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ABSTRACT
The field of face recognition sees a lot of development, but
its use in forensic settings has lagged behind. One of the
reasons for this is the lack of face image sets of sufficient
size for training neural networks. This paper looks at the
creation of a system to generate such a set of face images
in a simulated forensic setting, since none exist for this
purpose. The viability of using those images is tested with
the FaceNet face recognition network.
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1. INTRODUCTION
Face recognition has been a constant area of development
for decades. While modern systems can produce some
impressive results they often rely on controlled conditions
or the input of multiple sensors [10]. Input images where
the subjects are not aligned and lit consistently and in
clear view of the camera may still pose a problem [15,
17]. The training of neural networks for face recognition
also relies on large data sets that can require modelling,
photographing and labelling by professionals [17, 29].

A field where this technology is starting to see more use
is that of forensics, both as tool for assisting investigators
and to provide evidence. Not all courts accept it to the
same degree as existing techniques, such as finger print
matching [12, 26]. One of the factors contributing to this
is that, while large image sets for regular use are readily
available [7], the size of those that are close to the adverse
conditions in surveillance and security camera situations is
relatively small [5, 27]. The use of sets of synthetic images
where few are available to train face recognition networks
has shown promising results [14].

This paper seeks to create a system for generating a train-
ing set of images that mimic these conditions. It builds
on existing research in the generation of face images and
combines this with rendering techniques to simulate the
conditions encountered in forensics. This system can then
be used to train and evaluate existing network architec-
tures on their suitability for this challenging use case.
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To test the quality of the system it is tested with a state
of the art face recognition neural network and compared
with an existing forensic image set.

2. RESEARCH QUESTIONS
The questions this paper aims to answer are as follows:

RQ1 Can existing techniques for face generation and ren-
dering be used to create images similar to those cre-
ated by a security camera?

RQ2 Can this image set be used for the training and eval-
uation of face recognition systems for forensic set-
tings?

RQ2.1 How do existing face recognition systems per-
form on images generated from a ground truth
as opposed to real security camera images?

RQ2.2 Are the faces in generated images seen as the
same person as the ground truths they were
generated from?

3. RELATED WORK
Research has already been done as to how images sets of
faces can be synthesised, since the neural networks that
are used for face recognition generally see an increase in
performance when trained on a larger data set, as well as
for other purposes, such as use in the movie industry. Both
the direct generation of 2D face images [13, 19] and, since
quite recently, renderings of 3D morphable face models
have been looked at to increase the size of available data
sets [23, 25, 3, 4]. Another method that has been used for
this purpose is the reverse rendering of existing 2D image
sets into reposable 3D models [11, 8].

The field of forensics, while starting to increase its research
into face recognition, has not yet produced a golden stan-
dard for face recognition systems. Existing systems are
used to produce a measure of the probability that two pic-
tures are of the same person [1, 12]. Generally face recog-
nition can be done through the comparison of extracted
features or though deep neural networks, of which deep
convolutional networks show the most promise for pose
invariant recognition [6].

4. BACKGROUND
Face Model Generation
There are two main ways of acquiring 3D face models:
face capture and direct 3D generation. Face capture uses
imaging of a real face as a basis for the generation of a
3D model. In state of the art systems this is done by
collecting depth information by using images from multi-
ple views or by using information from additional sensors
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[21, 10]. While it produces less accurate results a lot of
research in this area has also looked at producing models
from more practical monocular images [30]. A large part
of these systems is based around the extraction of a feature
vector, containing a numerical representation of the face,
which is then fed into a morphable 3D model, based on
an average encoding of many face models, to estimate the
general shape of the face [3, 2]. Such statistical face mod-
els are limited in the face shapes that they can represent,
as these are bound by its latent space [4]. An alterna-
tive technique that gets around this limitation is the use
of volumetric regression, where the 3D shape is matched
directly without a reference model [11]. Direct generation
of 3D models uses the same techniques as face capture. A
parametrised face model can be used without the encoding
of an existing face through giving it a random feature vec-
tor [3]. Recent works have also looked at direct generation
of 3D meshes without morphing a predetermined model,
since these models are still limited in the face shapes they
can represent.

