Appendix C 

Example of the R Code used to calculate the models 

# load the data 
rawdata <-read.csv("/Users/lisa/05_Big_Merge/Big_merge.csv") 
#unique(raw_data$id) 
subset2 <- rawdata [c("id", "Selfrating","AU01_r", "AU02_r",  "AU01_r", "AU02
_r","AU20_r", "AU01_c", "AU05_r", "AU02_c", "AU15_r")] 
 
 
head(subset2, n=5) 

##      id Selfrating AU01_r AU02_r AU01_r.1 AU02_r.1 AU20_r AU01_c AU05_r AU
02_c 
## 1 vp041          0   0.00      0     0.00        0   0.00      0      0      
0 
## 2 vp041          0   0.04      0     0.04        0   0.00      1      0      
1 
## 3 vp041          0   0.06      0     0.06        0   0.00      1      0      
1 
## 4 vp041          0   0.11      0     0.11        0   0.01      1      0      
1 
## 5 vp041          0   0.09      0     0.09        0   0.01      1      0      
1 
##   AU15_r 
## 1      0 
## 2      0 
## 3      0 
## 4      0 
## 5      0 

# convert numerical values to categorical 0 and 1 
subset2$Selfrating <- ifelse(between(subset2$Selfrating,7,10), 1, 0) 
subset2$Selfrating <- as.factor(subset2$Selfrating) 
 
head(subset2, n=5) 

##      id Selfrating AU01_r AU02_r AU01_r.1 AU02_r.1 AU20_r AU01_c AU05_r AU
02_c 
## 1 vp041          0   0.00      0     0.00        0   0.00      0      0      
0 
## 2 vp041          0   0.04      0     0.04        0   0.00      1      0      
1 
## 3 vp041          0   0.06      0     0.06        0   0.00      1      0      
1 
## 4 vp041          0   0.11      0     0.11        0   0.01      1      0      
1 
## 5 vp041          0   0.09      0     0.09        0   0.01      1      0      
1 
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##   AU15_r 
## 1      0 
## 2      0 
## 3      0 
## 4      0 
## 5      0 

#check for N/A 
row.has.na <- apply(subset2, 1, function(x){any(is.na(x))}) 
sum(row.has.na) 

## [1] 3 

subset2 <- subset2[!row.has.na,] 

sum(subset2$Selfrating==1) 

## [1] 175688 

sum(subset2$Selfrating==0) 

## [1] 171425 

#divide df into train and test set by ID 
# Randomly assign train/test groups to all values of ID 
set.seed(7) 
groups <- 
  subset2 %>% 
  select(id) %>% 
  distinct(id) %>% 
  rowwise() %>% 
  mutate(group = sample( 
    c("train", "test"), 
    1, 
    replace = TRUE, 
    prob = c(0.8, 0.2) # Set weights for each group here 
  )) 
 
groups 

## # A tibble: 50 x 2 
## # Rowwise:  
##    id    group 
##    <chr> <chr> 
##  1 vp041 test  
##  2 vp012 train 
##  3 vp013 train 
##  4 vp015 train 
##  5 vp016 train 
##  6 vp017 train 
##  7 vp018 train 
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##  8 vp019 test  
##  9 vp014 train 
## 10 vp020 train 
## # … with 40 more rows 

# Join group assignments to my_dat 
subset2group <- subset2 %>% 
  left_join(groups) 

## Joining, by = "id" 

#create training + test dataframes 
train_subset2 <- filter(subset2group, group == "train") 
test_subset2 <-  filter(subset2group, group == "test") 
 
head(train_subset2, n=5) 

##      id Selfrating AU01_r AU02_r AU01_r.1 AU02_r.1 AU20_r AU01_c AU05_r AU
02_c 
## 1 vp012          0      0      0        0        0   0.39      0      0      
0 
## 2 vp012          0      0      0        0        0   0.66      0      0      
0 
## 3 vp012          0      0      0        0        0   0.76      0      0      
0 
## 4 vp012          0      0      0        0        0   0.76      0      0      
0 
## 5 vp012          0      0      0        0        0   0.78      0      0      
0 
##   AU15_r group 
## 1      0 train 
## 2      0 train 
## 3      0 train 
## 4      0 train 
## 5      0 train 

###https://towardsdatascience.com/k-nearest-neighbors-algorithm-with-examples
-in-r-simply-explained-knn-1f2c88da405c 
# normalise function 
nor <-function(x) { (x -min(x))/(max(x)-min(x)) } 
##Run nomalisation on the predictor columns 
train_sub2_norm <- as.data.frame(lapply(train_subset2[,c(3:11)], nor)) 
test_sub2_norm <- as.data.frame(lapply(test_subset2[,c(3:11)], nor)) 
 
summary(train_sub2_norm) 

##      AU01_r            AU02_r          AU01_r.1          AU02_r.1      
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   
##  Median :0.00200   Median :0.0000   Median :0.00200   Median :0.0000   
##  Mean   :0.06451   Mean   :0.0369   Mean   :0.06451   Mean   :0.0369   
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##  3rd Qu.:0.07000   3rd Qu.:0.0100   3rd Qu.:0.07000   3rd Qu.:0.0100   
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   
##      AU20_r            AU01_c           AU05_r            AU02_c       
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   
##  Median :0.00000   Median :0.0000   Median :0.00000   Median :0.0000   
##  Mean   :0.03363   Mean   :0.2032   Mean   :0.02111   Mean   :0.2055   
##  3rd Qu.:0.02800   3rd Qu.:0.0000   3rd Qu.:0.00200   3rd Qu.:0.0000   
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   
##      AU15_r        
##  Min.   :0.00000   
##  1st Qu.:0.00000   
##  Median :0.00000   
##  Mean   :0.04202   
##  3rd Qu.:0.03800   
##  Max.   :1.00000 