Forensic Face Recognition
Face recognition can generally be used in two ways: one to
one image comparison for identity verification, and one to
many to make an identification in a set of images. When
making an identification the set can both be closed—when
it is certain that the subject is in it—or open. In either
case the systems in forensic use return a ranking of the
likelihood ratio [1, 12]. The likelihood ratio is calculated
from the face recognition system output using eq. (1), giv-
ing a higher score when it is unlikely the image depicts
someone else and likely to match the subject. This should
give a more robust measure of how probable it is that we
found the right person than just the similarity score given
by the face recognition system.

P (S|Y, I)

P (S|N, I)
(1)

Where:

S: is the score given by the face recognition system

I: is the background information, like witness testi-
mony

Y : is the hypothesis that the subject of the security
camera image is the person we found

N : is the hypothesis that the subject of the security
camera image is someone else

Many techniques for face recognition have been developed,
both with neural networks and without. Those techniques
that are not based on neural networks often use feature
extraction, such as principle component analysis, to com-
pare numerical representations of the subjects of images
[16]. Systems that use convolutional neural networks give
some of the best results, often pre-processing the image
inside the system to improve face alignment for improved
performance [16, 20].

Image Degradation in Security Cameras
In an uncontrolled environment the quality of images can
vary widely. Low resolution, blurriness, unfavourable illu-
mination and varying alignment or occlusion due to sub-
ject pose are just some of the most occurring problems
[7]. When performing face recognition in forensic settings
there are often even more challenges, since systems are

often set up cheaply and subjects may actively be try-
ing to not be captured on cameras. This exacerbates the
problems through large camera angles, deliberate face ob-
structions, low sensor dynamic range, heavy compression
and an increase in optical aberrations [26, 12], as shown
in fig. 1. The optical aberrations are caused by imper-
fections in a cameras construction, specifically the lenses,
which cause distortions and defocus, as well as chromatic
and achromatic aberrations [24].

(a) Clean reference. (b) Security Camera.

Figure 1: An example of degradation from the SCface set

5. PIPELINE DESIGN
To imitate these low-quality images a pipeline is needed
that takes a reference image or random identity represen-
tation as input, produces a model that can be re-posed,
re-lit and otherwise manipulated, and finally creates low
quality images from this model. The created images should
match the general quality of the security camera images
that we want to recreate and get a similar response from
face recognition systems. To ensure it can be used to recre-
ate many different scenarios and with a wide range of re-
search setups it should ideally be easy to adapt or expand.
To this end we propose a system combining the face recon-
struction from Deng et al. [2], the Basel 2009 morphable
model for which it creates embeddings, and the Blender
3D environment for rendering and post-processing.

Face Reconstruction
To recreate the subjects of an existing data-set as 3D mod-
els the information for creating such a model first needs
to be extracted from reference images. Such an embed-
ding could also be randomly generated, but this would
make performance comparisons for face recognition sys-
tems more difficult. To get the embeddings the convo-
lutional neural network designed in Deng et al.[2] is used.
This model has been trained with both a photometric loss,
which calculates the difference on a per-pixel basis, and a
perception loss, which finds the difference between features
extracted by a face recognition network. According to the
authors their photometric loss function, which includes a
probability model for pixel-level skin colour, ensures an
accurate texture, while the perception loss function pre-
vents loss of detail in both the texture and shape of the
model. It is based on the ResNet-50 architecture [9], aided
by a pose and illumination estimator to give pose, light-
ing, identity, texture and expression vectors from an image
with five key points marked.

Morphable Model
The face embeddings contain all the information needed to
reconstruct the faces as 3D models. They are encoded in
such a way that they can be applied to a standard model to
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Figure 2: An illustration of the steps in generating a 3D face model from a reference.

morph it to the shape and texture of the original face. In
Deng et al.[2] this is done according to eq. (2) as described
in their paper. In this formula S̄ and T̄ are the mean
shape and texture , and Bid and Bt are the shape and
texture principle component base vectors from the Basel
2009 model [18]. This model consists of a parametrised
3D shape model and an albedo texture, containing colour
information without shadows and other lighting effects,
obtained from 3D scans of 100 male and 100 female indi-
viduals. Also included in the formula is Bexp as an ex-
pression principle component base for the face shape. In
the model from Deng et al. [2] the Basel model was ex-
tended with expression deformations from [8] to enable the
reconstruction of expressions.

Shape = S(α, β) = S̄ +Bidα+Bexpβ

Texture = T (δ) = T̄ +Btδ
(2)

The implementation in the pipeline is a modification of the
one published by the authors of Deng et al.[2] in Python1

as displayed in fig. 2. In the modified version the position
information is disregarded and set to zero to ensure a con-
stant head pose in the exported 3D model. The variable
β can either be passed on or replaced with an expression
vector from a library of expressions, for example the zero
vector to give a neutral expression on the 3D model. For
the texturing the albedo information is stored for each ver-
tex in the model, ensuring the texture contains no lighting
information from the original photo. Each vertex is also
given a uv-coordinate to support more advanced texturing
in the 3D scene.

Scene Generation
The 3D models of the faces have been generated with ex-
pressions baked in, but they still require posing and light-
ing before they can be rendered. This is done within
Blender, a very complete open-source 3D suite, in com-
bination with an add-on for automatic batch processing.
The add-on uses the internal Blender API, so all of its
original features can be used to recreate almost any secu-
rity camera setting. The add-on imports the face mod-
els, randomises the camera and lighting position and tilts
the face. All random values get picked again for each in-
dividual image between a minimum and maximum value
set by the user and can be turned off if they are not re-
quired. For the camera the height, distance and yaw are
set together, so the face is always at the centre of the im-
age. The lighting is set through the location and angles
of the chosen lamp. The pose of the face is varied inde-
pendently from the camera and light setup by rotating it
around each axes independently. All generated images in

1https://github.com/Microsoft/Deep3DFaceReconstruction

this paper were rendered using the Eevee physically based
rendering engine, but the Cycles engine can be used for
more advanced options at a cost of speed.

Post Processing
Most of the post-processing, like lowering the dynamic
range, can be done inside Blender, since it includes many
photography filters. Since it is normally used to create
high quality images it does not handle low resolution im-
ages like a security camera, instead giving us blurry im-
ages. To remedy this sub-sampling is done outside of
Blender by dividing the image in squares of a given size
and averaging the colour of four random pixels for each
square, as shown in fig. 3. The resulting image is scaled
down by the size of the square, where 10 times down sam-
pling uses a 100 pixel square, and has harsher colour tran-
sitions between pixels. The final image is then saved with
lossy jpeg compression.

Figure 3: An illustration of three times down-sampling.

6. METHOD
To answer the research questions, and thereby measure
the useful quality of the pipeline, the outputs of the sys-
tem were compared against an existing data set. A subset
of the ForenFace image set [27] , as seen in fig. 4, was
used for this purpose, with the image set c1a7 used for
medium-quality comparison and c3a3 used for low-quality
comparison. The details about these images can be found
later in this chapter. For the recreation of both sets the a
set, consisting of passport photos, was used as a reference
to generate the face models from. Since many subjects
smiled to some degree in their photo two sets of face mod-
els were generated: both with the original expression of
the reference image or with the zero vector for a neutral
expression. Because pose, lighting and post-processing in-
fluence each other, and since any small change can drasti-
cally change the final image, any loss function would have
given very different results for each image in a set, so most
steps in recreating the scenes were done at least partially
empirically. The camera position was matched in Blender
by calculating the distance and height to the centre of the
head, assumed to be at 165cm, using the information from
the ForenFace paper. Light positions had to be estimated
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from the shadows and highlights in the reference images.
Post-processing filters were built empirically to create a
visually similar degradation as in the original image sets.
The high resolution ’mug shots’ were created with a frontal
sun lamp and no post-processing. In all cases the setup
was created so the generated images matched the look of
all reference images in a set. Especially for the very low
quality c3a3 set this proved to be difficult, as the pose and
resulting lighting varied greatly between subjects.