##extract 2nd column of train dataset because it will be used as 'cl' argumen
t in knn function. The "," serves to make a vector 
 
target_cat_sub2 <- train_subset2[,2] 
test_cat_sub2 <- test_subset2[,2] 
 
##run knn function 
set.seed(7) 
pr_sub2 <- knn(train_sub2_norm,test_sub2_norm,cl=target_cat_sub2, k=519, prob
= TRUE) 
 
 
##create confusion matrix 
tab_sub2 <- table(pr_sub2,test_cat_sub2) 
 
print(tab_sub2) 

##        test_cat_sub2 
## pr_sub2     0     1 
##       0 14690 12528 
##       1 18999 21391 

##this function divides the correct predictions by total number of prediction
s that tell us how accurate the model is. 
accuracy <- function(x){sum(diag(x)/(sum(rowSums(x)))) * 100} 
accuracy(tab_sub2) 

## [1] 53.36794 

### KNN not separated by participant 
##Generate a random number that is 8 0% of the tot
al number of rows in dataset. set.seed(7) 
ran <- sample(1:nrow(subset2), 0.8 * nrow(subset2))  
subset2_norm <- as.data.frame(lapply(subset2[,c(3:11)], nor)) 

Run for dataset within participants 
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summary(subset2_norm) 

##      AU01_r            AU02_r          AU01_r.1          AU02_r.1      
##  Min.   :0.00000   Min.   :0.0000   Min.   :0.00000   Min.   :0.0000   
##  1st Qu.:0.00000   1st Qu.:0.0000   1st Qu.:0.00000   1st Qu.:0.0000   
##  Median :0.00200   Median :0.0000   Median :0.00200   Median :0.0000   
##  Mean   :0.05949   Mean   :0.0333   Mean   :0.05949   Mean   :0.0333   
##  3rd Qu.:0.06200   3rd Qu.:0.0080   3rd Qu.:0.06200   3rd Qu.:0.0080   
##  Max.   :1.00000   Max.   :1.0000   Max.   :1.00000   Max.   :1.0000   
##      AU20_r            AU01_c          AU05_r            AU02_c     
##  Min.   :0.00000   Min.   :0.000   Min.   :0.00000   Min.   :0.00   
##  1st Qu.:0.00000   1st Qu.:0.000   1st Qu.:0.00000   1st Qu.:0.00   
##  Median :0.00000   Median :0.000   Median :0.00000   Median :0.00   
##  Mean   :0.03322   Mean   :0.191   Mean   :0.01946   Mean   :0.21   
##  3rd Qu.:0.03000   3rd Qu.:0.000   3rd Qu.:0.00200   3rd Qu.:0.00   
##  Max.   :1.00000   Max.   :1.000   Max.   :1.00000   Max.   :1.00   
##      AU15_r      
##  Min.   :0.000   
##  1st Qu.:0.000   
##  Median :0.002   
##  Mean   :0.043   
##  3rd Qu.:0.040   
##  Max.   :1.000 

#Run nomalization on first 4 coulumns of dataset because they are the predict
ors 
subset2_within_train <- subset2_norm[ran,]  
##extract testing set 
subset2_within_test <- subset2_norm[-ran,]  
##extract 5th column of train dataset because it will be used as 'cl' argumen
t in knn function. 
subset2_within_target <- subset2[ran,2] 
subset2_within_testcat <- subset2[-ran,2] 
 
subset_train <- subset2[ran,] 
subset_test <- subset2[-ran,] 
unique(subset_train$id) 

##  [1] "vp029" "vp065" "vp024" "vp038" "vp056" "vp035" "vp034" "vp039" "vp05
0" 
## [10] "vp053" "vp047" "vp060" "vp018" "vp013" "vp030" "vp032" "vp044" "vp05
7" 
## [19] "vp062" "vp021" "vp016" "vp048" "vp012" "vp019" "vp042" "vp017" "vp04
5" 
## [28] "vp036" "vp061" "vp033" "vp058" "vp054" "vp014" "vp041" "vp070" "vp01
5" 
## [37] "vp055" "vp059" "vp037" "vp043" "vp051" "vp069" "vp049" "vp023" "vp02
2" 
## [46] "vp046" "vp064" "vp052" "vp020" "vp040" 
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unique(subset_test$id) 

##  [1] "vp041" "vp012" "vp013" "vp015" "vp016" "vp017" "vp018" "vp019" "vp01
4" 
## [10] "vp020" "vp021" "vp022" "vp023" "vp024" "vp029" "vp030" "vp032" "vp03
3" 
## [19] "vp034" "vp035" "vp036" "vp037" "vp038" "vp039" "vp040" "vp042" "vp04
3" 
## [28] "vp044" "vp045" "vp046" "vp047" "vp048" "vp049" "vp050" "vp051" "vp05
2" 
## [37] "vp053" "vp054" "vp055" "vp056" "vp057" "vp058" "vp059" "vp060" "vp06
1" 
## [46] "vp062" "vp064" "vp065" "vp069" "vp070" 

set.seed(7) 
pr_sub2_within <- knn(subset2_within_train,subset2_within_test,cl=subset2_wit
hin_target,k=519, prob=TRUE) 
 
## confusion matrix 
tab_sub2_within <- table(pr_sub2_within,subset2_within_testcat)  
print (tab_sub2_within) 

##               subset2_within_testcat 
## pr_sub2_within     0     1 
##              0 17136  9885 
##              1 17020 25382 

accuracy(tab_sub2_within) 

## [1] 61.24483 
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