The generated images were cropped to the bounding box
around the face, as detected by the MTCNN landmark
detector [28], and scaled to 160x160 pixels. In outliers
where the detector found no face the image was not used
in the measurements. The FaceNet neural network [22],
which is described later in this chapter, was used to en-
code these pictures into embedding vectors. A matrix of
similarity scores was calculated by taking the squared Eu-
clidean distances from each subject to the reference em-
bedding of each other subject and then subtracting this
distance from the highest possible similarity score. For
every unique score the amount of true and false positives
was calculated by using it as a threshold. Through these
values we can see how separated the identities of the gener-
ated images are, and thereby how distinctively identifiable
the faces seen in those images.

Evaluation
To make the obtained results more understandable they
are displayed as receiver operating characteristic (ROC)
curves. Such an ROC curve is created by sweeping trough
a range of thresholds and then noting for how many sub-
jects the similarity to their ground truth is above that
threshold, as well as how many incorrect ground truths
get above that threshold. These numbers give us the true
positives (TP) and false positives (FP) respectively, as well
as false negatives (FN) and true negatives (TN), allowing
us to calculate the true positive rate as TPR = TP

TP+FN

and false positive rate as FPR = FP
FP+TN

. Plotting these
against each other gives us an indication of the perfor-
mance of the classifier for many thresholds, and thereby
how separated the identities are for each subject. For a
perfect face recognition network there would always only
be true positives and no false positives, since the identities
are perfectly separated, giving a right angle in the upper
left corner. A random classifier would give as high a true
positive rate as a false positive rate, which is shown as a
linear baseline between the bottom left and top right. To
make it easier to directly compare ROC curves the area
under the curve (AUC) can be calculated, which would be
1.0 and 0.5 for the perfect and random classifier respec-
tively. All AUC values in this paper were approximated
using the trapezoidal sum, since the data points are do
not form a continuous line.

ForenFace
The ForenFace data set consists of images mimicking se-
curity camera footage, inc, meant for forensic research. It
contains stills of 97 subjects filmed by six cameras stand-
ing at four positions, facing set directions at each position.
The subjects were filmed both with and without a base-
ball cap, but only the images without obstruction were
used in this paper. The c3a3 image set, as seen in fig. 4c,
was taken with the Panasonic WVP480, at a distance of
4.20m and angle of 30° to the subject, looking down at an
angle of 25° The orientation of the faces varies in the set,
which was accounted for in the generated images by allow-
ing a 10° variance in the pitch and 5° variance in the roll of

(a) Passport (b) c1a7
(c) c3a3

Figure 4: Examples of the images used from the ForenFace
data set.

the faces, along with a 10° variance in yaw from the line to
the camera, as this resulted in visually similar poses. For
post-processing the green and blue channels were trans-
lated by a few pixels in opposite directions, the dynamic
range was decreased and colours were corrected. The final
images were down-sampled by a factor ten except when
indicated differently. The c1a7 set, as seen in fig. 4b, was
taken with a Watec WAT-230A in greyscale, at a distance
of about 80cm. Since the subjects were instructed to look
directly in the camera, the face and camera face each other
directly in the generated images. Since most subjects look
above or below the camera at a varying height the pitch
of the generated faces varies by 10°, combined with a vari-
ation of 2° in yaw and roll. The only post processing done
on the generated images is greyscale conversion and three
times down-sampling.

FaceNet
FaceNet is a deep convolutional neural network designed
to give a Euclidean embedding of the face in an image,
which means there is a direct correspondence between the
squared Euclidian distance between two normalised em-
beddings and their similarity, in this case on a scale from
zero to four. On the Labeled Faces in the Wild data set
it is one of the best scoring networks with an accuracy of
99.60±0.09 percent [16], which should make it a good rep-
resentative of the state of the art in face recognition. The
system takes a square cropped image face of a set size as an
input and produces a 128 dimensional numerical represen-
tation of the identity of that face. For the measurements
the implementation by Hiroki Taniai2 in was used with an
implementation of MTCNN3 for cropping the faces.

7. RESULTS
Image Comparison
To get an idea of how well the quality of the generated im-
ages matches the ground truths we can visually compare
them for one of the subjects. Since the original lighting
could only roughly be matched and the pose of each sub-
ject was slightly randomised these can differ somewhat
from the original and between each subject. The aim was
to match the general look and quality for the whole im-
age series more than to create exact matches. Only one
subject in the ForenFace data set can be shown here for
privacy reasons, so these images are only an average rep-
resentation of how well the generated images match the
references.
The high quality ’mugshot’ images give a good overview of
the quality of the 3D models, since the high resolution and
ideal setup prevent any divergence due to post-processing
or camera and light placement. The reference face looks

2https://github.com/nyoki-mtl/keras-facenet
3https://pypi.org/project/mtcnn/
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(a) Original Image (b) Generated Image

Figure 5: A comparison of high quality images.

(a) Original Image (b) Generated Image

Figure 6: A comparison of medium quality c1a7 images.

wider, with a smaller nose. This can partially be explained
by the virtual camera using a shorter focal length than the
original cameras, but the morphable model also seems to
make large nose tips. The texture matches quite well for
most subjects, but darker skins are lightened significantly
and the resolution is limited due to using vertex colours.
Another problem of the morphable model is that all the
details in the face, like laugh lines, and sharp features, like
cheekbones, get smoothed out.
Due to the c1a7 images being black and white they gen-
erally match the skin tone better. Because the light is
coming from quite a sharp angle both the original and gen-
erated images shown a lot of self-shadowing in the faces.
These shadows highlight the details and sharper features
in the faces, once again showing how these got smoothed
out in some of the subjects.
The c3a3 images are of a very low quality, which hides
most discrepancies in the details. In both the real and gen-
erated images the eyes and mouth are reduced to coloured
smears in many images. The distortion of colours is a little
bit larger in some of the reference images, but the colours
match quite well overall. The loss of sharp features in the
3D model causes the highlights and shadows to be smooth
in the generated images, wheres these are very sharp in the
original images. The graininess and compression artefacts
are visually similar in both sets of images.

Face Recognition on Generated Images
Intra-Domain
Before a comparison can be made between the identities
that FaceNet sees in real and generated images we first
need a baseline for how well the face recognition handles
synthesised faces in the first place. This is done by com-

(a) Original Image (b) Generated Image

Figure 7: A comparison of very low quality c3a3 images.

paring the similarity of high and low resolution images
within the real and generated image sets separately. The
results of these measurements are plotted in fig. 9 and
fig. 10 for the c3a3 and c1a7 sets respectively. All the gen-
erated images used for these measurements use the neutral
expression override unless otherwise specified.
In fig. 10 we can see that the general performance is the
same for both the real and generated images, with only
about a 1% difference between the AUC values. The curve
for the real faces does not reach a full true positive rate
for a large range of false positive rates, indicating that a
few faces were confusing the network, which explains the
lower area under this curve. The top left corner of the
real curve is sharper though, which means that a slightly
larger number of real faces was identified correctly without
confusion than the generated faces.
In the curves for the c3a3 image sets a large difference can
be seen between between the images that were down sam-
pled to different sizes, with 10% less down-sampling giving
about a 15% improvement, and the real images performing
about 5% better than images that were downsampled to
a tenth of their original size. When the images are scaled
to the size used by FaceNet, shown in fig. 8, only a minor
difference in the loss of detail can be seen, notably around
the mouth. A possible explanation is that this lost detail
happens to include those features that FaceNet looks at,
as it may move the colour contrast that distinguishes these
features past a point where FaceNet can clearly distinguish
them.
A similar range of curves is seen when different combina-
tions of the original expression and the neutral expression
are used for both the low and the high resolution images,
with the own expression in the low resolution image caus-
ing a large increase (16% and 19%) in performance re-
gardless of the expression in the high resolution image. A
possible explanation for this is that since some subjects
smiled in their passport photo, using their own expression
creates a clearer mouth in the low resolution images, which
could help FaceNet, but comparing the individual scores
of smiling and non-smiling subjects does not confirm this.

(a) Reference
Image

(b) 9× Down-
sampled

(c) 10× Down-
sampled

Figure 8: A comparison of downsampled c3a3 images, re-
sized to 160 by 160 pixels.
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Figure 9: ROC curves for face recognition in the very low
quality c3a3 images
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Figure 10: ROC curves for face recognition in the medium
quality c1a7 images
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Figure 11: A comparison of different combinations of ex-
pressions and domains for c3a3 images. R indicates a real
reference photo and G a generated photo. For the gener-
ated images N indicates a neutral expression and O the
original expression from the passport photo.
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Figure 12: A comparison of different expression combina-
tions for c3a3 images at 10x down sampling. N indicates a
neutral expression and O the original expression from the
passport photo.
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Figure 13: ROC curves for the similarity of high resolution
generated images and the references they were generated
from.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

o
si

ti
v
e

R
a
te

real images reference
AUC=0.976

generated images
AUC=0.988

R low res-NG high res
AUC=0.959

R low res-OG high res
AUC=0.965

NG low res-R high res
AUC=0.938

OG low res-R high res
AUC=0.953
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The high variance between the different sets illustrates the
big difference any small adjustment can make in such low
quality images, which makes it difficult to get a similar
level of degradation as in a reference image. This also
makes it difficult to tell how much of a factor the fact
that the faces are 3D models is, though FaceNet generally
performs about as well or even better on them than on
just real faces at the same resolution.

Inter-Domain
Generated faces do not seem inherently problematic for
FaceNet, so we can also measure whether it sees the same
person in a generated image as in the reference image it
was generated from. For this purpose the same image sets
were compared again, but this time real and generated
faces against each other.
When comparing the generated and real faces under ideal
conditions, namely a high resolution and frontal lighting
and camera alignment, FaceNet has no trouble recognising
the subjects of the images as the same person, as can be
seen in fig. 13. When using the same expression the sepa-
ration of identities is almost perfect and using the neutral
expression only causes confusion for a few subjects.
On the c1a7 set comparing between domains decreases the
performance by up to 5% with the generated low resolu-
tion images performing the worst. While the comparisons
within the domains mostly had a few subjects that were
hard to identify, with a large amount of true positives
without false negatives, the curves for the generated low
resolution images indicate some confusion happens for a
much larger set of faces. Overall this means that the dis-
tinction between identities is less clear when comparing
between domains for the c1a7 images.
The curves for the c1a3 images get even closer to the
chance line, with generated images with the original ex-
pression once again outperforming even the real images
by 10%. The lowest scoring comparisons are those were
the real low resolution images are used, performing 16%
and 15% worse. This may be because the real faces have
sharp self-shadowing and highlighting, accentuating fea-
tures that are not present in the smoothed out generated
faces.

8. CONCLUSIONS
Using morphable models to generate faces from reference
images and then posing and rendering those faces with the
techniques supported by Blender allows us to recreate im-
ages like those seen in security camera footage. Recreating
very low quality images still proves challenging, as it can
be hard to tell how the original images were degraded, but
most forensic quality degradation can be mimicked.

The state of the art FaceNet face recognition network
seems to perform quite well on the synthesised faces, but it
is difficult to compare its performance on very low quality
images, since those produce varying results. Recognising
the generated faces as the same person that they were gen-
erated from works well under ideal circumstances. If the
conditions are not ideal performance can vary quite a bit,
but it is generally worse than when comparing identities
within the real or generated domain. This is likely caused
by limitations in the used morphable model, as it smooths
out important details and sharper facial features. Espe-
cially in very low resolution images facial expressions also
seem to have a great influence, though the cause of this is
unclear.

Future Work
Comparisons between real and generated faces show that
the 3D models created from reference faces can still be im-
proved quite a bit. Further work could look at alternative
methods for generating these models, or step away from
reference images and synthesise the faces completely.
Further research could also look at the influence of facial
expression at low resolutions on facial recognition systems,
FaceNet specifically, as it is unclear why changing the ex-
pression of generated faces caused such a variance in the
recognition performance.
While this paper looked at efficacy of using synthesised
face models to test face recognition systems under non-
ideal conditions further work could research the influence
of training on such models, since the large increase in the
number of training images could have a large influence on
the performance on low quality photos.
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